
WebRTCHTTP/2 all the things!
challenges, opportunities, and the exciting world ahead of us...

+Ilya Grigorik
@igrigorik



Who’s this guy? :-)

● Performance Engineer @ Google
○ Anything web perf related…

● Wrote HPBN (read @ hpbn.co)
○ Radio → TCP → TLS → HTTP
○ Browser APIs: XHR, WS, WebRTC
○ … 

● Blog: igvita.com
● Twitter: @igrigorik



$> telnet igvita.com 80

Connected to 173.230.151.99

GET /archive

Hypertext delivery with HTTP 0.9! - eom.

(connection closed)

HTTP 0.9 is the ultimate MVP - one line, plain-text 
“protocol” to test drive the “www idea”.



$> telnet ietf.org 80

Connected to 74.125.xxx.xxx

GET /rfc/rfc1945.txt HTTP/1.0

User-Agent: CERN-LineMode/2.15 libwww/2.17b3

Accept: */*

HTTP/1.0 200 OK

Content-Type: text/plain

Content-Length: 137582

Last-Modified: Wed, 1 May 1996 12:45:26 GMT

Server: Apache 0.84

4 years of rapid iteration later… eom.

(connection closed)

HTTP 1.0 is an informational RFC - documents 
“common usage” of HTTP found in the wild.



$> telnet google.com 80

Connected to 74.125.xxx.xxx

GET /index.html HTTP/1.1

Host: website.org

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4)... (snip)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Cookie: __qca=P0-800083390... (snip)

HTTP/1.1 200 OK

Connection: keep-alive

Transfer-Encoding: chunked

Server: nginx/1.0.11

Content-Type: text/html; charset=utf-8

Date: Wed, 25 Jul 2012 20:23:35 GMT

Expires: Wed, 25 Jul 2012 20:23:35 GMT

Cache-Control: max-age=0, no-cache

100

<!doctype html>

(snip)

HTTP 1.1 ships as RFC standard in 1999 - hyper
{t ̶e ̶x̶t ̶}media all the things!



Speed, performance and human perception

Geocities ftw!
(circa HTTP/1.1)

In the meantime...

● Web applications, not (just) pages.
● Rich media and multi-device layouts.

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION


* All numbers are medians, based on latest HTTP Archive crawl data.

State of the HTTP nation...

● 12 distinct hosts per page
● 78 distinct requests per page
● 1,232 KB transferred per page

Resulting in typical render times of 2.6-5.6 seconds.

50th and 90th percentiles

http://bigqueri.es/t/calculate-medians-for-latest-http-archive-run/7/5


Yahoo.com waterfall… BW is not the issue?

Primer on Web Performance (Chapter 10)

… (snip 30 requests) ...

● 52 requests
● 4+ seconds

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html


Speed, performance and human perception

“Connection view” tells the story...
30 connections
● DNS lookups
● TCP handshakes
● …

We’re not BW limited, we’re 
literally idling, waiting on the 
network to deliver resources.

Transfer time (in blue)

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION


blink-dev thread

● Cable profile (5Mbps / 28 ms RTT)
● Main thread attribution in Blink

○ Measured via Telemetry

● 69.5% of time blocked on network
● 6.6% of time blocked JavaScript
● 5.1% blocked on Layout
● 4.5% blocked on Paint
● ...

No surprises here... First page load is 
network (latency) bound!

Top 1M Alexa sites...

https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/-R47hzmkdig/mipwor_0GW8J
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/-R47hzmkdig/mipwor_0GW8J


HTTP/1.1 performance problems...

● Limited parallelism
○ Maximum of 6 requests per origin
○ Pipelining does not work in practice
○ Competing TCP flows, spurious retransmissions
○ Extra handshakes, FDs, memory buffers, etc.

● Client-side request queuing
○ Head-of-line blocking
○ Delayed request dispatch

● High protocol overhead
○ ~800 bytes of header + cookies
○ No compression of HTTP metadata



Where there’s a will, there’s a way...
we’re an inventive bunch, so we came up with some “optimizations” (read, “hacks”)



Domain shard… all the things!

6 connections per origin
just add more origins, right?

Duplicate (spurious) data packets 
due to oversharding

http://perf.fail/post/96104709544/zealous-sharding-hurts-etsy-performance

Optimal number of shards? There is no such thing. Depends on particular 
page, device + network + network weather. Most sites overshard, and hurt 
themselves… Causing congestion, retransmissions, etc.

http://perf.fail/post/96104709544/zealous-sharding-hurts-etsy-performance
http://perf.fail/post/96104709544/zealous-sharding-hurts-etsy-performance


Concat… all the things!

“Reduce number of requests”...

● Large monolithic code chunks
○ e.g. most pages use <20% of CSS rules

● Expensive cache invalidations
○ e.g. single char update forces full fetch

● Delayed execution of JSS / CSS
○ e.g. must wait for entire JS file to arrive
○ e.g. must wait for entire CSS file to arrive



Inline… all the things!

“Reduce number of requests”...

● Duplicated resources
○ every page must embed the same resource
○ can’t use the HTTP cache

● Breaks prioritization
○ inlined asset is “upgraded” to HTML priority
○ inflates the size of HTML document



Let’s fix HTTP instead?



● Improve end-user perceived latency
● Address the "head of line blocking"
● Not require multiple connections
● Retain the semantics of HTTP/1.1

"HTTP 2.0 is a protocol designed for low-latency 
transport of content over the World Wide Web"



● One TCP connection

● Request → Stream
○ Streams are multiplexed
○ Streams are prioritized

● Binary framing layer
○ Prioritization
○ Flow control
○ Server push

● Header compression

HTTP/2 in one slide… 



  “... we’re not replacing all of HTTP — the methods, 
status codes, and most of the headers you use today 
will be the same. Instead, we’re redefining how it gets 
used “on the wire” so it’s more efficient, and so that it 
is more gentle to the Internet itself ....”

- Mark Nottingham (HTTPbis chair)



Basic data flow in HTTP 2.0...

● Streams are multiplexed by splitting communication into frames
○ All frames (e.g. HEADERS, DATA, etc) are sent over single TCP connection

● Frames are interleaved
○ Frames are prioritized
○ Frames are flow controlled



Inlining is server push. Except, HTTP 2.0 server push is cacheable! 

Server push… is replacing inlining



● Both sides maintain “header tables”
● New requests “toggle” or “insert” 

new values into the table

Byte cost of new stream: 9 bytes! *

HTTP/2 header compression

* as low as 9 bytes for an identical request. 



But you already knew all that!
The more interesting part is how it changes web development...

● min(request overhead)        = 9 bytes

● max(parallelism)          = 100~1000+ streams

● max(client queueing latency) = 0 ms



Remove domain sharding for HTTP/2

Sharding hurts HTTP/2 performance
● Breaks prioritization, flow control, etc.

Tip: use altName hosts to deploy domain sharding! *
● HTTP/1.1 → opens new connection to each origin
● HTTP/2 → reuses the same connection for altName origins

$> openssl s_client -connect google.com:443 | 
     openssl x509 -noout -text | 
     grep DNS
DNS:*.google.com, DNS:*.android.com, DNS:*.appengine.google.com, ...

* Origin must be covered by the cert and resolve to same IP



Remove spriting / concatenation logic...

Streams are cheap, and no longer a constraint.

● Deliver modular resources
○ aim to minimize resource churn
○ define granular caching strategy for each

● Conditional delivery based on protocol?
○ Combine for HTTP/1.1 clients *
○ Granular resources for HTTP/2 clients

* Need better tools / infrastructure to do conditional delivery



Leverage server push instead of inlining...

Server can respond with multiple replies!

● Client → I want /product/xyz
● Server → Ok, and you’ll also need… style.css

● Pushed resource is cached independently
○ Use “smart push”, don’t push on every request

● Can remove RTT+ from critical path

● Push… cache invalidations!
○ push a “tombstone” record to invalidate



Jetty’s “smart push” is a great strategy...

1. Server observes incoming traffic
a. Build a dependency model based on Referer
b. e.g. index.html → {style.css, app.js}

2. Server initiates push for learned dependencies
a. new client → GET index.html
b. server → Push style.css, app.js

Lots of room for experimentation + innovation!



Servers need to be *much* smarter
client is relinquishing a lot of control, badly implemented server → poor performance



Chrome 28+ does not delay stream dispatch (yay)  

SPDY resource scheduling

“Don't delay low priority requests 
when SPDY is available. Check if 
the origin server supports SPDY. 
If so, 
start the request immediately.”

Eliminates client queuing 
latency. Means the server must 
be smart about respecting 
client priorities!

 

https://plus.google.com/+IlyaGrigorik/posts/Uxgvk35ntL2
https://plus.google.com/+IlyaGrigorik/posts/Uxgvk35ntL2


Prioritization is key to optimized rendering...

With HTTP/1.1 browsers held back requests… not with HTTP/2.
○ GET index.html, style.css, hero.jpg, other.jpg, more.jpg, …

critical low priority

Critical resources should pre-empt others
○ Poorly implemented server: saturate the pipe with static image bytes!

■ e.g. SPDY/v2 implementation in nginx did not respect prioritization, and 
performance suffered… test your server!



Smart++ server can optimize for each content type!

Don’t hold back all image bytes... send the first ~KB
○ Allows the browser to decode the image header and get dimensions
○ Allows the browser to minimize reflows during layout

Stream flow-control enables fine-grained resource control between streams. E.g…

● T(0): I am willing to receive 4KB of kittens.jpg.
● T(0): I am willing to receive 500KB of critical.js 
● …
● T(n): Ok, now send the remainder of kittens.jpg. 

Client controls how and when the stream and connection window is incremented!



Real-world performance...
Your gains will vary based on site architecture, server, clients, ...



SPDY for API traffic @ Twitter

“However, we have measured as much as a 30% decrease in latency in the wild for API requests 
carried over SPDY relative to those carried over HTTP.  In particular, we’ve observed SPDY 
helping more as a user’s network conditions get worse.” - Twitter

https://blog.twitter.com/2013/cocoaspdy-spdy-for-ios-os-x 

https://blog.twitter.com/2013/cocoaspdy-spdy-for-ios-os-x
https://blog.twitter.com/2013/cocoaspdy-spdy-for-ios-os-x


HTTP/2 and SPDY

Google News Google Sites Google Drive Google Maps

  Median 43% 27% 23% 24%

  95th percentile 44% 33% 36% 28%

Page load time improvement with SPDY enabled...

Improvement over HTTP/1.1 + TLS

http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html 

http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html
http://blog.chromium.org/2013/11/making-web-faster-with-spdy-and-http2.html


“SPDY also has advantages on the server:

SPDY requests consume less resources on the server
SPDY requests consume less memory but a bit more CPU 
SPDY requires fewer Apache worker threads”

Hervé Servy, Neotys.

s/SPDY/HTTP2/g … same results.

Fewer connections means that...



Speaking of TLS… 
make sure your TLS stack is optimized!



Tuning Nginx TLS Time To First Byte (TTTFB)

● Pre 1.5.7: bug for 4KB+ certs, resulting in 3RTT+ handshakes
● 1.7.1 added ssl_buffer_size: 4KB record size remove an RTT
● 1.7.1 with NPN and forward secrecy → 1RTT handshake

https://www.igvita.com/2013/12/16/optimizing-nginx-tls-time-to-first-byte/ 

https://www.igvita.com/2013/12/16/optimizing-nginx-tls-time-to-first-byte/
https://www.igvita.com/2013/12/16/optimizing-nginx-tls-time-to-first-byte/


● “Out of the box” TLS performance is poor… we need to fix this.
● No server is perfect, plenty of work to be done to improve perf.



There is way too much red here… Bug your CDN about fixing this!



Deliver 1-RTT handshake 100% of the time
1. TLS False Start for new visitors
2. TLS resumption for returning visitors
3. Ensure that server is able to send full cert chain without blocking
4. OCSP stapling to avoid blocking

Optimize data delivery
1. Optimize record size to avoid unnecessary buffering delays
2. Leverage SPDY / HTTP/2 to further reduce latency and ops costs

a. Leverage HTTP/2 optimizations: unshard, un-concat, etc

An optimized TLS deployment should...



isTLSfastyet.com



Where to from here?
necessary steps to make HTTP/2 ubiquitous



Browser support is there, or coming soon...

● Chrome M39 is shipping HTTP/2 (draft 14)
○ Coming in next stable release! Available in Canary today.
○ Google servers are also speaking HTTP/2

● Firefox 34 is shipping HTTP/2 (draft 14)
○ Coming in next stable release!

● IE supports HTTP/2 on Windows 10 Technical Preview 
○ In the meantime, IE also supports SPDY v3

● Latest Safari suports SPDY v3
○ No official HTTP/2 announcements, but… I’m sure its coming.



● SPDY was “experimental branch” of HTTP/2
● SPDY will be phased out now that we have HTTP/2

○ All future and further work will be done within HTTP/2

Wait, what about SPDY?



Server support is coming along as well...

● nghttp2 is awesome!
○ Lots of projects built on top of nghttp2
○ Need to test TLS performance though.. :)

● Native Java, C#, Objective-C, Go, Python, Ruby, Erlang libraries
○ https://github.com/http2/http2-spec/wiki/Implementations 

● Apache and Nginx are both WIP
○ No ETA for either project as of today
○ Looking for a good project to contribute to?

https://github.com/http2/http2-spec/wiki/Implementations
https://github.com/http2/http2-spec/wiki/Implementations


Site owners & developers
1. Remove sharding, concatenation, spriting...
2. Test your HTTP/2 server: prioritization, server push, etc.
3. Optimize your TLS deployment

Server & library developers
1. Respect prioritization and dependency hints

a. Aside: we need better server tests - QPS is not a good metric!
2. Build smarter models: server push, content-type optimizations, etc.
3. Nudge / contribute HTTP/2 support in your favorite project / language

tl;dr...



Thanks! 

+Ilya Grigorik
@igrigorik

Slides
bit.ly/1rOWzXj


