
TI Proprietary Information — Internal Data

OMAP™ SS&P DESIGN SPECIFICATION

Document Revision: 1.3
Issue Date: 22 September 2005

OpenMAX™ TI 1.5Core

Nucleus®

OMAPV1030

TI Proprietary Information — Internal Data

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1

– 26

July

2005

OMAP™ is a Trademark of Texas Instruments Incorporated

OMAP-Vox™ is a Trademark of Texas Instruments Incorporated

Innovator™ is a Trademark of Texas Instruments Incorporated

Code Composer Studio™ is a Trademark of Texas Instruments Incorporated

DSP/BIOS™ is a Trademark of Texas Instruments Incorporated

eXpressDSP™ is a Trademark of Texas Instruments Incorporated

TMS320™ is a Trademark of Texas Instruments Incorporated

TMS320C28x™ is a Trademark of Texas Instruments Incorporated

TMS320C6000™ is a Trademark of Texas Instruments Incorporated

TMS320C5000™ is a Trademark of Texas Instruments Incorporated

TMS320C2000™ is a Trademark of Texas Instruments Incorporated

OpenGL® is a Registered Trademark of the Khronos Group

OpenML® is a Registered Trademark of the Khronos Group

OpenVG™ is a Trademark of the Khronos Group

OpenMAX™ is a Trademark of the Khronos Group

All other trademarks are the property of the respective owner.

Copyright © 2005 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for the
products based from this document.

Table of Contents

i
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Table of Contents
Table of Contents ... i

List of Figures... iii
List of Tables.. iii

Revision History ... iv

Approvals .. iv

1 Introduction..1
1.1 Purpose ..1
1.2 Scope..1
1.3 File Path..1
1.4 File Name ...1
1.5 References ...1
1.6 Definitions ...1

2 Architectural Overview ...3
2.1 System Diagram ...4
2.2 Software Design Interfaces ..5

3 Design Rational..6
3.1 Relevant Specifications ..6
3.2 Design Trade-offs ...6
3.3 Hardware Dependencies ..6
3.4 Other Pertinent Design Issues..6

4 Memory Requirements..7
4.1 Memory Allocation ..7

5 Sub-Components...8
5.1 OpenMAX™ TI 1.5 Core Include Files ...8
5.2 OpenMAX™ TI 1.5 Component Include Files ..8
5.3 Multimedia Support Include Files ...8

6 Data Flow..10

7 Control Flow...11
7.1 Component Phases ..11

7.1.1 Component Load ...11
7.1.2 Component Unload..12
7.1.3 Component Initialization ..13
7.1.4 Component Execution ...14
7.1.5 Component Pause ...14
7.1.6 Component Resume..14
7.1.7 Component Stop..15
7.1.8 Component Deinit ..15

7.2 Component States..16
7.2.1 State Definitions...17
7.2.2 Valid State Transitions...17

8 Software Requirements ..19

9 Requirements Traceability..20
9.1 Class Structure ...20
9.2 Defined Types...20

9.2.1 Basic Data Types...20
9.3 Data Structures...21

9.3.1 OMX_BUFFERHEADERTYPE..21
9.3.2 OMX_COMPONENTTYPE..21
9.3.3 OMX_BU32..22

Table of Contents

TI Proprietary Information — Internal Data
ii

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

9.3.4 OMX_BS32..22
9.4 Unions...23

9.4.1 OMX_VERSIONTYPE ...23
9.5 Enumerations..23

9.5.1 OMX_COMMANDTYPE ..23
9.5.2 OMX_STATETYPE..23
9.5.3 OMX_ERRORTYPE ..24
9.5.4 OMX_EVENTTYPE ...25
9.5.5 OMX_BOOL...25
9.5.6 OMX_DIRTYPE ...26
9.5.7 OMX_ENDIANTYPE..26
9.5.8 OMX_NUMERICALDATATYPE ..26

9.6 API Requirements Coverage..27
9.6.1 OMX_GetHandle..27
9.6.2 OMX_FreeHandle..28
9.6.3 OMX_SetupTunnel ..28
9.6.4 OMX_Init ..29
9.6.5 OMX_Deinit..29

9.7 Macros ..30
9.7.1 OMX_GetComponentVersion ..30
9.7.2 OMX_SendCommand..31
9.7.3 OMX_GetParameter ..32
9.7.4 OMX_SetParameter ..33
9.7.5 OMX_GetConfig...33
9.7.6 OMX_SetConfig ...34
9.7.7 OMX_GetState...35
9.7.8 OMX_EmptyThisBuffer ..36
9.7.9 OMX_FillThisBuffer..37
9.7.10 OMX_CALLBACKTYPE ..38

9.8 Non-API Requirements Coverage..41

Table of Contents

iii
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

List of Figures
Figure 1 System Architectural Diagram..4
Figure 2 Load Phase of Component...11
Figure 3 Unloading of Component..12
Figure 4 Initialization phase of Component ..13
Figure 5 State Diagram of a Component ..16

List of Tables
Table 1 Terms and Acronyms ...2
Table 2 OMX Core1.5 files ..8
Table 3 Component Include Files..8
Table 4 Multimedia Support Include Files ...8
Table 5 OMX States ..17
Table 6 OpenMAX™ TI 1.5 Component Transitions...17
Table 7 Requirements List...19
Table 8 OMX Basic Data Types ..20
Table 9 OMX_BUFFERHEADERTYPE Structure...21
Table 10 OMX_COMPONENTTYPE Structure...21
Table 11 OMX_BU32 Structure...22
Table 12 OMX_BS32 Structure ...23
Table 13 OMX_VERSIONTYPE Union ...23
Table 14 OMX_COMMANDTYPE Enumeration Data...23
Table 15 OMX_STATETYPE Enumeration Data ..24
Table 16 OMX_ERRORTYPE Enumeration Data...24
Table 17 OMX_STATETYPE Enumeration Data ..25
Table 18 OMX_BOOL Type Enumeration Data ..25
Table 19 OMX_DIRTYPE Type Enumeration Data...26
Table 20 OMX_ENDIANTYPE Type Enumeration Data ...26
Table 21 OMX_NUMERICALDATATYPE Type Enumeration Data..26

Revision History

TI Proprietary Information — Internal Data
iv

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Revision History
REV DATE AUTHOR NOTES

1.0 06 Jul 2005 Mahendra Kumar H V Initial release

1.1 25 Aug 2005 Mahendra Kumar H V,
Federico Reyes Corrections and move to new Base Document

1.2 22 Sep 2005
Federico Reyes,
Praveen Rao

Updated for V1030 Nucleus Implementation.

1.3 28 Sep 2005 Praveen Rao Updated with Inspection findings

Approvals
REV APPROVAL 1 DATE APPROVAL 2 DATE

1.3 David Newman 29-Sep-2005 Prathibha Tammana

Please read the “Important Notice” on the next page.

Approvals

v
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

1 Products 2 Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

 Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

Introduction

1
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

1 Introduction
This document describes the design of the TI Internal OpenMAX™ TI 1.5 Core. The environment for the
OpenMAX™ TI 1.5 Core is:

Nucleus® on OMAPV1030

OpenMAX™ TI 1.5 components.

1.1 Purpose
This document details the design specifications for OpenMAX™ TI 1.5 Core on OMAPV1030.

1.2 Scope
This document addresses only design specifications.

Additional technical data can be found by referring to the OMAP™SS&P Technical Perspective and Data
Package document.

The document provides information about technical data artifacts, including their title, standard
ClearCase® VOB location, a brief description and the System or Software Checkpoint where the artifact
is first introduced into the development process.

1.3 File Path
This design specification document shall be captured in ClearCase® path defined in the project CM Plan:

\\OMAPSW_SysDev\OMAPV1030\Multimedia\System_Core\Docs

1.4 File Name
The file name of this document is OMAPSSP_V1030_OMX_Core_DesignSpec.doc.

1.5 References
All References can be found on the Cellular Systems web site or the World Wide Process and Tools
Group web site.

1.6 Definitions
Terms used in this document can be found in the Cellular Systems Glossary Document.

Introduction

TI Proprietary Information — Internal Data
2

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Terms that are introduced in this document are detailed below:

Table 1 Terms and Acronyms

ACRONYM DEFINITION

DSP Digital Signal Processor

GPP General Purpose Processor

OMX OMX and OpenMAX™ TI 1.5 are used interchangeably in the document.

OMAPTM Open Multimedia Application Platform

API Application Programming Interface

ARM Advanced RISC Machines
BIOS Basic Input/Output System

DSP/BIOS™ Digital Signal Processing/Basic Input/Output System

OS Operating System

SDP Software Development Platform

Architectural Overview

3
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

2 Architectural Overview
The OpenMAX™ TI 1.5 framework acts as an API that defines a software interface used to provide an
access layer around software or hardware components in a system. The intent of the software interface
defined by OpenMAX™ TI 1.5 is to take software or hardware components with disparate initialization and
command methodologies and provide a software layer having a standardized command set and
standardized methodology for construction and destruction of the components. Consider a system where
various components such as audio codec, audio mixer, and noise reduction filter are required. Each of
these components may come from different vendors and may have entirely different methods to initialize
and start them. In this scenario, the role of OpenMAX™ TI 1.5 framework is to provide an interface to high
level applications with a standard protocol that allows OpenMAX™ TI 1.5 compliant components from
these different vendors to be used in a standardized way. One main benefit of the OpenMAX™ TI 1.5
interface is that it abstracts the details of where the codec algorithm is running, making it easy to create a
simple ARM only solution for fast development time and then later substitute a complete DSP solution
without requiring major changes in the application. To achieve this objective, OpenMAX™ TI 1.5 core and
OpenMAX™ TI 1.5 component are introduced between the application and the codec.

Typically OpenMAX™ TI 1.5 is used by high level applications to communicate with codec’s although
almost any function may be wrapped in an OMX component. One example may be to wrap the power
management functions in OMX component wrappers.

The application will access an OpenMAX™ TI 1.5 component’s interfaces to send commands to perform
functions such as initialize, start, pause etc to the underlying codec and/or Hardware accelerator device.
In this usage, the OpenMAX™ TI 1.5 component is said to wrap the underlying codec and/or Hardware
accelerator device. Each codec and/or Hardware accelerator device may be wrapped by a separate
OpenMAX™ TI 1.5 component or a logical group of components may be wrapped as a group wherever
necessary. The OpenMAX™ TI 1.5 architecture provides standardized methods to:

Initialize/De-initialize the component.

Get/Set configuration of the component.

Send various commands (like start/stop/pause etc) to codec.

Send/Receive buffers to/from component.

The OpenMAX™ TI 1.5 Core is a thin layer between an application framework and the OpenMAX™ TI
1.5 components. The OpenMAX™ TI 1.5 Core does not participate in any operations other than load
(init) and unload (de-init) of the components. After the OpenMAX™ TI 1.5 component (e.g.: PCM
Decoder) is created, the application calls the component through the macros provided by OpenMAX™ TI
1.5 Core.

The OpenMAX™ TI 1.5 OMX core maintains a list of components support in an “OMX Component Table”.
Every OpenMAX™ TI 1.5 components must have its entry in the above table which consists of the
component name and function-pointer to the OMX_ComponnetInit function.

The OMX_GetHandle method will locate the component specified by the component given name in the
OMX component table and invoke the component methods to fill the component handle and setup the
callbacks.

Note 1. In Nucleus® implementation of the OpenMAX™ TI 1.5 Core, the term “Load”
and “Unload” are used to mean “Init” and “De-Init” respectively, since in
Nucleus® all the component modules are statically linked.

Architectural

Overview

TI Proprietary Information — Internal Data
4

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

2.1 System Diagram
Figure 1 shows the architecture of the OpenMAX™ TI 1.5 Core as used in a complete system. This
diagram shows how an application framework will communicate with the OpenMAX™ TI 1.5 Core,
OpenMAX™ TI 1.5 Component and codec on the DSP.

The OpenMAX™ TI 1.5 core is OS specific code that has the functionality necessary to locate and then
load (initialize) an OpenMAX™ TI 1.5 Component into main memory for execution. The core is also
responsible for unload (de-initialize) the component from memory when the application indicates that the
component is no longer needed. The Core acts as a thin layer between an application and the
component. The OpenMAX™ TI 1.5 Core is responsible for

Initialization of the components

De-Initialization of the components

Providing APIs and macros to application so that application can interact with the component.

Figure 1 System Architectural Diagram

ARM

DSP

Data Flow
Control Flow
Data Flow
Control Flow
Data Flow
Control Flow
Data Flow
Control Flow

DSP/BIOS™ Bridge

B
IO

SSocket Node with Codec

OMX
OMX Core

N
ucleus®

K
ernel

Application

OMX
Component 1

OMX
Component 2

Architectural Overview

5
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

2.2 Software Design Interfaces
This section explains the interfaces that the application designer will have to use to initialize and control
the OMX components in a system. The application will use the OMX core API interface to locate the
component in the component table and initialize a handle for the component. Next, the application will
use macros provided by the core to directly access methods within the component to setup the
initialization parameters, initiate state transitions of the component and finally to pass buffers to and from
the component.

Note: Refer section 9 for the interface details.

Design Rational

TI Proprietary Information — Internal Data
6

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

3 Design Rational
OpenMAX™ TI 1.5 is used for the development of components for OMAPV1030. OpenMAX™ TI 1.5 is a
subset of the currently-in-work Khronos 1.0 standard. The TI Internal OpenMAX™ TI 1.5 standard is
intended as a standard way to exchange setup information and data buffers between application and
components. Since OMX core gives the standard interface to the application, an application can be used
to control multiple components with minimal changes.

3.1 Relevant Specifications
Refer to the following specifications for additional information:

Khronos OpenMAX IL Layer Specification 1.0 (in work, as of 3/3/2005)

3.2 Design Trade-offs
There are no design trade-offs specific to the core functions. Instead of providing separate APIs for state
transitions, a unique macro SendCommand is provided by OMX core so that application becomes more
maintainable and cleaner.

3.3 Hardware Dependencies
There are no specific hardware dependencies.

3.4 Other Pertinent Design Issues
There are no design issues currently.

Memory Requirements

7
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

4 Memory Requirements
There are no defined memory usage requirements for the OMX core such as maximum memory used.
However, since the core consists of a collection of functions intended to be called by an application, the
following requirements are imposed.

4.1 Memory Allocation
OMX core will not allocate memory for any of the structures of the component. The core will allocate
memory only for component handle which stores function pointers of the component. The memory
allocated for the component handle is freed by the core when the component is un-initialized using
OMX_FreeHandle.

Sub-Components

TI Proprietary Information — Internal Data
8

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

5 Sub-Components
The OpenMAX™ TI 1.5 Core consists of the following files each having specific functions.

5.1 OpenMAX™ TI 1.5 Core Include Files
An application includes the following OpenMAX™ TI 1.5 core files.

Table 2 OMX Core1.5 files

Core File Function

OMX_Core.h This file contains the exports for OpenMAX™ TI 1.5 core APIs and
macros to access component APIs.

OMX_Types.h
This file contains the OpenMAX™ TI 1.5 type definitions universally
followed in OpenMAX™ TI 1.5 components and OpenMAX™ TI 1.5
core.

OMX_Index.h

This file contains the index enumerations used in function calls of
SetParameter / GetParameter and SetConfig / GetConfig. These
enumerations are used in application and components, which provide
sync mechanism to set or get parameters and do the configuration.

5.2 OpenMAX™ TI 1.5 Component Include Files
The core includes following header file which is generic to all the components.

Table 3 Component Include Files

Include files Description or Evaluation

OMX_Component.h This file contains definition of component handle structure i.e.
OMX_COMPONENTTYPE.

OMX_ComponentTable.h This file contains definition of the component table entry structure
i.e. OMX_COMPONENTLIST

5.3 Multimedia Support Include Files
The OpenMAX™ TI 1.5 provides following header files for multimedia components support.

Table 4 Multimedia Support Include Files

Include files Description or Evaluation

OMX_Audio.h
This file contains the structures needed by Audio components to
exchange parameters and configuration data between the
application and the component.

OMX_Video.h
This file contains the structures needed by Video components to
exchange parameters and configuration data between the
application and the component.

OMX_Image.h
This file contains the structures needed by Image components to
exchange parameters and configuration data between the
application and the component.

OMX_IVCommon.h
This file contains the structures needed by image and video
components to exchange parameters and configuration data
between the application and the component.

Sub-Components

9
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Include files Description or Evaluation

OMX_Other.h
This file contains the structures needed by the other types of
component to exchange parameters and configuration data
between the application and the component.

Data Flow

TI Proprietary Information — Internal Data
10

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

6 Data Flow
The OpenMAX™ TI 1.5 core does not participate in data flow.

Control Flow

11
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

7 Control Flow
This section describes how control flows between the application, the OMX core and the OMX
component. The various states of the component are detailed in section 7.2.

7.1 Component Phases
There are various phases in a component life cycle. The OMX core provides its own macros and APIs for
each phase. The following sub sections describe each phase of the OMX component and which APIs or
macros will be used in the corresponding phase.

7.1.1 Component Load
Figure 2 shows the loading phase of a component life cycle.

Figure 2 Load Phase of Component

This is very first phase of the component life cycle. The entry criterion for this phase is that the
component must have been built as part of the Nucleus Image and the component’s entry in the
component table maintained by the OMX core.

The Following steps describe the process of loading the component.

The Application calls the function OMX_GetHandle of OMX core and supplies the name of the
component to be loaded and callbacks of the application as arguments to this function.

The OMX core searches for the application specified component name in the component table. If the
component entry is found, the OMX core allocates memory for the component handle and calls the
registered OMX_ComponentInit function of the component. OMX_ComponentInit will fill in the
component handle with the function pointers of the exported functions. Besides filling component
handle with valid function pointers, the function OMX_ComponentInit also does following:

Checks for the availability of resources (if they are needed for component execution) and then
allocates internal data structures of the component. An error may be returned if the hardware
resources are not available at this time.

Allocates its private data area used to store the initialization parameters and set the initial values
of this area to nominal values.

O
M

X
 C

o
re

O
M

X
 C

o
m

p
o

n
en

t

A
p

p
lic

at
io

n

OMX_GetHandle ()

Return

OMX_ComponentInit ()

Return

Setcallback ()

Return

Control Flow

TI Proprietary Information — Internal Data
12

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

OMX Core calls the function SetCallbacks of the component and supplies the application’s callback
function pointers to the component which is recorded in the component’s private data area.

7.1.2 Component Unload
Figure 3 shows the component life cycle during the unloading stage.

Figure 3 Unloading of Component

The application should call OMX core function OMX_FreeHandle to free the component handle which
was obtained by calling OMX_GetHandle at the time of loading the component. The Core method
OMX_FreeHandle in turn calls the ComponentDeInit function of the component. The OMX core then frees
the memory used by the component handle. Note that after successful return from OMX_FreeHandle, the
component handle is no longer valid for use by the application. On successful execution of the
OMX_FreeHandle function, the component handle will be de-allocated.

O
M

X
 C

o
re

O
M

X
 C

o
m

p
o

n
en

t

A
p

p
lic

at
io

n

OMX_FreeHandle ()

Return

ComponentDeInit ()

Return

Control Flow

13
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

7.1.3 Component Initialization

Figure 4 Initialization phase of Component

After all of the initialization structures are sent to the component via the OMX_SetConfig and
OMX_SetParameter methods, the application will command the component to complete the initialization
process. The component will then request any resources required for execution such as memory buffers,
codec’s, and component threads. In other words, the component is made ready for execution but the
actual execution is not started. The Following sequences of actions describe how initialization is done.

Prior to the initialization, the application will have obtained a valid component Handle.

The application will allocate an initialization parameter structure and fill it with the desired values.
Then the application will call the core’s macro OMX_SetParameter and pass the filled initialization
parameter structure as an argument to this macro. This macro in turn calls an appropriate function of
the component which makes a local copy of this initialization parameter structure in the component’s
private data area. There are numerous kinds of settings or parameters that can be sent to the

O
M

X
 C

o
re

O
M

X
 C

o
m

p
o

n
en

t

A
p

p
lic

at
io

n
OMX_SetParameter()
/OMX_SetConfig()

Return

Components
Corresponding

Set Parameter()/SetConfig()
will be called

Return

OMX_SendCommand (CmdSet, Idle)

Return

Call Event handler
of Application when the
State become Idle

OMX Core will call
Corresponding SendCommad
Function of the component

Return

Return

Control Flow

TI Proprietary Information — Internal Data
14

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

component. Therefore, the second argument in function OMX_SetParameter specifies what kind of
information the application intends to set in the component and the component will use these
information/parameters later for initialization. This call is optional, as the application may chose to
accept all of the default parameters by not sending any OMX_SetParameter structures.

Similarly, the Application will call the core’s macro OMX_SetConfig to configure the component with
the desired settings. This call is also optional. OMX_SetConfig can be called any time after the
component has been loaded.

Next the Application sends idle command to the component using the core’s macro
OMX_SendCommand with second argument set to OMX_CommandStateSet and third argument set
to OMX_StateIdle. In response to this command, the component will allocate any remaining
resources that are needed, will create the Pipes and threads needed for the component to function
and will acquire and initialize the codec.

The final action for Component Initialization is for the component to issue a callback to the application
to notify the application that the initialization process has completed (with an error or successfully).

7.1.4 Component Execution
Prior to component execution, the application should have initialized the component without errors. After
initialization has been completed, the component is ready for execution with all required buffers allocated
and linked with appropriate data structures.

Next the application will start the component by using the core’s macro OMX_SendCommand with
second argument set to OMX_CommandStateSet and third argument set to OMX_StateExecuting. When
the component reads this command, it will take appropriate action to start the codec. After the codec has
been started, the component will issue all of the input buffers to the application and any output buffers to
the codec. Actual processing will begin once the first input buffer has been received back from the
application with input data. At the successful completion of this command, the component will send the
OMX_HandleEvent callback to the application notifying the application that the component state has
changed to executing state. Processing will continue until the application sends a buffer with last buffer
flag (nFlags = OMX_BUFFERFLAG_EOS) or a command to put the component back to the initialized state
(see component stop, section 7.1.7).

7.1.5 Component Pause
Prior to pausing the component, the application should have placed the component in the executing state.
The application sends a pause command to the component using the core’s macro OMX_SendCommand
with second argument set to OMX_CommandStateSet and third argument set to OMX_StatePause.
When the component’s thread1 receives this command, it will take the appropriate action to pause the
underlying codec and then stop sending buffers to the codec. It should be noted that if there are some
buffers already being processed by the codec, they may be sent to the application. Once the processing
of a buffer has started it is not paused mid-buffer. At the successful completion of this command, the
component will send an OMX_HandleEvent callback to the application notifying the application that the
component state has changed to the pause state.

7.1.6 Component Resume
The application must have placed the component into the pause state prior to issuing the resume
command. The command OMX_StateExecuting acts as resume command when component is in pause
state. The application sends resume command to component using core’s macro OMX_SendCommand
with second argument set to OMX_CommandStateSet and third argument set to OMX_StateExecuting.
When the component receives this command, it sends a corresponding command to the codec and
resumes its execution and starts exchanging buffers with the application and codec again. At the
successful completion of this command, the component will send an OMX_HandleEvent callback to the
application notifying the application that the component state has changed to executing (resumed) state.

Control Flow

15
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

7.1.7 Component Stop
The entry criterion for this phase is that the component should be either in executing or paused state. The
application sends the stop command to the component using the core’s macro OMX_SendCommand with
second argument set to OMX_CommandStateSet and third argument set to OMX_StateIdle. The
application must continue to process buffers until the component responds with the OMX_HandleEvent
callback indicating that it has transitioned to the Idle state. When the component receives this command,
it sends a corresponding command to codec to stop the codec. The component then retrieves all of its
buffers from the codec (and the application, if the application holds buffers). It is the application’s
responsibility to continue to process component buffers after sending the stop command so that all
buffers get returned to the component. It should be noted that the component will not change state to idle
state until all the buffers have been returned to the component. At the successful completion of this
command, the component will send the OMX_HandleEvent callback to the application notifying the
application that the component state has changed to the idle state.

7.1.8 Component Deinit
The entry criterion for this phase is that the component should be in the idle state. Once the application
stops the component (by sending idle command) the component will go to the idle state. In order to de-
initialize the component, the application should then call OMX_SendCommand with the second argument
set to OMX_CommandStateSet and the third argument set to OMX_StateLoaded. This call will cause the
component to try to release all of its resources. If the input parameters are invalid, the method will return
with an error. In all other error cases, the component will try to complete the de-initialization task and to
return without an error message. The only resources not released will be the component private data
block. All codec resources, threads and data buffers will be released. Once these resources are released,
the component will send the OMX_HandleEvent callback to the application notifying the application that
the component state has changed to loaded state.

Control Flow

TI Proprietary Information — Internal Data
16

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

7.2 Component States
An OpenMAX™ TI 1.5 compliant component will exist in one of five states at any given time. Component
states are controlled by the application via the OMX_SendCommand macro. Figure 5 represents the
state diagram for OpenMAX™ TI 1.5 component. The OMX core does not maintain the state for the
components. The core is involved in two only state transitions; which are from INVALID state to LOADED
state (using function OMX_GetHandle) and unloading (using OMX_FreeHandle). The remainders of all
state transitions are controlled by the application via the OMX_SendCommand macro.

Note that state transition from INVALID state to LOADED state refers to the scenario when component is
not yet loaded into the memory and application tries to load it using OMX_GetHandle. If component goes
in the INVALID state due to corruption of its data structures etc then component can not change its state.
In this case the component should be de-initialized and unloaded and then should be loaded again.

The states are defined in Table 5 of section 7.2.1.

Figure 5 State Diagram of a Component

NULL LOADED IDLE

EXECUTEPAUSE

INVALID LOADED IDLE

EXECUTINGPAUSE

1

6

2

3

4

2

3

2

5

1 OMX_GetHandle()
2 OMX_SendCommond (hComponent, OMX_CommandStateSet, OMX_StateIdle)
3 OMX_SendCommond (hComponent, OMX_CommandStateSet, OMX_StateExecuting)
4 OMX_SendCommond (hComponent, OMX_CommandStateSet, OMX_StatePause)
5 OMX_SendCommond (hComponent, OMX_CommandStateSet, OMX_StateLoaded)
6 OMX_FreeHandle()

Control Flow

17
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

7.2.1 State Definitions
The component shall be in one of the states defined in Table 5 at all times.

Table 5 OMX States

State Description

LOADED State

This state specifies that the component has been loaded (initialized), a valid
component handle has been given to the application, the application’s callbacks
have been registered with the component and memory has been allocated to the
component’s private data structures.

IDLE State

This state specifies that the component has been initialized which means that the
component’s threads have been created, buffers to be shared with codec have
been allocated, and the codec has been initialized with application specified
parameters.

EXECUTING State

This state specifies that the component is able to actively process the buffers and
commands/messages. This means, buffers are being processed by component
and they are being exchanged between the application, the component and the
codec.

PAUSE State

This state specifies that the component is ready to perform processing, but has
stopped processing buffers while waiting for a resume command. No further
buffers will be processed by the component/codec except any buffers which were
already being processed by codec when component was paused. Note that the
pause command specifies that no new buffers will be processed.

INVALID State

This state specifies that the component’s internal data structures have been
corrupted and the component is not able to identify its state or that the component
is in the process of being loaded/unloaded. If the component reaches this state
unexpectedly, the component should be de-initialized and unloaded and then
should be loaded again.

Wait for Resources state
This state is not used in OpenMAX™ TI 1.5, but is reserved for compatibility with
the final Khronos OMX 1.0. Transitions to this state will not occur in OpenMAX™
TI 1.5

7.2.2 Valid State Transitions
OpenMAX components shall transition from one state to another state only in accordance with Table 6.

Table 6 OpenMAX™ TI 1.5 Component Transitions

Current State Event/Command Next State Return value

OMX_STATE_INVALID
(when component is not
loaded/initialized)

Successful
OMX_StateLoaded
Command

OMX_STATE_LOADED OMX_ErrorNone

OMX_STATE_INVALID
(when component is not
loaded/initialized)

Unsuccessful
OMX_StateLoaded
Command

OMX_STATE_INVALID
OMX_ErrorInvalidComponent/
OMX_ErrorInsufficientResourc
es

OMX_STATE_INVALID
(when component data
structures have been
corrupted due to some
reason)

Any command/event OMX_STATE_INVALID OMX_ErrorUndefined.

OMX_STATE_LOADED Successful OMX_StateIdle
Command OMX_STATE_IDLE OMX_ErrorNone

OMX_STATE_LOADED Unsuccessful
OMX_StateIdle Command OMX_STATE_LOADED

OMX_ErrorHardware/
OMX_ErrorInsufficientResourc
es

OMX_STATE_LOADED Other than OMX_StateIdle
command OMX_STATE_LOADED OMX_ErrorInvalidState

Control Flow

TI Proprietary Information — Internal Data
18

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Current State Event/Command Next State Return value

OMX_STATE_IDLE
Successful
OMX_StateExecuting
Command

OMX_STATE_EXECUTING OMX_ErrorNone

OMX_STATE_IDLE
Successful
OMX_StateLoaded
Command

OMX_STATE_LOADED OMX_ErrorNone

OMX_STATE_IDLE
Other than
OMX_StateExecuting/OM
X_StateLoaded Command

OMX_STATE_IDLE OMX_ErrorInvalidState

OMX_STATE_IDLE
Unsuccessful
OMX_StateExecuting/OM
X_StateLoaded Command

OMX_STATE_IDLE OMX_ErrorHardware/
OMX_ErrorBadParameter

OMX_STATE_EXECUTIN
G

Successful
OMX_StatePause
Command

OMX_STATE_PAUSE OMX_ErrorNone

OMX_STATE_EXECUTIN
G

Successful OMX_StateIdle
Command OMX_STATE_IDLE OMX_ErrorNone

OMX_STATE_EXECUTIN
G

Other than
OMX_StatePause/OMX_St
ateIdle Command

OMX_STATE_EXECUTING OMX_ErrorInvalidState

OMX_STATE_EXECUTIN
G

Unsuccessful
OMX_StatePause/OMX_St
ateIdle Command

OMX_STATE_EXECUTING OMX_ErrorHardware

OMX_STATE_PAUSE
Successful
OMX_StateExecuting
Command

OMX_STATE_EXECUTING OMX_ErrorNone

OMX_STATE_PAUSE Successful OMX_StateIdle
Command OMX_STATE_IDLE OMX_ErrorNone

OMX_STATE_PAUSE
Other than
OMX_StateIdle/OMX_Stat
eExecuting Command

OMX_STATE_PAUSE OMX_ErrorInvalidState

OMX_STATE_PAUSE
Unsuccessful
OMX_StateIdle/OMX_Stat
eExecuing Command

OMX_STATE_PAUSE OMX_ErrorHardware

Any State
Any error that causes
component to not to be
able to process data

OMX_STATE_INVALID OMX_ErrorUndefined

Software Requirements

19
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

8 Software Requirements
The requirements for the OpenMAX™ TI 1.5 Core are listed in Table 7.

Table 7 Requirements List

SR Tag Requirement text Application Components FB

SR14062 OMX core shall comply with Texas Instruments
OpenMAX IL V1.5 specification

Requirements Traceability

TI Proprietary Information — Internal Data
20

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

9 Requirements Traceability
This section describes the Data types, data structures, callbacks and macros which are supported by the
OpenMAX™ TI 1.5.

9.1 Class Structure
The OpenMAX™ TI 1.5 Core is written in C and not C++ and thus does not use classes. Refer section 9.3
for the data structures.

9.2 Defined Types

9.2.1 Basic Data Types
OMX core 1.5 exports set of data types which are given in Table 8. OMX core 1.5 uses these data types
instead of fundamental C-types like int; char etc. in order to provide portability across different platforms,
compilers and operating systems. These data types are defined in OMX_Types.h file.

Table 8 OMX Basic Data Types

Type Description

OMX_U8 Unsigned 8 bit byte, byte aligned

OMX_S8 Signed 8 bit byte, byte aligned

OMX_U16 Unsigned 16 bit word, word aligned

OMX_S16 Signed 16 bit word, word aligned

OMX_U32 Unsigned 32 bit double word, double word aligned

OMX_S32 Singed 32 bit double word, double word aligned

OMX_STRING
The OMX_STRING type is intended to be used to pass "C" type strings between the
application and the core and component. The OMX_STRING type is a 32 bit pointer to a
zero terminated string.

OMX_PTR The OMX_PTR type is intended to be used to pass pointers between the OpenMAX™ TI
1.5 applications and the OpenMAX™ TI 1.5 Core and components.

OMX_BOOL The OMX_BOOL type is intended to be used to represent TRUE or FALSE

OMX_BYTE The OMX_BYTE type is intended to be used to pass arrays of bytes.

OMX_HANDLETYPE Define the public interface for the OpenMAX™ TI 1.5 Handle. The core will not use this
value internally, but the application should only use this value.

Requirements Traceability

21
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

9.3 Data Structures

9.3.1 OMX_BUFFERHEADERTYPE
This is the structure that is passed for data transfer between the component and application. The details
of the individual parameters are described in following table.

Table 9 OMX_BUFFERHEADERTYPE Structure

Data field Name Description

OMX_U32 nSize Size of the structure in bytes.

OMX_VERSIONTYPE nVersion OpenMAX™ specification version information.

OMX_U8* pBuffer Pointer to actual block of memory that is acting as the buffer.

OMX_U32 nAllocLen Size of the buffer allocated, in bytes.

OMX_U32 nFilledLen Number of bytes currently available in the buffer.

OMX_PTR pPortDefinition

It is not used in OpenMAX™ TI 1.5. The component will maintain
the port definition information in its private data area. The port
definition information is sent by application by calling SetParameter
and in turn, component copies this information in its private data
area.

OMX_PTR pComponentPrivate
Pointer to data that component wants to associate with this buffer.
This is component’s private data and can be accessed by the
owner component only.

OMX_PTR pAppPrivate Pointer to data that the application wants to associate with this
buffer. This data is accessed by the application only.

OMX_PTR pBufferMark This is not used in OpenMAX™ TI 1.5.

OMX_U32 nTickCount This is not used in OpenMAX™ TI 1.5.

OMX_U32 nFlags

This flag indicates whether the buffer is the last buffer or not. At the
time of buffer creation, the component sets its value to zero. This
flag should be set to OMX_BUFFERFLAG_EOS to indicate the last
buffer. The OMX_BUFFERFLAG_EOS is a macro that is defined in
the OMX core header file OMX_Core.h (See the section 5.1.1).

9.3.2 OMX_COMPONENTTYPE
The OMX_COMPONENTTYPE structure defines the component handle. The component handle is used
to access the component's public methods and also contains pointers to the component's private data
area. The component handle is initialized by the OMX core (with the help of the component) during the
process of loading/OMX_GetHandle of the component. After the component is successfully loaded, the
application can safely access any of the component's public functions by using macros provided to the
application. The application should not access the component methods using the component handle
directly. This structure data will be valid until the component is unloaded by OMX_FreeHandle.

Table 10 OMX_COMPONENTTYPE Structure

Data field Name Description or Evaluation

OMX_U32 nSize The size of this structure, in bytes.

Requirements Traceability

TI Proprietary Information — Internal Data
22

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Data field Name Description or Evaluation

OMX_VERSIONTYPE nVersion The version of the OMX specification that the structure is built
against.

OMX_PTR pComponentPrivate The pointer to the component private data area.

OMX_PTR pApplicationPrivate Unused by OMX Core. Value is set to NULL. The Application may
use this field.

OMX_ERRORTYPE
(*GetComponentVersion) Function handler for the component method GetComponentVersion

OMX_ERRORTYPE (*SendCommand) Function handler for the component method SendCommand

OMX_ERRORTYPE (*GetParameter) Function handler for the component method GetParameter

OMX_ERRORTYPE (*SetParameter) Function handler for the component method SetParameter

OMX_ERRORTYPE (*GetConfig) Function handler for the component method GetConfig

OMX_ERRORTYPE (*SetConfig) Function handler for the component method SetConfig

OMX_ERRORTYPE (*GetState) Function handler for the component method GetState

OMX_ERRORTYPE
(*ComponentTunnelRequest)

Function handler for the component method
ComponentTunnelRequest

OMX_ERRORTYPE (*EmptyThisBuffer) Function handler for the component method EmptyThisBuffer

OMX_ERRORTYPE (*FillThisBuffer) Function handler for the component method FillThisBuffer

OMX_ERRORTYPE (*SetCallbacks) Function handler for the component method SetCallbacks

OMX_ERRORTYPE (*ComponentDeInit)
Function handler for the component method ComponentDeInit. This
is never called by the application. This method is only called by the
OMX core.

9.3.3 OMX_BU32
This structure is used to hold the boundary limits for UNSIGNED data.

Table 11 OMX_BU32 Structure

Data Field Name Description or Evaluation

OMX_U32 nValue actual value

OMX_U32 nMin minimum for value (i.e. nValue >= nMin)

OMX_U32 nMax maximum for value (i.e. nValue <= nMax)

9.3.4 OMX_BS32
This structure is used to maintain the boundary limits for SIGNED data.

Requirements Traceability

23
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Table 12 OMX_BS32 Structure

Data Field Name Description or Evaluation

OMX_S32 nValue actual value

OMX_S32 nMin minimum for value (i.e. nValue >= nMin)

OMX_S32 nMax maximum for value (i.e. nValue <= nMax)

9.4 Unions
OpenMAX™ TI 1.5 core has one union data type.

9.4.1 OMX_VERSIONTYPE
The OMX_VERSIONTYPE union is used to specify the version of a structure or component. This data
type is a member of all the OpenMAX™ TI 1.5 compliant data structures for the purpose of maintaining
the version of each data structure. The version information should be filled by the entity that allocates the
structure.

Table 13 OMX_VERSIONTYPE Union

Data field Name Description or Evaluation

OMX_U8 nVersionMajor Major version specifies an update in the functionality of the
component or OpenMAX™ TI 1.5 specifications.

OMX_U8 nVersionMinor Minor version specifies an update in the component that
does not change the functionality.

OMX_U8 nRevision Always 0 in the release version for TI standard.

OMX_U32 nVersion

OMX_U8 nStep Always 0 in the release version for TI standard.

9.5 Enumerations
This section describes all the enumeration data types declared in the OMX core. The OMX core design
requires enumeration to support 32-bit enumeration data that is specified in OpenMAX™ TI 1.5
specifications. These data types are declared in OMX_Core.h and OMX_Types.h files.

9.5.1 OMX_COMMANDTYPE
This enumeration data type is used to specify the command passed by the application to the component.

Table 14 OMX_COMMANDTYPE Enumeration Data

Data field Name Description or Evaluation

OMX_CommandStateSet This command is passed to change the state of the component.

OMX_CommandMax Do not use; needed by some compilers to force the enum size to be
32 bits.

9.5.2 OMX_STATETYPE
This enumeration data type is used for the following purpose,

To specify the current state of the component.

Used with OMX_SendCommand macro to send a state of transition to the component.

Requirements Traceability

TI Proprietary Information — Internal Data
24

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Table 15 OMX_STATETYPE Enumeration Data

Data field Name Description or Evaluation

OMX_StateInvalid
This state indicates either the component is not loaded or
component data structures are corrupted during any state of the
component.

OMX_StateLoaded
This state indicates that component has been loaded but it is not
initialized yet. In this state, only SetParameter/GetParameter and
SetConfig/GetConfig methods of component can be called.

OMX_StateIdle This state indicates that component has been initialized
successfully and it is ready to start buffer processing.

OMX_StateExecuting This state indicates that component is in execution state i.e. it is
processing buffers and messages/commands.

OMX_StatePause This state indicates that component has been paused and it is not
processing any buffers.

OMX_StateMax Do not use; needed by some compilers to force the enum size to be
32 bits.

9.5.3 OMX_ERRORTYPE
This enumeration enumerates all the error types that can be returned by OpenMAX™ TI 1.5 compliant
components and the OpenMAX™ TI 1.5 core.

Table 16 OMX_ERRORTYPE Enumeration Data

Data field Name Description or Evaluation

OMX_ErrorNone Successful return

OMX_ErrorInsufficientResources There were insufficient resources to perform the requested
operation

OMX_ErrorUndefined There was an error, but the cause of the error could not be
determined

OMX_ErrorInvalidComponentName The component name was not valid

OMX_ErrorComponentNotFound No component with the specified name string was found. This error
does not have scope in the static loading of components.

OMX_ErrorInvalidComponent

The component specified did not have “OMX_ComponentInit” or
“OMX_ComponentDeInit entry point. This error does not have
scope in the state of loading of components, as it is resolved in
compile time itself.

OMX_ErrorBadParameter One or more parameters were not valid

OMX_ErrorNotImplemented The requested function is not implemented.

OMX_ErrorUnderflow The buffer was emptied before the next buffer was ready.

OMX_ErrorOverflow The buffer was not available when it was needed.

Requirements Traceability

25
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Data field Name Description or Evaluation

OMX_ErrorHardware The hardware failed to respond as expected.

OMX_ErrorTimeout There was a timeout that occurred.

OMX_ErrorInvalidState The component was in an invalid state for the command sent.

OMX_ErrorStreamCorrupt Stream is found to be corrupt.

OMX_ErrorPortsNotCompatible Ports being connected are not compatible.

OMX_ErrorResourcesLost Resources allocated to an initialized component have been lost
resulting in the component returning to the loaded state.

OMX_ErrorNoMore

This error is returned by component to indicate no more indices can
be enumerated. This error message will be seen in cases where
there is an array of structures (such as bands in an equalizer) and a
band that is outside the valid range is selected.

OMX_ErrorVersionMismatch Component detected a version mismatch.

OMX_ErrorNotReady Component is not ready to return data at this time.

OMX_ErrorMax Do not use; needed by some compilers to force the enum size to be
32 bits.

9.5.4 OMX_EVENTTYPE
This enumeration data type is used to represent an event that might occur in the component. This is used
as one of the parameters when the component calls the application’s callback EventHandle to notify the
application that an event occurred.

Table 17 OMX_STATETYPE Enumeration Data

Data field Name Description or Evaluation

OMX_EventStateChange This specifies that the state of the component has changed.

OMX_EventError
This specifies that an error has occurred in performing some
operation. An appropriate error number is returned to application
through the callback.

OMX_EventMax Do not use; needed by some compilers to force the enum size to be
32 bits.

9.5.5 OMX_BOOL
The OMX_BOOL type is used to represent a true or a false value when passing parameters to/from the
OMX core/components. The OMX_BOOL is a 32 bit quantity and is aligned on a 32 bit word boundary.

Table 18 OMX_BOOL Type Enumeration Data

Data Field Name Description or Evaluation

OMX_FALSE = 0 False enumeration.

Requirements Traceability

TI Proprietary Information — Internal Data
26

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Data Field Name Description or Evaluation

OMX_TRUE = !OMX_FALSE True enumeration.

OMX_BoolMax Do not use; needed by some compilers to force the
enum size to be 32 bits.

9.5.6 OMX_DIRTYPE
This is used to indicate if a port is an input port or output port. This enumeration is common across all
component types.

Table 19 OMX_DIRTYPE Type Enumeration Data

Data Field Name Description or Evaluation

OMX_DirInput
Port is an input port. The Buffer associated with
OMX_DirInput specifies that buffer is input to the
component from application.

OMX_DirOutput
Port is an output port. The Buffer associated with
OMX_DirOutput specifies that buffer is output of the
component to the application.

OMX_DirMax Do not use; needed by some compilers to force the
enum size to be 32 bits

9.5.7 OMX_ENDIANTYPE
The OMX_ENDIANTYPE enumeration is used to indicate the bit ordering for numerical data (i.e. big
endian, or little endian)

Table 20 OMX_ENDIANTYPE Type Enumeration Data

Data Field Name Description or Evaluation

OMX_EndianBig Big endian.

OMX_EndianLittle Little endian.

OMX_EndianMax Do not use; needed by some compilers to force the
enum size to be 32 bits

9.5.8 OMX_NUMERICALDATATYPE
The OMX_NUMERICALDATATYPE enumeration is used to indicate whether data is signed or unsigned.

Table 21 OMX_NUMERICALDATATYPE Type Enumeration Data

Data Field Name Description or Evaluation

OMX_NumericalDataSigned Signed data

OMX_NumericalDataUnsigned Unsigned data

OMX_NumercialDataMax Do not use; needed by some compilers to force the
enum size to be 32 bits

Requirements Traceability

27
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

9.6 API Requirements Coverage

9.6.1 OMX_GetHandle
OMX_ERRORTYPE OMX_GetHandle (OMX_HANDLETYPE* pHandle,
 OMX_STRING pComponentName,
 OMX_PTR pAppData,
 OMX_CALLBACKTYPE* pCallBacks)

Implementation
The application calls this function to get the handle of the specified component. This function does
following in sequence:

Locate the specified component name in the OMX core maintained Component Table.

If the component entry is found, allocates memory for the component handle which is of type
OMX_COMPONENTTYPE.

Call the registered function pointer OMX_ComponentInit of the component to get various function
pointers of the component into the allocated component handle. This way, the component handle gets
populated with various function pointers. The function OMX_ComponentInit also allocates memory for
the component’s private data structure and checks for the availability of any hardware if needed for
component execution.

Calls the function SetCallbacks of the component to send the application’s callbacks to the component
so that the component can use them when it is started.

Returns the handle of the component if all of the above operations are successful else return an
appropriate error to the application.

Parameters

Name Type Description

pHandle OUT This is the output argument which is filled by the component.

pComponentName IN This holds the name of the component that is to be loaded.

pAppData IN

This specifies the application defined data. Since an
application may drive multiple components, therefore, for
each component, application defines a value which is unique
to the component. This way whenever the application
receives a callback from a component, the application
checks the value of pAppData argument and gets to know
which component this callback came from.

pCallBacks IN
This is a pointer to a structure that holds the function pointers
of all the application callbacks. These callbacks are
registered with the component.

Return

OMX_ErrorNone This is returned if macro executes successfully.

OMX_ErrorBadParameter This error is returned if one of the input parameters is wrong.

OMX_ErrorInvalidComponentName This error is returned if the component name exceeds the
maximum length.

OMX_ErrorInsufficientResources This error is returned if the core failed to allocate the memory for
the component handle.

OMX_ErrorInvalidComponent This error is returned if the core failed to find the component
name in the component table list.

Pre Condition

OMX core has been initialized with OMX_Init.

Requirements Traceability

TI Proprietary Information — Internal Data
28

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.6.2 OMX_FreeHandle
OMX_ERRORTYPE OMX_FreeHandle (OMX_HANDLETYPE hComponent)

Implementation

The application calls this function to free the component handle if it is no longer needed. This function
does the following:

Calls the function OMX_ComponentDeInit of the component to free the resource allocated to
component’s private data block. Note that except the component’s private data block, all of the
resources owned by the component are released in de-initialization phase of the component which is
explained in section 4.1.8.

Frees the memory allocated to the component handle.

After successfully returning from this function, the component handle is no longer valid to use.

Parameters

Name Type Description

hComponent OUT
This specifies component handle that is
to be freed by the OMX core.

Return

OMX_ErrorNone This is returned if the macro executes successfully.

OMX_ErrorBadParameter This error is returned if the input handle is not found in the array of
handles.

Pre Condition

The component should be in loaded state.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.6.3 OMX_SetupTunnel
OMX_ERRORTYPE OMX_SetupTunnel (OMX_HANDLETYPE hOutput,
 OMX_U32 nPortOutput,
 OMX_HANDLETYPE hInput,
 OMX_U32 nPortInput)

Implementation

This function is not supported by the OpenMAX™ TI 1.5 and should return OMX_ErrorNotImplemented.

Requirements Traceability

29
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Parameters
Name Type Description

N/A

Return

OMX_ErrorNotImplemented This is returned since this function is not implemented in the
OpenMAX™ TI 1.5 core.

Pre Condition

N/A

Post Condition

N/A

Requirement Coverage

N/A

9.6.4 OMX_Init
OMX_ERRORTYPE OMX_Init ()

Implementation

The role of this function is to initialize the OMX core. Currently, this function is not required in the
OpenMAX™ TI 1.5 and will return no error.

Parameters
Name Type Description

None

Return

OMX_ErrorNone Currently this function always returns this error number.

Pre Condition
This should be the first call to any OMX Core and should be called only once.

Post Condition
The OMX Core is ready for use.

Requirement Coverage

This method addresses requirement:

N/A

9.6.5 OMX_Deinit
OMX_ERRORTYPE OMX_Deinit ()

Implementation

The role of this function is to de-initialize the OMX core. Currently, this function is not required in the
OpenMAX™ TI 1.5 and will return no error.

Parameters
Name Type Description

None

Requirements Traceability

TI Proprietary Information — Internal Data
30

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Return

OMX_ErrorNone Currently this function always returns this error number.

Pre Condition

The application is ready to shutdown the OMX Core.

Post Condition
All OMX Resources have been released.

Requirement Coverage

This method addresses requirement:

N/A

9.7 Macros
The OpenMAX™ TI 1.5 core provides a set of macros that are used by the application to perform various
operations like loading the component, communicating with OMX component etc. These macros are
defined in OMX_Core.h. Detailed description of each macro is given in following sub sections.

The common prerequisite for calling all the macros is to have a valid component handle. Note that
following macro tables contain commonly returned error codes. If there are more error codes which need
to be returned, these tables will be updated accordingly

9.7.1 OMX_GetComponentVersion
#define OMX_GetComponentVersion(\
 hComponent, \
 pComponentName, \
 pComponentVersion, \
 pSpecVersion, \
 pComponentUUID)

Implementation

This macro queries the component and returns information about the component.

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

pComponentName OUT

This holds the name of the component at
the successful return from this macro.
The maximum length of the name is 128
including the null terminating character.

pComponentVersion OUT

This is a pointer to the
OMX_VERSIONTYPE structure which is
filled by the component. The component
fills the component version information in
this structure

pSpecVersion OUT

This is a pointer to the
OMX_VERSIONTYPE structure which is
filled by the component. The component
fills the OMX specification version
information in this structure.

Requirements Traceability

31
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Name Type Description

pComponentUUID OUT

This is a pointer to the DSP_UUID
structure which is be filled by the
component.

Return

OMX_ErrorNone This is returned if the macro executes successfully.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid.

Pre Condition

The component handle should be valid to call this macro.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.2 OMX_SendCommand
#define OMX_SendCommand(\
 hComponent, \
 Cmd, \
 Param) \

Implementation

This macro is used to send a command to the component. This is asynchronous call. The component
checks all the input parameters and if they are valid, the command is queued to component’s command
pipe. When component gets chance to read command from the command pipe, the component will take
the appropriate action based on the command and then it will call the application’s HandleEvent callback.

Parameters
Name Type Description

hComponent IN This input argument is component handle.

Cmd IN

This specifies the command type/category. The value of this
argument can be OMX_CommandStateSet.
Currently in OpenMAX™ TI 1.5, the only valid command is to set the
component state.

Param IN

The value of this argument is dependent on the cmd argument. If the

value of the cmd is:

OMX_CommandStateSet: this argument contains the state that is to
be set for the component. The value can be one of the values
defined by OMX_STATETYPE.

Return

OMX_ErrorNone This is returned if the macro executes successfully.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid.

OMX_ErrorInvalidState Indicates that the state specified by the argument Param is invalid for the
current state of the component i.e. the component can not change to the
state specified by the argument Param.

Requirements Traceability

TI Proprietary Information — Internal Data
32

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Pre Condition

If the value of the second argument (Cmd) is OMX_CommandStateSet, various preconditions for the state
change are explained in section 5.

The application should have a valid component handle.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.3 OMX_GetParameter
#define OMX_GetParameter(\
 hComponent, \
 nParamIndex, \
 ComponentParameterStructure)

Implementation

This macro gets the current parameter settings of the component. Since each type of component (audio,
video) has different parameter settings and a particular component may have different kinds of settings,
the OMX core defines various structures for all possible kinds of parameter settings. The application
should allocate memory for the correct structure and pass it to the core using this macro.

Parameters
Name Type Description

hComponent IN This input argument is the component handle.

nParamIndex IN This identifies the structure being used by the third argument of
the macro.

ComponentParameterStructure OUT This is a pointer to the structure which needs to be filled in by
the component.

Return

OMX_ErrorNone This output argument is returned when the component gives the required
information.

OMX_ErrorBadParameter This is returned if any arguments are invalid.

Pre Condition

The application should have a valid component handle.

The structure specified by the third argument must have the structure size and version information filled in
before invoking the macro.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

Requirements Traceability

33
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

9.7.4 OMX_SetParameter
#define OMX_SetParameter(\
 hComponent, \
 nParamIndex, \
 ComponentParameterStructure)

Implementation

This macro sets the various parameters of the component with desired values. Since each type of
component (audio, video) has different parameter settings and a particular component may have different
kinds of settings, the OMX core defines various structures for all possible kinds of parameter settings. The
application should allocate memory for the correct structure, fill it with the required values and pass it to
core using this macro. The component makes a local copy of this structure and uses it at the time of
initialization. The OMX_SetParameter macro should be used to set the initialization parameters of the
component, when the component is in the LOADED state.

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

nParamIndex IN This identifies the structure being used
by the third argument of the macro.

ComponentParameterStructure IN
This input argument is a pointer to a
structure which the component uses to
make its local copy.

Return

OMX_ErrorNone This is returned when component gives the required information.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid.

Pre Condition

The application should have a valid component handle.

The structure specified by the third argument must have its structure size and version information filled in
before invoking the macro.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.5 OMX_GetConfig
#define OMX_GetConfig (\
 hComponent, \
 nConfigIndex, \
 ComponentConfigStructure)

Implementation

This macro gets the configuration parameters of the component. This macro can be invoked at any time
after the component has been loaded. Since each type of component (audio, video) has different
configuration settings and a particular component may have different kinds of configuration settings, the
OMX core defines various structures for all possible kinds of configuration settings. The application
allocates the required structure and passes it to the core using this macro. The component fills this
structure with the required information.

Requirements Traceability

TI Proprietary Information — Internal Data
34

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

 nConfigIndex IN

This identifies the structure being used
by the third argument of the macro. The
component checks the value of this
argument to know which structure the
application wants filled.

ComponentParameterStructure OUT This output argument is the pointer to the
structure to be filled by the component.

Return

OMX_ErrorNone This is returned when the component gives the required information.

OMX_ErrorBadParameter This is returned when the one of the arguments is invalid.

Pre Condition

The application should have a valid component handle.

The structure specified by the third argument must have the structure size and version information filled in
before invoking the macro.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.6 OMX_SetConfig
#define OMX_SetConfig (\
 hComponent, \
 nConfigIndex, \
 ComponentConfigStructure)

Implementation

This macro sets the application specified configuration parameters of the component. This macro can be
invoked any time after the component has been loaded. This is asynchronous call which means that a
successful return from this call does not ensure that the component has been configured with the
application specified configuration settings. Instead, it means that all validity checking has been done on
the various parameters and the corresponding command has been written in the component’s command
pipe. As soon as the component reads this command, it will configure the codec with the application
specified values.

Since each type of component (audio, video) has different configuration settings and a particular the
component may have different kinds of configuration settings, the OMX core defines various structures for
all possible kinds of configuration settings. The application allocates the required structure, fills it with
desired values and passes it to the core using this macro. The component configures the codec with the
application specified values.

Requirements Traceability

35
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

If there are multiple calls to OMX_SetConfig, and the component has not yet configured the codec with
previous call’s configuration settings, the component will return an appropriate error code indicating that
the component is busy configuring codec with previous settings. If the component is able to configure the
codec successfully then the component will not call the application’s event handle callback to notify
application that codec has been configured. But if some error occurs while configuring the codec, the
component does call event handler of the application to notify that an error has occurred while configuring
the codec. This is done since chances of getting an error while configuring the codec is very minimal.

This OMX_SetConfig macro can be used at any time after the component has been loaded into the
memory.

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

 nConfigIndex IN

This identifies the structure being used
by the third argument of the macro. The
component checks the value of this
argument to know which structure the
application wants to be filled.

ComponentParameterStructure IN
This input argument is a pointer to a
structure that holds the values with which
codec is to be configured

Return

OMX_ErrorNone This is returned when the component gives the required
information.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid.

OMX_ErrorInsufficientResources This indicates that the codec is busy in performing previous
configuration settings hence can not be configured this time.

OMX_ErrorTimeout This indicates that a timeout has occurred while configuring the
codec.

Pre Condition

The application should have a valid component handle.

The structure specified by the third argument must have its structure size and version information filled in
before invoking the macro.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.7 OMX_GetState
#define OMX_GetState(\
 hComponent, \
 pState)

Implementation

The application calls this macro to get the current state of the component. This macro, in turn, invokes the
corresponding function of the component to get the current state and stores the state in output argument
pState.

Requirements Traceability

TI Proprietary Information — Internal Data
36

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

pState OUT

This is the output argument which points
to the memory location where the
component should store its current state.
This argument should not be NULL.

Return

OMX_ErrorNone This is returned when the component gives the required information.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid.

Pre Condition

The application should have a valid component handle.

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.8 OMX_EmptyThisBuffer
#define OMX_EmptyThisBuffer(\
 hComponent, \
 nPortIndex, \
 pBuffer)

Implementation

The application uses this macro to send a buffer filled with input data to the input port of the component.
This is asynchronous call which means that the buffer will not be emptied instantly when component
receives this call. Instead, the buffers is written in component’s data pipe and later when component gets
chance to read this buffer, it will empty this buffer and notify the application using the application’s
callback function EmptyBufferDone. In the component life cycle, there is always a callback
EmptyBufferDone for each call to OMX_EmptyThisBuffer.

Note that terminology “EmptyThisBuffer” means the application is sending an input data buffer to the
component for processing. The amount of data is specified by one of the element in the buffer header
pointer specified by the third argument.

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

nPortIndex IN This specifies an input port of the
component.

pBuffer IN This is a pointer to the buffer header
whose buffer is to be emptied.

Return

OMX_ErrorNone This is returned when the component gives the required information.

Requirements Traceability

37
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

OMX_ErrorPortsNotCompatible This is returned if the specified port index is not valid.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid.

Pre Condition

The application should have a valid component handle.

The state of the component should be OMX_StateExecuting.

Post Condition

The application should always receive a callback EmptyBufferDone. Note that EmptyBufferDone is an
element of the structure OMX_CALLBACKTYPE which contains all the callback function pointers of the
application.

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.9 OMX_FillThisBuffer
#define OMX_FillThisBuffer(\
 hComponent, \
 nPortIndex, \
 pBuffer)

Implementation
The Application uses this macro to send an empty buffer to the output port of the component. Before
invoking this macro, the application must have received the buffer with the FillThisBufferDone callback
from the component. This is asynchronous call which means that the buffer will not be filled with the
output data instantly when the component receives this call. Instead, the buffer is written to the
component’s data pipe and later when the component gets a chance to read the data, it will fill this buffer
and notify the application using the application’s callback function FillBufferDone. In the component’s life
cycle, there is always a callback FillBufferDone for each call to OMX_FillThisBuffer except when
component’s buffers are returned to it at the time of stop command.

Note that the terminology “FillThisBuffer” means the application is sending an empty buffer to the component’s output port to get
the output data. The component will fill the buffer with output data and specify the amount of data in the buffer header.

Parameters
Name Type Description

hComponent IN This input argument is the component handle.

nPortIndex IN This specifies an output port of the component.

pBuffer OUT This is a pointer to the buffer header whose buffer is to be filled.

Return

OMX_ErrorNone This is returned when the component gives the required information.

OMX_ErrorPortsNotCompatible This is returned if the specified port index is not valid.

OMX_ErrorBadParameter This is returned when one of the arguments is invalid

Pre Condition

The application should have a valid component handle.

The state of the component should be OMX_StateExecuting.

Requirements Traceability

TI Proprietary Information — Internal Data
38

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Post Condition

The application should receive a callback FillBufferDone except for the case when the application has
issued a stop (i.e idle) command and trying to return the buffer to the component. In this case, component
will not make a callback FillBufferDone to the application. Note that FillBufferDone is an element of the
structure OMX_CALLBACKTYPE which contains all the callback function pointers of the application.

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.10 OMX_CALLBACKTYPE
This structure contains the callback function pointers of the application. The application allocates memory
for this structure and sets its respective members with appropriate addresses. This structure is passed to
the OMX core when the application calls the function OMX_GetHandle so that the OMX core can provide
the same information to the component which will finally need the application’s callbacks for buffer
exchange. After returning from OMX_GetHandle, the application can free the memory allocated to this
structure since the application no longer needs to maintain it.

9.7.10.1 EventHandler
void (*EventHandler)(
OMX_HANDLETYPE hComponent,
OMX_PTR pAppData,
OMX_EVENTTYPE eEvent,
OMX_U32 Data,
OMX_STRING cExtraInfo)

Implementation

The EventHandler method is used to notify the application when an event of interest occurs. This event
may be change of state, an error occurred etc. The application will get the event notification for the events
which are listed in the section 9.5.4.

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

pAppData IN

Pointer to data which was defined by
application when the component was
loaded. Using this data, the application
identifies who invoked this callback.

eEvent IN

One of the component events that are
defined in OMX_EVENTTYPE
enumeration. This can be state change,
an error etc.

Data IN Used only if an error event occurs. Data
will be OMX_ERRORTYPE.

cExtraInfo IN

String which may carry some more
explanation about the error. It is not
always required for a component to use
this argument.

Return

None

Requirements Traceability

39
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Pre Condition

None

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.10.2 EmptyBufferDone
void (*EmptyBufferDone)(
OMX_HANDLETYPE hComponent,
OMX_PTR pAppData,
OMX_BUFFERHEADERTYPE* pBuffer)

Implementation

This is the callback function of the application that a component uses to return an empty input buffer for
the application for use. There is always a callback EmptyBufferDone from the component for each
OMX_EmptyThisBuffer call from the application except for one case. This case is when the component is
started since at this time, the application has no access to buffers hence they have to come from nowhere
but the component.

Parameters
Name Type Description

hComponent IN This input argument is the component
handle.

pAppData IN

Pointer to the data which was defined by
the application when the component was
loaded. Using this data, the application
identifies who invoked this callback.

pbuffer IN
Pointer to buffer header structure which
contains pointer to emptied buffer, its size
etc.

Return

None

Pre Condition

None

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

9.7.10.3 FillBufferDone
void (*FillBufferDone)(
OMX_HANDLETYPE hComponent,
OMX_PTR pAppData,
OMX_BUFFERHEADERTYPE* pBuffer)

Requirements Traceability

TI Proprietary Information — Internal Data
40

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification

 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

Implementation

This is the application callback function that the component uses to return a filled output buffer to
application. There is always a callback FillBufferDone from the component for each call
OMX_FillThisBuffer from the application.

Parameters

Name Type Description

hComponent IN This input argument is the component
handle.

pAppData IN

Pointer to data which was defined by the
application when the component was
loaded. Using this data, the application
identifies who invoked this callback.

Pbuffer IN
Pointer to the buffer header structure
which contains a pointer to the filled
buffer, its size etc

Return

None

Pre Condition

None

Post Condition

None

Requirement Coverage

This method addresses requirement:

SR14062: OMX core shall comply with Texas Instruments OpenMAX IL V1.5 specification.

Requirements Traceability

41
TI Proprietary Information — Internal Data

Nucleus® OpenMAX™ TI 1.5 Core

Design Specification
 Revision 1.3 22 September 2005

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1– 26 July 2005

9.8 Non-API Requirements Coverage
This OpenMAX™ TI 1.5 core will comply with the TI coding guidelines, located in the Clear Case® VOB
path:

\\OMAPSW_docs\Process\Coding_Standards\OMAPSW_C_CodingStandards.doc

