%‘ TEXAS
INSTRUMENTS

OMAP™ SS&P DESIGN SPECIFICATION
OpenMAX™ 1.0 Nucleus® TMS2300 IMG Component

Document Revision: 1.1
Issue Date: 31 January 2006

MakingWireless

Tl Proprietary Information — Internal Data

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

MakingWireless

OMAP™ is a Trademark of Texas Instruments Incorporated
OMAP-Vox™ is a Trademark of Texas Instruments Incorporated
Innovator™ is a Trademark of Texas Instruments Incorporated
Code Composer Studio™ is a Trademark of Texas Instruments Incorporated
DSP/BIOS™ is a Trademark of Texas Instruments Incorporated
eXpressDSP™ is a Trademark of Texas Instruments Incorporated
TMS320™ is a Trademark of Texas Instruments Incorporated
TMS320C28x™ is a Trademark of Texas Instruments Incorporated
TMS320C6000™ is a Trademark of Texas Instruments Incorporated
TMS320C5000™ is a Trademark of Texas Instruments Incorporated
TMS320C2000™ is a Trademark of Texas Instruments Incorporated
OpenGL® is a Registered Trademark of the Khronos Group
OpenML® is a Registered Trademark of the Khronos Group
OpenVG™ is a Trademark of the Khronos Group
OpenMAX™ is a Trademark of the Khronos Group

All other trademarks are the property of the respective owner.

Copyright © 2006 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The fumishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for the
products based from this document.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

Revision 1.1- 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS

PDF SCf-ffiH "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Table of Contents
Revision 1.1 31 January 2006 Nucleus® OpenMAX™ 1.0 IMG Component

Table of Contents

TaADIE OF CONTENTS ..ottt re e re e h et r e ea e st n s e s R e e be s e e st e sre e sreeneeereenea i
[o o [=T T TSP PR U TSP URPAPPTPPPPRIN iii

[o B 1= o] [ST PO O T PP TSP UPPAPPTORPPRIN iii
REVISTON HISTOIY ..ttt et et re e eh bbb et s e s ae e se e e st e eh e e eheea b e s b e s e nn e nne e nn e e e iv
AAD PIOVAIS ..ttt h e ea kb et R e eh e e R e Rt ne e ae e eR e er e n e en e ne e iv
A | 011 o Yo 1V L] A [0 o OSSP PRSPPSO 1
O U 0 L PSPPI 1
s o 0 o[PS PRI 1
1.3 IO PAN. et eh et er e e ar e nr e nreea 1
L1i4 FHIE NAIME .o et r st h e bbb st e sr e e se e b et eh e e s e ea b e e s a e s ne e ne e nrenr e e nreen 1
1.5 REMEIBNCES ...ttt ettt h e b s e et ne e b eh e nn e nreeereea 1
G B T 1101110 T OO P TPV RPUPPPPTPPPPRIN 1
2 ArCHITECTUIAl OVEIVIBW .. .eeei ettt et sr e e se e eb e eh e b et s e st e nbe e nneereenreeas 3
2.1 FRAMUIES. ...ttt ettt eh e er et e R n et e nr et e n e er e e enne e r e nrneas 3
2.2 SYSTEIM DBSIGN .ottt ettt ettt et ee e ee e R R et nr e ne e er e e n s 4
2.3 DESIGN RAONAL......c.eiiiiiiiee ettt er e e e e e e er e er e 6
A I 011 7= 1[0 1 OO PSSP URPT PP PRSP 6
3 COMPONENT INTEITACE .. ittt sr e eb e eb et bbb st sie e seeereeereeas 7
3.1 Include Files For Parent APPIICALION..........ccuiiiiiiiiee et 7
3.2 DEINEA TYPES ..ttt ettt r ettt rr e re e eh et e e bRt ee e e er e er e 7
3.2.1 BASIC DALA TYPES ..ottt sttt ettt et er e er st e e nr e nr e en e er e 7
3.22 OMX_TIMG_COMPONENT ...ooitiitiieteitirter ettt sr et st sr e e nneene s sne e ennes 7

I TR B I = = B 1 o3 (1 | = PSR POPR PP 7
3.3.1 OMX_TICOLOR_FORMATTYPE ... ittt e sn e 7
3.3.2 OMX_TIMAGE_EFFECTTYPE ..ottt et 9
3.3.3 OMX_TIMAGE_OVERLAYTYPE ...ttt ettt 9
3.3.4 OMX_TIMAGE_ROTATETYPEictiiiitie ettt sneenn e sne e 10
3.3.5 OMX_TIMAGE_ENCODE_PARAMTYPE ..ottt 11
3.3.6 OMX_TIMAGE_DECODE_PARAMTYPE ..ottt 11
3.3.7 OMX_TIMAGE_ROTATE_PARAMTYPE ..ottt ettt 12
3.3.8 OMX_TIMAGE_RESCALE_PARAMTYPEcoot ittt 13
3.3.9 OMX_TIMAGE_EFFECT_PARAMTYPE ...ttt ettt et e 14
3.3.10 OMX_TIMAGE_OVERLAY_PARAMTYPE.......oooi ittt 14
3.3.11 OMX_TIMAGE_COLORCONVERSION_PARAMTYPE......ccccciitriene et 15
3.3.12 OMX_TIMAGE_ENCODE_OUTBUFFERTYPE.......cccccitiiitieire et 15
3.3.13 OMX_TIIMAGE_DECODE_OUTBUFFERTYPE.......cccccitiiiitieire et 15
3.3.14 OMX_THMAGE_ENCODE_DEFAULTcccooiiiireeeenreereeee Error! Bookmark not defined.
3.3.15 OMX_THMAGE_DECODE_ DEFAULTccoccviireeeneeee Error! Bookmark not defined.
3.3.16 OMX_THMAGE_ROTATE_DEFAULTccoiiiiiereee e Error! Bookmark not defined.
3.3.17 OMX_THMAGE_RESCALE_DEFAULTcocoiiiieeereeiee Error! Bookmark not defined.
3.3.18 OMX_THMAGE_EFFECT_DEFAULTccoiiiiieer e Error! Bookmark not defined.
3.3.19 OMX_THMAGE_OVERLAY_DEFAULTcccceoiiieeneereee Error! Bookmark not defined.
3.3.20 OMX_TIMAGE_COLORCONVERSION_ DEFAULT.............. Error! Bookmark not defined.

3.4 APIREQUINEMENTS COVEIATEooiuiiiiiieieeite ettt ettt et et se e re e er et es e s e s b b st e st e ne e nneenes 15
3.4.1 OMX_IMG_COMPONENTINIT.....cciirieiiieeiitiet ettt seeere e ene e 15
3.4.2 OMX_IMQG_SeICallDACKSccoieriieiii i 15
3.4.3 OMX_Img_GetCoOmMPONENTVEISIONocuiitirieriere sttt ettt se e sreesne e ennene 15
3.4.4 OMX_IMQG_SendCOMMAENTccceeuiiiiitiitire ettt s sr e e sreereeene e 15
345 OMX IMG_GEIPAIAMELEN........cciiiiirie ittt s nn e e 15
3.4.6 OMX_IMQ_SEPAIAMELENceiiiiiirie et nre e e 15
347 OMX_ IMQ_GEICONTIG ..ottt ettt ettt sr e e sneereeene e 15

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS i

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Table of Contents Design Specification

Nucleus® OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006
3.4.8 OMX _IMQG_SEICONTIG. .. uiiieiiieirierie ettt ettt es bbbt sre e sneere e ene e 15
349 OMX UIMG_GEISTALEcoiiuriiee ettt et er e e e e e e e e s ere e ne e e 15
3.4.10 OMX_IMg_EMPLYTRISBUITETccviciiiieiit ettt 15
3.4.11 OMX_IMQ_FillTRISBUITETeiieiiieeeee ettt e 15
3.4.12 OMX_Img_ComponentTUNNEIREQUEST..........coceiiere ettt 15
3.4.13 OMX_IMg_CompPONENtDEINIT.......ccutiiitirtire ettt ere e 15

3.5 APPICAtON CaAlIDACKS.ctiiiiee et e 15
351 EVENTHANGIEot ea e et s b et sr e e nn e ene e ene e 15
3.5.2 EMPLYBUEIDONE.ottt ettt be e sr e e nn e ere e ene e 15
3.5.3 FilIBUIFEIDONEooiiiiiiie ettt ettt e e sr et s bt e st e nn e e nneeneeeneennenanene 15

4 CoNtrol @nd DAt FIOW.......cocuiiiiiieiie ittt er bt sre e e er e ene e r e 15

4.1 IMG COMPONENT STALEScocuiiiiiee i e et e e e e sre e enee s s e e enn e e s ne e srreennreenreeenne 15

4.2 OpenMAX™ 1.0 IMG COMPONENT PRASESoiiviiieriierie ettt 15
42.1 OpenMAX™ 1.0 IMG ComMPONENtLOAd.........ccciiiiiieiiirir e s 15
4.2.2 OpenMAX™ 1.0 IMG Component UnlOad...........ccecueiiiiriinieiiene et 15
4.2.3 OpenMAX™ 1.0 IMG Component INItIaliZationccocverierieniiiee e 15
424 OpenMAX™ 1.0 IMG Component EXECULIONcceecviriirieie et 15
425 0OpenMAX™ 1.0 IMG COMPONENTPAUSEoooviiviiiieiiirir et 15
426 OpenMAX™ 1.0 IMG COMPONENT RESUME........ceiiiiiiiriirie et 15
427 OpenMAX™ 1.0 IMG COMPONENT STOP ..cuviieieieiirieereeier et 15
42.8 OpenMAX™ 1.0 IMG Component De-initializationccoveriiieineeiec e 15
4.2.9 Valid State TranSItiONS.........cviitiiirirrire sttt sr e en e ere s nae s 15

4.3 Configuration And Data FIOW SCENANOSocverieriere ettt e 15
4.3.1 Generic Configuration And Data FIOW..........cccooviiiiiiiiiie e 15
4.3.2 JPEG ENCOUE SCENAIIO......ccuiitiitirieie sttt ettt ettt sr e sn e ene s e n 15
4.3.3 JPEG DECOUE SCENANIO ...eecveiureeutiritiriie st ettt sr et ettt sr e en e ene e s e s 15
4.3.4 COlOr CONVEISION SCENAIO . .eeuveeutiriririiesie et ree ettt re et sr e e nneene e s e e s e sieenne s 15
4.3.5 RESCAIE/ZOOM SCENANO ..ottt ettt st sr e ere e ere e n e nne s 15
4.3.6 OVEIIAY SCENANOeeiueeieeeeeeteite ettt re ettt ettt sr e e ne e en e e s e e s e nne e e nne s 15
4.3.7 ROLALON SCENANIO ...ceueeeeeree ettt ettt er et be et sr e eb e e en s e b e en e saeenne s 15
4.3.8 EffECIS SCENATIO ...cueiiiiiee ettt ettt sr e er e er e s 15

5 MeMOIY REQUIFEMENTS .. .ooiiiiitiitiriti ettt ettt es bbb s st sr e e sr e ebe e eh e e b e e s e e ne s sbe st e nne e nneeneeeres 15

5.1 MEMOIY AIOCALION ...cveietieetiit ettt ettt re e sr e et bbb e s e b s ne st e s e e e ereeenes 15

B SOftWArE REQUITEMENTSocieiiiiitiitir ettt et r e e bbbt sn e b e re s s e s e nneeneeenes 15

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

i Revision 1.1~ 26 January 2006
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS i

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Table of Contents
Revision 1.1 31 January 2006 Nucleus® OpenMAX™ 1.0 IMG Component

List of Figures

Figure 1 IMG SYSEEM DIAGIAM ..ttt ettt bbb et e se e ne e b e e n e s r e s e nne s 5
Figure 2 State Diagram of @ IMG COMPONENT.......ccuiiiiiieiere sttt sr e 15
Figure 3 IMG Component State TranSItIONSoocveiieii e e 15
Figure 4 Loading Of IMG COMPONENT.....c..uiiiiieeiee ettt sr e ese e ere bt nneeneeenes 15
Figure 5 Unloading Of IMG COMPONENTc..coiiiie ettt ettt sreer e ere e et nneeneeenes 15
Figure 6 Initialization Phase of IMG Component — Parameter Settingcoceveereeienieniniinene e 15
Figure 7 Execution Phase of IMG COMPONENT.........coiiiiiiiiieiiee ettt rne e ens 15
Figure 8 Stop Command from apPHCALIONccviiiiriee e 15
List of Tables
Table 1 TEIMS AN ACTONYMIS ..ottt ettt ettt re e er e e er e st es e s e b e e b s be st e se e e neeeneeereenn e anennnes 2
Table 2 FFRATUIE LIS ...ttt ettt se e eh e er e e s e e ne e er e nreea 3
Table 3 Include Files for apPlCALIONcc.uiiiriere et 7
Table 4 OMX_TICOLOR_FORMATTYPE SITUCIUIEeoveieeiee ittt ettt sre e 8
Table 5 OMX_TIIMAGE_EFFECTTYPE SIIUCKUIE......oitiiiiteee ettt ettt ere s 9
Table 6 OMX_TIIMAGE_OVERLAYTYPE SHUCIUIE.......cciiieeiiee ettt ere e 10
Table 7 OMX_TIIMAGE_ROTATETYPE SIUCIUIEoveeii ettt e ere e 10
Table 8 OMX_TIIMAGE_ENCODE_PARAMTYPE SIUCHUIE.......ccoteiieriitirire e eree e 11
Table 9 OMX_TIIMAGE_ROTATE_PARAMTYPE StrUCTUIE.......ceciiiiiriiiiteire e 12
Table 10 OMX_TIIMAGE_EFFECT_PARAMTYPE SHUCIUIEcceovieiiriiisiietee e 14
Table 11 OMX_TIIMAGE_OVERLAY_PARAMTYPE StrUCIUIEcceeiiiiiiieiine e 14
Table 12 OMX_TIIMAGE_COLORCONVERSION_PARAMTYPE StruCtUrec.cceoceeveereeeree e 15
Table 13 OMX_TIIMAGE_ENCODE_OUTPUT_PARAMTYPE StIUCTUIEccoierreiee e 15
Table 14 OMX_TIIMAGE_DECODE_OUTPUT_PARAMTYPE StIUCTUIEccoieriereerie e 15
Table 15 OMX_TIIMAGE_DECODE_CONFIGTYPE STrUCIUIE......ccoteiieieitiriire e sreenennenes 12
Table 16 IMG Component State TraNSItIONoocveiieeie e riere e et e st e e e seeeeneee s e e e seeeenneeeseeenneeean 15
Table 17 Color CONVEISION IMAIIIXcoveieiieeireeiie ettt sttt re e e et see e rneer e eneenennnene 15
Table 18 Memory Requirements for IMG COMPONENT........ccoeviiirireiiee e e e eeieese e sreeeee e e esaeeseeeenes 15
Table 19 Minimum Values for OMX Input and Output BUfEIS.........coviiiiiiiiiniireree e 15
Table 20 REQUIFEMENTS LIStiiiee ittt et e st e et e e en e ae e s seeen e e s e e enseeeneeesseennseennees 15
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
N Revision 1.1~ 26 January 2006
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS i

PDF L "pdfFactory Pro™ i FH iR AL www.fineprint.cn

http://www.fineprint.cn

Revision History
Nucleus® OpenMAX™ 1.0 IMG Component

Design Specification

Revision 1.1 31 January 2006

Revision History

REV DATE AUTHOR NOTES
1.0 28 January 2006 Narendran M R Initial release
11 31 January 31, 2006 Anandhi Ramesh Updated section 3.3 and 4.3
Approvals
REV APPROVAL 1 DATE APPROVAL 2 DATE
1.0 S Prabhavathy
Please read the “Important Notice” on the next page
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
N Revision 1.1~ 26 January 2006
U’ TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS iv

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Approvals
Revision 1.1 31 January 2006 Nucleus® OpenMAX™ 1.0 IMG Component

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent
T1 deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using Tl components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from Tl under the patents or other intellectual
property of Tl.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not
responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application

solutions:
1 Products 2 Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ticom Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.comwireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
N Revision 1.1~ 26 January 2006
d TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS v

PDF SCHF# 4] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless
http://www.fineprint.cn

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

1 Introduction

This document describes the design of OpenMAX™ 1.0 IMG Component. The environment for OpenMAX™
1.0 IMG Component is:

n Nucleus® on OMAPV1030.
n OpenMAX™ 1.0 IMG Component.
n Revision 2.x or later I-Sample board.

1.1 Purpose

This document details the design specifications for OpenMAX™ 1.0 Nucleus® IMG Component on
OMAPV1030.

1.2 Scope
This document addresses only design specifications.

Additional technical data can be found by referring to the OMAP™SS&P Technical Perspective and Data
Package document.

The document provides information about technical data artifacts, including their title, standard ClearCase®
VOB location, a brief description and the System or Software Checkpoint where the artifact is first introduced
into the development process.

1.3 File Path

This design specification document shall be captured in ClearCase® path defined in the project CM Plan:
\'\ OVAPSW SysDev\ OVAPV1030\ Mul t i medi a\ docs\

1.4 File Name
The file name of this document is CSSD_DesignSpec_Locosto_ OMX_Img.doc

1.5 References

All References can be found on the Cellular Systems web site or the World Wide Process and Tools Group
web site.

1.6 Definitions

Terms used in this document can be found in the Cellular Systems Glossary Document.

Terms that are introduced in this document are detailed below:

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 1

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Introduction Design Specification

OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006
Table 1 Terms and Acronyms

ACRONYM DEFINITION

API Application Programming Interface

ARM Advanced RISC Machines

GPP General Purpose Processor

JPEG ISO 11172-3 Image compression standard

omap™ Open Multimedia Application Platform

OMX OMX and OpenMAX™ 1.0 are used interchangeably in the document.

0s Operating System

OSAL Operating System Adaptation Layer.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 2

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

2 Architectural Overview

OpenMAX™ 1.0 IMG Component facilitates the interaction between an Application and the Emuzed Imaging
Codec. Communication between OpenMAX™ 1.0 IMG Component and Emuzed Imaging Codec happens
via non-blocking message interface between the OMX client (the application which calls OMX functions) and
IMG core component which runs as a separate thread in the system.

OpenMAX™ 1.0 IMG Component is a type of OpenMAX™ 1.0 component. It conforms to the guidelines
defined by OpenMAX™ 1.0 specifications and implements a standard set of functions. An Application will
access the OpenMAX™ 1.0 IMG Component’s interfaces to send commands to the underlying Emuzed
Imaging Codec to perform operations such as initialize, start, and stop of different imaging operations. In this
usage, OpenMAX™ 1.0 IMG Component is said to wrap the underlying Emuzed Imaging Codec.

To offer services to an application, OpenMAX™ 1.0 IMG Component works in unison with the OpenMAX™
1.0 core. For details on OpenMAX™ 1.0 core, please refer to OpenMaxIL1.0 Specification.

2.1 Features

The tablel lists the high-level features that OpenMAX™ 1.0 IMG Component. A given instance of this OMX
client can support only one feature. i.e. If application needs a JPEG encode feature and a color conversion
feature, then, two instance of IMG Component needs to be created — one instance configured for JPEG
encoding and the other instance configured for color conversion. Details on initialization, configuration and data
flow for each of these features are explained later in the document.

Table 2 Feature List

Feature Desciption
JPEG encode Eff?ozdg rsa;\;vniggrudt images to baseline jpeg format conforming to ISO/IEC
JPEG decode Decode JPEG images to raw YUV or RGB formats
Color conversion Color convert images from different YUV formats to RGB formats
Rescale Rescale RGB or YUV images using bilinear interpolation
Overlay Overlay two RGB images depending on color key provided
Alpha blending Ifelsgarlot:/li%g%i.ng of two RGB images depending on the transparency color
Rotation Rotate an image by 90, 180, 270 degress
Grayscale Effect Convert color images to gray scale
Sepia Effect Add sepia tone to an image to give antique look
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.1~ 26 January 2006
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 3

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Architectural Overview Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

2.2 System Design

The IMG module is divided into two separate components
1) IMG Core.

2) IMG OMX client

IMG core is a separate thread running in the system and facilitates actual image processing of data. IMG core
is started when the system boots up and it waits for commands from different IMG OMX clients. There is only
one instance of this thread running in the system and it uses the Emuzed Imaging Codecs to do the actual
data processing. IMG core interface is not exposed to application space and only IMG OMX clients interface
with IMG core.

IMG OMX client is the interface which enables applications to facilitate different image processing features.
This client exposes standard OpenMAX™ 1.0 complaint API interface. The client runs in the context (same
thread) as that of application which invokes these APIs. An application can invoke multiple IMG OMX clients as
per the requirement. All these clients will interface with IMG Core to carry out the actual data processing. But
this client to Core communication is hidden from the application and the application just needs to invoke the
OMX client APIs to carry out the functionality.

Figure 1 shows the architecture of OpenMAX™ 1.0 IMG Component in context of a complete system. Since
the actual data processing happens in a separate IMG core thread, the OMX client data processing calls are
non-blocking. This diagram illustrates how communication will happen between an application, the
OpenMAX™ 1.0 Core, the OpenMAX™ 1.0 IMG Component and the Emuzed Imaging Codec.

The component instances are classified according to the operations they perform as encoder, decoder and
image processing component. The encoding and decoding components cannot be used for any other image
processing operations when they are in the executing state. But the image processing component can be used
interchangeably for rotation, overlay, color conversion, rescaling, or image effects.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 4

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006

OpenMAX™ 1.0 IMG Component

Figure 1 IMG System Diagram

Appl
thread

App2
thread

App3
thread

IMG core IMG core
thread
/ y
JPEG enc JPEG dec Image
Codec Codec processina
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.1- 26 January 2006
b TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 5

PDF SC{4-4§iH] "pdfFactory Pro™ i RAGIE www. fineprint.cn

http://www.fineprint.cn

Architectural Overview Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

2.3 Design Rational

The IMG client is designed keeping the below mentioned design aspects in mind.

1. Low -latency or non-blocking processing call operation. This means that the application which invokes
processing APIs should not be blocked and should immediately return. The actual processing should
happen in a separate thread and inform the application regarding the process completion through a
separate call back function. This is important from the perspective that the application thread should not be
blocked and should be responsive to other user interaction while the processing is carried out.

2. Industry Standard interface. The OMX interface is industry accepted interface and by exposing an OMX
1.0 compliant interface, it becomes easier for application developers to integrate this component with rest
of the system.

3. Minimum code footprint. Theoretically each of these encode, decode and image processing functions
could be provided as a separate OMX client component. But in this implementation, only one OMX IMG
client implementation is provided which can be configured for doing any of the above mentioned
operations. The rational being each of these operation involve similar operations and the actual interface
with the codecs happens only in the core level.

2.4 Limitations

TBD
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.1~ 26 January 2006
TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 6

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3 Component Interface

This section describes the data types, data structures, callbacks and macros, which are required for an
application interfacing with the IMG OMX component.

3.1 Include Files For Parent Application
An Application which uses OpenMAX™ 1.0 IMG OMX component must include the files listed in Table 4.

Table 3 Include Files for application
File Function
OMX Core.h Contains prototypes of the core functions and definitions used by
—) both the application and IMG Component to access common items.
OMX_ Index h Contains the definitions of parameter and configuration indices for
—) both application and IMG Component.
This file contains the structures needed by Image components to
OMX_ImgComponent.h exchange parameters and configuration data between the
application and the IMG Component.
OMX_Tlimage.h This file contains T1 defined extended interface types

3.2 Defined Types

3.21 Basic Data Types

Please refer to section 9.2.1 of OpenMaxIL1.0 Specification. OpenMAX™ 1.0 IMG Component uses these
data types instead of fundamental C-types like int, char etc. in order to provide portability across different
platforms, compilers and operating systems. These data types are defined in OMX_Types.h file.

322 OMX_TIIMG_COMPONENT

This is the name of component that needs to be passed to the OMX_getHandle core function. This function will
obtain the handle of the OpenMAX™ 1.0 IMG Component. This string is defined in OMX_TIlImage.h file.

3.3 Data Structures

3.3.1 OMX_TICOLOR_FORMATTYPE
This enum type defines the color formats which are passed as parameter to different configuration structures.
Table 4 OMX _TICOLOR_FORMATTYPE Structure

Enum Type Description or Evaluation

OMX_TICOLOR_Monochrome Black and White

OMX_TICOLOR_8bitRGB332 Red 7:5, Green 4:2, Blue 1:0

OMX_TICOLOR_12bitRGB444 Red 11:8, Green 7:4, Blue 3:0

OMX_TICOLOR_16bitARGB4444 Padding 15:12, Red 11:8, Green 7:4, Blue 3:0

OMX_TICOLOR_ARGB1555 Padding 15, Red 14:10, Green 9:5, Blue 4:0

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data

INSTRUMENTS 7

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification

OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006
OMX_TICOLOR_RGB565 Red 15:11, Green 10:5, Blue 4:0
OMX_TICOLOR_BGR565 Blue 11:8, Green 7:4, Red 3:0
OMX_TICOLOR_RGB666 Red 17:12, Green 11:6, Blue 5:0
OMX_TICOLOR_ARGB1665 Padding 17 Red 16:11, Green 10:5, Blue 4:0
OMX_TICOLOR_ARGB1666 Padding 18 Red 17:12, Green 116, Blue 5:0
OMX_TICOLOR_RGB888 Red 23:16, Green 15:8, Blue 7:0
OMX_TICOLOR_BGR888 Blue 15:11, Green 10:5, Red 4:0
OMX_TICOLOR_ARGB1887 Padding 23 Red 22:15, Green 14:7, Blue 6:0
OMX_TICOLOR_ARGB1888 Padding 24 Red 23:16, Green 15:8, Blue 7:0
OMX_TICOLOR_BGRAS8888 Padding 31:24, Blue 23:16, Green 15:8, Red 7:0
OMX_TICOLOR_ARGB8888 Padding 31:24, Red 23:16, Green 15:8, Blue 7:0

OMX_TICOLOR_YUV411Planar
OMX_TICOLOR_YUV411PackedPlanar
OMX_TICOLOR_YUV420Planar
OMX_TICOLOR_YUV420PackedPlanar
OMX_TICOLOR_YUV420SemiPlanar
OMX_TICOLOR_YUV422Planar
OMX_TICOLOR_YUV422PackedPlanar
OMX_TICOLOR_YUV422SemiPlanar
OMX_TICOLOR_YCbYCr
OMX_TICOLOR_YCrYCb
OMX_TICOLOR_CbYCrY
OMX_TICOLOR_CrYCbY
OMX_TICOLOR_YUV444interleaved
OMX_TICOLOR_RawBayer8bit
OMX_TICOLOR_RawBayer10bit
OMX_COLOR_FormatRawBayer8bitcompressed

OMX_TICOLOR_RGB444 Red 11:8, Green 7:4, Blue 3:0

OMX_TICOLOR_RGB565 Red 15:11, Green 10:5, Blue 4:0

OMX_TICOLOR_BGR565 Blue 15:11, Green 10:5, Red 4:0

OMX_TICOLOR_RGB666 Red 17:12, Green 11:6, Blue 5:0

OMX_TICOLOR_RGB888 Red 24:16, Green 15:8, Blue 7:0

OMX_TICOLOR_ARGB444 Extended RGB 444.

OMX_TICOLOR_YUV444 Y, U, V sampled at every pixel.

OMX_TICOLOR_YUV422H Y sample at every pixel, U and V sampled at every second pixel
horizontally on each line

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 8

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006

OpenMAX™ 1.0 IMG Component

OMX_TICOLOR_YUV422V

Y sample at every pixel, U and V sampled at every second pixel
vertically on each line

OMX_TICOLOR_YUV422]|

Y sample at every pixel, U and V sampled at every second pixel
and interleaved (YUYV)

OMX_TICOLOR_YUV420P

8 bit Y plane followed by 8 bit 2x2 sub-sampled U and V planes.

OMX_TICOLOR_MONOCHROME

Black and White

3.3.2 OMX_TIIMAGE_EFFECTTYPE
This enum type defines the effects type. This passed as a configuration parameter to the effects API.

Table 5

OMX_THIMAGE_EFFECTTYPE Structure

Enum Type

Description or Evaluation

OMX_TIIMAGE_SEPIAEFFECT

Adds a sepia tone to the image to give an impression of aged
film

OMX_TIIMAGE_GRAYEFFECT

Converts the colour image to a gray tone.

3.3.3 OMX_TIIMAGE_OVERLAYTYPE

This enum type defines the effects type. This passed as a configuration parameter to the overlay API.

Table 6

OMX_THIMAGE_OVERLAYTYPE Structure

Enum Type

Description or Evaluation

OMX_TIIMAGE_OVERLAY

Overlays one image on another without any blending, based on
the colour key. All areas of the same colour as the colour key are
replaced with the overlay image

OMX_TIIMAGE_ALPHABLEND

Blends two images with the formula alpha * p1 + (1-alpha) * p2
where p1 and p2 are the pixel values at a location for the two
images.

3.34 OMX_TIIMAGE_WINDOWTYPE
This structure defines the window type. This passed as a configuration parameter to the decode and rescale

API.
Table 7 OMX_TIIMAGE_WINDOWTYPE Structure
Enum Type Description or Evaluation
nXOffset X Coordinate offset for the portion of the image to be windowed.
nYOffset Y Coordinate offset for the portion of the image to be windowed.
nWidth Width of the window.
nHeight Height of the window.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.1~ 26 January 2006
@ TEXAS Tl Proprietary Information — Internal Data
INSTRUMENTS 9

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.3.5 OMX_TIIMAGE_ROTATETYPE
This enum type defines the rotation type. This passed as a configuration parameter to the rotation API.
Table 8 OMX_TIMAGE_ROTATETYPE Structure

Enum Type Description or Evaluation
OMX_TIIMAGE_ROTATEO Rotate by 0 deg.
OMX_TIIMAGE_ROTATES90 Rotate by 90 deg.
OMX_TIIMAGE_ROTATE180 Rotate by 180 deg.
OMX_TIIMAGE_ROTATEZ270 Rotate by 270 deg.

3.3.6 OMX_TIIMAGE_ENCODE_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetParameter function call. This param
type is sent along with the OMX_IndexParamEncode index for set/get param call as well as the
OMX_IndexConfigEncode index for set/getconfig call. (defined in OMX_Tlimage.h). This parameter needs to
be set if the OMX IMG client needs to be configured for JPEG encoding. The
OMX_TIIMAGE_ENCODE_DEFAULTS structure is passed for the initialization of the component. Once the
component is past the loaded state, the parameters are changed through a OMX_SetConfig call. The structure
members are detailed in the table below.

Table 9 OMX_THMAGE_ENCODE_PARAMTYPE Structure

Data field Name Description or Evaluation

timageCodingType This is an OMX_IMAGE_CODINGTYPE enum type. The only
supported format in this version is OMX_IMAGE_CodingJPEG

nQualityFactor Quiality value varies from 1-100. 1 represents best compression,
but worst quality and 100 represents best quality, but worst
compression.

nimageWidth Width of the image to be encoded

nimageHeight Height of the image to be encoded.

nStride Number of bytes per span of an image. Imagewidth could be
smaller than nStride

tinputimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the input image.

timageEncodeFormat This OMX_TICOLOR_FORMATTYPE enum type defines the
format of the actual encoding.

nEncodeAUSize If this value is set to 0, encoding happens in one shot. The

output buffer provided should be sufficient enough to hold the full
encoded image. Else encoder will encode only the specified
access units in one process call.

binsertHeader IF this flag is set to OMX_TRUE, header will be inserted to the
generated bitstream, else not.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 10

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.3.7 OMX_TIIMAGE_DECODE_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetConfig function call. This param type is
sent along with the OMX_IndexParamDecode index for set/get param call as well as the
OMX_IndexConfigDecode index for set/getconfig call. (defined in OMX_Tlimage.h). This parameter needs to
be set if the OMX IMG client needs to be configured for JPEG decoding. The
OMX_TIIMAGE_DECODE_DEFAULTS structure is passed for the initialization of the component. Once the
component is past the loaded state, the parameters are changed through a OMX_SetConfig call. The structure
members are detailed in the table below.

Table 10 OMX_TIMAGE_DECODE_CONFIGTYPE Structure

Data field Name Description or Evaluation

nStride This is the width of the buffer provided to decoder. This value
could be bigger than image width.

nimageScalingFactor The decoder has capability to scale down the image during the
decode process. The value is used to specify the required scale
value.

nDecodeAUSize If this value is set to 0, decoding happens in one shot. The input

buffer provided should contain the full encoded image. Else
decoder will decode only the specified access units in one

process call.
tCropWindow Window specifying the portion of the image to be decoded.
timageOutPutFormat This OMX_TICOLOR_FORMATTYPE enum type defines the

format of output decoded data expected.

3.3.8 OMX_TIIMAGE_ROTATE_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetParameter function call. This param
type is sent along with the OMX_IndexParamRotate index for set/get param call as well as the
OMX_IndexConfigRotate index for set/getconfig call. (defined in OMX_Tlimage.h). This parameter needs to
be set if the OMX IMG client needs to be configured for image rotation. The
OMX_TIIMAGE_ROTATE_DEFAULTS structure is passed for the initialization of the component. Once the
component is past the loaded state, the parameters are changed through a OMX_SetConfig call. The structure
members are detailed in the table below.

Table 11 OMX_TIMAGE_ROTATE_PARAMTYPE Structure

Data field Name Description or Evaluation

nStride Buffer width.

nimageWidth Width of the image

nimageHeight Height of the image

tinputimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the input image.

tRotate This OMX_TIIMAGE_ROTATETYPE enum type field indicates
the rotation value.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 1

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification

OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006
nRotateManual If tRotate is not populated, this field contains the rotation degree.
binplace IF this flag is set to true, operation happens in place. No

separate buffer needs to be supplied for output buffer.

3.3.9 OMX_TIIMAGE_RESCALE_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetParameter function call. This param
type is sent along with the OMX_IndexParamRescale index for set/get param call as well as the
OMX_IndexConfigRescale index for set/getconfig call. (defined in OMX_TIlimage.h). This parameter needs to
be set if the OMX IMG client needs to be configured for image rotation. The
OMX_TIIMAGE_RESCALE_DEFAULTS structure is passed for the initialization of the component. Once the
component is past the loaded state, the parameters are changed through a OMX_SetConfig call. The structure
members are detailed in the table below.

Table 12 OMX_TIMAGE_RESCALE_PARAMTYPE Structure

Data field Name Description or Evaluation

ninputimageWidth Width of the input image

ninputimageHeight Height of the input image

tinputimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the input image.

nOutputimageWidth Width of the output image

nOutputimageHeight Height of the output image

nStride Buffer width.

tCropWindow OMX_TIIMAGE_WINDOWTYPE field specifying the portion of
the image to be zoomed

nZoomFactor Zoom Factor value.

nAutoZoom If this flag is true the component performs auto zoom.

nStartZoomFactor In auto zoom mode, the starting zoom facto value.

nFinalZoomFactor In auto zoom mode, the Final zoom facto value.

nincrement In auto zoom mode, the zoom factor increment value.

bZoomReset If this flag is set to true, the zoom factor is reset every time it
reaches the final zoom factor in auto reset mode.

binplace IF this flag is set to true, operation happens in place. No
separate buffer needs to be supplied for output buffer.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 12

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.3.10 OMX_TIMAGE_EFFECT_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetParameter function call. This param
type is sent along with the OMX_IndexParamEffect index for set/get param call as well as the
OMX_IndexConfigEffect index for set/getconfig call. (defined in OMX_TIlimage.h). This parameter needs to
be set if the OMX IMG client needs to be configured for image effects (gray scale, sepia etc). The
OMX_TIIMAGE_EFFECT_DEFAULTS structure is passed for the initialization of the component. Once the
component is past the loaded state, the parameters are changed through a OMX_SetConfig call. The structure
members are detailed in the table below.

Table 13 OMX_THMAGE_EFFECT_PARAMTYPE Structure

Data field Name Description or Evaluation

nimageWidth Width of the image

nimageHeight Height of the image

tinputimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the input image.

tEffect This OMX_ TIIMAGE_EFFECTTYPE enum type defines the
effect.

nStride Buffer Width

binplace IF this flag is set to true, operation happens in place. No
separate buffer needs to be supplied for output buffer.

3.3.11 OMX_TIMAGE_OVERLAY_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetParameter function call. This param
type is sent along with the OMX_IndexParamOverlay index for set/get param call as well as the
OMX_IndexConfigOverlay index for set/getconfig call. (defined in OMX_Tlimage.h). This parameter needs to
be set if the OMX IMG client needs to be configured for image overlay. The
OMX_TIIMAGE_OVERLAY_DEFAULTS structure is passed for the initialization of the component. Once the
component is past the loaded state, the parameters are changed through a OMX_SetConfig call. The structure
members are detailed in the table below.

Table 14 OMX_TIMAGE_OVERLAY_PARAMTYPE Structure

Data field Name Description or Evaluation
nSrcimageWidth Width of the image to be overlayed
nSrcimageHeight Height of the image to be overlayed.
tSrcimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the input source mage.
nOverlaylmageWidth Width of the overlay image
nOverlaylmageHeight Height of the overlay image
tOverlaylmageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the overlay image.
nSrcXOffset X- coordinate offset for overlay
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.1~ 26 January 2006
@ TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 13

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification

OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006
nSrcYOffset Y-coordinate offset for overlay
tOverlay This OMX_TIIMAGE_OVERLAYTYPE enum type field indicates
the choice of alpha blending or color key substitution.
tTransmissivity Transmissivity Value for alpha blending
nAlpha Alpha Value if the type is manual in tTransmissivity
nOverlay Index value for transparency
nStride Buffer Width
binplace If this flag is set to TRUE, the output would be overwritten to
source image.

3.3.12 OMX_TIMAGE_COLORCONVERSION_PARAMTYPE

This parameter is passed to the IMG client using the standard OMX SetParameter function call. This param
type is sent along with the OMX_IndexParamColorConversion index for set/get param call as well as the
OMX_IndexConfigColorConversion index for set/getconfig call. (defined in OMX_Tlimage.h). This parameter
needs to be set if the OMX IMG client needs to be configured for color conversion of images. The
OMX_TIIMAGE_COLORCONVERSION_DEFAULTS structure is passed for the initialization of the component.
Once the component is past the loaded state, the parameters are changed through a OMX_SetConfig call.
The structure members are detailed in the table below.

Table 15 OMX_TIMAGE_COLORCONVERSION_PARAMTYPE Structure

Data field Name Description or Evaluation

nimageWidth Width of the image

nimageHeight Height of the image

nSrcXOffset X- coordinate offset for the input image

nSrcYOffset Y-coordinate offset for the input image

tinputimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the input image.

tOutputlimageFormat This OMX_TICOLOR_FORMATTYPE enum type field indicates
the format of the output image.

nStride Buffer Width

binplace IF this flag is set to true, operation happens in place. No
separate buffer needs to be supplied for output buffer.

3.3.13 OMX_TIIMAGE_ENCODE_IMAGEINFOTYPE

This parameter is passed to the IMG client using the standard OMX GetConfig function call. The index value
for this param type is OMX_IndexConfigEncodelmginfo (defined in OMX_TIlImage.h). This parameter is used
by the application to allocate the output buffer for the encoding operation. The structure members are detailed
in the table below.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 14

PDF SCf-ffiH "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification

Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component
Table 16 OMX_TIMAGE_ENCODE_IMAGEINFOTYPE Structure

Data field Name Description or Evaluation

nOutputSize Size of the output buffer

3.3.14 OMX_TIIMAGE_DECODE_IMAGEINFOTYPE

This parameter is passed to the IMG client using a call for getConfig with the
OMX_IndexConfigDecodelmglinfo with this structure as the third parameter. This is used for allocating the
output buffer for a decoding operation. The structure members are detailed in the table below.

Table 17 OMX_TIMAGE_DECODE_IMAGEINFOTYPE Structure

Data field Name Description or Evaluation

nWidth Extended Width of the output image

nHeight Extended Height of the output image

nActWidth Actual Width of the output image

nActHeight Actual Height of the output image

timageFormat This OMX_TIICOLOR_FORMATTYPE enum type field indicates
the format of the decoded image.

3.4 APl Requirements Coverage

The OpenMAX™ 1.0 core provides a set of macros that are used by the application to perform various
operations like loading the component, communicating with IMG Component etc. These macros are defined in
OMX_Core.h. Each macro maps to a function implemented by the OpenMAX™ 1.0 IMG Component.
Detailed description of each function implemented by the IMG Component is given in following sub sections.
The application must not call any of these functions directly and instead use the macros provided by the OMX
core.

3.4.1 OMX_Img_Componentinit
OVX_ERRORTYPE QWX | ng_Conponent | ni t (OVWX_HANDLETYPE hConp)

Description

This function is called by OMX core to initialize the component. The core makes the call when the Application
needs to call OMX_GetHandle and a new component must be instantiated.. The OMX core maintains a table
that lists all the OMX components and their Componentlnit functions. The OMX_Img_Componentinit function
must be present in this component table.

Parameters
Name Type Description
The component fills the handle structure with pointers to
hCom ouT functions that it implements. After this, the application can use
P these function pointers to access the functionality of this OMX
component
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.1~ 26 January 2006
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 15

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification

OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006
Return
OMX_ErrorNone This is retumned if macro executes successfully.
OMX_ErrorBadParameter This error is returned if one of the input parameters is wrong.

Requirement Coverage
This method addresses requirement:

Implementation
n Blocking function.

n Entry function to the OMX component.

n Populates hComp with function pointers to functions implemented by this particular OMX component.

n Allocates private data of the OMX component.

n Sets the current state of the IMG Component as OMX_StateLoaded.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
N Revision 1.1~ 26 January 2006
d TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 16

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.4.2 OMX_Img_SetCallbacks

OWX_ERRORTYPE QWX | ng_Set Cal | backs (OW_HANDLETYPE hConp,
OMX_CALLBACKTYPE* pCal | Backs,
OVWX_PTR pAppDat a)

Description

This function is called by OMX core. The application needs to call OMX_GetHandle. After calling
OMX_Img_Componentinit, the OMX core calls this function to provide application callbacks to the
OpenMAX™ 1.0 IMG Component.

Parameters
Name Type Description
Handle of the component to be accessed. This is the
hComp IN component handle returned by the call to the GetHandle
function
pCal | Backs N pointer to an OMX_CALLBACKTYPE structure used to

provide the callback information to the component

pointer to an application defined value. It is anticipated that
pAppDat a IN thg applipatiqn will pass a pointer to a data structure or a "this

pointer" in this area to allow the callback (in the application) to
determine the context of the call

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the appropriate
OMX error will be returned.

Requirement Coverage
This method addresses requirement:

Implementation
n Blocking function.
n Copies the contents of the callback structure into the private data area of the component for later use.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 17

PDF SCH# 4] "pdfFactory Pro™ X RAG)E ww. Fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.4.3 OMX_Img_GetComponentVersion

OVX_ERRORTYPE QWX | ng_Get Conponent Ver si on (OMX_HANDLETYPE hConp,
OWX_STRI N& pConponent Nane,
OVX_VERSI ONTYPE* pCorrponent Ver si on,
OVX_VERSI ONTYPE* pSpecVer si on,
OVX_UWUI DTYPE* pConponent UUI D)

Description

Queries the component and returns information about the component. The application calls this function to get
the version of the component.

Parameters
Name Type Description
hComp IN This input argument is the component handle.
Pointer to an area where the component writes the name of
pComponentName ouT the component at the successful return from this macro. The

maximum length of the name is 128 including the null
terminating character.

This is a pointer to the OMX_VERSIONTYPE structure which
pComponentVersion ouT is filled by the component. The component fills the component
version information in this structure

This is a pointer to the OMX_VERSIONTYPE structure which
pSpecVersion ouT is filled by the component. The component fills the OMX
specification version information in this structure.

This is a pointer to the UUID structure which is be filled by the
pComponentUUID ouT component. Currently, the UUID is not used and the
component does not update this value.

Return
OMX_ErrorNone This is retumed if the macro executes successfully.
OMX_ErmorBadParameter This is retumned when one of the arguments is invalid.

Requirement Coverage
This method addresses requirement:
Implementation

n Blocking function.

n OpenMAX™ 1.0 IMG Component fills component version, OMX specification version and UUID
information in the structures passed by application.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 18

PDF SCH#] "pdfFactory Pro™ X RAG)HE ww. Fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.4.4 OMX_Img_SendCommand

OUX_ERRORTYPE QWX | ng_SendCommand (OMX_HANDLETYPE hConp,
OVX_COMVANDTYPE Crrd,
OVWX_U32 nPar am

Description

Sends a command to the component. Currently there is only one command that is recognized by the
component, the command to change the state of the component.

Parameters
Name Type Description
hConp IN This input argument is component handle.
This specifies the command type/category. The value of this
cmd N argument can be OMX_CommandStateSet.
Currently in OpenMAX™ 1.0, the only valid command is to set
the component state.
The value of this argument is dependent on the cmd argument. If
the value of the Cmd is:
nParam IN OMX_CommandStateSet: this argument contains the state that is
to be set for the component. The value can be one of the values
defined by OMX_STATETYPE.
Return
OMX_ErrorNone This is retumed if the macro executes successfully.
OMX_ErmorBadParameter This is retumned when one of the arguments is invalid.
OMX_ErrorinvalidState Indicates that the state specified by the argument nParam is invalid

for the current state of the component i.e. the component cannot
change to the state specified by the argument nParam.

Requirement Coverage
This method addresses requirement:
Implementation

n Non-blocking function.

n Calls ProcessFunction to handle input and output buffers.

n For successful state transitions, calls the EventHandler callback with a state change notification, calls
EventHandler with an error othersise.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 19

PDF L "pdfFactory Pro™ i FH R AGIHE www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.4.5 OMX_Img_GetParameter

OVX_ERRORTYPE QWX | ng_Get Par anet er (OVWX_HANDLETYPE hConp,
OVX_| NDEXTYPE nPar anl ndex,
OWX_PTR pConpPar am

Description

The application should call this function to get the currently in effect parameter settings of the component. The
correct sequence used to call this function is for the application to allocate an empty structure, set the structure
version and size information and then call this function with the structure pointer as the third parameter and the
structure index as the second parameter. The component will fill in the values of the structure from the
component’s internal state information. This function may be used to get the initialization parameters of the
component, when the component is in any state except the INVALID state.

Parameters
Name Type Description
hConp IN This input argument is the component handle.
This identifies the structure being used by the third
nPar am ndex IN argument . Values are defined in OMX_index.h
This is a pointer to the structure that needs to be filled in by
pConpPar am out the component.
Return
OMX_ErrorNone This value is returned when the component gives the required
information.
OMX_ErmorBadParameter This is retumed if any arguments are invalid.

Pre Condition

The structure specified by the third argument must have the structure size and version information filled in
before invoking the function.

Requirement Coverage
This method addresses requirement:

Implementation
n Blocking function.

n Copies the appropriate values from the component’s private data area and populates the structure
passed in the third argument.

n Performs basic parameter checking by comparing the size passed in the structure (third argument to

this function) to the actual size of the structure.

Valid Parameters
OMX_IndexParamEncode, OMX_TIIMAGE_ENCODE_PARAMTYPE
OMX_IndexParamEncodeDefault (output is OMX_TIIMAGE_ENCODE_DEFAULT)
OMX_IndexParamDecode, OMX_TIIMAGE_DECODE_PARAMTYPE
OMX_IndexParambDecodeDefault , (output is OMX_TIIMAGE_DECODE_DEFAULT)
OMX_IndexParamRotate, OMX_TIMAGE_ROTATE_PARAMTYPE
OMX_IndexParamRotateDefault, (outputis OMX_TIIMAGE_ROTATE_DEFAULT)
OMX_IndexParamRescale, OMX_TIMAGE_RESCALE_PARAMTYPE
OMX_IndexParamRescaleDefault , (output is OMX_TIIMAGE_RESCALE_DEFAULT)
OMX_IndexParamEffect, OMX_TIIMAGE_EFFECT_PARAMTYPE

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 20

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

OMX_IndexParamEffectDefault , (output is OMX_TIIMAGE_EFFECT_DEFAULT)
OMX_IndexParamOverlay, OMX_TIIMAGE_OVERLAY_ PARAMTYPE
OMX_IndexParamOverlayDefault , (output is OMX_TIMAGE_OVERLAY_DEFAULT)
OMX_IndexParamColorConversion, OMX_TIIMAGE_COLORCONVERSION_PARAMTYPE

OMX_IndexParamColorConversionDefault ,. (output is
OMX_TIIMAGE_COLORCONVERSION_DEFAULT)

These structures are defined OMX_TIlimage.h.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 21

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

OMX_Img_SetParameter

OVX_ERRORTYPE QWX | ng_Set Par anet er (OVWX_HANDLETYPE hConp,
OVX_| NDEXTYPE nPar an ndex,
OWX_PTR pConpPar anj

Description

The application should call this function to set the parameters of the component. The correct sequence to call
this function is for the application to allocate and initialize a structure to be sent to the component and then call
this function with the structure as the third parameter and the structure index as the second parameter. The
component will make a local copy of this structure and uses the stored data at the time of component
initialization. This function should be used to set the initialization parameters of the component, when the
component is in the LOADED state.

Parameters
Name Type Description
hConp IN This input argument is the component handle.
This identifies the structure being used by the third
nPar am ndex IN argument . Values are defined in OMX_index.h
This input argument is a pointer to a structure which the
pCorpPar am IN component uses to make its local copy.
Return
OMX_ErrorNone This is retumed when component gives the required information.
OMX_ErmorBadParameter This is retumned when one of the arguments is invalid.

Pre Condition

The structure specified by the third argument must have its structure size and version information filled in
before invoking the macro.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with Texas Instruments OpenMAX TI 1.5 specification.

Implementation
n Blocking function.
n Copies the structure passed into the component’s private data area for later use.
n Performs basic parameter checking by comparing the size passed in the structure (third argument to
this function) to the actual size of the structure.
Valid Parameters
OMX_IndexParamEncode, OMX_TIIMAGE_ENCODE_PARAMTYPE
OMX_IndexParamDecode, OMX_TIIMAGE_DECODE_PARAMTYPE
OMX_IndexParamRotate, OMX_TIMAGE_ROTATE_PARAMTYPE
OMX_IndexParamRescale, OMX_TIMAGE_RESCALE_PARAMTYPE
OMX_IndexParamEffect, OMX_TIIMAGE_EFFECT PARAMTYPE
OMX_IndexParamOverlay, OMX_TIIMAGE_OVERLAY_PARAMTYPE
OMX_IndexParamColorConversion, OMX_TIIMAGE_COLORCONVERSION_PARAMTYPE
These structures are defined OMX_TIlimage.h.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 22

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.4.6 OMX_ Img_GetConfig

OMX_ERRORTYPE OMX_I ng_Cet Confi g (OMK_HANDLETYPE hConp,
OVX_| NDEXTYPE nConfi gl ndex,
OVX_PTR Conponent Confi gStruct ure)

Description

This API enables the application to query the configuration parameters at run time. This function can be
invoked at any time after the component has been loaded. The application allocates the required structure and
passes it to this function. The componentfills this structure with the required information.

Parameters

Name Type Description

hConp IN This input argument is the component handle.
nConf i gl ndex N This identifies the structure being used by the third

argument . Values are defined in OMX_index.h

This output argument is the pointer to the structure to be
filled by the component.

Conponent Confi gStructure [OUT

Supported nParamindex values and their corresponding structures are:
n There are no supported configuration structures for the IMG Component.

Return
OMX_ErrorNone This is returned when the component gives the required information.
OMX_ErmorBadParameter This is returned when the one of the arguments is invalid.

Requirement Coverage

This method addresses requirement:

SR14062: This interface must comply with Texas Instruments OpenMAX TI 1.5 specification.
Implementation

Always OMX_ErrorBadParameter is returned as IMG Component not supports any configuration structures.

Valid Parameters
OMX_IndexConfigencode, OMX_TIIMAGE_ENCODE_PARAMTYPE
OMX_IndexConfigDecode, OMX_TIMAGE_DECODE_PARAMTYPE
OMX_IndexConfigRotate, OMX_TIIMAGE_ROTATE_PARAMTYPE
OMX_IndexConfigRescale, OMX_TIIMAGE_RESCALE_PARAMTYPE
OMX_IndexConfigEffect, OMX_TIIMAGE_EFFECT_PARAMTYPE
OMX_IndexConfigOverlay, OMX_TIIMAGE_OVERLAY_PARAMTYPE
OMX_IndexConfigColorConversion, OMX_TIIMAGE_COLORCONVERSION_PARAMTYPE
OMX_IndexConfigEncodelmginfo, OMX_TIIMAGE_ENCODE_IMAGEINFOTYPE
OMX_IndexConfigDecodelmglinfo, OMX_TIMAGE_DECODE_IMAGEINFOTYPE

These structures are defined OMX_TIlimage.h.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 23

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.4.7 OMX_Img_SetConfig

OMX_ERRORTYPE OMX_I ng_Set Confi g (OMK_HANDLETYPE hConp,
OVX_I NDEXTYPE nConfi gl ndex,
OVX_PTR Conponent Confi gStructure)

Description

This API enables the application to change the configuration at run time. This function can be invoked at any
time after the component has been loaded. The application should allocate memory for the correct structure, fill
it with the required values and pass it to this function. The component makes a local copy of this structure and
uses it to configure the codec at the appropriate moment.

Parameters

Name Type Description

hConp IN This input argument is the component handle.
nConf i gl ndex N This identifies the structure being used by the third

argument . Values are defined in OMX_index.h

This input argument is a pointer to a structure that holds the
values with which codec is to be configured

Conponent Confi gStructure [OUT

Supported nParamIndex values and their corresponding structures are:
n There are no supported configuration structures for the IMG Component.

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the appropriate
OMX error will be returned.

Requirement Coverage

This method addresses requirement:

Implementation

Always OMX_ErrorBadParameter is returned as IMG Component not supports any configuration structures.

Valid Parameters
OMX_IndexConfigencode, OMX_TIIMAGE_ENCODE_PARAMTYPE
OMX_IndexConfigDecode, OMX_TIMAGE_DECODE_PARAMTYPE
OMX_IndexConfigRotate, OMX_TIIMAGE_ROTATE_PARAMTYPE
OMX_IndexConfigRescale, OMX_TIIMAGE_RESCALE_PARAMTYPE
OMX_IndexConfigEffect, OMX_TIIMAGE_EFFECT_PARAMTYPE
OMX_IndexConfigOverlay, OMX_TIMAGE_OVERLAY_PARAMTYPE
OMX_IndexConfigColorConversion, OMX_TIIMAGE_COLORCONVERSION_PARAMTYPE

These structures are defined OMX_TIlimage.h.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 24

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.4.8 OMX_Img_GetState

OMX_ERRORTYPE OMX_I mg_Get St at e (OVX_HANDLETYPE hConp,
OMX_STATETYPE* pState)

Description
The application calls this function to get the current state of the component.
Parameters
Name Type Description
This input argument is the component
hConp IN handle.
This is the output argument, which points to
the memory location where the component
pState out should store its current state. This argument
should not be NULL.
Return
OMX_ErrorNone This is returned when the component gives the required information.
OMX_ErrorBadParameter This is retumed when one of the arguments is invalid.

Requirement Coverage
This method addresses requirement:

Implementation
n Blocking function

n Copies the current state value stored in the component's private data area into the structure passed to
the function.

n During state transitions (e.g.when the component is in the process of going to the idle state) the state
returned will be the old state until the requested state change is completed.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 25

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.4.9 OMX_Img_EmptyThisBuffer

OVX_ERRORTYPE OVX_I| mg_Enpt yThi sBuf f er (OMX_HANDLETYPE hConp,
OVX_BUFFERHEADERTYPE* pBuUf f er)

Description

The application calls this function to send a buffer filled with input data to the input port of the component. This
function will write the buffer pointer into the input data pipe of the component and then call the component’s
ProcessFunction to complete the buffer processing.

Parameters
Name Type Description
This input argument is the component
HConp IN handle.
This is a pointer to the buffer header
Pbuffer IN whose buffer is to be emptied.
Return
OMX_ErrorNone This is returned when the component gives the required information.
OMX_ErorPortsNotCompatible This is retumned if the specified port indexis not valid.
OMX_ErmorBadParameter This is retumned when one of the arguments is invalid.

Requirement Coverage
This method addresses requirement:

Implementation
n Stores the buffer provided by the application into the input data pipe.
n Calls ProcessFunction, which is an internal function that processes the buffers stored in the input and

output pipes.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.1~ 26 January 2006
TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 26

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.4.10 OMX_Img_FillThisBuffer
OMX_ERRORTYPE OMX_I ng_Fi | | Thi sBuffer (QwW_HANDLETYPE hConp,
OVX_BUFFERHEADERTYPE* pBuf f er)
Description
The application calls this function to send an empty buffer to the output port of the component. Before invoking
this function, the application must have received the buffer with the FilBufferDone callback from the

component for the case that the IMG Component allocated the input buffers. This function will write the buffer
into the output data pipe of the component and then call the ProcessFunction to complete processing of the

buffer.

Parameters

Name Type Description

hConp IN This input argument is the component handle.

pBuffer ouT This is a pointer to the buffer header whose buffer is to be filled.

Return
OMX_ErrorNone This is returned when the component gives the required information.
OMX_ErrorPortsNotCompatible This is retumed if the specified port index s not valid.
OMX_ErmorBadParameter This is returned when one of the arguments is invalid

Requirement Coverage
This method addresses requirement:
Implementation

n Stores the buffer provided by the application into the output data pipe.
n Calls ProcessFunction, which is an internal function that processes the buffers stored in the input and

output pipes.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.1~ 26 January 2006
b TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 27

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.4.11 OMX_Img_ComponentTunnelRequest

OVX_ERRORTYPE QWX | ng_Conponent Tunnel Request (OMX_HANDLETYPE hConp,
OWX_U32 nPort I nput,
OVX_HANDLETYPE hTunnel edConp,

OVWX_U32 nTunnel edPort ,
OVWX_DI RTYPE eDir,

OVX_CALLBACKTYPE* pCal | backs)
A call to this function returns with OMX_ErrorNotimplemented error code.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 28

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.4.12 OMX_Img_ComponentDelnit
OVX_ERRORTYPE QOVX_| ng_Conponent Del ni t (OVX_HANDLETYPE hConp)

Description

This function is called by OMX core when application calls OMX_FreeHandle.

Parameters

Name Type Description
Handle of the component to be accessed. This is the

hComp ouT component handle retumed by the call to the GetHandle
function

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the appropriate
OMX error will be returned.

Requirement Coverage
This method addresses requirement:

Implementation
n Blocking function.
n Releases private data of the OMX component.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 29

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.5 Application Callbacks

The OpenMAX™ 1.0 specification allows the application to provide three callbacks for buffer exchange and
event handling. At loading time, the OpenMAX™ 1.0 IMG Component receives a structure containing pointers
to the callback functions. The IMG Component makes a copy of this structure in the private data area. This
section describes the callback functions.

351 EventHandler
void (*Event Handl er) (
OVX_HANDLETYPE hConp,
OVX_PTR pAppDat a,
OVX_EVENTTYPE eEvent,
OVX_U32 Data,
OMX_STRI NG cExt ral nf 0)

Description

The EventHandler method is used to notify the application when an event of interest occurs. This event may
be change of state, an error occurred etc. In the OpenMAX™ 1.0 IMG Component, this callback is invoked
from SendCommand and ProcessFunction.

Parameters

Name Type Description
This input argument is the component

hComp IN handle? ’ P
Pointer to data which was defined by
application when the component was

pAppData IN loaded. Using this data, application
identifies who invoked this callback.
One of the component events that are
defined in OMX_EVENTTYPE

eEvent IN enumeration. This can be state
change, an error etc.

Data N Used only if an error event occurs.

a Data will be OMX_ERRORTYPE.
String which may carry some more
explanation about the error. It is not

cExtralnfo IN always required for a component to
use this argument.

Return

None

Requirement Coverage
This method addresses requirement:

Implementation

n This callback happens when application at the completion of a state change (e.g. in response to a call
to the OMX_Img_SendCommand function) or when an error occurs.

n The application can use this information to update it's component status information. The application
should not block or perform processing within this call.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 30

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

3.5.2 EmptyBufferDone

void (*EnptyBufferDone)(
OVX_HANDLETYPE hConp,
OWX_PTR pAppDat a,
OVX_BUFFERHEADERTYPE* pBuf f er)

Description

This is the callback function of the application that a component uses to return an empty input buffer for the
applicaton for use. There is always a callback EmptyBufferDone from the component for each
OMX_EmptyThisBuffer call from the application. In the case where the component is required to allocate the
buffers, all the buffers are initially sent to application by calling EmptyBufferDone for each buffer during the
transition to Executing from Idle. The Application should fill these buffers and call EmptyThisBuffer.

Parameters
Name Type Description
This input argument is the component
hComp IN handle.
Pointer to the data which was defined
by the application when the component
pAppData IN was loaded. Using this data, the
application identifies who invoked this
callback.

Pointer to buffer header structure
pbuffer IN which contains pointer to emptied
buffer, its size etc.

Return

None

Requirement Coverage

This method addresses requirement:

Implementation
n EmptyBufferDone is invoked after the buffer has been emptied and is ready for the application to refill.

n The application can use this information to update it's buffer status information. The applicaton should
not block or perform processing within this call.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 31

PDF L "pdfFactory Pro™ i FH AL www.fineprint.cn

http://www.fineprint.cn

Component Interface Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

3.5.3 FillBufferDone

void (*FillBufferDone) (
OMX_HANDLETYPE hConp,
OMX_PTR pAppDat a,
OMX_BUFFERHEADERTYPE* pBuf f er)

Description

This is the application callback function that the component uses to return a filled output buffer to application.
There is always a callback FillBufferDone from the component for each call OMX_FillThisBuffer from the
application. Unlike EmptyBufferDone, FillBufferDone will be invoked for the first time only after a data is
available in the output buffer.

Parameters
Name Type Description
This input argument is the component
hComp IN handle? ’ P
Pointer to data which was defined by
the application when the component
PappData IN was loaded. Using this data, the
application identifies who invoked this
callback.

Pointer to the buffer header structure
Pbuffer IN which contains a pointer to the filled
buffer, its size etc

Return

None

Requirement Coverage

This method addresses requirement:

Implementation
n FillBufferDone is invoked when the buffer is filled with encoded data.
n OMX component sets the EOS flag in the last buffer header that is given to application.

n The application can use this information to update it's buffer status information. The applicaton should
not block or perform processing within this call.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 32

PDF L "pdfFactory Pro™ i FH AL www.fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

4 Control and Data Flow

4.1 IMG Component States

OpenMAX™ 1.0 IMG Component will exist in one of five states at any given time. Figure 2 represents the
state diagram for the OpenMAX™ 1.0 IMG Component. The IMG Component states are controlled by
application via the OMX_SendCommand macro. The OMX core does not maintain states for the component.
The core is involved in only two state transitions; which are from INVALID state to LOADED state (using
function OMX_GetHandle) and component unloading (using OMX_FreeHandle). The Application controls the
remainder of all state transitions via OMX_SendCommand macro.

Figure 2 State Diagram of a IMG Component

[T1] OMX_StateLoaded [T2] OMX_Stateldle
INVALID) | LOADED)¢ | IDLE
[T9] OMX_Statelnvalid [T3] OMX_StateLoaded
& A
5 @
[T8] OMX_Stateldle i 2
= =
wn wn
><I ><I
= =
2 =
Ev |2
[T6] OMX_StateExecute
PAUSE): | EXECUTE
NG

[T7] OMX_StatePause

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 33

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

Table 18 shows state transitions for the OpenMAX™ 1.0 IMG Component and the functions/triggers that
initiate these transitions.

Table 18 IMG Component State Transition

State State change Function/trigger

T1 Invalid->Loaded OMX_GetHandle()

Get the Handle to IMG Component

Allocate resources needed for component execution

T2 Loaded->Idle OMX_Img_SendCommand (stateldle)
Allocate buffer headers for input buffers
Allocate buffer header for output buffer
Allocate memory for input buffers

Allocate memory for output buffer

T3 Idle->Loaded OMX_Img_SendCommand (stateLoaded)
Deallocate input buffers

Deallocate output buffers

Deallocate buffer headers for input buffers
Deallocate buffer headers for output buffers
T4 Idle->Execute OMX_Img_SendCommand (stateExecute)

Call EmptyBufferDone for each input buffer if buffers are
allocated by component.

Queue all output buffers if allocated by component

When input as well as output buffers are ready, the
component will start processing data.

T5 Execute->Idle OMX_Img_SendCommand (stateldle)

Reclaim all component allocated buffers and return all
application allocated buffers.

T6 Pause->Execute OMX_Img_SendCommand (stateExecute)

‘Execute’ State request from Application results in change
of current state of IMG Component from pause to

Execute.
T7 Executing->Pause OMX_Img_SendCommand (statePause)

‘Pause’ State request from Application results only in
change of current state of IMG Component to ‘pause’. Data
processing will be halted until it transitions to execute state.
T8 Pause->Idle OMX_Img_SendCommand (stateldle)

Reclaim all component allocated buffers and return all
application allocated buffers.

T9 Loaded->Invalid OMX_FreeHandle

Release (Deallocate) all resources allocated by the

component

The above transitions in IMG Component state are illustrated below in Figure 3.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 34

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification

Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component
OMX
Application Component
(Current State)
Invalid
CotHandle f‘nmr\nnnntlnit ;
Loaded

SendCommand (QMX_Stataldlg)

Y

Idle
SendCommand (QMX thnlzvnmnting) »

Transition to
Executing

When input and output buffers
are ready, process data

Executing

—SentCommeant—{Si—Statetete——p
Transition to
Idle
SendCommand (OMX StateLoaded) >
Idle
FreeHandle -> Component Deinit > Loaded
Invalid
Figure 3 IMG Component State Transitions
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.1~ 26 January 2006
@ TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 35

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

4.2 OpenMAX™ 1.0 IMG Component Phases

There are various phases in the life cycle of OpenMAX™ 1.0 IMG Component. This section describes the
control and data flow between application and OpenMAX™ 1.0 IMG Component using sequence diagrams.
The OMX Component depicted in these sequence diagrams is the OpenMAX™ 1.0 IMG Component.

421 OpenMAX™ 1.0 IMG Component Load
Figure 4 shows the loading phase of OpenMAX™ 1.0 IMG Component’s life cycle.

OMX

Application OMKX core component

OMX_GetHandle Componentinit Create Codec Instance

State:
Invalid to Loaded

\ 4

SetCallbacks

A

OMX core receives
component handle
and passes it to
application

Figure 4 Loading of IMG Component

The following sequence is followed while loading OpenMAX™ 1.0 IMG Component:

n application calls function OMX_GetHandle of OMX core and supplies the name of OpenMAX™ 1.0
IMG Component and callbacks of application as arguments to this function.

n The OMX core searches for OpenMAX™ 1.0 IMG Component name in the component table. If the
component entry is found, OMX core allocates memory for the component handle and calls the
registered OMX_Img_Componentlnit function of the component.

n OMX_Img_Componentlnit will fill in the component handle with the function pointers of the exported
functions and allocates necessary resources. It initializes itself to default values. Failing to do so will
result in OMX component returning ‘OMX_ErrorinsufficientResources' error to Application.

n OMX Core calls the function OMX_Img_SetCallbacks of the component and supplies application’s
callback function pointers to the component, which is recorded in the component's private data area.

n Application receives OpenMAX™ 1.0 IMG Component’s handle structure with pointers to functions
exported by the component.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 36

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

4.2.2 OpenMAX™ 1.0 IMG Component Unload
Figure 5 shows OpenMAX™ 1.0 IMG Component during the unloading phase of its life cycle.

L OMX
Application OMX core component
OMX_FreeHandle ComponentDelnit Destroy Codec Instance
P State:
N Loaded to
Invalid
Return (The handle is no -
longer valid)
Figure 5 Unloading of IMG Component

The following sequence is followed while unloading OpenMAX™ 1.0 IMG Component:

n Application calls OMX core function OMX_FreeHandle to free the component handle, which was
obtained by calling OMX_GetHandle at the time of loading OpenMAX™ 1.0 IMG Component.

n The Core method OMX_FreeHandle in turn calls the OMX_Img_ComponentDelnit function of the

component. The OMX_Img_ComponentDelnit deallocates the resources that were allocated by the
component.

n The OMX core then frees the memory used by OpenMAX™ 1.0 IMG Component handle.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 37

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

4.2.3 OpenMAX™ 1.0 IMG Component Initialization
0 Shows OpenMAX™ 1.0 IMG Component during the initialization phase of its life cycle.

OMX

Application component

Current state:
Loaded

SetParameter(OMX_IndeximageParam)

\ 4

Stores
values
passed by
application
into the
component
private
structure

SendCommand(OMX_Stateldlg OMX comp
allocates needed
resources

depending on

\ 4

Figure 6 Initialization Phase of IMG Component — Parameter Setting

After the component is brought into loaded state, the component can be setup with different parameters. After
receiving any necessary parameters the component can be made ready for execution by moving to IDLE state.
When the component is in IDLE state no more parameters can be set. In IDLE state application can only
change runtime changeable parameters using OMX_SetConfig. The Following sequences of actions describe
how initialization is done:

n Prior to the initialization, the application wil have obtained a valid OpenMAX™ 1.0 IMG Component
Handle using OMX_GetHandle.

n The application will then use one or more initialization parameter structures depending on how the
application wants to use the component instance. The OpenMAX™ 1.0 IMG Component can be
initialized for encoding, decoding or doing any of the image processing tasks. The behavior depends
on the parameter values passed during the loaded state. Once the OpenMAX™ 1.0 IMG Component
is initialized for say JPEG enc and state transitioned to IDLE, then this instance cannot be used for
other img processing tasks (like jpeg decode or color conversion). A new instance of the component
needs to be created for each of these separate tasks. The details on which parameter index needs to
be passed and what configuration structures can be passed are detailed in next section.

n Next the application sends idle command to the component by making a call to function
OMX_SendCommand with second argument as OMX_CommandStateSet and third argument as
OMX_Stateldle. In response to this command, the IMG Component will allocate the input and output
buffers (number and size as specified by the Application) etc.

n The final action for Component Initialization is for the component to issue a callback (EventHandler) to
the application to notify that the initialization process has been completed (successfully or with an

error).
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.1~ 26 January 2006
TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 38

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

4.2.4 OpenMAX™ 1.0 IMG Component Execution

Figure 7 shows OpenMAX™ 1.0 IMG Component's transition from idle to execute.

L OMX
Application component
SndCommand
S (OMX_StateExeciting) >

Pass input buffers to application

and output buffers to output data
State: Idle to
Executing

Figure 7 Execution Phase of IMG Component

OpenMAX™ 1.0 IMG Component is put into execution state by making a call to function
OMX_SendCommand with second argument as OMX_CommandStateSet and third argument as
OMX_StateExecuting. When OpenMAX™ 1.0 IMG Component reads this command, it invokes
ProcessFunction function, which does the following:

n In case IMG Component allocated input buffers, Call EmptyBufferDone to provide input buffers to
application.

n In case IMG Component allocated output buffers write output buffer headers into output data pipe.

4.2.5 OpenMAX™ 1.0 IMG Component Pause

The entry criterion for this phase is that the IMG Component should be in idle or executing state. The
application sends the pause command to the component using the core’s macro OMX_SendCommand with
second argument set to OMX_CommandStateSet and third argument set to OMX_StatePause. On receiving
this command, IMG Component state will be changed to pause while the component continues to process the
buffers.

4.2.6 OpenMAX™ 1.0 IMG Component Resume

The entry criterion for this phase is that the IMG Component should be in paused state. The application sends
the execute command to the component using the core’s macro OMX_SendCommand with second argument
set to OMX_CommandStateSet and third argument set to OMX_StateExecute. On receiving this command
IMG Component state will be changed to Executing.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 39

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

4.2.7 OpenMAX™ 1.0 IMG Component Stop

Figure 8 shows OpenMAX™ 1.0 IMG Component's transition from executes to idle.

o OMX
Application component

SendCommand
(OMX_Stateldle)

\ 4

Collect back the buffers
allocated by the
components/return all
buffers allocated by
application

A

Figure 8 Stop Command from application

OpenMAX™ 1.0 IMG Component is put into idle state by application using core’s macro
OMX_SendCommand with second argument set to OMX_CommandStateSet and third argument set to
OMX_Stateldle. When OpenMAX™ 1.0 IMG Component reads this command, it invokes ProcessFunction

function, which does the following:
n Return the buffers to application if application allocated buffers.
n Collects back all the buffers if allocated by the component.
n Move it idle state only when all the buffers are with respective owners.

4.2.8 OpenMAX™ 1.0 IMG Component De-initialization

The entry criterion for this phase is that the component should be in idle state. The application sends the De-
initialization command to the IMG Component using the core’s macro OMX_SendCommand with second
argument set to OMX_CommandStateSet and third argument set to OMX_StateLoaded. On receiving this
command from Application, IMG Component will de-allocate buffers and buffer headers.

4.2.9 Valid State Transitions
For detaled description of states and valid component state transitions, please refer OpenMax|L1.0

Specification.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.1~ 26 January 2006
TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 40

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

4.3 Configuration And Data Flow Scenarios

OpenMAX™ 1.0 IMG Component can be configured for different image processing scenarios like JPEG
encode, JPEG decode, image rescale, color conversion etc. Most of the control and data flow are similar. The
generic flow is explained first followed by the detail configuration and data flow for each scenarios.

43.1 Generic Configuration And Data Flow

The generic sequence is:

n Application calls function OMX_GetHandle of OMX core and supplies the name of OpenMAX™ 1.0
IMG Component and callbacks of application as arguments to this function. The name of IMG
Component is “OMX_TIMAGE_COMPONENT” and this is defined in OMX_Tlimage.h file.

n Application calls function OMX_SetParameter of OMX core providing the needed behavior specific
configuration structure. This is the function which determines the core behavior of OpenMAX™ 1.0
IMG Component. If the component is created for encoding and image, then JPEG encode specific
parameter needs to be set and if the component is created for jpeg decode then JPEG decode
specific parameter needs to be set and similarly for other features. The details on which parameter
needs to be set is detailed in the specific scenario sections below.

n Depending on the previous behavior parameter setting, additional configuration and parameter can be
set by calling the OMX_SetParameter or OMX_SetConfig function calls. The details on which
additional parameters and configuration structures can be passed are explained in scenario specific
subsections below.

n Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

n Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

n Application calls OMX_EmptyThisBuffer or OMX_FillThisBuffer calls to send input and output buffers
to components. Depending on usage scenario, these APIs needs to be send single time or multiple
times. The details can be found in specific subsections below.

n Once the processing is over Application calls OMX_FreeHandle to destroy the instance of
OpenMAX™ 1.0 IMG Component.

4.3.2 JPEG Encode Scenario

This feature enables an application to encode a raw YUV image to JPEG baseline format. The input image
could be of the following format

a) YUYV interleaved
b) YUV 420planar
c) YUV 422planar

The input image could be of any arbitrary image dimension and the user has an option to specify the quality
factor. No progressive image compression is supported.

The sequence of calls for a encoder is:

n Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

n Application calls OMX_SetParameter with the second parameter as
OMX_TIIMAGE_ENCODE_PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_ENCODE_PARAMTYPE. Here the user specifies the type of encoding, quality factor
for compression, the image width and height, the input image format type, the encoded format type,
the stride and the access unit size. In this version only JPEG encoding is supported and also the input
image format can only be among OMX_TICOLOR_YUV420P, OMX_TICOLOR_YUV422H,
OMX_TICOLOR_YUV422V or OMX_TICOLOR_YUV422I.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS a1

PDF L "pdfFactory Pro™ i FH AL www.fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

4.3.3

Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

Application sends the image to be encoded with a OMX_EmptyThisBuffer call. The encoder instance
is created and initialized.

Incase the entire image is to be encoded at one shot, the application queries the encoder for the
approximate size of the encoded file using which the output buffer size is determined with a
OMX_GetConfig call with the OMX_TIIMAGE_ENCODE_OUTBUFFER_INDEX as the second
parameter and OMX_TIIMAGE_OUTBUFFERTYPE as the third parameter. If it is a MCU based
encoding, the application allocates an output buffer of the same size as the input buffer.

The application sends the output buffer to the component with a OMX_FillThisBuffer call.

The encoding operation is performed. On successful completion, the component calls the
EmptyBufferDone callback to the application with the buffer supplied by the application and the
FillBufferDone callback with the encoded frame.

In case off multiple pass encoding, when the application has the next available input or output buffer it
can call the component with a EmptyThisBuffer or FillThisBuffer call and continue the encoding
operation. Both the buffers and the commands are queued up internally and processed.

At any time during the operation the application can query the component using GetConfig calls and
also change the configuration using SetConfig calls.

The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

JPEG Decode Scenario

This feature enables an application to decode an baseline JPEG encoded image to YUV format. The decoder
has the ability to support JPEG streams of following source formats

a)
b)
c)
d)
e)

)

YUV 420
YUV422H
YUv422V
YUV444
RGB444
Monochrome

Note that decoder will not crop the width and height padding for images which are non-multiples of MCUs. The
application needs to remove this padding using color conversion feature which supports cropping.

The sequence of calls for a decoder is:

n

n

n

Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

Application calls OMX_SetParameter with the second parameter as
OMX_TIIMAGE_DECODE_PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_DECODE_PARAMTYPE. Here the user specffies the type of encoding, quality factor
for compression, the image width and height, the input image format type, the encoded format type,
the stride and the access unit size. In this version only JPEG encoding is supported and also the input
image format can only be among OMX_TICOLOR_YUV420P, OMX_TICOLOR_YUV422H,
OMX_TICOLOR_YUV422V or OMX_TICOLOR_YUV444, OMX_TICOLOR_RGB444,
OMX_TICOLOR_MONOCHROME.

Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS a2

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

n

4.3.4

Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE

Application sends the image to be decoded with a OMX_EmptyThisBuffer call and the decoder
instance is created and initialized.

Application sends a getConfig call with the second parameter as
OMX_TIMIMAGE_OUTBUFFERINDEXTYPE and the third structure as
OMX_TIIMAGE_OUTBUFFER_TYPE. This returns the output image details like the image format,
width, height information.

In case of one shot decoding, the application allocates an output buffer of output image size. For
decoding with multiple passes, the application allocates a buffer of size double that of the input buffer.

The application sends the output buffer to the component through a OMX_FillThisBuffer call.

The decoding operation is performed. On successful completion, the component calls the
EmptyBufferDone callback to the application with the input buffer supplied by the application and the
FillBufferDone callback with the output buffer.

When the application has the next available input or output buffer it can call the component with a
OMX_EmptyThisBuffer or OMX_FillThisBuffer call and continue the encoding operation.

At any time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

Color Conversion Scenario

This feature enables an application to convert image data from one format to another. The following conversion
features are supported.

Table 19 Color conversion Matrix

Source color format Output color format
RGB565 YUYV
YUV420 YUYV
YUV422H YUYV
YUV422V YUYV
YUV444 YUYV
RGB444 YUYV
RGB444 RGB16
RGB444 RGB24
YUV420 RGB16
YUV422H RGB16
YUV422V RGB16
YUV420 RGB24
YUV422H RGB24
YUV422V RGB24

The sequence of calls for color conversion is:

n Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

n Application calls OMX_SetParameter with the second parameter as OMX_TIIMAGE _
COLORCONVERSION _ PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_COLORCONVERSION_PARAMTYPE. Here the user specifies the input image

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.1~ 26 January 2006

% TEXAS Tl Proprietary Information — Internal Data
INSTRUMENTS 43

PDF SCH# 4] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

4.3.5

width, height, color format, output color format, X and Y offset and a flag to indicate in-place
conversion.

Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

Application sends the image to be color converted with a OMX_EmptyThisBuffer call.

The application also allocates a buffer of the same size as the input buffer and sends it to the output
port of the component through a OMX_FillThisBuffer call. If the binPlace flag is set, no separate
output buffer is allocated.

On successful completion, the component calls the EmptyBufferDone callback to the application with
the input buffer supplied by the application and the FillThisBufferDone callback with the output buffer.

At any time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

Rescale/Zoom Scenario

This feature enables an application to rescale or zoom an RGB444 or YUV image. This feature has the ability
to crop an input image too.

The sequence of calls for rescale/zoom is:

n

Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

Application calls OMX_SetParameter with the second parameter as OMX_TIIMAGE_ RESCALE
_PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_RESCALE_PARAMTYPE. Here the user specifies the input image width, height,
color format, X and Y offset, zoom factor, start, stop and increment zoom factors for auto-zoom mode
and a flag for resetting of zoom factor once it reaches the final value. If the image needs to be only
cropped, the zoom factor is 1 and the x and y offsets determine the cropped region. If the image is to
be rescaled in an auto-zoom mode, the start and end zoom factors are provided along with the zoom
increment.

Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

Application sends the image to be rescaled with a OMX_EmptyThisBuffer call.

The application also allocates a buffer of the same size as the input buffer and sends it to the output
port of the component through a OMX_FillThisBuffer call.

On successful completion, the component calls the EmptyBufferDone callback to the application with
the input buffer supplied by the application and the FillThisBufferDone callback with the output buffer.
At any time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

At any time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS a4

PDF L "pdfFactory Pro™ i FH R AGIE www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

4.3.6

Overlay Scenario

This feature enables overlay or alpha blending of two images.

Overlay : enables an application to overlay a given image on top of another image at a specific location.

Alpha blending : enables an application to blend to RGB565 images together. The blendlng WI|| depend on the
transmittivity value set for the image. The following transmittivity values are supported a) 1/4" b) 2and c) 3/4™

Both images should be in RGB565 format.

The sequence of calls is:

n

4.3.7

Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

Application calls OMX_SetParameter with the second parameter as OMX_TIIMAGE_ OVERLAY
_PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_OVERLAY_PARAMTYPE. Here the user specifies the input and output width, height,
color format, X and Y offset, overlay type, colour key and a flag for inplace overlay. The overlay type
parameter determines whether the operation is to be a colour key replacement or a alpha blending.

Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

Application sends the images to be overlaid with a OMX_EmptyThisBuffer calls to the two ports of the
component.

The application also allocates a buffer of the same size as the source buffer and sends it to the output
port of the component through a OMX_FillThisBuffer call.

On successful completion, the component calls the EmptyBufferDone callback to the application with
the input buffer supplied by the application and the FillThisBufferDone callback with the output buffer.

At any time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

Rotation Scenario

This feature enables an application to rotate an RGB565 or YUYV image by 90, 180 or 270 degrees.

The sequence of calls for rotation is:

n Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

n Application calls OMX_SetParameter with the second parameter as OMX_TIIMAGE_ ROTATE
_PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_ROTATE_PARAMTYPE. Here the user specifies the input image width, height, color
format, rotation factor and a flag for in-place rotation.

n Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

n Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

n Application sends the image to be rotated with a OMX_EmptyThisBuffer call.

n The application also allocates a buffer of the same size as the input buffer and sends it to the output
port of the component through a OMX_FillThisBuffer call.

n On successful completion, the component calls the EmptyBufferDone callback to the application with
the input buffer supplied by the application and the FillThisBufferDone callback with the output buffer.

n Atany time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

Revision 1.1~ 26 January 2006

b TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 45

PDF L "pdfFactory Pro™ i FH AL www.fineprint.cn

http://www.fineprint.cn

Control and Data Flow Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

n The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

4.3.8 Effects Scenario

This feature enables an application to convert a color image to gray scale or add sepia tone to a color image.
The input format could be YUV422H, YUV422V, YUV444, YUV420 and RGB444. The output format will be
same as input format.

The sequence of calls for these effects is:

n Application calls function OMX_GetHandle of OMX core and supplies the name
“‘OMX_TIIMAGE_COMPONENT” and callbacks of application as arguments to this function.

n Application calls OMX_SetParameter with the second parameter as OMX_TIIMAGE _
EFFECT_PARAMINDEX and the third parameter as a structure of type
OMX_TIIMAGE_EFFECT_PARAMTYPE. Here the user specifies the input image width, height, color
format, effect type which is OMX_TIIMAGE_SEPIAEFFECT / OMX_TIIMAGE_GRAYEFFECT and a
flag for in-place conversion.

n Application calls OMX_SendCommand function to change the state of the component from LOADED
to IDLE.

n Application calls OMX_SendCommand function to change the state of the component from IDLE to
EXECUTE.

n Application sends the input image with a OMX_EmptyThisBuffer call.

n The application also allocates a buffer of the same size as the input buffer and sends it to the output
port of the component through a OMX_FillThisBuffer call.

n On successful completion, the component calls the EmptyBufferDone callback to the application with
the input buffer supplied by the application and the FillThisBufferDone callback with the output buffer.

n Atany time during the operation the application can query the component using getConfig calls and
also change the configuration using setConfig calls.

n The application can delete the instance of the component using a OMX_FreeHandle call which
internally calls the ComponentDelnit function. All the buffers allocated by the application need to be
freed after the component is freed.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.1~ 26 January 2006

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 46

PDF L "pdfFactory Pro™ i FH AL www.fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 1.1 31 January 2006 OpenMAX™ 1.0 IMG Component

5 Memory Requirements

The OpenMAX™ 1.0 IMG Component memory requirements are as shown in Table 20.

Table 20 Memory Requirements for IMG Component

ltems Memory required
RAM (To be updated)
FLASH (code size) (To be updated)

5.1 Memory Allocation
Table 21 gives details about minimum values for OMX input and output buffers.

Table 21 Minimum Values for OMX Input and Output Buffers

Buffer Type No of Buffers Size of Each Buffer
Input Buffers Minimum 2 tbd Bytes each
Output Buffers Minimum 2 tbd Bytes each
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.1~ 26 January 2006
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS

47

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Software Requirements Design Specification
OpenMAX™ 1.0 IMG Component Revision 1.1 31 January 2006

6 Software Requirements

The feature requirements for the OpenMAX™ 1.0 IMG Component are listed in Table 22 below. Each of
these features are covered in details in section 2.2.

Table 22 Requirements List

%ng /Index Feature Requirement text

1 The component shall support baseline JPEG encoding

2 The component shall support baseline JPEG decoding

3 The component shall support image rotation

4 The component shall support image overlay

5 The component shall support image alpha blending

6 The component shall support sepia effect

7 The component shall support gray scale effect

8 The component shall support color conversion

9 The component shall be compliant with openMax1.0 standard

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
N Revision 1.1~ 26 January 2006
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 48

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

