» Texas
INSTRUMENTS

Technical Document

AUDIO API (R1V101)

ECCN EAR99

Document Number:

88_02_03_00218

Version: 6.5

Status: Approved
Approval Authority:

Creation Date: 2004-Mar-01

Last changed:

2007-May-14 by A0876504

File Name:

88_02_03_00218_RIV101_audio_api.doc

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information — Internal Data
technical_document_20030404.dot

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and ser-
vices at any time and to discontinue any product, software or service without notice. Customers should
obtain the latest relevant information during product design and before placing orders and should ver-
ify that such information is current and complete.

All products are sold subject to TI's terms and conditions of sale supplied at the time of order ac-
knowledgment. Tl warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control tech-
niques are used to the extent Tl deems necessary to support this warranty. Except where mandated
by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-
sible for their products and applications using Tl products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of Tl software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. Tl software may solely be
used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that Tl products and/or software may be based on or implement
industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from Tl to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third
party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other Tl intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third—party products, software or services does not constitute a
license from Tl to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may
require a license from a third party under the patents or other intellectual property of the third party, or
a license from Tl under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electroni-

cally or mechanically, including photocopying and recording, for any purpose without the express writ-
ten permission of TI.

Change History

Date Changed by Approved by Version | Status | Notes
2001-Jun-11 |F. Mazard Christian Livadiotti 1.1 Approved 1
2001-Jun-20 | F. Mazard Christian Livadiotti 1.2 Approved 2
2001-Jul-13 |F. Mazard Christian Livadiotti 1.3 Approved 3
2001-Jul -20 | S.Gerthoux Francois Mazard 1.4 | Approved 4
2001-Aug-15 | S.Gerthoux Francois Mazard 15 Approved 5
2001-Nov-19 | F. Mazard Christian Livadiotti 1.6 | Approved 6
2001-Dec-14 | F.Mazard Christian Livadiotti 1.7 Approved 7
2002-Jan-31 | F.Mazard Christian Livadiotti 1.8 | Approved 8
@ Texas Instruments Proprietary Information — Internal Data Page 2 of 130

TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
2002-Mar-29 | S.Gerthoux Francois Mazard 1.9 Approved 9
2002-Apr-15 | S.Gerthoux Francois Mazard 2.0 Approved | 10
2003-Mar-17 | F. Turgis Stephanie Gerthoux 2.1 Approved | 11
2003-Apr-14 | F. Turgis Gerard Cauvy 2.2 Approved | 12
2003-May-05 | F. Turgis S. Gerthoux 2.3 |Approved| 13
2003-Aug-05 | F. Turgis S. Gerthoux 2.4 |Approved| 14
2003-Oct-20 |F. Turgis J. Longchamp 25 Approved | 15
2003-Oct-28 | F. Turgis S. Gerthoux 2.6 |Approved| 16
2003-Nov-14 | J. Longchamp S. Gerthoux 2.7 Approved | 17
2004-Jan-01 | F.Olivero S. Gerthoux 2.8 |Approved| 18
S. Guiriec

2004-Mar-01 | S.Levieil (Gerthoux) 2.9 19
2004-Mar-02 | F.Olivero 3.0 20
2004-Aug-02 | S.Leviell 4.0 21
2004-Sep-06 | S.Leviell 5.0 22
2004-Sep-08 | S.Leviell 5.1 23
2004-Oct-18 | S.Leviell 5.2 24
2004-Dec-14 | S.Leviell 53 25
2005-Jan-05 | S.Levieil 5.4 26
2005-Mar-18 | S.Leviell 6.0 27
2005-may-24 | S.Leviell 6.1 28
2005-Oct-01 | Ranga Ramanujam S 6.2 29
2005-Oct-21 | Vidhya Krishnamoorthy 6.3 30
2006-Mar-27 | Srinath Ananthaswamy Suyog Moogi 6.4 31
2007-Apr-30 | Ranga Ramanujam S 6.5 32
Notes:

1. Initial version

2. Add two modes for the melody E1: a game mode and a normal mode. Add a parameter in the melody E1 stop function.

Add some restriction of the use of melody E1. Change the melody parameter structure.

3. Migration from the Bluetooth database to the Riviera database:

change T_RIV_RETURN into T_RV_RETURN.
change T_RIV_HDR into T_RV_HDR.

4. Update of the Voice memorization

Added the recorded_size parameter in the AUDIO_VM_RECORD_STATUS_MSG.
Added parameters definitions (memo_size)

Change the file name of the melody “char *memo_name” into
“char memo_name[AUDIO_MEMO_PATH_NAME_MAX_SIZE];”
5. Add a restriction of use for the voice memorization recording task :
All directories included in the pathname must be declared before.
6. Align the specification with the Riviera 1.6, Add in the restriction of use section that the incompatibilities between the audio

features are managed by the audio entity.

7. Add a chapter about the Modem-Audio incompatibilities.
Update the Speech Recognition API with more information and align the parameters of speech recognition API functions
with the software.

8. Change the minimum duration of a keybeep and a tone from 1 ms to 20 ms.

Update the audio mode configuration features.

9. Add the Audio tasks compatibilities
Add the Melody E2 API and the Audio melody E2 tools
Remove “Audio Information” of the API

10. Add Melody E2 incompatibilities

11. Integration of
12. Integration of
13. Integration of

AMR play/record feature
TTY feature
New AEC

14. Added new VM AMR APIs functions + small correction in audio_amr_play_from_ram/ffs_start
15. Added SYREN audio mode: HEADSET DIFFERENTIAL input, HANDFREE 80HM output, high pass DL filter bypass,

STEREO AUDIO output modes, STEREO AUDIO volume + a few corrections.

16. Update compatibility matrix for DSP codes 34, 35, 36

{"?‘ TEXAS

Texas Instruments Proprietary Information — Internal Data

INSTRUMENTS

Page 3 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

17. Added new interface when using Perseus2 with a non-TI audio ABB + Audio on/off

18. added TCS 3.1 enhanced audio feature (Limiter, IIR filter, ANR) in audio mode configuration

19. Update de E2 Melody: 16 tones in parallel are supported.

20. Added echo suppressor feature in audio mode configuration

21. Added MP3 feature + small correction in section 9.2.1.4.2 (output gain parameter) + small correction in section 9.2.1.4.2
(Number of 1IR blocks)

22. Added new parameter in MP3 structure and added a new parameter in audio_mp3_stop function

23. Change the ES parameters

24. Update the ANR values

25. Add some comments in the AEC, ANR, IIR, ES and Limiter parameters

26. IR Minimum number of blocks changed

27. Added AAC feature

28. Change the characteristics function of the signal wanted at the output of the limiter (section 9.2.1.4.1)

29. Added TRITON related audio mode details

30. Update chapter - Audio Mode Configuration for TCS3.2

31. Removed older DSP compatibility matrices, Removed SR chapter, Removed Melo E2, Changed references, Section numbers

32. File path maximum size for all media changed to 80 characters and added ROM39 compatibility table in Section 3.1. Added MP3
Progress Bar, Forward and Rewind implementation and AAC Progress Bar implementation. Added descriptions on RFS support

@ Texas Instruments Proprietary Information — Internal Data Page 4 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Table of Contents

F U Yo [T B o B (4 Y K) PRSPPSO 1

N 0 4 o To 11 o £] o SR PRPRROUPP 8

P © Y QYT PSSP RT 8

2.1 LT o1 = 1Y SO OO U P PP PRP 8

2.2 L= 0 I [Tod o F= g T o PSRRI 8

2.3 R SIS U o] o Lo ¢ ST PP PP UT PR 9

3 Audio-Modem inCOMPALIDIITIESeeiiieiii e e 9

3.1 D 1S] o oTo o LT 1< T PSRRI 9

4 Audio task COMPALIDIIITIESuuueiiiiie e e 10

4.1 (D15 o oo o [T 1 T PSRRI 11

Lo =)V o J=TCT I CT=T =T o= L o] SRR 11

5.1 = LU o [T T (=) 01T o T = L SRR 11

5.2 =10 (o [I =) o [=T=T o] (o] TP RTTT 13

I o] g =R €1 Y=T &= U1 To] o U PPUT PRI 13

6.1 = 10 o [T TR (o] g L= TS ¢= L OO EEPR 13

6.2 =10 [o [To R (o] T T (o] o O PP PO PPP PP 17

7 Melody EL gENEIATIONeiiiiiiiiie ettt ettt ettt e st e e s e b e e e nb e e nnnnes 17

7.1 =10 (o (o T 0 1] (oo VA =t RS ¢= 1 TP RSTTT ST 17

7.2 F= L0 o [T T 1 0= FoTo Y2 =] (] o N PR 20

I Lo Yot 4 1= 4 g ToT g 14= LT 0] o FA PP PRSP 21

8.1 AUAIO_VM_TECOII_STAIT......eeiiiiiiiii ettt e b e e e e s s b e e e eaeee 21

8.2 F= 10 o [To Y/ o T (=Yoo (o) (] o T PSSR 23

8.3 =10 (o (o I Y/ o ¢ T o1 F= 12K U ST T T UTPRRPTP 24

8.4 = 10 o [T TR/ g T] = V2= (o] o SR 26

(I AN U o ITo Il g a Yoo F=RoToT ol Ko U1 &= L o] o [P 26

9.1 T 0T [Tox 1o T o SRR 26

9.2 Y I = o 1 PP PRR 27

9.2.1 AUdIo MOAE il SHIUCTUIE e e e e e s 28

9.2.1.1 T _AUDIO _MODEcttiiiiiiiiie ettt ettt e stae e e st e e e s snbbe e e s asbeeeeastaeeeennses 28

9.2.1.2 T_AUDIO _VOICE_PATH_SETTING.......cccutttiiiiieeiiiiieessiieee s siieeeesiaeee e snnnaeeessnneeeas 29

9.2.1.3 T_AUDIO_MICROPHONE_SETTING.....ccuttteiitiiiieiiiiieeeiiieeessiieeeesnneeeeessnnseeessneeeas 29

9.2.1.3. 1 T_AUDIO_ANR_CFG ...ttt ettt e et e e sntae e e e aneae e e e ennes 31

9.2.1.3.2 T_AUDIO_AGC _UL_CFGi....cciiieiiiiiie ettt ettt 32

9.2.1.3.3 T_AUDIO_ANR_CFG ...ttt ittt ettt e e sbre e e e 38

9.2.1.3.4 T_AUDIO_ES_CFG ..cciiitiiie ittt ettt et e e e 39

9.2.1.4 T_AUDIO_SPEAKER_SETTINGtttiiiiiiiiieiiiiee sttt 42

9.2.1.4.1 T AUDIO AGC DL _CFGi....cciiiii ittt a et 45

9.2.1.42 T AUDIO DRC _CFG ...otiiiiiiiiiee ettt ettt stae et e e taee e sataea e s nabaeaeeanes 47

9.2.1.4.3 T _AUDIO IR _CFG ...coitiii ettt ettt e et e e e e natee e e s antaaa e e e 50

9.2.1.4.4 T_AUDIO_LIMITER_CFG.....ccctiiiiitiiee ettt ettt e e stee e sntaa e e s nneaea e 59

@ Texas Instruments Proprietary Information — Internal Data Page 5 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
9.2.1.45 T _AUDIO _HIR_CFG ...coiiiiie ettt ettt ettt et et e e e et e e e e nnbae e e e nntaeaeennees 61
9.2.1.5 T_AUDIO_STEREO_SPEAKER_SETTINGceettiiiiiiieiiiiiie s siieee e sieeee e ssvaee e 63
9.2.1.6 T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTINGccccvveiiiiiieiiiiieee s 66
9.2.1.6.1 T_AUDIO_AEC _CFG...itiiieiiiiiee ettt ettt ettt e sttt e e st a e e nnbea e e s nnbee e e e e 67
9.2.1.7 T_AUDIO_MICROPHONE_SPEAKER_SETTINGcctiiiiiiiiiiiiiiee e 71
9.2.2 APLTUNCHONS. ..ot 72
1= J07272 -0 (o [To T 42T Yo [[0 T- To IS 72
9.2.2.2 QUAIO_IMOAE_SAVEeeiiiiiiiiiee ittt ettt e st e e s bbb e e e s anb e e e s anbb e e e s snnneeas 74
9.2.2.3 audio_SPeaker _VOIUMEcooiiiiiiiiiiiiie ettt e e 76
9.2.2.4 audio_stereo_speaker_VOIUMEcoiiiiiiiiiiiiiie et 77
9.3 FUIl @CCESS TAMIIY ... e e e s e e e e e e e e e e snnrnneeeee s 79
9.3.1 F o o I {1 o 1o o TP PUP TP 79
9.3.1.1 AUdIO_fUll_BCCESS_WIIEueeiiiiiiiii ettt ettt ettt e e e e s naae e e s nnnaeeas 79
9.3.1.2 audio_fUll_BCCESS_TBAM.......ciiiiiiiie ettt ettt e e e s snnaeeas 82
10 F Y o] F= Y7L £=To] o1 o TP RPPPT 84
0TS R @ V=T Yo PP 84
10.2 Immediate return and @VENT FELUIMNuuiiiiiee ettt e e e e e s e snbbereeeeeas 84
10.3 audio_amr_record_to ram/ffS_ Start.........ccccceeeiiiiiiiiiie e 85
10.4 audio_amr_record _to ram/ffS StOPccccciiiiiiie i 87
10.5 audio_amr_play_from_ram/ffS_Start...........cccoiuiiiiiiiiiiei e 88
10.6 audio_amr_play from _ram/ffS_ StOP......cccuiiiieiiiiiiiiiie e 89
10.7 audio_mms_record t0 ffS Start.........cccciiiiiiiiiiiiiiicc e 90
10.8 audio_ Mms_record _t0 ffS SOPciieiiiiiiiiiiiiii e 90
10.9 audio_mms_play from_ffS_STArtooiiuiiiiiiii e 90
10.10 audio_mms_play_from_ffS_StOP........ueiiiiiiiiie s 91
10.11 audio_amr_play_from_ffS_pause/ram_PaUSEc.ccccciriririeeiii i e e e 91
10.12 audio_amr_play_from_ffs_resume/ram_reSUME...........ccoiuuiiiiiiiiiiniiiee e 91
10.13 E= L0 o [T T/ o T= L0 0 (11T (o PSSR 91
10.14 audio_ vm_amr_rewind ... 92
11 I 1 2 PSPPSR 92
5 R 10 To [o Y 1§ VA= A oo 1o SRR 93
12 0 PRSP 95
D2 R T8 o [o T 4 o1 TR = o RS 95
D2 10 (o [[o T 10 o G TE] (o] o PP POPTPPR 98
2GR V0 Lo [o T 4 o1 T o 7= LE] S 99
2 10 (o [To Y 10T o O T (=110 L2 = SRR 100
125 AUdIO_MP3_FOMWAITeiiiiiiiei ittt e e et e e e e sbb e e e s abbeeeeans 101
D2 I 10 (o [(o T o o 1 T (=317 L Lo TSR 101
D2 - T8 (o [[o 0 o G T | | (o T PP UT TP 102
12.8 HOW L0 USE the IMP3 APIS....coiiiiiiiieiiit ettt e e e e e e e sanaeee s 104
12.8.1 “Pause” MP3 in order to play an other melody...........ccccccoiiiiiiiiiiiiiiieeeee 104
12.8.2 “Pause” MP3 and rESUME il.......ceeiiiiiee i it eiiee e siiee st e e e s siee e e s sntae e e s snnaeeeeenees 105
13 AAC (Advanced AUdio COTING). ..ottt e e e e e s e ebrbaeeeaaaeeeaaas 106
R TS R 10 To [To K T- (o) - (U 107
R 2 10 (o [To I T- o1 (o] o I OO PP UTUR PR 109
IR TG T 10 To [To - T- Tl o - 10 [- SO 111
@ Texas Instruments Proprietary Information — Internal Data Page 6 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
RS 207 S 10 T Lo T = T= U (=1 U0 = R 112
135 AQUAIO_BAC TESTAMuiiieiiiiiee ettt e sttt e et e e e st e e e e e sbb e e e e s bbe e e e e atbeeeessabneee e 113
R ST 10 To [To Y= T= Lol 11 (o RO 114
13.7 HOW 0 USE the AAC APIS.. . ettt e e e e e s s et ee e e e e e e s e annnbeaeees 116

13.7.1 “Pause” AAC in order to play an other melody..........cccccceeeiiiiiiiiiiiiie e 116
13.7.2 "Pause” AAC and rESUME Il......uiiei ittt et e e 116

14 Voice MemMOriZation ON PCM ...ttt ettt e et e e s bt ee e s snaaee e 118
141 audio_VM_PCM_TECONT_STANT.......ceiiiiiiiieiiiiie ettt e e s b e e e s sibeeee e 118
/572 10 To [T A0 W o Tt 0 (M o] (o JE=) (o] o NSRS 120
14.3 audio_VM_PCM_PIAY_STAIM......coiuiiiiiiiieii et 121
2 S V0 To [To YA N o Yo 1 T o) = Y] o] o SRR 123

15 V0ice BUFFEINNG ON PCM.. ..ttt e e e et e e e e e e e e s entnraeeeaeeeeaaans 123
15.1 audio_voice_buffering_pcm_reCord_STartcooiiuiiiiiiiiee e 123
15.2 audio_voice_buffering_pcm_reCcord _SIOPcccccueiiieeeeiiiiiiieie e e s e 126
15.3 audio_voice_buffering_pcm_play_Start..........occeieeiiiiiiiiei e 127
15.4 audio_voice_buffering_pcm_play StOPcevieeiiiiiiiiiiiice e 129

Y] o 1= o o =SS SRRR 130
N o 0] 01V 1 PRSP 130
2 T €1 (0TS T- 1 TSP 130

List of Figures and Tables

List of References

[1] Herc815 E2 melody generator Ver2.1

[2] S892 AEC interface and tuning

[3] L1D_AS120 IIR output filter overview

[4] L1D_AS127-1 IIR - Design tool user’s guide

[5] L1D_ASO070_1 Limiter overview
[6] L1D_AS111-1 ANR overview

[7] L1D_AS260 Echo suppressor overview
[8] ITU-T P.340 Transmission characteristics of hands-free telephones
@ Texas Instruments Proprietary Information — Internal Data Page 7 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

1 Introduction

This document provides an interface specification of the AUDIO SW entity. The purpose of the AUDIO
SW entity is to provide an abstraction layer to SW developers in order to access the audio services
available on the platform.

Voice Memo, Melody generation, Key Beep generation, Tones generation, audio mode configuration
and speaker volume are part of the services provided by the AUDIO SW entity.

2 Overview

2.1 Generality

The AUDIO services provided by the AUDIO SW entity can be accessed by any SW entity running on
the mobile. Several SW entities can use the audio services at the same time. Note that for commodity
reasons, the SW entity using the AUDIO services will be called MMI in the rest of the document.

All the services provided by the audio entity can be accessed via direct function call. These functions
are listed in this document. The AUDIO SW entity use the return mechanism defined in the Riviera
Environment to provide information back to the MMI.

2.2 Return Mechanism

All the functions return an immediate value, providing information on the success or the failure of the
function call. In some (most of the) cases, extra processing time is needed to perform the action re-
quested when calling the function. In this case, the function is exit and later on, one or several
EVENTSs are sent back by the AUDIO SW entity. Note that for commodity, all the events are always
mentioned in upper case.

The AUDIO SW entity use the EVENT format and the return path method defined in Riviera Environ-
ment. Basically, in order to send information back, the AUDIO SW entity sends EVENTs to the MMI.
An event is a buffer, with a header, common to any EVENT, and a custom field related to the EVENT.
The header is a C structure, containing the opcode field. This field contains the unique opcode of the
EVENT and is the only way to know which kind of EVENT has been received. Based on this value, the
MMI can re-cast the buffer and access to custom information related to the EVENT.

MMI have two ways to get access to the EVENTS:
Call back functions or message posted in its mailbox.

A call back function is a function name, provided by MMI as a parameter and which will be called by
the AUDIO SW when a EVENT is available. When a callback function is defined, it is always the call-
back function mechanism that is used to return EVENTS to the MMI.

But for more efficient implementation, it also possible to directly post a message into the MMI mailbox.
In this case, the task id and mailbox id of the MMI must be provided to the AUDIO SW entity. That
implies that the MMI is a Riviera SW entity.

For every audio service, the MMI can define which return mechanism should be used. For that pur-
pose, it must provide a return_path. The generic return_path type is a C structure, defined as:

/* unique ADDRess IDentifier of a SWE */
typedef UINT16 T_RVF_ADDR_ID;

typedef struct

T_RVF_ADDR_ID addr_id;
void (*callback_func)(void *);

@ Texas Instruments Proprietary Information — Internal Data Page 8 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

3} T_RV_RETURN;

2.3 RFS Support

Audio module gives RFS API support which can be controlled compile time using AS_RFS_API flag.
When AS_RFS_API flag is 1, Audio module supports RFS APIs instead of FFS APIs and this has an
impact on the signature of the Audio APIs exposed. All the filenames which were character arrays in
FFS based implementation are T_WCHAR arrays in RFS based implementation. For example
T_AUDIO_MELODY_E1 PARAMETER with AS_RFS_API flag O is,

e T _AUDIO_MELODY_E1_PARAMETER

Specifies the characteristic of the melody to start.
typedef struct {
char melody_name[AUDIO_MELODY_PATH_NAME_MAX_SIZE];
// File name of the melody
BOOL loopback; // the melody is played indefinitely
BOOL melody_mode; // mode of the melody
}T_AUDIO_MELODY_E1_PARAMETER;

and when AS_RFS_API flag 1 is,

e T_AUDIO_MELODY_E1 PARAMETER

Specifies the characteristic of the melody to start.
typedef struct {
T_WCHAR melody_name[AUDIO_MELODY_PATH_NAME_MAX_SIZE];
// File name of the melody
BOOL loopback; // the melody is played indefinitely
BOOL melody_mode; // mode of the melody

IT_AUDIO_MELODY_E1_PARAMETER;
Where, T_WCHAR is UINT16.

This change is applicable to all the APIs that has filename as parameter. This will have impact on the
task stack usage and the partition memory usage, as the filename size is doubled (with T_WCHAR).

3 Audio-Modem incompatibilities

Due to the share of the CPU load and of the memory in DSP, some audio task can’t run with certain
modem state. For instance, the audio MCU software doesn’t manage this constraint. Therefore any
user of the audio services described in this document must follow the audio-modem incompatibilities
described in the table below.

In case of incompatibilities, the user of the audio must stop as soon as possible the audio before to
enter to a modem state incompatible with the current audio task.

3.1 DSP code 39

ROM3900

GSM-

FEETITEhY EEE GSM Dedicated non AMR Dedicated AMR GPRS >GPRS

Idle | SMS | FACCH | Ringer | Speech | TCH/Data | IDS | Ringer | Speech Idle | Transfer O

Keybeep

Tones

Melody E1

Voice Memo

AMR MMS(*)

@ Texas Instruments Proprietary Information — Internal Data Page 9 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
Audio Mode I A R A R v
FIR (UL) s v v v v v v v v v v
AEC/ES (UL) (*) v v
ANR (UL) (*) v v
AGC (UL/DL) v v
1IR/FIR (DL) v v v v v v v v v v v v
DRC (DL) v v
AAC(*) s v v v v v
MP3(*) | v v v v v v
MP3(+sAS NO_ IR | ~ | v v v v v

4 Audio task compatibilities

The sheets below show the compatibility of all audio tasks with another audio task.
These compatibilities are managed by the Riviera Audio incompatibilities manager.

i Texas Instruments Proprietary Information — Internal Data
J@ TEXAS
INSTRUMENTS

Page 10 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

4.1 DSP code 39

ROM CODE 39

Voice AEC/ES/

Memo

Feature/Feature

Keybeep Tones [Melody E1 AMR MMS| FIR/IIR

RC

ANR/AGC/D

Audio
Mode

AAC

MP3

Keybeep

Tones

Melody E1 (*)

Voice Memo

AMR MMS

FIR/IIR

AEC/ES/
ANR/AGC/DRC

Audio Mode

AAC(™)

MP3(™)

(*): Second Melody E1 should be started during (and not at beginning of) first Melody E1, it corre-

sponds to “game mode”

(**): MP3 & AAC support depends upon HW configuration and Business agreement.

5 Keybeep Generation

This chapter describes how to generate one key beep, using the AUDIO SW entity service.

5.1 audio_keybeep_start

T _AUDIO_RET audio_keybeep start (T_AUDIO_KEYBEEP_PARAMETER parameter,

T _RV_RETURN return_path)

Description

This function is called to initiate a key beep generation and DTMF generation. The key beep is the generation of two simultane-

ous sine waves.

Parameters

e T_AUDIO_KEYBEEP_PARAMETER

Specifies the characteristic of the keybeep to start.
typedef struct {

UINT16 frequency_beep[2]; // Frequency of the 2 beeps
INT8 amplitude_beep[2]; // Amplitude of the 2 beeps
UINT16 duration;

}T_AUDIO_KEYBEEP_PARAMETER;
Below the detail of each parameters:

frequency_beep[2]
Specifies the frequency of the beeps 1 and 2 in 1 Hz unit. Note the range is [0...2000] Hz.
If the frequency value is equal to NO_BEEP, the beep isn’t generated.

amplitude_beep[2]
Specifies the amplitude of the beeps 1 and 2 in 1 dB unit. Note the range is [-48...0] dB.

duration
Specifies the duration of the key beep in ms. Note this duration can’t be equal to 20ms.

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 11 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

e T RV _RETURN
C.f. section return mechanism.

Immediate Return

e T AUDIO_RET
The immediate value returned is defined as:

typedef INT8 T_AUDIO_RET;

The possible values are:

value id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR An error is occurred during the execution of this function

Event Return

e AUDIO_KEYBEEP_STATUS_MSG

This event is the status send at the end of the keybeep generation or if an error occurred.
typedef struct {

T_RV_HDR
INT8

}T_AUDIO_KEYBEEP_STATUS;
The possible values of status are:

os_hdr;
status;

value id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR The audio features was not successfully executed
Process flow
MMI AUDIO

v

‘ audio_keybeep_start(parameter, return_path)
|
|
|

‘ AUDIO_KEYBEEP_STATUS_MSG ‘

‘5 TEXAS

Texas Instruments Proprietary Information — Internal Data

INSTRUMENTS

Page 12 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

5.2 audio_keybeep stop

T _AUDIO_RET audio_keybeep stop (T_RV_RETURN return_path)

Description
This function is called in order to stop the key beep generation.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T _AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_KEYBEEP_STATUS_MSG
C.f. API function audio_keybeep_start.

Current restriction of use
Refer to section 4 on Audio Task Incompatibilities

Process flow

MMI AUDIO

v

| audio_keybeep_start(parameter, return_path)
|
|
|
|

v

| audio_keybeep_stop(return_path) |

‘ AUDIO_KEYBEEP_STATUS_MSG ‘

6 Tones Generation

This chapter describes how to generate the tones, using the AUDIO SW entity service.

6.1 audio_tones_start

@ Texas Instruments Proprietary Information — Internal Data Page 13 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

T _AUDIO_RET audio_tones_start (T_AUDIO_TONES PARAMETER *p_parameter,
T _RV_RETURN return_path)

Description

This function is called to initiate the tones generation. The tones are the generation of up to three
scheduled sine waves.

Parameters

e T_AUDIO_TONES_PARAMETER

Specifies the characteristic of the keybeep to start.
typedef struct {

T_AUDIO_TONE_DESC tones[3]; // Description of the 3 tones
UINT16 frame_duration; // duration of the tones frame
UINT16 sequence_duration; // duration of the sequence
UINT16 period_duration; // duration of the period
UINT16

3}T_AUDIO_TONES_PARAMETER;

typedef struct {
UINT16 start_tone; // start time of the tone

UINT16 stop_tone; // stop time of the tone
UINT16 frequency_tone;// frequency of the tone
INT8 amplitude_tone;// amplitude of the tone

}T_AUDIO_TONE_DESC;

Below the detail of each parameters;

start_tone
Specifies when the tone 1, 2, 3 must be start in ms unit.

stop_tone
Specifies when the tone 1, 2, 3 must be stop in ms unit. Note the stop_tone > start_tone and
stop_tone-start_tone > 20ms.

frequency_tone
Specifies the frequency of the tone 1, 2, 3 in 1 Hz unit. Note the range is [0...2000] Hz.
If the frequency value is equal to NO_TONE, the beep isn’t generated.

amplitude_tone

Specifies the amplitude of the tone 1, 2, 3 in 1 dB unit. Note the range is [-48...0] dB.

frame_duration

Specifies the duration of the tones frame (c.f. figure below) in ms unit. Note this duration can’t be equal
to 20ms.

sequence_duration

Specifies the duration of the sequence (c.f. figure below) in ms unit. Note the sequence_duration >=
frame_duration.

period_duration

Specifies the duration of the repetition (c.f. figure below) in ms unit. Note the repetition_duration >=
sequence_duration.

repetition

Specifies the number of repetition the tones defined with the parameters above must be played (c.f. figure
below). If the repetition = TONE_INFINITE, the tones is played indefinitely.

To understand each parameter, please see the figure and example below:

0ms | 40 ms | 80 ms | 120ms | 160ms | 200ms | 240ms | 280ms | 320ms | 360ms | 400ms
20 ms 60 ms 100 ms 140 ms 180 ms 220 ms 260 ms 300 ms 340 ms 380 ms

— .

start_tone_1 stop_tone_1

start_tone_2 stop_tone_2

start_tone_3 stop_tone_3

frame_duration

sequence_duration

@ Texas Instruments Proprietary Information — Internal Data Page 14 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
reﬁetition duration :
The parameters corresponding to the figure above are:
parameter->tone[0].start_tone = 0;
parameter->tone[0] .stop_tone = 60;
parameter->tone[0].frequency_tone = 520// Hz
parameter->tone[0] .amplitude_tone = -24// dB
parameter->tone[1].start_tone = 20;
parameter->tone[1].stop_tone = 80;
parameter->tone[1].frequency_tone = 775// Hz
parameter->tone[1].amplitude_tone = -15// dB
parameter->tone[2].start_tone = 100;
parameter->tone[2] .stop_tone = 140;
parameter->tone[2] .frequency_tone = 643 // Hz
parameter->tone[2] .amplitude_tone = -6 // dB
parameter->frame_duration = 160;
parameter->sequence_duration = 320;
parameter->period_duration = 320;
parameter->repetition = TONE_INFINITE; // infinite tones
e T _RV_RETURN
C.f. section return mechanism.
Immediate Return
e T _AUDIO_RET
C.f. API function audio_keybeep_start.
Event Return
e AUDIO_TONES _STATUS_MSG
This event indicates that the tones task is stopped or an error occured.
typedef struct {
T RV_HDR o0s_hdr;
INT8 status;
}T_AUDIO_TONES_STATUS;
The possible values of status are:
value id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR The audio features was not successfully executed
Current restriction of use
Refer to section 4 on Audio Task Incompatibilities
Process flow
MMI AUDIO
I I
audio_tones_start(p_parameter, return_path) 7
L I
|
| AUDIO_TONES_STATUS_MSG |
Q, Texas Instruments Proprietary Information — Internal Data Page 15 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

<
«

@ Texas Instruments Proprietary Information — Internal Data Page 16 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

6.2 audio_tones_stop

T _AUDIO_RET audio_tones_stop (T_RV_RETURN return_path)

Description

This function is called in order to stop the tones generation.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T _AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_TONES_STATUS_MSG
C.f. API function audio_tones_start.

Current restriction of use

Refer to section 4 on Audio Task Incompatibilities

Process flow

MMI AUDIO

v

audio_tones_start(p_parameter, return_path)

‘ audio_tones_stop(return_path) ‘

‘ AUDIO_TONES_STATUS_MSG ‘

7 Melody E1 generation

This chapter describes how to generate a melody E1 format, using the AUDIO SW entity service.

7.1 audio_melody_ E1 start

T _AUDIO_RET audio_melody E1 start (

@ Texas Instruments Proprietary Information — Internal Data Page 17 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

T_AUDIO_MELODY_E1_PARAMETER *p_parameter, T_RV_RETURN return_path)

Description

This function is called to initiate the melody E1 generation. Note: two melodies can be run in paral-
lel.

Parameters

e T _AUDIO_MELODY_E1 PARAMETER
Specifies the characteristic of the melody to start.
typedef struct {
char melody_name[AUDIO_MELODY_PATH_NAME_MAX_SIZE];
// File name of the melody
BOOL loopback; // the melody is played indefinitely
BOOL melody_mode; // mode of the melody
}T_AUDIO_MELODY_E1_PARAMETER;

Below the detail of each parameters:

melody name

Specifies the file name of the melody. Note that this file name is used by the audio entity to request the melody data to the File Flash
System. Moreover, the file name must contain the entire path to access to the melody file. Note the maximum size of the path plus the
name is 80 characters.

loopback

If loop_back = AUDIO_MELODY_LOOPBACK the melody is played indefinitely else one time else if
loop_back = AUDIO_MELODY _NO _LOOPBACK the melody is played only one time.

melody_mode

If melody_mode = AUDIO_MELODY_GAME_MODE two melody can be played in parallel in order to
use the melody for the game (Note the 8 notes resource is shared between this two melody). If mel-
ody_mode = AUDIO_MELODY_NORMAL_MODE only one melody is played. So all the 8 notes re-
source is for this melody.

e T RV_RETURN
C.f. previous section (return mechanism).

Immediate Return
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_MELODY_E1_STATUS_MSG
This event indicates that the melody task is stopped correctly or an error occurred during the execu-
tion.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
}T_AUDIO_MELODY_E1_STATUS;

The possible values of status are:
value id Definition

0 AUDIO_OK The audio features was successfully executed and stopped.

-1 AUDIO_ERROR The audio features was not successfully executed

-2 AUDIO_MODE_ERROR A melody is running in normal mode. Therefor, no more melody can
not be run.

Current restriction of use
Refer to section 4 on Audio Task Incompatibilities

e In normal mode, only one melody can be run.
e Two melodies with the same name can’t be run together (i.e. in game mode).

@ Texas Instruments Proprietary Information — Internal Data Page 18 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

Process flow

MMI

AUDIO

»

A

audio_melody E1_start(p_parameter, return_path) 1

AUDIO_MELODY_E1_STATUS_MSG ‘

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 19 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

7.2 audio_melody E1 stop

T _AUDIO_RET audio_melody E1 stop (
T AUDIO_MELODY_E1 STOP_PARAMETER *p_parameter,
T _RV_RETURN return_path)

Description

This function is called in order to stop the melody generation.

Parameters

e T_AUDIO_MELODY_E1_STOP_PARAMETER
Specifies the characteristic of the melody to stop.
typedef struct {
char melody_name[AUDIO_MELODY_PATH_NAME_MAX_SIZE];
// File name of the melody
}T_AUDIO_MELODY_E1_PARAMETER;

Below the detail of each parameters:

melody _name

Specifies the file name of the melody to stop. Note that this file name must be the name of the melody previously started. Moreover,
the file name must contain the entire path to access to the melody file. Note the maximum size of the path plus the name is 80 charac-
ters.

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T _AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_MELODY_E1 STATUS MSG
C.f. API function audio_melody E1_start.

Current restriction of use

C.f. API function audio_melody E1_start.

Process flow

| |
MMI AUDI

»

»

audio_melopdy_E1_start(p_parameter, return_path) |
|

i

i

i

»

»

| audio_melody_E1_stop(return_path) |

‘ AUDIO_MELODY_E1_STATUS_MSG ‘

@ Texas Instruments Proprietary Information — Internal Data Page 20 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

8 Voice memorization

This chapter describes how to use the voice memorization, using the AUDIO SW entity service.

8.1 audio_vm_record_start

T _AUDIO_RET audio_vm_record_start (
T AUDIO_VM_RECORD PARAMETER *p_record_ parameter,
T _AUDIO_TONES_PARAMETER *p_tones_parameter,
T _RV_RETURN return_path)

Description

This function is called to initiate the voice memorization recording phase. Note tones are generated
only if the conversation is recording during a call.

Parameters

e T_AUDIO_VM_RECORD_PARAMETER

Specifies the parameters using during the voice memorization phase.
typedef struct {

char memo_name [AUDI10_MEMO_PATH_NAME_MAX_SIZE];

UINT32 memo_duration; // maximum duration of the voice memo
BOOL compression_mode; // activate the compression

UINT16 microphone_gain; // recording gain applies to microphone
UINT16 network_gain; // gain applies to the network voice

}T_AUDIO_VM_RECORD_PARAMETER;

Below the detail of each parameters:

memo_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the memo data to the File
Flash System. Moreover, the file name must contain the entire path to declare the memo file. Note the maximum size of the path plus
the name is 80 characters.

memo_duration
Specifies the duration of the voice memo in second unit when the compression of the voice recorded is deactivated. In case of
COMPRESSION_MODE, this duration indicates the minimum duration of the voice memo.

microphone_gain
Specifies the gain multiplied to the voice sample from the microphone. The format is Q8.8, for example: if microphone_gain =
0x0100, the gain is 1 and if microphone_gain = 0x0080, the gain is 0,5.

network_gain
Specifies the gain multiplied to the voice sample from the network (if the mobile is in dedicated mode). The format is Q8.8, for exam-
ple: if network_gain = 0x0100, the gain is 1 and if network_gain = 0x0080, the gain is 0,5.

compression_mode
Activate (COMPRESSION_MODE) or deactivate (NO_COMPRESSION_MODE) the compression of the voice recorded. It means
that the silence between two voice activity are compressed.

e T _AUDIO_TONES_PARAMETER
See the API function: “audio_tones_start”. Note that these tones are generated only if the conversa-
tion is recording during a call.

e T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

@ Texas Instruments Proprietary Information — Internal Data Page 21 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

e AUDIO_VM_RECORD_STATUS_MSG

This event indicates that the melody task is stopped or an error is occurred.

typedef struct {

T_RV_HDR os_hdr;

INT8 status;

UINT16 recorded_duration;
3}T_AUDIO_VM_RECORD_STATUS;

Below the detail of the parameter:

recorded_duration
Specifies the size in seconds’ unit of the recorded data.

The possible values of status are:

value [¢] Definition
0 AUDIO_OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

Refer to section 4 on Audio Task Incompatibilities

e All directories included in the pathname must be declared before

Process flow

MMI AUDIO

audio_vm_record_start(p_record_parameter,
p_tones_parameter, return_path)
| |
| |
| |
I I

‘ AUDIO_VM_RECORD_STATUS_MSG ‘

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 22 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

8.2 audio_vm_record_stop

T _AUDIO_RET audio_vm_record_stop (T_RV_RETURN return_path)

Description
This function is called in order to stop the current voice memorization record.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VM_RECORD_STATUS_MSG
C.f. API function audio_vm_record_start.

Current restriction of use

C.f. API function audio_vm_record_start.

Process flow

MMI AUDIO

v

p_tones_parameter, return_path)

‘ audio_vm_record_start(p_record_parameter,
|
|
|

v

‘ audio_vm_record_stop(return_path) ‘

| AUDIO_VM_RECORD_STATUS_MSG |

@ Texas Instruments Proprietary Information — Internal Data Page 23 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

8.3 audio_vm_play_start

T_AUDIO_RET audio_vm play_start (T_AUDIO_VM_PLAY_PARAMETER *p_parameter,
T _RV_RETURN return_path)

Description
This function is called to initiate the voice memorization playing phase.

Parameters

e T_AUDIO_VM_PLAY_PARAMETER
Specifies the parameters using during the voice memorization phase.
typedef struct {
char memo_name [AUDI10_MEMO_PATH_NAME_MAX_SIZE];
}T_AUDIO_VM_PLAY_ PARAMETER;

Below the detail of each parameters:

memo_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the memo data to the File
Flash System. Moreover, the file name must contain the entire path to declare the memo file. Note the maximum size of the path plus
the name is 80 characters.

e T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VM_PLAY_STATUS_MSG
This event indicates that the voice memorization playing task is stopped or an error is occurred.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
}T_AUDIO_VM_PLAY_STATUS;

The possible values of status are:

value id Definition
0 AUDIO_OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

Refer to section 4 on Audio Task Incompatibilities

e All directories included in the pathname must be declared before

Process flow

MMI AUDIO
| |

»
»

audio_vm_play_start(parameter, return_path)

@ Texas Instruments Proprietary Information — Internal Data Page 24 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

A

AUDIO_VM_PLAY_STATUS_MSG

@ Texas Instruments Proprietary Information — Internal Data Page 25 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

8.4 audio_vm_play_stop

T_AUDIO_RET audio_vm _play_stop (T_RV_RETURN return_path)

Description

This function is called in order to stop the current voice memorization play.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VM_PLAY_STATUS_MSG
C.f. API function audio_vm_play_start.

Current restriction of use

C.f. API function audio_vm_play_start.

Process flow

MMI AUDIO

‘ audio_vm_play_start(parameter, return_path) ‘
| |
| |
| |

‘ audio_vm_play_stop(return_path) ‘

A

| AUDIO_VM_PLAY_STATUS_MSG |

9 Audio mode configuration

9.1 Introduction

This document sums up all the API functions useful to handle all possible the audio paths embedded
in a mobile. These API functions can be grouped in several family of use:
e The MMI family:
These API functions are dedicated to facilitate the creation, the calibration, and the
change of the audio mode.

@ Texas Instruments Proprietary Information — Internal Data Page 26 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Note: An audio mode is a fixed setting of all audio features embedded in the mobile.
For example, during an incoming call, the mobile rings so this task uses a particular setting of
all audio features therefore it corresponds to a particular audio mode. In this case, the audio
mode is called RING_MODE.

e The full access family:

These API functions are dedicated to permit a direct tuning of all audio module in-
volved in the audio paths. For example, with these functions, you can directly tune the PGA
gain of the microphone connected to the Analog Base Band.

9.2 MMI family

This chapter describes all the API functions belong to the MMI family.
Before to define these API functions, the first step is to define several vocabulary and concept used in
this chapter.

e Audio mode:

An audio mode is a fixed setting of all audio features embedded in the mobile. For exam-
ple, during an incoming call, the mobile rings so this task uses a particular setting of all audio fea-
tures therefore it corresponds to a particular audio mode. In this case, the audio mode is called
RING_MODE.

The list of all standard audio modes is listed below, but there’s a possibility to extend this
list.

Moreover, the audio setting of an audio mode can be grouped in several family of audio setting:
e Audio path setting:
This group of setting is used to define the audio path used.
The different audio paths are:
- GSM normal path: voice samples are exchanged between GSM network and GSM Analog
Base Band.
- Bluetooth Cordless path: voice samples are exchanged between the GSM Analog Base
Band and the Bluetooth module.
- Bluetooth Headset path: voice samples are exchanged between GSM network and Blue-
tooth module.
- DAl encoder path: path to test the speech encoder and its DTX functions.
- DAl decoder path: path to test the speech decoder and its DTX functions.
- DAl acoustic path: path to test the acoustic devices and the audio A/D and D/A devices.
e Microphone voice path setting:
This group of setting configures the audio voice path of the microphone.
e Speaker voice path setting:
This group of setting configures the audio voice path of the speaker.
e Microphone speaker loop setting:
This group of setting configures the audio module involved in the microphone and
speaker voice loop.
e Speaker audio stereo path:
This group of setting configures the audio stereo path of the speaker.

@ Texas Instruments Proprietary Information — Internal Data Page 27 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

9.2.1 Audio mode file structure

The audio mode is described by the structure below T_AUDIO_MODE. So for each audio mode (i.e.
game, audio off, ringer, handheld...), a T_AUDIO_MODE variable is saved in a flash file in the folder
[aud/ with the extension .cfg. The file name is specified by the customer (c.f. audio_mode_save/load

function)

9.2.1.1 T_AUDIO_MODE

Specifies the structure of each audio mode:

e With analog base band OMEGA and IOTA:

typedef struct

/* group of setting to define the audio path used */

T_AUDIO_VOICE_PATH_SETTING

audio_path_setting;

/* group of setting to configure the audio voice path of the microphone */

T_AUDIO_MICROPHONE_SETTING

audio_microphone_setting;

/* group of setting to configure the audio voice path of the speaker */

T_AUDIO_SPEAKER_SETTING

audio_speaker_setting;

/* group of setting to configure the audio mode involved */

/* in the microphone and speaker loop */
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING audio_microphone_speaker_loop_setting;

}
T_AUDIO_MODE;

e With analog base band SYREN

typedef struct

/* group of setting to define the audio path used */

T_AUDIO_VOICE_PATH_SETTING

/* group of setting to configure the

T_AUDIO_MICROPHONE_SETTING

/* group of setting to configure the

T_AUDIO_SPEAKER_SETTING

/* group of setting to configure the

T_AUDIO_STEREO_SPEAKER_SETTING

audio_path_setting;

audio voice path of the microphone */
audio_microphone_setting;

audio voice path of the speaker */
audio_speaker_setting;

audio stereo path of the speaker */
audio_stereo_speaker_setting;

/* group of setting to configure the audio mode involved */

/* in the microphone and speaker loop */
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING audio_microphone_speaker_loop_setting;
/* group of settings to configure audio features common to */

/* microphone and speaker */

T_AUDIO_MICROPHONE_SPEAKER_SETTING audio_microphone_speaker_setting;

¥
T_AUDIO_MODE;

e With analog base band TRITON

typedef struct

/* group of setting to define the audio path used */

T_AUDIO_VOICE_PATH_SETTING

/* group of setting to configure the

T_AUDIO_MICROPHONE_SETTING

/* group of setting to configure the

T_AUDIO_SPEAKER_SETTING

/* group of setting to configure the

T_AUDIO_STEREO_SPEAKER_SETTING

audio_path_setting;

audio voice path of the microphone */
audio_microphone_setting;

audio voice path of the speaker */
audio_speaker_setting;

audio stereo path of the speaker */
audio_stereo_speaker_setting;

/* group of setting to configure the audio mode involved */

/* in the microphone and speaker loop */
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING audio_microphone_speaker_loop_setting;
/* group of settings to configure audio features common to */

/* microphone and speaker */

T_AUDIO_MICROPHONE_SPEAKER_SETTING audio_microphone_speaker_setting;

}
T_AUDIO_MODE;

e With non-Tl audio analog base band used with P2 samples

{'? TEXAS

Texas Instruments Proprietary Information — Internal Data

INSTRUMENTS

Page 28 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

typedef struct

/* group of setting to define the audio path used */
T_AUDIO_VOICE_PATH_SETTING audio_path_setting;

/* group of setting to configure the audio voice path of the microphone */
T_AUDIO_MICROPHONE_SETTING audio_microphone_setting;

/* group of setting to configure the audio voice path of the speaker */
T_AUDIO_SPEAKER_SETTING audio_speaker_setting;

/* group of setting to configure the audio mode involved */

/* in the microphone and speaker loop */
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING audio_microphone_speaker_loop_setting;
/* group of settings to configure audio features common to */

/* microphone and speaker */

T_AUDIO_MICROPHONE_SPEAKER_SETTING audio_microphone_speaker_setting;

}
T_AUDIO_MODE;

9.2.1.2 T_AUDIO VOICE_PATH_SETTING
This parameter specifies the audio path mode.

/* audio path used */
typedef UINT8 T_AUDIO_VOICE_PATH_SETTING;

The different values are:

Value Path
AUDIO_GSM_VOICE_PATH GSM normal
AUDIO_BLUETOOTH_CORDLESS VOICE_PATH Bluetooth cordless
AUDIO_BLUETOOTH_HEADSET_PATH Bluetooth headset
AUDIO_DAI_ENCODER DAI encoder
AUDIO_DAI_DECODER DAI decoder
AUDIO_DAI_ACOUSTIC DAI acoustic

9.2.1.3 T_AUDIO_MICROPHONE_SETTING
Specifies the setting of the microphone voice path.

- For P2 samples with non Tl audio ABB :

typedef struct
{
/* gain of the microphone */
INT16 micro_gain;
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* ANR configuration */

T_AUDIO_ANR_CFG anr;
/* ES configuration */
T_AUDIO_ES_CFG es;

3
T_AUDIO_MICROPHONE_SETTING;

IMPORTANT NOTE:

ANR and echo suppressor (ES) features are only present in TCS 3.x software except TCS 3.0.
Other software versions do not include T_AUDIO_ANR_CFG and T_AUDIO_ES CFG structures.

For T_AUDIO_ANR_CFG details: see 9.2.1.3.3.
For T_AUDIO_ES_ CFG details: see 9.2.1.3.4

@ Texas Instruments Proprietary Information — Internal Data Page 29 of 130
TEXAS
INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
micro_gain
Gain of the microphone. The range is from 0x0001 (-72 dB) to Ox7FFF (18 dB) in signed Q12
format, ex:

0dB - (2712)*107(0/20) = 0x1000

-6 dB > (2°12)*107(-6/20) = 0x804

0x4000 > 20*log(16384/(2712)) = 12 dB

Fir

List of the 31 coefficients of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAI and GSM path mode.

Anr

See 9.2.1.3.3 for details.

- For analog base band TRITON:
typedef struct

/* mode of the microphone */

INT8 mode;

/* Setting of the current mode */
T_AUDIO_MICROPHONE_MODE setting;

3
T_AUDIO_MICROPHONE_SETTING;
Where the microphone modes are :

typedef union

/* handheld mode parameters */

T_AUDIO_MICROPHONE_MODE_HANDSET_25_6DB handset_25_6db;
/* handheld mode parameters */
T_AUDIO_MICROPHONE_MODE_HEADSET_4_9_DB headset_4_9db;
/* handheld mode parameters */
T_AUDIO_MICROPHONE_MODE_HEADSET_25_6DB headset_25_6db;
/* handheld mode parameters */
T_AUDIO_MICROPHONE_MODE_HEADSET_18DB headset_18db;
/* Aux mode parameters */

T_AUDIO_MICROPHONE_MODE_AUX_4_9DB aux_4_9db;

/* Aux mode parameters */
T_AUDIO_MICROPHONE_MODE_AUX_28_2DB aux_28_ 2db;

/* handfree mode parameters */
T_AUDIO_MICROPHONE_MODE_FM_MONO_4_9db fm_mono_4_9db;
/* headset mode parameters */
T_AUDIO_MICROPHONE_MODE_CARKIT_4_9db carkit_4_9db;
/* FM */

T_AUDIO_MICROPHONE_MODE_FM_4_9db fm_4_9db;

¥
T_AUDIO_MICROPHONE_MODE;

typedef struct
{

/* gain of the microphone */
INT8 gain;
/* microphone output bias */
INT8 output_bias;
/* coefficients of the microphone FIR */
T_AUDIO_FIR_COEF fir;
/* ANR configuration */

T_AUDIO_ANR_CFG anr;
/* AGC UL configuration */
T_AUDIO_AGC_UL_CFG agc ;

b
T_AUDIO_MICROPHONE_MODE_HANDSET 25_6DB;

typedef T_AUDIO_MICROPHONE_MODE_HANDSET_25_6DB T_AUDIO_MICROPHONE_MODE_HEADSET_4 9 DB;
typedef T_AUDIO_MICROPHONE_MODE_HANDSET_25_6DB T_AUDIO_MICROPHONE_MODE_HEADSET_25_ 6DB;
typedef T_AUDIO_MICROPHONE_MODE_HANDSET_25_6DB T_AUDIO_MICROPHONE_MODE_HEADSET_18DB;
typedef T_AUDIO_MICROPHONE_MODE_HANDSET_25_6DB T_AUDIO_MICROPHONE_MODE_AUX_4_9DB;
typedef T_AUDIO_MICROPHONE_MODE_HANDSET_25 6DB T_AUDIO_MICROPHONE_MODE_AUX_28 2DB;
typedef T_AUDIO_MICROPHONE_MODE_HANDSET_25_6DB T_AUDIO_MICROPHONE_MODE_CARKIT_4_9db;
typedef struct

/* gain of the microphone */
INT8 gain;

@ Texas Instruments Proprietary Information — Internal Data Page 30 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

/* microphone output bias */

INT8 output_bias;

/* microphone output bias */

INT8 extra_gain;
3
T_AUDIO_MICROPHONE_MODE_FM_MONO_4_9db;

typedef T_AUDIO_MICROPHONE_MODE_FM MONO_4 9db T_AUDIO_MICROPHONE_MODE_FM_4 9db;

IMPORTANT NOTE:

ANR feature is only present in TCS 3.x software except TCS 3.0. Other software versions do
not include T_AUDIO_ANR_CFG structure.

The AGC module is included in TCS 3.2 software.
For T_AUDIO_ANR_CFG details: see 9.2.1.3.1
For T_AUDIO_AGC_UL_CFG details: see 9.2.1.3.2

Mode

Specifies the mode of the microphone: AUDIO_MICROPHONE_MODE_HANDSET 25 6DB or
AUDIO_MICROPHONE_MODE_HEADSET 4 9 DB or
AUDIO_MICROPHONE_MODE_HEADSET_25 6DB or
AUDIO_MICROPHONE_MODE_HEADSET 18DB or
AUDIO_MICROPHONE_MODE_AUX 4 9DB or
AUDIO_MICROPHONE_MODE_AUX_28 2DB or
AUDIO_MICROPHONE_MODE_CARKIT_4 9DB or
AUDIO_MICROPHONE_MODE_FM_MONO_4 9db or

AUDIO _MICROPHONE_MODE _FM 4 9db

All the modes are available in GSM, bluetooth cordless voice and all DAI path mode.

gain
gain of the microphone in 1dB unit. The range is from —12 dB to 12 dB. Note if the gain is equal to
AUDIO_MICROPHONE_MUTE, the microphone is muted.

output_bias

Specifies the output voltage of the microphone. This value could be 2.0V
(AUDIO_MICROPHONE_OUTPUT_BIAS_2 0V)or2.5V
(AUDIO_MICROPHONE_OUTPUT_BIAS 2 5V).

extra_gain
Specifies the FM gain. The range is -2dB to 14dB in 2dB steps which corresponds to 0 to 8.
Applicable only for T_AUDI10_MICROPHONE_MODE_FM_MONO and T_AUDIO_MICROPHONE_MODE_FM.

fir_coef

List of the 31 coefficients of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.

anr
See 9.2.1.3.1 for details

agc
See 9.2.1.3.2 for details

9.2.1.3.1 T_AUDIO_ANR_CFG
ANR (Ambient Noise Reduction) module allows reducing the noise present in the speech uplink path.

ANR is only available in TCS 3.x software except TCS 3.0. Other software versions do not in-
clude this structure in the microphone settings.

ANR module only works in DAI acoustic and GSM and Bluetooth headset path modes.

The following ANR settings are to be used for ANR 2.13 used in the TCS 3.2 acoustic chain.

ANR settings are inside following structure of the microphone settings:
typedef struct

@ Texas Instruments Proprietary Information — Internal Data Page 31 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
T_ANR_CONTROL anr_ul_control;
T_AUDIO_ANR_PARAMS parameters ;

3

T_AUDIO_ANR_CFG;

typedef enum
ANR_STOP o,

ANR_START 1,
ANR_UPDATE = 2

b

T_ANR_CONTROL ;

typedef struct
INT16 control;
INT16 ns_level;
INT16 tone_ene_th;
INT16 tone_cnt_th ;

¥
T_AUDIO_ANR_PARAMS;

control

Setting of ANR module. The supported values are:
0x0000 : module is bypassed (ANR disabled)
0x0001 : ANR and tone detector are enabled (default value)
0x0003 : ANR is enabled and tone detector is disabled

In case of Read Access, the following parameters are valid only if control is non-zero

ns_level

Attenuation applied in the spectral subtraction. Attenuation is equal to ns_level x 6dB
Recommended value is 0x0002 (12 dB).

Other applicable values:

0x0000 : noise attenuation depends on incoming signal SNR

0x0001 : 6 dB noise attenuation

0x0002 : 12 dB noise attenuation (default value)

tone_ene_th

SNR threshold for tone detection.

0x0007 : is default value set for an SNR of 21 dB. This is the recommended value. Lowering
threshold would cause over-detection of tone and, in turn, would cause sputtered noise in
speech. Increasing threshold would cause under-detection and might modify audio test cases
FTA test signals.

tone_cnt_th

Maximum number of tones to be detected.

0x0001.: is the default value. Changing value to 0x0002 allows detecting dual-tone such as DTMF
tone, but it could cause over detection (annoying sputtered noise in speech). Therefore, the value
of 0x0001 is recommended. Even if DTMF tone is not detected, ANR 2.13 attenuates DTMF tone
level only with very small amount and it should not be a problem

9.2.1.3.2 T_AUDIO_AGC_UL_CFG

The primary goal of AGC is to adjust the input speech signal to a targeted level at the output. AGC is
used in both the uplink and downlink in the TCS3.2 acoustic chain.

AGC is only available from TCS 3.2. AGC module only works in DAl acoustic and GSM and
Bluetooth headset path modes.

The following AGC settings are to be used for AGC 1.x.

AGC settings are inside following structure of the microphone settings:

typedef struct

@ Texas Instruments Proprietary Information — Internal Data Page 32 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

T_AGC_CONTROL
T_AUDIO_AGC_PARAMS

¥
T_AUDIO_AGC_UL_CFG;

typedef enum

ANR_STOP
ANR_START

o,
1

ANR_UPDATE = é

3
T_ANR_CONTROL;

typedef struct

UINT16
UINT16
INT16
INT16
INT16
INT16
INT16
INT16
INT16
INT16
INT16

}
T_AUDIO_AGC_

control;

frame_size;
targeted_level;
signal_up;
signal_down;
max_scale;
gain_smooth_alpha;
gain_smooth_alpha_fast;
gain_smooth_beta;
gain_smooth_beta_fast;
gain_intp_Tflag;

PARAMS ;

agc_ul_control;
parameters ;

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 33 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
e name e Descrip- e Typ e R e Comment
tion elF a
or- n
mat g
e
Control enable/disable UINT16/Q0 [0x0000, disabled

0x0001, enabled 8kHz
0x0002] enabled 16kHz *
In case of Read Access, the following parameters are valid only if control is non-zero

frame_size aquistion/restoratio | UINT16/Q0 80 samples, 1X10ms
n frame size [0x0050, frame processing (FP
at 8kHz

160 samples, 2X10ms
0x00AO0, FP (8kHz), 1X10ms FP

(16kHz)
0x0140] 320 samples, 2X10ms
FP (16kHz)
targeted_level © ° | targeted level from | INT16/Q15 [0X0502 minimal: -22dBm0O
dBmO spec. " | power
OXO9FE. . nominal: -16dBmO
power
OX13F0] maximal: -10dBmO
power
- i -
signal_up g;:encup from dB INT16/Q10 OX7E7E nominal: +15dB power
signal_down” gain down from dB | INT16/Q15)
spec. Ox7FB4 nominal: Ref. -0.01dB

! Though AGC 1.x has the capability to operate at 8 kHz and 16 kHz sampling frequencies, the TCS 3.2 voice acoustic chain
modules currently operate only at 8 kHz. So in the TCS 3.2 acoustic chain, AGC 1.x can be set to operate at ONLY at 8 kHz.
Hence parameter control shall not use value 0x0002 for TCS 3.2

2 The AGC targeted level can be updated on the fly from frame to frame without re-initialization. For example, the targeted level

can be changed from -16dBm0 to -10dBmO0 from frame m to frame m + 1.

% The targeted level of the signal at AGC output could be computed from the specification of targeted level in dBmO as follows:
LTarget—6.15
targeted_level = round { 2°.10 20 ,

where the targeted level is L . For example, L = -16dBmO0 leads to targeted_level = 2558 i.e. tar-
geted_level = OxO9FE.

4 The AGC gain increasing rate signal_up could be customized from specification of rate in dB as follows:

15 Tw
signal_up = round 2—5.10 10 4,

where the increasing rate is Fup . For example, Fup =15dB leads to signal_up = 32382 i.e. signal_up = OX7E7E.
> The AGC gain decreasing rate signal_down could be customized from specification of rate in dB as follow:

1—‘down
signal_down = round{2°.10 10 },

where the increasing rate is Iy, - For example, Iy, = —0.01dB leads to signal_down = 32692 i.e. signal_down =
Ox7FB4.

@ Texas Instruments Proprietary Information — Internal Data Page 34 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
b . .
max_scale 31§>;|Fr)ne%m gain from | INT16/Q12 OX59E9 nominal Ref. +15dB
Egm_smooth_alp ?aagpofmoothmg INT16/Q15 OX7EBS nominal Ref. 0.99
gain_smooth_alp | gain fast smoothing | INT16/Q15 0x7333 nominal Ref. 0.9
ha_fast factor
gain_smooth_bet | gain smoothing INT16/Q15 OXTESC nominal Ref. 0.095
a factor
gain_smooth_bet | gain fast smoothing | INT16/Q15 0x7333 nominal Ref. 0.9
a fast factor
gain_intp_flag” gain interpolation INT16/Q0 0x0000 nominal, interpolation
enable/disable disabled
0x0001 interpolation enabled

6 The AGC maximal amplification max_scale could be customized from specification of amplification in dB as follow:

15 Imax
max_scale = round ?.10 20

where the maximum amplification is §,y - For example, Q. = 15dB leads to max_scale = 23033 i.e. 0x59F9

! The AGC gain is interpolated from frame to frame on 32 samples (8000Hz) or 64 samples (16000Hz). The interpolation can be
enable/disable using gain_intp_flag. Nominal value is gain_intp_flag = 0.

@ Texas Instruments Proprietary Information — Internal Data Page 35 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

For other configurations :

typedef struct

/* mode of the microphone */

INT8 mode;

/* Setting of the current mode */
T_AUDIO_MICROPHONE_MODE setting;

T
T_AUDIO_MICROPHONE_SETTING;

Where the microphone modes are :
typedef union

/* handheld mode parameters */
T_AUDIO_MICROPHONE_MODE_HANDHELD handheld;

/* handfree mode parameters */
T_AUDIO_MICROPHONE_MODE_HANDFREE handfree;

/* headset mode parameters */
T_AUDIO_MICROPHONE_MODE_HEADSET headset;

/* headset differential mode parameters */
T_AUDIO_MICROPHONE_MODE_HEADSET_DIFF headset_diff;

by
T_AUDIO_MICROPHONE_MODE;

typedef struct
UINT16 coefficient[31];

¥
T_AUDIO_FIR_COEF;

typedef struct
{
/* gain of the microphone */
INT8 gain;
/* microphone output bias */
INT8 output_bias;
/* coefficients of the microphone FIR */
T_AUDIO_FIR_COEF fir;
/* ANR configuration*/

T_AUDIO_ANR_CFG anr;
/* ES configuration */
T_AUDIO_ES_CFG es;

}
T_AUDIO_MICROPHONE_MODE_HANDHELD;

typedef struct {
/* gain of the microphone */
INT8 gain;
/* extra gain of the microphone */
INT8 extra_gain;
/* microphone output bias */
INT8 output_bias;
/* coefficients of the microphone FIR */
T_AUDIO_FIR_COEF fir;
/* ANR configuration */

T_AUDIO_ANR_CFG anr;
/* ES configuration */
T_AUDIO_ES_CFG es;

by
T_AUDIO_MICROPHONE_MODE_HANDFREE ;

typedef struct {
/* gain of the microphone */
INT8 gain;
/* microphone output bias */
INT8 output_bias;
/* coefficients of the microphone FIR */
T_AUDIO_FIR_COEF fir;
/* ANR configuration */

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 36 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

T_AUDIO_ANR_CFG anr;
/* ES configuration */
T_AUDIO_ES_CFG es;

by
T_AUDIO_MICROPHONE_MODE_HEADSET ;

typedef struct {
/* gain of the microphone */
INT8 gain;
/* microphone output bias */
INT8 output_bias;
/* coefficients of the microphone FIR */
T_AUDIO_FIR_COEF fir;
/* ANR configuration */

T_AUDIO_ANR_CFG anr;
/* ES configuration */
T_AUDIO_ES_CFG es;

¥
T_AUDIO_MICROPHONE_MODE_HEADSET DIFF;

IMPORTANT NOTE:

ANR and Echo Suppressor (ES) features are only present in TCS 3.x software except TCS 3.0.
Other software versions do not include T_AUDIO_ANR_CFG and T_AUDIO_ES CFG structures.

For T_AUDIO_ANR_CFG details: see 9.2.1.3.3.
For T_AUDIO_ES CFG details: see 9.2.1.3.4.

The different values of each microphone setting parameters are :

Mode

Specifies the mode of the microphone: AUDIO_MICROPHONE_HANDHELD or
AUDIO_MICROPHONE_HANDFREE or AUDIO_MICROPHONE_HEADSET or
AUDIO_MICROPHONE_HEADSET DIFFERENTIAL..

AUDIO_MICROPHONE_HANDHELD mode: this mode is available in GSM, bluetooth cordless voice
and all DAI path mode.

Gain
gain of the microphone in 1dB unit. The range is from —12 dB to 12 dB. Note if the gain is equal to
AUDIO MICROPHONE_MUTE, the microphone is muted.

Output_bias

Specifies the output voltage of the microphone. This value could be 2.0V
(AUDIO_MICROPHONE_OUTPUT_BIAS_2_0V) or 25V
(AUDIO_MICROPHONE_OUTPUT_BIAS 2_5V).

fir_coef

List of the 31 coefficients of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.

Anr
See 9.2.1.3.3 for details.

Es
See 9.2.1.3.4 for details

AUDIO_MICROPHONE_HANDFREE mode: this mode is available in GSM, bluetooth cordless voice
and all DAI path mode.

Gain
gain of the microphone in 1dB unit. The range is from —-12 dB to 12 dB. Note if the gain is equal to
AUDIO_MICROPHONE_MUTE, the microphone is muted.

extra_gain

Specifies an additional gain of the microphone handfree path: 4.6 dB
(AUDIO_MICROPHONE_AUX_GAIN_4_6dB) or 28.2 dB
(AUDIO_MICROPHONE_AUX_GAIN_28 2dB).

@ Texas Instruments Proprietary Information — Internal Data Page 37 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

output_bias

Specifies the output voltage of the microphone. This value could be 2.0V
(AUDIO_MICROPHONE_OUTPUT_BIAS 2 0V)or25V
(AUDIO_MICROPHONE_OQUTPUT _BIAS 2 5V).

fir_coef

List of the 31 coefficients of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.

anr
See 9.2.1.3.3 for details.

Es
See 9.2.1.3.4 for details

AUDIO_MICROPHONE_HEADSET mode: this mode is available in GSM, bluetooth cordless voice
and DAI path mode. It is only available with the analog base band IOTA and SYREN.

Gain
gain of the microphone in 1dB unit. The range is from —12 dB to 12 dB. Note if the gain is equal to
AUDIO MICROPHONE_MUTE, the microphone is muted.

output_bias

Specifies the output voltage of the microphone. This value could be 2.0V
(AUDIO_MICROPHONE_OUTPUT_BIAS_2_0V) or 25V
(AUDIO_MICROPHONE_OUTPUT_BIAS 2_5V).

fir_coef

List of the 31 coefficient of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.

anr
See 9.2.1.3.3 for details.

Es
See 9.2.1.3.4 for details

AUDIO_MICROPHONE_HEADSET DIFFERENTIAL mode: this mode is available in GSM, blue-
tooth cordless voice and DAI path mode. It is only available with the analog base band SYREN.

Gain
gain of the microphone in 1dB unit. The range is from —-12 dB to 12 dB. Note if the gain is equal to
AUDIO_MICROPHONE_MUTE, the microphone is muted.

output_bias

Specifies the output voltage of the microphone. This value could be 2.0V
(AUDIO_MICROPHONE_OUTPUT_BIAS_2 0V)or25V
(AUDIO_MICROPHONE_OUTPUT_BIAS 2 5V).

fir_coef
List of the 31 coefficient of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAI and GSM path mode.

anr
See 9.2.1.3.3 for details.

Es
See 9.2.1.3.4 for details

9.2.1.3.3 T_AUDIO_ANR_CFG

ANR (Ambient Noise Reduction) module allows reducing the noise present in the speech uplink path.
ANR is only available in TCS 3.x software except TCS 3.0. Other software versions do not in-
clude this structure in the microphone settings.

ANR module only works in DAl acoustic and GSM path mode.

ANR settings are inside following structure of the microphone settings:

typedef struct

@ Texas Instruments Proprietary Information — Internal Data Page 38 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

BOOLEAN anr_enable;

INT16 min_gain;

INT8 div_factor_shift;
UINT8 ns_level;

¥
T_AUDIO_ANR_CFG;

ANR excepted noise attenuation (dB) = Temp. Att. (dB) + Spec. Att. (dB).

anr_enable

Enable/disable the ANR (Ambiant Noise Reduction) module:
0- disable
1- enable

In case of Read Access, the following parameters are valid only if anr_enable = 1.

min_gain

Temp. Att. (dB): temporal attenuation applied on signal detected as noise, considering
speech isn’t attenuated. Format is Q15.

Temp. Att. (dB) = 20*log(d_anr_min_gain/32768);

Ex: d_anr_min_gain = 0x4000 -> Temp. Att. = -6dB

Recommended value is 0x3313 (-8 dB)

div_factor_shift

Used to control variations of temporal attenuation. Time periods where signal is considered
as noise are attenuated. In order to avoid erroneous speech attenuation, this value permits
to adjust the freezing of the gain after the speech detection.

Recommended value is -2.

anr_ns_level
Spec. Att. (dB) : spectral subtraction in 6dB steps.
Ex: d_anr_ns_level | Spec. Att. (dB)

Ex: -1 | 0dB (*)
0 | -xdB (**)
1 | -6dB
2 | -12dB

(*) Customers shouldn’t use ANR2.0 without spectral subtraction ;

(**) ANR 2.0 performs the maximum of spectral subtraction depending on the incoming sig-
nal.

Recommended value is 1 (-6 dB).

9.2.1.34 T_AUDIO_ES_CFG

The echo suppressor (ES) role is to control the residual echo in a speakerphone application, where
the AEC is unable to cancel the entire echo in the uplink due to non-ideal acoustical environment such
as a non-linear loudspeaker response for example. Please refer to [7] for an overview of the module.

ES is only available in TCS 3.x software except TCS 3.0. Other software versions do not include

this structure in the microphone settings.
ES module only works in DAl acoustic and GSM path mode.

ES settings are inside following structure of the microphone settings:

typedef struct

{
BOOLEAN es_enable;
UINT8 es_behavior;
UINT8 es_mode;
INT16 es_gain_dl;
INT16 es_gain_ul_1;
INT16 es_gain_ul_2;
INT16 tcl_fe_Is_thr;
INT16 tcl_dt_Is_thr;
INT16 tcl_fe_ns_thr;
INT16 tcl_dt_ns_thr;
INT16 tcl_ne_thr;

@ Texas Instruments Proprietary Information — Internal Data Page 39 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

INT16 ref_Is_pwr;

UINT16 switching_time;
UINT16 switching_time_dt;
UINT16 hang_time;

INT16 gain_lin_dl_vect[4];
INT16 gain_lin_ul_vect[4];

}
T_AUDIO_ES_CFG;

es_enable

Enable/disable the echo suppressor module:
0- disable
1- enable

In case of Read Access, the following parameters are valid only if es_enable = 1.

es_behavior
Permit to setup pre-defined ES behavior as described in [8]:
0- Behavior 1
1- Behavior la
2- Behavior 2a
3- Behavior 2b
4- Behavior 2c
5- Behavior 2c_idle
6- Custom: all parameters setup by the user

In “custom’ mode, following parameters must be set. Custom mode isn’t recommended.
In other modes, following parameters aren’t used.

es_mode
Bitmap defining the ES mode:

bit

0 | ESUL 0- Disable ES on UL path
1- Enable ES on UL path
1 | ESDL 0- Disable ES on DL path
1- Enable ES on DL path

2 | CNG 0- Disable CNG* algorithm
1- Enable CNG* algorithm
3 | NSF 0- Disable NSF** algorithm

1- Enable NSF** algorithm

4 | ALS UL 0- Disable ALS*** on UL path
1- Enable ALS** on UL path
5 | ALSDL 0- Disable ALS*** on DL path
1- Enable ALS*** on DL path
* CNG = Comfort Noise Generation

** NSF=Noise Floor

*** ALS = Attenuation Level Smoothing

Notes:
e Disabling ES UL has no sense
e CNG and NSF mustn’t be enabled together

es_gain_dl
es_gain_dl is the receive loss compensation.

es_gain_ul_1
es_gain_ul_1 is the coupling loss compensation.

@ T S Texas Instruments Proprietary Information — Internal Data
EXA
INSTRUMENTS

Page 40 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
es_gain_ul_2
es_gain_ul_2 is the near-end propagation loss compensation.
tcl_fe Is_thr
d_tcl_fe_lIs_thris the TCL reference threshold in far-end mode for loud signals. This value is
in Q15 format.
tcl_dt_Is_thr
d_tcl_fd Is_thris the TCL reference threshold in double-talk mode for loud signals. This
value is in Q15 format
tcl_fe_ns_thr
d_tcl_fe_ns_thris the TCL reference threshold in far-end mode for nominal signals. This
value is in Q15 format
tcl_dt_ns_thr
d_tcl fd _ns_thris the TCL reference threshold in double-talk mode for nominal signals. This
value is in Q15 format
tcl_ne_thr
d_tcl_ne_thris the TCL reference threshold in near-end mode. This value is in Q15 format
ref_Is_pwr
d_ref Is_pwr is the TCL reference threshold in near-end mode. This value is in Q15 format
switching_time
d_ switching_time_dt is the switching time value in milliseconds.
switching_time_dt
d_ switching_time_dt is the double-talk switching time value in milliseconds.
hang_time
d_hang_time is the hangover time for switching
gain_lin_dl_vect
Table containing downlink linear attenuation levels per state:
gain_lin_dl_vect[0] - idle state
gain_lin_dl_vect[1] - double talk
gain_lin_dl_vect[2] - far-end
gain_lin_dl_vect[3] - near-end
Format is Q15.
gain_lin_ul_vect
Table containing uplink linear attenuation levels per state:
gain_lin_ul_vect[0] - idle state
gain_lin_ul_vect[1] - double talk
gain_lin_ul_vect[2] - far-end
gain_lin_ul_vect[3] - near-end
Format is Q15.
@ Texas Instruments Proprietary Information — Internal Data Page 41 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.1.4 T _AUDIO _SPEAKER_SETTING
Specifies the characteristic of the speaker voice path.

- For P2 samples with non Tl audio ABB :

typedef struct

{
/* gain of the speaker */
INT16 speaker_gain;
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameters */
T_AUDIO_LIMITER_CFG limiter;
/* 1IR Filter parameters */
T_AUDIO_IIR_CFG iir;

}
T_AUDIO_SPEAKER_SETTING;

IMPORTANT NOTE:

IIR and LIMITER features are only present in TCS 3.x software except TCS 3.0. Other software
versions do not include T_AUDIO_LIMITER_CFG and T_AUDIO_IIR_CFG structures.

As the lIR filter replaces the FIR filter, T_AUDIO_FIR_COEF isn’t present in software versions
supporting the IIR filter.

For parameters details:
T_AUDIO_LIMITER_CFG: see 9.2.1.4.4
T_AUDIO_IlIR_CFG: see 9.2.1.4.5

speaker_gain

Gain of the speaker. The range is from 0x0001 (-72 dB) to 0x7FFF (18 dB) in signed
Q12 format, ex:

0dB > (2712)*107(0/20) = 0x1000

-6 dB > (2712)*10/(-6/20) = 0x804

0x4000 - 20*log(16384/(2"12)) = 12 dB

Fir

List of the 31 coefficients of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 =
0x2000, 1 = 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.

The FIR filter is replaced by IR filter in TCS3.x software, except TCS 3.0.

@ Texas Instruments Proprietary Information — Internal Data Page 42 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

- For analog base band TRITON:

typedef struct

/* mode of the speaker */

INT8 mode;
/* Setting of the current mode */
T_AUDIO_SPEAKER_MODE setting;

by
T_AUDIO_SPEAKER_SETTING;

where the speaker modes are:

typedef union

/* handheld mode parameters */
T_AUDIO_SPEAKER_MODE_HANDHELD handheld;
/* handfree mode parameters */
T_AUDIO_SPEAKER_MODE_HANDFREE handfree;
/* headset mode parameters */
T_AUDIO_SPEAKER_MODE_HEADSET headset;
T_AUDIO_SPEAKER_MODE_AUX aux;
T_AUDIO_SPEAKER_MODE_CARKIT carkit;

3
T_AUDIO_SPEAKER_MODE;
typedef struct

/* gain of the speaker */
INT8 gain;

/* use the audio filter */
INT8 audio_filter;

/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;
/* extra gain of the speaker */

INT8 extra_gain;
/* AGC parameter */
T_AUDIO_AGC_DL_CFG agc;
/* DRC parameter */
T_AUDIO_DRC_CFG drc;
/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

¥
T_AUDIO_SPEAKER_MODE_HANDHELD;

typedef struct

/* gain of the speaker */
INT8 gain;

/* use the audio filter */
INT8 audio_Filter;

/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;
/* extra gain of the speaker */

INT8 extra_gain;
/* AGC parameter */
T_AUDIO_AGC_DL_CFG agc;
/* DRC parameter */
T_AUDIO_DRC_CFG drc;
/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

b
T_AUDIO_SPEAKER_MODE_HANDFREE;

typedef struct
{

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_fFilter;

/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;
/* AGC parameter */

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 43 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

T_AUDIO_AGC_DL_CFG agc;
/* DRC parameter */
T_AUDIO_DRC_CFG drc;

/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

}
T_AUDIO_SPEAKER_MODE_HEADSET;
typedef struct

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_fFilter;

/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;
/* AGC parameter */
T_AUDIO_AGC_DL_CFG agc;

/* DRC parameter */
T_AUDIO_DRC_CFG drc;

/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

3
T_AUDIO_SPEAKER_MODE_AUX;
typedef struct

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_filter;

/* use the audio highpass filter */
T_AUDIO_FIR_COEF fir;
/* AGC parameter */
T_AUDIO_AGC_DL_CFG agc;
/* DRC parameter */
T_AUDIO_DRC_CFG drc;
/* 1IR Ffilter parameters */
T_AUDIO_IIR_CFG iir;

b
T_AUDIO_SPEAKER_MODE_CARKIT;

IMPORTANT NOTE:

IIR feature is only present in TCS 3.x software except TCS 3.0. Other software versions do not
include T_AUDIO_IIR_CFG structure.

As the lIR filter replaces the FIR filter, T_AUDIO_FIR_COEF isn’t present in software versions
supporting the IR filter.

In TCS 3.2 the LIMITER is replaced by the AGC and DRC modules.

For parameters details:
T_AUDIO_AGC_DL_CFG:see 9.2.1.4.1
T_AUDIO_DRC_CFG: see 9.2.1.4.2
T_AUDIO_IIR_CFG: see 9.2.1.4.3

@ Texas Instruments Proprietary Information — Internal Data Page 44 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Mode

Specifies the mode of the microphone: AUDIO_SPEAKER_MODE_HANDHELD,
AUDIO_SPEAKER_MODE_HANDFREE or AUDIO_SPEAKER_MODE_HEADSET or
AUDIO SPEAKER_MODE_AUX or AUDIO SPEAKER MODE_CARKIT.

All these modes are available in GSM, bluetooth cordless voice and all DAI path mode.

gain
Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER_FILTER_ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER_FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference Min Typ Max Unit
gain at 1kHz S
<=100 Hz -20 DB
100 Hz to 200 Hz -10 dB
300 Hz to 400 Hz -2 0 +1 dB
400 Hz to 3300 Hz -1 0 +1 dB
3300 Hz to 3400 Hz -2 0 +1 dB
4000 Hz to 4600 Hz -17 dB
4600 Hz to 6000 Hz -40 dB
>= 6000 Hz -45 dB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter
Add or bypass the high-pass part of the audio filter: AUDIO_SPEAKER_HIGHPASS_FILTER_ON to add it,
AUDIO_SPEAKER_HIGHPASS_FILTER_OFF to bypass it.

extra_gain
Extra gain for AUDIO_SPEAKER_HANDHELD and AUDIO_SPEAKER_HANDFREE modes.

For AUDIO_SPEAKER_HANDHELD the extra gain values are
AUDIO_SPEAKER_SPK_GAIN_8 5DB, AUDIO_SPEAKER_SPK_GAIN_2 5DB,
AUDIO_SPEAKER_SPK_GAIN_MINUS_3 5DB and AUDIO_SPEAKER_SPK_GAIN_MINUS 22 5DB.

For AUDIO_SPEAKER_HANDFREE the extra gain values are AUDIO_EAR_GAIN_MINUS_11DB
and AUDIO _EAR_GAIN 1DB

agc
See 9.2.1.4.1 for details.

Drc
See 9.2.1.4.2 for details.

lir
See 9.2.1.4.3 for details.

9.2.1.41 T_AUDIO_AGC_DL_CFG

The primary goal of AGC is to adjust the input speech signal to a targeted level at the output. AGC is
used in both the uplink and downlink in the TCS3.2 acoustic chain.

AGC is only available from TCS 3.2. AGC module only works in DAl acoustic and GSM and
Bluetooth headset path modes.

The following AGC settings are to be used for AGC 1.x.

AGC settings are inside following structure of the microphone settings:

typedef struct

T_AGC_CONTROL agc_dl_control;
T_AUDIO_AGC_PARAMS parameters ;
@ Texas Instruments Proprietary Information — Internal Data Page 45 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

¥

T_AUDIO_AGC_DL_CFG;

typedef enum
ANR_STOP 0,

ANR_START 1,
ANR_UPDATE = 2

T
T_ANR_CONTROL ;

typedef struct

UINT16 control;

UINT16 frame_size;

INT16 targeted_level;

INT16 signal_up;

INT16 signal_down;

INT16 max_scale;

INT16 gain_smooth_alpha;
INT16 gain_smooth_alpha_fast;
INT16 gain_smooth_beta;
INT16 gain_smooth_beta_Tfast;
INT16 gain_intp_flag;

¥
T_AUDIO_AGC_PARAMS;

For details of each parameter, please refer to 9.2.1.3.2.

@ Texas Instruments Proprietary Information — Internal Data Page 46 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.1.42 T_AUDIO_DRC_CFG

The primary goal of DRC is to increase the perceptual loudness at the loudspeaker. And hence the
DRC is implemented on the RX path in the Digital Base Band (DBB). A dynamic range compression
algorithm typically amplifies the quiet parts and attenuates loud parts of the input signal so that the
final dynamic range of the output signal fits into a fixed range.

DRC module only works in DAI acoustic and GSM and Bluetooth headset path modes.
The following DRC settings are to be used for DRC 1.x in the TCS 3.2 acoustic chain.

DRC settings are inside following structure of the speaker settings:

typedef struct

T_DRC_CONTROL drc_dl_control;
T_AUDIO_DRC_PARAMS parameters ;

}

T_AUDIO_DRC_CFG;

typedef enum
DRC_STOP 0

DRC_START l:
DRC_UPDATE = 2

b
T_DRC_CONTROL ;

typedef struct

UINT16 speech_mode_samp_fT;

INT16 num_subbands;

INT16 frame_size;

UINT16 expansion_knee fb_bs;
UINT16 expansion_knee_md_hg;
UINT16 compression_knee_fb_bs;
UINT16 compression_knee_md_hg;
UINT16 expansion_ratio_fb_bs;
UINT16 expansion_ratio_md_hg;
UINT16 compression_ratio_fb_bs;
UINT16 compression_ratio_md_hg;
UINT16 max_amplification_fb_bs;
UINT16 max_amplification_md_hg;
UINT16 energy_limiting_th_fb_bs;
UINT16 energy_limiting_th_md_hg;
INT16 limiter_threshold_fb;
INT16 limiter_threshold_bs;
INT16 [limiter_threshold_md;
INT16 [limiter_threshold_hg;
UINT16 limiter_release fb_bs;
UINT16 limiter_release_md_hg;
UINT16 limiter_hangover_spect_preserve;
UINT16 gain_track_fb_bs;

UINT16 gain_track_md_hg;

INT16 low_pass_Tfilter[17];
INT16 mid_band_filter[17];

¥
T_AUDIO_DRC_PARAMS;

Parameter Name Type Format Range Comments
speech_mode_samp_f UINT16 MSB 8b/Q0 | [0x00, DRC bypassed
0x01] DRC enabled in speech mode®
LSB 8b/Q0 | [0x01, 8kHz sampling frequency

® The parameters and values listed are applicable to DRC 1.0 only. Hence only speech mode is available. Subsequent versions
of DRC will support both speech and music and then the MSB of parameter drc_speech_mode_samp_f may take value 0x02
to indicate music.

@ Texas Instruments Proprietary Information — Internal Data Page 47 of 130
TEXAS
INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

| | | | 0x02] | 16kHz sampling frequency”’
In case of Read Access, the following parameters are valid only if speech_mode_samp_f is
non-zero
num_subbands INT16 16b/Q0 | [0x0001, | full-band processing
0x0003] three sub-bands processing
frame_size INT16 16b/Q0 | [0x0050, | 80 samples, 1X10ms frame
processing (FP) at 8kHz
0x00AO0, 160 samples, 2X10ms FP
(8kHz), 1X10ms FP (16kHz)
0x0140] 320 samples, 2X10ms FP
(16kHz)
expansion_knee_fb_bs UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
expansion_knee_md_hg UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
compression_knee_fb_bs UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
compres- UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
sion_knee_md_hg 0x5A] maximal: 90dB 1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
expansion_ratio_fb_bs UINT16 MSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
LSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
expansion_ratio_md_hg UINT16 MSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
LSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
compression_ratio_fb_bs UINT16 MSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
LSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
compres- UINT16 MSB 8b/Q2 | [0x05..., | minimal: 1.25
sion_ratio_md_hg OX7F] maximal: 31.75 0.25 steps
LSB 8b/Q2 | [0x05..., | minimal: 1.25
0x7F] maximal: 31.75 0.25 steps
max_amplification_fb_bs UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
0x12] maximal: 18dB 1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x12] maximal: 18dB 1dB steps
max_amplification_md_hg UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
0x12] maximal: 18dB 1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x12] maximal: 18dB 1dB steps
energy_limiting_th_fb_bs UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps

° Though DRC 1.0 has the capability to operate on apeech at 8 kHz and 16 kHz sampling frequencies, the modules of the TCS
3.2 voice acoustic chain currently operate at 8 kHz. Using DRC 1.0 in this chain limits its capability to 8 kHz. Hence the LSB of

this parameter shall not use value 0x02 for TCS 3.2.

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 48 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
en- UINT16 MSB 8b/Q0 | [0x00..., | minimal: 0dB
ergy_limiting_th_md_hg OX5A] maximal: 90dB_1dB steps
LSB 8b/Q0 | [0x00..., | minimal: 0dB
0x5A] maximal: 90dB 1dB steps
limiter_threshold_fb INT16 16b/Q0 | [0x0001 | minimal: 1
0x7FFF] | maximal: 32767 1 steps
limiter_threshold_bs INT16 16b/Q0 | [0x0001 | minimal: 1
0x7FFF] | maximal: 32767 1 steps
limiter_threshold_md INT16 16b/Q0 | [0x0001 | minimal: 1
0x7FFF] | maximal: 32767 1 steps
limiter_threshold_hg INT16 16b/Q0 | [0x0001 minimal: 1
Ox7FFF] | maximal: 32767 1 steps
limiter_release_fb_bs UINT16 MSB index | [0x01, 500dB/sec (for high-crest),
200dB/sec (for low-crest)
0x02, 200dB/sec (for high-crest),
50dB/sec (for low-crest)
0x03, 100dB/sec (for high-crest),
15B/sec (for low-crest)
0x04, 50dB/sec (for high-crest),
10dB/sec (for low-crest)
0x05] 30dB/sec (for high-crest),
2dB/sec (for low-crest)
LSB index | [OxO01... Same as above
0x05]
limiter_release_md_hg UINT16 MSB index | [Ox01... Same as above
0x05]
LSB index | [OxO01... Same as above
0x05]
lim- UINT16 MSB 8b/Q0 | [0x00... minimal: 0 frame
iter_hangover_spect_pres 0x7F] maximal: 255 frames
eve LSB | 8b/Q8 | [0x00.. | minimal: 0.0
0x7F] maximal: 1.0
gain_track_fb_bs UINT16 MSB index | [0x01, instantaneous gain tracking
0x02, fast gain tracking
0x03, medium gain tracking
0x04, gain tracking for speech
0x05, slow gain tracking
0x06] very slow gain tracking
LSB index | [OxO01... Same as above
0x06]
gain_track_md_hg UINT16 MSB index | [Ox01... Same as above
0x06]
LSB index | [OxO01... Same as above
0x06]
low_pass_filter[17] INT16 [17] index | coeffi- low pass filter
cients
mid_band _filter[17] INT16 [17] index | coeffi- band pass filter
cients
@ Texas Instruments Proprietary Information — Internal Data Page 49 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

9.2.1.43 T_AUDIO_IIR_CFG

The primary goal of the IIR 4.x is to equalize the Receiving Frequency Response (RFR) and the Send-
ing Frequency Response (SFR) of the User Equipment (UE) to fit in 3GPP Full-Type Agreement (FTA)
tests cases. IIR is used the downlink in the TCS3.2 acoustic chain and is used for the equalization of

the RFR only.

IIR module only works in DAl acoustic and GSM and Bluetooth headset path modes.

The following IR settings are to be used for IR 4.x used in the TCS 3.2 acoustic chain.

IIR settings are inside following structure of the speaker settings:
typedef struct

T_11R_CONTROL iir_dl_control;
T_AUDIO_IIR_PARAMS parameters ;

3

T_AUDIO_IIR_CFG;

typedef enum
11IR_STOP

1IR_START
1IR_UPDATE = 2

0,
1,

}
T_11R_CONTROL;

typedef struct

UINT16 control;

UINT16 frame_size;

UINT16 fir_swap;
T_AUDIO_IIR_FIR_PARAMS fir_filter;
T_AUDIO_IIR_SOS PARAMS sos_filter;
INT16 gain;

¥
T_AUDIO_IIR_PARAMS;
typedef struct

UINT16 fir_enable;
UINT16 fir_length;
INT16 Fir_shift;
INT16 Ffir_taps[40];

¥
T_AUDIO_IIR_FIR_PARAMS;

typedef struct
{

UINT16 sos_enable;
UINT16 sos_number;
T_AUDIO_IIR_SINGLE_SOS_PARAMS sos_filter[6];

3
T_AUDIO_IIR_SOS_PARAMS;
typedef struct
INT16 sos_fact;
INT16 sos_fact_form;
INT16 sos_den[2];
INT16 sos_num[3];
INT16 sos_num_form;

b
T_AUDIO_IIR_SINGLE_SOS_PARAMS;

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 50 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

T _AUDIO IIR CFG

Variable Name Type Format Range Comments
0x0000 Disable
control UINT16 QO 0x0001 Enable 8kHz
0x0002 | Enable 16kHz"’
In case of Read Access, the following parameters are valid only if control is non-zero
0x0050 80 samples (10ms@ 8kHz)
160 samples
. 0x00A0 (2x10ms @ 8kHz, 10ms
frame_size UINT16 Qo0 @16kH2)
320 samples (2x10ms
0x0140 | (& 16kHz)
) 0x0001 FIR acting before IIR (SOS)
fir_swap VINT16 Q0 0x0002 | IIR SOS acting before FIR
- T_AUDIO_IIR_FIR
fir_filter PARAMS structure see below | see below
. T_AUDIO_IIR_SOS
sos_filter PARAMS structure see below | see below
B 0x0000 Digital gain OFF (bypass)
gain INT16 Q13 [0x0001, Digital gain ON [-
OX7FFF] | 78dB,...+12dB].
T AUDIO IIR FIR PARAMS
. 0x0000 FIR Disable
fir_enable UINT16 Qo0 OX0001 FIR Enable
- [0x0001, [Min =1 tap
fir_length UINT16 Q0 | 0x0028] [Max = 40 taps, N =40,
. [0x0000,
fir_shift INT16 Qo0 OX7FFF] Q(Hy)-
. [0x8000, N 0<i<N_
fir_taps[40] INT16 Q(Hy) OXTFFF] {h},0<i<N-L
T AUDIO IIR_ SOS PARAMS
0x0000 | IIR (SOS) disable
sos_enable VINT16 Q0 0x0001 | IR (SOS) enable
sos_number UINT16 Qo0 [0x0001, | Min =1 SOS (biquad)
...0x0006] | Max = 6 SOS (biquads),
K =6.
T_AUDIO_IIR_SI
sos_params[6] NGLE_SOS PAR | structure
AMS
T AUDIO IIR SINGLE SOS PARAMS
: [0x8000, ek <
sos_fact INT16 QG | oy7rer (G} 1<k=k.
[0x0000, '
sos_fact_form INT16 Qo0 OX7EFF] Q(Gy).
[0x8000, | SOS denominators
sos_den[2] INT16 Q14 | 0x7FFF] | (b11,..b26)

° Though IIR 4.x has the capability to operate at 8 kHz and 16 kHz sampling frequencies, using IIR 4.x in the TCS3.2 acoustic
chain limits it to 8 kHz. So in theis chain, IIR 4.x can be set to operate at ONLY at 8 kHz. Hence parameter iirdx _control shall
not use value 0x0002 for TCS 3.2

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 51 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

[0x8000, | SOS numerators (a01,...a21) -
$0s_num(3] INT16 Q@) | ox7FFF] | > (a06....a26).
0x0000,
sos_num_form INT16 Qo0 OX7FFF] Q(ay) -
@ T Texas Instruments Proprietary Information — Internal Data Page 52 of 130
EXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

- For other configurations :

typedef struct

/* mode of the speaker */

INT8 mode;
/* Setting of the current mode */
T_AUDIO_SPEAKER_MODE setting;

by
T_AUDIO_SPEAKER_SETTING;

where the speaker modes are:
typedef union

/* handheld mode parameters */
T_AUDIO_SPEAKER_MODE_HANDHELD handheld;

/* handfree mode parameters */
T_AUDIO_SPEAKER_MODE_HANDFREE handfree;

/* headset mode parameters */
T_AUDIO_SPEAKER_MODE_HEADSET headset;

/* buzzer mode parameters */
T_AUDIO_SPEAKER_MODE_BUZZER buzzer;

/* handheld and handfree mode parameters */
T_AUDIO_SPEAKER_MODE_HANDHELD HANDFREE handheld_handfree;
/* handheld and handfree mode parameters */

T_AUDIO_SPEAKER_MODE_HANDHELD_80HM handheld_8ohm;
/* handheld and handfree mode parameters */
T_AUDIO_SPEAKER_MODE_HANDFREE_80HM handfree_8ohm;

}
T_AUDIO_SPEAKER_MODE;

typedef struct

/* gain of the speaker */
INT8 gain;
/* use the audio filter */
INT8 audio_Filter;
#i1f (ANALOG == 3)
/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;
#endif
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameters */
T_AUDIO_LIMITER_CFG limiter;
/* 1IR Filter parameters */
T_AUDIO_IIR_CFG iir;
T_AUDIO_SPEAKER_MODE_HANDHELD;

typedef struct

/* gain of the speaker */
INT8 gain;
/* use the audio filter */
INT8 audio_filter;

#if (ANALOG == 3)
/* use the audio highpass filter */
INT8 audio_highpass_Tilter;

#endif
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameters */
T_AUDIO_LIMITER_CFG limiter;
/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

3
T_AUDIO_SPEAKER_MODE_HANDFREE ;
typedef struct

/* gain of the speaker */

INT8 gain;
/* use the audio filter */

@ Texas Instruments Proprietary Information — Internal Data
TEXAS

INSTRUMENTS

Page 53 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

INT8 audio_filter;

#if (ANALOG == 3)
/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;

#endif
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameters */
T_AUDIO_LIMITER_CFG limiter;
/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

3
T_AUDIO_SPEAKER_MODE_HEADSET;
typedef struct

/* activate the buzzer */
INT8 activate;

3
T_AUDIO_SPEAKER_MODE_BUZZER;
typedef struct

/* gain of the speaker */
INT8 gain;
/* use the audio filter */
INT8 audio_filter;

#1f (ANALOG == 3)
/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;

#endif
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameters */
T_AUDIO_LIMITER_CFG limiter;
/* 1IR filter parameters */
T_AUDIO_IIR_CFG iir;

h
T_AUDIO_SPEAKER_MODE_HANDHELD_HANDFREE;

typedef struct

{
/* gain of the speaker */
INT8 gain;
/* extra gain of the speaker */
INT8 extra_gain;
/* use the audio filter */
INT8 audio_filter;
/* use the audio highpass filter */
INT8 audio_highpass_Tfilter;
/* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameters */
T_AUDIO_LIMITER_CFG limiter;
/* 1IR FTilter parameters */
T_AUDIO_IIR_CFG iir;

¥
T_AUDIO_SPEAKER_MODE_HANDHELD_8OHM;

typedef T_AUDIO_SPEAKER_MODE_HANDHELD_ 80HM T_AUDIO_SPEAKER_MODE_HANDFREE_8OHM;

IMPORTANT NOTE:

IIR and LIMITER features are only present in TCS 3.x software except TCS 3.0. Other software
versions do not include T_AUDIO_LIMITER_CFG and T_AUDIO_IIR_CFG structures.

As the IR filter replaces the FIR filter, T_AUDIO_FIR_COEF isn’t present in software versions
supporting the IR filter.

For parameters details:
T_AUDIO_LIMITER_CFG: see 9.2.1.4.4

@ Texas Instruments Proprietary Information — Internal Data Page 54 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

T_AUDIO_IIR_CFG: see 9.2.1.4.5

Mode

Specifies the mode of the microphone: AUDIO_SPEAKER_HANDHELD, AUDIO_SPEAKER_HANDFREE or
AUDIO_SPEAKER_HEADSET or AUDIO_SPEAKER_BUZZER or AUDIO_SPEAKER_HANDHELD_ HANDFREE
or AUDIO_SPEAKER_HANDHELD_80OHM/AUDIO _SPEAKER_HANDFREE_80OHM.

mode.

AUDIO_SPEAKER_HANDHELD mode: this mode is available in GSM, bluetooth cordless voice and all DAI path

gain

Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER_FILTER_ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER_FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference Min Typ Max Unit
gain at 1kHz 5
<= 100 Hz -20 DB
100 Hz to 200 Hz -10 dB
300 Hz to 400 Hz -2 0 +1 dB
400 Hz to 3300 Hz -1 0 +1 dB
3300 Hz to 3400 Hz -2 0 +1 dB
4000 Hz to 4600 Hz -17 dB
4600 Hz to 6000 Hz -40 dB
>= 6000 Hz -45 dB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter (only available with analog base band SYREN)
Add or bypass the high-pass part of the audio filter: AUDIO_SPEAKER_HIGHPASS_FILTER_ON to add it,

AUDIO SPEAKER_HIGHPASS FILTER_OFF to bypass it.

fir_coef

List of the coefficient of the FIR of the speaker. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1 = 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.
The FIR filter is replaced by IIR filter in TCS3.x software, except TCS 3.0.

limiter
See 9.2.1.4.4 for details.

lir
See 9.2.1.4.5 for details.

SPEAKER_HANDFREE mode: this mode is only available in GSM, bluetooth cordless voice and all DAI path mode.

Gain

Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER_FILTER_ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER_FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference Min Typ Max Unit
gain at 1kHz S
<=100 Hz -20 DB
100 Hz to 200 Hz -10 DB
300 Hz to 400 Hz -2 0 +1 DB
400 Hz to 3300 Hz -1 0 +1 DB
3300 Hz to 3400 Hz -2 0 +1 DB

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 55 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
4000 Hz to 4600 Hz -17 DB
4600 Hz to 6000 Hz -40 DB
>= 6000 Hz -45 DB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter (only available with analog base band SYREN)
Add or bypass the high-pass part of the audio filter: AUDIO_SPEAKER_HIGHPASS_FILTER_ON to add it,
AUDIO_SPEAKER_HIGHPASS FILTER_OFF to bypass it.

fir_coef

List of the coefficient of the FIR of the speaker. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1 = 0x4000 and —1=0xc000.
Note: the FIR is available only in DAl and GSM path mode.

The FIR filter is replaced by IIR filter in TCS3.x software, except TCS 3.0.

limiter
See 9.2.1.4.4for details.

lir
See 9.2.1.4.5 for details.

SPEAKER_HEADSET mode: this mode is only available in GSM, bluetooth cordless voice and all DAI path mode. It
is only available with the analog base band I0TA and SYREN.

Gain
Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER_FILTER_ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER_FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference Min Typ Max Unit
gain at 1kHz S
<=100 Hz -20 DB
100 Hz to 200 Hz -10 DB
300 Hz to 400 Hz -2 0 +1 DB
400 Hz to 3300 Hz -1 0 +1 DB
3300 Hz to 3400 Hz -2 0 +1 DB
4000 Hz to 4600 Hz -17 DB
4600 Hz to 6000 Hz -40 DB
>= 6000 Hz -45 DB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter (only available with analog base band SYREN)
Add or bypass the high-pass part of the audio filter: AUDIO_SPEAKER_HIGHPASS_FILTER_ON to add it,
AUDIO_SPEAKER_HIGHPASS_FILTER_OFF to bypass it.

fir_coef

List of the coefficient of the FIR of the speaker. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1 = 0x4000 and —1=0xc000.
Note: the FIR is available only in DAl and GSM path mode.

The FIR filter is replaced by IIR filter in TCS3.x software, except TCS 3.0.

limiter
See 9.2.1.4.4 for details.

lir
See 9.2.1.4.5 details.

SPEAKER_BUZZER mode: this mode is only available in GSM, bluetooth cordless voice and all DAI path mode. It is
only available with the analog base band NAUSICA-OMEGA.

activate
Specifies if the buzzer is activated (AUDIO_SPEAKER_BUZZER_ON) or not
(AUDIO_SPEAKER_BUZZER_OFF).

AUDIO_SPEAKER_HANDHELD HANDFREE mode: this mode is available in GSM, bluetooth cordless voice and
all DAI path mode.

gain
Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

@ Texas Instruments Proprietary Information — Internal Data Page 56 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER_FILTER_ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER_FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference Min Typ Max Unit
gain at 1kHz 5
<=100 Hz -20 dB
100 Hz to 200 Hz -10 dB
300 Hz to 400 Hz -2 0 +1 dB
400 Hz to 3300 Hz -1 0 +1 dB
3300 Hz to 3400 Hz -2 0 +1 dB
4000 Hz to 4600 Hz -17 dB
4600 Hz to 6000 Hz -40 dB
>= 6000 Hz -45 dB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter (only available with analog base band SYREN)
Add or bypass the high-pass part of the audio filter: AUDIO_SPEAKER_HIGHPASS FILTER_ON to add it,
AUDIO_SPEAKER_HIGHPASS_FILTER_OFF to bypass it.

fir_coef

List of the coefficient of the FIR of the speaker. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1 = 0x4000 and —1=0xc000.
Note: the FIR is available only in DAl and GSM path mode.

The FIR filter is replaced by IIR filter in TCS3.x software except TCS 3.0.

limiter
See 9.2.1.4.4 for details.

lir
See 9.2.1.4.5 for details.

AUDIO_SPEAKER_HANDHELD_80OHM, AUDIO_SPEAKER_HANDFREE_80OHM mode: this mode is available
in GSM, Bluetooth cordless voice and all DAI path mode. It is only available with the analog base band SYREN.

gain
Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

extra_gain
Specifies an additional gain of the speaker 8ohm path: 2.5 dB (AUDIO_SPEAKER_SPK_GAIN_2_5dB) or 8.5 dB
(AUDIO_SPEAKER_SPK_GAIN_8 5dB).

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER_FILTER_ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER_FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference | Min Typ Max Units
gain at 1kHz
<= 100 Hz -20 dB
100 Hz to 200 Hz -10 dB
300 Hz to 400 Hz -2 0 +1 dB
400 Hz to 3300 Hz -1 0 +1 dB
3300 Hz to 3400 Hz -2 0 +1 dB
4000 Hz to 4600 Hz -17 dB
4600 Hz to 6000 Hz -40 dB
>= 6000 Hz -45 dB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter (only available with analog base band SYREN)
Add or bypass the high-pass part of the audio filter: AUDIO_SPEAKER_HIGHPASS_FILTER_ON to add it,
AUDIO_SPEAKER_HIGHPASS FILTER_ OFF to bypass it.

fir_coef
List of the coefficient of the FIR of the speaker. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1 = 0x4000 and —1=0xc000.

Note: the FIR is available only in DAl and GSM path mode.
The FIR filter is replaced by IIR filter in TCS3.x software except TCS 3.0.

@ Texas Instruments Proprietary Information — Internal Data Page 57 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

limiter
See 9.2.1.4.4 for details.

lir
See 9.2.1.4.5 for details.

@ Texas Instruments Proprietary Information — Internal Data Page 58 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.1.44 T_AUDIO_LIMITER_CFG

Limiter aim is to avoid using the non-linear regions of the speaker response in order to avoid audio
saturation/distortion. Please refer to [5] for an overview of the module,

Limiter is only available in TCS 3.x software except TCS 3.0. Other software versions do not
include this structure in the speaker settings.
Limiter module only works in DAl acoustic and GSM path mode.

Limiter settings are inside following structure of the speaker settings:

typedef struct

BOOLEAN limiter_enable;
UINT16 block_size;
UINT16 slope_update_period;
UINT16 nb_fir_coefs;
INT16 filter_coefs[16];
UINT16 thr_low_O;

INT16 thr_low_slope;
UINT16 thr_high_O;

INT16 thr_high_slope;
INT16 gain_fall;

INT16 gain_rise;

}
T_AUDIO_LIMITER_CFG;

limiter_enable
Enable/disable the limiter
0- disable
1- enable

In case of Read Access, the following parameters are valid only if limiter_enable = 1.

block_size
Number of samples in an input block.
Currently, mandatory value is 160.

slope_update_period
Number of samples between each update of the limiter slope. It must be a divider of block_size.
Recommended value is 160.

nb_fir_coefs
Number of coefficients in the filter. It must be an odd number. Maximum number is 31.
Recommended value is 31.

filter_coefs
Array containing the filter coefficients. This array must contains (nb_fir_coefs-1)/2+1 coefficients.
The filter being a symmetric one, other coefficients do not need to be saved in the array.

thr_low_0/thr_low_slope
thr_high_0/thr_high_slope

thr_X_0 (range 0..32767)

percentage of the maximum level of signal wanted at the output of the limiter with respect to the
maximum possible level set to 1. It has to be multiplied by 32767 to be expressed with only 1 bit
significant for integer part and 15 for decimal part.

thr_X_slope (range -30..+6)

Slope threshold above which signal has to be decreased. It is expressed in dB.

Minimum and maximum values depend on possible values for voiceband downlink control regis-
ter.

These values permit to define Thr(low) and Thr(high) characteristic function to volume setup in
the ABB.
Thr(low) and Thr(high) define the maximum level of the signal wanted at the output of the limiter:

@ Texas Instruments Proprietary Information — Internal Data Page 59 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

e Thr(low) for the low frequency part of the signal
e Thr(high) for the high frequency part of the signal

[]
: Following scheme shows a model of the audio patch after the limiter:

DSP ABB
audio samples Limiter /PZ {}» DAC —>—>
Variable ABB
audio gain
Thr

Thr(low) or Thr(high) are processed using the following characteristic:

= For Volumeg) <= thr_low_slopegg),
Thr(low) = thr_low_0
= For Volumegg) > thr_low_slopegg),
Thr(low) = thr_low_0 x thr_low_slopein / Volumen
or
Thr(low) - thr_low_O X 10(thr_low_slope(dB) - Volume(dB))/20

* For Volumegg) <= thr_high_slopegg),
Thr(high) = thr_high_0
* For Volumegg, > thr_high_slopegg),
Thr(high) = thr_high_0 x thr_high_slopen / Volume
or
Thr(hlgh) = thr h|gh 0 X 10(thr_high_slope(dB) - Volume(dB))/20

Thr
17 32767

——Thr=f(ABB_wvolume)

—Thr_0/32767

I 4 4 4 4 4 4 Wal 4 |
r T T T T T t o t |
-40 -30 -20 -10 0 10
Volume (variable audio gain) in dB

NB:

The name of the thr_low_slope on the L1 code is thr_ABB_vol_low.
The name of the thr_high_slope on the L1 code is thr_ABB_vol_high.

gain_fall

Decrease the slope when saturation has been detected on the previous block of samples. Format
is Q15.

Recommended value is 26214

Ex: gain_fall = 26214 => slope(n+1) = 0.8 * slope(n)

@ Texas Instruments Proprietary Information — Internal Data Page 60 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

gain_rise

Increase the slope when no saturation has been detected on the previous block of samples. The
top limit of the slope is 1. Format is Q15 and 1 is added to get the coefficient of the multiplication.
Recommended value is 655

Ex: gain_rise = 655 => slope(n+1) = max(1, 1.02 * slope(n))

Information about Limiter parameters setting can be found in [6].

9.2.1.45 T_AUDIO_IIR_CFG

IIR filter replaces the FIR filter by having best performances using fewer coefficients. The aim of the
IIR filter is to compensate the speaker frequency response in order to fit in ETSI requirements. Please
refer to [3] for an overview of the module,

IIR filter is only available in TCS 3.x software except TCS 3.0. Other software versions do not
include this structure in the speaker settings. When IIR is supported, the FIR filter isn’t used so
the FIR coefficients aren’t included in the speaker settings.

IIR module only works in DAl acoustic and GSM path mode.

IIR settings are inside following structure of the speaker settings:

typedef struct

BOOLEAN 1iir_enable;

UINT8 nb_iir_blocks;
INT16 iir_coefs[80];
UINT8 nb_fir_coefs;
INT16 fir_coefs[32];

INT8 input_scaling;

INT8 Fir_scaling;

INT8 input_gain_scaling;
INT8 output_gain_scaling;

UINT16 output_gain;
INT16 feedback;

}
T AUDIO_IIR _CFG;

iir_enable
Enable/disable the IIR filter
0- disable
1- enable

In case of Read Access, the following parameters are valid only if iir_enable = 1.

nb_iir_blocks
Number of blocks for the given implementation of the systolic lattice IIR filter.
Value can be:
0 Recursive filtering part is disabled
1 Forbidden
[4:6] Number of IR blocks

iir_coefs
Array containing the coefficients of the IR lattice filter. There are 8 coefficients per block. The
coefficients are generated by the MATLAB script sections.m. See [4] for more information.

nb_fir_coefs
Number of coefficients for the FIR (degree+1 of the FIR polynomial). Thus number must be
greater or equal to 2 or the FIR filtering will be removed. It must be lower or equal to 32.

fir_coefs
Array containing the coefficients of the FIR filter. First coefficient (index 0) is the last coefficient
corresponding to the term of higher degree in the FIR polynomial.

@ Texas Instruments Proprietary Information — Internal Data Page 61 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

input_scaling

Used to scale the input at entry of the IIR to avoid overflows inside the IIR.

Note that the output of the filter (after the FIR) is scaled in the opposite way to compensate for
this initial scaling.

The scaling is in [—16,15] range.

fir_scaling
Used to scale the output of the 1IR before using the FIR to avoid any scaling in the FIR. The out-
put of the filter is scaled in the opposite way to compensate for this temporary scaling.

The scaling is in [—16,15] range.

input_gain_scaling
The scaling factor applied at input of the filter for the global gain. Useful if the gain to implement is
lower than 1 and if there are some overflows in the filter.

The scaling is in [—16,15] range.

output_gain_scaling
Scaling factor at the output of the filter for the gain. Useful if the global gain to implement is higher
than 1.

The scaling is in [—16,15] range.

output_gain
A gain between [0,2] to tune the value of the global gain applied by the module. Format is un-
signed Q15.

feedback
Used to tune the rounding noise of the IIR implementation and to remove the bias. This value is
filter dependent and should be tuned for a given set of IIR coefficients. Format is Q15.

Information about IIR parameters setting can be found in [4].

@ Texas Instruments Proprietary Information — Internal Data Page 62 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

9.2.1.5 T _AUDIO STEREO_SPEAKER_SETTING
Specifies the characteristic of the speaker audio stereo path.

For analog base band TRITON:

Specifies the characteristic of the speaker audio stereo path.
typedef struct

/* mode of the speaker */

INT8 mode;
/* Setting of the current mode */
T_AUDIO_STEREO_SPEAKER_MODE setting;

b
T_AUDIO_STEREO_SPEAKER_SETTING;

typedef union

{

/* headphone mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HEADPHONE headphone;
/* handheld mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD handheld;
/* handfree mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE handfree;
T_AUDIO_STEREO_SPEAKER_MODE_AUX aux;
T_AUDIO_STEREO_SPEAKER_MODE_CARKIT carkit;

}
T_AUDIO_STEREO_SPEAKER_MODE ;

typedef struct

/* stereo/mono configuration of the speaker */
INT8 stereo_mono;

/* sampling rate frequency */

INT8 sampling_frequency;

}
T_AUDIO_STEREO_SPEAKER_MODE_HEADPHONE ;

typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

¥
T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD;

typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

b
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE;

typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

¥
T_AUDIO_STEREO_SPEAKER_MODE_AUX;

typedef struct

/* stereo/mono configuration of the speaker */
INT8 stereo_mono;

/* sampling rate frequency */

INT8 sampling_frequency;

h
T_AUDIO_STEREO_SPEAKER_MODE_CARKIT;

Mode

Specifies the mode of the microphone: AUDIO_STEREO_SPEAKER_MODE_HEADPHONE,

AUDIO_STEREO_SPEAKER_MODE_HANDHELD,
AUDIO_STEREO_SPEAKER_MODE_HANDFREE, AUDIO_STEREO_SPEAKER_MODE_AUX,

{'? TEXAS

INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 63 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

AUDIO_STEREO_SPEAKER_MODE_CARKIT

AUDIO_STEREO_SPEAKER MODE_HEADPHONE mode: this mode is only available with the
analog base band SYREN.

stereo_mono:
Specifies the possible stereo-mono conversion:
- AUDIO_STEREO (no conversion)
- AUDIO_MONO_LEFT (convert to mono and transmit on left channel)
- AUDIO_MONO_RIGHT (convert to mono and transmit on right channel)
- AUDIO_MONO_LEFT | AUDIO_MONO_RIGHT (convert to mono and transmit on both
channels)

sampling_frequency:

Specifies the audio stereo sampling rate frequency
- AUDIO_STEREO_SAMPLING_FREQUENCY_48KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_44 1KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_32KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_24KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_22_05KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_16KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_12KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_11_025KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_8KHZ

WARNING: sampling frequency can not be changed after PLL power on.

AUDIO_STEREO_SPEAKER_MODE_HANDHELD mode:

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO MONO LEFT.

AUDIO_STEREO SPEAKER_MODE_HANDFREE mode:

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO MONO LEFT.

AUDIO_STEREO _SPEAKER_MODE_AUX mode:

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO MONO LEFT.

AUDIO_STEREO SPEAKER_MODE_CARKIT mode:

stereo_mono: See above

sampling_frequency: See above

- For other configurations
typedef struct

/* mode of the speaker */

INT8 mode;
/* Setting of the current mode */
T_AUDIO_STEREO_SPEAKER_MODE setting;

b
T_AUDIO_STEREO_SPEAKER_SETTING;

where the speaker modes are:
typedef struct

/* stereo/mono configuration of the speaker */
INT8 stereo_mono;

/* sampling rate frequency */

INT8 sampling_frequency;

3
T_AUDIO_STEREO_SPEAKER_MODE_HEADPHONE ;
typedef struct

/* sampling rate frequency */

INT8 sampling_frequency;
¥

@ Texas Instruments Proprietary Information — Internal Data Page 64 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD;
typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

by
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE;
typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

h
T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD_8OHM;

typedef T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD_8OHM
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE_SOHM;

typedef union

/* headphone mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HEADPHONE headphone;

/* handheld mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD handheld;

/* handfree mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE handfree;

/* handheld 8ohm mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD_80HM handheld_8ohm;
/* handfree 8ohm mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE_80HM handfree_8ohm;

by
T_AUDIO_STEREO_SPEAKER_MODE;

Mode

Specifies the mode of the microphone: AUDIO_STEREO_SPEAKER_HEADPHONE,
AUDIO_STEREO_SPEAKER_HANDHELD, AUDIO_STEREO_SPEAKER_HANDFREE,
AUDIO_STEREO_SPEAKER_HANDHELD/HANDFREE_80OHM

AUDIO_STEREO_SPEAKER_HEADPHONE mode: this mode is only available with the analog base
band SYREN.

stereo_mono:
Specifies the possible stereo-mono conversion:
- AUDIO_STEREO (no conversion)
- AUDIO_MONO_LEFT (convert to mono and transmit on left channel)
- AUDIO_MONO_RIGHT (convert to mono and transmit on right channel)
- AUDIO_MONO_LEFT | AUDIO_MONO_RIGHT (convert to mono and transmit on both
channels)

sampling_frequency:
Specifies the audio stereo sampling rate frequency
- AUDIO_STEREO SAMPLING_FREQUENCY_48KHZ
- AUDIO_STEREO SAMPLING _FREQUENCY 44 1KHZ
- AUDIO_STEREO SAMPLING_FREQUENCY_32KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_22 05KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_16KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_11 025KHZ
- AUDIO_STEREO_SAMPLING_FREQUENCY_8KHZ

WARNING: sampling frequency can not be changed after PLL power on.

AUDIO_STEREO_SPEAKER_HANDHELD mode: this mode is only available with the analog base
band SYREN.

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO MONO_LEFT.

AUDIO_STEREO_SPEAKER_HANDFREE mode: this mode is only available with the analog base
band SYREN.

| sampling frequency: See above

@ Texas Instruments Proprietary Information — Internal Data Page 65 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

| Note: stereo-mono conversion is set to AUDIO_MONO_LEFT.

AUDIO_STEREO_SPEAKER_HANDHELD/HANDFREE_80OHM mode: this mode is only available
with the analog base band SYREN.

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO MONO_LEFT.

9.2.1.6 T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING

Specifies the characteristic of the features involved in the loop between the speaker and the micro-
phone. For DSP codes >= 33, there is a new version of AEC called NEW AEC.

- For P2 samples with non Tl audio ABB :

typedef struct

/* gain of the sidetone */

INT16 sidetone_gain;
/* configuration of the acoustic echo cancellation */
T_AUDIO_AEC_CFG aec;

3
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING;

@ Texas Instruments Proprietary Information — Internal Data Page 66 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

- For TRITON ABB:

typedef struct

/* gain of the sidetone */

INT16 sidetone_gain;

/* configuration of the acoustic echo cancellation */
T_AUDIO_AEC_CFG aec;

/* ES configuration */

T_AUDIO_ES_CFG es;

}
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING;

- For other configurations :

typedef struct

/* gain of the sidetone */

INT8 sidetone_gain;
/* configuration of the acoustic echo cancellation */
T_AUDIO_AEC_CFG aec;

3
T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING;

Where the AEC parameters areas follows::

9.2.1.6.1 T_AUDIO_AEC_CFG

The primary goal of the AEC is to remove the echo stemming from the loudspeaker reverberation to

the microphone.

INSTRUMENTS

AEC:
typedef struct
/* Enable the AEC */
UINT16 aec_enable;
/* Mode of the AEC */
UINT16 aec_mode;
/* level of the echo cancellation */
UINT16 echo_suppression_level;
/* enable the noise suppression */
UINT16 noise_suppression_enable;
/* level of the noise suppression */
UINT16 noise_suppression_level;
3
T_AUDIO_AEC_CFG;
NEW AEC :
typedef struct
UINT16 aec_enable;
BOOL continuous_Tiltering;
UINT16 granularity_attenuation;
UINT16 smoothing_coefficient;
UINT16 max_echo_suppression_level;
UINT16 vad_Tfactor;
UINT16 absolute_threshold;
UINT16 factor_asd_filtering;
UINT16 factor_asd_muting;
UINT16 aec_visibility ;
UINT16 noise_suppression_enable;
UINT16 noise_suppression_level;
3
T_AUDIO_AEC_CFG;
@ Texas Instruments Proprietary Information — Internal Data Page 67 of 130
TEXAS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

IMPORTANT NOTE:

The ES features is only present in TCS 3.x software except TCS 3.0. Other software versions
do not include T_AUDIO_ES_CFG structure.

For T_AUDIO_ES_ CFG details: see 9.2.1.3.4

NOTE:

The noise suppressor is replaced by a new ANR module in TCS 3.x software except TCS 3.0. For these soft-
ware versions, “noise_suppression_enable” and “noise_suppression_level” parameters don't exist. See 9.2.1.3
(microphone settings) for information on ANR.

Below the detail of each parameters:

Sidetone (For P2 samples using a non-T1 audio ABB)

Specifies the gain to add to the loop between the microphone and the speaker. The range is from
0x0001 (-90 dB) to OXFFFF (6 dB) in unsigned Q15 format, ex:

0dB - (2715)*107(0/20) = 0x8000

-6 dB > (2715)*107(-6/20) = 0x4026

0x08F5 - 20*log(2293/(2"15)) = -23 dB

This mode is only available in GSM and bluetooth cordless voice path mode.

Sidetone (For other configurations)
Specifies the gain in 3 dB unit to add to the loop between the microphone and the speaker. The range is
from —-23 dB to 1 dB (3 dB by 3 dB). Note if the variable is equal to AUDIO_SIDETONE_OPEN, there’s
no loop between the microphone and the speaker.
This mode is only available in GSM and bluetooth cordless voice path mode.

WARNING: IF THE SPEAKER FILTER IS BYPASSED, THE SIDETONE IS OPEN.

es
See 9.2.1.3.4 for details
AEC

aec_enable
Specifies if the AEC module must be enabled (AUDIO_AEC_ENABLE) or disabled (AUDIO_AEC_DISABLE).
Note: AEC is only available in GSM and all DAl mode.

In case of Read Access, the following parameters are valid only if anr_enable = 1.

aec_mode

Specifies the mode of the cancellation: AUDIO_SHORT_ECHO: short echo cancellation, AUDIO_LONG_ECHO: long echo cancel-
lation.

Note: AEC is only available in GSM all DAI mode.

echo_suppression_level
Specifies the additional echo suppression level.
Note: noise suppression is only available in GSM and all mode.

Level name level (dB)
AUDIO_ECHO_0dB 0
AUDIO_ECHO_6dB 6
AUDIO_ECHO_12dB 12
AUDIO_ECHO_18dB 18

noise_enable

Specifies if the noise suppression module must be enable (AUDIO_NOISE_SUPPRESSION_ENABLE) or disable
(AUDIO_NOISE_SUPPRESSION_DISABLE).

Note: noise suppression is only available in GSM and all DAl mode.

Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.

noise_suppression_level
Specifies the noise suppression limitation level.
Note: AEC is only available in GSM and all DAl mode.

Level name level (dB)

@ Texas Instruments Proprietary Information — Internal Data Page 68 of 130
TEXAS
INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved
AUDIO_NOISE_NO_LIMIT no limitation
AUDIO_NOISE_6dB -6
AUDIO_NOISE_12dB -12
AUDIO_NOISE_18dB -18

Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.
NEW AEC (detailed format of the parameters can be found in [2])

aec_enable
Specifies if the AEC module must be enabled (AUDIO_AEC_ENABLE) or disabled (AUDIO_AEC_DISABLE).
Note: NEW AEC is only available in GSM and all DAI mode.

In case of Read Access, the following parameters are valid only if aec_enable = 1.

continuous_filtering
Enable (TRUE) or disable (FALSE) continuous mode filtering.

granularity_attenuation
granularity of the smoothed attenuation.

smoothing_coefficient
smoothing coefficient.

max_echo_suppression_level
maximum attenuation level. Some values are defined as constants:
AUDIO MAX ECHO xdB with x being 0, 2, 3, 6, 12, 18, 24.

vad_factor
VAD factor relative to the current estimated energy.

absolute_threshold
VAD absolute offset relative to the current estimated energy.

factor_asd_filtering
modifying factor of d_far_end_noise for filtering decision.

factor_asd_muting
modifying factor of d_far_end_noise for muting decision.

aec_visibility

Enable (AUDIO_AEC_VISIBILITY_ ENABLE) or disable (AUDIO_AEC_VISIBILITY_ DISABLE)
AEC visibility. A copy of far_end pow and far_end noise is traced in Layerl every
SC_AEC_VISIBILITY_INTERVAL frames. It is intended for debug purposes and can only be disabled by
a new AEC request (i.e. going back to idle mode won’t disable visibility for next call).

noise_enable

Specifies if the noise suppression module must be enabled (AUDIO_NOISE_SUPPRESSION_ENABLE) or disabled
(AUDIO_NOISE_SUPPRESSION_DISABLE).

Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.

noise_suppression_level
Specifies the noise suppression limitation level.
Note: AEC is only available in GSM and all DAI mode.

Level name level (dB)

AUDIO_NOISE_NO_LIMIT no limitation
AUDIO_NOISE_6dB -6
AUDIO_NOISE_12dB -12
AUDIO_NOISE_18dB -18

Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.

AEC 2.x

In TCS3.2 acoustic chain the version used is AEC 2.x.
AEC module only works in DAl acoustic and GSM and Bluetooth headset path modes.
The following AEC settings are to be used for AEC 2.x used in the TCS 3.2 acoustic chain.

AEC settings are inside following structure of the microphone speaker loop settings:
typedef struct

T_AEC_CONTROL aec_control;
T_AUDIO_AEC_PARAMS parameters ;

}
T_AUDIO_AEC_CFG;
typedef enum

AEC_STOP = 0,

@ Texas Instruments Proprietary Information — Internal Data Page 69 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

AEC_START =1,
AEC_UPDATE = 2

¥
T_AEC_CONTROL;

typedef struct
{
INT16 mode;
INT16 mu;
INT16 cont_filter;
INT16 scale_input_ul;
INT16 scale_input_dl;
INT16 div_dmax;
UINT16 div_swap_good;
UINT16 div_swap_bad;
INT16 block_init;
INT16 fact_vad;
UINT16 fact_asd_fil;
UINT16 fact_asd_mut;
UINT16 thr_abs;
INT16 es_level_max;
UINT16 granularity_att;
INT16 coef_smooth;
UINT16 block_size;

s
T_AUDIO_AEC_PARAMS;

Name Type Format Range Comments
0 AEC 1.8 with internal VAD and ES
x0008 ; ,
(previous solution)
0x0000 ﬁltze(?ntlsEvgth internal VAD and without
mode INT16 16b/Q0 AEC 2.0 with divergence control en-
0x0007
abled
0x0003 AEC 2.0 with divergence control dis-
abled
mu INT16 16b/Q15 0x5000 | Ref. 0.625
cont_filter 0x0000 | continuous filtering disabled
INT16 16b/Q0 0x0001 | continuous filtering enabled
scale_input_ul 0x0000 | Ref. 1, no scaling uplink
INT16 16b/Q0 0x0003 | Ref. 8, scaling uplink
scale_input_dl 0x0000 | Ref. 1, no scaling downlink
INT16 16b/Q15 0x0003 | Ref. 8, no scaling downlink
div_dmax INT16 16b/Q12 0x537D | Ref. 21373
div_swap_good UINT16 16b/Q0 0x7FB2 | Ref. 32690
div_swap_bad UINT16 16b/Q0 0x65AD | Ref. 26029
block_init INT16 16b/Q0 0x07D0 | Ref. 2000 samples
fact vad INT16 16b/Q15 0x3FFF | Ref. 0.5
fact_asd fil UINT16 16b/Q12 0x1000 | Ref. 4096
fact asd mut UINT16 16b/Q12 0x1000 | Ref. 4096
thr_abs UINT16 16b/Q0 0x0032 | Ref. 50
es_level_max [0x0813, | Ref. -24dB
INT16 16b/Q15
0x7FFF] | Ref. 0dB
granularity att UINT16 16b/Q0 0x00A0 | Ref. 160 samples
coef_smooth [OXOCCB, | Ref. 3275
INT16 16b/Q15
Ox7FFF] | Ref. 32767
block_size UINT16 16b/Q0 0x0001 | Ref. 1 sample
@ Texas Instruments Proprietary Information — Internal Data Page 70 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.1.7 T_AUDIO_MICROPHONE_SPEAKER_SETTING
Specifies the characteristic of the features that are common to the speaker and the microphone.

typedef struct
{

/* volume speed control */
INT16 volume_speed;

/* audio on/off */

INT8 audio_onoff;

b
T_AUDIO_MICROPHONE_SPEAKER_SETTING;

Below the detail of each parameters:

volume_speed (only available in case of non-T1 audio ABB used with P2 samples)

speed to change the volume in downlink and in uplink

values are from 0x0001 (low speed) to 0x7FFF (high speed) in signed Q15 format, ex:

0x1 - (2715)/1 = 32768 samples to reach the volume level

0x2 - (2715)/2 = 16384 samples to reach the volume level

OX7FFF - (2715)/32767 = 1 sample to reach the volume level

Audio_onoff (only available on Calypso+, Perseus 2 and Locosto samples)

If set to 1, it starts ABB audio and disable the automatic stop when no DSP audio activity is running.

If set to O, it will stop ABB audio when there is no DSP (or L1 MCU in case of Locosto) audio activity
running.

@ Texas Instruments Proprietary Information — Internal Data Page 71 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.2 API functions

9.2.2.1 audio_mode load

T _AUDIO_RET audio_mode _load (T_AUDIO_MODE_LOAD *p_parameter,
T_RV_RETURN return_path)

Description

This function is called to set an audio mode saved in a flash file.

Parameters

e T_AUDIO_MODE_LOAD
This parameter specifies the path name of the audio mode Flash file.

typedef struct
char audio_mode_filename[AUDIO_MODE_FILENAME_MAX_SI1ZE];

b
T_AUDIO_MODE_LOAD;

Below the detail of each parameters:

audio_mode_filename

Specifies the file name of the audio mode file. Note that this file name is used by the audio entity to request the data to the File Flash
System. Due to the fact that each audio mode flash files are in the same folder (/aud/) and have the same extension (.cfg). The file
name to specified contains only the name of the file without the folder name and the extension. For example: for the file
/aud/headset.cfg the file name is headset. Note the maximum size of the path plus the name is 10 characters.

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T _AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR An error is occurred during the execution of this function

Event Return

e AUDIO_MODE_LOAD_DONE
This event informs that the mobile is configured with the new audio mode.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
}T_AUDIO_MODE_LOAD_DONE;

The possible values of status are:

value Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR A problem occurs during the audio mode configuration
Q; Texas Instruments Proprietary Information — Internal Data Page 72 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

Current restriction of use

None.

Process flow

MMI AUDIO
| |
audio_mode_load(p_parameter, return_path)
AUDIO_MODE_LOAD_DONE
@ Texas Instruments Proprietary Information — Internal Data Page 73 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.2.2 audio_mode_save

T AUDIO_RET audio_mode _save (T_AUDIO_MODE_SAVE *p_parameter,

T _RV_RETURN return_path)
Description
This function is called to save the current audio mode in a flash file.
Note: Only a
Parameters

e T_AUDIO_MODE_SAVE
This parameter describes where the current audio mode must be saved.

typedef struct
char audio_mode_filename[AUDIO_MODE_FILENAME_MAX_SIZE];

b
T_AUDIO_MODE_SAVE;

Below the detail of each parameters:

audio_mode_filename

Specifies the file name of the audio mode file. Note that this file name is used by the audio entity to save the audio mdoe to the File
Flash System. Due to the fact that each audio mode flash files are in the same folder (/aud/) and have the same extension (.cfg). The
file name to specified contains only the name of the file without the folder name and the extension. For example: for the file
/aud/headset.cfg the file name is headset. Note the maximum size of the path plus the name is 10 characters.

e T RV_RETURN
C.f. API function audio_mode_load.

Immediate Return

e T_AUDIO_RET
C.f. API function audio_mode_load.

Event Return

e AUDIO_MODE_SAVE_DONE
This event informs that the audio mode is saved in flash.
typedef struct {
T_RV_HDR os_hdr;
INTS status;
}T_AUDIO_MODE_SAVE_DONE;

The possible values of status are:

Value | Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR A problem occurs during the audio mode configuration

Current restriction of use

None.

@ Texas Instruments Proprietary Information — Internal Data Page 74 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

Process flow

MMI

AUDIO

audio_mode_save(p_parameter, return_path)

v

A

AUDIO_MODE_SAVE_DONE

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 75 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

9.2.2.3 audio_speaker_volume

This chapter describes how to tune the volume of the speaker.
It is only available with the analog base bands SYREN and TRITON.

T_AUDIO_RET audio_speaker_volume (T_AUDIO_SPEAKER_VOLUME volume,
T _RV_RETURN return_path)

Description

This function is called to change the speaker volume. The volume is save in flash in a file with the same filename of the current
audio mode. So each mode can have its own volume.

Moreover this new file flash has the extension “.vol” and it's saved in the folder “\aud\”.

Each speaker volume flash file contains a variable structured like below:

{

/* volume of the audio speaker */
UINT8 audio_speaker_level;

3
T_AUDIO_SPEAKER_LEVEL;

NOTE: THIS FEATURES IS ONLY AVAILABE IN GSM, BLUETOOTH CORDLESS VOICE AND ALL DAI PATH MODE (c.f.
audio mode configuration section).

Parameters

e T_AUDIO_SPEAKER_VOLUME

typedef struct {
UINT8 volume_action;
UINTS8 value;
} T_AUDIO_SPEAKER_VOLUME;
Below the detail of each parameters:

volume_action

Specify the action of the audio speaker volume function. The action can be to set directly the volume
(AUDIO_SPEAKER_VOLUME_SET) or to increase (AUDIO_SPEAKER_VOLUME_INCREASE) or to decrease
(AUDIO_SPEAKER_VOLUME_INCREASE) the current volume corresponding to the current mode.

Value

Specify the value when the action is to set directly the volume (AUDIO_SPEAKER_VOLUME_SET).
The Volume value can be:

Level name level (dB)
AUDIO_SPEAKER_MUTE mute the speaker
AUDIO_SPEAKER_VOLUME_0dB 0
AUDIO_SPEAKER_VOLUME_6dB -6
AUDIO_SPEAKER_VOLUME_12dB -12
AUDIO_SPEAKER_VOLUME_18dB -18
AUDIO_SPEAKER_VOLUME_24dB -24
WARNING: IF THE AUDIO FILTER (c.f. audio mode structure) IS BYPASSED, THE VOLUME
TOO.

Immediate Return

e T _AUDIO_RET
C.f. API function audio_mode_load.

Event Return

e AUDIO_SPEAKER_VOLUME_DONE
This event informs that the audio volume was changed.

@ Texas Instruments Proprietary Information — Internal Data Page 76 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

typedef struct {

T_RV_HDR os_hdr;

INT8 status;
3}T_AUDIO_SPEAKER_VOLUME_DONE;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR A problem occurs during the audio volume configuration

Current restriction of use

. An audio mode needs to be load before to use this API function.

Process flow

MMI AUDIO

v

audio_speaker_volume (volume)

A

‘ AUDIO_SPEAKER_VOLUME_DONE ‘

9.2.2.4 audio_stereo_speaker_volume

This chapter describes how to tune the volume of the audio stereo speaker. It is only available with the
analog base band SYREN and TRITON.

T _AUDIO_RET audio_stereo_speaker_volume (T_AUDIO_SPEAKER VOLUME volume,
T _RV_RETURN return_path)

Description

This function is called to change the audio stereo speaker volume. The volume is saved in flash in a file with the same filename
of the current audio mode. So each mode can have its own volume.

Moreover this new file flash has the extension “.volst” and it is saved in the folder “\aud\”.
Each speaker volume flash file contains a variable structured like below:
{
/* volume of the audio speaker */
UINT8 audio_stereo_speaker_level_left;
UINT8 audio_stereo_speaker_level _right;

b
T_AUDIO_STEREO_SPEAKER_LEVEL;

Parameters

e T_AUDIO_STEREO_SPEAKER_VOLUME

typedef struct {
UINT8 volume_action_left;
UINTS8 value_left;
UINT8 volume_action_right;
UINTS8 value_right;

} T_AUDIO_STEREO_SPEAKER_VOLUME;

Below the detail of each parameters:

@ Texas Instruments Proprietary Information — Internal Data Page 77 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

volume_action_left

Specify the action of the audio speaker volume function for left channel.

The action can be to set directly the volume (AUDIO_STEREO_SPEAKER_VOLUME_SET) or to increase
(AUDIO_STEREO_SPEAKER_VOLUME_INCREASE) or to decrease (AUDIO_STEREO_SPEAKER_VOLUME_DECREASE)
the current volume corresponding to the current mode.

value_left

Specify the value when the action is to set directly the volume on left channel.
The Volume value can be:

e AUDIO_STEREO_SPEAKER_MUTE: mute the speaker
e Anyvalue V between 0 and 30: level will be =V dB (i.e. between 0 and -30)

volume_action_right
as above for right channel

value_right
as above for right channel

Immediate Return

e T _AUDIO _RET
C.f. API function audio_mode_load.

Event Return

e AUDIO_STEREO_SPEAKER_VOLUME_DONE
This event informs that the audio volume was changed.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
}T_AUDIO_STEREO_SPEAKER_VOLUME_DONE;

The possible values of status are:
Value | Id Definition

0 AUDIO_OK The audio features was successfully executed and stopped

-1 AUDIO_ERROR A problem occurs during the audio volume configuration

Current restriction of use

. An audio mode needs to be loaded before to use this API function.

Process flow

MMI AUDIO

| audio_stereo_speaker_volume (volume) |
i i
i i
i i

P
<

| AUDIO_STEREO_SPEAKER_VOLUME_DONE |

@ Texas Instruments Proprietary Information — Internal Data Page 78 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

9.3 Full access family

This chapter describes all the API functions belong to the full

9.3.1 API functions

9.3.1.1 audio_full_access_write

access family.

T_AUDIO_RET audio_full_access write (

T_AUDIO_FULL_ACCESS_WRITE
return_path)

T_RV_RETURN

*p_parameter,

Description

This function is called to configure any value belonging to the audio mode structure.

Parameters

T_AUDIO_FULL_ACCESS_WRITE

typedef struct {
UINT8 variable_indentifier;
// identifier of the variable to configure
void *data;
// data corresponding to the variable to set
3}T_AUDIO_FULL_ACCESS_WRITE;

Below the detail of each parameters (note for the description
chapter):

of the data please see the MMI family

Identifier Associated data format
AUDIO PATH USED typedef UINT8 T_AUDIO_VOICE_PATH_SETTING;
AUDIO_MICROPHONE_MODE (1) INT8
AUDIO MICROPHONE_GAIN (2) INT8
AUDIO_MICROPHONE_EXTRA GAIN (1) INT8
INT8

AUDIO_MICROPHONE_OUTPUT_BIAS (1)

AUDIO_MICROPHONE_FIR

typedef struct
UINT16 coefficient[31];

s
T _AUDIO_FIR_COEF;

AUDIO_MICROPHONE_ANR (6) T_AUDIO_ANR_CFG (see 9.2.1.3.3). In case

of TCS 3.2, see 9.2.1.3.1
AUDIO MICROPHONE_ES (6) T_AUDIO_ES CFG (see 9.2.1.3.4)
AUDIO MICROPHONE_AGC (7) T_AUDIO_AGC_CFG (see 9.2.1.3.2)
AUDIO_SPEAKER_MODE (1) INT8
AUDIO_SPEAKER_GAIN (2) INT8
AUDIO_SPEAKER_EXTRA_GAIN (1) INT8
AUDIO_SPEAKER_FILTER (1) INT8
AUDIO_SPEAKER_HIGHPASS FILTER (1) INT8
AUDIO_SPEAKER_FIR (5) typedef struct

UINT16 coefficient[31];

'}I:_AUD 10_FIR_COEF;

AUDIO_SPEAKER_IIR (6) T_AUDIO_IIR_CFG (see 9.2.1.4.5). In case

of TCS 3.2, see 9.2.1.4.3

AUDIO_SPEAKER_LIMITER (6)

T_AUDIO_LIMITER_CFG (see 9.2.1.4.4)

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 79 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

AUDIO_SPEAKER_AGC (7) T_AUDIO_AGC_CFG (see 9.2.1.3.2)
AUDIO_MICROPHONE_AGC (7) T_AUDIO_AGC_CFG (see 9.2.1.3.2)
AUDIO_SPEAKER_DRC (7) T_AUDIO_DRC_CFG (see 9.2.1.4.2)
AUDIO_SPEAKER_BUZZER (1) INT8
AUDIO_MICROPHONE_SPEAKER_LOOP_SIDETONE INT8

(2)

AUDIO_MICROPHONE_SPEAKER_LOOP_AEC

typedef struct

{
/* Enable the AEC */
UINT16 aec_enable;
/* Mode of the AEC */

UINT16 aec_mode;
/* level of the echo cancellation */
UINT16 echo_suppression_level;

/* enable the noise suppression */
UINT16 noise_suppression_enable;
/* level of the noise suppression */
UINT16 noise_suppression_level;

}
T_AUDIO_AEC_CFG;

noise_suppression_level and
noise_suppression_enable not available in
TCS3.0 software except TCS3.0 (replaced by
ANR)

In case of TCS 3.2, see 9.2.1.6.1

AUDIO_STEREO_SPEAKER_MODE (1) INT8
AUDIO_STEREO_SPEAKER_STEREO_MONO (1) INT8
INT8

AUDIO_STEREO_SPEAKER_SAMPLING_FREQUENCY
1)

AUDIO_SPEAKER_VOLUME_LEVEL (1)

typedef struct

/* volume of the audio speaker */
UINT8 audio_speaker_level;

s
T_AUDIO_SPEAKER_LEVEL;

AUDIO_STEREO_SPEAKER_VOLUME_LEVEL (1)

typedef struct
/* volume of the audio speaker */
UINT8 audio_stereo_speaker_level_left;
UINT8 audio_stereo_speaker_level_right;

}
T AUDIO_STEREO SPEAKER LEVEL;

AUDIO_ONOFF (3)

INT8

AUDIO_VOLUME_SPEED (4)

INT16

(1) Not available when using a non-TI ABB for audio tasks

(2) When using a non-TI ABB for audio tasks, type of parameter is Int16 instead of Int8

(3) Only available on Calypso+ and Perseus2 samples

(4) Only available when using a non-TI ABB for audio tasks
(5) Not available in TCS3.x software except TCS3.0

(6) Only available in TCS3.x software except TCS3.0

(7) Only available in TCS 3.2

e T RV_RETURN
C.f. API function audio_mode_load.

Immediate Return

e T _AUDIO_RET
C.f. API function audio_mode_load.

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 80 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

Event Return

e AUDIO FULL _ACCESS WRITE_DONE
This event informs that the value was written.

typedef st
T_RV_HDR
INT8

ruct {
os_hdr;
status;

3}T_AUDIO_FULL_ACCESS_WRITE_DONE;

The possible values of status are:

value Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR A problem occurs during the writing process..

Current restriction of use

None.

Process flow

MMI

4

A

audio_full_access_write(p_parameter, return_path) ‘
|
|
|
I

AUDIO_FULL_ACCESS_WRITE_DONE |

{'? TEXAS

Texas Instruments Proprietary Information — Internal Data

INSTRUMENTS

Page 81 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

9.3.1.2 audio_full_access_read

T _AUDIO_RET audio_full_access _read (

T_AUDIO_FULL_ACCESS_READ

*p_parameter)

Description

This function is called to read any value belonging to the audio mode structure.

Parameters

e T_AUDIO_FULL_ACCESS_READ

typedef struct {

UINT8 variable_indentifier; // identifier of the variable to read

VOID *data
}T_AUDIO_FULL_ACCESS_READ;

// data to

return

Below the detail of each parameters (note for the description of the data please see the MMI family

chapter):

Identifier Associated data format
AUDIO PATH_USED typedef UINT8 T_AUDIO_VOICE_PATH_SETTING;
AUDIO_ MICROPHONE_MODE (1) INT8
AUDIO MICROPHONE_GAIN (2) INT8
AUDIO_ MICROPHONE_EXTRA_GAIN (1) INT8
AUDIO_ MICROPHONE_OUTPUT BIAS (1) INT8

AUDIO_MICROPHONE_FIR

typedef struct
UINT16 coefficient[31];

T
T_AUDIO_FIR_COEF;

AUDIO_MICROPHONE_ANR (6)

T_AUDIO_ANR_CFG (see 9.2.1.3.3). In case
of TCS 3.2, see 9.2.1.3.1

AUDIO_MICROPHONE_ES (6)

T_AUDIO_ES CFG (see 9.2.1.3.4)

AUDIO_MICROPHONE_AGC(7)

T_AUDIO_AGC_CFG (see 9.2.1.3.2)

AUDIO_SPEAKER_MODE (1) INT8
AUDIO_SPEAKER_GAIN (2) INT8
AUDIO_SPEAKER_EXTRA_GAIN (1) INT8
AUDIO_SPEAKER_FILTER (1) INT8
AUDIO_SPEAKER_HIGHPASS FILTER (1) INT8

AUDIO_SPEAKER_FIR (5)

typedef struct
UINT16 coefficient[31];

s
T _AUDIO_FIR_COEF;

AUDIO_SPEAKER_IIR (6)

T_AUDIO_IIR_CFG (see 9.2.1.4.5) In case
of TCS 3.2, (see 9.2.1.4.3)

AUDIO SPEAKER LIMITER (6) T_AUDIO_LIMITER_CFG (see 9.2.1.4.4)
AUDIO_SPEAKER_AGC(7) T_AUDIO_AGC_CFG (see 9.2.1.3.2)
AUDIO MICROPHONE_AGC (7) T_AUDIO_AGC_CFG (see 9.2.1.3.2)
AUDIO_SPEAKER_DRC(7) T_AUDIO_DRC_CFG (see 9.2.1.4.2)

AUDIO_SPEAKER BUZZER (1)

INT8

AUDIO_MICROPHONE_SPEAKER_LOOP_SIDETONE

)

INT8

AUDIO_MICROPHONE_SPEAKER_LOOP_AEC

typedef struct

/* Enable the AEC */
UINT16 aec_enable;
/* Mode of the AEC */

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 82 of 130

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

UINT16 aec_mode;

/* level of the echo cancellation */
UINT16 echo_suppression_level;

/* enable the noise suppression */
UINT16 noise_suppression_enable;
/* level of the noise suppression */

UINT16 noise_suppression_level;

}
T_AUDIO_AEC_CFG;

noise_suppression_level and
noise_suppression_enable not available in

ANR)
In case of TCS 3.2, see 9.2.1.6.1

AUDIO_STEREO_SPEAKER_MODE (1) UINT8

AUDIO_STEREO_SPEAKER_STEREO_MONO (1) UINT8

AUDIO_STEREO_SPEAKER_SAMPLING_FREQUENCY INT8
1)

AUDIO_SPEAKER_VOLUME_LEVEL (1) Eypedef struct

/* volume of the audio speaker */
UINT8 audio_speaker_level;

}
T AUDIO_SPEAKER LEVEL;

AUDIO_STEREO_SPEAKER_VOLUME_LEVEL (1) typedef struct

/* volume of the audio speaker */

}
T AUDIO_STEREO SPEAKER LEVEL;

AUDIO_ONOFF (3) INTS

AUDIO_VOLUME_SPEED (4) INT16

(1) Not available when using a non-Tl ABB for audio tasks

(2) When using a non-TI ABB for audio tasks, type of parameter is Int16 instead of Int8
(3) Only available on Calypso+ and Perseus2 samples

(4) Only available when using a non-TI ABB for audio tasks

(5) Not available in TCS3.x software except TCS3.0

(6) Only available in TCS3.x software except TCS3.0

(7) Only available in TCS 3.2.

e T RV_RETURN
C.f. API function audio_mode_load.

Immediate Return

e T_AUDIO_RET
C.f. API function audio_mode_load.

e Moreover the data pointer of the T_AUDIO_FULL_ACCESS_READ structure points to the
data to returned data if the T_AUDIO_RET value is equal to AUDIO_OK.

Event Return

None.

Current restriction of use

None.

Process flow

MMI AUDIO

@ Texas Instruments Proprietary Information — Internal Data Page 83 of 130
TEXAS

INSTRUMENTS

TCS3.0 software except TCS3.0 (replaced by

UINT8 audio_stereo_speaker_level;

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

audio_full_access_read(p_parameter)

v

10 AMR play/record

10.1Overview

This API allows playing an AMR file from FFS or RAM and recording to FFS or RAM. This can be used
to create Voice Memos or AMR MMS files.
Played/recorded AMR format is fully compliant with a mono-channel AMR MMS in storage mode
as defined in RFC 3267. However, the 6-character “#!/AMR\n” MMS header is not always handled:
e For audio_amr_... APIs, upper layers must insert it at the beginning of the recorded samples
or remove it before play (not needed for a simple AMR Voice Memo).
e Foraudio_mms_... APIs, header is removed before play and inserted before record.

If FFS is used, more processing is required but it is more flexible in terms of size. The user is only
limited by the total size of the flash. On the contrary, there is no API to handle RAM like a file-system
so AMR feature works with a single contiguous buffer. Therefore, the user must not try to record more
samples than can be stored in the RAM buffer. It is recommended to use only Flash for voice memos.

Note: when audio_mms_... APIs have same immediate return, event return, comments, parameters
description... than their audio_amr_... counterparts, they are not repeated. For example, to get a full
description of audio_mms_record_to_ffs_start(...), a customer must also read au-
dio_amr_record_to ffs_start(...).

10.2Immediate return and event return

The API described below allows starting or stopping AMR features. To test the success of the full
process, an API caller must check 2 types of information:

e The immediate return is simply the value returned by the API (the function called). It indi-
cates “failure” if parameters were wrong or there was not enough memory to send the start
message to the audio entity.

e The event return is the STATUS event/message sent back to the API caller at the end of the
execution. It indicates success or failure of audio entity processing.

A complete execution includes these steps (See Figure 2):

e An entity calls an API function and immediate return is OK. A message is sent to the audio en-
tity.

e The audio entity tries to start the feature. Start fails (for example, not enough memory) or fea-
ture is successfully executed and stopped (automatically or through a stop API call).

e STATUS message is sent back to the entity, which called the start API. It indicates success of
the execution (feature started and stopped) or failure to start the feature. The optional gener-
ated file is only valid if STATUS is OK.

All possible process flows are described in figures below:

e Successful start API call but feature can'’t start.

@ Texas Instruments Proprietary Information — Internal Data Page 84 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

e Successful start API call and automatic or requested stop.

e Successful stop API call without any related start API call. No STATUS is sent as no process-
ing was performed in the audio entity.

| |
MMI AUDIO

audio_amr_record/play to/from_ram/ffs_start(...)

... STATUS_MSG (AUDIO_ERROR)

Figure 1: Start fails

| |
MMI AUDIO

| audio_amr record/play to/from ram/ffs_start(...) .|

audio_amr_record/play_to/from_ram/ffs_stop(...)

._STATUS_MSG (AUDIO_OK)

Figure 2: Start feature + automatic or requested stop concluded by STATUS message

| |
MMI AUDIO

audio_amr_record/play_to/from_ram/ffs_stop(...)

No STATUS message

Figure 3: Stop feature with no start

10.3audio_amr_record_to_ram/ffs_start

T _AUDIO_RET audio_amr_record_to_ram_start (
T _AUDIO_AMR_RECORD_TO_RAM_PARAMETER *p_record_parameter,

T _RV_RETURN return_path)

T AUDIO_RET audio_amr_record_to ffs start (
T _AUDIO_AMR_RECORD_TO_FFS PARAMETER *p_record_parameter,

T_RV_RETURN return_path)

@ Texas Instruments Proprietary Information — Internal Data Page 85 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Description

This function is called to start recording an AMR file to RAM/FFS.

Parameters

e T_AUDIO_AMR_RECORD_TO_RAM_PARAMETER
Specifies the characteristics for record phase.

typedef struct
{

UINT8 *p_buffer;

UINT32 memo_duration;

BOOL compression_mode;

UINT16 microphone_gain;

UINT8 amr_vocoder;
3}T_AUDIO_AMR_RECORD_TO_RAM_PARAMETER;

e T_AUDIO_AMR_RECORD_TO_FFS_PARAMETER

Specifies the characteristics for record phase.
typedef struct

char memo_name[AUDI0O_PATH_NAME_MAX_SIZE];

UINT32 memo_duration;

BOOL compression_mode;

UINT16 microphone_gain;

UINTS8 amr_vocoder;
3}T_AUDIO_AMR_RECORD_TO_RAM_PARAMETER;

Below the detail of each parameters:

p_buffer

Pointer on the buffer where AMR file will be stored.

memo_name

Specifies the file name of the AMR file. The file name must contain the entire path to declare the memo file. Note the
maximum size of the path plus the name is 80 characters.

memo_duration
Specifies the maximum duration of the AMR file in byte unit.

microphone_gain
Specifies the gain multiplied to the voice sample from the microphone. The format is Q8.8, for example: if micro-
phone_gain = 0x0100, the gain is 1 and if microphone_gain = 0x0080, the gain is 0,5.

compression_mode

Activate or deactivate the compression of the voice recorded. It means that the silence between two voice activity is de-
tected and compressed. Compression can have 2 values:

AUDIO_AMR_COMPRESSION_MODE or AUDIO_AMR_NO_COMPRESSION_MODE.

amr_vocoder

Rate of vocoder used. Possible values are:
AUDIO_AMR_VOCODER_4_75 -> 4.75kbps
AUDIO_AMR_VOCODER_5_15 -> 5.15kbps
AUDIO_AMR_VOCODER_5_90 -> 5.90kbps
AUDIO_AMR_VOCODER_6_70 -> 6.70kbps
AUDIO_AMR_VOCODER_7_40 -> 7.40kbps
AUDIO_AMR_VOCODER_7_95 -> 7.95kbps
AUDIO_AMR_VOCODER_10_2 -> 10.2kbps
AUDIO_AMR_VOCODER_12 2 ->12.2kbps

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T _AUDIO_RET

@ Texas Instruments Proprietary Information — Internal Data Page 86 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

e AUDIO_AMR_RECORD_TO_MEM_STATUS MSG
typedef struct {
T _RV_HDR o0s_hdr;
INT8 status;
UINT32 record_duration;
3T _AUDIO_AMR_RECORD_STATUS;

Below the detail of each parameters:

Status
Status of the record. If it is AUDIO_OK, the file is valid, otherwise it is AUDIO_ERROR and file must not be used.

recorded_duration
Specifies the size of the file in byte unit.

10.4audio_amr_record_to_ram/ffs_stop

T_AUDIO_RET audio_amr_record_to_ram/ffs_stop (void)

Description
This function is called to stop recording an AMR file to RAM/FFS.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_AMR_RECORD_TO_MEM_STATUS_MSG

typedef struct {

@ Texas Instruments Proprietary Information — Internal Data Page 87 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

T_RV_HDR os_hdr;

INT8 status;

UINT32 record_duration;
3}T_AUDIO_AMR_RECORD_STATUS;

Below the detail of each parameters:

Status

Status of the record. If it is AUDIO_OK, the file is valid, otherwise it is AUDIO_ERROR and file must not be used.

recorded_duration
Specifies the size of the file in byte unit.

10.5audio_amr_play_from_ram/ffs_start

T AUDIO_RET audio_amr_play from ram_start (
T_AUDIO_AMR_PLAY_FROM_RAM_PARAMETER *p_parameter,
T _RV_RETURN return_path)

T AUDIO_RET audio_amr_play from ffs start (
T AUDIO_AMR_PLAY_ FROM_FFS PARAMETER *p_parameter,
T _RV_RETURN return_path)

Description

This function is called to start playing an AMR file from FFS/RAM..

Parameters

e T AUDIO_AMR_PLAY_FROM_RAM_PARAMETER
typedef struct
UINTS8 *p_buffer;

UINT16 buffer_size;
3}T_AUDIO_AMR_PLAY_FROM_RAM_PARAMETER;

e T _AUDIO_AMR_PLAY_FROM_FFS_PARAMETER
typedef struct

char memo_name[AUDIO_PATH_NAME_MAX_SI1ZE];
3}T_AUDIO_AMR_PLAY_FROM_FFS_PARAMETER;

Below the detail of each parameters:

p_buffer

Pointer on the buffer where AMR file will be stored.
memo_name

Specifies the file name of the AMR file. The file name must contain the entire path to declare the memo file. Note the

maximum size of the path plus the name is 80 characters.

buffer_size
Specifies the duration of the AMR file in byte unit.

e T RV_RETURN
C.f. section return mechanism.

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 88 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Immediate Return

e T AUDIO RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

| Value | [¢] | Definition B
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

e AUDIO_AMR_PLAY_FROM_MEM_STATUS_MSG
typedef struct {

T_RV_HDR os_hdr;

INT8 status;
}T_AUDIO_AMR_PLAY_STATUS;

10.6audio_amr_play from_ram/ffs_stop

T _AUDIO_RET audio_amr_play from ram/ffs _stop (void)

Description
This function is called to stop playing an AMR file to RAM/FFS.

Parameters

e T RV _RETURN
C.f. section return mechanism.

Immediate Return

e T AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_AMR_PLAY_FROM_MEM_STATUS_MSG

typedef struct {
T_RV_HDR os_hdr;
INT8 status;
3}T_AUDIO_AMR_PLAY_STATUS;

Q, Texas Instruments Proprietary Information — Internal Data Page 89 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

10.7audio_mms_record_to_ffs_start

T _AUDIO_RET audio_mms_record_to ffs_start (
T _AUDIO_MMS_RECORD_TO_FFS PARAMETER *p_record_parameter,
T _RV_RETURN return_path)

Description
This function is called to start recording an AMR-MMS file to FFS.

Parameters

e T _AUDIO_MMS_RECORD_TO_FFS PARAMETER (identical to
T_AUDIO_AMR_RECORD_TO_FFS_PARAMETER)
Specifies the characteristics for record phase. memo_duration specifies the maximum duration of the
file in byte unit but does not include the size of the header.

10.8audio_mms_record_to_ffs_stop

T AUDIO_RET audio_mms_record_to ffs stop (void)

Description
This function is called to stop recording an AMR-MMS file to FFS.

Event Return (if start APl was called)

e AUDIO_AMR_RECORD_TO_MEM_STATUS_MSG

typedef struct {

T_RV_HDR os_hdr;

INT8 status;

UINT32 record_duration;
3}T_AUDIO_AMR_RECORD_STATUS;

Below the detail of each parameters:

Status
Status of the record. If it is AUDIO_OK, the file is valid, otherwise it is AUDIO_ERROR and file must not be used.

recorded_duration
Specifies the size of the file in byte unit. It does not include the size of the header.

10.9audio_mms_play from_ffs_start

T AUDIO_RET audio_mms_play from ffs start (
T_AUDIO_MMS_PLAY_FROM_FFS_PARAMETER *p_parameter,
T_RV_RETURN return_path)

@ Texas Instruments Proprietary Information — Internal Data Page 90 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Description

This function is called to start playing an AMR-MMS file from FFS.

Parameters

e T _AUDIO_MMS_PLAY_FROM_FFS_PARAMETER (identical to
T_AUDIO_AMR_PLAY_FROM_FFS_PARAMETER)

10.10 audio_mms_play_from_ffs_stop

T _AUDIO_RET audio_mms_play from ffs stop (void)

Description

This function is called to stop playing an AMR file from FFS.

10.11 audio_amr_play from_ffs pause/ram_pause

T _AUDIO_RET audio_amr_play from_ffs_pause (void)

T _AUDIO_RET audio_amr_play from_ram_pause (void)

Description

This function is called to pause the AMR file playing from FFS or RAM. This shall be called only when the AMR file is playing.
There is no confirmation message that is sent after file is paused.

10.12 audio_amr_play from_ffs _resume/ram_resume

T AUDIO_RET audio_amr_play from ffs resume (void)

T _AUDIO_RET audio_amr_play from ram_resume (void)

Description

This function is called to resume the AMR file. This shall be called only when the AMR file is paused. There is no confirmation
message that is sent after file is resumed to play.

10.13 audio_vm_amr_forward

T _AUDIO_RET audio_vm_amr_forward(UINT32 forward_skip_time)

Description

This function is called to forward the VM AMR play from FFS/RAM during play.
Parameters

e UINT32 forward_skip_time

@ Texas Instruments Proprietary Information — Internal Data Page 91 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

This parameter gives in seconds the time for which the media that is played must be forwarded.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

There is no specific event that is returned for forward request. When the forward requested, reaches
end of file, Audio VM AMR module stops playing the file and sends the confirmation as when stop is
requested [see 10.6 and 10.8].

10.14 audio_vm_amr_rewind

T _AUDIO_RET audio_vm_amr_rewind(UINT32 forward_skip_time)

Description

This function is called to rewind the VM AMR play from FFS/RAM while playing.

Parameters

e UINT32 rewind_skip_time

This parameter gives in seconds the time for which the media that is played must be rewind.

Immediate Return

e T _AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

There is no specific event that is returned for rewind request. When the rewind requested, reaches the
beginning of file, Audio VM AMR module starts to play again the same file from the beginning.

11TTY

This chapter describes how to start/stop TTY services. These API can only be called when the mobile is in dedicated mode and
vocoder is enabled.

Q, Texas Instruments Proprietary Information — Internal Data Page 92 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

11.1audio_tty set config

T_AUDIO_RET audio_tty set _config (T_AUDIO_TTY_CONFIG_PARAMETER *parameter,
T_RV_RETURN *return_path)

Description

This function is called to change TTY configuration.

Parameters

e T_AUDIO_TTY_CONFIG_PARAMETER

Specifies the characteristics of tty configuration.
typedef struct {
UINT8 Mode;
UINT16 ThresholdRead;
UINT16 ThreshHoldWrite;

}T_AUDIO_TTY_CONFIG_PARAMETER;

- Mode parameter defines an operation mode of the Baudot and CTM codecs. These configurations
are currently used:

Value Configuration
TTY_EXT_START CodecOnCTM = TRUE
(TTY external device End_To_End) CodecOnBaudot = TRUE
TranscoderOn = TRUE
TTY_STOP CodecOnCTM = FALSE

CodecOnBaudot = FALSE
TranscoderOn = FALSE

- ThresholdRead and ThreshHoldWrite are reserved for future use. They must be set to 0.

e T RV _RETURN
C.f. section return mechanism.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Driver error (entity not started, not enough memory, bad parame-
ters...)

Event Return

e AUDIO_TTY_STATUS MSG
This event is the status sent at the end of TTY execution or if an error occurred.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
}T_AUDIO_TTY_STATUS;

@ Texas Instruments Proprietary Information — Internal Data Page 93 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

The possible values of status are:

Value Id Definition
0 AUDIO_OK The feature was successfully executed and stopped
-1 AUDIO_ERROR Driver error

Process flow

Automatic stop:

Requester

Requested stop:

TTY

audio_tty_set_config(parameter, return_path)

with TTY_EXT_START

A

»
>

AUDIO_TTY_STATUS_MSG

Requester

audio_tty_set_config(parameter, return_path)

TTY

with TTY_EXT_START

A

audio_tty_set_config(parameter, return_path)

»
|

with TTY EXT STOP

A

AUDIO_TTY STATUS_MSG

{'? TEXAS

Texas Instruments Proprietary Information — Internal Data

INSTRUMENTS

Page 94 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

12 MP3

MP3 controls for MP3 file playing are:

e Start/Stop: start and stop playing MP3 file.
e Pause: pause playing.

e Resume: resume playing after a pause

Rules to respect:
The MMI must respect the following rules to play a MP3 file:
e The MMI isn't allowed to play a new MP3 before receiving an Audio MP3 Status.
e The MMI can receive a stop confirmation (Audio MP3 status) in the following cases:
e The MMI requested to stop the playing (audio_mp3_stop function) and the Audio entity con-
firms this action
e The MP3 decoding is finished and the Audio entity informs the MMI with a stop confirmation
message.
e An error occurred from while playing the MP3 file.
e After a pause request (audio_mp3_pause function), the MMI is allowed to request a resume or a
stop playing (audio_mp3_resume or audio_mp3_stop).
The MMl isn't allowed to use the start command during a pause: resume should be used instead.
Resume commands has no effect outside pause mode.
The MMI isn’t allowed to request two pauses in a row .
The MMI isn't allowed to request MP3 information before sending a start request (au-
dio_mp3_start function) or after sending a stop request (audio_mp3_stop function).

This chapter describes how to play a MP3 melody, using the AUDIO SW entity service.

12.1audio_mp3_start

T AUDIO_RET audio mp3 start (T_AUDIO_MP3 PARAMETER *p_parameter,
T _RV_RETURN *p_return_path)

Description

This function is called to start a MP3 melody generation.

Parameters

e T_AUDIO_MP3_PARAMETER

typedef struct

{
char mp3_name[AUDIO_MP3_PATH_NAME_MAX_SIZE]; // File name of the melody
BOOL mono_stereo; // channel configuration
UINT32 size_file_start; // size in bytes
BOOLEAN play_bar_on; // Progress-Bar configuration

} T_AUDIO_MP3_PARAMETER;

Below the detail of each parameter:

@ Texas Instruments Proprietary Information — Internal Data Page 95 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

mp3_name
Specifies the file name of the MP3 melody.

Note that this file name is used by the audio entity to request the melody data to the File Flash System. Moreover, the file

name must contain the entire path to access to the melody file.

Mono_stereo

Specifies the configuration of the channel.

If Mono_stereo = AUDIO_MP3_MONO, the channel configuration is Mono
If Mono_stereo = AUDIO_MP3_STEREO, the channel configuration is Stereo

size file start

Specifies the size (in bytes) from where the melody should be started

If size file start = 0, the melody is played from the beginning of the MP3 file
If size file start = XXX, the melody is played from the byte XXX.

play bar on

Specifies whether progress bar indication should be switched ON or not.
When 0, the progress bar indication will be OFF

When 1, the progress bar indication will be ON

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

e AUDIO_MP3_STATUS

typedef struct {
T_RV_HDR os_hdr;
INT8 status;

} T_AUDIO_MP3_STATUS;

The possible values of status are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)
e AUDIO_MP3_STATUS BAR
typedef struct
{

T _RV_HDR os_hdr; /* Message id */
INT8 status; /* status. This is for now AUDIO_OK always */
UINT16 ul6TotalTimePlayed; /* Current time played in seconds*/

UINT16 ul6totalTimeEst; /*The total song/file duration in seconds. */

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 96 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

} T_AUDIO_MP3_STATUS_BAR;

status

The possible value for status are,

AUDIO_OK, indicates the function was successfully executed

AUDIO_ERROR, indicates error (bad parameters, not enough memory, feature not compiled...)

ul6TotalTimePlayed

Specifies the actual total time played till now in milliseconds. This is calculated based on every frames decoded and is an
accurate time played till now.

ul6totalTimeEst

Specifies the estimated total time played in milliseconds. This is estimated in the beginning of the play using the bit-rate of
the first MP3 frame and the total size of the file.

Process flow

MMI AUDIO

| audio_mp3_start(mp3_parameter, return_path) |

»
V‘
|
|
|

AUDIO_MP3_STATUS_MSG.

A

When Progress Bar is switched ON, AUDIO_MP3_STATUS_BAR message is sent (approximately)
every 1 second.

MMI AUDIO

| audio_mp3_start(mp3_parameter, return_path) |

»
V‘
|
|
|

AUDIO_MP3_STATUS_BAR.

Limitations

1. Configuration of progress bar update periodicity not supported. The update message will be
sent at a pre-defined periodicity of approximately 1 second for both MP3 and AAC. The ex-
act timing of the indication depends on the current frame bit-rate.

2. No separate API to configure the switch on/off of progress bar is supported. Progress bar up-
date can be switched on/off only during the start request.

3. Progress bar update will not function properly when the start request is given from middle of
the file (using size_file_start).

@ Texas Instruments Proprietary Information — Internal Data Page 97 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

12.2audio_mp3_stop

T _AUDIO_RET audio_mp3 stop (UINT32 *size_played)

Description
This function is called to stop playing a MP3 melody.

Parameters

e UINT32 *size_played
This parameter returns the size of the file that has been played before the audio_mp3_stop function
was called. This size is in bytes.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_MP3_STATUS

typedef struct {
T _RV_HDR os_hdr;
INT16 status;
} T_AUDIO_MP3_STATUS;

The possible values of status are:

0 AUDIO_OK

0x0002 C_MP3_SYNC_NOT_FOUND
0x0004 C_MP3 NOT LAYER3
0x0008 C_MP3_FREE_FORMAT
0x0010 C_MP3 ALG_ERROR
0x0020 C_MP3 DECODING_DELAY
0x04000 C_MP3_CHECK_BUFFER_KO
0x08000 | C_MP3_CHECK_BUFFER DELAY

MMI AUDIO

[audio_mp3_stop(size_played) [

@ Texas Instruments Proprietary Information — Internal Data Page 98 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

AUDIO_MP3_STATUS_MSG.

12.3audio_mp3_pause

T _AUDIO_RET audio_mp3 pause (void)

Description

This function is called to pause playing a MP3 melody.

The MP3 melody can be restarted using the audio_mp3_resume function.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR

piled...)

Error (bad parameters, not enough memory, feature not com-

Event Return (if start APl was called)

e AUDIO_MP3_STATUS

typedef struct {
T_RV_HDR os_hdr;

INT8

status;

3} T_AUDIO_MP3_STATUS;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)
MMI : 1 AUDIO
Q, Texas Instruments Proprietary Informatitm—rreerrrom oo Page 99 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

audio_mp3_pause()

AUDIO_MP3_STATUS_MSG.

12.4audio_mp3_resume

T _AUDIO_RET audio_mp3_resume (void)

Description

This function is called to resume a MP3 melody, after a pause.

Immediate Return

e T AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_MP3_STATUS

typedef struct {
T_RV_HDR os_hdr;

INT8

status;

} T_AUDIO_MP3_STATUS;

The possible values of status are:

Value [¢] Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-

piled...)
MMI AUDIO
audio_mp3_resume(void)
Q, Texas Instruments Proprietary Information — Internal Data Page 100 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

v

. AUDIO_MP3_STATUS_MSG

A

12.5audio_mp3 forward

T _AUDIO_RET audio_mp3 forward (UINT32 forward_skip_time)

Description
This function is called to forward the MP3 melody during play.

Parameters

e UINT32 forward_skip_time

This parameter gives in seconds the time for which the media that is played must be forwarded.

Immediate Return

e T _AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

There is no specific event that is returned for forward request. When the forward requested, reaches
end of file, Audio MP3 module starts to play again the same file from the beginning.

12.6audio_mp3 _rewind

T_AUDIO_RET audio_mp3_rewind (UINT32 rewind_skip_time)

Description
This function is called to rewind the MP3 melody during play.

Parameters

e UINT32 rewind_skip_time

This parameter gives in seconds the time for which the media that is played must be rewind.

@ Texas Instruments Proprietary Information — Internal Data Page 101 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return
There is no specific event that is returned for rewind request. When rewind requested, goes before the
beginning of file, Audio MP3 module starts again to play the same file from the beginning.

12.7audio_mp3_info

T _AUDIO_RET audio_mp3_info (void)

Description
This function is called to request information about the currently decoded MP3 frame .

Immediate Return

e T _AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_MP3_STATUS

typedef struct {
T_RV_HDR os_hdr;
INT8 status;
T_MP3_HEADER_INFO info;
} T_AUDIO_MP3_STATUS;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
Q; Texas Instruments Proprietary Information — Internal Data Page 102 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

-1

AUDIO_ERROR

piled...)

Error (bad parameters, not enough memory, feature not com-

info (T_MP3_HEADER_INFO)

Structure containing information about current MP3 frame:

Field

Type

Possible values

frequency

UINT8

C_MP3_HEADER_FREQ_ 48000
C_MP3_HEADER_FREQ 44100
C_MP3_HEADER_FREQ_32000
C_MP3_HEADER_FREQ_24000
C_MP3_HEADER_FREQ 22050
C_MP3_HEADER_FREQ_16000
C_MP3_HEADER_FREQ_12000
C_MP3_HEADER_FREQ_11025
C_MP3_HEADER_FREQ_8000

bitrate

UINT8

C_MP3_HEADER_BITRATE_320
C_MP3_HEADER_BITRATE_256
C_MP3_HEADER_BITRATE_224
C_MP3_HEADER_BITRATE_192
C_MP3_HEADER_BITRATE_160
C_MP3_HEADER_BITRATE_128
C_MP3_HEADER _BITRATE_112
C_MP3_HEADER_BITRATE_96
C_MP3_HEADER_BITRATE_80
C_MP3_HEADER_BITRATE_64
C_MP3_HEADER_BITRATE_56
C_MP3_HEADER_BITRATE_48
C_MP3_HEADER_BITRATE_40
C_MP3_HEADER_BITRATE_32

mpeg_id

UINT8

C_MP3_HEADER_MPEGID_1
C_MP3_HEADER_MPEGID_2
C_MP3_HEADER_MPEGID_2_5

layer

UINT8

C_MP3_HEADER_LAYER_|
C_MP3_HEADER_LAYER_II
C_MP3_HEADER_LAYER_III

Note: different layer values than LAYER Il can be returned in theory. But

this is a LAYER Il only decoder.

padding

BOOL

TRUE, FALSE

private

UINT8

0,1

channel

UINT8

C_MP3_HEADER_STEREO
C_MP3_HEADER_JSTEREO
C_MP3_HEADER_DUAL_MONO
C_MP3_HEADER_MONO

copyright

BOOL

TRUE, FALSE

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 103 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

emphasis | UINT8 | C_MP3_HEADER_EMPHASIS_NONE
C_MP3_HEADER_EMPHASIS_50_15
C_MP3_HEADER_EMPHASIS_CCIT_J17

MMI AUDIO

[audio_mp3_info() [

v

A

AUDIO_MP3_STATUS_MSG

12.8How to use the MP3 APIs

12.8.1 “Pause” MP3 in order to play an other melody

If the user wants to “pause” the MP3 melody in order to play an other melody (for example Midi
ringer), it is necessary to stop the MP3 melody and then restart it. Indeed, due to Hardware constraints

the MP3 can'’t be in “pause” mode when an other melody is playing.

Example of code — the user is listening to a MP3 melody when a Midi ringer needs to be played:

e Start the MP3 melody from the beginning:
strcpy(mp3_parameter.mp3_name,"/mp3/mp3_file");
mp3_parameter.mono_stereo = AUDIO_MP3_MONGO,;
mp3_parameter.size_file_start = 0;

if (audio_mp3_start(&mp3_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;
return (audio_test_regr_return_verdict(*error_type));

e Midi Ringer must be played
- First Stop the MP3 melody:

if (audio_mp3_stop(size_played) == AUDIO_ERROR)

{
*error_type = MEMORY_ERROR;
return (audio_test_regr_return_verdict(*error_type));
}
@ Texas Instruments Proprietary Information — Internal Data Page 104 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

- Play the Midi ringer
Use the start function to resume the MP3 melody
mp3_parameter.size_file_start = *size_played,;

if (audio_mp3_start(&mp3_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;

return (audio_test_regr_return_verdict(*error_type));

}

12.8.2 “Pause” MP3 and resume it

If the user want to pause the MP3 melody and no melody is played in parallel:

e Start the MP3 melody from the beginning:
strcpy(mp3_parameter.mp3_name,"/mp3/mp3_file");
mp3_parameter.mono_stereo = AUDIO_MP3_MONGO;
mp3_parameter.size_file_start = 0;

if (audio_mp3_start(&mp3_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;

return (audio_test_regr_return_verdict(*error_type));

}

e Pause the MP3 melody:
if (audio_mp3_pause() == AUDIO_ERROR)
{
*error_type = FUNCTION_ERROR,;
return (audio_test_regr_return_verdict(*error_type));

}

e And then resume the MP3 melody thanks to the resume function:
if (audio_mp3_resume() == AUDIO_ERROR)
{
*error_type = FUNCTION_ERROR,;
return (audio_test_regr_return_verdict(*error_type));

}

i Texas Instruments Proprietary Information — Internal Data
2 TEXAS
INSTRUMENTS

Page 105 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

13 AAC (Advanced Audio Coding)

This chapter describes how to play an AAC melody, using the AUDIO SW entity service.

AAC controls for AAC file playing are:

Start/Stop: start and stop playing AAC file.

Pause: pause playing.

Resume: resume playing after a pause

Restart: reinitialize AAC decoder and restart playing after a pause. The re-initialization allows
upper layer to move in the AAC file, which can implement a fast forward, fast backward solu-
tion for ADTS stream. In case of ADIF stream after re-initialization it starts playing from the
beginning of the AAC file.

Note: In case of ADIF streams, it is the upper layers’ responsibility to refill the buffers with the be-
ginning of file before a restart.

Rules to respect:

The MMI must respect the following rules to play an AAC file:

The MMI isn't allowed to play a new AAC file before receiving a stop confirmation (Audio AAC
status).
The MMI can receive a stop confirmation (Audio AAC status) in the following cases:
O The MMI requested to stop the playing (audio_aac_stop function) and the Audio entity
confirms this action
O The AAC decoding is finished and the Audio entity informs the MMI with a stop con-
firmation message.
O An error occurred from while playing the AAC file.

Definitions:

O Before any AAC activity, the Audio entity is in “idle mode”.

O When the MMI sends an AAC start command (audio_aac_start function), the Audio
entity goes to “play mode”.

O When the MMI sends an AAC pause command (audio_aac_pause function), the Au-
dio entity goes to “pause mode”.

O When the MMI sends an AAC resume or an AAC restart command (au-
dio_aac_resume function or audio_aac_restart function), the Audio entity goes back to
“play mode”.

O Whenever the MMI receives a stop confirmation (Audio AAC status), the Audio entity
goes back to “idle mode”.

The MMI is only allowed to use the start command (_audio_aac_start function) while the Audio
entity is in “idle mode”.

The MMI is only allowed to request AAC information (audio_aac_info function) while the Audio
entity is in “play mode”.

The MMl is only allowed to use the pause command (audio_aac_pause function) while the Au-
dio entity is in “play mode”.

The MMI is only allowed to use resume and restart commands (audio_aac_resume function or
audio_aac_restart function) while the Audio entity is in “pause mode”.

The MMI can send a stop request (audio_aac_stop function) while the Audio entity is in “play
mode” or in “pause mode”.

@ Texas Instruments Proprietary Information — Internal Data Page 106 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

e AAC playing isn't compatible with any other melody feature. Please refer to L1_AS328 specifi-
cation for the cross-functionality table.

13.1audio_aac_start

T _AUDIO_RET audio_aac_start (T_AUDIO_AAC_PARAMETER *p_parameter,
T_RV_RETURN return_path)

Description

This function is called to start an AAC melody generation.

Parameters

e T_AUDIO_AAC_PARAMETER

typedef struct

{
char aac_name[AUDIO_AAC_PATH_NAME_MAX_SIZE]; // File name of the melody
BOOLEAN mono_stereo; // channel configuration
UINT32 size_file_start; // size in bytes
BOOLEAN play_bar_on; // Progress Bar configuration

} T_AUDIO_AAC_PARAMETER;

Below the detail of each parameter:

aac_name

Specifies the file name of the AAC melody.

Note that this file name is used by the audio entity to request the melody data to the File Flash System. Moreover, the file
name must contain the entire path to access to the melody file.

Mono_stereo

Specifies the configuration of the channel.

If Mono_stereo = AUDIO_AAC_MONO, the channel configuration is Mono.
If Mono_stereo = AUDIO_AAC_STEREO, the channel configuration is Stereo.

size file start

Specifies the size (in bytes) from where the melody should be started.

If size_file_start = 0, the melody is played from the beginning of the AAC file.
If size_file_start = XXX, the melody is played from the byte XXX.

Note : in Case of ADIF streams, the size file start must be equal to 0.

play bar on
Specifies whether progress bar indication should be switched ON or not.

When 0, the progress bar indication will be OFF
When 1, the progress bar indication will be ON

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

@ Texas Instruments Proprietary Information — Internal Data Page 107 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return

e AUDIO_AAC_STATUS
typedef struct {
T_RV_HDR os_hdr;
INT32 status;
UINT8 aac_format;
} T_AUDIO_AAC_STATUS;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

The possible values of aac_format are:

Value [¢] Definition
0 AUDIO_AAC_ADIF Specifies the ADTS format of the AAC stream.
1 AUDIO_AAC_ADTS Specifies the ADIF format of the AAC stream.

e AUDIO_AAC_STATUS BAR
typedef struct
{
T _RV_HDR os_hdr; /* Message id */
INT8 status; /* status. This is for now AUDIO_OK always */
UINT16 ul6TotalTimePlayed; /* Current time played in seconds*/
UINT16 ul6totalTimeEst; /*The total song/file duration in seconds. */
}T_AUDIO _AAC STATUS BAR;

status

The possible value for status are,

AUDIO_OK, indicates the function was successfully executed

AUDIO_ERROR, indicates error (bad parameters, not enough memory, feature not compiled...)

ul6TotalTimePlayed

Specifies the actual total time played till now in milliseconds. This is calculated based on every frames decoded and is an
accurate time played till now.

ul6total TimeEst

Specifies the estimated total time played in milliseconds. This is estimated in the beginning of the play using the bit-rate of
the first AAC frame and the total size of the file.

Process flow

Q, MMI xas Instruments Proprietary Informaj = AUDIO |a Page 108 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

| audio_aac_start(aac_parameter, return_path) |

AUDIO_AAC_STATUS_MSG.

When Progress Bar is switched ON, AUDIO_AAC_STATUS_BAR message is sent (approximately)

every 1 second.

MMI

AUDIO

| audio_aac_start(aac_parameter, return_path) [

AUDIO_AAC_STATUS_BAR.

<
«

Limitations

1. Configuration of progress bar update periodicity not supported. The update message
will be sent at a pre-defined periodicity of approximately 1 second for both MP3 and

AAC. The exact timing of the indication depends on the current frame bit-rate.

2. No separate API to configure the switch on/off of progress bar is supported. Progress

bar update can be switched on/off only during the start request.

3. Progress bar update will not function properly when the start request is given from

middle of the file (using size_file_start).

13.2audio_aac_stop

T _AUDIO_RET audio_aac_stop (UINT32 *size_played)

Description

This function is called to stop playing an AAC melody.

Parameters

e UINT32 *size_played

This parameter returns the size of the file that has been played before the audio_aac_stop function

was called. This size is in bytes.

@ Texas Instruments Proprietary Information — Internal Data
TEXAS

INSTRUMENTS

Page 109 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

| value | [¢] | Definition B
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_AAC_STATUS

typedef struct {
T _RV_HDR os_hdr;
INT32 status;
} T_AUDIO_AAC_STATUS;

The possible values of status are:

0 No error
Else following bits equal to 1 means:

bit 1 (0x0000 0002) AAC_SYNC_WORD_NOT_FOUND
bit 2 (0x0000 0004) AAC_ADTS_HEADER_HAS_INVALID_SYNCWORD
bit 3 (0x0000 0008) AAC_ADTS_LAYER_DATA_ERROR
bit 4 (0x0000 0010) AAC_NUM_CHANNELS_EXCEEDED
bit 5 (0x0000 0020) AAC_PREDICTION_DETECTED
bit 6 (0x0000 0040) AAC_LFE_CHANNEL_DETECTED
bit 7 (0x0000 0080) AAC_GAIN_CONTROL_DETECTED
bit 8 (0x0000 0100) AAC_CHANNEL_ELEMENT_PARSE_ERROR
bit 9 (0x0000 0200) AAC_PULSE_DATA_NOT_ALWD_SHORT_BLK
bit 10 (0x0000 0400) AAC_MAX_SFB_TOO_LARGE_SHORT
bit 11 (0x0000 0800) AAC_MAX_SFB_TOO_LARGE_LONG
bit 12 (0x0000 1000) AAC_ERROR_ON_DATA_CHANNEL
bit 13 (0x0000 2000) AAC_COUPLING_CHANNEL_DETECTED
bit 14 (0x0000 4000) AAC_ADTS_PROFILE_ERROR
bit 15 (0x0000 8000) AAC_ADIF_PROFILE_ERROR
bit 16 (0x0001 0000) AAC_INVALID_ELEMENT_ID
bit 17 (0x0002 0000) AAC_SAMP_FREQ_NOT_SUPPORTED
bit 18 (0x0004 0000) AAC_DSP_DELAY
bit 19 (0x0008 0000) AAC_MCU_COPY_DELAY
bit 20 (0x0010 0000) AAC_MCU_FILL_DELAY
bit 21 (0x0020 0000) AAC_ERR_DMA_DROP
bit 22 (0x0040 0000) AAC_ERR_DMA_TOUT_SRC
bit 23 (0x0080 0000) AAC_ERR_DMA_TOUT_DST
bit 24 (0x0100 0000) AAC_WARNING_DMA_IT_MASKED

Several errors can occur at the same time. The error code returned is a logical or of the different error
codes that have occurred.

MMI AUDIO

[audio_aac_stop(size_played) [

v

AUDIO_AAC_STATUS_MSG.

@ Texas Instruments Proprietary Information — Internal Data Page 110 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

13.3audio_aac_pause

T _AUDIO_RET audio_aac_pause (void)

Description
This function is called to pause playing an AAC melody.

The AAC melody can be restarted using the audio_aac_resume function or the audio_aac_restart
function. AAC can also be stopped while in pause using the audio_aac_stop function.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_AAC_STATUS

typedef struct {
T _RV_HDR os_hdr;
INT32 status;
} T_AUDIO_AAC_STATUS;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)
MMI AUDIO

audio_aac_pause()

AUDIO_AAC_STATUS_MSG. !

Q; Texas Instruments Proprietary Information — Internal Data Page 111 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

13.4 audio_aac_resume

T _AUDIO_RET audio_aac_resume (void)

Description
This function is called to resume an AAC melody, after a pause.

Immediate Return

e T _AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_AAC_STATUS

typedef struct {
T_RV_HDR os_hdr;
INT32 status;

} T_AUDIO_AAC_STATUS;

The possible values of status are:

- Value [[e} e Definition i
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)
MMI AUDIO

| audio_aac_resume(void) |

. AUDIO_AAC_STATUS_MSG

@ Texas Instruments Proprietary Information — Internal Data Page 112 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

13.5audio_aac_restart

T _AUDIO_RET audio_aac_restart (UINT32 size_file_restart)

Description
This function is called to restart an AAC melody, after a pause.

Difference with resume is: the AAC decoder is reinitialized. Input buffers containing subsets of AAC
files are refilled. It allows upper layers to restart playing at any point in the AAC file.

Note : In case of ADIF streams, it is the upper layers’ responsibility to refill the buffers with the
beginning of the file before a restart.

Immediate Return

e T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_AAC_STATUS

typedef struct {
T _RV_HDR os_hdr;
INT32 status;
} T_AUDIO_AAC_STATUS;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)
MMI AUDIO

| audio_aac_restart(void) |

v

. AUDIO_AAC_STATUS_MSG

Q; Texas Instruments Proprietary Information — Internal Data Page 113 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

13.6audio_aac_info

T_AUDIO_RET audio_aac_info (void)

Description

This function is called to request information about the currently decoded AAC raw data block. The
MMI is only allowed to call this function while the Audio entity is in “play mode”.

Immediate Return

e T _AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T_AUDIO_RET;

The possible values are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

Event Return (if start APl was called)

e AUDIO_MP3_STATUS

typedef struct {
T_RV_HDR os_hdr;
INT32 status;
T_L1A_AAC_INFO_CON info;
} T_AUDIO_AAC_INFO_STATUS;

The possible values of status are:

Value [¢] Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not com-
piled...)

info (T_L1A_AAC_INFO_CON)

Structure containing information about current AAC frame:

Q; Texas Instruments Proprietary Information — Internal Data Page 114 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

frequency

UINT16

oOo~NOO O WNEO

: AAC_STREAM_FREQ_48000
: AAC_STREAM _FREQ_44100
: AAC_STREAM _FREQ_32000
: AAC_STREAM _FREQ_24000
- AAC_STREAM _FREQ_22050
: AAC_STREAM _FREQ_16000
: AAC_STREAM _FREQ_12000
: AAC_STREAM _FREQ_11025
: AAC_STREAM _FREQ_8000

Note: The hardware does not support sampling frequency of 64000
Hz, 88200 Hz and 96000 Hz.

bitrate

UINT32 | Values ranging from 16000 bps to 576000 bps.

channel

UINT8

: AAC_STREAM _MONO
: AAC_STREAM _STEREO

aac_format

UINT8

RO | NP

: AAC_ADIF_FORMAT
: AAC_ADTS_FORMAT

MMI

audio_aac_info()

AUDIO

v

A

AUDIO_AAC_INFO_STATUS_MSG

{'? TEXAS

INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 115 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

13.7How to use the AAC APIs

13.7.1“Pause” AAC in order to play an other melody

If the user wants to “pause” the AAC melody in order to play an other melody (for example Midi
ringer), it is necessary to stop the AAC melody and then start it again. Indeed, due to Hardware con-

straints the AAC can’t be in “pause” mode when an other melody is playing.

Example of code — the user is listening to a AAC melody when a Midi ringer needs to be played:

e Start the AAC melody from the beginning:
strcpy(aac_parameter.aac_name,"/aac/aac_file");
aac_parameter.mono_stereo = AUDIO_AAC_MONGO,;
aac_parameter.size_file_start = 0;

if (audio_aac_start(&aac_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;

return (audio_test_regr_return_verdict(*error_type));

}

e Midi Ringer must be played
- First Stop the AAC melody:

if (audio_aac_stop(size_played) == AUDIO_ERROR)
{
*error_type = MEMORY_ERROR;
return (audio_test regr_return_verdict(*error_type));

- Play the Midi ringer
- Use the start function to resume the AAC melody
aac_parameter.size_file_start = *size_played;

if (audio_aac_start(&aac_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;

return (audio_test regr_return_verdict(*error_type));

}

13.7.2 “Pause” AAC and resume it

If the user want to pause the AAC melody and no melody is played in parallel:
e Start the AAC melody from the beginning:
strcpy(aac_parameter.aac_name,"/aac/aac_file");

aac_parameter.mono_stereo = AUDIO_AAC_MONGO,;
aac_parameter.size_file_start = 0;

if (audio_aac_start(&aac_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;
return (audio_test_regr_return_verdict(*error_type));
}
@ Texas Instruments Proprietary Information — Internal Data Page 116 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

e Pause the AAC melody:
if (audio_aac_pause() == AUDIO_ERROR)
{
*error_type = FUNCTION_ERROR,;
return (audio_test regr_return_verdict(*error_type));

}

e And then resume the AAC melody thanks to the resume function:

if (audio_aac_resume() == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR,;
return (audio_test_regr_return_verdict(*error_type));
}
@ Texas Instruments Proprietary Information — Internal Data Page 117 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

14 Voice memorization on PCM

This chapter describes how to use the voice memorization on PCM api’s, using the AUDIO software
entity service.

14.1audio_vm_pcm_record_start

T _AUDIO_RET audio_vm_pcm_record_start (
T AUDIO_VM_PCM_RECORD_PARAMETER *p_record_parameter,
T_RV_RETURN return_path)

Description

This function is called to initiate the recording for voice memorization on PCM.

Parameters

e T_AUDIO_VM_PCM_RECORD_PARAMETER

Specifies the parameters using during the voice memorization phase.
typedef struct {

char memo_name [AUD10_MEMO_PATH_NAME_MAX_SIZE];

UINT32 memo_duration; // Maximum duration of the voice memo
UINT16 microphone_gain; // Recording gain applies to microphone
UINT16 network_gain; // Gain applies to the network voice

3T _AUDIO_VM_PCM_RECORD_PARAMETER;

Below the detail of each parameter:

memo_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to write the memo data to the Flash file
System. Moreover, the file name must contain the entire path of the memo file. Note the maximum size of the path plus the name is 20
characters.

memo_duration
Specifies the duration of the voice memo in seconds.

microphone_gain
Specifies the gain multiplied to the voice sample from the microphone. The values allowed are 0(to DISABLE recording of PCM
samples from the microphone) and 0x20(to ENABLE recording of PCM samples from the microphone).

network_gain
Specifies the gain multiplied to the voice sample from the network (if the mobile is in dedicated mode). The values allowed are 0(to
DISABLE recording of PCM samples from the network) and 0x20(to ENABLE recording of PCM samples from the network).

e T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

¢ AUDIO_VM_PCM_RECORD_STATUS_MSG
This event indicates that the melody task is stopped or an error is occurred.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
UINT16 recorded_duration;
}T_AUDIO_VM_PCM_RECORD_STATUS;

@ Texas Instruments Proprietary Information — Internal Data Page 118 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Below the detail of the parameter:

recorded_duration
Specifies the size in seconds’ unit of the recorded data.

The possible values of status are:

Value [¢] Definition
0 AUDIO_OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good func-
tionality of the complete system isn’t guarantee. Note: these following restrictions are only
available in the latest version of the software.

An entity isn’t allowed to call this API function if the following audio features is running:

L

* & & o

A melody E1.

A tone.

A speech recognition (enroliment, update, update-check, recognition).

A voice memorization playing.

Note: this restriction is managed by the audio entity, therefore the Voice memorization

(PCM) recording isn't started if the speech recognition or voice memorization playing or
tone or melody E1 is running.

All directories included in the pathname must be declared before

Process flow

MMI AUDIO
| |

»

»

audio_vm_pcm_record_start(p_record_parameter,
return_path)

A

AUDIO_VM_PCM_RECORD_STATUS_MSG |

@ Texas Instruments Proprietary Information — Internal Data Page 119 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

14.2 audio_vm_pcm_record_stop

T _AUDIO_RET audio_vm_pcm_record_stop (T_RV_RETURN return_path)

Description
This function is called in order to stop the current voice memorization PCM record.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VM_RECORD_STATUS_MSG
C.f. API function audio_vm_pcm_record_start.

Current restriction of use

C.f. API function audio_vm_pcm_record_start.

Process flow

MMI AUDIO

v

audio_vm_pcm_record_start(p_record_parameter,
return_path)

v ..

‘ audio_vm_pcm_record_stop(return_path) ‘

| AUDIO_VM_PCM_RECORD_STATUS_MSG |

@ Texas Instruments Proprietary Information — Internal Data Page 120 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

14.3 audio_vm_pcm_play_start

T _AUDIO_RET audio_vm_pcm_play start (T_AUDIO_VM _PCM_PLAY_ PARAMETER
*p_parameter, T _RV_RETURN return_path)

Description

This function is called to initiate the voice memaorization PCM playing phase.

Parameters

e T_AUDIO_VM_PCM_PLAY_PARAMETER
Specifies the parameters using during the voice memorization phase.
typedef struct {
char memo_name [AUDI10_MEMO_PATH_NAME_MAX_SIZE];

UINT32 memo_duration; /* maximum duration of the voice memo played*/

UINT16 speaker_gain; /* play gain applied to speaker. Sent as up
load_ul_gain to L1*/

UINT16 network_gain; /* play gain applied to play to the network. Sent

as upload_dl_gain to L1*/
}T_AUDIO_VM_PCM_PLAY_PARAMETER;

Below the detail of each parameters:

memao_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the memo data to the File
Flash System. Moreover, the file name must contain the entire path to declare the memo file. Note the maximum size of the path plus
the name is 20 characters.

memo_duration
Specifies the duration of the voice memo to be played in seconds.

microphone_gain
Specifies the gain multiplied to the voice sample played to the speaker. The values allowed are 0(to DISABLE playing of PCM
samples to the speaker) and 0x20(to ENABLE playing of PCM samples to the speaker).

network_gain
Specifies the gain multiplied to the voice sample from the network (if the mobile is in dedicated mode). The values allowed are 0(to
DISABLE playing of PCM samples to the network) and 0x20(to ENABLE playing of PCM samples to the network).

e T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

¢ AUDIO_VM_PCM_PLAY_STATUS_MSG
This event indicates that the voice memorization playing task is stopped or an error is occurred.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
}T_AUDIO_VM_PCM_PLAY_STATUS;

The possible values of status are:

Value Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

@ Texas Instruments Proprietary Information — Internal Data Page 121 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good func-
tionality of the complete system isn’t guarantee. Note: these following restrictions are only
available in the latest version of the software.

e An entity isn’t allowed to call this API function if the following audio features is running:

¢ A melody E1.

+ A speech recognition (enrollment, update, update-check, recognition).

+ A voice memorization recording.
Note: this restriction is managed by the audio entity, therefore the voice memorization PCM

playing isn’t started if the speech recognition or voice memorization playing is running.
e All directories included in the pathname must be declared before

Process flow

MMI

AUDIO

»

audio_vm_ pcm_play_start(parameter, return_path) ‘
i
i
i

A

AUDIO_VM_PCM_PLAY_STATUS_MSG ‘

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 122 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5

Approved

14.4audio_vm_pcm_play_stop

T_AUDIO_RET audio_vm _pcm _play_stop (T_RV_RETURN return_path)

Description

This function is called in order to stop the current voice memorization PCM play.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VM_PCM_PLAY_STATUS_MSG
C.f. API function audio_vm_pcm_play_start.

Current restriction of use

C.f. API function audio_vm_pcm_play_start.

Process flow

MMI

AUDIO

»

audio_vm_pcm_play_start(parameter, return_path) ‘

»
>

‘ audio_vm_pcm_play_stop(return_path)

A

| AUDIO_VM_PCM_PLAY_STATUS_MSG

15 Voice Buffering on PCM

This chapter describes how to use the voice memorization buffering, using the AUDIO software entity

service.

15.1audio_voice_buffering_pcm_record_start

T _AUDIO_RET audio_voice buffering_pcm_record_start (

@ Texas Instruments Proprietary Information — Internal Data
TEXAS

INSTRUMENTS

Page 123 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

T _AUDIO_VBUF_PCM_RECORD_PARAMETER *p_record_parameter,
T _RV_RETURN return_path)

Description

This function is called to initiate the recording of voice as PCM samples from the microphone or from
the network.

Parameters

e T_AUDIO_VBUF_PCM_RECORD_PARAMETER

Specifies the parameters used during the voice buffering recording phase.
typedef struct {

char memo_name [AUDI10_MEMO_PATH_NAME_MAX_SIZE];

UINT32 memo_duration; // maximum duration of the voice memo
UINT16 microphone_gain; // recording gain applies to microphone
UINT16 network_gain; // gain applies to the network voice

3T _AUDIO_VBUF_PCM_RECORD PARAMETER;

Below the detail of each parameter:

memao_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the memo data to the File
Flash System. Moreover, the file name must contain the entire path to declare the memo file. Note the maximum size of the path plus
the name is 20 characters.

memo_duration
Specifies the duration of the voice buffering in seconds.

microphone_gain
Specifies the gain multiplied to the voice sample from the microphone. The values allowed are 0(to DISABLE recording of PCM
samples from the microphone) and 0x20(to ENABLE recording of PCM samples from the microphone).

network_gain
Specifies the gain multiplied to the voice sample from the network (if the mobile is in dedicated mode). The values allowed are 0(to
DISABLE recording of PCM samples from the network) and 0x20(to ENABLE recording of PCM samples from the network).

e T _RV_RETURN
C.f. previous section (return mechanism).

Immediate Return
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VBUF_PCM_RECORD_STATUS_MSG
This event indicates that the melody task is stopped or an error is occurred.
typedef struct {
T_RV_HDR os_hdr;
INT8 status;
UINT16 recorded_duration;
}T_AUDIO_VBUF_PCM_RECORD_STATUS;

Below the detail of the parameter:

recorded_duration
Specifies the size in seconds’ unit of the recorded data.

The possible values of status are:

Value Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed
@ Texas Instruments Proprietary Information — Internal Data Page 124 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good func-
tionality of the complete system isn’t guarantee. Note: these following restrictions are only
available in the latest version of the software.

e An entity isn’t allowed to call this API function if the following audio features is running:

L

* & & o

A melody E1.

A tone.

A speech recognition (enroliment, update, update-check, recognition).

A voice memorization playing.

Note: this restriction is managed by the audio entity, therefore the Voice memorization re-

cording isn't started if the speech recognition or voice memorization playing or tone or
melody E1 is running.

e All directories included in the pathname must be declared before

Process flow

MMI AUDIO

au-
dio_voice_buffering_pcm_record_start(p_record_par
ameter, return_path)

A

AUDIO_VBUF_PCM_RECORD_STATUS_MSG

@ Texas Instruments Proprietary Information — Internal Data Page 125 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

15.2audio_voice_buffering_pcm_record_stop

T _AUDIO_RET audio_voice buffering pcm _record_stop (T_RV_RETURN return_path)

Description
This function is called in order to stop the current voice buffering record.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return
C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VBUF_PCM_RECORD_STATUS_MSG
C.f. API function audio_vm_pcm_record_start.

Current restriction of use
C.f. API function audio_vm_pcm_record_start.

Process flow

MMI AUDIO

v

audio_voice_buffering_pcm_record_start(
p_record_parameter, return_path)

|

|

|

v

audio_voice_buffering_pcm_record_stop(re-
turn_path)

o . |
| |
<

‘ AUDIO_VBUF_PCM_RECORD_STATUS_MSG ‘

@ Texas Instruments Proprietary Information — Internal Data Page 126 of 130
TEXAS
INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

15.3audio_voice buffering_pcm_play_start

T _AUDIO_RET audio_voice buffering_pcm play start
(T_AUDIO_VBUF_PCM_PLAY_ PARAMETER *p_parameter, T _RV_RETURN
return_path)

Description

This function is called to initiate the voice buffering playing phase.

Parameters

e T_AUDIO_VBUF_PCM_PLAY_PARAMETER
Specifies the parameters using during the voice memorization phase.
typedef struct {
char memo_name[AUDIO_MEMO_PATH_NAME_MAX_SIZE];

UINT32 memo_duration; /* maximum duration of the voice memo played*/
UINT16 speaker_gain; /* play gain applied to speaker. Sent as up

load ul_gain to L1*/
UINT16 network_gain; /* play gain applied to play to the network. Sent

as upload_dl_gain to L1*/
} T_AUDIO_VBUF_PCM_PLAY_PARAMETER;

Below the detail of each parameters:

memo_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the memo data to the File
Flash System. Moreover, the file name must contain the entire path to declare the memo file. Note the maximum size of the path plus
the name is 20 characters.

memo_duration
Specifies the duration of the voice memo to be played in seconds.

speaker_gain
Specifies the gain multiplied to the voice sample played to the speaker. The values allowed are 0(to DISABLE playing of PCM
samples to the speaker) and 0x20(to ENABLE playing of PCM samples to the speaker).

network_gain
Specifies the gain multiplied to the voice sample from the network (if the mobile is in dedicated mode). The values allowed are 0(to
DISABLE playing of PCM samples to the network) and 0x20(to ENABLE playing of PCM samples to the network).

e T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VBUF_PCM_PLAY_STATUS_MSG
This event indicates that the voice memorization playing task is stopped or an error is occurred.
typedef struct {
T RV_HDR o0s_hdr;
INT8 status;
}T_AUDIO_VBUF_PCM_PLAY_STATUS;

The possible values of status are:

Value id Definition
0 AUDIO_OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

@ Texas Instruments Proprietary Information — Internal Data Page 127 of 130
TEXAS

INSTRUMENTS

Technical Document

Audio API (RIV101) (88_02_03_00218), v6.5

Approved

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good func-
tionality of the complete system isn’t guarantee. Note: these following restrictions are only
available in the latest version of the software.

e An entity isn’t allowed to call this API function if the following audio features is running:

¢ A melody E1.

+ A speech recognition (enrollment, update, update-check, recognition).

+ A voice memorization recording.
Note: this restriction is managed by the audio entity, therefore the voice memorization playing

isn’t started if the speech recognition or voice memorization playing is running.

e All directories included in the pathname must be declared before

Process flow

MMI

AUDIO

audio_voice_buffering_pcm_play_start(parameter,

»
>

return_path)

AUDIO_VBUF_PCM_PLAY_STATUS_MSG ‘

{'?‘ Texas
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 128 of 130

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

15.4audio_voice_buffering_pcm_play stop

T _AUDIO_RET audio_voice buffering pcm play stop (T_RV_RETURN return_path)

Description
This function is called in order to stop the current voice memorization play.

Parameters

e T RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

e AUDIO_VBUF_PCM_PLAY_STATUS_MSG
C.f. API function audio_vm_pcm_play_start.

Current restriction of use

C.f. API function audio_vm_pcm_play_start.

Process flow

MMI AUDIO
| |

>
audio_voice_buffering_pcm_play_start(parameter,
return_path)

»

audio_voice_buffering_pcm_play_stop(return_path

i
i
AUDIO_VBUF_PCM_PLAY_STATUS MSG |

@ Texas Instruments Proprietary Information — Internal Data Page 129 of 130
TEXAS

INSTRUMENTS

Technical Document
Audio API (RIV101) (88_02_03_00218), v6.5 Approved

Appendices

A. Acronyms

AAC Advanced Audio Coding

ADTS Audio Data Transport Stream
ADIF Audio Data Interchange Format
AEC Acoustic Echo Cancellation
FFS Flash File System

FIR Finite Impulse Response filter
MMI Man Machine Interface

RFS Riviera File System

SR Speech Recognition

B. Glossary

@ TEXAS Texas Instruments Proprietary Information — Internal Data Page 130 of 130

INSTRUMENTS

	1 Introduction
	2 Overview
	2.1 Generality
	2.2 Return Mechanism
	2.3 RFS Support
	3 Audio-Modem incompatibilities
	3.1 DSP code 39

	4 Audio task compatibilities
	4.1 DSP code 39

	5 Keybeep Generation
	5.1 audio_keybeep_start
	5.2 audio_keybeep_stop

	6 Tones Generation
	6.1 audio_tones_start
	6.2 audio_tones_stop

	7 Melody E1 generation
	7.1 audio_melody_E1_start
	7.2 audio_melody_E1_stop

	8 Voice memorization
	8.1 audio_vm_record_start
	8.2 audio_vm_record_stop
	8.3 audio_vm_play_start
	8.4 audio_vm_play_stop

	9 Audio mode configuration
	9.1 Introduction
	9.2 MMI family
	9.2.1 Audio mode file structure
	9.2.1.1 T_AUDIO_MODE
	9.2.1.2 T_AUDIO_VOICE_PATH_SETTING
	9.2.1.3 T_AUDIO_MICROPHONE_SETTING
	9.2.1.3.1 T_AUDIO_ANR_CFG
	9.2.1.3.2 T_AUDIO_AGC_UL_CFG
	9.2.1.3.3 T_AUDIO_ANR_CFG
	9.2.1.3.4 T_AUDIO_ES_CFG

	9.2.1.4 T_AUDIO_SPEAKER_SETTING
	9.2.1.4.1 T_AUDIO_AGC_DL_CFG
	9.2.1.4.2 T_AUDIO_DRC_CFG
	9.2.1.4.3 T_AUDIO_IIR_CFG
	9.2.1.4.4 T_AUDIO_LIMITER_CFG
	9.2.1.4.5 T_AUDIO_IIR_CFG

	9.2.1.5 T_AUDIO_STEREO_SPEAKER_SETTING
	9.2.1.6 T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING
	9.2.1.6.1 T_AUDIO_AEC_CFG

	9.2.1.7 T_AUDIO_MICROPHONE_SPEAKER_SETTING

	9.2.2 API functions
	9.2.2.1 audio_mode_load
	9.2.2.2 audio_mode_save
	9.2.2.3 audio_speaker_volume
	9.2.2.4 audio_stereo_speaker_volume

	9.3 Full access family
	9.3.1 API functions
	9.3.1.1 audio_full_access_write
	9.3.1.2 audio_full_access_read

	10 AMR play/record
	10.1 Overview
	10.2 Immediate return and event return
	10.3 audio_amr_record_to_ram/ffs_start
	10.4 audio_amr_record_to_ram/ffs_stop
	10.5 audio_amr_play_from_ram/ffs_start
	10.6 audio_amr_play_from_ram/ffs_stop
	10.7 audio_mms_record_to_ffs_start
	10.8 audio_mms_record_to_ffs_stop
	10.9 audio_mms_play_from_ffs_start
	10.10 audio_mms_play_from_ffs_stop
	10.11 audio_amr_play_from_ffs_pause/ram_pause
	10.12 audio_amr_play_from_ffs_resume/ram_resume
	10.13 audio_vm_amr_forward
	10.14 audio_vm_amr_rewind

	11 TTY
	11.1 audio_tty_set_config

	12 MP3
	
	12.1 audio_mp3_start
	12.2 audio_mp3_stop
	12.3 audio_mp3_pause
	12.4 audio_mp3_resume
	12.5 audio_mp3_forward
	12.6 audio_mp3_rewind
	12.7 audio_mp3_info
	
	12.8 How to use the MP3 APIs
	12.8.1 “Pause” MP3 in order to play an other melody
	12.8.2 “Pause” MP3 and resume it

	13 AAC (Advanced Audio Coding)
	
	13.1 audio_aac_start
	13.2 audio_aac_stop
	13.3 audio_aac_pause
	13.4 audio_aac_resume
	13.5 audio_aac_restart
	13.6 audio_aac_info
	
	13.7 How to use the AAC APIs
	13.7.1 “Pause” AAC in order to play an other melody
	13.7.2 “Pause” AAC and resume it

	14 Voice memorization on PCM
	14.1 audio_vm_pcm_record_start
	14.2 audio_vm_pcm_record_stop
	14.3 audio_vm_pcm_play_start
	14.4 audio_vm_pcm_play_stop

	15 Voice Buffering on PCM
	15.1 audio_voice_buffering_pcm_record_start
	15.2 audio_voice_buffering_pcm_record_stop
	15.3 audio_voice_buffering_pcm_play_start
	15.4 audio_voice_buffering_pcm_play_stop

