
TI Proprietary Information — Strictly Private

CELLULAR SYSTEMS DESIGN SPECIFICATION

Document Revision: 1.0 DRAFT
Issue Date: 12 July 2006

Multimedia Framework MSL N5.x Design Specification

TI Proprietary Information — Strictly Private
ii

“Texas Instruments™” and “TI™” are trademarks of Texas Instruments

The TI logo is a trademark of Texas Instruments

OMAP™ is a trademark of Texas Instruments

OMAP-Vox™ is a trademark of Texas Instruments

Innovator™ is a trademark of Texas Instruments

Code Composer Studio™ is a trademark of Texas Instruments

DSP/BIOS™ is a trademark of Texas Instruments

eXpressDSP™ is a trademark of Texas Instruments

TMS320™ is a trademark of Texas Instruments

TMS320C28x™ is a trademark of Texas Instruments

TMS320C6000™ is a trademark of Texas Instruments

TMS320C5000™ is a trademark of Texas Instruments

TMS320C2000™ is a trademark of Texas Instruments

All other trademarks are the property of the respective owner.

Copyright © 2006 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for the
products based from this document.

iii
TI Proprietary Information — Strictly Private

Design Specification Nucleus Multimedia Framework MSL N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

Table of Contents
Table of Contents ... iii

List of Figures .. iv
1 Introduction.. 1

1.1 Purpose .. 1
1.2 Scope ... 1
1.3 File Name ... 1
1.4 Definitions ... 1

2 Overview... 2
2.1 MSL_UCP_IMGCAP Pipeline Features ... 2
2.2 MSL_UCP_IMGTHMB Pipeline Features... 3
2.3 MSL_UCP_ IMGVIEW Pipeline Features... 3

3 API And Data Structures.. 4
3.1 Common Data Structures .. 4

3.1.1 MSL_INDEXTYPES.. 4
3.1.2 MSL_FILETYPE ... 6
3.1.3 MSL_CALLBACK.. 6
3.1.4 MSL_UCPTYPE ... 7
3.1.5 MSL_CMDTYPE... 8
3.1.6 MSL_OVERLAY_MODE... 9
3.1.7 MSL_CAMERA_MODE... 9
3.1.8 MSL_IMG_ROTATETYPE .. 10
3.1.9 MSL_COLOR_FORMATTYPE.. 10
3.1.10 MSL_IMG_WINDOWTYPE... 11
3.1.11 MSL_IMG_OVERLAYCONFIG ... 12
3.1.12 MSL_CAM_CONFIGTYPE.. 13
3.1.13 MSL_DISPLAY_CONFIGTYPE... 13
3.1.14 MSL_RESCALE_CONFIGTYPE... 14
3.1.15 MSL_FILE_CONFIGTYPE.. 15
3.1.16 MSL_IMGINFO_CONFIGTYPE .. 15
3.1.17 MSL_<UCP>_STATUS... 16

3.2 MSL IMGCAP Specific Data Structures ... 18
3.3 MSL IMGVIEW Specific Data Structures.. 18
3.4 MSL IMGVIEW Specific Data Structures.. 18
3.5 COMMON APIs... 18
3.6 MSL IMGCAP APIs ... 19

3.6.1 MSL_ImgCap_Create ... 19
3.6.2 MSL_ImgCap_SetConfig .. 20
3.6.3 MSL_ImgCap_Init ... 22
3.6.4 MSL_ImgCap_ Viewfinder .. 23
3.6.5 MSL_ImgCap_ MSL_ImgCap_Snapshot... 24
3.6.6 MSL_ImgCap_DeInit... 25
3.6.7 MSL_ImgCap_ Destroy... 26

3.7 MSL IMGVIEW APIs ... 27
3.7.1 MSL_ImgView_Create .. 27
3.7.2 MSL_ ImgView_SetConfig .. 28
3.7.3 MSL_ ImgView_Init ... 30
3.7.4 MSL_ImgView_View... 31
3.7.5 MSL_ImgView_Deinit.. 32
3.7.6 MSL_ImgView_ Destroy.. 33

3.8 MSL IMGTHMB APIs... 34
3.8.1 MSL_ImgThmb_Create... 34

iv
TI Proprietary Information — Strictly Private

Design Specification Nucleus Multimedia Framework MSL N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

3.8.2 MSL_ ImgThmb_SetConfig... 35
3.8.3 MSL_ ImgThmb_Init.. 37
3.8.4 MSL_ImgThmb_Generate... 38
3.8.5 MSL_ImgThmb_Deinit .. 39
3.8.6 MSL_ImgThmb_ Destroy .. 40

4 Call Sequences .. 41
5 Performance Data .. 43
6 Memory Requirements... 44

List of Figures
Figure 1. Thumbnail Creation sequence diagram.. 41
Figure 2. Preview Icon Extraction sequence diagram...........................Error! Bookmark not defined.
Figure 3. Image Viewer sequence diagram.. 42
Figure 4. Image Editor Zoom sequence diagram.................................Error! Bookmark not defined.
Figure 5. Image Editor Rotate sequence diagramError! Bookmark not defined.

v
TI Proprietary Information — Strictly Private

Design Specification Nucleus Multimedia Framework MSL N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

Revision History
REV DATE NOTES
0.1 22 Feb 2006 Initial Draft
0.2 27 Feb 2006 Incorporated the comments after review
0.3 06 March 2006 Updated the API prototypes
1.0 12 July 2006 Updated to the latest implementation

vi
TI Proprietary Information — Strictly Private

Design Specification Nucleus Multimedia Framework MSL N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
1 Products 2 Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 1 of 44

1 Introduction
The Multimedia Service Layer (MSL) is a multimedia application framework layer for camera and imaging
features which will enable end users to quickly build applications which can harness camera and imaging
capability of Locosto platform. It provides consistent, easy to use use-case-specific API, for use cases like
starting a viewfinder with frame overlaying, or zoom or rotate (or combination of all). Every use-case
pipeline is created, used and destroyed with similar sets of types and functions to assist the application in
using multimedia components.

1.1 Purpose
This purpose of the document is to describe features and APIs for MSL layer implemented on Locosto
platform to enable application users to integrate MSL framework with their applications.

1.2 Scope
This document covers features, APIs, integration notes, memory and performance of MSL layer. This
document does not cover technical detail on MSL implementation.

1.3 File Name
The file name of this document is cssd_designspec_locosto_mm_msl.doc

1.4 Definitions
MSL Multimedia Services Layer

OMX Open Max IL layer

GPF Generic Protocol Stack Framework

VGA Video Graphics Array

QCIF Quarter Common Intermediate Format

CIF Common Intermediate Format

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 2 of 44

2 Overview
MSL layer provides application with three use case pipelines as follows.

1. MSL_UCP_IMGCAP
2. MSL_UCP_IMGTHMB
3. MSL_UCP_IMGVIEW

Each of these pipelines provides similar set of APIs. The feature list for each of the pipelines is detailed
below.

2.1 MSL_UCP_IMGCAP Pipeline Features
This pipeline provides user applications with ability to start a view finder, apply rotation, overlay, zoom
features and take a snapshot and save it to FFS or RFS file system. The full feature list is listed below

n Enable camera viewfinder mode.

n Apply overlay, rotation and zoom on viewfinder frames in viewfinder mode. These features can be on
viewfinder frames in any combination (i.e. only rotation or rotation plus overlay and so on).
u Supported rotation values are 0, 90, 180 and 270 degrees.
u Virtually any zoom value is supported. Zoom values are scaled to 1024 to enable smooth zoom.

Zoom value of 1024 is considered no zoom, 2048 2x zoom, 4096 4x zoom etc. The user can
specify any value >=1024 to simulate smooth zoom effect.

u Both rotation and zoom values can be dynamically changed while viewfinder is running, but
overlay frame can be changed only when MSL_IMGCAP is in deinit state.

u Three types of overlay supported. 1) Color key based substitution 2) alpha blending and 3) On
screen display blending which involved color key substitution and alpha overlay.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

n Ability to support different picture dimensions in viewfinder mode.
u Tested dimensions are QQVGA and QCIF

n Take a snapshot while in viewfinder mode.

n Apply rotation, overlay and zoom on snapshot image. By default the effects that are on during
viewfinder frames (like rotate values or zoom value) will be applicable for the captured image too.
User can turn off any of these features before taking snapshot.
u When Overlay is not enabled, the raw snapshot is taken in yuyv format.
u When Overlay is enabled, the raw snapshot is captured in RGB16 format

n Ability to take burst mode snapshot. The user can set the burst count and when user make a call to
take snapshot the pipeline will take the burst count number of snapshots continuously. Only the last
taken snapshot is displayed on screen. Currently the maximum burst count supported is 3. The
limitation is only in static memory allocated on system, not in API or implementation.

n Ability to save snapshot images in FFS or RFS. Using the configuration setting user can specify
whether the image needs to be saved on RFS (nand) or FFS (nor) file system.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 3 of 44

n Ability to take snapshot without starting a viewfinder. There is a direct API provided in this pipeline to
take snapshot without calling viewfinder API first.

n Ability to take snapshot in different dimensions. Note that maximum dimension supported by camera
is VGA. Apart from camera limitation, the static memory allocated in system is limited to support
maximum VGA images.

u Tested dimension are QQVGA, QCIF, QVGA, CIF and VGA.

2.2 MSL_UCP_IMGTHMB Pipeline Features

This pipeline provides user application with ability to decode a jpeg image, rescale it down to a different
dimension and re-encode them to again jpeg format. This feature is especially useful to display thumbnail
images as the time taken to decode and display the original images will be too huge to be in the acceptable
range. The full features list of this pipeline is listed below
n The source jpeg file could be of any dimension (less than or equal to VGA).

n The source jpeg file could be in RFS or FFS.

n The destination jpeg file (thumbnail jpeg file) could be saved in RFS or FFS independent of source
jpeg file.

n Ability to set quality factor for generated thumbnail image.

n Ability to specify user defined dimension for destination jpeg file. (it should be less than VGA)

2.3 MSL_UCP_ IMGVIEW Pipeline Features
This pipeline provides user application with ability to decode a jpeg image, apply post processing features like
rotation, rescale, overlay and display them on screen. The full features list of this pipeline is listed below
n The jpeg file could be of any dimension (less than or equal to VGA).

n The jpeg file could be in RFS or FFS.

n Ability to specify rotate, overlay, zoom features independently or in any combinations (like rotate and
zoom) for the displayed image.
u Supported rotation values are 0, 90, 180 and 270 degrees.
u Virtually any zoom value is supported. Zoom values are scaled to 1024 to enable smooth zoom.

Zoom value of 1024 is considered no zoom, 2048 2x zoom, 4096 4x zoom etc. The user can
specify any value >=1024 to simulate smooth zoom effect.

u Both rotation and zoom values can be dynamically changed while viewfinder is running, but
overlay frame can be changed only when MSL_IMGCAP is in deinit state.

u Three types of overlay supported. 1) color key based substitution 2) alpha blending and 3) On
screen display blending which involved color key substitution and alpha overlay.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

n Ability to specify the dimension of displayed image and location in screen

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 4 of 44

3 API And Data Structures
All three MSL pipeline supports similar set of APIs and data structures. The APIs are classified into two
types.

1) Synchronous APIs

These APIs will return to the caller only after completing the required functionality i.e. they are
blocking APIs. In MSL design it was taken care that these APIs takes less than 5ms. The APIs for
creating an MSL pipeline, deleting an MSL pipeline and doing the configuration setting belong to
this category.

2) Asynchronous APIs

These APIs will trigger an internal task to carry out the actual processing and return to the caller
function immediately. Once the actual processing is complete, a callback function (this function
pointer is set using a setconfig API) is returned. This API has parameters to specify the usecase
pipeline, the status of functionality it was supposed to complete, and API type for which it was
called. The APIs for doing MSL pipeline initialization and doing actual data processing (like taking
snapshot, or generating thumbnail) belong to this category.

3.1 Common Data Structures
The common data structures are captured in the top level header file msl_api.h. This header file needs to
be included by user applications for all MSL usecase pipelines.

3.1.1 MSL_INDEXTYPES
#include <msl_api.h>

Data Fields
q MSL_CALLBACKSET_CONFIGINDEX,
q MSL_DISPLAY_CONFIGINDEX,
q MSL_CAMERA_CONFIGINDEX,
q MSL_OVERLAY_CONFIGINDEX,
q MSL_BURSTCOUNT_CONFIGINDEX,
q MSL_ENCFILE_CONFIGINDEX,
q MSL_DECFILE_CONFIGINDEX,
q MSL_ZOOM_CONFIGINDEX,
q MSL_RESCALE_CONFIGINDEX,
q MSL_ROTATE_CONFIGINDEX,
q MSL_SEPIAEFFECT_CONFIGINDEX,
q MSL_GRAYEFFECT_CONFIGINDEX,
q MSL_CROPWINDOW_CONFIGINDEX,
q MSL_ENCQUALITY_CONFIGINDEX,
q MSL_IMGINFO_CONFIGINDEX

Detailed Description
This is an enum type structure passed as second parameter of MSL use case pipeline’s setconfig API (for
eg MSL_ImgCap_SetConfig function). The setconfig API interprets the parameter value (passed as third
parameter) depending on the index value.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 5 of 44

Field Documentation
MSL_CALLBACKSET_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_CALLBACK function pointer. This function is called by MSL pipeline to notify completion of asynchronous
APIs and events.

MSL_DISPLAY_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_DISPLAY_CONFIGTYPE structure. This parameter defines the display configuration (displayed width,
height, offsets etc) for the image display.

MSL_CAMERA_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_CAM_CONFIGTYPE structure. This structure defines camera specific parameters like camera capture
mode (snapshot or viewfinder), image width, height and format.

MSL_OVERLAY_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_IMG_OVERLAYCONFIG structure. This structure defines overlay parameter like overlay type, overlay
image width, overlay image height etc for the overlay mage.

MSL_BURSTCOUNT_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to an integer
which sets the burst count for camera snapshot capture. This is applicable only to imgcap pipeline and so
MSL_ImgCap_SetConfig API only. By default, the burst count is set to 1. When this config is set and burst count
is set to greater than 1, camera pipeline (MSL_ImgCap) will take “burst_count” number of snapshots one after the
other and saved. All specified post processing (like rotation, zoom, overlay) is performed on each of the snapshots
before saving the jpeg image. The last snapshot taken will be previewed on screen and then the snapshot API will
return a callback informing application that snapshot is complete.

MSL_ENCFILE_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_FILE_CONFIGTYPE structure. This structure defines encode file details like file name and file format type
(rfs, ffs) etc.

MSL_DECFILE_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_FILE_CONFIGTYPE structure. This structure defines decode file details like file name and file format type
(rfs, ffs) etc.

MSL_ZOOM_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to an integer
specifying the zoom value to be set. The zoom values are scaled to 1024 and so no zoom value is 1024. User can
potentially specify zoom value anything equal to or greater than 1024, but quality will degrade beyond 4x zoom
(i.e. when value is set to 4096).

MSL_ MSL_RESCALE_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_RESCALE_CONFIGTYPE. This structure defines rescaling parameters for image. This parameters needs to
be set only for MSL_Thmb pipeline to specify the thumbnail image dimension.

MSL_ ROTATE_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_IMG_ROTATETYPE enum type. This value specifies the rotation that needs to be performed on this image.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 6 of 44

MSL_SEPIAEFFECT_CONFIGINDEX
This index type is currently not supported in any pipelines. This is set for future expansion.

MSL_ GRAYEFFECT_CONFIGINDEX
This index type is currently not supported in any pipelines. This is set for future expansion.

MSL_ CROPWINDOW_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_IMG_WINDOWTYPE structure type. This structure defines the crop parameters for the image.

MSL_ ENCQUALITY_CONFIGINDEX
When the index type is set to this value, the third parameter to setConfig API should be a pointer to int pointer,
which specifies the JPEG encode quality value. This value could be between 1 to 100.

MSL_IMGINFO_CONFIGINDEX
When the index type is set to this value, the third parameter to getConfig API should be a pointer to
MSL_IMGINFO_CONFIGTYPE structure. This structure defines the JPEG image property like width, height,
format etc. Note that this is passed to getConfig API which returns the value from MSL pipeline.

3.1.2 MSL_FILETYPE
#include <msl_api.h>

Data Fields
q MSL_FILETYPE_FFS
q MSL_FILETYPE_RFS

Detailed Description
This enum type is member of MSL_FILE_CONFIGTYPE structure, which is passed as third parameter of
MSL usecase pipeline’s setconfig API (for eg MSL_ImgCap_SetConfig function) when index type is set as
MSL_ENCFILE_CONFIGINDEX OR MSL_DECFILE_CONFIGINDEX. The enum type defines the file
type.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig

Field Documentation
MSL_FILETYPE_FFS

When file type is set to this, MSL pipeline will use FFS API for file IO operations (e.g. file read, file write etc).

MSL_FILETYPE_RFS
When file type is set to this, MSL pipeline will use RFS API for file IO operations (e.g. file read, file write etc).

3.1.3 MSL_CALLBACK
#include <msl_api.h>

Data Fields
q typedef MSL_VOID (* MSL_CALLBACK) (MSL_HANDLE hMSL, MSL_UCPTYPE tUCPType,

MSL_CMDTYPE tCMd, MSL_STATUS tStatus)

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 7 of 44

Detailed Description
This function pointer type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_CALLBACKSET_CONFIGINDEX. It is
mandatory for user application to implement this API. The parameters to this API is covered in the field
documentation.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig

Field Documentation
MSL_HANDLE

This is the first parameter passed to this function by MSL pipeline. This parameter contains the handle to MSL
usecase pipeline instance.

MSL_UCPTYPE
This is the second parameter passed to this function by MSL pipeline. This parameter contains the MSL pipeline
type (one of the three pipelines).

MSL_CMDTYPE
This is the third parameter passed to this function by MSL pipeline. This parameter contains the details on for
which API the call back was made for.

MSL_STATUS
This is the fourth parameter passed to this function by MSL pipeline. This parameter contains the status of
callback function. The status values are given in MSL_<UCP>_STATUS, where UCP is the pipeline type (could
be IMGCAP, IMGVIEW or IMGTHMB).

3.1.4 MSL_UCPTYPE
#include <msl_api.h>

Data Fields
q MSL_UCP_IMGCAP
q MSL_UCP_IMGTHMB
q MSL_UCP_IMGVIEW

Detailed Description
This enum type is passed as the second parameter to MSL_CALLBACK function by MSL usecase
pipeline. This value could be used by user application to infer the callback source.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL_ UCP_IMGCAP

When value is set to this, it means that the callback is from image capture pipeline.

MSL_ UCP_IMGTHMB
When value is set to this, it means that the callback is from image thumb generation pipeline.

MSL_ UCP_IMGVIEW
When value is set to this, it means that the callback is from image view pipeline.
.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 8 of 44

3.1.5 MSL_CMDTYPE
#include <msl_api.h>

Data Fields
q MSL_CMD_VIEWFINDER
q MSL_ CMD_SNAPSHOT
q MSL_ CMD_GENERATE
q MSL_CMD_VIEW
q MSL_CMD_PAUSE
q MSL_CMD_INIT
q MSL_CMD_DEINIT

Detailed Description
This enum type is passed as the third parameter to MSL_CALLBACK function by MSL usecase pipeline.
This value could be used by user application to infer the callback scenario.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL_CMD_VIEWFINDER

When third parameter is set to this in the callback API, the fourth parameter will inform the status of viewfinder
start. If the viewfinder started successfully, then the fourth parameter would be MSL_IMGCAP_STATUS_OK else
it will be set to appropriate error values.

MSL_CMD_SNAPSHOT
When third parameter is set to this in the callback API, the fourth parameter will inform the status of snapshot
completion. If the snapshot is successfully completed the fourth parameter would be MSL_IMGCAP_STATUS_OK
else it will be set to appropriate error values.

MSL_CMD_GENERATE
When third parameter is set to this in the callback API, the fourth parameter will inform the status of image
thumbnail generation. If the thumbnail generation is successful, the fourth parameter would be
MSL_IMGTHMB_STATUS_OK else it will be set to appropriate error values.

MSL_CMD_VIEW
When third parameter is set to this in the callback API, the fourth parameter will inform the status of image view
completion. If the image was displayed successfully, the fourth parameter of the callback function would be set to
MSL_IMGVIEW_STATUS_OK else appropriate error values will be returned.

MSL_CMD_PAUSE
This value is never returned in the current implementation. This is reserved for future implementation.

MSL_CMD_INIT
When third parameter is set to this in the callback API, the fourth parameter will inform the status of pipeline
initialization API. If the initialization was successful, the fourth parameter of the callback function would be set to
MSL_<UCP>_STATUS_OK else appropriate error values will be returned

MSL_CMD_DEINIT
When third parameter is set to this in the callback API, the fourth parameter will inform the status of pipeline de-
initialization API. If the de-initialization was successful, the fourth parameter of the callback function would be set
to MSL_<UCP>_STATUS_OK else appropriate error values will be returned

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 9 of 44

3.1.6 MSL_OVERLAY_MODE
#include <msl_api.h>

Data Fields
q MSL_OVERLAYMODE_NOOVERLAY
q MSL_OVERLAYMODE_OVERLAP
q MSL_OVERLAYMODE_COLORKEY
q MSL_OVERLAYMODE_ALPHABLENDING
q MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY

Detailed Description
This enum type is member of MSL_IMG_OVERLAYCONFIG structure, which is passed as third
parameter of MSL usecase pipeline’s setconfig API (for e.g. MSL_ImgCap_SetConfig function) when
index type is set as MSL_OVERLAY_CONFIGINDEX. The enum type defines the overlay mode to be
used.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig

Field Documentation
MSL_OVERLAYMODE_NOOVERLAY

When overlay mode is set to this, it means that no overlay will be performed.

MSL_OVERLAYMODE_OVERLAP
When overlay mode is set to this, it means that an overlap overlay will be performed. In this mode the overlay
image is blindly copied on top of the image in the specified offset location.

MSL_OVERLAYMODE_COLORKEY
When the overlay mode is set to this, it means that color key based substitution will be performed for overlay. In
this overlay mode, user specified color key will be used as an index to transparent region in overlay image.

MSL_OVERLAYMODE_ALPHABLENDING
When the overlay mode is set to this, it means that alpha blending method will be used for overlay. In this mode,
the overlay image will be alpha blended (using a separate user specified blend value) on top of actual image.

MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY
When the overlay mode is set to this, it means that alpha blending and color key based substitution method will be
used for overlay. In this mode, the overlay image will be alpha blended (using a separate user specified blend
value) on top of actual image followed by user specified color key based substitution.

3.1.7 MSL_CAMERA_MODE
#include <msl_api.h>

Data Fields
q MSL_CAMERAMODE_VF
q MSL_CAMERAMODE_SS

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 10 of 44

Detailed Description
This enum type is member of MSL_CAM_CONFIGTYPE structure, which is passed as third parameter of
MSL usecase pipeline’s setconfig API (for e.g. MSL_ImgCap_SetConfig function) when index type is set
as MSL_CAMERA_CONFIGINDEX. This value specifies the camera mode when starting the imgcap
pipeline.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL_CAMERAMODE_VF

The value is set to this to inform MSL imgcap pipeline to start camera in set in viewfinder mode.

MSL_CAMERAMODE_SS
The value is set to this to inform MSL imgcap pipeline to start camera in set in snapshot mode.

3.1.8 MSL_IMG_ROTATETYPE
#include <msl_api.h>

Data Fields
q MSL_ROTATE_0
q MSL_ROTATE_90
q MSL_ROTATE_180
q MSL_ROTATE_270

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_ROTATE_CONFIGINDEX. This value
specifies the rotation that needs to be performed. Note that this rotation value is absolute (not to previous
set rotate value).

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL_ ROTATE _0

When the rotate value is set to this, it means that no rotation will be performed on the image.

MSL_ ROTATE _90
When the rotate value is set to this, it means that 900 rotation will be performed on the image.

MSL_ ROTATE _180
When the rotate value is set to this, it means that 1800 rotation will be performed on the image.

MSL_ ROTATE _270
When the rotate value is set to this, it means that 2700 rotation will be performed on the image.

3.1.9 MSL_COLOR_FORMATTYPE
#include <msl_api.h>

Data Fields
q MSL_COLOR_YUYV
q MSL_COLOR_RGB565

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 11 of 44

q MSL_COLOR_YUV444
q MSL_COLOR_YUV420
q MSL_COLOR_RGB444
q MSL_COLOR_MONOCHROME

Detailed Description
This enum type is member of MSL_CAM_CONFIGTYPE and MSL_DISPLAY_CONFIGTYPE structure,
which is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function). The enum type defines the format of the image data.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL_COLOR_YUYV

This is a 16bits/pixel color format. The data arrangement is this format is Y0U0Y1V1 i.e. interleaved yuv format.

MSL_COLOR_RGB565
This is a 16bits/pixel color format. The data is arranged in little endian mode with 5-bits for R, followed by 6-bits for
G and 5-bits for B.

MSL_COLOR_YUV444
This is a 24 bits/pixel color format. The Y, U and V plane are separate each with dimension of image_width x
image_height. Note that MSL pipeline provides single pointer for this (no separate Y, U and V pointers).

MSL_COLOR_YUV420
This is a 12 bits/pixel color format. The Y, U and V plane are separate. Y plane has has dimension of image_width
x image_height. U and V planes are subsampled by half in both horizontal and vertical directions. Note that MSL
pipeline still provides single pointer for this (no separate Y, U and V pointers).

MSL_COLOR_RGB444
This is a 24 bits/pixel color format with 8bits for R, 8 bits for G and 8 bits for B.

MSL_COLOR_MONOCHROME
This is a 8 bits/pixel color format with only one Y plane.

3.1.10 MSL_IMG_WINDOWTYPE
#include <msl_api.h>

Data Fields
q MSL_U16 nImgXOffset
q MSL_U16 nImgYOffset
MSL_U16 nImgCropWidth
q MSL_U16 nImgCropHeight

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_CROPWINDOW_CONFIGINDEX. This
structure specifies the crop parameter for the image. Note that when cropping is used, zoom value is
ignored.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 12 of 44

Field Documentation
nImgXOffset

The X-dimension offset for the crop image region.

nImgYOffset
The Y-dimension offset for the crop image region.

nImgCropWidth
Width of the crop image region starting from nImgXOffset.

nImgCropHeight
Height of the crop image region, starting from nimgYOffset.

3.1.11 MSL_IMG_OVERLAYCONFIG
#include <msl_api.h>

Data Fields
q MSL_OVERLAY_MODE tOverlayMode
q MSL_U16 nImgWidth
q MSL_U16 nImgHeight
q MSL_U16 nOverlayXOffset
q MSL_U16 nOverlayYOffset
q MSL_U16 nTransparencyColor
q MSL_U16 nAlpha
q MSL_VOID *pOverlayBuff

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_OVERLAY_CONFIGINDEX. This
structure specifies the overlay parameter for the image.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
tOverlayMode

See section on MSL_OVERLAY_MODEfor allowed values.

nImgWidth
Width of the overlay image. Note that width of overlay image cannot be greater than the image width.

nImgHeight
Width of the overlay image. Note that height of the overlay image cannot be greater than the image height.

nOverlayXOffset
The x-offset location in the image from where overlay needs to start.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 13 of 44

nOverlayYOffset
The y-offset location in the image from where overlay needs to start.

nTransparencyColor
The transparency color when tOverlayMode is set to MSL_OVERLAYMODE_COLORKEY or
MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY.

nAlpha
The alpha blend value when tOverlayMode is set to MSL_OVERLAYMODE_ALPHABLENDING or
MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY.

pOverlayBuff
Pointer to overlay buffer.

3.1.12 MSL_CAM_CONFIGTYPE
#include <msl_api.h>

Data Fields
q MSL_COLOR_FORMATTYPE tImgFormat
q MSL_U16 unImgWidth
q MSL_U16 unImgHeight
q MSL_CAMERA_MODE tMode

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_CAMERA_CONFIGINDEX. This
structure specifies the configuration parameter for the camera.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
tImgFormat

The image format type for camera capture. See MSL_COLOR_FORMATTYPE for details. In the current
implementation, when tMode is MSL_CAMERAMODE_VF, the format should always be set to
MSL_COLOR_RGB565. When the tMode is MSL_CAMERAMODE_SS, then format could be
MSL_COLOR_RGB565 or MSL_COLOR_YUYV. If overlay needs to be performed for snapshot, then format
should always be MSL_COLOR_RGB565.

unImgWidth
The width of the image to be captured.

unImgHeight
Height of the camera image to be captured.

tMode
Camera mode. It should be either MSL_CAMERAMODE_VF or MSL_CAMERAMODE_SS.

3.1.13 MSL_DISPLAY_CONFIGTYPE
#include <msl_api.h>

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 14 of 44

Data Fields
q MSL_COLOR_FORMATTYPE tImgFormat
q MSL_U16 unDisplayImgWidth
q MSL_U16 unDisplayImgHeight
q MSL_U16 unDisplayXOffset
q MSL_U16 unDisplayYOffset

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_DISPLAY_CONFIGINDEX. This
structure specifies the configuration parameter for the displayed image on LCD.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
tImgFormat

The image format type for image to be displayed on LCD screen. See MSL_COLOR_FORMATTYPE for details.
In the current implementation, the format should always be set to MSL_COLOR_RGB565.

unDisplayImgWidth
The width of the image that needs to be displayed on LCD. This image width should be less than or equal the
width of the LCD display. MSL pipeline will do the necessary rescaling when the camera captured image
(applicable for IMGCAP pipeline) or decoded image (applicable for IMGVIEW pipeline) height is different from
display width.

unDisplayImgHeight
The height of the image that needs to be displayed on LCD. This image height should be less than or equal the
height of the LCD display. MSL pipeline will do the necessary rescaling when the camera captured image
(applicable for IMGCAP pipeline) or decoded image (applicable for IMGVIEW pipeline) height is different from
display height.

unDisplayXOffset
X-offset in screen where the image should be displayed.

unDisplayYOffset
Y-offset in screen where the image should be displayed.

3.1.14 MSL_RESCALE_CONFIGTYPE
#include <msl_api.h>

Data Fields
q MSL_U16 unRescaledImgWidth
q MSL_U16 unRescaledImgHeight

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_RESCALE_CONFIGINDEX. This
structure specifies the rescaled image dimension when rescale needs to be performed on the image. This
index is supported only in the thumbnail generation pipeline.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 15 of 44

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
unRescaledImgWidth

Width of the rescaled image.

unRescaledImgHeight
Height of the rescaled image.

3.1.15 MSL_FILE_CONFIGTYPE
#include <msl_api.h>

Data Fields
q MSL_STRING sFileName
q MSL_FILETYPE tFileType

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_ENCFILE_CONFIGINDEX or
MSL_DECFILE_CONFIGINDEX. This structure contains the attributes of the file to be encoded or
decoded.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
sFileName

This is a pointer to an array containing the fully qualified name of the file.

tFileType
Specified the file type i.e. RFS or FFS.

3.1.16 MSL_IMGINFO_CONFIGTYPE
#include <msl_api.h>

Data Fields
q MSL_U16 nExtendedImgWidth;
q MSL_U16 nExtendedImgHeight;
q MSL_U16 nActualImgWidth;
q MSL_U16 nActualImgHeight;
q MSL_COLOR_FORMATTYPE tColorFormat;

Detailed Description
This enum type is passed as third parameter of MSL usecase pipeline’s getconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_IMGINFO_CONFIGINDEX. This
structure contains detail information about the image decoded.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 16 of 44

Field Documentation
nExtendedImgWidth

Width of the image including the padded dimension.

nExtendedImgHeight
Height of the image including the padded dimension.

nActualImgWidth
Actual width of the image excluding the padded dimension.

nActualImgHeight
Actual height of the image excluding the padded dimension.

tColorFormat
The color format of the JPEG image

3.1.17 MSL_<UCP>_STATUS
#include <msl_api.h>

Data Fields
q MSL##_UCP_##STATUS_OK = 0, \
q MSL##_UCP_##STATUS_EOS, \
q MSL##_UCP_##ERROR_UNKNOWN, \
q MSL##_UCP_##ERROR_NOT_IMPLEMENTED, \
q MSL##_UCP_##ERROR_INVALID_STATE, \
q MSL##_UCP_##ERROR_INVALID_ARGUMENT, \
q MSL##_UCP_##ERROR_INVALID_UCP, \
q MSL##_UCP_##ERROR_INVALID_HANDLE, \
q MSL##_UCP_##ERROR_NOMEMORY, \
q MSL##_UCP_##ERROR_BAD_STREAM, \
q MSL##_UCP_##ERROR_IOREAD, \
q MSL##_UCP_##ERROR_IOWRITE, \
q MSL##_UCP_##BASE_LAST_COMMON

Detailed Description
This enum type is the return value for all MSL APIs (both synchronous and asynchronous). This enum
type is also returned as the last (fourth) parameter of MSL_CALLBACK function.

##_UCP_## could be one of IMGCAP, IMGVIEW or IMGTHMB depending on the use case.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL##_UCP_##STATUS_OK

This status means there is no error.

MSL##_UCP_##STATUS_EOS
This status is not currently returned by MSL pipelines.

MSL##_UCP_##ERROR_UNKNOWN
This status is returned when MSL pipeline encounters unknown errors. This is a fatal error.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 17 of 44

MSL##_UCP_##ERROR_NOT_IMPLEMENTED
This status is returned when MSL do not support the specific feature.

MSL##_UCP_##ERROR_INVALID_STATE
This status is returned when MSL usecase pipeline is not in a state to support the request.

MSL##_UCP_##ERROR_INVALID_ARGUMENT
This status is returned when MSL usecase pipeline do not recognize the command.

MSL##_UCP_##ERROR_INVALID_UCP
This status is not returned in the current implementation.

MSL##_UCP_##ERROR_INVALID_HANDLE
This status is returned when the handle provided to pipeline is invalid.

MSL##_UCP_##ERROR_NO_MEMORY
This status is returned when there is no memory to create a usecase pipeline.

MSL##_UCP_##ERROR_BAD_STREAM
This status is returned when the MSL pipeline encounters a file open error.

MSL##_UCP_##ERROR_IOREAD
This status is returned when the MSL pipeline encounters a file read error.

MSL##_UCP_##ERROR_IOWRITE
This status is returned when the MSL pipeline encounters a file write error.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 18 of 44

3.2 MSL IMGCAP Specific Data Structures
None

3.3 MSL IMGVIEW Specific Data Structures
None

3.4 MSL IMGVIEW Specific Data Structures
None

3.5 COMMON APIs
TBD

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 19 of 44

3.6 MSL IMGCAP APIs
This pipeline needs to be created for camera preview and image capture applications.

3.6.1 MSL_ImgCap_Create
MSL_IMGCAP_STATUS MSL_ImgCap_Create (MSL_HANDLE *phIMGCap);

Implementation
This API creates an instance of Image capture pipeline and returns a handle to the instance. This is a
synchronous API.

Parameters
phIMGCap Pointer to a handle to MSL_HANDLE. This pointer will be

filled with a valid handle if the call is successful.

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_NOMEMORY. The former is
returned for a successful creation and the later when there
is no memory for creating an instance.

Pre Conditions
phIMGCap Need to ensure that the system has enough memory to

carry out the requirement.

Post Conditions
phIMGCap None.

See Also MSL_ImgCap_Delete

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
The most common reason for returning an error is insufficient memory in the system. The locosto system
uses static memory allocation which uses memory pools. In the current implementation, MSL shares the
memory pool and hence uses BspGroupHandle as the memory pool handle for allocation.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 20 of 44

3.6.2 MSL_ImgCap_SetConfig
MSL_IMGCAP_STATUS MSL_ImgCap_SetConfig(MSL_HANDLE hIMGCap, MSL_INDEXTYPES
tIndex, MSL_VOID *pParam;

Implementation
This API should be called to set the configuration for image capture/viewfinder scenario. This API
needs to be called multiple times to set different parameter. The parameters are identified by tIndex
type value passed to this function. The index types are classified into mandatory, optional,
dynamically configurable (i.e. it can be called anytime after Create), or non-dynamic configurable (i.e.
it can be set only before calling MSL_ImgCap_Init API. This is a synchronous API.

Parameters
hIMGCap MSL_HANDLE handle returned by MSL_ImgCap_Create.
tIndex MSL_INDEXTYPES. The set of index values supported is

given in the Table 1below.
pParam This is a pointer to parameter value. The parameter

depends on tIndex types.

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK,
MSL_IMGCAP_ERROR_INVALID_STATE,
MSL_IMGCAP_ERROR_NOMEMORY or
MSL_IMGCAP_ERROR_INVALID_ARGUMENT. OK
status is returned for a successful configuration settings.

Pre Conditions
hIMGCap should be a valid handle.

Post Conditions
None.

See Also None

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 21 of 44

Table 1 Supported MSL_INDEXTYPES in image capture pipeline

Index Type Mandatory Can be called dynamically

MSL_CALLBACKSET_CONFIGINDEX Yes No

MSL_CAMERA_CONFIGINDEX Yes No

MSL_DISPLAY_CONFIGINDEX Yes No

MSL_OVERLAY_CONFIGINDEX No No

MSL_CROPWINDOW_CONFIGINDEX No Yes

MSL_ENCFILE_CONFIGINDEX Yes Yes

MSL_ENCQUALITY_CONFIGINDEX No Yes

MSL_ZOOM_CONFIGINDEX No Yes

MSL_ROTATE_CONFIGINDEX No Yes

MSL_BURSTCOUNT_CONFIGINDEX No Yes

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
To start the pipeline for viewfinder applications, the camera mode set using
MSL_CAMERA_CONFIGINDEX should be MSL_CAMERAMODE_VF. To start the pipeline for snapshot
applications the camera mode should be set to MSL_CAMERAMODE_SS. The user can directly start in
snapshot mode or viewfinder mode, but when switching between the modes, first MSL_ImgCap_Deinit
should be called, followed by MSL_ImgCap_SetConfig (to change the camera mode) and then
MSL_ImgCap_Init again.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 22 of 44

3.6.3 MSL_ImgCap_Init
MSL_IMGCAP_STATUS MSL_ImgCap_Init (MSL_HANDLE hIMGCap);

Implementation
This function does the initialization of ImgCapture pipeline. This is an asynchronous API.

Parameters
hIMGCap MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_INVALID_STATE. The former is
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
hIMGCap should be a valid handle and all mandatory
configurations should be set using
MSL_ImgCap_SetConfig API.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
If the initialization is successful, it will make call MSL_CALLBACK API with following parameters.
(_hMSLIMGCAP, MSL_UCP_IMGCAP, MSL_CMD_INIT, MSL_IMGCAP_STATUS_OK). If the initialization
is not successful, the first three parameters will still remain same, but the last parameter will contain the
appropriate error value.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 23 of 44

3.6.4 MSL_ImgCap_ Viewfinder
MSL_IMGCAP_STATUS MSL_ImgCap_Viewfinder (MSL_HANDLE hIMGCap);

Implementation
This function starts camera in viewfinder mode and starts displaying images in LCD. This is an
asynchronous API.

Parameters
hIMGCap MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_INVALID_STATE. The former is
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
MSL_ImgCap_Init call is successfully completed i.e. the
asynchronous call back function has returned no error. Also
the camera mode should be set to
MSL_CAMERAMODE_VF

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This API returns an asynchronous callback with (_hIMGCAP, MSL_UCP_IMGCAP,
MSL_CMD_VIEWFINDER, MSL_IMGCAP_STATUS_OK) if viewfinder was started successfully. The
fourth parameter will be different if viewfinder could not be started.

The application needs to call MSL_ImgCap_DeInit to stop the viewfinder or to switch to snapshot mode.
Note that rotation, zoom etc can be dynamically updated when viewfinder is running.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 24 of 44

3.6.5 MSL_ImgCap_ MSL_ImgCap_Snapshot
MSL_IMGCAP_STATUS MSL_ImgCap_ MSL_ImgCap_Snapshot (MSL_HANDLE hIMGCap);

Implementation
This function starts camera in viewfinder mode and starts displaying images in LCD. This is an
asynchronous API.

Parameters
hIMGCap MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_INVALID_STATE. The former is
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
MSL_ImgCap_Init call is successfully completed i.e. the
asynchronous call back function has returned no error. Also
the camera mode should be set to
MSL_CAMERAMODE_SS

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This API returns an asynchronous callback with (_hIMGCAP, MSL_UCP_IMGCAP,
MSL_CMD_SNAPSHOT, MSL_IMGCAP_STATUS_OK) if snapshot was completed successfully. The
fourth parameter will be different if pipeline encountered error while taking snapshot

The application needs to call MSL_ImgCap_DeInit to stop the viewfinder or to switch to snapshot mode.
Note that zoom, rotate, overlay are preserved when switching from viewfinder to snapshot mode and
these values will be applied over snapshot image. If a different value of zoom, rotate or overlay needs to
be set, then the user should call MSL_ImgCap_SetConfig with appropriate index before calling Init for
snapshot.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 25 of 44

3.6.6 MSL_ImgCap_DeInit
MSL_IMGCAP_STATUS MSL_ImgCap_DeInit (MSL_HANDLE hIMGCap);

Implementation
This function does the deinitialization of ImgCapture pipeline. This is an asynchronous API.

Parameters
hIMGCap MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_INVALID_STATE. The former is
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
hIMGCap should be a valid and all previous call backs from
asynchronous APIs are completed. Given the above
condition, this API could be called anytime after
MSL_ImgCap_Init.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This is a mandatory API before calling MSL_ImgCap_Destroy API. This API is the only way to stop
viewfinder mode. This API should be called to switch between viewfinder and snapshot modes.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 26 of 44

3.6.7 MSL_ImgCap_ Destroy
MSL_IMGCAP_STATUS MSL_ImgCap_Destroy (MSL_HANDLE hIMGCap);

Implementation
This function destroys all memory allocated for ImgCapture pipeline including the handle. This is an
synchronous API.

Parameters
hIMGCap MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGCAP_STATUS The possible return values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_INVALID_STATE. The former is
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
hIMGCap should be a valid and MSL_ImgCap_DeInit
should be called prior to this.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 27 of 44

3.7 MSL IMGVIEW APIs
This pipeline needs to be created for image viewing.

3.7.1 MSL_ImgView_Create
MSL_IMGVIEW_STATUS MSL_ImgView_Create (MSL_HANDLE * phIMGView);

Implementation
This API creates an instance of Image viewer pipeline and returns a handle to the instance. This is a
synchronous API.

Parameters
phIMGView Pointer to a handle to MSL_HANDLE. This pointer will be

filled with a valid handle if the call is successful.

Return
MSL_IMGVIEW_STATUS The possible return values are MSL_ IMGVIEW

_STATUS_OK or MSL_ IMGVIEW
_ERROR_NOMEMORY. The former is returned for a
successful creation and the later when there is no memory
for creating an instance.

Pre Conditions
Need to ensure that the system has enough memory to
carry out the requirement.

Post Conditions
None.

See Also MSL_ ImgView_Delete

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
The most common reason for returning an error is insufficient memory in the system. The locosto system
uses static memory allocation which uses memory pools. In the current implementation, MSL shares the
memory pool and hence uses BspGroupHandle as the memory pool handle for allocation.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 28 of 44

3.7.2 MSL_ ImgView_SetConfig
MSL_IMGVIEW_STATUS MSL_ImgView_SetConfig(MSL_HANDLE ImgView,
MSL_INDEXTYPES tIndex, MSL_VOID *pParam;

Implementation
This API should be called to set the configuration for image view scenario. This API needs to be
called multiple times to set different parameter. The parameters are identified by tIndex type value
passed to this function. The index types are classified into mandatory, optional, dynamically
configurable (i.e. it can be called anytime after Create), or non-dynamic configurable (i.e. it can be set
only before calling MSL_ImgCap_Init API. This is a synchronous API.

Parameters
hIMGView MSL_HANDLE handle returned by MSL_ImgView

_Create.
tIndex MSL_INDEXTYPES. The set of index values supported is

given in the Table 1below.
pParam This is a pointer to parameter value. The parameter

depends on tIndex types.

Return
MSL_ IMGVIEW_STATUS The possible return values are

MSL_IMGVIEW_STATUS_OK,
MSL_IMGVIEW_ERROR_INVALID_STATE,
MSL_IMGVIEW_ERROR_NOMEMORY or
MSL_IMGVIEW__ERROR_INVALID_ARGUMENT. OK
status is returned for a successful configuration settings.

Pre Conditions
hIMGView should be a valid handle.

Post Conditions
None.

See Also None

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 29 of 44

Table 2 Supported MSL_INDEXTYPES in image view pipeline

Index Type Mandatory Can be called dynamically

MSL_CALLBACKSET_CONFIGINDEX Yes No

MSL_DISPLAY_CONFIGINDEX Yes Yes

MSL_OVERLAY_CONFIGINDEX No Yes

MSL_CROPWINDOW_CONFIGINDEX No Yes

MSL_ZOOM_CONFIGINDEX No Yes

MSL_ROTATE_CONFIGINDEX No Yes

MSL_DECFILE_CONFIGINDEX Yes Yes

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 30 of 44

3.7.3 MSL_ ImgView_Init
MSL_IMGVIEW_STATUS MSL_ImgView_Init (MSL_HANDLE hIMGView);

Implementation
This function does the initialization of image view pipeline. This is an asynchronous API.

Parameters
hIMGView MSL_HANDLE handle returned by

MSL_ImgView_Create..

Return
MSL_ IMGVIEW_STATUS The possible return values are MSL_

IMGVIEW_STATUS_OK or
MSL_IMGVIEW_ERROR_INVALID_STATE. The former
is returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
hIMGView should be a valid handle and all mandatory
configurations should be set using
MSL_ImgView_SetConfig API.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
If the initialization is successful, it will make call MSL_CALLBACK API with following parameters.
(_hMSLIMGCAP, MSL_UCP_IMGVIEW, MSL_CMD_INIT, MSL_IMGVIEW_STATUS_OK). If the
initialization is not successful, the first three parameters will still remain same, but the last parameter will
contain the appropriate error value.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 31 of 44

3.7.4 MSL_ImgView_View
MSL_IMGVIEW_STATUS MSL_ImgView_View (MSL_HANDLE hIMGView);

Implementation
This function decodes the jpeg image, does rotation, overlay, zoom, crop as set by s MSL_ImgView
Setconfig API and displays images on LCD. This is an asynchronous API.

Parameters
hIMGView MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGVIEW_STATUS The possible return values are

MSL_IMGVIEW_STATUS_OK or MSL_ IMGVIEW
_ERROR_INVALID_STATE. The former is returned for a
successful creation and the later when the call sequence is
not proper.

Preconditions
MSL_ImgCap_Init call is successfully completed i.e. the
asynchronous call back function has returned no error.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This API returns an asynchronous callback with (_hIMGView, MSL_UCP_IMGVIEW, MSL_CMD_VIEW,
MSL_IMGVIEW_STATUS_OK) after successfully displaying the image.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 32 of 44

3.7.5 MSL_ImgView_Deinit
MSL_IMGVIEW_STATUS MSL_ImgCap_DeInit (MSL_HANDLE hIMGView);

Implementation
This function does the deinitialization of image viewer pipeline. This is an asynchronous API.

Parameters
hIMGView MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGVIEW_STATUS The possible return values are MSL_IMGVIEW_STATUS

_OK or MSL_IMGVIEW_ERROR_INVALID_STATE. The
former is returned for a successful creation and the later
when the call sequence is not proper.

Preconditions
hIMGView should be a valid and all previous call backs
from asynchronous APIs are completed. Given the above
condition, this API could be called anytime after
MSL_ImgView_Init.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This is a mandatory API before calling MSL_ImgView_Destroy API.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 33 of 44

3.7.6 MSL_ImgView_ Destroy
MSL_IMGCAP_STATUS MSL_ImgView_Destroy (MSL_HANDLE hIMGView);

Implementation
This function destroys all memory allocated for image view pipeline including the handle. This is an
synchronous API.

Parameters
hIMGView MSL_HANDLE handle returned by MSL_ImgCap_Create..

Return
MSL_IMGVIEW_STATUS The possible return values are

MSL_IMGVIEW_STATUS_OK or
MSL_IMGVIEW_ERROR_INVALID_STATE. The former
is returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
hIMGView should be a valid and MSL_ImgView_DeInit
should be called prior to this.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 34 of 44

3.8 MSL IMGTHMB APIs
This pipeline needs to be creating thumbnail jpeg images. Thumbnail jpeg images are normal jpeg files,
but of smaller dimensions so that they can be displayed quicker in an thumbnail viewer application.

3.8.1 MSL_ImgThmb_Create
MSL_IMGTHMB_STATUS MSL_ImgThmb_Create (MSL_HANDLE * phMSLIMGThmb);

Implementation
This API creates an instance of Image viewer pipeline and returns a handle to the instance. This is a
synchronous API.

Parameters
phMSLIMGThmb Pointer to a handle to MSL_HANDLE. This pointer will be

filled with a valid handle if the call is successful.

Return
MSL_IMGVIEW_STATUS The possible return values are

MSL_IMGTHMB_STATUS_OK or
MSL_IMGTHMB_ERROR_NOMEMORY. The former is
returned for a successful creation and the later when there
is no memory for creating an instance.

Pre Conditions
Need to ensure that the system has enough memory to
carry out the requirement.

Post Conditions
None.

See Also MSL_ ImgThmb_Delete

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
The most common reason for returning an error is insufficient memory in the system. The locosto system
uses static memory allocation which uses memory pools. In the current implementation, MSL shares the
memory pool and hence uses BspGroupHandle as the memory pool handle for allocation.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 35 of 44

3.8.2 MSL_ ImgThmb_SetConfig
MSL_IMGTHMB_STATUS MSL_ImgThmb_SetConfig(MSL_HANDLE ImgView,
MSL_INDEXTYPES tIndex, MSL_VOID *pParam;

Implementation
This API should be called to set the configuration for image view scenario. This API needs to be
called multiple times to set different parameter. The parameters are identified by tIndex type value
passed to this function. The index types are classified into mandatory, optional, dynamically
configurable (i.e. it can be called anytime after Create), or non-dynamic configurable (i.e. it can be set
only before calling MSL_ImgThmb_Init API. This is a synchronous API.

Parameters
hMSLIMGThmb MSL_HANDLE handle returned by MSL_ImgThmb

_Create.
tIndex MSL_INDEXTYPES. The set of index values supported is

given in the Table 3 below.
pParam This is a pointer to parameter value. The parameter

depends on tIndex types.

Return
MSL_ IMGTHMB_STATUS The possible return values are

MSL_IMGTHMB_STATUS_OK,
MSL_IMGTHMB_ERROR_INVALID_STATE,
MSL_IMGTHMB_ERROR_NOMEMORY or
MSL_IMGTHMB__ERROR_INVALID_ARGUMENT. OK
status is returned for a successful configuration settings.

Pre Conditions
hMSLIMGThmb should be a valid handle.

Post Conditions
None.

See Also None

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 36 of 44

Table 3 Supported MSL_INDEXTYPES in image thumb pipeline

Index Type Mandatory Can be called dynamically

MSL_CALLBACKSET_CONFIGINDEX Yes No

MSL_DECFILE_CONFIGINDEX Yes Yes

MSL_ENCFILE_CONFIGINDEX Yes Yes

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 37 of 44

3.8.3 MSL_ ImgThmb_Init
MSL_IMGVIEW_STATUS MSL_ImgView_Init (MSL_HANDLE hIMGView);

Implementation
This function does the initialization of image thumb pipeline. This is an asynchronous API.

Parameters
hMSLIMGThmb MSL_HANDLE handle returned by

MSL_ImgThmb_Create..

Return
MSL_ IMGVIEW_STATUS The possible return values are MSL_

IMGTHMB_STATUS_OK or
MSL_IMGTHMB_ERROR_INVALID_STATE. The former
is returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
HMSLIMGThmb should be a valid handle and all
mandatory configurations should be set using
MSL_ImgThmb_SetConfig API.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
If the initialization is successful, it will make call MSL_CALLBACK API with following parameters.
(_hMSLIMGCAP, MSL_UCP_IMGTHMB, MSL_CMD_INIT, MSL_IMGTHMB_STATUS_OK). If the
initialization is not successful, the first three parameters will still remain same, but the last parameter will
contain the appropriate error value.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 38 of 44

3.8.4 MSL_ImgThmb_Generate
MSL_IMGVIEW_STATUS MSL_ImgThmb_Generate (MSL_HANDLE hMSLIMGThmb);

Implementation
This function decodes the jpeg image downscales it by user specified value and re-encodes it again.

Parameters
hMSLIMGThmb MSL_HANDLE handle returned by

MSL_ImgThmb_Create..

Return
MSL_IMGTHMB_STATUS The possible return values are

MSL_IMGVIEW_STATUS_OK or MSL_ IMGVIEW
_ERROR_INVALID_STATE. The former is returned for a
successful creation and the later when the call sequence is
not proper.

Preconditions
MSL_ImgThmb_Init call is successfully completed i.e. the
asynchronous call back function has returned no error.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This API returns an asynchronous callback with (_hMSLIMGThmb, MSL_UCP_IMGTHMB,
MSL_CMD_GENERATE, MSL_IMGTHMB_STATUS_OK) after successfully encoding the thumbnail
image.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 39 of 44

3.8.5 MSL_ImgThmb_Deinit
MSL_IMGTHMB_STATUS MSL_ImgThmb_DeInit (MSL_HANDLE hMSLIMGThmb);

Implementation
This function does the deinitialization of image thumb pipeline. This is an asynchronous API.

Parameters
hMSLIMGThmb MSL_HANDLE handle returned by

MSL_ImgThmb_Create..

Return
MSL_IMGVIEW_STATUS The possible return values are MSL_IMGTHMB_STATUS

_OK or MSL_IMGTHMB_ERROR_INVALID_STATE.
The former is returned for a successful creation and the
later when the call sequence is not proper.

Preconditions
hMSLIMGThmb should be a valid and all previous call
backs from asynchronous APIs are completed. Given the
above condition, this API could be called anytime after
MSL_ImgVThmb_Init.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes
This is a mandatory API before calling MSL_ImgThmb_Destroy API.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 40 of 44

3.8.6 MSL_ImgThmb_ Destroy
MSL_IMGCAP_STATUS MSL_ImgThmb_Destroy (MSL_HANDLE hMSLIMGThmb);

Implementation
This function destroys all memory allocated for image thumb pipeline including the handle. This is an
synchronous API.

Parameters
hIMGView MSL_HANDLE handle returned by

MSL_ImgThmb_Create..

Return
MSL_IMGTHMB_STATUS The possible return values are

MSL_IMGTHMB_STATUS_OK or
MSL_IMGTHMB_ERROR_INVALID_STATE. The former
is returned for a successful creation and the later when the
call sequence is not proper.

Preconditions
hMSLIMGThmb should be a valid and
MSL_ImgVThmb_DeInit should be called prior to this.

Post conditions
None.

Requirement Coverage
This method addresses requirement(s): [SR number(s)]

Notes

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 41 of 44

4 Call Sequences
TBD

This section is not complete.

Steps for thumbnail creation:

1. Read from NAND the JPEG file in chunks.

2. JPEG decoding of the stream in stripe mode

3. Downscale to QCIF

4. JPEG encoding on the QCIF buffer

5. Save on NAND

6. Once the files “.thu” are created, they can be used to generate the picture gallery image.

Figure 1. Thumbnail Creation sequence diagram

MMI SSL Adaptation OMX IMG/MSL

LaunchFileViewer()

<<User launches
the Image viewer
for the first time.
Generate thumbnails
>>

MSL_ImgThmb_Create()

MSL_ImgThmb_Set_params()

MSL_ImgThmb_SetConfig_FileName ()

MSL_ImgThmb_Init()

MSL_ImgThmb_Genarate()

<<Repeat the
sequence for all the
files in file system>>

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 42 of 44

<<User selects
thumbnail to view
>>

<<User presses
Back/Options>>

<<Call end/Reject
>>

MMI SSL Adaptation OMX IMG/MSL

mmi_iv_view_image_start()
MSL_ImgView_Create()

MSL_ImgView_Set_DecodeParams()

MSL_ImgView_Set_ColorconversionParams()

MSL_ImgView_SetConfig_FileName ()

MSL_Imgview_Init()

MSL_ImgView_View()<<Incoming call
recieved>>

mmi_iv_view_win_cb() -Suspend event

dspl_set_to_mixed_mode

displaySoftKeys()

MSL_ImgView_Pause()

mmi_iv_view_kbd_cb()
MSL_ImgView_Destroy()

dspl_set_to_mmi_mode

mmi_iv_view_win_cb() -Resume event

MSL_ImgView_View()

dspl_set_to_mmi_mode

dspl_set_to_mixed_mode

Incoming call()

MMI updates softkeys

MMiplane idle, SK plane execute

EmptyThisBuffer()

MMiplane execute, SK plane idle

MMI updates screen EmptyThisBuffer()

MMI updates soft keys EmptyThisBuffer()displaySoftKeys()

MMiplane idle, SK plane execute

MMiplane execute, SK plane idle

MMI updates screen EmptyThisBuffer()

Image Viewer:

1. Steps for previewing the thumbnail file to full screen:

2. Read the thumbnail file from NAND

3. JPEG decoding on the QCIF

4. Color Convert from YUV to RGB565

5. Display

Figure 2. Image Viewer sequence diagram

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 43 of 44

5 Performance Data
Detail performance data is captured in the cssd_performancedata_locosto_mm_msl.xls document which
is released along with the software.

Design Specification Nucleus MSL API N5.x
Design Specification
Revision 1.0 DRAFT 29 June 2006

TI Proprietary Information — Strictly Private
Page 44 of 44

6 Memory Requirements
• Total ROM for codec - 24.2 Kbytes

• Total Flash size for codec - 24 Kbytes (it is not 5K)

• Total internal ram size for codec - 5.5 Kbytes (some portion of the code runs from
internal memory)

• Total Flash code size for MM framework - 30.3 Kbytes

Apart from this the whole MM framework needs (614K x 2 + 150K x 3 = 1.52MBytes) of RAM space for
processing the VGA image data.

