
technical_document_20030404.dot

Copyright © 2003 Texas Instruments
Texas Instruments Proprietary Information – Internal Data

Technical Document

DIAGNOSE AND RECOVERY API

Document Number: 88_02_03_00155
Version: 1.0
Status: Draft
Approval Authority:
Creation Date: 2004-Jan-12
Last changed: 2005-Feb-21 by Stephanie Levieil
File Name: 88_02_03_00155_RIV051_diagnose_and_recovery_API.doc

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 31

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and ser-
vices at any time and to discontinue any product, software or service without notice. Customers should
obtain the latest relevant information during product design and before placing orders and should ver-
ify that such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-
knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tech-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated
by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-
sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be
used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement
industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third
party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may
require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electroni-
cally or mechanically, including photocopying and recording, for any purpose without the express writ-
ten permission of TI.

Change History

Date Changed by Approved by Version Status Notes
05 Nov 2001 Stephanie Gerthoux Cristian Livadiotti Ver: 0.1 Approved 1

5 Feb 2002 Stephanie Gerthoux Cristian Livadiotti Ver: 0.2 Approved 2

29 Mar 2002 Stephanie Gerthoux Cristian Livadiotti Ver: 0.3 Approved 3

18 Dec 2002 Stephanie Gerthoux Cristian Livadiotti Ver: 0.4 Approved 4

13 May 2003 Stephanie Gerthoux Cristian Livadiotti Ver: 0.5 Approved 5
05 Dec 2003 Stephanie Levieil (Gerthoux) Ver: 1.0 Draft 6

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 31

Notes:

1. Creation
2. Update the dar_diagnose_swe_filter function (update some dar_level parameters)

Update the dar_start_watchdog_timer function (the timer_expiration_value is in milliseconds)
Add the “2.8 Flash File” section.

3. Increase the circular buffer size
Add “ 2. 8.2 Flash file location” section
Add the “2.9 DAR and the trace” section.
Minor modifications

4. Modify the parameter of the dar_start_ watchdog_timer from UINT8 to UINT16
5. Some modifications in the dar_diagnose_write function

Remove the “2.9 DAR and the trace” section.
6. Add a new API function “dar_diagnose_write_emergency”

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 31

TABLE OF CONTENTS

Diagnose And Recovery API ..1

1 Introduction...6

2 Overview..7
2.1 Basic principle ...7
2.2 Implementation Overview...7
2.3 Symptom perception..9
2.4 Exceptions...9
2.5 Examples ..10
2.6 Recovery ...10
2.7 Level of Information and DAR dynamic configuration (filtering)...11

Level of information ...11
2.7.1 DAR dynamic configuration..11

2.8 Flash file..13
2.8.1 Flash file description ..13
2.8.2 Flash file location ...13

3 Diagnose and Recovery Module Use Interface (DAR API)...14

3.1 Recovery related API...14
3.1.1 dar_recovery_get_status..14
3.1.2 dar_recovery_config...16
3.1.3 dar_get_recovery_data ..18
3.1.4 dar_start_watchdog_timer..19
3.1.5 dar_reload_watchdog_timer ...20
3.1.6 dar_stop_watchdog_timer ..21
3.1.7 dar_reset_system ..22

3.2 Diagnose Related API..23
3.2.1 dar_diagnose_swe_filter ..23
3.2.2 dar_diagnose_write..25
3.2.2 dar_diagnose_generate_emergency ..27
3.2.3 dar_diagnose_write_emergency...29

Appendices ...31

A. Acronyms ..31
B. Glossary..31

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 31

List of Figures and Tables

List of References

[1] RIV031 Riviera Tracer Overview

[2] RIV000 Riviera Overview

[3] RIV010 Riviera Development Guide

[4] RIV041 Real Time Tracer

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 31

1 Introduction

As the Software running on a system such as GSM/GPRS platform gets more and more complex, it is
necessary to provide an easy way for integrators and testers to interpret software problems even
when trace information are not available, such as during field testing or after mobile production. More-
over, it is sometimes important to allow the system to recover from very critical situations in an as
transparent as possible manner for the user.

Riviera Diagnose and Recovery (DAR) SW entity is in charge of providing such services in Riviera
Environment. This document intends to provide an overview of DAR SW entity as well as a description
on the DAR API.

For more information on Riviera, refers to [2][3].

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 31

2 Overview

2.1 Basic principle

The SW, running on a mobile, can be compared to a person. When people are feeling sick, they are
providing general description of their symptoms to the doctor. They can feel tired, feel anxious, …
Based on that description, the doctor will further analyze the patient, and try to gather more informa-
tion to have a better idea on the reasons of the symptoms. Potentially, based on the collected informa-
tion, the doctor may define the medicine that the patient should take. It may also decide to request
help from experts. Based on the doctor’s preliminary investigation, it should be possible to know which
expert to contact.
In parallel, while waiting for expert advices, the doctor may provide an emergency medicine, so that
the patient feel better and can wait for complete recovery.

The Diagnose and Recovery SW entity can be seen as the ‘doctor’ of the SW system. Indeed, DAR
SW entity provides further information on the reason why the mobile crashed, lost network or does not
answer any longer. This information, called diagnose information, is stored by the DAR SW entity
when a problem occurs and is available for the testers. Thanks to this information, the testers have a
better understanding of what happened, especially before the phone crashed. The issue may be re-
solved based on this information. Or, if the problem is more complex, the testers should be able to
know which expert to contact to resolve it.

Meanwhile, before the SW issue has been resolved, the DAR SW entity provides a way to re-start the
system in a clean and as transparent as possible way: this service is called recovery. Recovery han-
dles a clean reset of the system, is in charge of storing emergency information before resetting the
system and provides a way to recover this information when the system is restarted.

Figure 1: Diagnose and recovery steps

2.2 Implementation Overview

The Diagnose and Recovery Software entity provides services to store critical information about the
system, even when trace capability is disabled. It offers a way to store this information in a file that can
be downloaded from the target and further analyzed on a PC. Its objective is to be able to collect sys-
tem information and to get history collection, in order to make post-mortem analysis and data.

Two kinds of information are stored by the DAR SW entity. Either information provided by other SW
entity via the DAR API, either internal system information such as exceptions.

Embedded
SW

Detection of a wrong behavior of the phone
(Patient does not fill OK)

Diagnose provides basic information on the
phone state when the failure occurs

Recovery temporary reduces the perception of
the failure

Based on diagnose information, further analysis
is performed with expert involvements

PHONE

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 31

The diagnose information can be seen as a circular buffer. Diagnose information are regularly pro-
vided to the DAR SW entity (simple function call can be used by any SW entity in the system for this
purpose). New information is written on old information. So the larger is the circular buffer, the longer
history we can have before a problem occurred. When an error occurs, the circular buffer is stored in a
permanent file (using Flash File System). This file can then be downloaded from the mobile to a PC
and further analyzed. Note that the level of information as well as the group of SW entity that can ac-
cess to the diagnose buffer are dynamically configurable.

The Diagnose and Recovery SW entity is part of the Riviera Scanner module, which gathers normal
tracing support (RVT SWE, see [1]), Real Time Trace capability (RTT , see [4]) and the DAR SW
entity. Note that DAR information can be redirected to standard trace information flow and that it is
possible to store Real Time Trace information as diagnose information (not supported in current ver-
sion).

Figure 2 : Scanner Module, composed of DAR, RTT and RVT SW entities

Exception
Handler

RTT

SW Entity SW Entity

SW Entity
SW Entity

DAR

RVT

File System
(FFS)

Trace Transport
Layer

(UART)

Scanner
Module

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 31

2.3 Symptom perception
In order to clarify wordings used during diagnose process, a list of clearly identified symptoms of the
mobile are listed down below. It is highly recommended to indicate in which category of a symptom is
an issue, in order to have a first filtering on the cause of the problem. Basically, providing this kind of
information could be done by any mobile user.

• Freeze Category

Description of the problem: When freeze happened, it seems nothing is running in the mobile. The
mobile does not respond to anything like keypad etc. LCD does not change.
Further description: how often? Do we have any understanding on what happens before the mo-
bile freeze? Is it possible to re-start the mobile using ON/OFF key? Or is it necessary to remove
the battery?

• Reset Category
Description of the problem: the mobile seems to be re-started abnormally.
Further description: how often? Do we have any understanding on what happens before the mo-
bile reset? Was the mobile in ‘freeze’ state before resetting?

• One function is systematically not working
Description of the problem: One function of the phone is not working, systematically (that means
that when a function is activated, it never works).
Further description: which function does not work? How the function has been activated? What
was the situation when the function has been activated? What happens when the function is acti-
vated?

• One function is erratically not working
Description of the problem: One function of the phone is not working, erratically (that means that
when a function is activated, sometimes it works, sometimes it does not).
Further description: which function does not work erratically? How the function has been acti-
vated? What was the situation when the function has been activated and failed? What happens
when the function is activated?

Note: Most of the time, Network connectivity issue can be seen as a ‘One function is erratically
not working’. It could be described as:

Description of the problem: the mobile seems to be run normally, except that it is impossi-
ble to make or receive a call.
Further description: how often? Do we have any understanding on what happened before
the mobile stop behaving properly? How can we restart properly the phone: using
ON/OFF? Battery switch?

2.4 Exceptions
Exceptions are generated by internal and external sources to cause the processor to handle an event,
such as an externally generated interrupt or an attempt to execute an undefined instruction. When
certain exceptions are raised by the system, it may indicate that the system is in a pretty bad shape….
For that reason, the DAR SW entity is handling such exception, and store information in the diagnose
buffer to indicate which exception has been raised before the system crashed.

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 31

• Undefined instruction

If the ARM processor executes a coprocessor instruction, it waits for any external coprocessor to
acknowledge that it can execute the instruction. If no coprocessor responds, an Undefined Instruc-
tion exception occurs.
If an attempt is made to execute an instruction is Undefined, an Undefined Instruction exception
occurs.
The Undefined Instruction exception can be used for software emulation of a coprocessor in a sys-
tem that does not have the physical coprocessor (hardware), or for general-purpose instruction set
extension by software emulation.

• Prefetch Abort (Instruction fetch memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to an instruc-
tion fetch marks the fetch instruction as invalid. A Prefetch Abort exception is generated if the
processor tries to execute the invalid instruction. If the instruction if not executed (for example, be-
cause a branch occurs while it is in the pipeline), no Prefetch Abort occurs.

• Data Abort (Data access memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to a data ac-
cess (load or store) marks the data as invalid. A Data Abort exception occurs before any following
instruction or exceptions have altered the state of the CPU.

2.5 Examples

Example of Reset Category issue:
The MMI is using a Watchdog timer: every X seconds, MMI should update the watchdog otherwise the
system is reset. For example, if MMI code is blocked in an infinite loop, MMI will no longer update the
watchdog and then the mobile is reset. Perception from the user will be that mobile is abnormally re-
started.

The same symptom may come from a completely different reason. For example, if a pointer is badly
initialized, an exception may be raised and reset the system.

2.6 Recovery
The purpose of the recovery is to re-start the system in the cleanest way as possible.

The recovery can be activated in 2 manners:
• automatically : in this case, the DAR entity will take the responsibility to activate the recovery

procedure. This procedure is usually initiated when an exception is raised and cannot be han-
dled properly.

• on demand (using a normal function call): in this case, a SW entity request the DAR entity to
activate the recovery procedure

The recovery procedure gathers the following steps:
è Recovery initiation (automatic or on demand)
è Upgrade information in the circular buffer accordingly the status when recovery has

been activated
è Call custom functions, in order to allow a SW entity to store very critical information

that should be retrieved at re-start.
è Reset of the system

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 31

When the system is re-started, recovery can retrieve the critical information and provide information on
the status of the last system stop. Diagnose information are then available in a file and can be
downloaded from target for further analysis.

2.7 Level of Information and DAR dynamic configuration (filtering)

Level of information

Some pre-defined levels of information are used in DAR:

• DAR_ERROR (information level = 0x80)
This level of information is related to an ERROR message.
The SW entity has detected that something abnormal is happening and it reveals that the sys-
tem is not working correctly or may go to an unknown state.

Example: The Software entity fails to get memory, and so it may raise an ERROR.
These Error messages are managed by the dar_diagnose_generate_emergency
function.

• DAR_WARNING (information level = 0x40)
This level of information indicates that the diagnose information is related to a WARNING in-
formation. The SW entity has detected that something abnormal is happening but this problem
can be handled by the SWE.

Example: A DAR function is called with a wrong parameter value. The function has detected
the wrong parameter value and so, it sends a Warning to the DAR entity.
These Warning messages are managed by the dar_diagnose_write function.

• DAR_DEBUG (information level = 0x01)
This level of information indicates that the diagnose information is related to a DEBUG infor-
mation. The purpose of the Debug information is to provide information on the behavior of the
SWE (but no problem has been identified).

Example: Dar_debug can be used to trace messages providing internal information on the SW
entity and that may be used to check a correct behavior of the SW entity
This Debug information is managed by the dar_diagnose_write function.

• DAR_NO_DIAGNOSE (information level = 0x00)
This level of information indicates that a SW entity doesn’t want the diagnose information
about another SW entity.

Example: A user doesn’t want the Bluetooth diagnose information. Thanks to a function de-
fined in the API (dar_diagnose_filter function) and the DAR_NO_DIAGNOSE level of informa-
tion, the Bluetooth messages aren’t stored in the RAM.

2.7.1 DAR dynamic configuration

The level information and the group of SW entity that can access to the diagnose buffer are dynami-
cally configurable.

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 31

Example of the dynamic configuration:

 1) Filter the SWE_1 with Warning Level

2) Filter the SWE_2 with Debug Level

3) Write Warning information from SWE_1

4) Write Debug information from SWE_1

5) Write Debug information from SWE_2

6) Write Warning information from SWE_2

7) Write Error information from SWE_3

• First, the SW entity that wants to use the Diagnose services must record itself by giving filtering
information. It must specify if it wants Warning, Debug or none level of information.
Note: The Error messages are automatically stored in a file even if the SW entity gives no filtering
information.

1) The SWE_1 wants to use the diagnose services to store Warning messages.
2) The SWE_1 wants to use the diagnose services to store Debug messages.

Note: The Debug messages are less importance than the Warning messages. So,
when the Debug level is chosen, the Dar Entity stores Debug AND Warning mes-
sages.

• When the SW entity gives its filtering information, it can write data in the RAM buffer.

3) Thanks to 1), the Warning information from SWE_1are stored.
4) As the Debug Level hasn’t be chosen by the SWE_1, these information are not

stored.
5) Thanks to 2), the Debug information from SWE_2are stored.
6) Thanks to 2) and as the Debug messages are less importance than the Warning
messages, the Warning information from SWE_2 are stored.

• The Error data are always stored in the RAM buffer, even if the SW entity isn’t prerecorded (no filter-
ing information).

7) The Error message from SWE_3 is stored.

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 31

2.8 Flash file

2.8.1 Flash file description

When an error occurs, some diagnose information are stored in a permanent file (using the Flash File
System) and can be downloaded from the mobile to a PC and further analyzed.

This permanent file is a Flash file and is divided in three parts:

- The circular buffer that contains diagnose information such as Warning, error, exception
information, traces information. This buffer size is 3 Kbytes but this size can be increased.

- The Xdump buffer that contains the general mode registers, the Link Register, the Pro-
gram Counter, the Current Processor Status Register, exception information and the bot-
tom 20words of user mode stack. This buffer size is 152 bytes.

- The Debug Unit that is saved into the Flash file if a Prefetch abort exception or a data
abort exception is generated.
The Debug Unit is a hardware resource intended to provide additional support to a soft-
ware abort-handler. The Debug Unit provided 64 stages deep history table of the last
memory accesses prior entering the abort mode, then permitting analysis of previous bus
transaction’s. When the abort mode is entered, the automatic-write is locked and the De-
bug-memory content is frozen. In this state, the debug unit acts as a standard static RAM
block where the data previously collected is available to the software abort-handler for
working out the abort cause.
This debug unit offers a sixty-four 32-bit word deep FIFO register file.

Fig 3: Flash file content

2.8.2 Flash file location

The DAR data are saved into the flash, in a debug data directory defined in the file hierarchy standard
for TI GSM/BT/Wireless solutions (the PSW241 specification.) This debug data directory is called
‘/var/dbg’.
Before starting the DAR entity, it is necessary to format the flash using the pctm tool. This tool is in the
Riviera release in the "tools/pctm" directory and “mkfs –f” is the command used to format the flash.

Circular buffer (3 Kbytes)

Xdump buffer (152 bytes)

Debug unit (256 bytes)

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 31

3 Diagnose and Recovery Module Use Interface (DAR
API)

3.1 Recovery related API

3.1.1 dar_recovery_get_status

T_RV_RET dar_recovery_get_status(T_DAR_RECOVERY_STATUS * status);

Description

This function can be called by the MMI at the beginning of the mobile start procedure, in order to get
the status of the last reset of the system.
Actually, system can have been reset for several reasons:

- A watchdog reset
- A scuttling reset when a recovery module has decided to activate the reset
- An emergency scuttling reset when a recovery module has detected an error and acti-

vates the reset in emergency mode
- Power ON/OFF: normal power ON/OFF sequence activated by the mobile use.

Parameters

• T_DAR_RECOVERY_STATUS
Type: typedef INT8 T_DAR_RECOVERY_STATUS;

The possible values are:

Id Definition
DAR_WATCHDOG Watchdog reset

DAR_NORMAL_SCUTTLING Recovery module has decided to activate the reset
DAR_EMERGENCY_

SCUTTLING
Emergency detection → Recovery module has decided to activate the
reset in emergency mode

DAR_POWER _ON_OFF Power on/off

Immediate Return

• T_RV_RET

The immediate value returned is defined as:

Type: typedef INT8 T_RV_RET;

The possible values are:

Id Definition
RV_OK The API function was successfully executed.

RV_ERROR An error was occurred during the execution of this function

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 31

RV_NOT_READY The Software entity hasn’t been started
RV_INVALID_PARAMETER The Software entity has an invalid parameter

Process flow

dar_recovery_get_status(status)

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 31

3.1.2 dar_recovery_config

T_RV_RET dar_recovery_config(T_RV_RET (*dar_store_recovery_data)
(T_DAR_BUFFER buffer_p,

 UINT16 max_ length))

Description

This function can be used to store a callback function that will be called by the recovery system when
a recovery procedure has been initiated. This callback should be used to store information in a buffer
(pointed by buffer_p).

Parameters

• DAR_CALLBACK_FUNC
T_RV_RET (*dar_store_recovery_data) (T_DAR_BUFFER buffer_p,

UINT16 max_length))
Where T_DAR_BUFFER is a typedef UINT8 *T_DAR_BUFFER.

This callback function is called by the DAR entity, to allow the user to save “max_length” data in
the buffer (allocated by the DAR entity). This buffer is used to store data before a reset.

Immediate Return

• T_RV_RET

The immediate returned value is defined as:
typedef INT8 T_RV_RET;

The possible values are:

Id Definition
RV_OK The API function was successfully executed.

RV_ERROR An error was occurred during the execution of this function
RV_NOT_SUPPORTED The callback function was already given

Process flow

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 31

dar_recovery_config(dar_store_recovery_data)

dar_store_recovery_buffer(dar_recovery_buffer,
DAR_RECOVERY_DATA_MAX_BUFFER_SIZE)

---- RESET ------

dar_recovery_get_status(status)

ENTITY DAR

ERROR

Copy data: Entity data
copied in the
dar_recovery_buffer

RESETRESET

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 31

3.1.3 dar_get_recovery_data

T_RV_RET dar_get_recovery_data(T_DAR_BUFFER buffer_p, UINT16 length))

Description
This function is used to retrieve data that have been stored in the buffer just before a reset.

It must be called if the status returned by dar_recovery_get_status() is abnormal (different from POWER_ON_OFF).

Parameters

• T_DAR_BUFFER buffer_p

typedef UINT8 *T_DAR_BUFFER.
This buffer is allocated by the user entity (entity that uses DAR recovery services) in order for DAR to
copy in it the recovered data (see previous section).

• UINT16 length

This parameter corresponds to the buffer length used to store the data.

Immediate Return

• T_RV_RET

C.f. API function dar_recovery_get_status

Process flow

dar_recovery_config(dar_store_recovery_data)

dar_store_recovery_buffer(dar_recovery_buffer,
DAR_RECOVERY_DATA_MAX_BUFFER_SIZE)

---- RESET ------

dar_recovery_get_status(status)

dar_get_recovery_data (buffer, length)

ERROR

Copy data: Entity data
copied in the
dar_recovery_buffer

RESETRESET

Restore data:
Copy
dar_recovery
_buffer into
buffer

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 31

3.1.4 dar_start_watchdog_timer

T_RV_RET dar_start_ watchdog_timer(UINT16 time_expiration_value)

Description

This function uses the timer as a general-purpose timer instead of watchdog. It loads the timer and
then starts it.

Parameters

• UINT16 timer_expiration_value

This parameter specifies the time’s interval (in milliseconds) before the timer expires.
Note that the maximum value that can be used as a parameter is approximately 18085 (in decimal). If
this number is passed more than, the timer value can be wrapped round to zero.

Immediate Return

• T_RV_RET

C.f. API function dar_recovery_get_status

Process flow

dar_start_ watchdog_timer (timer_expiration_value)

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 31

3.1.5 dar_reload_watchdog_timer

T_RV_RET dar_reload_ watchdog_timer (void)

Description

This function is used to maintain the previous timer in reloading it periodically before it expires.

If a problem occurs (infinite loop for example), the timer won’t be maintained and therefore when the
timer expires, it will produce an interrupt.

Parameters

None

Immediate Return

• T_RV_RET

C.f. API function dar_recovery_get_status

Process flow

dar_start_ watchdog_timer (timer_expiration_value)

dar_reload_ watchdog_timer ()

dar_reload_ watchdog_timer ()

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 31

3.1.6 dar_stop_watchdog_timer

T_RV_RET dar_stop_ watchdog_timer(void)

Description

This function stops the timer used as a general-purpose timer instead of watchdog.

Parameters

None

Immediate Return

• T_RV_RET

C.f. API function dar_recovery_get_status

Process flow

dar_start_ watchdog_timer (timer_expiration_value)

dar_reload_ watchdog_timer ()

dar_stop_ watchdog_timer()

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 31

3.1.7 dar_reset_system

T_RV_RET dar_reset_system(void);

Description
This function can be used to reset the system voluntarily.
It can be called if a recovery module has decided to activate the reset.
This reset is not due to an emergency or an error detection, but it’s a “normal” reset.

Parameters
None

Immediate Return

• T_RV_RET

C.f. API function dar_recovery_get_status

Process flow

dar_reset_system();

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 31

3.2 Diagnose Related API

3.2.1 dar_diagnose_swe_filter

T_RV_RET dar_diagnose_swe_filter(T_RVM_USE_ID dar_use_id,
 T_DAR_LEVEL dar_level)

Description

This function is called to configure the Diagnose filtering.
It allows to determine what Software Entity (dar_use_id) wants to use the Diagnose and what is the
diagnose level for this use_id.
The Error messages of the dar_use_id are automatically stored in a file, when the Debug and Warning
messages are only stored if the dar_level is activated.

Parameters

• T_RVM_USE_ID:
Type: typedef UINT32 T_RVM_USE_ID;
This type is used to identify the DAR use that wants to use diagnose filtering.
Every SW entity has a unique ID, called here use_id.

• T_DAR_LEVEL:

Type: typedef UINT8 T_DAR_LEVEL;

This parameter indicates the level of the diagnose messages.
The level of information is coded on a byte with the following meanings:

Error Warning Debug Not
used

Not
used

Not
used

Not
used

Not
used

7 6 5 0 0 0 0 0

- Error: It indicates that the diagnose information is related to an ERROR information. An
Error should be raised when a problem has been identified. The Error messages of the
dar_use_id are automatically stored in a file.

- Warning: When set, indicates that the diagnose information is related to a WARNING in-
formation and that Error and Warning messages are stored in a file. A warning should be
raised when a problem has been identified and can be handled by the SWE.

- Debug: When set, indicates that the diagnose information is related to a DEBUG informa-
tion and that Error, Warning and Debug messages are stored in a file. The purpose of the
Debug information is to provide information on the behavior of the SWE (but no problem
has been identified).

- No diagnose: When set, indicates that the diagnose information is related to a
NO_DIAGNOSE information. In fact, when an entity is using the DAR services, and
doesn’t want to use it anymore, it uses this NO_DIAGNOSE level. (the NO_DIAGNOSE
level means that the 8 bits are equals to 0).

- Not used: The 5 others bits are not supported for the moment.

For example, the possible defined values can be:
Id Definition

DAR_WARNING Error and Warning messages to diagnose
DAR_DEBUG Error, Warning and Debug messages to diagnose.

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 31

DAR_NO_DIAGNOSE No messages to diagnose

Immediate Return

• T_RV_RET
C.f. API function dar_recovery_get_status

Process flow

dar_diagnose_swe_filter(dar_use_id, ,dar_level)

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 25 of 31

3.2.2 dar_diagnose_write

T_RV_RET dar_diagnose_write(T_DAR_INFO *buffer_p,
 T_DAR_FORMAT format,

T_DAR_LEVEL diagnose_info_level,
 T_RVM_USE_ID dar_use_id)

Description
This function makes a filtering depending on the use_id and the diagnose level values. According to
the filtering results, the use_id, the dar_level and the string pointed by buffer_p can be stored in the
diagnose RAM buffer.

For information: The ASCII file format

In order to separate the different strings, the data are stored as follows:

OxFF: used to separate 2 dar_diagnose_write uses
Use_Name: used to know which Software Entity has stored data into RAM.
Dar_level contains the DAR messages level (Warning or Debug)
String contains the data to diagnose

Parameters

• T_DAR_INFO

Type: typedef char T_DAR_INFO;
buffer_p is a pointer to the message to store (this message is a string)

• T_DAR_FORMAT

The data can be ASCII or binary formatted.
The advantage of the binary format is the higher stream of information that can be carried.
The disadvantage is the need to have a tool to unformatted incoming data.
The message format is one byte, and its meaning is 0 for ASCII (DAR_ASCII_FORMAT) and
1 for binary (DAR_BINARY_FORMAT).

Type : typedef INT8 T_DAR_FORMAT;

The possible values are:

Id Definition
DAR_ASCII_FORMAT The data are ASCII formatted.
DAR_BINARY_FORMAT The data are binary formatted. (Not supported)

• T_DAR_LEVEL:
Type: typedef UINT8 T_DAR_LEVEL;
This parameter indicates the diagnose level.
This level of information is coded on a byte with the following meanings:

OxFF Use_ID_1 Dar_level_1 String_1 OxFF Use_ID_2

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 26 of 31

Error Warning Debug Not
used

Not
used

Not
used

Not
used

Not
used

7 6 5 0 0 0 0 0

- Error: It indicates that the diagnose information is related to an ERROR information. An
Error should be raised when a problem has been identified. This parameter is automati-
cally set.

- Warning: When set, indicates that the diagnose information is related to a WARNING in-
formation. A warning should be raised when a problem has been identified and can be
handled by the SWE.

- Debug: When set, indicates that the diagnose information is related to a DEBUG informa-
tion. The purpose of the Debug information is to provide information on the behavior of the
SWE (but no problem has been identified).

- Not used: The 5 others bits are not supported for the moment.

For example, the possible defined values can be:

Id Definition
DAR_WARNING Warning messages to diagnose

DAR_DEBUG Debug messages to diagnose

• T_RVM_USE_ID:

Type: typedef UINT32 T_RVM_USE_ID;

This type is used to identify the DAR use that wants to use diagnose filtering.
Every SW entity has a unique ID, called here Use_id.

Immediate Return

• T_RV_RET
C.f. API function dar_recovery_get_status

Process flow

dar_diagnose_swe_filter(dar_use_id, ,dar_level)

dar_diagnose_write(buffer_p, format ,dar_level
,dar_use_id)

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 27 of 31

3.2.2 dar_diagnose_generate_emergency

T_RV_RET dar_diagnose_generate_emergency (T_DAR_INFO *buffer_p,
 T_DAR_FORMAT format,
 T_RVM_USE_ID dar_use_id)

Description
This function is called to store diagnose data in RAM buffer when an emergency has been detected
and goes to emergency (automatic reset) with EMERGENCY_ SCUTTLING status.

For information: The ASCII file format

In order to separate the different string, the data are stored as follows:

OxFF: used to separate 2 dar_diagnose_write uses
Use_Name: used to know which Software Entity has stored data into RAM.
Dar_ERROR used to indicate an emergency error
String contains the data to diagnose

Parameters

• T_DAR_INFO
Type: typedef char T_DAR_INFO;
buffer_p is a pointer to the message to store (this message is a string)

• T_DAR_FORMAT

The data can be ASCII or binary formatted.
The advantage of the binary format is the higher stream of information that can be carried.
The disadvantage is the need to have a tool to unformatted incoming data.
The message format is one byte, and its meaning is 0 for ASCII (DAR_ASCII_FORMAT) and
1 for binary (DAR_BINARY_FORMAT).

Type : typedef INT8 T_DAR_FORMAT;

The possible values are:

Id Definition
DAR_ASCII_FORMAT The data are ASCII formatted.
DAR_BINARY_FORMAT The data are binary formatted (Not supported)

• T_RVM_USE_ID:

Type: typedef UINT32 T_RVM_USE_ID;

This type is used to identify the DAR use that wants to use diagnose filtering.
Every SW entity has a unique ID, called here Use_id.

OxFF Use_ID_1 Dar_Error String_1 OxFF Use_ID_2

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 28 of 31

Immediate Return

• T_RV_RET
C.f. API function dar_recovery_get_status

Process flow

dar_diagnose_generate_emergency(buffer_p,
format , ,dar_use_id,)

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 29 of 31

3.2.3 dar_diagnose_write_emergency

T_RV_RET dar_diagnose_write_emergency(
T_DAR_INFO *buffer_p,

 T_DAR_FORMAT format,
 T_RVM_USE_ID dar_use_id,

 UINT32 flags)

Description
This function is called to store diagnose data in RAM buffer when an emergency has been detected
and goes to emergency (automatic reset) with EMERGENCY_ SCUTTLING status.
This function works similar to dar_diagnose_generate_emergency but via the additional parameter
'flags' it can be controlled if :

- the data to be stored shall be appended to the last entry or if a new entry will be created.
- a reset is done or the data is only written into the dar_write_buffer

Parameters

• T_DAR_INFO
Type: typedef char T_DAR_INFO;
buffer_p is a pointer to the message to store (this message is a string)

• T_DAR_FORMAT

The data can be ASCII or binary formatted.
The advantage of the binary format is the higher stream of information that can be carried.
The disadvantage is the need to have a tool to unformatted incoming data.
The message format is one byte, and its meaning is 0 for ASCII (DAR_ASCII_FORMAT) and
1 for binary (DAR_BINARY_FORMAT).

Type : typedef INT8 T_DAR_FORMAT;

The possible values are:

Id Definition
DAR_ASCII_FORMAT The data are ASCII formatted.
DAR_BINARY_FORMAT The data are binary formatted (Not supported)

• T_RVM_USE_ID:

Type: typedef UINT32 T_RVM_USE_ID;

This type is used to identify the DAR use that wants to use diagnose filtering.
Every SW entity has a unique ID, called here Use_id.

• UINT32 flags

The possible values are:

Id Definition
DAR_EMERGENCY_RESET Causes a reset

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 30 of 31

DAR_NEW_ENTRY New data is appended to last entry

Immediate Return

• T_RV_RET
C.f. API function dar_recovery_get_status

Process flow

dar_diagnose_write_emergency(buffer_p, format ,
,dar_use_id, flags)

ENTITY DAR

Technical Document
Diagnose And Recovery API (88_02_03_00155), v1.0 Draft

Texas Instruments Proprietary Information – Internal Data Page 31 of 31

Appendices

A. Acronyms
API Application Program Interface: list of functions or messages used to access

to a SW entity service
DAR Diagnose and Recovery
RAM Random Access Memory
RTT Real Time Trace
RVF Riviera Frame
RVT Riviera Trace
SW Software
SWE Software Entity

B. Glossary

International Mobile
Telecommunication 2000
(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/family of standards for 3G. This
initiative provides a global infrastructure through both satellite and terres-
trial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roam-
ing. <URL: http://www.imt-2000.org/>

