{5‘ TEXAS
INSTRUMENTS

Technical Document

GENERIC PROTOCOL STACK FRAMEWORK
GPF
VSI/PEI — FRAME/BODY INTERFACES

FUNCTIONAL INTERFACE DESCRIPTION

Document Number: 06-03-10-ISP-0002
Version: 0.17
Status: Draft
Approval Authority:
Creation Date: 1999-May-05
Last changed: 2006-Apr-06 by MP
File Name: vsipei_api.doc
ECCN: US: 5D991

Europe: EAR99

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information — Internal Data
technical_documen: t_20030404.dot

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and ser-
vices at any time and to discontinue any product, software or service without notice. Customers should
obtain the latest relevant information during product design and before placing orders and should ver-
ify that such information is current and complete.

All products are sold subject to TI's terms and conditions of sale supplied at the time of order ac-
knowledgment. Tl warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control tech-
nigues are used to the extent TI deems necessary to support this warranty. Except where mandated
by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-
sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of Tl software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. Tl software may solely be
used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that Tl products and/or software may be based on or implement
industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from Tl to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third
party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other Tl intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third—party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may
require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electroni-

cally or mechanically, including photocopying and recording, for any purpose without the express writ-
ten permission of TI.

Change History

Date Changed by Approved by Version | Status | Notes
1999-May-05 | MP et al. 0.1 1
1999-May-18 | MS et al. 0.2 2
1999-Jul-15 |MP et al. 0.3 3
1999-Nov-01 | HJS et al. 0.4
1999-Dec-07 | MP et al. 0.5 4
2000-Jan-21 |HJS et al. 0.6 5
2000-Oct-11 | MP 0.7 6
2001-Sep-07 | MP 0.8 7
Q’ Texas Instruments Proprietary Information — Internal Data Page 2 of 133

TEXAS

INSTRUMENTS

Technical Docume

nt

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

2001-Dec-01 | MP 0.9 8
2003-May-20 | XINTEGRA 0.10 |Draft
2003-Sep-08 | MP 0.11 9
2003-Dec-08 | MP 0.12 10
2005-Feb-08 | MP 0.13 11
2005-Apr-13 | MP 0.14 12
2005-May-11 | MP 0.15 13
2005-Nov-24 | MP 0.16 14
2005-Dec-09 | MP 0.17 15
2006-Mar-24 | MP 0.18 16
Notes:

1. Initial version

2. English/Format check

3. Review

4. Reference C_8415.036 added

5. New Template (MS)

6. Type T_VOID_STRUCT added

7. Vsi_c/m_status added

8. Dynamic allocation functions added

9. vsi_e_handle(), vsi_e_name, vsi_c_status() added
10. general update
11. added non-blocking memory allocation API

12. added PSEND_TO_PC macro, minor corrections
13. added FMALLOC and FPALLOC_SDU

14. added trace registration for non-GSP entities

15. added virtual memory pool API

16. added realloc

*f" TEXAS

INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 3 of 133

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

Table of Contents

Generic ProtoCol Stack FrameEWOTKouuuiiiiiiiiiiii et e et e e e e et e e e e e eraaa s 1
P e ————————————————————————— 1
VSI/PEI — Frame/BOdy INTEITACESoouviiiiiiiee ettt ettt a e e e e et a e e e e e s sanbbaneaaaaaeeeeas 1
Functional INterface DeSCIIPTIONcii i 1
1.1 A EVIATIONS ... e e e et e e e e et e e e e e e ar e aaeaaa, 8
2 [0 (o Yo [V Tox 4 0] o EEUUU T TS UUPRPR 8
3 Frame/BOdy CONCEPT ...oiiiiiiiie ittt ettt et s e e e e e e e s e e e e s nan e e e s snneee e e e 9
3.1 VariantS @nd OPLONSceeiiiiiiiiiet e e e e e e e s e e e e e e e s s st r e e taeeeeesssnrbbreeeaaaeeaaans 10
3.1.1 ACHIVE/PASSIVE BOOY ...ttt e e e e e e e e e e e s e baneeeee s 10
3.1.2 COMMUNICALION. ..ottt e e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeseeessssrseaseaaaaannnnn 10
O | 1) (=1 o = (o1 = TS USSSUTR 11
4.1 [Lz B I3 0T SO PP P PP PP PPTRTR 11
41.1 L Fo Y Y/ o< TR 11
41.2 T HANDLEot e e et e e e e e e s s et a e e e e e e e e s s e a i anrraeees 11
4.1.3 I ISR 11
41.4 T PRIM_HEADER.... ..ot e e e e e e s e aeee s 11
415 B L o | B PO 12
4,1.6 B YA 11 I L 12
4.1.7 B I =X 0 LR 12
4.1.8 B I d = T L 2 SRR 12
4.1.9 T VSI VMP_FLOW_CTRL_PARAM.....iiiiie e 13
4.1.10 T_VSI_VMP_NOTIFY_PARAM ...ttt ettt s s sibaer e e e e e e e s b rraaeaaaeeaaens 14
4111 T_VSI_VMP_CONFIG_PARAM ...ttt eeeeeeeennnnnan 14
4.1.12 T_VMP_GUARD ..ottt ettt e sttt e e e e e e e s et et e e e e e e e s s nnbrraeaaaeeeaaaas 14
Tt 1 T B 1Y/ PR 15
4.2 (0] 1] = 11 Y 16
421 =00 T O o [PSSP 16
422 MESSAGE TYPES eteetttuuuutnnuaaaaaaa e s e e e e e e e e e e e e e e e e e e ee ettt ettt e eeeaeaeeeeab bbb bbbt bbbt a s s e e e e e e e e eeeeas 16
4.2.3 TrACE ClASSES.....cciiiiie ettt e e e et e e e e e e e et e e e e e e e tba e e e e eeraanaans 16
4.2.4 Timer CoNfIQUIALIONcoi ittt e e e e e e s s s e e e e e e e e s s annrbraeeeeeeas 17
425 (O] o] [Tl o [T 011111 ST PP PP TP PP PPPPPPPPPTT 17
4.2.6 Other CONSTANTSottt e et e e e e e e et e e e e e eab e e e e e eeaaaanns 17
4.3 Macros for t0 Call VSI FUNCHONSuuuiieiiiceceeeeee et 18
431 PALLOC, PALLOC _INB . ..ittiiiiiieee ettt e et e e e s s st e aeaa e e e s snnsttanasaaeaaeessannstsnaneeeeas 18
432 PALLOC_GENERIC ..ottt e ettt a e e e e e e s st aaeee s e e e s s annssannaeees 18
433 P_ALLOGC, P_ALLOC _NB.....tttiiiiiiiieeesiiiiiiiitte et e e e e s sstiaaeeaeaaeasssnssttsaaaeeesaasssasssssnsseens 18
4.3.4 PALLOC_DESCX, PALLOC _DESCX_NBcciiiiiiiieeeeeeeeeeee e 19
4.3.5 PALLOC_MSG, PALLOC _SDUcoiiiiiiiiieeeee et n e 19
4.3.6 e o O T @ 5 19
4.3.7 P_ALLOC_SDU, FP_ALLOC _SDU, P_ALLOC_MSGovvvriiiriiniiniiiiinnniaaannaaaaeens 19
4.3.8)] = Y I X L 20
4.3.9 [g N X 1 20
Q’ Texas Instruments Proprietary Information — Internal Data Page 4 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.10 DRP_BIND ..ooiiiiiiieeit ittt e s e e e e 20
4,311 DP_ALLOC ... ettt a e 20
4312 PREUSE, P_REUSEcoittiiii ittt e e 21
4.3.13 PREUSE_MSG, PREUSE_SDU, P_REUSE_MSG, P_REUSE_SDU............ccceeennes 22
4.3.14 PATTACH, P_ATTACH ..ttt e e et ee e e s sbee e e e enees 22
4.3.15 PFREE, P_FREE....... ottt ettt ettt e e et e e e s sbbe e e e eaes 22
4.3.16 MALLOC, MALLOGC NBtiiiiiiiiiieie ittt e eieiee e e ateee e e aateeeaesaateeaesanaeeaeeaanseeeasanseeaeaanns 23
A.3.17 FIMALLORC. ...ttt ettt et e e ettt e e ekttt e e e e a et e e e an et e e e e nraeeeeanaeeaeaann 23
4.3.18 MREALLOC, MREALLOC_NBooiiiiiiiiieiiiiee ettt e e e neee e e s snaeeaeeenes 23
4.3.19 MALLOC _GENERIC......oii ittt ettt st e ettt e e sttt e e e s ntee e e s snnaeaeessntaeaesansneeeenanes 24
4.3.20 MALLOC_DESCX, MALLOC _DESCX_NBcoiiiiiiieeiiiiieeeiiiireessiieeeessvaeeesseeeeee e 24
4321 M_ALLOC, M_ALLOC_NB, FM_ALLOC.......c.ccttiiitiitaeiiiieeeeiiieaessieeeessnneaeeessneeeeeeennes 24
4322 M_REALLOC, M_REALLOC NBcoctitieiiiiiie e ettt e s sstieee e s seteeaesssiaeeessnneaeeesaseeeeeennes 24
4323 M_ALLOC_DESCxX, M_ALLOC_DESCX_NBc.cctttiiiiiiiieiiiiiiee e 24
4.3.24 DMALLOC, DMALLOC _NBciiiiiiiiiiiititie ittt ettt e e snnee e e 24
4.3.25 DMREALLOC, DMREALLOC _NBccitiiieiiiiiie ettt e e 24
4.3.26 D_ALLOC, D_ALLOC _NBitiiiiiiitieiitiiiee ettt ettt ettt et e e e asbee e e e e sabaeeesanbaeeeeannes 25
4.3.27 D_REALLOC, D_REALLOC_NBcoiiiiiiieiiiiie ettt e e 25
4.3.28 MATTACH, M_ATTACH ... ittt e e et e e e s sbaeeeeeaaes 25
A.3.29 FREE ..o e e b e e e s abre e e e anae 25
4330 MFREE, M_FREE...... .ottt ettt et e e e et ee e e s eneeeaeeanes 25
4331 DMFREE, D_FREEooiiiiiiiii ettt e e et e e s e e e e anes 25
4.3.32 PSEND, P_SEND.ottt ettt e ettt e e e e n e e e e e nae e e e e e anraeeaeanaeeaeeanns 26
4.3.33 PSEND_CALLER, P_SEND_CALLERciiitiite ettt et sieeea e 26
4.3.34 PRIM_SEND _TO _PC...oiiiiiiiieeiiiiiee ettt e e seee e e et e e s st aaeasnteeaesasteaaeassnsaeeesanseeeeennnes 26
4.3.35 DATA_SEND_TO_PC ..ottt e e et e e s sttt e e e e snne e e e santaeaeeentaeeesansaeeeeannes 26
4.3.36 PSIGNAL, P_SIGNAL....coiitiitii ittt ettt e e e e s abreeeeanes 26
4.3.37 PACCESS, P_ACCESSottt ettt e e st e e e 27
4.3.38 PPASS, P _PASS ...ttt e e 27
4.3.39 TRACE_FUNCTION, TRACE_FUNCTION_PL...9 . ittt 27
4340 TRACE_EVENT, TRACE_EVENT _PL...9 it 27
4341 TRACE_USER_CLASS, TRACE_USER_CLASS P1...9. i 27
4342 PTRACE_IN, PTRACE_OUT ...ttt ettt ettt e et e e sbae e e e enees 28
4.343 TRACE_ERROR. ...ttt e ettt e ettt e e e e nt e e e e esteeeeaanteeeesaneneeaeeanns 28
4.3 44 TRACE _ASSERT ...ttt ettt ettt e e ettt e e ettt e e e e entee e e s e aeeeeeeanbaeeesanneaaeeanns 28
4.345 TRACE_MEMORY ...ttt ittt e e e et e e e ettt e e e e anteeaesanaeeeeeanseeeesannneaaeaanns 28
4346 TRACE_HEXDUMP.......oiii ittt ettt et e e e st e e e e snntee e e s snsaeeeesnntaeeesansaeeeeeanes 28
4.3.47 TRACE_MEMORY _PRIM.....oiiiiiiiiieiiiiie et e e stte e s ssteteeeasnteeassnsseeeeesansaeeasansneeeenanes 29
4.3.48 TRACE_USER_CLASS MEMORY_PRIMootiiiiiiiiiiiiiieeeiie e sseee e ne e e sieeae e 29
4.3.49 TRACE_SDU. ... oottt ettt et b e e e e e 29
4.3.50 TRACE _IP oottt e st e e 29
4.351 PRF_LOG_FUNC_ENTRY ..ottt ettt et e e e s e eee e e 30
4.352 PRF_LOG_FUNC _EXIT .tiiiie ittt ettt ettt ettt et e e e e s eibae e e s anbneeaeeanes 30
4.3.53 PRF_LOG_ POttt ettt ettt ettt e e et e e e e ab e e e s anbbe e e e e e 30
4.4 Protocol Entity INtErface (PEI)oociiiiiiiieieee ettt e e s e e e s sneinnees 31
44.1 pei_create () - Create the Protocol Stack ENtityccccvvviiiiiiiiiiiiiiiiiiiene e 31
4.4.2 pei_init () - Initialize Protocol Stack ENLitycoiveiiiiiiiiiiiiiiniiee i 32
4.4.3 pei_exit () - Close Resources and TermMiNAte............oovvvurrrriirieerniiniiiriieeneee e s sninnnns 33
4.4.4 pei_primitive () - Process PrimitiVE...........cccuuiriiiiieee it e e e e s er e e e e e eninnnns 34
445 pei_signal () - ProCess SigNalcuiieiiiiiiiiiiiiiiiiee et r e e e e e ennnne 35
4.4.6 pei_timeout () - ProCess TIMEOUL........ccuiiiiuriuriiiitieeesiisiiiiareeeeeeeessssiinrreeereeeessannnnnnes 36
447 pei_run () - ProCess PriMIIVE.coiiiiiiiiiiiiiiiee et e e eeiinnes 37
4.4.8 pei_config () - Dynamic Configuration............uuueiiieeei i e er e e e e 38
449 pei_monitor () - Monitoring of Physical Parametersccccoeiviiiiiiiiiiieniieee s 39
4.5 Virtual System INTErface (VSI)eeiiiiiii e 40
451 LI LS O OO PP P PP PPPPPUPPPN 41
45.1.1 vsi_p_create () - Create TaASK.....cccccccsiiiiiuriiiiieiiee e s sesiiiiireee s e e e e s sssnrrreeeeaeessaansnnne 41
45.1.2 vsi_p_delete () - Delete TASKcuiiiiiiiiiiiiiiieet et 42
Q’ Texas Instruments Proprietary Information — Internal Data Page 5 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.1.3 VSI_p_Start () - STAIt TASK.....uuueiiiiiieeiiiiiiiiiiiiee e e s rre e e e e e s s s nnnnnne 43
4.5.1.4 VSI_P_StOP () = SOP TASK .cuvuviiiiiiiiie ittt r e e e nnanne 44
4515 wvsi_p_name () - Get Task NamMeooocuiiiiiiiiii e 45
45.1.6 vsi_p_handle () - Get Task HaNdIEcuuvvieiiieiiiiiiiiieecee e 46
4.5.1.7 vSi_p_exit () - EXIt taSK......ccooiriiiiiiie i a7
452 T [T PP PRPOPPPI 48
45.2.1 vsi_e_handle() — Get Entity Handleouuiiiiiiiiiiiie e 48
45.2.2 vsi_e_name() - Get Entity NaMe........oooiiiiiiiiiiiie e 49
45.3 COMMUNICALION ...ttt e e e e et e e e e e e e s ab bbb e e et e e e e e e e s annbbrneeeeeaaeeanas 50
453.1 wvsi_c_open () - Open COMMUNICALION........coccuriieiirreeeearier e st e e e 50
45.3.2 vsi_c_close () - Close COMMUNICAIONcoccuviieiiiiiie e 51
45.3.3 vsi_c_clear () - Clear Communication RESOUICEuuveeriieeiiiiiiiiiiiiieeeaeeeeanninnes 52
453.4 vsi_C_Send () - SeNd MESSAJE.......coceirrmiieiriieiieiireeee e 53
4535 vsi_c_psend () - Send Primitivecocouiiiiiiiiiiiiiiiiiicee e 54
4.5.3.6 vsi_c_psend_caller () - Send PrimitiVecccceiiiiiiiiiiiiiiieee i 55
4.5.3.7 vsi_C_SSend () - Send SIgNalc.ooeiiiiiiiiiiiiiiiiee e 56
4.5.3.8 vsi_c_await() - AWAIL PIrIMILIVEcceiiiiiiiiiiiiee e e e e e e nenne 57
4.5.3.9 vsi_c_primitive () - Forward non GSM primitiVe..........ccuuveeeiieeee i e e eesienns 58
4.5.3.10 vsi_c_new () - Allocate Partition MEMOIYccuuvviiieeieeiiiiiiiiiiiieeeee e e e sseiinneeeeens 59
453.11 vsi_c_pnew_generic () - Allocate Partition MEMOIYccccvvvivieeeeeeiiiiiiinneneenn. 60
45.3.12 vsi_c_pnew () - Allocate Partition Memory (blocking).........ccccvveeeiiiiiniiiiiiiiineenn. 61
4.5.3.13 vsi_c_pnew_nb () - Allocate Partition Memory (non-blocking)..............ccceeveeeees 62
45.3.14 vsi_c_new_sdu () - Allocate Primitive containing an SDUccvvvvvvvenes 63
45.3.15 vsi_c_new_sdu_generic () - Allocate Primitive containing an SDU 64
45.3.16 vsi_c_ppass () - Pass Primitive Data to new Primitive...........cccccceeeeiniiiiinnneeenn. 65
4.5.3.17 vsi_c_free () - Free Partition MeMOIYcccccoiiiiiiiiiiiiee e 66
45.3.18 VSi_C_pfree () - Free PrimitiVeuueiiiiieii e 67
45.3.19 vsi_c_status () - Request QUEUE StatUS.........ccuuueeiieeeeeeiiiiiiiiieiieee e e e ssiviieeeeeeens 68
4.5.3.20 vsi_c_pattach () - Attach to Primitive...........ooviiiiiiiiiiii i 69
453.21 vsi_c_sync () - Synchronize with Protocol StacK.............cccccvvvviiiiiieiiiciiinenenn. 70
4.5.3.22 vsi_c_alloc_send () - Generic API Function to Send on Tool Side..............c........ 71
454 /1T o 4 To] YT TTPPRP 72
45.4.1 vsi_m_new () - Allocate Memory Partition.............ccocuuuurieieieeesiisiiiiiieeneeeessssnennes 72
45.4.2 vsi_m_cnew () - Allocate Memory Partitioncoocuuumiieiiieeeniiiiiiieeee e 73
45.4.3 vsi_m_realloc () - Realloc Memory Partition...........ccccuuiiieiiiieeiiiiiiiieene e 74
4544 vsSi_m_free () - Fre@ MEIMOIYcooiiiiiiiiiiiiiiiiei ettt 76
4545 vsi_m_status () - Get MEMOIY STAtUS.........ccccuiiiiiirieie e 77
4546 vsi_m_attach () - Attach t0 MEMOIYooviiiiiiiii i 78
45.4.7 vsi_drpo_new () - Allocate Root of Dynamic Primitive............ccccceevviiereininnee i, 79
4.5.4.8 vsi_drp_new () - Allocate Root of Dynamic Memory
4.5.4.9 vsi_drp_bind () - Bind child root-pointer to parent root-pointerccccvveevvinivennns 81
4.5.4.10 vsi_dp_new () - Allocate Additional Dynamic Memory.........ccccccvveeeeeeriiiciinnnneenn. 82
45.4.11 vsi_dp_sum () - Get Number of Stored Bytes in Dynamic Memory 83
45.4.12 vsi_free () - Free Dynamic Sized MEMOIYccuuviiiieieeeiiiciiiiniieee e 84
455 Virtual MEmMOIY POOIS. ...t e e e e e e e s e eaee s 85
455.1 vsi_vmp_create () - Create Virtual Memory POOL.............cccceeiiiiiiiiiiiiieceee s 85
455.2 vsi_vmp_delete () - Delete Virtual Memory POOIccoviiiiiiiiiiiiiiiieee s 86
4.5.5.3 vsi_vmp_modify () - Modify Virtual Memory POlcccccoeviiiiiiiiiiiieeeeins 87
45.5.4 vsi_vmp_get_status () - Get Virtual Memory Pool Status............cccuvvieeniieiiiiniinnns 88
4555 vsi_vmp_malloc() - Allocate Memory Block from Virtual Memory Pool................... 89
455.6 vsi_vmp_mfree () - Return Memory BIOCK..........cccovviiiimiiieiiiiie e 90
4.5.5.7 vsi_vmp_notify_split () - Notify about split Memory BloCK............ccccuvvieeniieiiiiiiiinnns 91
45.6 LI 1] PP PTT T PPPPPPP 92
4.5.6.1 VSi_t Start () - STArt TIMEI c.uuuiiiiiiiiee e reae e e s e s senne 92
45.6.2 vsi_t pstart () - Start Timer with Periodic Reloadccccccoeviiiiiiiiiiiiiiiee i, 93
4.5.6.3 VSIi_t_StOP () = SEOP TiMBI uuiiiiiiiiiiie ettt e e s ee e e e e s s s snennne 94
4.5.6.4 vsi_t status () - QuEry TIMEr STALUSc.uvvvriiiiieeeiiiiiiiiiiiee e e e e s ssirerreereee e s s ennnnne 95
45.6.5 vsi_t_config () - Configure TIMEIoiiiiiiiiiiiiie e 96
4.5.6.6 vsi_t time () - Query SyStem CIOCK........cuuuriiiiiieeiiiiiiiiieier e e essirrreer e e e e e neanes 97
Q’ Texas Instruments Proprietary Information — Internal Data Page 6 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.6.7 vsi_t sleep () - SusSpend Thread..........cccuuviiiiiiieiiiiiiiiiee e 98
45.7 SEMAPRNOTES .eeiiiiei ittt e e et e e e e e e s s bbb e et e e e e e e e e s n bbb rareaaaaeeeanan 99
4.5.7.1 vsi_s _open () - Open SEMAaPhOrecccuuuiiiiiiiie e 99
4.5.7.2 vsi_s_close () - CloSe SEMAPNOIec.uuvviiiiiiie i 100
457.3 vsi_s _get() - Get SEMAPNOIEccieiii it e e 101
4.5.7.4 vsi_s_get_timeout () - Get Semaphore with TIMEOULccoovviiiiiiiieiieeee i, 102
4575 vsi_s release () - Release SEmMaphOre.........ccccoviiiiiiiiiieiieee e 103
45.7.6 vsi_s_status () - Query Semaphore Counter Value.............cccvvveeeeniiiiiiiiiiiiinnneenn. 104
45.8 L= T = PP PRSP PP PPPPPTTTN 105
4581 VSI_0_trace () - TraCe TeXt.....uuiiiireiieiiiiiee et e s e e e 105
4.5.8.2 vsi_o_func_ttrace () - Trace FUNCLION NAMEcocuviiiiiiiiieee e 106
4.5.8.3 vsi_o_event_ttrace () - Trace EVENL.....cccuuviiiiiiiiiiiiiiieee e 107
4.5.8.4 vsi_o_error_ttrace () - TraCe EITOrccuuuuiiiiiiieiiiiiiiieiiiee e 108
4.5.8,5 vsi_o_state ttrace () - Trace State.......cccueriiiiiieiiiiiiiiiiiiiee e e 109
4.5.8.6 vsi_o_class_ttrace () - Trace User Trace Classccccuuvveviieeiiiiiiiiniieeeieeessasiiinnns 110
4.5.8.7 vsi_o_ptrace () - Trace PrimitiVecccuuriiiiiiieeiiiiiiiiiiee e ssiiinreeee e e e s siinnes 111
4.5.8.8 VSIi_0_Strace () - TraCe STAlB.....cuuiiieiiiiiiiiiiiiieeee ettt e e e e s e e e e e e s s e enanenes 112
4.5.8.9 vsi_o_primsend () - Send Primitive 10 PCccooiiiiiiiiiiiieiie e cciirreee e e s 113
4.5.8.10 VSI_0_itrace () - Trace INAEXcccuviieiiieee ettt e e e e e aeeee s 114
458.11 vsi_o_func_itrace () - Trace FUNCHON - INAEXuvvveeeeeiiiiiiiiiiiieeee e 115
45.8.12 vsi_o_event_itrace () - Trace Event - INdeXccccoeeeiiiiniiiiiiiiiieieiiieeeeen 116
45.8.13 vsi_o_error_itrace () - Trace Error - INdeX.......cuueeeieeieiiiiiiiiiiiiiieeee e 117
45.8.14 VSi_o_state_itrace () - Trace State - INAeXuueeeiiiieiiiiiiiiiiieee e 118
45.8.15 vsi_o_class_itrace () - Trace User Class - INdeX.........ccovvviiiiiiiieieiiniiniiiiieeeenn. 119
458.16 vsi_o_settracemask () - Set Trace Mask............ccvveeiiiieriiiiiiiee e 120
4.5.8.17 vsi_o_gettracemask () - Get Trace Maskccccceevriiereriiinee e 121
45.8.18 vsi_o_assert() - Fatal Error Handlingcocccivieiiinii i 122
4.5.8.19 vsi_non_gsp_trace_register () - Register non-GSP Entity Trace System.......... 123
4.5.8.20 vsi_set_non_gsp_trace_filter () - Set Trace Filter for non-GSP Entity 124
45.8.21 vsi_get_non_gsp_trace_handle () - Get Trace Handle of non-GSP Entity 125
45.9 Partition SUPEIVISIONciiiiiiiiiiiiiee e sttt e e s e e e e e e s s s s eeeeeaeessaannnnnnes 126
4.5.9.1 vsi_ppm_new () - Supervision of Allocating a Partitionccccvvvvverieeesiinicnnnns 126
4.5.9.2 vsi_ppm_rec () - Supervision of Receiving a Partition..............cccccuvvviirieeesiiiiinnnns 127
4.5.9.3 vsi_ppm_send () - Supervision of Sending a Partition..............cccccviiiieriiieniiiiiinns 128
4.5.9.4 vsi_ppm_reuse () - Supervision of Reusing a Partitioncccccuvvveerieeiniininnns 129
45,95 vsi_ppm_access () - Supervision of Access of a Partition...........ccccceeeveiiiiiiinnnnennn. 130
4.5.9.6 vsi_ppm_free () - Supervision of Deallocating a Partition..............cccceeereeeriinnnnnnns 131
4510 MISCEIIANEOUScoiiiiiiiiiiitttete et e e e e e e e st e e e e e e e s abbbneeeeeeas 132
45101 vsi_object_info () - Object INformation...........c.occoveiiiiie e 132
Y o] =T Vo [T oL PRSP PU PR 133
S o1 (011} 1 11 PP PP PP PP PPPPPRPTN 133
B GIOSSAIY ittt e e e e e et e e e e e e r e e e e e e e aaan 133

List of Figures and Tables

List of References

[ISO 9000:2000] International Organization for Standardization.
Quality management systems - Fundamentals
and vocabulary. December 2000

Q’ Texas Instruments Proprietary Information — Internal Data Page 7 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

06-03-10-UDO-0001 frame_users_guide.doc FUG — Frame Users Guide
06-03-10-ISP-0003 os_api.doc OS - Operating System Interface

06-03-42-UDO-0001 str2ind_userguide.doc Compressed/Binary Trace

1.1 Abbreviations

VSI Virtual System Interface
PEI Protocol Stack Entity Interface
RTOS Real-time Operating System

2 Introduction

G23 is a software package implementing Layers 2 and 3 of the ETSI-defined GSM air interface signal-
ing protocol, and as such represents the part of a GSM protocol software which is both, platform and
manufacturer independent. Therefore, G23 can be viewed as a building block providing standardized
functionality through generic interfaces for easy integration.

The G23 suite of products consists of the following items:

Layers 2 and 3 for speech & short message services,
Layers 2 and 3 for fax & data services,

Application Control Interface,

Slim MMI [02.30] and

Test and integration support tools.

This document is the Functional Interface Description for the interfaces between the body and the
frame - the Virtual System Interface (VSI) and the Protocol Entity Interface (PEI).

Q’ Texas Instruments Proprietary Information — Internal Data Page 8 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

3 Frame/Body Concept

The frame body concept has been designed in the context of the G23 Protocol Stack. In the G23 Pro-
tocol Stack, a process represents the protocol logic of a protocol stack entity. This architecture sepa-
rates the process functionality into two logical modules, the process frame and the process body.
Common process functionality is located in the process frame. The main process functionality is lo-
cated in the process body.

Body

PS Functionality

this document

N

/\
7 - N :
Frame < river
Virtual OS rdware Abstraction

OS Extensions: init |
Passive Model "
Routing <

Trace call back

Memory Supervision

Timer Configuration
Startup

U RN

call back frame_users_guide.doc

OS-Layer os_api.doc
Adaptation to RTO

[OsS-Layer_design.doc

call — RTOS API

back /‘
RTOS v

Nucleus, Win32, pSOS, -

Figure 1: Protocol Stack Software Architecture and Documentation

Q’ Texas Instruments Proprietary Information — Internal Data Page 9 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

As Figure 1 shows, the interfaces between the body and the frame are the Protocol Entity Interface
(PEI) and the Virtual System Interface (VSI).

The Protocol Entity Interface (PEI) is the functional interface of the protocol entities to be accessed by
the frame.

A protocol stack entity is registered to the system by calling the pei_create() function that exports the
user defined entity creation parameters.

The communication between the protocol stack entities is done via message queues. These message
gqueues are created by the frame during the system startup and the communication between the enti-
ties is opened by the function pei_init(). A message identifier defines the type of the received queue
entry. Three different kinds of entries can be transferred through these queues: primitives, signals and
timeouts. Each of these message types has a corresponding PEI function that is called if a message
has been received.

Setting of dynamic configurations of protocol stack entities e.g. timer configuration as well as reading
of these configurations is performed by the function pei_config().

The Virtual System Interface (VSI) is the functional interface of the frame seen by the body. For the
bodies, the VSI serves as an interface to the underlying OS Layer that is an abstraction of the RTOS
(Nucleus, Win32,...). The RTOS resources created are accessed through the VSI that calls OS Layer
functions, some of them e.g. the timers are managed in the VSI. The VSI also provides access to ex-
tended frame functionality such as tracing and memory supervision.

The frame/body concept requires that access to the bodies is performed only via the PEI and that the
bodies must use the VSI to access the RTOS or the frame.

3.1 Variants and Options

3.1.1 Active/Passive Body

A protocol stack entity can run in two different variants. In the active variant, the main loop is located
within the entity in the function pei_run() where the corresponding input message queue has to be
supervised. If a primitive has been received, the function pei_primitive(), pei_signal() or pei_timeout()
is called for further evaluation. In the passive variant, the main loop is located outside the body in the
frame. The procedures for this variant are the same as in the active case if a message has been re-
ceived, except the PEI functions are called by the frame.

3.1.2 Communication

There are two different methods of communication between the protocol stack entities. If the commu-
nication is done by reference every time a primitive has to be sent, a partition from the partition mem-
ory pool is allocated and filled with the primitive data. The address of this partition is written into the
input queue of the destination entity. This entity frees the partition after processing its contents. If the
communication is carried out in this manner, a buffer must never be used by the source entity after it
has been sent with vsi_c_psend() as the partition may have already been freed by the receiver and
used by other processes.

If the communication is done by copy the contents of a buffer filled by a entity are copied into a buffer
provided by the destination entity.

Q’ Texas Instruments Proprietary Information — Internal Data Page 10 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4 Interfaces

4.1 Data Types

4.1.1 Base Types

The following type names are used as synonyms for hardware/compiler dependent integer types:

SHORT 16 bit, signed
USHORT 16 bit, unsigned
LONG 32 bit, signed
ULONG 32 bit, unsigned
4.1.2 T_HANDLE
Definition: This is an integral type, therefor the definition is not given here. The size may
depend from the underlying RTOS.
Description: This type is used for all parameters containing VSI handles (for tasks, queues,
timers, semaphores).
4.1.3 T_TIME
Definition: This is an integral type, therefor the definition is not given here. The size may
depend from the underlying RTOS but it is at least 31 bits.
Description: This type is used for all parameters containing a time value (which is always in
msec).
4.1.4 T_PRIM_HEADER
Definition: typedef struct
{
ULONG opc; * operation code of primitive */
ULONG len; [* primitive length */
ULONG use_cnt; /* counter indicates current number of users */
T_sdu *sdu; * pointer to sdu struct if available */
ULONG dph_offset; /* offset of dynamic prim header */
ULONG sh_offset; [* offset of system header */
} T_PRIM_HEADER
Description: Some of the elements are used by the PEI or VSI. The parameter opc is the
operation code of a primitive, which is needed to execute an opc-dependent body function
from a table located in the PEI Interface. Len is the length of the primitive.
Q’ Texas Instruments Proprietary Information — Internal Data Page 11 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.1.5 T _DP_HEADER
Definition: typedef struct
{
ULONG magic_nr; /* magic number is checked at each access */
ULONG size; [* available bytes in dynamic primitive partition */
ULONG use_cnt; /* counter indicates current number of users */
ULONG offset; [* offset from partition begin to next free byte */
T_VOID_STRUCT**
drp_bound_list;
* pointer to the list of dynamic partitions bound to this partition */
struct _T_DP_HEADER *next;
} T_DP_HEADER
Description: This header is used to handle chains of dynamic partitions. It can either resist at
the end of a communication primitive or in front of an independent root partition. It is important
that its size matches exactly the size of T_PRIM_HEADER and that the use_cnt field is at the
same position in both headers. Given this, e.g, a generic free-function can be used for primi-
tive and dynamic root pointers.
4.1.6 T _VOID_STRUCT
Definition: typedef unsigned long T_VOID_STRUCT
Description: Pointers of type T_VOID_STRUCT are passed to functions in order to avoid
warnings when using void pointers with a subsequent cast operation within the called function.
4.1.7 T_PEIl_FUNC
Definition: typedef struct
{
SHORT (*pei_init)(T_HANDLE);
SHORT (*pei_exit)(void);
SHORT (*pei_primitive)(void*);
SHORT (*pei_timeout)(USHORT);
SHORT (*pei_signal)(ULONG,void*);
SHORT (*pei_run)(T_HANDLE,T_HANDLE);
SHORT (*pei_config)(char*);
SHORT (*pei_monitor)(void**);
} T_PEI_FUNC
Description: The structure of the type T_PEI_FUNC contains the addresses of the protocol
entities pei functions.
4.1.8 T_PEL_INFO
Definition: typedef struct
{
const char * name;
T_PEI_FUNC pei_table;
ULONG stackSize;
USHORT gueueEntries;
USHORT priority;
USHORT num_of_timers,
USHORT flags;
} T_PEL_INFO
Q’ Texas Instruments Proprietary Information — Internal Data Page 12 of 133
TEXAS

INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

Description: The structure of the type T_PEI_INFO contains the information to create an en-
tity. The following table contains a list of the data elements and corresponding de-

scriptions.
name name of the entity
pei_table table with addresses of the bodies PEI functions
stackSize maximum stacksize of the entity

gueueEntries

number of entries in the input queue

priority

priority of the entity (O=low, 255=high)

num_of_timers

number of timers needed for this entity

flags

ACTIVE_BODY(Bit 0): active(0)/passive(1) variant of body

COPY_BY_REF(Bit 1): communication by copying buffers(0)/only refer-
ences are passed through the queues(1)

SYSTEM_PROCESS (Bit 2): frame internal use

TRC_NO_SUSPEND (Bit 3): discard traces if no memory available or TST
queue full

PARTITION_AUTO_FREE (Bit 4): automatic partition deallocation when
returning from pei_primitive

PRIM_NO_SUSPEND (Bit 5): discard routed primitives if no memory
available or TST queue full

INT_DATA_TASK (Bit 6): allocate task stack and queue memory from
internal RAM pool

ADD_QUEUE_ENTRIES (Bit7): add queue sizes for grouped entities (de-
fault is to take biggest value)

4.1.9 T_VSI_VMP_FLOW_CTRL_PARAM

Definition: typedef struct

U32 off level;
U32 on_level;

} T_VSI_VMP_FLOW_CTRL_PARAM

Description: The structure of the type T_VSI_VMP_CONFIG_PARAM contains the parame-
ters for the flow control. Both levels are the amount in bytes when flow control changes be-

tween on and off.

off_level this is the lower level where flow control is switched off
on_level this is the upper level where flow control is switched on
Q’ Texas Instruments Proprietary Information — Internal Data Page 13 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.1.10 T_VSI_VMP_NOTIFY_PARAM

Definition: typedef struct

T_HANDLE entity_handle;
void (*signal_status)(U32 vmp_handle, S32 flow_ctrl_state);
}T_VSI_VMP_NOTIFY_PARAM

Description: The structure of the type T_VSI_VMP_CONFIG_PARAM contains the parame-
ters for the flow control. Both levels are the amount in bytes when flow control changes be-
tween on and off.

entity_handle entity handle to be used for asynchronous notification of flow control state
changes

on_level user callback function to be called for synchronous notification of flow
control state changes

4.1.11T_VSI_VMP_CONFIG_PARAM

Definition: typedef struct

u32 size_vmp;
T_VSI_FLOW_CTRL_PARAM flow_ctrl;
u32 flags;

} T_VSI_VMP_CONFIG_PARAM

Description: The structure of the type T_VSI_VMP_CONFIG_PARAM contains the properties
of a virtual memory pool created with vsi_vmp_create(). The amount of memory available in a
virtual pool is specified by its size. It is passed to vsi_vmp_create(), see 4.5.5.1).

size_vmp size of virtual memory pool in bytes
flow_ctrl parameters for flow control
flags bit 0 VSI_FAST_MEMORY memory pool in fast memory
bit 1 VSI_MEM_NON_BLOCKING | Non-blocking allocation
bit 2..31 reserved for future use, need
to be zero

41.12T_VMP_GUARD
Definition: typedef U32 T_VMP_GUARD

Description: This type is used for a special guard pattern at the behind the virtual pool header
in a memory block.

Q’ Texas Instruments Proprietary Information — Internal Data Page 14 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.1.13T_QMSG
Definition: struct
USHORT MsgType;
union
{
struct T_Prim
{
T VOID_STRUCT *Prim;
ULONG PrimLen;
b
struct Signal
{
ULONG SigOPC;
T_VOID_STRUCT *SigBuffer;
ULONG SigLen;
b

struct Timeout

ULONG Index;

}
} T_QMSG;
Description: The structure of the type T_QMSG defines the message transported via mes-
sage queues. MsgType indicates the kind of the message (MSG_..., see 4.2.2).

Q’ Texas Instruments Proprietary Information — Internal Data Page 15 of 133
TEXAS

INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18

Draft

4.2 Constants

4.2.1 Return Codes

PEI_OK
PEI_ERROR
VSI_OK

VSI_TIMEOUT

VSI_VMP_NOT_CLEAN
VSI_REF_CNT_NZ

VSI_ERROR

VSI_INVALID_PARAM
VSI_NO_MEMORY

0 successful execution

-1 error

0 successful execution

1 no success during specified time

2 there are still allocations from that virtual pool

3 the memory block is still referenced and not freed
-1 error

-2 a given parameter was invalid

-3 there is no memory available from that virtual pool

4.2.2 Message Types
MSG_PRIMITVE 1 indicates a primitive
MSG_SIGNAL 2 indicates a signal
MSG_TIMEOUT 3 indicates a timeout
4.2.3 Trace Classes
TC_FUNC 0x00000001 trace class for function names TRACE_FUNCTION()
TC_EVENT 0x00000002 trace class for events TRACE_EVENT()
TC_PRIM 0x00000004 trace class for primitives PTRACE_IN
TC_STATE 0x00000008 trace class for states GET_STATE/SET_STATE()
TC_SYSTEM 0x00000010 trace class for frame info frame internal
TC_ISIG 0x00000020 trace class for internal signals TRACE_ISIG()
TC_ERROR 0x00000040 trace class for errors TRACE_ERROR()
TC_CCD 0x00000080 trace class for CCD CCD internal
TC_TIMER 0x00000100 trace class for timers frame internal
TC_DATA 0x00000200 trace class for data TRACE_MEMORY/PRIMITIVE()
TC_SDU 0x00000400 trace class for SDUs TRACE_SDU()
TC_PROFILER 0x00000800 trace class for profiler frame internal
TC_USER1 0x00010000 trace class for users TRACE_USER_CLASS()
TC_USER2 0x00020000 trace class for users TRACE_USER_CLASS()
TC_USER3 0x00040000 trace class for users TRACE_USER_CLASS()
TC_USER4 0x00080000 trace class for users TRACE_USER_CLASS()
TC_USERS5 0x00100000 trace class for users TRACE_USER_CLASS()
TC_USERG6 0x00200000 trace class for users TRACE_USER_CLASS()
TC_USER7 0x00400000 trace class for users TRACE_USER_CLASS()
TC_USERS 0x00800000 trace class for users TRACE_USER_CLASS()
Q’ Texas Instruments Proprietary Information — Internal Data Page 16 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.2.4 Timer Configuration

TIMER_SET 1
TIMER_RESET 2
TIMER_SPEED UP 3
TIMER_SLOW_DOWN 4
TIMER_SUPPRESS 5
TIMER_CLEAN 6

4.2.5 Object identifier
OS_OBJSYS to get system information (see vsi_i_object())
OS_OBJTASK to get task information (see vsi_i_object())
OS_OBJQUEUE to get queue information (see vsi_i_object())
OS_OBJPARTITIONGROUP to get partition group information (see vsi_i_object())
OS_OBJMEMORYPOOL to get memory pool information (see vsi_i_object())
OS_OBJTIMER to get timer information (see vsi_i_object())
OS_OBJSEMAPHORE to get semaphore information (see vsi_i_object())

These constants are defined in the OS interface description os_api.doc (06-03-10-ISP-0003).

4.2.6 Other constants

OS_NOTASK special task handle to indicate that a call is performed from outside any
task (‘'non-task thread', e.g. interrupt routine) (defined in os_api.doc (06-03-
10-1SP-0003).

Q’ Texas Instruments Proprietary Information — Internal Data Page 17 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3 Macros for to call VSI Functions

The following macros should be used for allocation, deallocation and reusing of a partition of the primi-
tive partition memory pool and for sending primitives and signals. The usage of these macros simpli-
fies the communication because the user does not have to care about things like primitive header
initialization or the calling of memory supervision functions.

All memory allocation macros are available in two versions. The one with underscore like PALLOC
create a pointer and initialize it, the macros with underscore like P_ALLOC do not create but return a
pointer. All other macros are also available in an ‘underscore variant’ to keep the naming consistent.

The macros with the extension _NB are the non-blocking variant of the memory allocation macros.
These return a NULL pointer in no memory is available.

It is strictly recommended to use these macros. The attempt to manage without these macros
may result in severe problems if any of the feature normally done by the macros is missed.

4.3.1 PALLOC, PALLOC_NB

Syntax: PALLOC (PrimitiveVariable, PrimitiveName)

Purpose: Allocate memory for a primitive of the type indicated by PrimitiveName and store the
memory address in PrimitiveVariable.

Description: A variable named PrimitiveVariable of type T_PrimitiveName* is defined.
Memory is allocated by calling the function vsi_c_pnew() (see 4.5.3.10). The size of
the allocated memory chunk is sizeof(T_PRIM_HEADER) + sizeof(T_PrimitiveName)
bytes.
The address of the allocated memaory is stored in the defined variable PrimitiveVari-
able.

Initialization: ~ The operation code is set to PrimitiveName in the header of the primitive (opc).
The length is set to sizeof(T_PRIM_HEADER)+sizeof(T_PrimitiveName) in the header
of the primitive(len).
The 'sdu’ is initialized in the header of the primitive with the value 0.

Example: PALLOC (rr_data_req, RR_DATA_REQ);
rr_data_reg->sapi = 3;

4.3.2 PALLOC_GENERIC

Syntax: PALLOC_GENERIC (PrimitiveName, PartitionPoolGroup, flags)

Purpose: Macro allows to allocate from a different partition pool group than the default one for
primitives. The parameter PartitionPoolGroup needs to be filled with the group handle
from the PoolGroupHandle array in xxxcomp.c, refer to the frame_users_guide.doc.
The parameter flags allows to specify the blocking behavior. If
VSI_MEM_NON_BLOCKING is set, a NULL pointer will be returned when no memory
is available, otherwise the allocation function will block.

4.3.3 P_ALLOC,P_ALLOC_NB

Syntax: Pointer = P_ALLOC_NB (PrimitiveName)
Purpose: Macro does the same as PALLOC but returns the memory address instead of creating
a pointer and assign the address to it.

Q’ Texas Instruments Proprietary Information — Internal Data Page 18 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.4 PALLOC_DESCx, PALLOC_DESCx_NB

Syntax:
Purpose:

PALLOC_DESCx (PrimitiveVariable, PrimitiveName)

Does the same as PALLOC but additionally the element dph_offset in the primitive
header is set to the offset of the element T_desclistx in the allocated primitive. This al-
lows the frame to scan the descriptor list of a primitive when checking its integrity or
tracking partition ownership.

4.3.5 PALLOC_MSG, PALLOC_SDU

Syntax:

Purpose:

Description:

Initialization:

Example:

PALLOC_MSG (PrimitiveVariable, PrimitiveName, MessageName)
PALLOC_SDU (PrimitiveVariable, PrimitiveName, MessageSizelnBits)
FPALLOC_SDU (PrimitiveVariable, PrimitiveName, MessageSizelnBits)
Allocate memory for one primitive of the type indicated by PrimitiveName. The Primi-
tive contains an SDU big enough to carry a message
- of the type indicated by MessageName (PALLOC_MSG) or
- which contains MessageSizelnBits bits (PALLOC_SDU).

The memory address is stored in PrimitiveVariable.
A variable named PrimitiveVariable of type T_PrimitiveName* is defined.
Memory is allocated by calling the function vsi_c_new_sdu() (see 4.5.3.14). The size
of the allocated memory chunk is

sizeof(T_PRIM_HEADER) + sizeof(T_PrimitiveName) bytes +
BSIZE_MessageName (PALLOC_MSG)

sizeof(T_PRIM_HEADER) + sizeof(T_PrimitiveName) bytes + MessageSizeln-
Bits (PALLOC_SDU)
bits.
The address of the allocated memory is stored in the defined variable PrimitiveVari-
able.
The <MessageSizelnBits> must be the name of a C-variable or a literal constant or
named constant. The <MessageSizelnBits> cannot be a delibrate C-expression. This
limitation stems from a simple mechanism introduced to avoid a mismatch of
PALLOC_MSG and PALLOC_SDU. This mechanism will lead to a compile time error
for an expression like PALLOC_SDU (DL_DATA_REQ) if DL_DATA_REQ is a name
of a message (meant to be used in PALLOC_MSG).
The operation code is set to PrimitiveName in the header of the primitive.
The length is set to sizeof(T_PRIM_HEADER)+sizeof(T_PrimitiveName) in the header
of the primitive(len). Note that the message size is not contained in 'len'.
The 'sdu’ is initialized in the header of the primitive.
The components 'I_buf' and 'o_buf' of the SDU are initialized.
PALLOC_MSG (rr_data_req, RR_DATA_ REQ, U_HANDOV_FAIL);
rr_data_reg->sapi = 3;

4.3.6 FPALLOC_SDU

Purpose:

FPALLOC_SDU has the same functionality as PALLOC_SDU but allocate from the
fast memory pool is the option FF_FAST_MEMORY is set. If not set FPALLOC_SDU
is defined to PALLOC_SDU.

4.3.7 P_ALLOC_SDU, FP_ALLOC_SDU, P_ALLOC_MSG

Syntax: Pointer = P_ALLOC_SDU (PrimitiveName, MessageName)
Pointer = FP_ALLOC_SDU (PrimitiveName, MessageName)
Pointer = P_ALLOC_MSG (PrimitiveName, MessageSizelnBits)
Purpose: Macro do the same as PALLOC_SDU and PALLOC_MSG but return the memory
address instead of creating a pointer and assign the address to it.
Q’ Texas Instruments Proprietary Information — Internal Data Page 19 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.8 DRPO_ALLOC

Syntax: Pointer = DRPO_ALLOC (PrimitiveName, Guess)

Purpose: Allocate memory for the root of a dynamic sized primitive of the type indicated by
PrimitiveName and return the pointer to it.

Description: Memory is allocated by calling the function vsi_drpo_new() (see 4.5.4.7). If the caller
has an idea of the total size of the dynamic sized primitive he can use the parameter
Guess to reserve the needed space in the allocated partition. If the totally needed
memory is unknown then Guess can be set to zero. The size of the allocated memory
chunk is sizeof(T_PRIM_HEADER) + sizeof(T_D_HEADER) +
sizeof(T_PrimitiveName) + Space with Space = Guess if Guess != 0 resp. Space =
sizeof(T_PrimitiveName)*3 if Guess == 0.
The address of the allocated memory is returned.

Initialization: ~ The operation code in the primitive is set to PrimitiveName.
Example:
msg = DRPO_ALLOC(CPHY_CONFIG_REQ,0);
msg->config_id = config_id;

4.3.9 DRP_ALLOC

Syntax: Pointer = DRP_ALLOC (Size, Guess)

Purpose: Allocate memory for the root of a chunk of dynamic memory and return the pointer to
it.

Description: Memory is allocated by calling the function vsi_drp_new() (see 4.5.4.8). If the caller
has an idea of the total amount of needed memory he can use the parameter Guess
to reserve the needed space in the allocated partition. If the totally needed memory is
unknown then Guess can be set to zero. The size of the allocated memory chunk is
sizeof(T_D_HEADER) + Size + Space with Space = Guess if Guess != 0 resp. Space
= sizeof(T_PrimitiveName)*3 if Guess == 0.

The address of the allocated memory is returned.

Example: size = sizeof(T_RRC_RB_RB_CONF);
guess = UMTS_AS_ASN1_MAX_RB_MUX_OPTIONS *
sizeof(T_UMTS_AS_ASN1_rb_mapping_option);
ptr = (T_RRC_RB_RB_CONF *)DRP_ALLOC(size,guess);

4.3.10 DRP_BIND

Syntax: DRP_BIND (Child, Parent)

Purpose: Bind a child root-pointer (or a primitive-pointer) to a parent root-pointer.

Description: The parent has to allocated with DRPO_ALLOC or DRP_ALLOC. The child has to be
allocated with DRPO_ALLOC, DRP_ALLOC or one of the PALLOC-like macros.
DRP_BIND adds child to the internal drp_bound_list of parent and (recursively) in-
creases the child use_cnt. When FREE is called for parent FREE is also called for all
bound childs.

Example: parent=DRPO_ALLOC(...);
child=DRP_ALLOC(...);
if (DRP_BIND(child,parent)==VSI_OK)

parent->ptr_elem=child;
else
parent->ptr_elem=NULL;

}
FREE(child);
/* the actual child memory will be freed together with parent */

4.3.11 DP_ALLOC

Q’ Texas Instruments Proprietary Information — Internal Data Page 20 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

Syntax:
Purpose:
Description:

Example:

Pointer = DP_ALLOC (Size, addr, Guess)

Allocate additional memory in the chain specified by addr and return the pointer to it.
Memory is allocated by calling the function vsi_dp_new() (see 4.5.4.8). If the caller has
an idea of the total amount of needed memory he can use the parameter Guess to re-
serve the needed space in the allocated partition. If the totally needed memory is un-
known then Guess can be set to zero. The size of the allocated memory chunk is
sizeof(T_D_HEADER) + Size) + Space with Space = Guess if Guess != 0 resp.
Space = sizeof(T_PrimitiveName)*3 if Guess == 0.

The address of the allocated memory is returned.

size = sizeof (T_UMTS_AS_ASN1 UL DCCH_MSG_MSG);

guess = sizeof(T_UMTS_AS_ASN1_active_set_update_failure);

msg_ptr = (T_UMTS_AS_ASN1_UL_DCCH_MSG_MSG*) DRP_ALLOC (size,
guess);

msg_ptr->msg_type = UMTS_AS_ASN1_MSG_UL_DCCH_MSG;
msg_ptr->msg_data->msg->ptr_body = (T_ul_dcch_msg_type__body*)
DP_ALLOC(size,msg_ptr,0);

4.3.12 PREUSE, P_REUSE

Syntax: PREUSE (PrimitiveVariableO, PrimitiveVariable, PrimitiveName)
P_REUSE has the same syntax.

Purpose: Re-use a primitive loosing the contents of the primitive.

Description: An existing primitive PrimitiveVariableO is re-used. The contents of the primitive is lost.
The operation code is changed to the value supplied by PrimitiveName. The length is
set to sizeof(T_PRIM_HEADER) + sizeof(T_PrimitiveName) in the header of the primi-
tive(len). The SDU offset is initialized in the header of the primitive with the value 0.
The new Variable PrimitiveVariable is defined and initialized with the value of Primi-
tiveVariable0. The variable PrimitiveVariableO should not be used after PREUSE. The
function vsi_ppm_reuse() (see 4.5.9.4) is called for memory supervision.

Example: PREUSE (rr_establish_req, rr_release_ind, RR_RELEASE_IND);

Q’ Texas Instruments Proprietary Information — Internal Data Page 21 of 133

TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.13 PREUSE_MSG, PREUSE_SDU, P_ REUSE_MSG, P_REUSE_SDU

Syntax:

Purpose:
Entry state:
Exit state:
Description:

PREUSE_MSG (PrimitiveVariableO, PrimitiveVariable, PrimitiveName, Message-
Name)

PREUSE_SDU (PrimitiveVariableO, PrimitiveVariable, PrimitiveName, MessageSi-
zelnBits)

P_REUSE_MSG and P_REUSE_SDU have the same syntax.

Re-use a primitive loosing the contents of the primitive.

PS_RECEIVED

PS_ALLOCATED

An existing primitive PrimitiveVariableO is re-used. The contents of the primitive is lost.
The operation code is changed to the value supplied by PrimitiveName. The length is
set to sizeof(T_PRIM_HEADER) + sizeof(T_PrimitiveName) in the header of the primi-
tive(len). Note that the message size is not contained in 'len'. The SDU offset is initial-
ized in the header of the primitive. The components 'l|_buf and 'o_buf' of the SDU are
initialized. The new Variable PrimitiveVariable is defined and initialized with the value
of PrimitiveVariable0. The variable PrimitiveVariableO should not be used after
PREUSE. The notification procedure is called.

The <MessageSizelnBits> must be the name of a C-variable or a literal constant or
named constant. The <MessageSizelnBits> cannot be a delibrate C-expression. This
limitation stems from a simple mechanism introduced to avoid a mismatch of
PREUSE_MSG and PREUSE_SDU. This mechanism will lead to a compile time error
for an expression like PREUSE_SDU (DL_DATA REQ) if DL_DATA_REQ is a name
of a message (meant to be used in PREUSE_MSG).

4.3.14 PATTACH, P_ATTACH

Syntax:
Purpose:
Description:

Example:

PATTACH (primitive)

Attach to the primitive determined by primitive.

The reference counter in the primitive header incremented.

PATTACH calls the function vsi_c_pattach() (see 4.5.4.6).

ATTENTION: PATTACH can only attach to primitives allocated with DRPO_ALLOC,
DRP_ALLOC, PALLOC, PALLOC_SDU, PALLOC_MSG and PALLOC_DESCXx.
PATTACH (primitive);

4.3.15 PFREE, P_FREE

Syntax: PFREE (PrimitiveVariable)
Purpose: Release the memory previously allocated with PALLOC or PALLOC_MSG.
Description: The contents of PrimitiveVariable is the address of the memory to be freed.
The memory de-allocation function vsi_c_free() (see 4.5.3.14) is called.
Example: PFREE (rr_data_req);
Q’ Texas Instruments Proprietary Information — Internal Data Page 22 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.16 MALLOC, MALLOC_NB

Syntax:
Purpose:

Description:

Example:

MALLOC (Variable, Size)

Allocate memory of Size Bytes from the communication partition pool and store the
memory address in Variable.

A variable named Variable of a pointer type must exist.

Memory is allocated by calling the function vsi_m_cnew() (see 4.5.4.2).

The address of the allocated memory is stored in the variable Variable.

MALLOC (buffer, BUFFERSIZE);

4.3.17 FMALLOC

Syntax:
Purpose:

Description:

Example:

FMALLOC (Variable, Size)

If the option FF_FAST_MEMORY is set FMALLOC allocates a buffer of Size Bytes
from the fast partition pool and store the memory address in Variable. If not set
FMALLOC is defined to MALLOC.

A variable named Variable of a pointer type must exist.

Memory is allocated by calling the function vsi_m_cnew() (see 4.5.4.2).

The address of the allocated memory is stored in the variable Variable.

FMALLOC (buffer, BUFFERSIZE);

4.3.18 MREALLOC, MREALLOC_NB

Syntax: MREALLOC (ptr, ptrO, Size)

Purpose: Provide sufficient space in the memory block specified by ptrO to store Size bytes in
total. This macro allocates from the primitive partition pool.

Description: A variable named ptr of a pointer type must exist.
If the allocated memory block specified by ptr0O is sufficiently large to store Size bytes,
ptrO is returned. If the allocated block specified by ptr0 is too small, a memory block
big enough to store Size bytes is allocated, the contents of ptr0O is copied to the newly
allocated block and the address of the allocated memory block is stored in the variable
ptr. Memory is allocated by calling the function vsi_m_cnew() (see 4.5.4.2). If ptrO is
NULL a memory block of Size bytes is allocated. If Size is equal to zero and ptr0 is not
NULL, the memory block specified by ptr0 is freed.

Example: MREALLOC (big_block, small_block, BLOCKSIZE);

Q’ Texas Instruments Proprietary Information — Internal Data Page 23 of 133

TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.19 MALLOC_GENERIC

Syntax: MALLOC_GENERIC (Variable , PartitionPoolGroup, flags)

Purpose: Macro allows to allocate from a different partition pool group than the default one for
primitives. The parameter PartitionPoolGroup needs to be filled with the group handle
from the PoolGroupHandle array in xxxcomp.c, refer to the frame_users_guide.doc.
The parameter flags allows to specify the blocking behavior. If
VSI_MEM_NON_BLOCKING is set, a NULL pointer will be returned when no memory
is available, otherwise the allocation function will block.

4.3.20 MALLOC_DESCx, MALLOC_DESCx_NB

Syntax: MALLOC_DESCx (Variable, Size)

Purpose: Does the same as MALLOC but additionally the descriptor type is set in the element
desc_type of the memory header. This allows the frame to follow the descriptor list
elements during integrity check or ownership tracking.

4.3.21M_ALLOC, M_ALLOC_NB, FM_ALLOC

Syntax: Pointer = M_ALLOC (Size)
Purpose: Macro does the same as MALLOC but returns the memory address instead of assign-
ing the address to the passed pointer.

4.3.22M_REALLOC, M_REALLOC_NB

Syntax: Pointer = M_REALLOC (ptr, Size)
Purpose: Macro does the same as MREALLOC but returns the memory address instead of as-
signing the address to the passed pointer.

4.3.23M_ALLOC_DESCx, M_ALLOC_DESCx_NB

Syntax: Pointer = M_ALLOC_DESCx (Size)
Purpose: Macro does the same as MALLOC_DESCx but returns the memory address instead of
assigning the address to the passed pointer.

4.3.24 DMALLOC, DMALLOC_NB

Syntax: DMALLOC (Variable, Size)

Purpose: Allocate memory of Size Bytes from the non-communication partition pool and store
the memory address in Variable.

Description: A variable named Variable of a pointer type must exist.
Memory is allocated by calling the function vsi_m_new() (see 4.5.4.1).
The address of the allocated memory is stored in the variable Variable.

Example: DMALLOC (buffer, BUFFERSIZE);

4.3.25 DMREALLOC, DMREALLOC_NB

Syntax: DMREALLOC (ptr, ptr0O, Size)

Purpose: Provide sufficient space in the memory block specified by ptrO to store Size bytes in
total. This macro allocates from the general purpose partition pool DMEM.

Description: A variable named ptr of a pointer type must exist.
If the allocated memory block specified by ptr0 is sufficiently large to store Size bytes,
ptrO is returned. If the allocated block specified by ptrO is too small, a memory block
big enough to store Size bytes is allocated, the contents of ptr0O is copied to the newly
allocated block and the address of the allocated memory block is stored in the variable
ptr. Memory is allocated by calling the function vsi_m_cnew() (see 4.5.4.2). If ptrO is
NULL a memory block of Size bytes is allocated. If Size is equal to zero and ptr0 is not
NULL, the memory block specified by ptr0 is freed.

Example: DMREALLOC (big_block, small_block, BLOCKSIZE);
Q’ Texas Instruments Proprietary Information — Internal Data Page 24 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.26 D_ALLOC, D_ALLOC_NB

Syntax: Pointer = D_ALLOC (Size)
Purpose: Macro does the same as MALLOC but returns the memory address instead of assign-
ing the address to the passed pointer.

4.3.27D_REALLOC, D_REALLOC_NB

Syntax: Pointer = D_REALLOC (ptr, Size)
Purpose: Macro does the same as DMREALLOC but returns the memory address instead of
assigning the address to the passed pointer.

4.3.28 MATTACH, M_ATTACH

Syntax: MATTACH (memory)

Purpose: Attach to the memory partition determined by memory.

Description: The reference counter in the memory partition header is incremented.
MATTACH calls the function vsi_m_attach() (see 4.5.4.6).
ATTENTION: MATTACH can only attach to memory allocated with MALLOC,
M_ALLOC and MALLOC_DESCx.

Example: MATTACH (memory);

4.3.29 FREE

Syntax: FREE (Variable)

Purpose: Release the memory previously allocated with any of the allocation macros

DRPO_ALLOC, DRP_ALLOC, PALLOC, PALLOC_SDU, PALLOC_MSG and
PALLOC_DESCx
Description: The contents of Variable is the address of the memory to be freed.
The memory de-allocation function vsi_free() (see 4.5.4.12) is called.
Example: FREE (buffer);

4.3.30 MFREE, M_FREE

Syntax: MFREE (Variable)
Purpose: Release the memory previously allocated with MALLOC and MALLOC_DESCx
Description: The contents of Variable is the address of the memory to be freed.

The memory de-allocation function vsi_m_free() (see 4.5.4.4) is called.
Example: MFREE (buffer);

4.3.31 DMFREE, D_FREE

Syntax: DMFREE (Variable)

Purpose: Release the memory previously allocated with DMALLOC.

Description: The contents of Variable is the address of the memory to be freed.
The memory de-allocation function vsi_m_free() (see 4.5.4.4) is called.

Example: DMFREE (buffer);

Q’ Texas Instruments Proprietary Information — Internal Data Page 25 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.32 PSEND, P_SEND

Syntax: PSEND (Receiver, PrimitiveVariable)
P_SEND has the same syntax.
Purpose: Send a primitive identified by PrimitiveVariable to the Receiver.
Description: The function vsi_c_psend() (see 4.5.3.5) which transmits the primitive is called.
Example: PSEND (RR, rr_data_req);
Note: The primitive referenced by PrimitiveVariable may or may not have an SDU. This is

detected by the 'sdu’ component in the primitive header.

4.3.33 PSEND_CALLER, P_SEND_CALLER

Syntax: PSEND (Caller, Receiver, PrimitiveVariable)
P_SEND has the same syntax.
Purpose: Send a primitive identified by PrimitiveVariable to the Receiver. Compared to

PSEND/P_SEND, the handle of the calling entity is passed to the macro and not cal-
culated by the frame. This macro can be use to send from outside the GPF context
and pretend to be a GPF entity, e.g. in callback functions.

Description: The function vsi_c_psend_caller() (see 4.5.3.6) which transmits the primitive is called.

Example: PSEND_CALLER (RR, rr_data_req);

Note: The primitive referenced by PrimitiveVariable may or may not have an SDU. This is
detected by the 'sdu’ component in the primitive header.

4.3.34 PRIM_SEND_TO_PC

Syntax: PRIM_SEND_TO_PC (Caller, Receiver, Primitiveld)

Purpose: Send a allocated primitive identified by Primitiveld to a GPF based application named
Receiver on the connected PC in a primitive.

Description: The function vsi_o_primsend() (see 4.5.8.9) which sends the primitive to the PC is
called.
Example:
PRIM_SEND_TOPC(cc_handle,"PCO",prim); sends prim to PCO

4.3.35 DATA_SEND_TO_PC

Syntax: DATA_SEND_TO_PC (Caller, Filter, Receiver, Primitiveld, Pointer, Length)

Purpose: Send any other data identified by Pointer and Length to the Receiver on the con-
nected PC in a primitive.

Description: If the trace filter class Filter is enabled the frame allocates a memory partition for a

primitive, copies the data identified by Pointer and Length into this primitive and sends
it with the id Primitiveld to a GPF based application named Receiver on the connected
PC. The function vsi_o_primsend() (see 4.5.8.9) is called.

Example: DATA_SEND_TO_PC(cc_handle,TC_PRIM,"PCQO",PRIM_ID,string,strlen(string));
sends the string in a primitive with id PRIM_ID to PCO

4.3.36 PSIGNAL, P_SIGNAL

Syntax: PSIGNAL (Receiver, PrimitiveName, PrimitiveVariable)
P_SIGNAL has the same syntax.
Purpose: Send a primitive as a signal.

Description: The primitive data (without a header) is send as a signal (i.e. with higher priority than a
normal primitive) to the Receiver. No memory is allocated. The PrimitiveName is used
as the signal opcode. It has to be a symbolic constant and the type T_PrimitiveName
must exist. The function vsi_c_send() (see 4.5.3.4) which transmits the signal is

called.
Example: PSIGNAL (ACI, RA_DATA_IND, ra_data->tra.ra_data_ind);
Q’ Texas Instruments Proprietary Information — Internal Data Page 26 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.37 PACCESS, P_ACCESS

Syntax:
Purpose:
Description:

Example:

PACCESS (PrimitiveVariable)

P_ACCESS has the same syntax.

Update file and line of primitive access in the partition status if
MEMORY_SUPERVISION active.

The function vsi_ppm_access() (see 4.5.9.5) is called to monitor the access of a primi-
tive.

PACCESS (rr_activate_req);

4.3.38 PPASS, P_PASS

Syntax:

Purpose:

Example:

PPASS (OldPrimitiveVariable, NewPrimitiveVariable,PrimitiveName)

P_PASS has the same syntax as PPASS.

PPASS creates a new variable NewPrimitiveVariable initializes it with OldPrimi-
tiveVariable and sets the opc in the header of NewPrimitiveVariable to the opc from
OldPrimitiveVariable. It calls the VSI function vsi_c_ppass() (4.5.3.16).
PPASS(cci_decomp_ind, sn_data_ind, SN_DATA_IND);

4.3.39 TRACE_FUNCTION, TRACE_FUNCTION_P1...9

Syntax:
Purpose:

Example:

TRACE_FUNCTION (FunctionName)

TRACE_FUNCTION is used to trace the names of entered functions and calls the
trace API function vsi_o_func_ttrace() resp. vsi_o_func_itrace() if compressed tracing
is used. Function traces can be en/disabled via the bit TC_FUNC, refer to 4.2.3.
TRACE_FUNCTION_P1...9 can be used trace a format string plus a set of argu-
ments.

TRACE_FUNCTION (“pei_primitive”);

TRACE_FUNCTION_P1(“pei_primitive (%x)”,prim);

4.3.40 TRACE_EVENT, TRACE_EVENT_P1...9

Syntax:
Purpose:

Example:

TRACE_EVENT (EventString)

TRACE_EVENT is used to trace any information and calls the trace API function
vsi_o_event_ttrace() resp. vsi_o_event_itrace() if compressed tracing is used. Event
traces can be en/disabled via the bit TC_EVENT, refer to 4.2.3.
TRACE_EVENT_P1...9 can be used trace a format string plus a set of arguments.
TRACE_EVENT (“start coding of ...");

TRACE_EVENT_P2(“Valuel = %d, Value2 = %d", vall, val2);

4.3.41 TRACE_USER_CLASS, TRACE_USER_CLASS_P1...9

Syntax: TRACE_USER_CLASS (TraceString)

Purpose: TRACE_USER_CLASS is used to trace any information with a user defined trace
class and calls the trace API function vsi_o_class_ttrace() resp. vsi_o_class_itrace() if
compressed tracing is used. User traces can be en/disabled via the bits
TC_USER1...8, refer to 4.2.3. TRACE_USER_CLASS P1...9 can be used trace a
format string plus a set of arguments.

Example: TRACE_USER_CLASS (TC_USERL1, “start coding of...");
TRACE_USER_CLASS_P2(TC_USER5"Valuel = %d, Value2 = %d", vall, val2);

Q’ Texas Instruments Proprietary Information — Internal Data Page 27 of 133

TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.42 PTRACE_IN, PTRACE_OUT

Syntax: PTRACE_IN (opc), PTRACE_OUT (opc)

Purpose: PTRACE_IN/OUT is used to trace the names of received/sent primitives and calls the
trace API function vsi_o_ptrace(). Primitive traces can be en/disabled via the bit
TC_PRIM, refer to 4.2.3. PTRACE_OUT() is called in vsi_c_psend() when calling
PSEND (4.3.32) and does not need to be called by any entity.

Example: PTRACE_IN (RR_ACTIVATE_REQ);

4.3.43 TRACE_ERROR

Syntax: TRACE_ERROR (error_string)

Purpose: TRACE_ERROR is used to trace error conditions and calls the trace API function
vsi_o_error_ttrace() resp. vsi_o_error_itrace() if compressed tracing is used. Error
traces can be en/disabled via the bit TC_ERROR, refer to 4.2.3. TRACE_ERROR
must not be confused with TRACE_ASSERT() (4.3.44) to detect and handle fatal er-
rors which force a reset of the mobile.

Example: TRACE_ERROR (“Invalid ... received”);

4.3.44 TRACE_ASSERT

Syntax: TRACE_ASSERT (expression)

Purpose: TRACE_ASSERT is used to detect fatal error conditions and calls the trace API func-
tion vsi_o_assert() if the expression passed to TRACE_ASSERT() is false.
TRACE_ASSERT cannot be disabled via any TC_... mask. TRACE_ASSERT must
not be confused with TRACE_ERROR() (4.3.43) to trace error conditions.

Example: TRACE_ASSERT (value >0);

4.3.45 TRACE_MEMORY

Syntax: TRACE_MEMORY (source, pointer, length)

Purpose: TRACE_MEMORY is used to trace (as text string) any data specified by pointer and
length and calls the trace API function vsi_o_memtrace(). The parameter source de-
termines the sender entity displayed in PCO and is the entity handle passed to the en-
tities pei_init() function. Memory traces can be en/disabled via the bit TC_DATA, refer
to 4.2.3.

Example: TRACE_MEMORY (rr_handle, rr_data_base, sizeof(rr_data_base));

4.3.46 TRACE_HEXDUMP

Syntax: TRACE_HEXDUMP (source, pointer, length)

Purpose: TRACE_HEXDUMP is used to trace (as special primitive) any data specified by
pointer and length and calls the trace API function vsi_o_primsend(). The parameter
source determines the sender entity displayed in PCO and is the entity handle passed
to the entities pei_init() function. Memory traces can be en/disabled via the bit
TC_DATA, refer to 4.2.3.

Example: TRACE_HEXDUMP (rr_handle, rr_data_base, sizeof(rr_data_base));
Q’ Texas Instruments Proprietary Information — Internal Data Page 28 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.3.47 TRACE_MEMORY_PRIM

Syntax: TRACE_MEMORY_PRIM (source, destination, opc, pointer, length)

Purpose: TRACE_MEMORY_PRIM is used to send any data specified by pointer and length as
a primitive with the opcode opc to PCOand calls the trace API function
vsi_o_primsend(). The parameter source determines the destination entity displayed
in PCO and is the entity handle passed to the entities pei_init() function. The parame-
ter destination determines the original receiver of the primitive displayed by PCO.
These traces can be en/disabled via the bit TC_DATA, refer to 4.2.3.
TRACE_MEMORY_PRIM is intended to be used to trace the data passed via function
call interfaces between two entities. The primitive may be specified in an SAP docu-
ment to be decoded in PCO.

Example: TRACE_MEMORY_PRIM (I11_handle, grr_handle, MAC_DATA_IND, ptr, length);

4.3.48 TRACE_USER_CLASS_MEMORY_PRIM

Syntax: TRACE_USER_CLASS_MEMORY_PRIM (source, traceclass, destination, opc,
pointer, length)
Purpose: TRACE_USER_CLASS_MEMORY_PRIM is used to send any data specified by

pointer and length as a primitive with the opcode opc to PCO and calls the trace API
function vsi_o_primsend(). The parameter source determines the destination entity
displayed in PCO and is the entity handle passed to the entities pei_init() function. Via
parameter traceclass the trace class can be specified which needs to be enabled for
the tracing entity to switch on this macro (refer to 4.2.3). The parameter destination
determines the original receiver of the primitive displayed by PCO.
TRACE_USER_CLASS_MEMORY_PRIM is intended to be used to trace the data
passed via function call interfaces between two entities. The primitive may be speci-
fied in an SAP document to be decoded in PCO.

Example: TRACE_USER_CLASS_MEMORY_PRIM (I11_handle, TC_USERL, grr_handle,

MAC_DATA_IND, ptr, length);

4.3.49 TRACE_SDU

Syntax: TRACE_SDU (source, destination, entity, direction, type, pointer, length)

Purpose: TRACE_SDU is used to send an encoded air message (sdu) specified by pointer and
length as a primitive with the opcode SDU_TRACE_OPC to PCO and calls the trace
API function vsi_o_sdusend(). The parameter source determines the sender and the
parameter destination the receiver entity displayed in PCO. Via the parameters entity,
direction and type PCO will get the information needed to decode the sdu:
- entity: number of message catalogue, e.g., retrievable via
ccddata_get_ccdent(<entity-name, e.g., “RR">) ... use TRCSDU_NO_ENTITY if the
sdu contains a PD/TI byte by which the entity can be obtained automatically
- direction: direction of air message, TRCSDU_DIR_UPLINK or
TRCSDU_DIR_DOWNLINK
- type: message type number ... use TRCSDU_NO_MSGTYPE if the sdu contains a
msg-id byte by which the type number can be obtained automatically

Example: TRACE_SDU (11_handle, grr_handle, ccddata_get_ccdent(“RR"),

TRCSDU_DIR_UPLINK, 0x12, ptr, length);

4.3.50 TRACE_IP

Syntax: TRACE_IP (source, destination, direction, pointer, length)

Purpose: TRACE_IP is used to send an IP package specified by pointer and length as a primi-
tive with the opcode IP_TRACE_OPC to PCO and calls the trace API function
vsi_o_primsend(). The parameter source determines the sender and the parameter
destination the receiver entity displayed in PCO. The direction parameter can be
UPLINK_OPC or DOWNLINK_OPC.

Example: TRACE_IP (I1_handle, grr_handle, DOWNLINK_OPC, ptr, length);
Q’ Texas Instruments Proprietary Information — Internal Data Page 29 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4351 PRF_LOG_FUNC_ENTRY

Syntax: PRF_LOG_FUNC_ENTRY (funcname)

Purpose: PRF_LOG_FUNC_ENTRY is used to inform the profiler on entering a function and
calls the profiler API function prf_log_func_entry(). Profiler API calls can be
en/disabled via the bit TC_PROFILER, refer to 4.2.3.

Example: PRF_LOG_FUNC_ENTRY (“pei_primitive”);

4.3.52 PRF_LOG_FUNC_EXIT

Syntax: PRF_LOG_FUNC_EXIT (funcname)

Purpose: PRF_LOG_FUNC_EXIT is used to inform the profiler on leaving a function and calls
the profiler API function prf_log_func_exit(). Profiler API calls can be en/disabled via
the bit TC_PROFILER, refer to 4.2.3.

Example: PRF_LOG_FUNC_EXIT (“pei_primitive”);

4.3.53 PRF_LOG_POI

Syntax: PRF_LOG_POI (point of interest)

Purpose: PRF_LOG_POI is used to inform the profiler on reaching a point of interest and calls
the profiler API function prf_log_point of interrest(). Profiler API calls can be
en/disabled via the bit TC_PROFILER, refer to 4.2.3.

Example: PRF_LOG_POI (“decoding of ... started”);
Q’ Texas Instruments Proprietary Information — Internal Data Page 30 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.4 Protocol Entity Interface (PEI)
4.4.1 pei_create () - Create the Protocol Stack Entity

Function definition:

SHORT pei_create (T_PEI_INFO ** info)

Parameters:

Type Name Meaning

T_PEI_INFO ** info entity setup data ouT
Return:

Type Meaning

SHORT PEI_OK Success

Options: none

Description:

The function pei_create () exports the startup configuration data of a protocol stack entity. This func-
tion is used to register this entity in the system so that the frame can allocate the required system re-
sources such as an input queue or a number of timers, know the addresses of the other PEI functions
and can start the task with specified priority and stacksize.

This function must be called before any other pei_*() function.

Q’ Texas Instruments Proprietary Information — Internal Data Page 31 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.4.2 pei_init () - Initialize Protocol Stack Entity

Function definition:

SHORT pei_init (T_HANDLE handle)

Parameters:

Type Name Meaning

T_HANDLE handle handle of the entity

Return:

Type Meaning

SHORT PEI_OK Success
PEI_ERROR Error

Options: none

Description:

In the passive variant, the function pei_init () is called by the frame at initialization. This function should
be called by the function pei_run() in the active body configuration (see 2.1.1). This function stores the
entity handle that is needed for vsi calls of this entity.

The function pei_init() opens the communication with other entities by calling the function vsi_c_open()
and storing the returned communication handles. If a communication resource cannot be found the
pei_init () function returns an error.

The function pei_init() is also responsible for body-specific initializations.

Q’ Texas Instruments Proprietary Information — Internal Data Page 32 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.4.3 pei_exit () - Close Resources and Terminate

Function definition:

SHORT pei_exit (void)

Parameters: = --eemeee-

Return:

Type Meaning

SHORT PEI_OK Success
PEI_ERROR Error

Options: none

Description:

The function pei_exit () releases all resources reserved by the entity so that they are available for
other purposes. It closes the communication resources with other entities and eventually frees allo-
cated memory.

In the active variant, this function sets a flag that enables the pei_run() function to exit its main loop
and terminate the entity.

Q’ Texas Instruments Proprietary Information — Internal Data Page 33 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.4.4 pei_primitive () - Process Primitive

Function definition:

SHORT pei_primitive (void * primitive)

Parameters:
Type Name Meaning
void * primitive primitive buffer IN
Return:
Type Meaning
SHORT PEI_OK Primitive processed
PEI_ERROR Primitive not processed
Options: None
Description:

In the passive variant, this function pei_primitive() is called by the frame if a primitive for this entity has
been received. Primitive processing is done by evaluating the opc in the header and calling a specific
function assigned to the opc.

In the active variant, this function should be called by pei_run ()(see 2.1.1).
If the communication is carried out by exchanging pointer references (see 2.1.2) it must be ensured

that the protocol stack entity has discarded the primitive buffer or has reused the buffer and sent the
reference to another entity.

Q’ Texas Instruments Proprietary Information — Internal Data Page 34 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.45 pei_signal () - Process Signal

Function definition:

SHORT pei_signal (ULONG opc, void * data)

Parameters:
Type Name Meaning
ULONG opc operation code of signal IN
void * data pointer to signal data IN
Return:
Type Meaning
SHORT PEI_OK Success
PEI_ERROR Error
Options: None
Description:

In the passive variant, the function pei_signal() is called by the frame if a signal is received. This func-
tion will never be called while a pei_primitive() call is active in the same body.

In the active variant, this function should be called by pei_run() if a signal is received.

Q’ Texas Instruments Proprietary Information — Internal Data Page 35 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.4.6 pei_timeout () - Process Timeout

Function definition:

SHORT pei_timeout (USHORT index)

Parameters:

Type Name Meaning

USHORT index index of expired timer

Return:

Type Meaning

SHORT PEI_OK Success
PEI_ERROR Error

Options: None

Description:

In the passive variant, the function pei_signal() is called by the frame if a timeout of a previous started
timer occurred. The parameter index is the same that was transferred to the VSI when the timer was
started.

In the active variant, this function should be called by pei_run() if a timeout occurred.

This function will never be called while a pei_primitive() call is active in the same body.

Q’ Texas Instruments Proprietary Information — Internal Data Page 36 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.47 pei_run () - Process Primitive

Function definition:

SHORT pei_run (T_HANDLE taskhandle, T_HANDLE comhandle)

Parameters:
Type Name Meaning
T HANDLE taskhandle task handle IN
T_HANDLE comhandle handle of own queue IN
Return:
Type Meaning
SHORT PEI_OK Success
PEI_ERROR Error
Options: only active Variant
Description:

The function pei_run() is used if the main loop of the finite state machine, i.e. waiting for primitives, is
located in the protocol stack (active variant of protocol stack, see 2.1.1).

Waiting for primitives can be implemented by using the function vsi_c_await ().

The function pei_run () should return if the environment has invoked the function pei_exit ().

Q’ Texas Instruments Proprietary Information — Internal Data Page 37 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.4.8 pei_config () - Dynamic Configuration

Function definition:

SHORT pei_config (char * inString)

Parameters:
Type Name Meaning
char * inString configuration string IN
Return:
Type Meaning
SHORT PEI_OK Success
PEI_ERROR Error
Options: None
Description:

The function pei_config () is used to set configuration values of a protocol entity.

The configuration string inString is evaluated. If it is a command to set configuration data, this is done
by direct access to the protocol stack entity data structures or (for timers) by calling the function
vsi_t_config() that modifies the timer configuration tables.

The format of configuration commands is defined in [C_8410.003].

Q’ Texas Instruments Proprietary Information — Internal Data Page 38 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.49 pei_monitor () - Monitoring of Physical Parameters

Function definition:

SHORT pei_monitor (void ** monitor)

Parameters:
Type Name Meaning
void ** monitor address of monitor struct
Return:
Type Meaning
SHORT PEI_OK Success
PEI_ERROR Error
Options: None
Description:

With the function pei_monitor (), the environment requests the address of the monitor struct in the
protocol entity. The monitor struct includes relevant physical parameters of the protocol entity. The
parameters are updated cyclically. This way the environment has always the possibility of accessing
parameters of the protocol stack. These parameters are used to create monitor reports that are trans-
ferred to a display or test system in order to generate statistical data outside the functionality of a pro-
tocol stack but with access to protocol stack parameters.

It is acceptable to read the parameters of the monitor struct, but it is absolutely unacceptable to write
to the monitor struct. The content of the monitor struct is custom specific.

One parameter of the monitor struct is a version number of the protocol stack entity.

Q’ Texas Instruments Proprietary Information — Internal Data Page 39 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5 Virtual System Interface (VSI)

The function describing the VSI can be divided into different sections depending on the functionality:
- tasks

- communication

- memory access

- timers

- semaphores

- traces

- partition supervision

- miscellaneous

Q’ Texas Instruments Proprietary Information — Internal Data Page 40 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

451 Tasks

45.1.1 vsi_p_create () - Create Task

Function definition:

T_HANDLE vsi_p_create (T_HANDLE caller, SHORT (*pei_create)(T_PEI_INFO const ** info),
void (*TaskEntry)(USHORT, ULONG), T_HANDLE MemPoolHandle)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
SHORT(*pei_create)(T_PEI_INFO const **info) address of pei_create() function IN
void (*TaskEntry)(USHORT, ULONG) address of task entry function IN
T _HANDLE MemPoolHandle Identifier of memory pool to allocate task stack IN
Return:
Type Meaning
T_HANDLE VSI_ERROR error

handle task handle
Options: none
Description:

The function vsi_p_create() is used to create a new task which pei_create() function is not entered in
the task table in the configuration file xxxcomp.c.

The parameter pei_create is the address of the pei_create() function that exports all the parameters
needed to create the task, refer to 4.4.1. The parameter task_entry is the entry point of the new task
when it is scheduled the first time by the RTOS. If task_entry is set to NULL, then the common task
entry function pf_TaskEntry of the frame is used.

The parameter MemPoolHandle is the handle of the memory pool from which the task stack will be
allocated. For the creation of a new task it maybe needed to increase the size of the memory pool
where the task stack is allocated from by setting INT_DATA_POOL_SIZE or EXT_DATA_POOL_SIZE
in xxxconst.h to an appropriate value.

I executed successfully the function vsi_p_create() returns the handle of the new task.

The dynamically created task is not automatically started. This has to be done by the application by
calling vsi_p_start().

Q’ Texas Instruments Proprietary Information — Internal Data Page 41 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.1.2 vsi_p_delete () - Delete Task

Function definition:

SHORT vsi_p_delete (T_HANDLE Caller, T_HANDLE TaskHandle)

Parameters:
Type Name Meaning
T _HANDLE Caller handle of calling entity
T _HANDLE TaskHandle handle of task to be deleted
Return:
Type Meaning
int VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_p_delete() is used to delete an existing task specified by the parameter Taskhandle.

Before the task is deleted the routing information for this task is cleared and its queue is deleted.

Q’ Texas Instruments Proprietary Information — Internal Data Page 42 of 133
TEXAS
INSTRUMENTS

IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.1.3 vsi_p_start () - Start Task

Function definition:

int vsi_p_start (T_HANDLE Caller, T_HANDLE TaskHandle)

Parameters:
Type Name Meaning
T _HANDLE Caller handle of calling entity
T _HANDLE TaskHandle handle of task to be started
Return:
Type Meaning
int VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_p_start() is used to start the task specified by the parameter Taskhandle which has
been dynamically created with vsi_p_create().

Tasks which pei_create() functions are entered in the component table in xxxcomp.c do not need to be
started explicitly unless they are stopped with vsi_p_stop(), refer to 4.5.1.4.

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 43 of 133

IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.1.4 vsi_p_stop () - Stop Task

Function definition:

int vsi_p_stop (T_HANDLE Caller, T_HANDLE TaskHandle)

Parameters:
Type Name Meaning
T _HANDLE Caller handle of calling entity
T _HANDLE TaskHandle handle of task to be stopped
Return:
Type Meaning
int VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_p_stop() is used to stop the task specified by the parameter Taskhandle. A stopped

task can be restarted by calling the function vsi_p_start().

Q’ Texas Instruments Proprietary Information — Internal Data
TEXAS
INSTRUMENTS

Page 44 of 133

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.15 vsi_p_name () - Get Task Name

Function definition:

int vsi_p_name (T_HANDLE Caller, T_HANDLE TaskHandle, char *Name)

Parameters:
Type Name Meaning
T _HANDLE Caller handle of calling entity IN
T _HANDLE TaskHandle task handle IN
char * Name address of buffer to store the task name ouT
Return:
Type Meaning
int VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_p_name() copies the name of the task specified by the parameter TaskHandle to the
address passed in the parameter *Name.

If the parameter TaskHandle is bigger than the maximum number of tasks (MAX_ENTITIES in
xxxconst.h) or if no task with the passed TaskHandle is existing then VSI_ERROR is returned.

Q’ Texas Instruments Proprietary Information — Internal Data Page 45 of 133
TEXAS
INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.1.6 vsi_p_handle () - Get Task Handle

Function definition:

int vsi_p_handle (T_HANDLE Caller, char *Name)

Parameters:
Type Name Meaning
T _HANDLE Caller handle of calling entity
char * Name task name
Return:
Type Meaning
int VSI_ERROR error
handle task handle
Options: none
Description:

The function vsi_p_handle() returns the handle of the task with the name specified by *Name.

If no task with the Name specified by *Name can by found then VSI_ERROR is returned.

If the parameter *Name is set to NULL then the handle of the currently running task is returned.

Q’ Texas Instruments Proprietary Information — Internal Data
TEXAS

INSTRUMENTS

Page 46 of 133

IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.1.7 vsi_p_exit() - Exittask

Function definition:

int vsi_p_exit (T_HANDLE Caller, T_HANDLE TaskHandle)

Parameters:
Type Name Meaning
T _HANDLE Caller handle of calling entity
T_HANDLE TaskHandle task handle
Return:
Type Meaning
int VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_p_exit() is called to force the frame to call the pei_exit() function of the entity specified
by the parameter TaskHandle to free all used resources. This is needed to be done before the corre-
sponding task is deleted with vsi_p_delete(), refer to 4.5.1.2.

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 47 of 133

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.2 Entities

45.2.1 vsi_e_handle() — Get Entity Handle

Function definition:

T_HANDLE vsi_e_handle (T_HANDLE caller, char *name)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity IN
char* name name of the requested entity IN
Return:
Type Meaning
T _HANDLE VSI_ERROR error
handle entity handle
Options: none
Description:

The function vsi_e_handle () is used to request the handle of a previously created protocol stack en-
tity.

When the parameter name is set to NULL, this function return the handle of the currently running en-
tity.

Q’ Texas Instruments Proprietary Information — Internal Data Page 48 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.2.2 vsi_e_name() - Get Entity Name

Function definition:

T_HANDLE vsi_e_name (T_HANDLE caller, T_HANDLE handle, char *name)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
T _HANDLE handle handle of requested IN
char* name name of the requested entity IN
Return:
Type Meaning
T_HANDLE VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_e_name () is used to request the name of a previously created protocol stack entity
specified by it handle.

Q’ Texas Instruments Proprietary Information — Internal Data Page 49 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.3 Communication

45.3.1 vsi_c_open () - Open Communication

Function definition:

T_HANDLE vsi_c_open (T_HANDLE caller, char *name)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity
char* name name of the partner entity
Return:
Type Meaning
T _HANDLE VSI_ERROR error

handle communication handle
Options: none
Description:

The function vsi_c_open () is used to open a previously created (by the frame) communication re-
source to the protocol stack entity with which the caller wishes to communicate. The function returns a
handle that the caller may use for further access to the specified protocol stack entity.

Q’ Texas Instruments Proprietary Information — Internal Data Page 50 of 133
TEXAS
INSTRUMENTS

IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.3.2 vsi_c_close () - Close Communication

Function definition:

int vsi_c_close (T_HANDLE caller, T_HANDLE handle)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
T _HANDLE name handle of the partner entity
Return:
Type Meaning
int VSI_ERROR error
VSI_OK success
Options: none
Description:

The function vsi_c_close () is used to close a previously opened communication resource.

Q’ Texas Instruments Proprietary Information — Internal Data
TEXAS
INSTRUMENTS

Page 51 of 133

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.3.3 vsi_c_clear () - Clear Communication Resource

Function definition:

int vsi_c_clear (T_HANDLE caller, T_HANDLE comhandle)

Parameters:
Type Name Meaning Direc-
tion
T _HANDLE caller handle of calling entity
T_HANDLE comhandle handle of the communication resource to be
closed IN
Return:
Type Meaning
int VSI_ERROR invalid communication handle
VSI_OK success
Options: none
Description:

The function vsi_c_clear () clears the communication resource specified by the handle i.e. queue en-
tries are read and discarded until it is empty.

Q’ Texas Instruments Proprietary Information — Internal Data Page 52 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.3.4 vsi_c_send () - Send Message

ATTENTION: THIS FUNCTION SHOULD NO LONGER BE USE BY VSI BASED SOFTWARE
ENTITIES. PLEASE USE VSI_C_PSEND() INSTEAD

Function definition:
intvsi_c_send (T_HANDLE caller, T_HANDLE comhandle, T_QMSG * msg)

If partition pool monitoring activated:
intvsi_c_send (T_HANDLE caller, T_HANDLE comhandle, T_QMSG * msg, const char * file, int line)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
T_HANDLE comhandle destination queue handle
T_QMSG * msg pointer to message to be sent
const char * file file that called vsi_c_free() (PPM active)
int line line where vsi_c_free() was called (PPM active)
Return:
Type Meaning
int VSI_OK success

VSI_ERROR invalid communication handle

no communication resource available (non-task

thread)
Options: MEMORY_SUPERVISION
Description:

The function vsi_c_send () writes the message buffer msg into the message queue a protocol stack
entity specified by the communication handle. The message is a primitive, a signal or an timeout.

If the queue is full the calling task is suspended. If the request has been satisfied but the underlying
OS-layer function had to wait for a free queue element an error message is traced by calling the func-
tion vsi_ttrace().

If the caller is a non-task (such as an ISR), the function returns immediately regardless if the request
can be satisfied or not. In this case, VSI_ERROR is returned if no communication resource is avail-
able.

If the option MEMORY_SUPERVISION is set the function vsi_ppm_send() is called to supervise the
state of the partition used to store the primitive.

Communication is carried out by copying the buffer content or by transmitting the buffer address (see
2.1.2).

Q’ Texas Instruments Proprietary Information — Internal Data Page 53 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18

Draft

4535 vsi_c_psend () - Send Primitive

Function definition:

int vsi_c_psend (T_HANDLE comhandle, T_VOID_STRUCT *ptr, ULONG len)

If partition pool monitoring activated:

int vsi_c_psend (T_HANDLE comhandle, T_VOID_STRUCT *ptr, ULONG len, const char * file, int

line)
Parameters:
Type Name Meaning
T_HANDLE comhandle destination queue handle
T_VOID_STRUCT * ptr pointer to primitive to be sent
ULONG * len length of primitive to be sent
const char * file file that called vsi_c_psend() (PPM active)
int line line where vsi_c_psend() was called (PPM ac-
tive) IN
Return:
Type Meaning
int VSI_OK success

VSI_ERROR invalid communication handle

no communication resource available (non-task

thread)
Options: MEMORY_SUPERVISION
Description:

The function vsi_c_psend () calculates the handle of the calling entity and calls the function

vsi_c_psend_caller() is called.

If you want to transmit a primitive use the macro PSEND instead of calling vsi_c_psend() di-

rectly (see 4.3.32).

Q’ Texas Instruments Proprietary Information — Internal Data Page 54 of 133
TEXAS

INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.6 vsi_c_psend_caller () - Send Primitive

Function definition:

int vsi_c_psend_caller (T_HANDLE caller, T_HANDLE comhandle, T_VOID_STRUCT *ptr, ULONG
len)

If partition pool monitoring activated:
int vsi_c_psend_caller (T_HANDLE caller ,T_HANDLE comhandle, T_VOID_STRUCT *ptr, ULONG
len, const char * file, int line)

Parameters:
Type Name Meaning
T_HANDLE caller caller handle
T_HANDLE comhandle destination queue handle
T VOID_STRUCT * ptr pointer to primitive to be sent
ULONG * len length of primitive to be sent
const char * file file that called vsi_c_psend() (PPM active)
int line line where vsi_c_psend() was called (PPM ac-
tive) IN
Return:
Type Meaning
int VSI_OK success

VSI_ERROR invalid communication handle

no communication resource available (non-task

thread)
Options: MEMORY_SUPERVISION
Description:

The function vsi_c_psend_caller () creates a message of the type T_QMSG and sets the element
MsgType to MSG_PRIMITIVE, the element Prim to ptr and the element PrimLen to len. Then the func-
tion vsi_c_send() is called.

This function can be use to send from outside the GPF context and pretend to be a GPF entity, e.g. in
callback functions.

If you want to transmit a primitive use the macro PSEND_CALLER instead of calling
vsi_c_psend_caller() directly (see 4.3.33).

Q’ Texas Instruments Proprietary Information — Internal Data Page 55 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.3.7 vsi_c_ssend () - Send Signal

Function definition:
int vsi_c_ssend (T_HANDLE comhandle, ULONG opc, T_VOID_STRUCT *ptr, ULONG len)
If partition pool monitoring activated:

int vsi_c_ssend (T_HANDLE comhandle, ULONG opc, T_VOID_STRUCT *ptr, ULONG len, const char
* file, int line)

Parameters:
Type Name Meaning
T_HANDLE comhandle destination queue handle
ULONG opc op-code of the signal to be sent
T_VOID_STRUCT * ptr pointer to signal to be sent
ULONG * len length of signal to be sent
const char * file file that called vsi_c_psend() (PPM active)
int line line where vsi_c_psend() was called (PPM ac-
tive) IN
Return:
Type Meaning
int VSI_OK success

VSI_ERROR invalid communication handle

no communication resource available (non-task

thread)
Options: MEMORY_SUPERVISION
Description:

The function vsi_c_ssend () creates a message of the type T_QMSG and sets the element MsgType
to MSG_SIGNAL, the element SigPtr to ptr, the element SigOPC to opc and the element SigLen to
len. Then the function vsi_c_send() is called.

If you want to transmit a signal use the macro PSIGNAL instead of calling vsi_c_send() directly
(see 4.3.36).

Q’ Texas Instruments Proprietary Information — Internal Data Page 56 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.8 vsi_c_await() - Await primitive

Function definition:

int vsi_c_await (T_HANDLE caller, T_HANDLE comhandle, ULONG timeout , T_QMSG * msg,)

IN
IN
IN
IN

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity

T _HANDLE comhandle communication handle

ULONG timeout time to wait for message in milliseconds

T QMSG * msg pointer to message to be received

Return:

Type Meaning

int VSI_OK success
VSI_ ERROR invalid communication handle
VSI_TIMEOUT no message received

Options: only active Variant

Description:

The function vsi_c_await () is used to receive a primitive which has been sent by other components of
the protocol stack.

The calling task is suspended until a message is received or the specified time expired. If the caller is
a non-task, the function returns immediately regardless if the request can be satisfied or not. In this
case, VSI_ERROR is returned if no message is received.

This function must not be called by the body in the passive variant of the protocol stack (see 2.1.1).

Communication is carried out by copying the buffer content or transmitting the buffer. The environment
uses the parameter buf as target address for copying the incoming primitive or sets the parameter buf
to the incoming buffer address of the primitive. The parameter type contains the message type, i.e.
primitive, signal or timeout of the received message.

Q’ Texas Instruments Proprietary Information — Internal Data Page 57 of 133
TEXAS
INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18

Draft

4.5.3.9 vsi_c_primitive () - Forward non GSM primitive

Function definition:

int vsi_c_primitive (T_HANDLE caller, void * prim)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity
void * prim Primitive

Return:

Type Meaning

int VSI_OK success

Options: none

Description:

The function vsi_c_primitive () is used to forward a configuration primitive to the environment.

If a protocol stack entity receives a primitive which is not a protocol related it is not processed, but
rather forwarded to the frame for further evaluation.

Q’ Texas Instruments Proprietary Information — Internal Data
TEXAS

INSTRUMENTS

Page 58 of 133

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.10 vsi_c_new () - Allocate Partition Memory

ATTENTION: THIS FUNCTION SHOULD NO LONGER BE USE BY VSI BASED SOFTWARE
ENTITIES. PLEASE USE VSI_C_PNEW() INSTEAD

Function definition:
T_VOID_STRUCT *vsi_c_new (T_HANDLE caller, ULONG size, ULONG opc)
If partition pool monitoring activated:

T_VOID_STRUCT *vsi_c_new (T_HANDLE caller, ULONG size, ULONG opc, const char * file, int
line)

Parameters:

Type Name Meaning

T_HANDLE caller handle of calling entity

ULONG size number of bytes needed

ULONG opc primitive OPC

const char * file file that called vsi_c_new()

int line line where vsi_c_new() was called

Return:

Type Meaning

void * ptr address of communication buffer
NULL no communication buffer available (non-task

thread)

Options: None

Description:

The function vsi_c_new () is used to allocate a new partition for primitive communication from the par-
tition memory pool. Therefor the function vsi_m_new () is called. If the number of requested bytes is
smaller than the size of the primitive header then it is set to the size of the primitive header. The primi-
tive header is initialized after successful allocation. The parameter use_cnt in the primitive header is
set to one.

If no free partition is available at calling time the calling task is suspended. If the request has been
satisfied but the underlying OS-layer function had to wait for a free partition a warning message is
traced by calling the function vsi_ttrace().

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

This function is necessary if the communication is carried out by transmitting buffer addresses (see
2.1.2). It is not called if the communication is carried out by copying buffers.

Q’ Texas Instruments Proprietary Information — Internal Data Page 59 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.11 vsi_c_pnew_generic () - Allocate Partition Memory

Function definition:

T_VOID_STRUCT * vsi_c_pnew_generic (T_HANDLE caller, ULONG size, ULONG opc, ULONG
flags)

If partition pool monitoring activated:

T_VOID_STRUCT * vsi_c_pnew_generic (T_HANDLE caller, ULONG size, ULONG opc, ULONG
flags, const char * file, int line)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity
ULONG size number of bytes needed
ULONG opc primitive OPC
ULONG flags control pool selection and blocking behavior
const char * file file that called vsi_c_pnew_generic()
int line line where vsi_c_pnew_generic() was called
Return:
Type Meaning
void * ptr address of communication buffer
NULL no communication buffer available (non-task
thread)
Options: None
Description:

The function vsi_c_pnew_generic () is used to allocate a new partition for primitive communication
from a partition memory pool defined by the parameter flags. The size parameter determines the
number of bytes for user data, inside vsi_c_pnew_generic() the size of the primitive header is added.
The primitive header is initialized after successful allocation. The parameter use_cnt in the primitive
header is set to one.

If the bit VSI_MEM_NON_BLOCKING is set in the parameter flags a NULL pointer will be returned if
no memory is available. If this is not set and no free patrtition is available at calling time the calling task
is suspended. If the request has been satisfied but the underlying OS-layer function had to wait for a
free partition a warning message is traced by calling the function vsi_ttrace().

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific fatal error handling is performed.

Please use the macro PALLOC_GENERIC instead of calling vsi_c_pnew_generic() directly (see
4.3.2).

Q’ Texas Instruments Proprietary Information — Internal Data Page 60 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.12 vsi_c_pnew () - Allocate Partition Memory (blocking)

Function definition:
T_VOID_STRUCT * vsi_c_pnew (ULONG size, ULONG opc)
If partition pool monitoring activated:

T_VOID_STRUCT * vsi_c_pnew (ULONG size, ULONG opc, const char * file, int line)

Parameters:

Type Name Meaning

ULONG size number of bytes needed

ULONG opc primitive OPC

const char * file file that called vsi_c_pnew()

int line line where vsi_c_pnew() was called

Return:

Type Meaning

void * ptr address of communication buffer
NULL no communication buffer available (non-task

thread)

Options: None

Description:

The function vsi_c_pnew () is used to allocate a new partition for primitive communication from the
protocol stack partition memory pool. The size parameter determines the number of bytes for user
data, inside vsi_c_pnew() the size of the primitive header is added. The primitive header is initialized
after successful allocation. The parameter use_cnt in the primitive header is set to one.

If no free partition is available at calling time the calling task is suspended. If the request has been
satisfied but the underlying OS-layer function had to wait for a free partition a warning message is
traced by calling the function vsi_ttrace().

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific fatal error handling is performed.

Please use the macro PALLOC instead of calling vsi_c_pnew() directly (see 4.3.1).

Q’ Texas Instruments Proprietary Information — Internal Data Page 61 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.13 vsi_c_pnew_nb () - Allocate Partition Memory (non-blocking)

Function definition:
T_VOID_STRUCT * vsi_c_pnew_nb (ULONG size, ULONG opc)
If partition pool monitoring activated:

T_VOID_STRUCT * vsi_c_pnew_nb (ULONG size, ULONG opc, const char * file, int line)

Parameters:

Type Name Meaning

ULONG size number of bytes needed

ULONG opc primitive OPC

const char * file file that called vsi_c_pnew_nb()

int line line where vsi_c_pnew_nb() was called

Return:

Type Meaning

void * ptr address of communication buffer
NULL no communication buffer available

Options: None

Description:

The function vsi_c_pnew_nb() has the same behavior as vsi_c_pnew() (4.5.3.12) except that it returns
a NULL pointer in case the allocation request is not successful.

Please use the macro PALLOC_NB instead of calling vsi_c_pnew_nb() directly (see 4.3.1).

Q’ Texas Instruments Proprietary Information — Internal Data Page 62 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.14 vsi_c_new_sdu () - Allocate Primitive containing an SDU

Function definition:

T_VOID_STRUCT * vsi_c_new_sdu (ULONG size, ULONG opc, USHORT sdu_len,
USHORT sdu_offset, USHORT encode_offset)

If partition pool monitoring activated:

T_VOID_STRUCT *vsi_c_new_sdu (ULONG Size, ULONG opc, USHORT sdu_len,
USHORT sdu_offset, USHORT encode_offset,
const char * file, int line)

Parameters:
Type Name Meaning
ULONG size size in bytes of the primitive without SDU
ULONG opc primitive opcode
USHORT sdu_len length of the SDU in bits
USHORT sdu_offset offset of T_sdu in primitive
USHORT encode_offset coding offset in SDI in bits
const char * file file that called vsi_c_pnew()
int line line where vsi_c_pnew() was called
Return:
Type Meaning
void * ptr address of communication buffer
NULL no communication buffer available (non-task
thread)
Options: None
Description:

The function vsi_c_new_sdu () is serves as a wrapper for the function vsi_c_pnew() (4.5.3.10) to allo-
cate memory partition from the protocol stack pool for a primitive containing an SDU. The amount of
memory allocated is determined by the size of the primitive containing the SDU plus memory for the
SDU specified by it length sdu_len and its offset encode_offset. Additionally the sdu pointer in the
primitive header is initialized to point to the SDU in the primitive.

The returned pointer here points to the primitive data .

Use one of the macros PALLOC_MSG, PALLOC_SDU instead of calling vsi_c_new_sdu() di-

rectly (see 4.3.5).

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 63 of 133

IN
IN
IN
IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.15 vsi_c_new_sdu_generic () - Allocate Primitive containing an SDU

Function definition:

T_VOID_STRUCT * vsi_c_new_sdu (ULONG size, ULONG opc, USHORT sdu_len,
USHORT sdu_offset, USHORT encode_offset, ULONG flags)

If partition pool monitoring activated:

T_VOID_STRUCT *vsi_c_new_sdu (ULONG Size, ULONG opc, USHORT sdu_len,
USHORT sdu_offset, USHORT encode_offset, ULONG flags,
const char * file, int line)

Parameters:
Type Name Meaning
ULONG size size in bytes of the primitive without SDU
ULONG opc primitive opcode
USHORT sdu_len length of the SDU in bits
USHORT sdu_offset offset of T_sdu in primitive
USHORT encode_offset coding offset in SDI in bits
ULONG flags control the pool selection
const char * file file that called vsi_c_pnew()
int line line where vsi_c_pnew() was called
Return:
Type Meaning
void * ptr address of communication buffer
NULL no communication buffer available (non-task
thread)
Options: None
Description:

The function vsi_c_new_sdu_generic() has the same functionality as vsi_c_new_sdu() but the addi-
tional parameter flags allows the caller to select a partition pool to allocate from.

Use one of the macro FPALLOC_SDU instead of calling vsi_c_new_sdu_generic() directly (see

4.3.6).

*f" TEXAS

INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 64 of 133

IN
IN
IN
IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.16 vsi_c_ppass () - Pass Primitive Data to new Primitive

Function definition:
T_VOID_STRUCT *vsi_c_ppass (T_VOID_STRUCT *prim, ULONG new_opc)
If partition pool monitoring activated:

T_VOID_STRUCT * vsi_c_ppass (T_VOID_STRUCT *prim, ULONG new_opc,const char * file,int line)

Parameters:

Type Name Meaning

T_VOID_STRUCT * prim pointer to data part of primitive
ULONG new_opc new primitive opcode

const char * file file that called vsi_c_pnew()
int line line where vsi_c_pnew() was called
Return:

Type Meaning

void * ptr pointer to data part of primitive
Options: MEMORY_SUPERVISION

Description:

The function vsi_c_ppass () enters the opcode specified by new_opc into the header of the primitive
specified by prim and returns a pointer to the data part of this primitive.

In case the reference counter in the primitive header is bigger than one - this means that already a
different user is attached to this primitive, e.g. the primitive is duplicated to PCO - a new memory par-
tition is allocated, the original primitive content is copied to this memory, the new_opc is entered in the
primitive header and a pointer to the data part of this new primitive is returned. This reallocation has to
be done to avoid the modification of the header of a primitive that different entities are registered for.

It is recommended to use one of the macros PPASS or P_PASS (4.3.38) instead of calling
vsi_c_ppass().

Q’ Texas Instruments Proprietary Information — Internal Data Page 65 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.17 vsi_c_free () - Free Partition Memory

Function definition:

ATTENTION: THIS FUNCTION SHOULD NO LONGER BE USE BY VSI BASED SOFTWARE
ENTITIES. PLEASE USE VSI_C_PFREE() INSTEAD

int vsi_c_free (T_HANDLE caller, T_VOID_STRUCT **addr)

If Partition Pool Monitor activated:
intvsi_c_free (T_HANDLE caller, T_VOID_STRUCT **addr, const char * file, int line)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
T_VOID_STRUCT ** addr address of communication buffer
const char * file file that called vsi_c_free()
int line line where vsi_c_free() was called
Return:
Type Meaning
int VSI_OK success

VSI_ERROR invalid address of communication buffer
Options: MEMORY_SUPERVISION
Description:

The function vsi_c_free () releases a partition from the partition memory pool that was used for primi-
tive communication. The pointer address is reset to the value NULL.

This function is used if the communication is carried out by transmitting buffer addresses (see 2.1.2)
and is not used if the communication is carried out by copying buffers.

This function decrements the parameter use_cnt in the primitive header. If it is zero then the partition
is freed by calling the function vsi_m_free().

Q’ Texas Instruments Proprietary Information — Internal Data Page 66 of 133
TEXAS

INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.18 vsi_c_pfree () - Free Primitive

Function definition:
int vsi_c_pfree (T_VOID_STRUCT **addr)

If Partition Pool Monitor activated:
int vsi_c_pfree (T_VOID_STRUCT **addr, const char * file, int line)

Parameters:
Type Name Meaning
T _VOID_STRUCT ** addr address of communication buffer IN
const char * file file that called vsi_c_pfree() IN
int line line where vsi_c_pfree() was called IN
Return:
Type Meaning
int VSI_OK success
VSI_ ERROR invalid address of communication buffer
Options: MEMORY_SUPERVISION
Description:

The function vsi_c_pfree () is serves as a wrapper for the function vsi_c_free(), see 4.5.3.14. It has
been introduced to reduce the ROM size of the application. The functionality is the same as for
vsi_c_free() but the parameter caller is omitted. The caller is set to zero and evaluated inside
vsi_c_free() if really needed. The parameter *addr here points to the primitive data. The address of the
memory partition is also evaluated in vsi_c_pfree() and passed to vsi_c_free().

Use the macro PFREE instead of calling vsi_c_pfree() directly (see 4.3.15).

Q’ Texas Instruments Proprietary Information — Internal Data Page 67 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.19 vsi_c_status () - Request Queue Status

Function definition:

int vsi_c_status (T_HANDLE qg_handle, unsigned int *used, unsigned int *free);
Parameters:
Type Name Meaning
T _HANDLE g_handle queue handle IN
unsigned int * used number of messages in queue ouT
unsigned int * free space in queue ouT
Return:
Type Meaning
int VSI_OK success
VSI_ERROR invalid g_handle
Options: none
Description:

The function vsi_c_status () return the number of message in a queue specified by its q_handle ob-
tained by calling vsi_c_open().

Q’ Texas Instruments Proprietary Information — Internal Data Page 68 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.20 vsi_c_pattach () - Attach to Primitive

Function definition:
int vsi_c_pattach (T_VOID_STRUCT *prim)

If partition memory supervision activated:
int vsi_c_pattach (T_VOID_STRUCT *prim, const char * file, int line)

Parameters:

Type Name Meaning

T VOID_STRUCT * prim pointer to data part of the primitive to attach IN
Return:

Type Meaning

int VSI_OK success

Options: MEMORY_SUPERVISION

Description:

The function vsi_c_pattach() allows the calling entity to attach to an already allocated primitive. This
means the reference counter in the primitive header is incremented by one.

The attempt to attach to non-partition memory or to a partition that is not allocated results in a fatal
error with the corresponding frame output via the test interface and a following reset of the phone.

It is recommended to call vsi_c_pattach via the macro PATTACH which will add the additional
parameters if MEMORY_SUPERVISION is activated, refer to 4.3.14.

Q’ Texas Instruments Proprietary Information — Internal Data Page 69 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.21 vsi_c_sync () - Synchronize with Protocol Stack

Function definition:

int vsi_c_sync (T_HANDLE caller, T_TIME timeout)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity IN
T TIME timeout timeout in ms for synchronization IN
Return:
Type Meaning
int VSI_OK synchronization successful
VSI_ERROR no synchronization possible
Options: none
Description:

The function vsi_c_sync() is only available if the fame is compiled for the tool side.

The function vsi_c_sync() asks the TST entity in the tool environment to request the task states of the
frame based tasks in the protocol stack. When all these tasks have completely started, vsi_c_sync()
returns VSI_OK. As long not all tasks in the protocol stack have completely started, the synchroniza-
tion attempts are performed until the time specified by the parameter timeout has occurred. In this
case vsi_c_sync() returns with VSI_ERROR.

Q’ Texas Instruments Proprietary Information — Internal Data Page 70 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.3.22 vsi_c_alloc_send () - Generic API Function to Send on Tool Side

Function definition:

int vsi_c_alloc_send (T_HANDLE com_handle, char* dst, char* src, void *prim, char *string)

Parameters:
Type Name Meaning
T_HANDLE com_handle handle of destination entity
char * dst name of destination entity in protocol stack
char * src name of source entity on tool side
void * prim pointer to allocated primitive to be sent
char * string string to be sent to protocol stack
Return:
Type Meaning
int VSI_OK data successfully sent
VSI_ERROR error
Options: none
Description:

The function vsi_c_alloc_send() is only available if the fame is compiled for the tool side.

The function vsi_c_alloc_send() is used to send any data from an application on the tool side to the
protocol stack or any entity on the tool side specified by com_handle. If the destination entity is in the
protocol stack, the com_handle has to be set to the test interface (TST) handle. In this case the pa-
rameter dst is mandatory.

The parameter src is only needed if the destination entity is interested in this.

If the parameter prim is different from NULL, it is assumed that the data to be sent is passed to
vsi_c_alloc_send() in an already allocated primitive and prim points to the data part of this primitive.

If the parameter string is different from NULL, it is assumed that a string is passed to
vsi_c_alloc_send(). In this case a memory partition is allocated and the string is copied into the data
part of this primitive.

Q’ Texas Instruments Proprietary Information — Internal Data Page 71 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.4 Memory

4541 vsi_m_new () - Allocate Memory Partition

Function definition:
T_VOID_STRUCT * vsi_m_new (ULONG size, USHORT type)

If Partition Memory Monitor activated:
T_VOID_STRUCT * vsi_m_new (ULONG size, USHORT type, const char * file, int line)

Parameters:
Type Name Meaning
ULONG size number of bytes needed
USHORT type identifier for pool to allocate from
const char * file file that called vsi_m_new()
int line line where vsi_m_new() was called
Return:
Type Meaning
T VOID_STRUCT * ptr address of allocated buffer
NULL no buffer available (non-task thread)
Options: MEMORY_SUPERVISION
Description:

The function vsi_m_new () is used to allocate memory from a partition pool identified by the parameter
type. If type is set to PRIM_POOL_PARTITION a partition is allocated from the primitive partition pool
used for communication. If type is set to DMEM_POOL_PARTITION a partition is allocated from the
non-communication partition pool. Allocation from application defined partition pool groups is also
supported.

In addition to the partition pool group handle a set of flags is passed via the parameter type. If
VSI_MEM_NONBLOCKING is set a NULL pointer will be returned if the addressed partition pool
group is exhausted.

If VSI_MEM_NONBLOCKING is not set and no free partition is available at calling time the calling task
is suspended. If the request has been satisfied but the underlying OS-layer function had to wait for a
free partition a warning message is traced.

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

If the option MEMORY_SUPERVISION is set the function vsi_ppm_new() is called to supervise the
state of the partition.

Q’ Texas Instruments Proprietary Information — Internal Data Page 72 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4542 vsi_m_cnew () - Allocate Memory Partition

Function definition:
T_VOID_STRUCT * vsi_m_cnew (ULONG size, USHORT type)

If Partition Memory Monitor activated:
T_VOID_STRUCT * vsi_m_cnew (ULONG size, USHORT type, const char * file, int line)

Parameters:
Type Name Meaning
ULONG size number of bytes needed
USHORT type identifier for pool to allocate from
const char * file file that called vsi_m_cnew()
int line line where vsi_m_cnew() was called
Return:
Type Meaning
T VOID_STRUCT * ptr address of allocated buffer
NULL no buffer available (non-task thread)
Options: MEMORY_SUPERVISION
Description:

The function vsi_m_cnew () is used to allocate memory from a partition pool identified by the parame-
ter type. If type is set to PRIM_POOL_PARTITION a partition is allocated from the primitive partition
pool used for communication. If type is set to DMEM_POOL_PARTITION a partition is allocated from
the non-communication partition pool. Allocation from application defined partition pool groups is also
supported.

In addition to the partition pool group handle a set of flags is passed via the parameter type. If
VSI_MEM_NONBLOCKING is set a NULL pointer will be returned if the addressed partition pool
group is exhausted.

If VSI_MEM_NONBLOCKING is not set and no free partition is available at calling time the calling task
is suspended. If the request has been satisfied but the underlying OS-layer function had to wait for a
free partition a warning message is traced.

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

If the option MEMORY_SUPERVISION is set the function vsi_ppm_new() is called to supervise the
state of the partition.

Use the macro MALLOC instead of calling vsi_m_cnew() directly (see 4.3).

Q’ Texas Instruments Proprietary Information — Internal Data Page 73 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.4.3 vsi_m_realloc () - Realloc Memory Partition

Function definition:
T_VOID_STRUCT * vsi_m_realloc (T_VOID_STRUCT* ptrO, ULONG size, USHORT type)
If Partition Memory Monitor activated:

T_VOID_STRUCT * vsi_m_realloc (T_VOID_STRUCT* ptrO ,ULONG size, USHORT type, const char
* file, int line)

Parameters:

Type Name Meaning

T_VOID_STRUCT * ptrO pointer to allocated memory

ULONG size number of bytes needed

USHORT type identifier for pool to allocate from

const char * file file that called vsi_m_realloc()

int line line where vsi_m_realloc() was called

Return:

Type Meaning

T VOID_STRUCT * ptr address of reallocated buffer
NULL no buffer available

Options: MEMORY_SUPERVISION

Description:

The function vsi_m_realloc () is used to reallocate memory from a partition pool identified by the pa-
rameter type.

If the allocated memory block specified by ptr0 is sufficiently large to store size bytes, ptr0O is returned.
If the allocated block specified by ptr0 is too small, a memory block big enough to store size bytes is
allocated, the contents of ptrO is copied to the newly allocated block, the block specified by ptr0 is
deallocated and the address of the allocated memory block is returned. Memory is allocated by calling
the function vsi_m_cnew() (see 4.5.4.2). If ptrO is NULL a memory block of size bytes is allocated. If
size is equal to zero and ptr0O is not NULL, the memory block specified by ptr0 is freed.

If type is set to PRIM_POOL_PARTITION a patrtition is allocated from the primitive partition pool used
for communication. If type is set to DMEM_POOL_PARTITION a patrtition is allocated from the non-
communication partition pool. Allocation from application defined partition pool groups is also sup-
ported.

In addition to the partition pool group handle a set of flags is passed via the parameter type. If
VSI_MEM_NONBLOCKING is set a NULL pointer will be returned if the addressed partition pool
group is exhausted.

If VSI_MEM_NONBLOCKING is not set and no free partition is available at calling time the calling task
is suspended. If the request has been satisfied but the underlying OS-layer function had to wait for a
free partition a warning message is traced.

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

If the option MEMORY_SUPERVISION is set the function vsi_ppm_new() is called to supervise the
state of the partition.

Q’ Texas Instruments Proprietary Information — Internal Data Page 74 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

Use the macro M(D)REALLOC(_NB) or M(D)_REALLOC(_NB) instead of calling vsi_m_realloc()
directly (see 4.3).

Q’ Texas Instruments Proprietary Information — Internal Data Page 75 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4544 vsi_m_free () - Free Memory

Function definition:
int vsi_m_free (T_VOID_STRUCT**addr)

If partition memory supervision activated:
int vsi_m_free (T_VOID_STRUCT**addr, const char * file, int line)

Parameters:
Type Name Meaning
T _VOID_STRUCT ** addr address of buffer to be released IN
const char * file file that called vsi_m_free() IN
int line line where vsi_m_free() was called IN
Return:
Type Meaning
int VSI_OK success
VSI_ ERROR invalid buffer address
Options: MEMORY_SUPERVISION, OPTIMIZE_POOL
Description:

The function vsi_m_free() deallocates a memory partition. The pointer address is reset to the value
NULL.

If the memory to be freed is already freed or if the passed pointer does not point to a memory partition
a warning message is traced if the this information is returned from the OS adaptation layer.

If the option MEMORY_SUPERVISION is set the function vsi_ppm_free() is called to supervise the
state of the partition used to store the primitive.

Use the macro MFREE instead of calling vsi_m_free() directly (see 4.3).

Q’ Texas Instruments Proprietary Information — Internal Data Page 76 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4545 vsi_m_status () - Get Memory Status

Function definition:

int vsi_m_status (T_HANDLE caller, ULONG size, USHORT type, USHORT *available , USHORT
*allocated)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity IN
ULONG size requested size IN
USHORT type identifier for partition pool IN
USHORT * available number of free partitions ouT
USHORT * allocated number of allocated partitions ouT
Return:
Type Meaning
int VSI_OK success

VSI_ERROR invalid partition size requested
Options:
Description:

The function vsi_m_status() returns the number of available and allocated partitions in a pool specified
by the parameters type and size .

Q’ Texas Instruments Proprietary Information — Internal Data Page 77 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.4.6 vsi_m_attach () - Attach to Memory

Function definition:
int vsi_m_attach (T_VOID_STRUCT *mem)

If partition memory supervision activated:
int vsi_m_attach (T_VOID_STRUCT *mem, const char * file, int line)

Parameters:

Type Name Meaning

T_VOID_STRUCT * mem pointer to memory to attach IN
Return:

Type Meaning

int VSI_OK success

Options: MEMORY_SUPERVISION

Description:

The function vsi_m_attach() allows the calling entity to attach to an already allocated memory partition.
This means the reference counter in the partition header is incremented by one.

The attempt to attach to non-partition memory or to a partition that is not allocated results in a fatal
error with the corresponding frame output via the test interface and a following reset of the phone.

It is recommended to call vsi_m_attach via the macro MATTACH which will add the additional pa-
rameters if MEMORY_SUPERVISION is activated, refer to 4.3.28.

Q’ Texas Instruments Proprietary Information — Internal Data Page 78 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4547 vsi_drpo_new () - Allocate Root of Dynamic Primitive

Function definition:
T_VOID_STRUCT * vsi_drpo_new (ULONG size, ULONG opc, ULONG guess)
If Partition Memory Monitor activated:

T_VOID_STRUCT * vsi_drpo_new (ULONG size, ULONG opc, ULONG guess, const char * file, int
line)

Parameters:

Type Name Meaning

ULONG size number of bytes needed

ULONG opc op-code of the primitive

ULONG guess additionally required space in partition
const char * file file that called vsi_drpo_new()

int line line where vsi_drpo_new() was called
Return:

Type Meaning

T_VOID_STRUCT * ptr address of allocated buffer

Options: MEMORY_SUPERVISION

Description:

The function vsi_drpo_new () is used to allocate the root of a dynamic sized primitive, refer to
[C_8434.100]. The parameter size defines the number of bytes to by stored at the current allocation.
The parameter guess can be used to reserve memory for future allocations in the same partition. If
guess is set to a value bigger than zero then a partition to store size plus guess bytes is allocated. If
the caller has no idea of the size of subsequent allocations then guess can be set to zero. In this case
three times the size of the parameter size is allocated.

The function vsi_drpo_new() returns a pointer to the user data of the primitive. This pointer has to be
passed to vsi_dp_new() for the allocation of additional memory in an existing dynamic primitive.

If no free partition is available at calling time the calling task is suspended. If the request has been
satisfied but the underlying OS-layer function had to wait for a free partition a warning message is
traced.

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

Use the macro DRPO_ALLOC instead of calling vsi_drpo_new() directly (see 4.3.8).

Q’ Texas Instruments Proprietary Information — Internal Data Page 79 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.4.8 vsi_drp_new () - Allocate Root of Dynamic Memory

Function definition:
T_VOID_STRUCT * vsi_drp_new (ULONG size, ULONG guess)

If Partition Memory Monitor activated:
T_VOID_STRUCT * vsi_drp_new (ULONG size, ULONG guess, const char * file, int line)

Parameters:

Type Name Meaning

ULONG size number of bytes needed

ULONG guess additionally required space in partition
const char * file file that called vsi_drp_new()

int line line where vsi_drp_new() was called
Return:

Type Meaning

T VOID_STRUCT * ptr address of allocated buffer
Options: MEMORY_SUPERVISION

Description:

The function vsi_drp_new () is used to allocate the root of a dynamic sized memory, refer to
[C_8434.100]. The parameter size defines the number of bytes to by stored at the current allocation.
The parameter guess can be used to reserve memory for future allocations in the same partition. If
guess is set to a value bigger than zero then a patrtition to store size plus guess bytes is allocated. If
the caller has no idea of the size of subsequent allocations then guess can be set to zero. In this case
three times the size of the parameter size is allocated.

The dynamic sized memory allocated with vsi_drp_new() must not be confused with the dynamic sized
primitive allocated with vsi_drpo_new(). Dynamic sized primitives contain an operation code (opc) and
therefor can be sent to different entities, the dynamic sized memory allocated with vsi_drp_new() can-
not be sent through the stack as a primitive.

The function vsi_drp_new() returns a pointer to the user data of the primitive. This pointer has to be
passed to vsi_dp_new() for the allocation of additional memory in an existing dynamic primitive.

If no free partition is available at calling time the calling task is suspended. If the request has been
satisfied but the underlying OS-layer function had to wait for a free partition a warning message is
traced.

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

Use the macro DRP_ALLOC instead of calling vsi_drp_new() directly (see 4.3.9).

Q’ Texas Instruments Proprietary Information — Internal Data Page 80 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.4.9 vsi_drp_bind () - Bind child root-pointer to parent root-pointer

Function definition:
int vsi_drp_bind (T_VOID_STRUCT *child, T_VOID_STRUCT *parent)

If Partition Memory Monitor activated:
int vsi_drp_binb (T_VOID_STRUCT *child, T_VOID_STRUCT *parent, const char * file, int line)

Parameters:

Type Name Meaning

T_VOID_STRUCT * child pointer to child root pointer
T_VOID_STRUCT * parent pointer to parent root pointer
const char * file file that called vsi_drp_new()
int line line where vsi_drp_new() was called
Return:

Type Meaning

int status VSI_OK or VSI_ERROR
Options: MEMORY_SUPERVISION

Description:

The function vsi_drp_bind () is used to bind the root of a dynamic sized memory (refer to
[C_8434.100]) to another root.

The parent has to allocated with DRPO_ALLOC or DRP_ALLOC. The child has to be allocated with
DRPO_ALLOC, DRP_ALLOC or one of the PALLOC-like macros. vsi_drp_bind () adds child to the
internal drp_bound_list of parent and (recursively) increases the child use_cnt. When FREE is called
for parent FREE is also called for all bound childs.

If the binding succeeded VSI_OK is returned.

If no more entries are available (see MAX_DRP_BOUND) in the drp_bound_list or the drp_bound_list
could not be allocated VSI_ERROR is returned.

Use the macro DRP_BIND instead of calling vsi_drp_bind() directly (see 4.3.10).

Q’ Texas Instruments Proprietary Information — Internal Data Page 81 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.4.10 vsi_dp_new () - Allocate Additional Dynamic Memory

Function definition:
T_VOID_STRUCT * vsi_dp_new (ULONG size, T_VOID_STRUCT *ptr, ULONG guess)
If Partition Memory Monitor activated:

T_VOID_STRUCT * vsi_dp_new (ULONG size, T_VOID_STRUCT *ptr, ULONG guess, const char *
file, int line)

Parameters:

Type Name Meaning

ULONG size number of bytes needed

T VOID_STRUCT * ptr pointer to root of dynamic primitive/memory
ULONG guess additionally required space

const char * file file that called vsi_dp_new()

int line line where vsi_dp_new() was called
Return:

Type Meaning

T_VOID_STRUCT * ptr address of allocated buffer
Options: MEMORY_SUPERVISION

Description:

The function vsi_dp_new () is used to allocate additional memory in an already allocated partition re-
spectively chain of memory/dynamic primitive, refer to [C_8434.100]. The parameter size defines the
number of bytes to by stored at the current allocation. The parameter guess can be used to reserve
memory for future allocations. If guess is set to a value bigger than zero then a partition to store size
plus guess bytes is allocated. If the caller has no idea of the size of subsequent allocations then guess
can be set to zero. In this case three times the size of the parameter size is allocated.

The parameter ptr that has to be passed to the vsi_dp_new() is the pointer returned by
vsi_drpo_new(9 or vsi_drp_new(). The function vsi_dp_new() returns a pointer to the user data of the
allocated memory.

If no free partition is available at calling time the calling task is suspended. If the request has been
satisfied but the underlying OS-layer function had to wait for a free partition a warning message is
traced.

If the caller is a non-task thread, and the request cannot be satisfied then an error message is traced
and an RTOS/target specific error handling is performed.

Use the macro DP_ALLOC instead of calling vsi_dp_new() directly (see 4.3.11).

Q’ Texas Instruments Proprietary Information — Internal Data Page 82 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.4.11 vsi_dp_sum () - Get Number of Stored Bytes in Dynamic Memory

Function definition:

ULONG vsi_dp_sum (T_HANDLE caller, T_VOID_STRUCT **addr)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
T VOID_STRUCT * addr address of communication buffer IN
ULONG * size number of stored bytes in chain ouT
Return:
Type Meaning
ULONG VSI_OK success
VSI_ERROR invalid parameter *addr
Options: none
Description:

The function vsi_dp_sum() returns the number of stored bytes in a chain of allocated memory/dynamic
primitive.

Q’ Texas Instruments Proprietary Information — Internal Data Page 83 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.4.12 vsi_free () - Free Dynamic Sized Memory

Function definition:
int vsi_free (T_VOID_STRUCT **addr)

If Partition Pool Monitor activated:
int vsi_free (T_VOID_STRUCT **addr, const char * file, int line)

Parameters:
Type Name Meaning
T _VOID_STRUCT ** addr address of communication buffer IN
const char * file file that called vsi_free() IN
int line line where vsi_free() was called IN
Return:
Type Meaning
int VSI_OK success
VSI_ ERROR invalid address of communication buffer
Options: MEMORY_SUPERVISION
Description:

The function vsi_free() releases a memory partition respectively a chain of allocated memory/dynamic
primitive. The pointer address is reset to the value NULL. It deallocates partitions allocated with
vsi_c_new(), vsi_drpo_new() and vsi_drp_new(). To deallocate a chain of dynamic memory the pa-
rameter addr has to be the root of the chain.

This function decrements the parameter use_cnt in the primitive header. If it is zero then the partition
is freed by calling the function vsi_m_free().

Use the macro FREE instead of calling vsi_free() directly (see 4.3.29).

Q’ Texas Instruments Proprietary Information — Internal Data Page 84 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.5 Virtual Memory Pools

4551 vsi_vmp_create () - Create Virtual Memory Pool

Function definition:

int vsi_vmp_create (T_HANDLE * vmp_handle, T_VSI_VMP_CONFIG_PARAM * vmp_config
T_VSI_VMP_NOTIFY_PARAM * vmp_notify, U8 * name)

Parameters:
Type Name Meaning
T_HANDLE * vmp_handle handle of virtual memory pool ouT
T_VSI_VMP_CONFIG_PARAM * vmp_config configuration parameter IN
T _VSI_ VMP_NOTIFY_PARAM * vmp_notify notification parameter IN
us8 * name name for the virtual memory pool IN
Return:
Type Meaning
int VSI_OK

VSI_INVALID_PARAM

VSI_NO_MEMORY
Options: none
Description:

The function vsi_vmp_create() is used to create a virtual memory pool with the properties specified in
*vmp_config, see 4.1.9). Such a pool can be used by any GSP entity in the system to which a certain
amount of memory (which must not be exceeded) is assigned. For flow control usage the entity has to
set the appropriate values in *vmp_config. For notification about flow control changes the entity has to
supply an entity handle and/or a callback function.

The size element in the attributes determines the number of bytes that a client of the virtual memory
pool can allocate in sum.

If the VSI_FAST_MEMORY is set in the flags of *vp_config the virtual memory pool will be created in
the fast memory region, e.g. internal RAM (if available).

The element flags in T_VSI_VMP_CONFIG_PARAM also controls the blocking behavior at allocation
time.

The attempt to create a virtual memory pool bigger than the available physical memory in the specified
memory region will result in returning VSI_NO_MEMORY.

The attempt to create an additional virtual memory pool that will result in all virtual memory pool sizes
together exceed the size of the specified memory region will result in returning VSI_NO_MEMORY.

In case of an error the parameter *vmp_handle will be set to zero.

Q’ Texas Instruments Proprietary Information — Internal Data Page 85 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

455.2 vsi_vmp_delete () - Delete Virtual Memory Pool

Function definition:

int vsi_vmp_delete (T _HANDLE vmp_handle)

Parameters:
Type Name Meaning
T_HANDLE vmp_handle handle of virtual memory pool
Return:
Type Meaning
int VSI_OK
VSI_INVALID_PARAM
VSI_VMP_NOT_CLEAN
Options: none
Description:

The function vsi_vmp_delete() is used to delete a virtual memory pool specified by the handle
vmp_handle.

The warning code VSI_VMP_NOT_CLEAN is returned if the virtual memory pool has not been
cleaned up before deletion, i.e. there still are allocations in the memory pool.

ATTENTION: Task that are suspended while waiting for memory in the specified pool will be resumed
and the memory allocation API function will return a NULL pointer (Nucleus RTOS). This behaviour
may be different for other operating systems.

ATTENTION: Entities waiting flow a change of the flow control status to off (memory available) will not
be informed about the pool deletion.

The error code VSI_INVALID_HANDLE is returned if no virtual memory pool with the specified handle
exists in the GSP context.

Q’ Texas Instruments Proprietary Information — Internal Data Page 86 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4553 vsi_vmp_modify () - Modify Virtual Memory Pool

Function definition:

int vsi_vmp_modify (T_HANDLE vmp_handle, T_VSI_VMP_CONFIG_PARAM * vmp_config
T_VSI_VMP_NOTIFY_PARAM * vmp_notify)

Parameters:
Type Name Meaning
T_HANDLE vmp_handle handle of virtual memory pool ouT
T_VSI_VMP_CONFIG_PARAM * vmp_config configuration parameter IN
T_VSI_VMP_NOTIFY_PARAM * vmp_notify notification parameter IN
Return:
Type Meaning
int VSI_OK
VSI_INVALID_PARAM
Options: none
Description:

The function vsi_vmp_modify() is used to change parameters of a virtual memory pool specified by the
handle vmp_handle.

The behaviour is like the vsi_vmp_create () function, see 4.5.5.1), except of . vmp_handle is an input
parameter and no virtual memory pool is created.

The error code VSI_INVALID_HANDLE is returned if no virtual memory pool with the specified handle
exists in the GSP context.

Q’ Texas Instruments Proprietary Information — Internal Data Page 87 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4554 vsi_vmp_get_status () - Get Virtual Memory Pool Status

Function definition:

int vsi_vmp_get_status (T_HANDLE vmp_handle, unsigned int *free, unsigned int *alloc,
int *flow_ctrl_state)

Parameters:
Type Name Meaning
T_HANDLE vmp_handle handle of virtual memory pool
unsigned int * free amount of available bytes
unsigned int * alloc amount of allocated bytes
int * flow_ctrl_state flow control state
Return:
Type Meaning
int VSI_OK
VSI_INVALID_PARAM
Options: none
Description:

The function vsi_vmp_get_status() returns the status of the virtual memory pool specified by
vmp_handle. The amount of available bytes is returned in *free, and the amount of allocated bytes in
*alloc. Flow control state on is indicated by *flow_ctrl_state set to VSI_VMP_FLOW_CTRL_ON, flow
control off by VSI_VMP_FLOW_CTRL_OFF.

The error code VSI_INVALID_PARAM is returned if no virtual memory pool with the specified handle
exists in the GSP context.

Q’ Texas Instruments Proprietary Information — Internal Data Page 88 of 133
TEXAS

INSTRUMENTS

IN
ouT
ouT
ouT

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4555 vsi_vmp_malloc() - Allocate Memory Block from Virtual Memory Pool

Function definition:
T_VOID_STRUCT* vsi_vmp_malloc(T_HANDLE vmp_handle, T_VSI_SIZE size)
If memory supervision is enabled:

T_VOID_STRUCT* vsi_vmp_malloc (T_HANDLE vp_handle, T_VSI_SIZE size,
const char * file, int line)

Parameters:
Type Name Meaning
T_HANDLE vmp_handle handle of virtual pool
T_VSI_SIZE size number of bytes to allocate
Return:
Type Meaning
T_VOID_STRUCT I= NULL success
NULL allocation failed
Options: memory supervision
Description:

The function vsi_vmp_malloc() is called allocate a block of size bytes from the virtual memory pool
specified by vmp_handle. The allocation will be non-blocking, i.e. a NULL pointer will be returned if no
memory is available.

A change of the flow control state to “on” will be signalled to the caller if the number of allocated bytes
in the virtual pool exceeds the on_level passed to vsi_vmp_create() or vsi_vmp_modify().

An invalid vmp_handle will result in a NULL pointer returned by vsi_vmp_malloc().

ATTENTION: In the first version of the virtual memory pool handling only the non-blocking allocation
service provided by the existing macro/function call MALLOC_NB()/vsi_m_cnew() will be offered. Allo-
cation function for primitives (PALLOC) dynamic primitive (DRPO_ALLOC) may follow on request.

Q’ Texas Instruments Proprietary Information — Internal Data Page 89 of 133
TEXAS
INSTRUMENTS

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4556 vsi_vmp_mfree () - Return Memory Block

Function definition:
int vsi_vmp_mfree (T_VOID_STRUCT * mem)

If memory supervision is enabled:
int vsi_virtual_pool_mfree (T_VOID_STRUCT * mem, const char * file, int line)

Parameters:
Type Name Meaning
T_VOID_STRUCT * mem memory block to deallocate IN
Return:
Type Meaning
int VSI_OK
VSI_ERROR
Options: memory supervision
Description:

The function vsi_vmp_free() is called to deallocate a block of memory previously allocated from a vir-
tual memory pool.

A change of the flow control state to “off” will be signalled to the caller if the number of allocated bytes
in the virtual pool falls below the off_level passed to vsi_vmp_create() or vsi_vmp_modify().

Q’ Texas Instruments Proprietary Information — Internal Data Page 90 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4557 vsi_vmp_notify_split () - Notify about split Memory Block

Function definition:
int vsi_vmp_notify_split (T_VOID_STRUCT * mem)

If memory supervision is enabled:
int vsi_virtual_pool_mfree (T_VOID_STRUCT * mem, const char * file, int line)

Parameters:
Type Name Meaning
T_VOID_STRUCT * mem memory block which is split IN
Return:
Type Meaning
int VSI_OK
VSI_ERROR
Options: memory supervision
Description:

The function vsi_vmp_notify_split() is called to notify the virtual pool manager about a split of a block
of memory previously allocated from a virtual memory pool.

Q’ Texas Instruments Proprietary Information — Internal Data Page 91 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

456 Timer

45.6.1 wvsi_t_start() - Start Timer

Function definition:

int vsi_t_start (T_HANDLE caller, USHORT index, T_TIME value)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity IN
USHORT index index of timer IN
T TIME value time in ms IN
Return:
Type Meaning
int VSI_ERROR invalid timer index
VSI_OK success
Options: OPTION_TIMER_CONFIG
Description:

The function vsi_t_start () starts an application timer with the specified time in milliseconds.

The index is stored when the timer is started and forwarded to the protocol stack entity by the function
pei_timeout() when the timer has expired. The timer is started only once. The maximum timer value to
be passed to vsi_t_start() is 4 294 967 295 ms.

The index of the timer is the one defined in the corresponding protocol stack entity and is in the range
from zero to the number of timers minus one for the corresponding entity defined in pei_create(). If a
timer index out of this range is passed to the function, then a error message is traced and the active
task is suspended forever.

A timeout is forwarded to the corresponding entity through its message queue with the same priority
like primitives. This prevents an ongoing processing for a primitive from being interrupted by a timeout.

Timers can be dynamically configured with configuration primitives received via the test interface, refer
to 4.5.6.5.

Q’ Texas Instruments Proprietary Information — Internal Data Page 92 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.6.2 vsi_t_pstart () - Start Timer with Periodic Reload

Function definition:

int vsi_t_pstart (T_HANDLE caller, USHORT index, T_TIME valuel, T_TIME value2)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity

USHORT index index of timer

T_TIME valuel initial time in ms

T_TIME value2 reschedule time in ms

Return:

Type Meaning

int VSI_ERROR invalid timer index
VSI_OK success

Options: OPTION_TIMER_CONFIG

Description:

The function vsi_t_pstart () starts an application timer with the specified initial time in milliseconds.
After expiration, the timer is started periodically with the rescheduling time until it is stopped.

The index is stored when the timer is started and forwarded to the protocol stack entity by the function
pei_timeout() when a the timer has expired. The maximum timer values to be passed to vsi_t_pstart()
are 4 294 967 295 ms.

The index of the timer is the one defined in the corresponding protocol stack entity and is in the range
from zero to the number of timers minus one for the corresponding entity defined in pei_create(). If a
timer index out of this range is passed to the function, then a error message is traced and the active
task is suspended forever.

A timeout is forwarded to the corresponding entity through its message queue with the same priority
like primitives. This prevents an ongoing processing for a primitive from being interrupted by a timeout.

Timers can be dynamically configured with configuration primitives received via the test interface, refer
to 4.5.6.5.

Q’ Texas Instruments Proprietary Information — Internal Data Page 93 of 133
TEXAS

INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.6.3 vsi_t_stop () - Stop Timer

Function definition:

int vsi_t_stop (T_HANDLE caller, USHORT index)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
USHORT index index of timer IN
Return:
Type Meaning
int VSI_ERROR invalid timer index
VSI_OK success
Description:

The function vsi_t_stop () causes the timer specified by the calling entity and the index to stop even if
the time has not expired.

Q’ Texas Instruments Proprietary Information — Internal Data Page 94 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.6.4 vsi_t_status () - Query Timer Status

Function definition:

int vsi_t_status (T_HANDLE caller, USHORT index, T_TIME * tvalue)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
USHORT index index of timer IN
T_TIME * tvalue remaining time until timer expires in ms ouT
Return:
Type Meaning
int VSI_OK success
VSI_ERROR invalid timer handle
Options: none
Description:

The function vsi_t_status () stores the remaining time of the timer specified by the calling entity and
the index in the tvalue.

Q’ Texas Instruments Proprietary Information — Internal Data Page 95 of 133
TEXAS
INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.6.5 vsi_t_config () - Configure Timer

Function definition:

int vsi_t_config (T_HANDLE caller, USHORT index, USHORT mode, T_TIME tvalue)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
USHORT index index of timer
USHORT mode mode of timer
T_TIME tvalue expiration time in ms
Return:
Type Meaning
int VSI_OK success

VSI_ ERROR invalid timer handle
Options: OPTION_TIMER_CONFIG
Description:

The function vsi_t_config() enables dynamic configuration to manipulate timer values (set to new
value, suppress timer, slow down or speed up timer).

This function stores the dynamic configuration data for the specified timer in a configuration table.
When the timer is started, the parameters of this table are used. The different modes are defined as
follows:

TIMER_SET: Start with tvalue.

TIMER_RESET: Start with original timer value.

TIMER_SPEED_UP: Start with original time divided by tvalue.

TIMER_SLOW_DOWN:Start with original time multiplied by tvalue.

Q’ Texas Instruments Proprietary Information — Internal Data Page 96 of 133
TEXAS

INSTRUMENTS

IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18

Draft

45.6.6 vsi_t time () - Query System Clock

Function definition:

int vsi_t_time (T_HANDLE caller, T_TIME * tvalue)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity
T TIME * tvalue time in ms

Return:

Type Meaning

int VSI_OK success

Options: none

Description:

The function vsi_t_time () stores the time in milliseconds since system start in tvalue.

Q’ Texas Instruments Proprietary Information — Internal Data
TEXAS
INSTRUMENTS

Page 97 of 133

IN
ouT

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18

Draft

45.6.7 vsi_t_sleep () - Suspend Thread

Function definition:

int vsi_t_sleep (T_HANDLE caller, T_TIME tvalue)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity
T TIME tvalue time in ms

Return:

Type Meaning

int VSI_OK success

Options: none

Description:

The function vsi_t_sleep () suspends the calling task for the time specified by tvalue.

Q’ Texas Instruments Proprietary Information — Internal Data
TEXAS
INSTRUMENTS

Page 98 of 133

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.7 Semaphores

45.7.1 vsi_s_open () - Open Semaphore

Function definition:

T_HANDLE vsi_s_open (T_HANDLE caller, char * name, USHORT count)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity IN
char * name name of semaphore IN
USHORT count initial count of the semaphore (e.g. 1 for a binary
sem.) IN
Return:
Type Meaning
T _HANDLE VSI_ERROR error
handle handle of opened semaphore
Options: none
Description:

The function vsi_s_open() opens a (counting) semaphore specified by its name. If the semaphore
does not exist, it will be created with the initial count given. If the semaphore already exists the pa-
rameter count will be ignored.

Q’ Texas Instruments Proprietary Information — Internal Data Page 99 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.7.2 vsi_s_close () - Close Semaphore

Function definition:

int vsi_s_close (T_HANDLE caller, T_HANDLE handle)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity

T _HANDLE handle handle of semaphore

Return:

Type Meaning

int VSI_ERROR invalid handle of semaphore
VSI_OK success

Options: none

Description:

The function vsi_s_close() closes a semaphore.

Q’ Texas Instruments Proprietary Information — Internal Data Page 100 of 133
TEXAS

INSTRUMENTS

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.7.3 vsi_s_get() - Get Semaphore

Function definition:

int vsi_s_get (T_HANDLE caller, T_HANDLE handle)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
T _HANDLE handle handle of semaphore IN
Return:
Type Meaning
int VSI_ERROR invalid handle of semaphore
VSI_OK success
Options: none
Description:

The function vsi_s_get() obtains the specified semaphore, i.e. the counter is decremented, if it is
greater than zero.

If the counter is equal to zero, than the calling task is suspended until the counter is incremented by
another task (vsi_s_release()).

If the caller is a non-task thread the function returns immediately regardless if the request can be sat-
isfied or not. In this case, VSI_ERROR is returned if the counter was already zero.

Q’ Texas Instruments Proprietary Information — Internal Data Page 101 of 133
TEXAS

INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.7.4 vsi_s_get_timeout () - Get Semaphore with Timeout

Function definition:

int vsi_s_get_timeout (T_HANDLE caller, T_HANDLE handle, T_TIME timeout)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity

T _HANDLE handle handle of semaphore

T_TIME timeout timeout in ms

Return:

Type Meaning

int VSI_ERROR invalid handle of semaphore
VSI_OK success

Options: none

Description:

The function vsi_s_get_timeout() obtains the specified semaphore, i.e. the counter is decremented, if it

is greater than zero.

If the counter is equal to zero, than the calling task is suspended until the counter is incremented by
another task (vsi_s_release()) or the time in ms specified by the parameter timeout has passed. In
case the specified time has passed without the semaphore becoming available the function returns

VSI_TIMEOUT.

If the caller is a non-task thread the function returns immediately regardless if the request can be sat-
isfied or not. In this case, VSI_ERROR is returned if the counter was already zero.

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data Page 102 of 133

IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.7.5 vsi_s_release () - Release Semaphore

Function definition:

int vsi_s_release (T_HANDLE caller, T_HANDLE handle)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity

T _HANDLE handle handle of semaphore

Return:

Type Meaning

int VSI_ERROR invalid handle of semaphore
VSI_OK success

Options: none

Description:

The function vsi_s_release () releases the specified semaphore, i.e. the counter is incremented.

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data Page 103 of 133

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.7.6 vsi_s_status () - Query Semaphore Counter Value

Function definition:

int vsi_s_status (T_HANDLE caller, T_HANDLE handle, USHORT * count)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
T _HANDLE handle handle of semaphore IN
USHORT * count current value of semaphore counter ouT
Return:
Type Meaning
int VSI_ERROR invalid handle of semaphore
VSI_OK success
Options: none
Description:

The function vsi_s_status () can be used to obtain the counter of a semaphore.

Q’ Texas Instruments Proprietary Information — Internal Data Page 104 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

458 Traces

The tracing functionality includes some filtering of messages to be traced. Due to this feature, it is
possible to select a certain number of all implemented traces to be disabled. To support this, different
trace classes e.g. TC_PRIM, TC_STATE are installed, refer to 4.2.3. A trace class is defined by one
bit in a mask. This trace class is passed to the specific vsi trace function and compared to the stored
trace mask that was previously set by the user, see vsi_o_tracemask(). In this trace mask, all bits of
the trace classes to be traced are set. After this comparison, the trace is either executed or not.

45.8.1 vsi_o_ttrace () - Trace Text

Function definition:

int vsi_o_ttrace (T_HANDLE caller, ULONG tclass, char * format, ...)

Parameters:
Type Name Meaning
T_HANDLE caller handle of calling entity IN
ULONG tclass class to be traced IN
char * format format of string to be built IN
Return:
Type Meaning
int VSI_ERROR trace class not enabled in trace mask
VSI_OK success
Options: none
Description:

The function vsi_o_ttrace() compares the specified trace class to the stored trace mask for the calling
task. If the bit representing the class to be traced is set in the trace mask, the trace is executed, oth-
erwise the function returns VSI_ERROR.

This function is used to trace dynamic strings that cannot be coded to indices and decoded in the test
system (see vsi_o_itrace()).

Q’ Texas Instruments Proprietary Information — Internal Data Page 105 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.8.2 vsi_o_func_ttrace () - Trace Function Name

Function definition:

int vsi_o_func_ttrace (const char * const format, ...)

Parameters:

Type Name Meaning

const char * const format describing the variable arguments in the list

variable argument list

Return:

Type Meaning

int VSI_ERROR trace class TC_FUNC not enabled in trace mask
VSI_OK success

Options: none

Description:

The function vsi_o_func_ttrace() checks if the trace class TC_FUNC is enabled for the calling entity. If
yes the trace is executed, otherwise the trace is aborted and the function returns VSI_ERROR.

The handle of the calling entity is automatically added to the trace inside vsi_o_func_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to 0
and the trace destination will be displayed as SYST in PCO.

It is recommended to call this trace functionality only via the
TRACE_FUNCTION/TRACE_FUNCTION_P1...9 macro (4.3.39), be able to compile no-trace versions
and to allow compressed tracing, refer to 06-03-42-UDO-0001.

Q’ Texas Instruments Proprietary Information — Internal Data Page 106 of 133
TEXAS

INSTRUMENTS

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.3 vsi_o_event_ttrace () - Trace Event

Function definition:

int vsi_o_event_ttrace (const char * const format, ...)

Parameters:
Type Name Meaning
const char * const format describing the variable arguments in the list IN
variable argument list IN
Return:
Type Meaning
int VSI_ERROR trace class TC_EVENT not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_event_ttrace() checks if the trace class TC_EVENT is enabled for the calling entity.
If yes the trace is executed, otherwise the trace is aborted and the function returns VSI_ERROR.

The handle of the calling entity is automatically added to the trace inside vsi_o_event_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to 0
and the trace destination will be displayed as SYST in PCO.

It is recommended to call this trace functionality only via the TRACE_EVENT/TRACE_EVENT_P1...9
macro (4.3.40), be able to compile no-trace versions and to allow compressed tracing, refer to 06-03-
42-UDO-0001.

Q’ Texas Instruments Proprietary Information — Internal Data Page 107 of 133
TEXAS
INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.8.4 vsi_o_error_ttrace () - Trace Error

Function definition:

int vsi_o_error_ttrace (const char * const format, ...)

Parameters:
Type Name Meaning
const char * const format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_ERROR not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_error_ttrace() checks if the trace class TC_ERROR is enabled for the calling entity.
If yes the trace is executed, otherwise the trace is aborted and the function returns VSI_ERROR.

The handle of the calling entity is automatically added to the trace inside vsi_o_error_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to 0
and the trace destination will be displayed as SYST in PCO.

It is recommended to call this trace functionality only via the TRACE_ERROR macro (4.3.43), be able
to compile no-trace versions and to allow compressed tracing, refer to 06-03-42-UDO-0001.

Q’ Texas Instruments Proprietary Information — Internal Data Page 108 of 133
TEXAS
INSTRUMENTS

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.,5 vsi_o_state ttrace () - Trace State

Function definition:

int vsi_o_state_ttrace (const char * const format, ...)

Parameters:
Type Name Meaning
const char * const format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_STATE not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_state_ttrace() checks if the trace class TC_STATE is enabled for the calling entity.
If yes the trace is executed, otherwise the trace is aborted and the function returns VSI_ERROR.

The handle of the calling entity is automatically added to the trace inside vsi_o_state_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to 0
and the trace destination will be displayed as SYST in PCO.

This function is called in the macros GET_STATE() and SET_STATE() and does not need to be called
‘by hand’, State traces are processed by the compressed tracing, refer to 06-03-42-UDO-0001.

Q’ Texas Instruments Proprietary Information — Internal Data Page 109 of 133
TEXAS
INSTRUMENTS

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.8.6 vsi_o_class_ttrace () - Trace User Trace Class

Function definition:

int vsi_o_class_ttrace (ULONG traceclass, const char * const format, ...)

Parameters:
Type Name Meaning
ULONG traceclass class of the string to be traced
const char * const format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_USERXx not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_class_ttrace() checks if the trace class passed in the parameter traceclass is en-
abled for the calling entity. If yes the trace is executed, otherwise the trace is aborted and the function
returns VSI_ERROR.

The handle of the calling entity is automatically added to the trace inside vsi_o_class_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to 0
and the trace destination will be displayed as SYST in PCO.

It is recommended to call this trace functionality only via the
TRACE_USER_CLASS/TRACE_USER_CLASS_P1...9 macro (4.3.41), be able to compile no-trace
versions and to allow compressed tracing, refer to 06-03-42-UDO-0001.

Q’ Texas Instruments Proprietary Information — Internal Data Page 110 of 133
TEXAS
INSTRUMENTS

IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.8.7 vsi_o_ptrace () - Trace Primitive

Function definition:

int vsi_o_ptrace (T_HANDLE caller, USHORT opc, USHORT dir)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity IN

ULONG opc operation code of the primitive to be traced IN

USHORT dir direction of the primitive (receive/send) IN

Return:

Type Meaning

int VSI_ERROR trace class TC_PRIM not enabled in trace mask
VSI_OK success

Options: none

Description:

The function vsi_o_ptrace() compares the trace class TC_PRIM to the stored trace mask for the call-
ing task. If the bit representing the class to be traced is set in the trace mask, the trace is executed,
otherwise the function returns VSI_ERROR.

This function is used to trace an operation code and the direction of a primitive. An external test sys-
tem decodes the operation code and displays the primitive name and direction.

This function does not need to be called by the application itself. It is called within the frame respec-
tively in the corresponding macro when sending/receiving primitives.

Q’ Texas Instruments Proprietary Information — Internal Data Page 111 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.8.8 vsi_o_strace () - Trace State

Function definition:

int vsi_o_strace (T_HANDLE caller, char *machine, char *curstate, char *newstate)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
char * machine name of state machine
char * curstate current state of state machine
char * newstate new state of state machine
Return:
Type Meaning
int VSI_ERROR trace class TC_STATE not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_strace() compares the trace class TC_STATE to the stored trace mask for the
calling task. If the bit representing the class to be traced is set in the trace mask, the trace is executed,
otherwise the function returns VSI_ERROR.

This function is used to trace a state or a state transition for the state machines that are defined within
the protocol entities.

This function does not need to be called by the application itself. It is called within macros when set-
ting/getting a state of a state machine.

Q’ Texas Instruments Proprietary Information — Internal Data Page 112 of 133
TEXAS

INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.9 vsi_o_primsend () - Send Primitive to PC

Function definition:

int vsi_o_primsend (T_HANDLE caller, unsigned int mask, T_HANDLE dst, char *ext_dst, unsigned
int prim_id, void *ptr, unsigned int len)

If partition pool monitoring activated:

int vsi_o_primsend (T_HANDLE caller, unsigned int mask, T_HANDLE dst, char *ext_dst, unsigned
int prim_id, void *ptr, unsigned int len, const char *file, intline)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
unsigned int mask trace filter class
T_HANDLE dst destination entity
char * ext_dest name of destination on PC
int prim_id primitive id
void * ptr pointer to primitive or data
unsigned int len data length
Return:
Type Meaning
int VSI_ERROR failed
VSI_OK success
Options: none
Description:

The function vsi_o_primsend() is used to send an allocated primitive identified by the parameter ptr or
any other data identified by ptr and len to a GPF based application specified by ext_dest running on
the connected PC.

If the prim_id is zero it is assumed that ptr points to an allocated primitive. If the prim_id is different
from zero, the frame allocates a memory partition for a primitive, copies the data identified by ptr and
len into this primitive and sends it to the PC.

The function vsi_o_primsend() should not be called directly but via on of the macros in section 4.3 like
PSEND_TO_PC, refer to 4.3.34.

Q’ Texas Instruments Proprietary Information — Internal Data Page 113 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.10 vsi_o_itrace () - Trace Index

Function definition:

int vsi_o_itrace (T_HANDLE caller, ULONG tclass, USHORT index, char *format, ...)

Parameters:

Type Name Meaning

T _HANDLE caller handle of calling entity

ULONG tclass class to be traced

USHORT index index to be traced

char * format describing the variable arguments in the list

variable argument list

Return:

Type Meaning

int VSI_ERROR trace class not enabled in trace mask
VSI_OK success

Options: none

Description:

The function vsi_o_itrace() compares the specified trace class to the stored trace mask for the calling
entity. If the bit representing the class to be traced is set in the trace mask, the trace is executed, oth-
erwise the function returns VSI_ERROR.

This function is used to trace indices representing strings. It is a replacement for the function
vsi_o_ttrace().

Instead of the string only an index is traced. The replacement of the function calls is done by an exter-
nal tool that searches through the source files. This is done to save program memory and to reduce
the system load as a result of the interrupts of the serial interface when transmitting long strings.

This function takes a variable number of arguments. Within the format string the information is found
how many more arguments follow and of what C type they are. The format string is build out of the
following characters: ¢ (char), d (double) ,i (long integer) ,p (pointer) ,s (C string), * (long integer).
Every argument in the variable argument list is traced in its binary representation e.g. a long integer is
traced as four successive bytes. For every character found in the format string one argument is ex-
pected in the variable argument list. The character defines the C type of the argument.

Index and arguments are transmitted in little endian byte order.

An external test system decodes the indices and displays the assigned strings.

This function MUST NOT be used directly in the implementation. The distribution of the trace indices is
under exclusive control of an external tool and would otherwise be messed up.

Q’ Texas Instruments Proprietary Information — Internal Data Page 114 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.11 vsi_o_func_itrace () - Trace Function - Index

Function definition:

int vsi_o_func_itrace (USHORT index, char *format, ...)

Parameters:

Type Name Meaning

USHORT index index to be traced

char * format describing the variable arguments in the list

variable argument list

Return:

Type Meaning

int VSI_ERROR trace class TC_FUNC not enabled in trace mask
VSI_OK success

Options: none

Description:

The function vsi_o_func_itrace() checks if the trace class TC_FUNC is enabled in trace mask for the
calling entity. If TC_FUNC is set in the trace mask, the trace is executed, otherwise the function re-
turns VSI_ERROR.

This function is used to trace indices representing strings. It is a replacement for the function
vsi_o_func_ttrace() called in the macros TRACE_FUNCTION/TRACE_FUNCTION_P1...9 (4.3.39) in
case of compressed tracing enabled.

Instead of the string only an index is traced. The replacement of the function calls is done by an exter-
nal tool that searches through the source files. This is done to save program memory and to reduce
the system load as a result of the interrupts of the serial interface when transmitting long strings.

This function takes a variable number of arguments. Within the format string the information is found
how many more arguments follow and of what C type they are. The format string is build out of the
following characters: ¢ (char), d (double) ,i (long integer) ,p (pointer) ,s (C string), * (long integer).

Every argument in the variable argument list is traced in its binary representation e.g. a long integer is
traced as four successive bytes. For every character found in the format string one argument is ex-
pected in the variable argument list. The character defines the C type of the argument.

The handle of the calling entity is automatically added to the trace inside vsi_o_class_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to O
and the trace destination will be displayed as SYST in PCO.

Index and arguments are transmitted in little endian byte order.

An external test system decodes the indices and displays the assigned strings.

This function MUST NOT be used directly in the implementation. The distribution of the trace indices is

under exclusive control of an external tool and would otherwise be messed up.
TRACE_FUNCTION/TRACE_FUNCTION_P1...9 (4.3.39) has to used instead.

Q’ Texas Instruments Proprietary Information — Internal Data Page 115 of 133
TEXAS
INSTRUMENTS

IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.12 vsi_o_event_itrace () - Trace Event - Index

Function definition:

int vsi_o_event_itrace (USHORT index, char *format, ...)

Parameters:
Type Name Meaning
USHORT index index to be traced
char * format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_EVENT not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_event_itrace() checks if the trace class TC_EVENT is enabled in the stored trace
mask for the calling entity. If TC_EVENT is set in the trace mask, the trace is executed, otherwise the
function returns VSI_ERROR.

This function is used to trace indices representing strings. It is a replacement for the function
vsi_o_event_ttrace() called in the macros TRACE_EVENT/TRACE_EVENT_P1...9 (4.3.40) in case of
compressed tracing enabled.

Instead of the string only an index is traced. The replacement of the function calls is done by an exter-
nal tool that searches through the source files. This is done to save program memory and to reduce
the system load as a result of the interrupts of the serial interface when transmitting long strings.

This function takes a variable number of arguments. Within the format string the information is found
how many more arguments follow and of what C type they are. The format string is build out of the
following characters: ¢ (char), d (double) ,i (long integer) ,p (pointer) ,s (C string), * (long integer).

Every argument in the variable argument list is traced in its binary representation e.g. a long integer is
traced as four successive bytes. For every character found in the format string one argument is ex-
pected in the variable argument list. The character defines the C type of the argument.

The handle of the calling entity is automatically added to the trace inside vsi_o_class_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to O
and the trace destination will be displayed as SYST in PCO.

Index and arguments are transmitted in little endian byte order.

An external test system decodes the indices and displays the assigned strings.

This function MUST NOT be used directly in the implementation. The distribution of the trace indices is

under exclusive control of an external tool and would otherwise be messed up.
TRACE_EVENT/TRACE_EVENT_P1...9 (4.3.40) has to used instead.

Q’ Texas Instruments Proprietary Information — Internal Data Page 116 of 133
TEXAS
INSTRUMENTS

IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.13 vsi_o_error_itrace () - Trace Error - Index

Function definition:

int vsi_o_error_itrace (USHORT index, char *format, ...)

Parameters:
Type Name Meaning
USHORT index index to be traced
char * format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_ERROR not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_error_itrace() checks if the trace class TC_ERROR is enabled in the stored trace
mask for the calling entity. If TC_ERROR is set in the trace mask, the trace is executed, otherwise the
function returns VSI_ERROR.

This function is used to trace indices representing strings. It is a replacement for the function
vsi_o_error_ttrace() called in the macro TRACE_ERROR (4.3.43) in case of compressed tracing en-
abled.

Instead of the string only an index is traced. The replacement of the function calls is done by an exter-
nal tool that searches through the source files. This is done to save program memory and to reduce
the system load as a result of the interrupts of the serial interface when transmitting long strings.

This function takes a variable number of arguments. Within the format string the information is found
how many more arguments follow and of what C type they are. The format string is build out of the
following characters: ¢ (char), d (double) ,i (long integer) ,p (pointer) ,s (C string), * (long integer).

Every argument in the variable argument list is traced in its binary representation e.g. a long integer is
traced as four successive bytes. For every character found in the format string one argument is ex-
pected in the variable argument list. The character defines the C type of the argument.

The handle of the calling entity is automatically added to the trace inside vsi_o_class_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to 0
and the trace destination will be displayed as SYST in PCO.

Index and arguments are transmitted in little endian byte order.

An external test system decodes the indices and displays the assigned strings.

This function MUST NOT be used directly in the implementation. The distribution of the trace indices is

under exclusive control of an external tool and would otherwise be messed up. TRACE_ERROR
(4.3.43) has to used instead.

Q’ Texas Instruments Proprietary Information — Internal Data Page 117 of 133
TEXAS
INSTRUMENTS

IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.14 vsi_o_state_itrace () - Trace State - Index

Function definition:

int vsi_o_state_itrace (USHORT index, char *format, ...)

Parameters:
Type Name Meaning
USHORT index index to be traced
char * format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_STATE not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_state_itrace() checks if the trace class TC_STATE is enabled in the stored trace
mask for the calling entity. If TC_STATE is set in the trace mask, the trace is executed, otherwise the
function returns VSI_ERROR.

This function is used to trace indices representing strings. It is a replacement for the function
vsi_o_state_ttrace() called in the macros GET_STATE/SET_STATE in case of compressed tracing
enabled.

Instead of the string only an index is traced. The replacement of the function calls is done by an exter-
nal tool that searches through the source files. This is done to save program memory and to reduce
the system load as a result of the interrupts of the serial interface when transmitting long strings.

This function takes a variable number of arguments. Within the format string the information is found
how many more arguments follow and of what C type they are. The format string is build out of the
following characters: ¢ (char), d (double) ,i (long integer) ,p (pointer) ,s (C string), * (long integer).

Every argument in the variable argument list is traced in its binary representation e.g. a long integer is
traced as four successive bytes. For every character found in the format string one argument is ex-
pected in the variable argument list. The character defines the C type of the argument.

The handle of the calling entity is automatically added to the trace inside vsi_o_class_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to O
and the trace destination will be displayed as SYST in PCO.

Index and arguments are transmitted in little endian byte order.

An external test system decodes the indices and displays the assigned strings.

This function MUST NOT be used directly in the implementation. The distribution of the trace indices is
under exclusive control of an external tool and would otherwise be messed up. The function

vsi_o_state_itrace() is called in the GET_STATE/SET_STATE macros in case the compressed tracing
is enabled.

Q’ Texas Instruments Proprietary Information — Internal Data Page 118 of 133
TEXAS
INSTRUMENTS

IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.15 vsi_o_class_itrace () - Trace User Class - Index

Function definition:

int vsi_o_class_itrace (ULONG traceclass, USHORT index, char *format, ...)

Parameters:
Type Name Meaning
ULONG traceclass trace class of passed trace data
USHORT index index to be traced
char * format describing the variable arguments in the list
variable argument list
Return:
Type Meaning
int VSI_ERROR trace class TC_EVENT not enabled in trace
mask
VSI_OK success
Options: none
Description:

The function vsi_o_class_ttrace() checks if the trace class passed in the parameter traceclass is en-
abled for the calling entity. If yes the trace is executed, otherwise the trace is aborted and the function
returns VSI_ERROR.

This function is used to trace indices representing strings. It is a replacement for the function
vsi_o_class_ttrace() called in TRACE_USER_CLASS/TRACE_USER_CLASS P1...9 (4.3.41) in case
of compressed tracing enabled.

Instead of the string only an index is traced. The replacement of the function calls is done by an exter-
nal tool that searches through the source files. This is done to save program memory and to reduce
the system load as a result of the interrupts of the serial interface when transmitting long strings.

This function takes a variable number of arguments. Within the format string the information is found
how many more arguments follow and of what C type they are. The format string is build out of the
following characters: c (char), d (double) ,i (long integer) ,p (pointer) ,s (C string), * (long integer).

Every argument in the variable argument list is traced in its binary representation e.g. a long integer is
traced as four successive bytes. For every character found in the format string one argument is ex-
pected in the variable argument list. The character defines the C type of the argument.

The handle of the calling entity is automatically added to the trace inside vsi_o_class_ttrace(). If this is
a non-Task thread or a task not based on the GPF frame, the handle of the calling entity is set to O
and the trace destination will be displayed as SYST in PCO.

Index and arguments are transmitted in little endian byte order.

An external test system decodes the indices and displays the assigned strings.

This function MUST NOT be used directly in the implementation. The distribution of the trace indices is

under exclusive control of an external tool and would otherwise be messed up.
TRACE_USER_CLASS/TRACE_USER_CLASS_P1...9 (4.3.41) has to used instead.

Q’ Texas Instruments Proprietary Information — Internal Data Page 119 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.16 vsi_o_settracemask () - Set Trace mask

Function definition:

int vsi_settracemask (T_HANDLE caller, T_HANDLE handle, ULONG mask)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
T _HANDLE handle handle of destination entity for trace mask IN
ULONG mask trace mask IN
Return:
Type Meaning
int VSI_ERROR invalid destination entity handle
VSI_OK success
Options: none
Description:

The function vsi_o_settracemask() writes the specified trace mask into the table of the trace masks
located in the VSI. Each bit in the trace masks represents a trace class that is compared to the trace
class given to the vsi trace functions.

This function is only called by the test interface process that receives the configuration messages via
the serial interface.

Q’ Texas Instruments Proprietary Information — Internal Data Page 120 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.17 vsi_o_gettracemask () - Get Trace mask

Function definition:

int vsi_o_gettracemask (T_HANDLE caller, T_HANDLE handle, ULONG * mask)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity IN
T _HANDLE handle handle of entity of requested trace mask IN
ULONG * mask trace mask ouT
Return:
Type Meaning
int VSI_ERROR invalid destination entity handle
VSI_OK success
Options: none
Description:

The function vsi_o_gettracemask() reads the trace mask of the requested entity out of the table of the
trace masks located in the VSI and writes it into the parameter mask.

This function is only called by the test interface process that receives the configuration messages via
the serial interface.

Q’ Texas Instruments Proprietary Information — Internal Data Page 121 of 133
TEXAS

INSTRUMENTS

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.18 vsi_o_assert() - Fatal Error Handling

Function definition:

int vsi_o_assert (T_HANDLE caller, USHORT cause, const char *file, int line, const char * const for-

mat,...)

Parameters:

Type Name

T _HANDLE caller handle of calling entity

USHORT error cause unique error code

const char * file source file name

int line line in source file

char * format describing the variable arguments in the list
variable argument list

Return:

Type Meaning

int VSI_OK

Options: none

Description:

The function vsi_o_assert() is called if a fatal error has been detected. It traces the error message and

calles os_SystemError() for OS layer specific error handling.

Depending on the implementation of os_SystemError() in the used OS layer calling vsi_o_assert()

may result in a reset of the mobile or the suspension of the calling task.

A frame error indication primitive is sent to applications on the tools side that have registered to re-

ceive this.

It is recommended to call the function vsi_o_assert() via the TRACE_ASSERT (4.3.44) macro.

*f" TEXAS

INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 122 of 133

IN
IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.19 vsi_non_gsp_trace_register () - Register non-GSP Entity Trace System

Function definition:

T_HANDLE vsi_non_gsp_trace_register (char * name, U32 flags)

Parameters:

Type Name Meaning

char * name entity name

u32 flags flags for trace APl usage

Return:

Type Meaning

T HANDLE VSI_OK handle to be used for tracing
VSI_ERROR registration failed

Options: none

Description:

The function vsi_non_gsp_trace_register() allows non-GSP entities to register at the GSP trace sys-
tem to use the GSP trace API. A registered non-GSP entity is able to trace via the trace API function
vsi_o_ttrace().

The parameter flags can be used to configure the trace system to e.g. drop traces in case no trace
memory is available by setting the flags parameter to TRC_NO_SUSPEND.

Q’ Texas Instruments Proprietary Information — Internal Data Page 123 of 133
TEXAS

INSTRUMENTS

IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.20 vsi_set_non_gsp_trace_filter () - Set Trace Filter for non-GSP Entity

Function definition:

int vsi_set_non_gsp_trace_filter (T_HANDLE non_gsp_handle, ULONG trace_filter);

Parameters:
Type Name Meaning
T _HANDLE non_gsp_handle handle of non-GSP entity IN
ULONG trace_filter new trace filter setting IN
Return:
Type Meaning
T_HANDLE VSI_OK success
VSI_ERROR error
Options: none
Description:

The function vsi_set_non_gsp_trace_filter() allows the setting of trace filters for a non-GSP entity
specified by the parameter non_gsp_handle that was previously returned by the function
Vsi_non_gsp_trace_register().

Trace filter settings are described in 4.2.3.

Q’ Texas Instruments Proprietary Information — Internal Data Page 124 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.8.21 vsi_get_non_gsp_trace_handle () - Get Trace Handle of non-GSP Entity

Function definition:

T_HANDLE vsi_get_non_gsp_trace_handle (char * name);

Parameters:
Type Name Meaning
char * name entity name IN
Return:
Type Meaning
T HANDLE VSI_OK handle to be used for tracing
VSI_ERROR error
Options: none
Description:

The function vsi_get_non_gsp_trace_handle() returns the trace handle of a non-GSP entity specified
by name that was previously registered at the GSP trace system with the function
Vsi_non_gsp_trace_register().

This function returns VSI_ERROR in case no entity with the specified name is registered.

Q’ Texas Instruments Proprietary Information — Internal Data Page 125 of 133
TEXAS

INSTRUMENTS

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.9 Partition Supervision

45.9.1 vsi_ppm_new () - Supervision of Allocating a Partition

Function definition:

void vsi_ppm_new (T_HANDLE caller, void * prim, const char *file, int line)

Parameters:

Type Name Meaning

T_HANDLE caller calling task

void * prim pointer to partition holding primitive
const char * file source file name

int line line in source file

Return: e

Options: OPTIMIZE_POOL

Description:

The function vsi_ppm_new() monitors the allocation of a partition used for sending primitives. The
function updates an internal partition monitoring table. The state of a partition is set to ALLOCATED.
State transitions are supervised and an error message is generated in the case of an illegal transition.
File and line of the caller are stored in the monitoring table.

This function must be called after a partition is allocated with vsi_c_new() if the partition memory pool
supervision capability should be used. To call the function vsi_ppm_new() the macro
VSI_PPM_NEW ((T_PRIM_HEADER*)Prim,_FILE_ , LINE_);

should be inserted. Prim is the pointer that vsi_c_new() returned.

If the macro PALLOC() is used for partition allocation, the call of vsi_ppm_new() is not necessary as
the function is called within the frame.

If the Option OPTIMIZE_POOL is activated, a statistic processing that evaluates the different sized
primitives compared to the size of the allocated partitions and the number of allocated partitions com-
pared to the number of available partitions is also enabled.

Q’ Texas Instruments Proprietary Information — Internal Data Page 126 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.9.2 vsi_ppm_rec () - Supervision of Receiving a Partition

Function definition:

void vsi_ppm_rec (T_HANDLE caller, void * prim, const char *file, int line)

Parameters:

Type Name Meaning

T _HANDLE caller calling task

void * prim pointer to partition holding primitive
const char * file source file name

int line line in source file

Return: e

Options: None

Description:

The function vsi_ppm_rec() monitors the receiving of a primitive stored in a partition. The function
updates an internal partition monitoring table. The state of a partition is set to RECEIVED. State transi-
tions are supervised and an error message is generated in the case of an illegal transition. File and
line of the caller are stored in the monitoring table.

It is not needed to call vsi_ppm_rec() in pei_primitive() of an entity. It is called inside the frame when a
primitive has been received.

Q’ Texas Instruments Proprietary Information — Internal Data Page 127 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4.5.9.3 vsi_ppm_send () - Supervision of Sending a Partition

Function definition:

void vsi_ppm_send (T_HANDLE caller, T_HANDLE rcv, void * prim, const char *file, int line)

Parameters:

Type Name Meaning

T _HANDLE caller calling task

T _HANDLE rcv queue handle of destination task
void * prim pointer to partition holding primitive
const char * file source file name

int line line in source file

Return: e

Options: OPTIMIZE_POOL

Description:

The function vsi_ppm_send() monitors the sending of a primitive stored in a partition. The function
updates an internal partition monitoring table. The state of a partition is set to SENT. State transitions
are supervised and an error message is generated in the case of an illegal transition. File and line of
the caller are stored in the monitoring table.

This function is called in the function vsi_c_send() and must not be called from any protocol stack
entity.

If the Option OPTIMIZE_POOL is activated, a statistic processing that evaluates the different sized
primitives compared to the size of the allocated partitions and the number of allocated partitions com-
pared to the number of available partitions is also enabled.

Q’ Texas Instruments Proprietary Information — Internal Data Page 128 of 133
TEXAS

INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.9.4 vsi_ppm_reuse () - Supervision of Reusing a Partition

Function definition:

void vsi_ppm_reuse (T_HANDLE caller, void * prim, const char *file, int line)

Parameters:

Type Name Meaning

T _HANDLE caller calling task

void * prim pointer to partition holding primitive
const char * file source file name

int line line in source file

Return: e

Options: OPTIMIZE_POOL

Description:

The function vsi_ppm_reuse() monitors the reusing of a primitive stored in a partition. A reuse is done
when a protocol stack entity uses a the partition of a received primitive to send the next primitive. The

function updates an internal partition monitoring table. The state of a partition is set to REUSED. State
transitions are supervised and an error message is generated in the case of an illegal transition. If the
new primitive to be sent does not fit into the reused partition, an error message is generated. File and

line of the caller are stored in the monitoring table.

If the Option OPTIMIZE_POOL is activated, there is also enabled a statistic processing that evaluates
the different sized primitives compared to the size of the allocated partitions and the number of allo-
cated partitions compared to the number of available partitions.

It is not needed to call vsi_ppm_reuse() in an entity. It is called inside the frame when a PREUSE_...
macro is called.

Q’ Texas Instruments Proprietary Information — Internal Data Page 129 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18

Draft

45.9.5 vsi_ppm_access () - Supervision of Access of a Partition

Function definition:

void vsi_ppm_access (T_HANDLE caller, void * prim, const char *file, int line)

Parameters:

Type Name Meaning

T _HANDLE caller calling task

void * prim pointer to partition holding primitive
const char * file source file name

int line line in source file

Return: e

Options: MEMORY_SUPERVISION

Description:

The function vsi_ppm_access() monitors the access of a primitive stored in a partition.

It is not needed to call vsi_ppm_access() in an entity. It is called inside the frame when the macro

PACCESS is called.

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 130 of 133

IN
IN
IN
IN

Technical Document

Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

45.9.6 vsi_ppm_free () - Supervision of Deallocating a Partition

Function definition:

void vsi_ppm_free (T_HANDLE caller, void * prim, const char *file, int line)

Parameters:

Type Name Meaning

T _HANDLE caller calling task

void * prim pointer to partition holding primitive
const char * file source file name

int line line in source file

Return: e

Options: OPTIMIZE_POOL

Description:

The function vsi_ppm_free() monitors the sending of a primitive stored in a partition. The function up-
dates an internal partition monitoring table. The state of a partition is set to FREED. State transitions
are supervised and an error message is generated in the case of an illegal transition. File and line of
the caller are stored in the monitoring table.

This function is called in the function vsi_c_free() and must not be called from any protocol stack en-

tity.

If the Option OPTIMIZE_POOL is activated, a statistic processing that evaluates the different sized
primitives compared to the size of the allocated partitions and the number of allocated partitions com-
pared to the number of available partitions is also enabled.

*? TeEXAS
INSTRUMENTS

Texas Instruments Proprietary Information — Internal Data

Page 131 of 133

IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

4 .5.10 Miscellaneous

These functions are only used by the test interface entity for configuration and test purposes.
4.5.10.1 vsi_object_info () - Object Information

Function definition:

int vsi_object_info (T_HANDLE caller, USHORT id, T_HANDLE handle, char * buffer, USHORT size)

Parameters:
Type Name Meaning
T _HANDLE caller handle of calling entity
USHORT id object identifier
T_HANDLE handle object handle
char * buffer buffer to store information
USHORT size size of buffer provided by the caller
Return:
Type Meaning
int VSI_ERROR error

VSI_OK success
Options: None
Description:

The function vsi_object_info () may be used to get information about the 'objects' that exist in the sys-
tem. Each object is defined by an object identifier (OS_OBJTASK, OS_OBJQUEUE, OS_OBJTIMER,
OS_OBJSEMAPHORE, OS_OBJPARTITIONPOOL, OS_OBJMEMORYPOOL) and an object handle.

The functions returns VSI_ERROR if the identifier is unknown or the handle exceeds the number of
objects that exist of this type. If the handle is lower than that maximum but no object exists for this
handle, then an empty string (") is written to the buffer.

The information and the format written to the buffer depend on the information provided by the RTOS.

Q’ Texas Instruments Proprietary Information — Internal Data Page 132 of 133
TEXAS
INSTRUMENTS

IN
IN
IN
IN
IN

Technical Document
Generic Protocol Stack Framework GPF VSI/PEI-Frame/Body Interface - Interface Descr.(06-03-10-ISP-0002), v0.18 Draft

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Te- Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone

lecommunication 2000 System), this is the ITU's specification/family of standards for 3G. This

(IMT-2000/1TU-2000) initiative provides a global infrastructure through both satellite and terres-
trial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roam-

ing. <URL: http://www.imt-2000.0rg/>

Q’ Texas Instruments Proprietary Information — Internal Data Page 133 of 133
TEXAS
INSTRUMENTS

http://www.imt-2000.org/>

