*’? TEXAS
INSTRUMENTS

CELLULAR SYSTEMS DESIGN SPECIFICATION

Multimedia Framework MSL N5.x Design Specification

Document Revision: 1.0 DRAFT
Issue Date: 12 July 2006

MakingWireless

TI Proprietary Information — Strictly Private

MakingWireless

“Texas Instruments™” and “TI™” are trademarks of Texas Instruments
The Tl logo is a trademark of Texas Instruments
OMAP™ is a trademark of Texas Instruments
OMAP-Vox™ is a trademark of Texas Instruments
Innovator™ is a trademark of Texas Instruments
Code Composer Studio™ is a trademark of Texas Instruments
DSP/BIOS™ is a trademark of Texas Instruments
eXpressDSP™ is a trademark of Texas Instruments
TMS320™ is a trademark of Texas Instruments
TMS320C28x™ is a trademark of Texas Instruments
TMS320C6000™ is a trademark of Texas Instruments
TMS320C5000™ is a trademark of Texas Instruments
TMS320C2000™ is a trademark of Texas Instruments

All other trademarks are the property of the respective owner.

Copyright © 2006 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for the

products based from this document.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS i

Design Specification

Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus Multimedia Framework MSL N5.x
Table of Contents

Table Of CONLENESccceiiieiiiiieeieeeeeee e e e e e e s e e e e e e e e rr e e e rrrrrrrrerrrerrrrrrrrrrrreareenreseneensnnnnannnnsnnnnnnnnnnnnnnnnnnnnns iii
IS o) o [0 (T PR UUPPRRRP iv
I 121 Yo 11T T o 1
PR R U 4 o o] PN 1
LIPS o7 o - PPN 1
(G T 1 1= =1 o TSP 1
IR S I =Y 101 o T NS 1
b O 1 =Y - PP PP PPPPPPPPPPRRPPPIRt 2
2.1 MSL_UCP_IMGCAP Pip€eling FEALUIESuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiririrennrrrereerrrerrerrrrrerres 2
2.2 MSL_UCP_IMGTHMB Pip€elin€ FEAtUIES.........uuuuuiiiiiiiiiiiiiiiiiiiiiriiiieininnnnrrreerrrenreererrerrerrs 3
2.3 MSL_UCP_ IMGVIEW Pipeling FEAtUIES.........uuuuiiiiiiiiiiiiiiiiiiiiieiiiiirininrrrrrreerrernreeenreeee. 3
3 API AN Data StruCtUIES..........cooeiiiiieei i s e s e e e s s e e aannn e e s 4
K Tt I O70 o o [0 o g T B =1 r= IS (0 (o 11 Y PP 4
3.1.1 MSL_INDEXTYPES. ...ttt 4
RO B Y I o | I o 6
R By B B 1 Y I O VI N =7 Y 7 GO 6
BB R B R B U L O e I o = 7
3.1.5 MSL_CMDTYPE ...ttt 8
3.1.6 MSL_OVERLAY MODE ...ttt 9
3.1.7 MSL_CAMERA MODE...........ooooeeeeieieeeeeeeeeeeee ettt 9
3.1.8 MSL_IMG _ROTATETYPE ... 10
3.1.9 MSL_COLOR _FORMATTYPE ... 10
3.1.10 MSL_IMG _WINDOWTYPE ... 11
3.1.11 MSL_IMG_OVERLAYCONFIG ... 12
3.1.12 MSL_CAM_CONFIGTYPE.........o oo 13
3.1.13 MSL_DISPLAY CONFIGTYPE.........coo oo 13
3.1.14 MSL_RESCALE _CONFIGTYPE ...t 14
3.1.15 MSL_FILE CONFIGTYPE.........o oo 15
3.1.16 MSL_IMGINFO_CONFIGTYPE ..ottt 15
3.1.17 MSL_SUCP>_STATUSttt 16
3.2 MSL IMGCAP Specific Data StrUCIUIESccevvviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 18
3.3 MSL IMGVIEW Specific Data StruCtUIES...........ccvvviiiiiiiiiiiiiiieiieeeeeeeeeeeeeee e 18
3.4 MSL IMGVIEW Specific Data StruCUIES..........cccvvviiiiiiiiiiiiiiieieeee et 18
K T O 11V 1Y (@ VY e [PP 18
3.6 MSL IMGCAP APIS ...ttt ettt ettt ettt e et e et e e e et e e et e e e e e e e e e e e e e e et e e e e e e aee s 19
R B S I [To (0= o N O (= - 1 (= I 19
3.6.2 MSL_ImgCap_SetCONTIQcooueeeeiiiiiiiiiiieeeii ettt 20
3.6.3 MSL _IMGCap_INQt.......coooeeeeeeeeeeeeeeeeee e 22
3.6.4 MSL _ImgCap_ VIEWHINAEKcccoeeeeeeeeeeeeeeeeeeeee e 23
3.6.5 MSL_ImgCap_ MSL_ImgCap _SnapsShot............ccccccuuvuuiueeiiiiiiiiiiiiiiiiiiiiiiiiiiieeieieieeeaeeaaaae 24
3.6.6 MSL_IMGCap_DeINit.............coouuuiiieiiiiiiiiiiiiiie et 25
3.6.7 MSL_IMGCap_ DESIIOYccoeeeeeeieeieiieeeeeeeeeee ettt 26
3.7 MSL IMGVIEW APIS ...ttt ettt ettt ettt ettt e e e e et e e e et e aeees 27
O A B Y I [Te Y=Y A O (=T (= 27
3.7.2 MSL_ IMGVIEW _SEECONTIGeeeeeeeeeeeeeee et a e e e eeas 28
3.7.3 MSL_IMGVIEW _INit........cooveeeeeeeiieiieeeie e 30
3.7.4 MSL_IMGVIEW _VIWccooeoeeeiieeeeeeee ettt 31
3.7.5 MSL_IMGViIeW _DEINit............coooveeiieiiiiiiiiiiiii ettt 32
3.7.6 MSL_IMGVIEW _ DESIIOY ...t e e e e eeea s 33
3.8 MSL IMGTHMB APIS....cccoiiiiiiiieeeeeeeeeeee ettt ettt ettt ettt ettt e aeees 34
3.8.1 MSL_IMGTAMB_CrEale.........cccooveeeeiiiiieiiieieeee ettt 34

& 7 T
EXAS TI Proprietary Information — Strictly Private

INSTRUMENTS i

Design Specification

Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus Multimedia Framework MSL N5.x
3.8.2 MSL_IMGTAMBD_SEECONTIG eeeeeeeeeeeeee e a e e e 35
3.8.3 MSL_IMGTRAMDB _INit.........cooooeeeeeieieieieeie ettt 37
3.8.4 MSL_IMGTAMDB_GENEIaAte...........ccoveeiiiiiiiiieiieeieieeeee ettt 38
3.8.5 MSL_IMGTRAMB_DEINitccovveeieeiiiiiiiiiiiie ettt 39
3.8.6 MSL_IMGTAMD _ DESIIOY ...t a e e 40

4 Call SEUUENCES ...ceeveeeeeireererrereerrerrrrnrrrarereraraerrrrerrrererrrrerrrerrerrrareeerremmeemmrrremremmm 41
5 Performance Dataccccce e 43
6 Memory Requirements............ccccoi 44

List of Figures

Figure 1. Thumbnail Creation sequence diagram.............oiiuuiiiiiiiai e 41
Figure 2. Preview Icon Extraction sequence diagram...................oooo.. Error! Bookmark not defined.
Figure 3. Image Viewer SEQUENCE QIAQIaIMuuuuueuueiiiiiiiiiiiiiietitbbbbeeebbbbebebe bbb bebebeeeeeeeeeernee 42
Figure 4. Image Editor Zoom sequence diagram.................eevveviiiiinnns Error! Bookmark not defined.
Figure 5. Image Editor Rotate sequence diagramccccvvvvviinnnee Error! Bookmark not defined.
W TEXAS TI Proprietary Information — Strictly Private

INSTRUMENTS v

Design Specification

Revision 1.0 DRAFT 29 June 2006

Design Specification

Nucleus Multimedia Framework MSL N5.x

Revision History

REV DATE NOTES
0.1 22 Feb 2006 | Initial Draft
0.2 27 Feb 2006 Incorporated the comments after review
0.3 06 March 2006 | Updated the API prototypes
1.0 12 July 2006 | Updated to the latest implementation
Ul TEXAS TI Proprietary Information — Strictly Private

INSTRUMENTS

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus Multimedia Framework MSL N5.x

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent
Tl deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using Tl components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent
right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine,
or process in which Tl products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from Tl to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from Tl under the patents or other intellectual
property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not
responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated Tl product or service
and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application

solutions:
1 Products 2 Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
7 o oot sy
EXAS TI Proprietary Information — Strictly Private

INSTRUMENTS vi

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

1 Introduction

The Multimedia Service Layer (MSL) is a multimedia application framework layer for camera and imaging
features which will enable end users to quickly build applications which can harness camera and imaging
capability of Locosto platform. It provides consistent, easy to use use-case-specific API, for use cases like
starting a viewfinder with frame overlaying, or zoom or rotate (or combination of all). Every use-case
pipeline is created, used and destroyed with similar sets of types and functions to assist the application in
using multimedia components.

1.1 Purpose

This purpose of the document is to describe features and APIs for MSL layer implemented on Locosto
platform to enable application users to integrate MSL framework with their applications.

1.2 Scope

This document covers features, APIs, integration notes, memory and performance of MSL layer. This
document does not cover technical detail on MSL implementation.

1.3 File Name

The file name of this document is cssd_designspec_locosto_mm_msl.doc

1.4 Definitions

MSL Multimedia Services Layer

OMX Open Max IL layer

GPF Generic Protocol Stack Framework

VGA Video Graphics Array

QCIF Quarter Common Intermediate Format

CIF Common Intermediate Format

@ TEXAS TI Proprietary Information — Strictly Private

INSTRUMENTS Page 1 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

2 Overview

MSL layer provides application with three use case pipelines as follows.
1. MSL_UCP_IMGCAP
2. MSL_UCP_IMGTHMB
3. MSL_UCP_IMGVIEW

Each of these pipelines provides similar set of APIs. The feature list for each of the pipelines is detailed
below.

21 MSL_UCP_IMGCAP Pipeline Features

This pipeline provides user applications with ability to start a view finder, apply rotation, overlay, zoom
features and take a snapshot and save it to FFS or RFS file system. The full feature list is listed below

® Enable camera viewfinder mode.

m Apply overlay, rotation and zoom on viewfinder frames in viewfinder mode. These features can be on
viewfinder frames in any combination (i.e. only rotation or rotation plus overlay and so on).

¢ Supported rotation values are 0, 90, 180 and 270 degrees.

& Virtually any zoom value is supported. Zoom values are scaled to 1024 to enable smooth zoom.
Zoom value of 1024 is considered no zoom, 2048 2x zoom, 4096 4x zoom etc. The user can
specify any value >=1024 to simulate smooth zoom effect.

¢ Both rotation and zoom values can be dynamically changed while viewfinder is running, but
overlay frame can be changed only when MSL_IMGCAP is in deinit state.

¢ Three types of overlay supported. 1) Color key based substitution 2) alpha blending and 3) On
screen display blending which involved color key substitution and alpha overlay.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

m Ability to support different picture dimensions in viewfinder mode.
¢ Tested dimensions are QQVGA and QCIF

m Take a snapshot while in viewfinder mode.

m Apply rotation, overlay and zoom on snapshot image. By default the effects that are on during
viewfinder frames (like rotate values or zoom value) will be applicable for the captured image too.
User can turn off any of these features before taking snapshot.

¢ When Overlay is not enabled, the raw snapshot is taken in yuyv format.
¢ When Overlay is enabled, the raw snapshot is captured in RGB16 format

m Ability to take burst mode snapshot. The user can set the burst count and when user make a call to
take snapshot the pipeline will take the burst count number of snapshots continuously. Only the last
taken snapshot is displayed on screen. Currently the maximum burst count supported is 3. The
limitation is only in static memory allocated on system, not in API or implementation.

m Ability to save snapshot images in FFS or RFS. Using the configuration setting user can specify
whether the image needs to be saved on RFS (nand) or FFS (nor) file system.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 2 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

m Ability to take snapshot without starting a viewfinder. There is a direct API provided in this pipeline to
take snapshot without calling viewfinder API first.

m Ability to take snapshot in different dimensions. Note that maximum dimension supported by camera
is VGA. Apart from camera limitation, the static memory allocated in system is limited to support
maximum VGA images.

& Tested dimension are QQVGA, QCIF, QVGA, CIF and VGA.

2.2 MSL_UCP_IMGTHMB Pipeline Features

This pipeline provides user application with ability to decode a jpeg image, rescale it down to a different
dimension and re-encode them to again jpeg format. This feature is especially useful to display thumbnail
images as the time taken to decode and display the original images will be too huge to be in the acceptable
range. The full features list of this pipeline is listed below

® The source jpeg file could be of any dimension (less than or equal to VGA).
m The source jpeg file could be in RFS or FFS.

m The destination jpeg file (thumbnail jpeg file) could be saved in RFS or FFS independent of source
jpeg file.

m Ability to set quality factor for generated thumbnail image.

m Ability to specify user defined dimension for destination jpeg file. (it should be less than VGA)

2.3 MSL_UCP_ IMGVIEW Pipeline Features

This pipeline provides user application with ability to decode a jpeg image, apply post processing features like
rotation, rescale, overlay and display them on screen. The full features list of this pipeline is listed below

® The jpeg file could be of any dimension (less than or equal to VGA).
® The jpeg file could be in RFS or FFS.

m Ability to specify rotate, overlay, zoom features independently or in any combinations (like rotate and
zoom) for the displayed image.

¢ Supported rotation values are 0, 90, 180 and 270 degrees.

& Virtually any zoom value is supported. Zoom values are scaled to 1024 to enable smooth zoom.
Zoom value of 1024 is considered no zoom, 2048 2x zoom, 4096 4x zoom etc. The user can
specify any value >=1024 to simulate smooth zoom effect.

¢ Both rotation and zoom values can be dynamically changed while viewfinder is running, but
overlay frame can be changed only when MSL_IMGCAP is in deinit state.

& Three types of overlay supported. 1) color key based substitution 2) alpha blending and 3) On
screen display blending which involved color key substitution and alpha overlay.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

m Ability to specify the dimension of displayed image and location in screen

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 3 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3

API And Data Structures

All three MSL pipeline supports similar set of APIs and data structures. The APIs are classified into two

types.
1)

3.1

Synchronous APls

These APIs will return to the caller only after completing the required functionality i.e. they are
blocking APlIs. In MSL design it was taken care that these APIs takes less than 5ms. The APIs for
creating an MSL pipeline, deleting an MSL pipeline and doing the configuration setting belong to
this category.

Asynchronous APls

These APIs will trigger an internal task to carry out the actual processing and return to the caller
function immediately. Once the actual processing is complete, a callback function (this function
pointer is set using a setconfig API) is returned. This API has parameters to specify the usecase
pipeline, the status of functionality it was supposed to complete, and API type for which it was
called. The APIs for doing MSL pipeline initialization and doing actual data processing (like taking
snapshot, or generating thumbnail) belong to this category.

Common Data Structures

The common data structures are captured in the top level header file msl_api.h. This header file needs to
be included by user applications for all MSL usecase pipelines.

311 MSL_INDEXTYPES
#include <msl api.h>
Data Fields

MSL_CALLBACKSET_CONFIGINDEX,
MSL_DISPLAY_CONFIGINDEX,
MSL_CAMERA_CONFIGINDEX,
MSL_OVERLAY_CONFIGINDEX,
MSL_BURSTCOUNT_CONFIGINDEX,
MSL_ENCFILE_CONFIGINDEX,
MSL_DECFILE_CONFIGINDEX,
MSL_ZOOM_CONFIGINDEX,
MSL_RESCALE_CONFIGINDEX,
MSL_ROTATE_CONFIGINDEX,
MSL_SEPIAEFFECT_CONFIGINDEX,
MSL_GRAYEFFECT_CONFIGINDEX,
MSL_CROPWINDOW_CONFIGINDEX,
MSL_ENCQUALITY_CONFIGINDEX,
MSL_IMGINFO_CONFIGINDEX

Iy By By Sy iy iy)

Detailed Description

This is an enum type structure passed as second parameter of MSL use case pipeline’s setconfig API (for
eg MSL_ImgCap_SetConfig function). The setconfig API interprets the parameter value (passed as third
parameter) depending on the index value.

See also:

MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 4 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Field Documentation

MSL_CALLBACKSET_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_CALLBACK function pointer. This function is called by MSL pipeline to notify completion of asynchronous
APls and events.

MSL_DISPLAY_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_DISPLAY_CONFIGTYPE structure. This parameter defines the display configuration (displayed width,
height, offsets etc) for the image display.

MSL_CAMERA_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_CAM_CONFIGTYPE structure. This structure defines camera specific parameters like camera capture
mode (snapshot or viewfinder), image width, height and format.

MSL_OVERLAY_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_IMG_OVERLAYCONFIG structure. This structure defines overlay parameter like overlay type, overlay
image width, overlay image height etc for the overlay mage.

MSL_BURSTCOUNT_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to an integer
which sets the burst count for camera snapshot capture. This is applicable only to imgcap pipeline and so
MSL_ImgCap_SetConfig API only. By default, the burst count is set to 1. When this config is set and burst count
is set to greater than 1, camera pipeline (MSL_ImgCap) will take “burst_count” number of snapshots one after the
other and saved. All specified post processing (like rotation, zoom, overlay) is performed on each of the snapshots
before saving the jpeg image. The last snapshot taken will be previewed on screen and then the snapshot API will
return a callback informing application that snapshot is complete.

MSL_ENCFILE_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_FILE_CONFIGTYPE structure. This structure defines encode file details like file name and file format type
(rfs, ffs) etc.

MSL_DECFILE_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_FILE_CONFIGTYPE structure. This structure defines decode file details like file name and file format type
(rfs, ffs) etc.

MSL_ZOOM_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig APl should be a pointer to an integer
specifying the zoom value to be set. The zoom values are scaled to 1024 and so no zoom value is 1024. User can
potentially specify zoom value anything equal to or greater than 1024, but quality will degrade beyond 4x zoom
(i.e. when value is set to 4096).

MSL_ MSL_RESCALE_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig APl should be a pointer to
MSL_RESCALE_CONFIGTYPE. This structure defines rescaling parameters for image. This parameters needs to
be set only for MSL_Thmb pipeline to specify the thumbnail image dimension.

MSL_ ROTATE_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_IMG_ROTATETYPE enum type. This value specifies the rotation that needs to be performed on this image.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 5 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

MSL_SEPIAEFFECT_CONFIGINDEX

This index type is currently not supported in any pipelines. This is set for future expansion.
MSL_ GRAYEFFECT_CONFIGINDEX

This index type is currently not supported in any pipelines. This is set for future expansion.
MSL_ CROPWINDOW_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to
MSL_IMG_WINDOWTYPE structure type. This structure defines the crop parameters for the image.

MSL_ ENCQUALITY_CONFIGINDEX

When the index type is set to this value, the third parameter to setConfig API should be a pointer to int pointer,
which specifies the JPEG encode quality value. This value could be between 1 to 100.

MSL_IMGINFO_CONFIGINDEX

When the index type is set to this value, the third parameter to getConfig API should be a pointer to
MSL_IMGINFO_CONFIGTYPE structure. This structure defines the JPEG image property like width, height,
format etc. Note that this is passed to getConfig APl which returns the value from MSL pipeline.

3.1.2 MSL_FILETYPE

#include <msl api.h>

Data Fields
Q MSL_FILETYPE_FFS
O MSL_FILETYPE_RFS

Detailed Description

This enum type is member of MSL_FILE_CONFIGTYPE structure, which is passed as third parameter of
MSL usecase pipeline’s setconfig API (for eg MSL_ImgCap_SetConfig function) when index type is set as
MSL_ENCFILE_CONFIGINDEX OR MSL_DECFILE_CONFIGINDEX. The enum type defines the file

type.
See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig
Field Documentation
MSL_FILETYPE_FFS
When file type is set to this, MSL pipeline will use FFS AP for file 10 operations (e.g. file read, file write etc).
MSL_FILETYPE_RFS
When file type is set to this, MSL pipeline will use RFS API for file 10 operations (e.g. file read, file write etc).

3.1.3 MSL_CALLBACK

#include <msl api.h>

Data Fields

Q typedef MSL_VOID (* MSL_CALLBACK) (MSL_HANDLE hMSL, MSL_UCPTYPE tUCPType,
MSL_CMDTYPE tCMd, MSL_STATUS tStatus)

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 6 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Detailed Description

This function pointer type is passed as third parameter of MSL usecase pipeline’s setconfig API (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_CALLBACKSET_CONFIGINDEX. It is
mandatory for user application to implement this API. The parameters to this API is covered in the field
documentation.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig
Field Documentation

MSL_HANDLE

This is the first parameter passed to this function by MSL pipeline. This parameter contains the handle to MSL
usecase pipeline instance.

MSL_UCPTYPE

This is the second parameter passed to this function by MSL pipeline. This parameter contains the MSL pipeline
type (one of the three pipelines).

MSL_CMDTYPE

This is the third parameter passed to this function by MSL pipeline. This parameter contains the details on for
which API the call back was made for.

MSL_STATUS

This is the fourth parameter passed to this function by MSL pipeline. This parameter contains the status of
callback function. The status values are given in MSL_<UCP>_STATUS, where UCP is the pipeline type (could
be IMGCAP, IMGVIEW or IMGTHMB).

3.1.4 MSL_UCPTYPE

#include <msl api.h>

Data Fields
Q MSL_UCP_IMGCAP
Q MSL_UCP_IMGTHMB
Q MSL_UCP_IMGVIEW

Detailed Description

This enum type is passed as the second parameter to MSL_CALLBACK function by MSL usecase
pipeline. This value could be used by user application to infer the callback source.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation

MSL_ UCP_IMGCAP
When value is set to this, it means that the callback is from image capture pipeline.

MSL_ UCP_IMGTHMB
When value is set to this, it means that the callback is from image thumb generation pipeline.

MSL_ UCP_IMGVIEW
When value is set to this, it means that the callback is from image view pipeline.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 7 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.1.5 MSL_CMDTYPE

#include <msl api.h>

Data Fields
MSL_CMD_VIEWFINDER
MSL_ CMD_SNAPSHOT
MSL_ CMD_GENERATE
MSL_CMD_VIEW
MSL_CMD_PAUSE
MSL_CMD _INIT
MSL_CMD_DEINIT

Iy Wy W

Detailed Description

This enum type is passed as the third parameter to MSL_CALLBACK function by MSL usecase pipeline.
This value could be used by user application to infer the callback scenario.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation

MSL_CMD_VIEWFINDER

When third parameter is set to this in the callback API, the fourth parameter will inform the status of viewfinder
start. If the viewfinder started successfully, then the fourth parameter would be MSL_IMGCAP_STATUS_OK else
it will be set to appropriate error values.

MSL_CMD_SNAPSHOT

When third parameter is set to this in the callback API, the fourth parameter will inform the status of snapshot
completion. If the snapshot is successfully completed the fourth parameter would be MSL_IMGCAP_STATUS_OK
else it will be set to appropriate error values.

MSL_CMD_GENERATE

When third parameter is set to this in the callback AP, the fourth parameter will inform the status of image
thumbnail generation. If the thumbnail generation is successful, the fourth parameter would be
MSL_IMGTHMB_STATUS_OK else it will be set to appropriate error values.

MSL_CMD_VIEW

When third parameter is set to this in the callback API, the fourth parameter will inform the status of image view
completion. If the image was displayed successfully, the fourth parameter of the callback function would be set to
MSL_IMGVIEW_STATUS_OK else appropriate error values will be returned.

MSL_CMD_PAUSE
This value is never returned in the current implementation. This is reserved for future implementation.

MSL_CMD_INIT

When third parameter is set to this in the callback AP, the fourth parameter will inform the status of pipeline
initialization API. If the initialization was successful, the fourth parameter of the callback function would be set to
MSL_<UCP>_STATUS_OK else appropriate error values will be returned

MSL_CMD_DEINIT

When third parameter is set to this in the callback AP, the fourth parameter will inform the status of pipeline de-
initialization API. If the de-initialization was successful, the fourth parameter of the callback function would be set
to MSL_<UCP>_STATUS_OK else appropriate error values will be returned

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 8 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.1.6 MSL_OVERLAY_MODE

#include <msl api.h>

Data Fields

MSL_OVERLAYMODE_NOOVERLAY
MSL_OVERLAYMODE_OVERLAP

MSL_OVERLAYMODE_ COLORKEY
MSL_OVERLAYMODE_ALPHABLENDING
MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY

I Wy Wy

Detailed Description

This enum type is member of MSL_IMG_OVERLAYCONFIG structure, which is passed as third
parameter of MSL usecase pipeline’s setconfig API (for e.g. MSL_ImgCap_SetConfig function) when
index type is set as MSL_OVERLAY_CONFIGINDEX. The enum type defines the overlay mode to be
used.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig

Field Documentation

MSL_OVERLAYMODE_NOOVERLAY
When overlay mode is set to this, it means that no overlay will be performed.

MSL_OVERLAYMODE_OVERLAP

When overlay mode is set to this, it means that an overlap overlay will be performed. In this mode the overlay
image is blindly copied on top of the image in the specified offset location.

MSL_OVERLAYMODE_COLORKEY

When the overlay mode is set to this, it means that color key based substitution will be performed for overlay. In
this overlay mode, user specified color key will be used as an index to transparent region in overlay image.

MSL_OVERLAYMODE_ALPHABLENDING

When the overlay mode is set to this, it means that alpha blending method will be used for overlay. In this mode,
the overlay image will be alpha blended (using a separate user specified blend value) on top of actual image.

MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY

When the overlay mode is set to this, it means that alpha blending and color key based substitution method will be
used for overlay. In this mode, the overlay image will be alpha blended (using a separate user specified blend
value) on top of actual image followed by user specified color key based substitution.

3.1.7 MSL_CAMERA_MODE

#include <msl api.h>

Data Fields
aQ MSL_CAMERAMODE_VF
Q MSL_CAMERAMODE_SS

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 9 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Detailed Description

This enum type is member of MSL_CAM_CONFIGTYPE structure, which is passed as third parameter of
MSL usecase pipeline’s setconfig API (for e.g. MSL_ImgCap_SetConfig function) when index type is set
as MSL_CAMERA_CONFIGINDEX. This value specifies the camera mode when starting the imgcap
pipeline.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK
Field Documentation
MSL_CAMERAMODE_VF
The value is set to this to inform MSL imgcap pipeline to start camera in set in viewfinder mode.
MSL_CAMERAMODE_SS
The value is set to this to inform MSL imgcap pipeline to start camera in set in snapshot mode.

3.1.8 MSL_IMG_ROTATETYPE

#include <msl api.h>

Data Fields
O MSL_ROTATE_O
O MSL_ROTATE_90
O MSL_ROTATE_180
O MSL_ROTATE_270

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_ROTATE_CONFIGINDEX. This value
specifies the rotation that needs to be performed. Note that this rotation value is absolute (not to previous
set rotate value).

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK
Field Documentation

MSL_ ROTATE _0

When the rotate value is set to this, it means that no rotation will be performed on the image.
MSL_ ROTATE _90

When the rotate value is set to this, it means that 900 rotation will be performed on the image.
MSL_ ROTATE _180

When the rotate value is set to this, it means that 180 rotation will be performed on the image.
MSL_ ROTATE _270

When the rotate value is set to this, it means that 270 rotation will be performed on the image.

3.1.9 MSL_COLOR_FORMATTYPE

#include <msl api.h>

Data Fields
Q MSL _COLOR_ YUYV
Q MSL_COLOR_RGB565

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 10 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

O MSL_COLOR_YUV444
O MSL_COLOR_YUV420
O MSL_COLOR_RGB444
0 MSL_COLOR_MONOCHROME

Detailed Description

This enum type is member of MSL_CAM_CONFIGTYPE and MSL_DISPLAY_CONFIGTYPE structure,
which is passed as third parameter of MSL usecase pipeline’s setconfig APl (for eg
MSL_ImgCap_SetConfig function). The enum type defines the format of the image data.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL_COLOR_YUYV
This is a 16bits/pixel color format. The data arrangement is this format is YoUoY1V1i.e. interleaved yuv format.
MSL_COLOR_RGB565

This is a 16bits/pixel color format. The data is arranged in little endian mode with 5-bits for R, followed by 6-bits for
G and 5-bits for B.

MSL_COLOR_YUV444

This is a 24 bits/pixel color format. The Y, U and V plane are separate each with dimension of image_width x
image_height. Note that MSL pipeline provides single pointer for this (no separate Y, U and V pointers).

MSL_COLOR_YUV420

This is a 12 bits/pixel color format. The Y, U and V plane are separate. Y plane has has dimension of image_width
x image_height. U and V planes are subsampled by half in both horizontal and vertical directions. Note that MSL
pipeline still provides single pointer for this (no separate Y, U and V pointers).

MSL_COLOR_RGB444

This is a 24 bits/pixel color format with 8bits for R, 8 bits for G and 8 bits for B.
MSL_COLOR_MONOCHROME

This is a 8 bits/pixel color format with only one Y plane.

3.1.10 MSL_IMG_WINDOWTYPE

#include <msl api.h>

Data Fields
Q MSL_U16 nimgXOffset
Q MSL_U16 nimgYOffset
MSL_U16 nlmgCropWidth
Q MSL_U16 nimgCropHeight

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_CROPWINDOW_CONFIGINDEX. This
structure specifies the crop parameter for the image. Note that when cropping is used, zoom value is
ignored.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 11 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Field Documentation

nimgXOffset

The X-dimension offset for the crop image region.
nimgYOffset

The Y-dimension offset for the crop image region.
nimgCropWidth

Width of the crop image region starting from nimgXOffset.
nimgCropHeight

Height of the crop image region, starting from nimgY Offset.

3.1.11 MSL_IMG_OVERLAYCONFIG

#include <msl api.h>

Data Fields
O MSL_OVERLAY_MODE tOverlayMode
a MSL_U16 nimgWidth
QO MSL_U16 nimgHeight
QO MSL_U16 nOverlayXOffset
QO MSL_U16 nOverlayY Offset
Q MSL_U16 nTransparencyColor
Q MSL_U16 nAlpha
Q MSL_VOID *pOverlayBuff

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’'s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_OVERLAY_CONFIGINDEX. This
structure specifies the overlay parameter for the image.

Note that currently Alpha Blending and Alpha Blending Color Key are not supported.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK
Field Documentation
tOverlayMode
See section on MSL_OVERLAY_MODEfor allowed values.
nimgWidth
Width of the overlay image. Note that width of overlay image cannot be greater than the image width.
nimgHeight
Width of the overlay image. Note that height of the overlay image cannot be greater than the image height.
nOverlayXOffset
The x-offset location in the image from where overlay needs to start.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 12 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

nOverlayYOffset
The y-offset location in the image from where overlay needs to start.

nTransparencyColor

The transparency color when tOverlayMode is set to MSL_OVERLAYMODE_COLORKEY or
MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY.

nAlpha

The alpha blend value when tOverlayMode is set to MSL_OVERLAYMODE_ALPHABLENDING or
MSL_OVERLAYMODE_ALPHABLENDINGANDCOLORKEY.

pOverlayBuff
Pointer to overlay buffer.

3.112 MSL_CAM_CONFIGTYPE

#include <msl api.h>

Data Fields
O MSL_COLOR_FORMATTYPE timgFormat
a MSL_U16 unimgWidth
QO MSL_U16 unimgHeight
Q MSL_CAMERA_MODE tMode

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_CAMERA_CONFIGINDEX. This
structure specifies the configuration parameter for the camera.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK
Field Documentation
timgFormat

The image format type for camera capture. See MSL_COLOR_FORMATTYPE for details. In the current
implementation, when tMode is MSL_CAMERAMODE_VF, the format should always be set to
MSL_COLOR_RGB565. When the tMode is MSL_CAMERAMODE_SS, then format could be
MSL_COLOR_RGBS565 or MSL_COLOR_YUYV. If overlay needs to be performed for snapshot, then format
should always be MSL_COLOR_RGB565.

unimgWidth
The width of the image to be captured.
unimgHeight
Height of the camera image to be captured.
tMode
Camera mode. It should be either MSL_CAMERAMODE_VF or MSL_CAMERAMODE_SS.

3.1.13 MSL_DISPLAY_CONFIGTYPE

#include <msl api.h>

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 13 of 44

Design Specification

Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x
Data Fields
O MSL_COLOR_FORMATTYPE timgFormat
a MSL_U16 unDisplaylmgWidth
a MSL_U16 unDisplaylmgHeight
QO MSL_U16 unDisplayXOffset
QO MSL_U16 unDisplayY Offset

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_DISPLAY_CONFIGINDEX. This
structure specifies the configuration parameter for the displayed image on LCD.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK
Field Documentation

timgFormat

The image format type for image to be displayed on LCD screen. See MSL_COLOR_FORMATTYPE for details.
In the current implementation, the format should always be set to MSL_COLOR_RGB565.

unDisplaylmgWidth

The width of the image that needs to be displayed on LCD. This image width should be less than or equal the
width of the LCD display. MSL pipeline will do the necessary rescaling when the camera captured image
(applicable for IMGCAP pipeline) or decoded image (applicable for IMGVIEW pipeline) height is different from
display width.

unDisplaylmgHeight

The height of the image that needs to be displayed on LCD. This image height should be less than or equal the
height of the LCD display. MSL pipeline will do the necessary rescaling when the camera captured image
(applicable for IMGCAP pipeline) or decoded image (applicable for IMGVIEW pipeline) height is different from
display height.

unDisplayXOffset

X-offset in screen where the image should be displayed.
unDisplayYOffset

Y-offset in screen where the image should be displayed.

3.1.14 MSL_RESCALE_CONFIGTYPE

#include <msl api.h>

Data Fields
a MSL_U16 unRescaledimgWidth
a MSL_U16 unRescaledimgHeight

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’'s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_RESCALE_CONFIGINDEX. This
structure specifies the rescaled image dimension when rescale needs to be performed on the image. This
index is supported only in the thumbnail generation pipeline.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 14 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation

unRescaledimgWidth
Width of the rescaled image.

unRescaledimgHeight
Height of the rescaled image.

3.1.15 MSL_FILE_CONFIGTYPE

#include <msl api.h>

Data Fields
O MSL_STRING sFileName
Q MSL_FILETYPE tFileType

Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’s setconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_ENCFILE_CONFIGINDEX or
MSL_DECFILE_CONFIGINDEX. This structure contains the attributes of the file to be encoded or
decoded.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
sFileName
This is a pointer to an array containing the fully qualified name of the file.
tFileType
Specified the file type i.e. RFS or FFS.

3.1.16 MSL_IMGINFO_CONFIGTYPE

#include <msl api.h>

Data Fields
Q MSL_U1e nExtendedIimgWidth;
a MSL_U16 nExtendedimgHeight;
Q MSL_U1e nActuallmgWidth;
a MSL_U16 nActuallmgHeight;

O MSL_COLOR_FORMATTYPE tColorFormat;
Detailed Description

This enum type is passed as third parameter of MSL usecase pipeline’s getconfig APl (for eg
MSL_ImgCap_SetConfig function) when index type is set as MSL_IMGINFO_CONFIGINDEX. This
structure contains detail information about the image decoded.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 15 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Field Documentation

nExtendedimgWidth

Width of the image including the padded dimension.
nExtendedimgHeight

Height of the image including the padded dimension.
nActualimgWidth

Actual width of the image excluding the padded dimension.
nActuallmgHeight

Actual height of the image excluding the padded dimension.
tColorFormat

The color format of the JPEG image

3.1.17 MSL_<UCP> STATUS

#include <msl api.h>

Data Fields

MSL## UCP_##STATUS OK =0, \

MSL## UCP_##STATUS EOS, \

MSL# UCP_##ERROR_UNKNOWN, \

MSL# UCP_##ERROR_NOT _IMPLEMENTED, \
MSL# UCP_##ERROR _INVALID_STATE, \
MSL# UCP_##ERROR_INVALID ARGUMENT,\
MSL# UCP_##ERROR_INVALID _UCP,\

MSL# UCP_##ERROR_INVALID HANDLE, \
MSL# UCP_#ERROR_NOMEMORY, \

MSL# UCP_##ERROR_BAD STREAM, \
MSL# UCP_##ERROR_IOREAD, \

MSL# UCP_##ERROR_IOWRITE, \

MSL## UCP_##BASE_LAST _COMMON

Iy Wy Wy Wy iy

Detailed Description

This enum type is the return value for all MSL APIs (both synchronous and asynchronous). This enum
type is also returned as the last (fourth) parameter of MSL_CALLBACK function.

UCP_## could be one of IMGCAP, IMGVIEW or IMGTHMB depending on the use case.

See also:
MSL_ImgCap_SetConfig, MSL_ImgThmb_SetConfigs, MSL_ImgView_SetConfig, MSL_CALLBACK

Field Documentation
MSL##_UCP_##STATUS_OK
This status means there is no error.
MSL##_UCP_##STATUS_EOS
This status is not currently returned by MSL pipelines.
MSL## UCP_##ERROR_UNKNOWN
This status is returned when MSL pipeline encounters unknown errors. This is a fatal error.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 16 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

MSL## UCP_##ERROR_NOT_IMPLEMENTED
This status is returned when MSL do not support the specific feature.

MSL## UCP_#ERROR_INVALID_STATE
This status is returned when MSL usecase pipeline is not in a state to support the request.

MSL## UCP_##ERROR_INVALID_ARGUMENT
This status is returned when MSL usecase pipeline do not recognize the command.

MSL## UCP_##ERROR_INVALID_UCP

This status is not returned in the current implementation.
MSL## UCP_##ERROR_INVALID_HANDLE

This status is returned when the handle provided to pipeline is invalid.
MSL## UCP_##ERROR_NO_MEMORY

This status is returned when there is no memory to create a usecase pipeline.
MSL## UCP_##ERROR_BAD_STREAM

This status is returned when the MSL pipeline encounters a file open error.

MSL## UCP_##ERROR_IOREAD
This status is returned when the MSL pipeline encounters a file read error.

MSL## UCP_##ERROR_IOWRITE
This status is returned when the MSL pipeline encounters a file write error.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 17 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.2 MSL IMGCAP Specific Data Structures

None

3.3 MSL IMGVIEW Specific Data Structures

None

3.4 MSL IMGVIEW Specific Data Structures

None

3.5 COMMON APIs

TBD

% TEXAS TI Proprietary Information — Strictly Private

INSTRUMENTS Page 18 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.6 MSL IMGCAP APIs

This pipeline needs to be created for camera preview and image capture applications.

3.6.1 MSL_ImgCap_Create
MSL IMGCAP STATUS MSL ImgCap Create (MSL HANDLE *phIMGCap) ;

Implementation

This API creates an instance of Image capture pipeline and returns a handle to the instance. This is a
synchronous API.

Parameters
phIMGCap Pointer to a handle to MSL_HANDLE. This pointer will be
filed with a valid handle if the call is successful.
Return
MSL_IMGCAP_STATUS The possible retum values are

MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR_NOMEMORY. The former is
retumned for a successful creation and the later when there
is no memory for creating an instance.

Pre Conditions

phIMGCap Need to ensure that the system has enough memory to
carry out the requirement.

Post Conditions
phIMGCap None.

See Also MSL_ImgCap_Delete

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

The most common reason for returning an error is insufficient memory in the system. The locosto system
uses static memory allocation which uses memory pools. In the current implementation, MSL shares the
memory pool and hence uses BspGroupHandle as the memory pool handle for allocation.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 19 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.6.2 MSL_ImgCap_SetConfig

MSL_IMGCAP_STATUS MSL_ImgCap_SetConfig(MSL_HANDLE hIMGCap, MSL_INDEXTYPES
tIndex, MSL VOID *pParam;

Implementation

This API should be called to set the configuration for image capture/viewfinder scenario. This API
needs to be called multiple times to set different parameter. The parameters are identified by tindex
type value passed to this function. The index types are classified into mandatory, optional,
dynamically configurable (i.e. it can be called anytime after Create), or non-dynamic configurable (i.e.
it can be set only before calling MSL_ImgCap_Init API. This is a synchronous API.

Parameters
hIMGCap MSL_HANDLE handle retumed by MSL_ImgCap_Create.
tindex MSL_INDEXTYPES. The set of index values supported is
given in the Table 1below.
pParam This is a pointer to parameter value. The parameter
depends on tindex types.
Return
MSL_IMGCAP_STATUS The possible retum values are

MSL_IMGCAP_STATUS_OK,
MSL_IMGCAP_ERROR_INVALID_STATE,
MSL_IMGCAP_ERROR_NOMEMORY or
MSL_IMGCAP_ERROR_INVALID_ARGUMENT. OK
status is returned for a successful configuration settings.

Pre Conditions
hIMGCap should be a valid handle.

Post Conditions

None.
See Also None
Ul TEXAS TI Proprietary Information — Strictly Private

INSTRUMENTS Page 20 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Table 1 Supported MSL_INDEXTYPES in image capture pipeline

Index Type Mandatory Can be called dynamically
MSL_CALLBACKSET_CONFIGINDEX Yes No
MSL_CAMERA_CONFIGINDEX Yes No
MSL_DISPLAY_CONFIGINDEX Yes No
MSL_OVERLAY_CONFIGINDEX No No
MSL_CROPWINDOW_CONFIGINDEX No Yes
MSL_ENCFILE_CONFIGINDEX Yes Yes
MSL_ENCQUALITY_CONFIGINDEX No Yes
MSL_ZOOM_CONFIGINDEX No Yes
MSL_ROTATE_CONFIGINDEX No Yes
MSL_BURSTCOUNT_CONFIGINDEX No Yes

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

To start the pipeline for viewfinder applications, the camera mode set using
MSL_CAMERA_CONFIGINDEX should be MSL_CAMERAMODE_VF. To start the pipeline for snapshot
applications the camera mode should be set to MSL_CAMERAMODE_SS. The user can directly start in
snapshot mode or viewfinder mode, but when switching between the modes, first MSL_ImgCap_Deinit
should be called, followed by MSL_ImgCap_SetConfig (to change the camera mode) and then
MSL_ImgCap_Init again.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 21 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.6.3 MSL_ImgCap_lInit
MSL IMGCAP STATUS MSL ImgCap Init (MSL HANDLE hIMGCap) ;

Implementation

This function does the initialization of ImgCapture pipeline. This is an asynchronous API.

Parameters

hIMGCap MSL_HANDLE handle retumed by MSL_ImgCap_Create..
Return

MSL_IMGCAP_STATUS The possible retum values are

MSL_IMGCAP_STATUS OK or
MSL_IMGCAP_ERROR INVALID STATE. The formeris
retumed for a successful creation and the later when the
call sequence is not proper.

Preconditions

hIMGCap should be a valid handle and all mandatory
configurations should be set using
MSL_ImgCap_SetConfig API.

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

If the initialization is successful, it will make call MSL_CALLBACK API with following parameters.
(_hMSLIMGCAP, MSL_UCP_IMGCAP, MSL_CMD_INIT, MSL_IMGCAP_STATUS_OK). If the initialization
is not successful, the first three parameters will still remain same, but the last parameter will contain the
appropriate error value.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 22 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.6.4 MSL_ImgCap_ Viewfinder
MSL IMGCAP STATUS MSL ImgCap Viewfinder (MSL HANDLE hIMGCap);

Implementation

This function starts camera in viewfinder mode and starts displaying images in LCD. This is an
asynchronous API.

Parameters

hIMGCap MSL_HANDLE handle retumed by MSL_ImgCap_Create..
Return

MSL_IMGCAP_STATUS The possible retum values are

MSL_IMGCAP_STATUS OK or
MSL_IMGCAP_ERROR INVALID STATE. The formeris
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions

MSL_ImgCap_Init call is successfully completed i.e. the
asynchronous call back function has retumed no error. Also
the camera mode should be set to
MSL_CAMERAMODE_VF

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

This APl returns an asynchronous callback with (_hIMGCAP, MSL_UCP_IMGCAP,
MSL_CMD_VIEWFINDER, MSL_IMGCAP_STATUS_OK) if viewfinder was started successfully. The
fourth parameter will be different if viewfinder could not be started.

The application needs to call MSL_ImgCap_Delnit to stop the viewfinder or to switch to snapshot mode.
Note that rotation, zoom etc can be dynamically updated when viewfinder is running.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 23 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.6.5 MSL_ImgCap_ MSL_ImgCap_Snapshot
MSL IMGCAP STATUS MSL ImgCap MSL ImgCap Snapshot (MSL HANDLE hIMGCap) ;

Implementation

This function starts camera in viewfinder mode and starts displaying images in LCD. This is an
asynchronous API.

Parameters

hIMGCap MSL_HANDLE handle retumed by MSL_ImgCap_Create..
Return

MSL_IMGCAP_STATUS The possible retum values are

MSL_IMGCAP_STATUS OK or
MSL_IMGCAP_ERROR INVALID STATE. The former is
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions

MSL_ImgCap_Init call is successfully completed i.e. the
asynchronous call back function has retured no error. Also
the camera mode should be set to
MSL_CAMERAMODE_SS

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

This APl returns an asynchronous callback with (_hIMGCAP, MSL_UCP_IMGCAP,
MSL_CMD_SNAPSHOT, MSL_IMGCAP_STATUS_OK) if snapshot was completed successfully. The
fourth parameter will be different if pipeline encountered error while taking snapshot

The application needs to call MSL_ImgCap_Delnit to stop the viewfinder or to switch to snapshot mode.
Note that zoom, rotate, overlay are preserved when switching from viewfinder to snapshot mode and
these values will be applied over snapshot image. If a different value of zoom, rotate or overlay needs to
be set, then the user should call MSL_ImgCap_SetConfig with appropriate index before calling Init for
snapshot.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 24 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.6.6 MSL_ImgCap_Delnit
MSL IMGCAP STATUS MSL ImgCap DelInit (MSL HANDLE hIMGCap) ;

Implementation

This function does the deinitialization of ImgCapture pipeline. This is an asynchronous API.

Parameters

hIMGCap MSL_HANDLE handle retumed by MSL_ImgCap_Create..
Return

MSL_IMGCAP_STATUS The possible retum values are

MSL_IMGCAP_STATUS OK or
MSL_IMGCAP_ERROR INVALID STATE. The formeris
returned for a successful creation and the later when the
call sequence is not proper.

Preconditions

hIMGCap should be a valid and all previous call backs from
asynchronous APIs are completed. Given the above
condition, this APl could be called anytme after
MSL_ImgCap_Init.

Post conditions

None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

This is a mandatory API before calling MSL_ImgCap_Destroy API. This API is the only way to stop
viewfinder mode. This API should be called to switch between viewfinder and snapshot modes.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 25 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.6.7 MSL_ImgCap_ Destroy

MSL IMGCAP STATUS MSL ImgCap Destroy (MSL HANDLE hIMGCap) ;

Implementation

This function destroys all memory allocated for ImgCapture pipeline including the handle. This is an

synchronous API.
Parameters
hIMGCap
Return
MSL_IMGCAP_STATUS

Preconditions

Post conditions

Requirement Coverage

MSL_HANDLE handle retumed by MSL_ImgCap_Create..

The possible retum values are
MSL_IMGCAP_STATUS_OK or
MSL_IMGCAP_ERROR _INVALID_STATE. The formeris
retumed for a successful creation and the later when the
call sequence is not proper.

hIMGCap should be a valid and MSL_ImgCap_Delnit
should be called prior to this.

None.

This method addresses requirement(s): [SR number(s)]

Notes

Q’ TeExASs
INSTRUMENTS

TI Proprietary Information — Strictly Private

Page 26 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.7 MSL IMGVIEW APIs

This pipeline needs to be created for image viewing.

3.71 MSL_ImgView_Create
MSL IMGVIEW STATUS MSL ImgView Create (MSL HANDLE * phIMGView) ;

Implementation

This API creates an instance of Image viewer pipeline and returns a handle to the instance. This is a
synchronous API.

Parameters
phIMGView Pointer to a handle to MSL_HANDLE. This pointer will be
filed with a valid handle if the call is successful.
Return
MSL_IMGVIEW_STATUS The possible retum values are MSL_ IMGVIEW

_STATUS_OK or MSL_ IMGVIEW
_ERROR_NOMEMORY. The former is retumed for a
successful creation and the later when there is no memory
for creating an instance.

Pre Conditions

Need to ensure that the system has enough memory to
carry out the requirement.

Post Conditions
None.

See Also MSL_ ImgView_Delete

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

The most common reason for returning an error is insufficient memory in the system. The locosto system
uses static memory allocation which uses memory pools. In the current implementation, MSL shares the
memory pool and hence uses BspGroupHandle as the memory pool handle for allocation.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 27 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.7.2 MSL_ ImgView_SetConfig

MSL IMGVIEW STATUS MSL ImgView SetConfig (MSL HANDLE ImgView,

MSL INDEXTYPES tIndex,

Implementation

MSL VOID *pParam;

This API should be called to set the configuration for image view scenario. This APl needs to be
called multiple times to set different parameter. The parameters are identified by tindex type value
passed to this function. The index types are classified into mandatory, optional, dynamically
configurable (i.e. it can be called anytime after Create), or non-dynamic configurable (i.e. it can be set
only before calling MSL_ImgCap_Init API. This is a synchronous API.

Parameters
hIMGView
tindex
pParam

Return

MSL_ IMGVIEW_STATUS

Pre Conditions

Post Conditions

MSL_HANDLE handle retumed by MSL ImgView

_Create.

MSL_INDEXTYPES. The set of index values supported is
given in the Table 1below.

This is a pointer to parameter value. The parameter
depends on tindex types.

The possible retum values are
MSL_IMGVIEW_STATUS_OK,
MSL_IMGVIEW_ERROR TNVALID_STATE,
MSL_IMGVIEW_ERROR_NOMEMORY
MSL_IMGVIEW _ERROR _INVALID_ARGUMENT. OK
status is retumed for a successful configuration settings.

hIMGView should be a valid handle.

None.
See Also None
U TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 28 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Table 2 Supported MSL_INDEXTYPES in image view pipeline

Index Type Mandatory Can be called dynamically
MSL_CALLBACKSET_CONFIGINDEX Yes No
MSL_DISPLAY_CONFIGINDEX Yes Yes
MSL_OVERLAY_CONFIGINDEX No Yes
MSL_CROPWINDOW_CONFIGINDEX No Yes
MSL_ZOOM_CONFIGINDEX No Yes
MSL_ROTATE_CONFIGINDEX No Yes
MSL_DECFILE_CONFIGINDEX Yes Yes

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 29 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.7.3 MSL_ ImgView_lInit
MSL TIMGVIEW STATUS MSL_ImgView_Init (MSL_HANDLE hIMGView) ;

Implementation

This function does the initialization of image view pipeline. This is an asynchronous API.

Parameters
hIMGView MSL_HANDLE handle retumed by
MSL_ImgView_Create..
Return
MSL_ IMGVIEW_STATUS The possible retum values are MSL_

IMGVIEW_STATUS _OK or
MSL_IMGVIEW_ERROR INVALID STATE. The former
is retumned for a successful creation and the later when the
call sequence is not proper.

Preconditions

hIMGView should be a valid handle and all mandatory
configurations should be set using
MSL_ImgView_SetConfig API.

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

If the initialization is successful, it will make call MSL_CALLBACK API with following parameters.
(_hMSLIMGCAP, MSL_UCP_IMGVIEW, MSL_CMD_INIT, MSL_IMGVIEW_STATUS_OK). If the
initialization is not successful, the first three parameters will still remain same, but the last parameter will
contain the appropriate error value.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 30 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.7.4 MSL_ImgView_View
MSL TIMGVIEW STATUS MSL_ImgView_View (MSL_HANDLE hIMGView) ;

Implementation

This function decodes the jpeg image, does rotation, overlay, zoom, crop as set by s MSL_ImgView
Setconfig APl and displays images on LCD. This is an asynchronous API.

Parameters

hIMGView MSL_HANDLE handle retumed by MSL_ImgCap_Create..
Return

MSL_IMGVIEW_STATUS The possible retum values are

MSL_IMGVIEW_STATUS OK or MSL_ IMGVIEW
_ERROR _INVALID_STATE. The former is retumed for a
successful creation and the later when the call sequence is
not proper.

Preconditions

MSL_ImgCap_Init call is successfully completed i.e. the
asynchronous call back function has retumed no error.

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

This API returns an asynchronous callback with (_hIMGView, MSL_UCP_IMGVIEW, MSL_CMD_VIEW,
MSL_IMGVIEW_STATUS_OK) after successfully displaying the image.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 31 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.7.5 MSL_ImgView_Deinit
MSL TIMGVIEW STATUS MSL_ImgCap_DeInit (MSL_HANDLE hIMGView) ;

Implementation

This function does the deinitialization of image viewer pipeline. This is an asynchronous API.

Parameters

hIMGView MSL_HANDLE handle retumed by MSL_ImgCap_Create..
Return

MSL_IMGVIEW_STATUS The possible retum values are MSL_IMGVIEW_STATUS

_OKor MSL_IMGVIEW_ERROR _INVALID STATE. The
former is retumed for a successful creation and the later
when the call sequence is not proper.

Preconditions

hIMGView should be a valid and all previous call backs
from asynchronous APls are completed. Given the above
condition, this APl could be called anytme after
MSL_ImgView_Init.

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes
This is a mandatory API before calling MSL_ImgView_Destroy API.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 32 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.7.6 MSL_ImgView_ Destroy

MSL IMGCAP STATUS MSL ImgView Destroy (MSL HANDLE hIMGView);

Implementation

This function destroys all memory allocated for image view pipeline including the handle. This is an

synchronous API.
Parameters
hIMGView
Return
MSL_IMGVIEW_STATUS

Preconditions

Post conditions

Requirement Coverage

MSL_HANDLE handle retumed by MSL_ImgCap_Create..

The possible retum values are
MSL_IMGVIEW_STATUS_OK or
MSL_IMGVIEW_ERROR _INVALID_STATE. The former
is retumed for a successful creation and the later when the
call sequence is not proper.

hIMGView should be a valid and MSL_ImgView_Delnit
should be called prior to this.

None.

This method addresses requirement(s): [SR number(s)]

Notes

Q’ TeExASs
INSTRUMENTS

TI Proprietary Information — Strictly Private

Page 33 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.8 MSL IMGTHMB APIs

This pipeline needs to be creating thumbnail jpeg images. Thumbnail jpeg images are normal jpeg files,
but of smaller dimensions so that they can be displayed quicker in an thumbnail viewer application.

3.8.1 MSL_ImgThmb_Create
MSL IMGTHMB STATUS MSL ImgThmb Create (MSL HANDLE * phMSLIMGThmb) ;

Implementation

This API creates an instance of Image viewer pipeline and returns a handle to the instance. This is a
synchronous API.

Parameters
phMSLIMGThmb Pointer to a handle to MSL_HANDLE. This pointer will be
filed with a valid handle if the call is successful.
Return
MSL_IMGVIEW_STATUS The possible retum values are

MSL_IMGTHMB_STATUS_OK or
MSL_IMGTHMB_ERROR_NOMEMORY. The former is
retumned for a successful creation and the later when there
is no memory for creating an instance.

Pre Conditions

Need to ensure that the system has enough memory to
carry out the requirement.

Post Conditions
None.

See Also MSL_ ImgThmb_Delete

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

The most common reason for returning an error is insufficient memory in the system. The locosto system
uses static memory allocation which uses memory pools. In the current implementation, MSL shares the
memory pool and hence uses BspGroupHandle as the memory pool handle for allocation.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 34 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.8.2 MSL_ ImgThmb_SetConfig

MSL IMGTHMB STATUS MSL ImgThmb SetConfig (MSL HANDLE ImgView,

MSL INDEXTYPES tIndex,

Implementation

MSL_VOIB *pParam;

This API should be called to set the configuration for image view scenario. This APl needs to be
called multiple times to set different parameter. The parameters are identified by tindex type value
passed to this function. The index types are classified into mandatory, optional, dynamically
configurable (i.e. it can be called anytime after Create), or non-dynamic configurable (i.e. it can be set
only before calling MSL_ImgThmb_Init API. This is a synchronous API.

Parameters
hMSLIMGThmb
tindex
pParam

Return

MSL_ IMGTHMB_STATUS

Pre Conditions

Post Conditions

MSL_HANDLE handle retumed by MSL ImgThmb

_Create.

MSL_INDEXTYPES. The set of index values supported is
given in the Table 3 below.

This is a pointer to parameter value. The parameter
depends on tindex types.

The possible retum values are
MSL_IMGTHMB_STATUS_OK,
MSL_IMGTHMB_ERROR INVALID_STATE,
MSL_IMGTHMB_ERROR_NOMEMORY
MSL_IMGTHMB__ERROR_INVALID_ARGUMENT. OK
status is returned for a successful configuration settings.

hMSLIMGThmb should be a valid handle.

None.
See Also None
U TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 35 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Table 3 Supported MSL_INDEXTYPES in image thumb pipeline

Index Type Mandatory Can be called dynamically
MSL_CALLBACKSET_CONFIGINDEX Yes No
MSL_DECFILE_CONFIGINDEX Yes Yes
MSL_ENCFILE_CONFIGINDEX Yes Yes

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 36 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.8.3 MSL_ImgThmb_Init
MSL_IMGVIEW_STATUS MSL_ImgView_Init (MSL_HANDLE hIMGView) ;

Implementation

This function does the initialization of image thumb pipeline. This is an asynchronous API.

Parameters
hMSLIMGThmb MSL_HANDLE handle returned by
MSL_ImgThmb_Create..
Return
MSL_ IMGVIEW_STATUS The possible retum values are MSL_

IMGTHMB_STATUS OK or
MSL IMGTHMB_ERROR INVALID STATE. The former
is retumned for a successful creation and the later when the
call sequence is not proper.

Preconditions

HMSLIMGThmb should be a valid handle and all
mandatory configurations should be set using
MSL_ImgThmb_SetConfig API.

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

If the initialization is successful, it will make call MSL_CALLBACK API with following parameters.
(_hMSLIMGCAP, MSL_UCP_IMGTHMB, MSL_CMD_INIT, MSL_IMGTHMB_STATUS_OK). If the
initialization is not successful, the first three parameters will still remain same, but the last parameter will
contain the appropriate error value.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 37 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

3.8.4 MSL_ImgThmb_Generate
MSL IMGVIEW STATUS MSL ImgThmb Generate (MSL HANDLE hMSLIMGThmb) ;

Implementation

This function decodes the jpeg image downscales it by user specified value and re-encodes it again.

Parameters
hMSLIMGThmb MSL_HANDLE handle returned by
MSL_ImgThmb_Create..
Return
MSL_IMGTHMB_STATUS The possible retum values are

MSL_IMGVIEW_STATUS OK or MSL_ IMGVIEW
_ERROR _INVALID_STATE. The former is retumed for a
successful creation and the later when the call sequence is
not proper.

Preconditions

MSL_ImgThmb_Init call is successfully completed i.e. the
asynchronous call back function has retured no error.

Post conditions
None.

Requirement Coverage

This method addresses requirement(s): [SR number(s)]

Notes

This API returns an asynchronous callback with (_hMSLIMGThmb, MSL_UCP_IMGTHMB,
MSL_CMD_GENERATE, MSL_IMGTHMB_STATUS_OK) after successfully encoding the thumbnail
image.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 38 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.8.5 MSL_ImgThmb_Deinit

MSL_IMGTHMB STATUS MSL ImgThmb DelInit (MSL HANDLE hMSLIMGThmb) ;

Implementation

This function does the deinitialization of image thumb pipeline. This is an asynchronous API.

Parameters
hMSLIMGThmb

Return
MSL_IMGVIEW_STATUS

Preconditions

Post conditions

Requirement Coverage

MSL_HANDLE handle retumed by
MSL_ImgThmb_Create..

The possible retum values are MSL_IMGTHMB_STATUS
~OK or MSL IMGTHMB_ERROR INVALID STATE.
The former is retumed for a successful creation and the
later when the call sequence is not proper.

hMSLIMGThmb should be a valid and all previous call
backs from asynchronous APIs are completed. Given the
above condition, this APl could be called anytime after
MSL_ImgVThmb_Init.

None.

This method addresses requirement(s): [SR number(s)]

Notes

This is a mandatory API before calling MSL_ImgThmb_Destroy API.

Q’ TeExASs
INSTRUMENTS

TI Proprietary Information — Strictly Private

Page 39 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006

Design Specification Nucleus MSL API N5.x

3.8.6 MSL_ImgThmb_ Destroy

MSL IMGCAP STATUS MSL ImgThmb Destroy (MSL HANDLE hMSLIMGThmb) ;

Implementation

This function destroys all memory allocated for image thumb pipeline including the handle. This is an

synchronous API.

Parameters
hIMGView

Return
MSL _IMGTHMB_STATUS

Preconditions

Post conditions

Requirement Coverage

MSL_HANDLE handle retumed by
MSL_ImgThmb_Create..

The possible retum values are
MSL_IMGTHMB_STATUS_OK or
MSL_IMGTHMB_ERROR_INVALID_STATE. The former
is retumed for a successful creation and the later when the
call sequence is not proper.

hMSLIMGThmb should be a valid and
MSL_ImgVThmb_Delnit should be called prior to this.

None.

This method addresses requirement(s): [SR number(s)]

Notes

Q’ TeExASs
INSTRUMENTS

TI Proprietary Information — Strictly Private

Page 40 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

4 Call Sequences
TBD

This section is not complete.

Steps for thumbnail creation:
1. Read from NAND the JPEG file in chunks.
JPEG decoding of the stream in stripe mode
Downscale to QCIF
JPEG encoding on the QCIF buffer
Save on NAND
Once the files “.thu” are created, they can be used to generate the picture gallery image.

2 T

<<User launches

the Image viewer

for the first time.
Generate thumbnails
>>

=
=

SSL Adaptation OMX IMG/MSL

LaunchFileViewer()

[
MSL_ImgThmb_Create()

[T
! 1
! 1
! 1
! 1
! 1
! 1
! N
! MSL_ImgThmb_Set_params() !
L 1 N
[} | |
: MSL_ImgThmb._Init() !
i | g
1 I |
1 | |
1 | |
1 I |
I | |
<<Repeat the : MSL_ImgThmb_SetConfig_FileName () :
sequence for all the : : /II
files in file system>> : MSL_ImgThmb_Genarate() :
1 | |
1 I |
1 | |
I | |
1 I |
1 | |
1 | |
] I |
1 | |
1 I |
1 | |
1 I |
I | |
1 | |
1 I |
1 | |
1 I |
I | |
1 I |
1 I |
Figure 1. Thumbnail Creation sequence diagram
U [EXAS Tl Proprietary Information — Strictly Private

INSTRUMENTS Page 41 of 44

Design Specification

Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

Image Viewer:
1. Steps for previewing the thumbnail file to full screen:
Read the thumbnail file from NAND
JPEG decoding on the QCIF
Color Convert from YUV to RGB565
Display

o bk w0 DN

<<User selects
thumbnail to view M
>>

OMX IMG/MSL

SSL Adaptation

mmi_iv_view_image_start() \

- > MSL_ImgView_Create()
|

MSL_ImgView_Set_DecodeParams()
|

MSL_ImgView_Set_CéIorconversionParams()
|

|
MSL_ImgView_SetConfig_FileName ()
|

MSL_Imgview_Init()

dspl_set_to_mixed_mode MMiplane idle, SK plane execute

displaySoftKeys() MMI updates softkeys EmptyThisBuffer()

MSL_ImgView_View()

<<Incoming call
recieved>>

>>

<<Call end/Reject

<<User presses M

Back/Options>>
L]

mmi_iv_view_win_cb() -Suspend even

MSL_Img

iew_Pause()

dspl_set_to_mmi_mode

MMiplane execute, SK plane idle

Incoming call()

MMI updates screen

EmptyThisBuffer()

mmi_iv_view_win_cb() -Resume event

dspl_set_to_mixed_mode

MMiplane idle, SK plane execute

displaySoftKeys()

MMI updates soft keys

EmptyThisBuffer()

MSL_ImgView_View()

mmi_iv_view_kbd_cb()
|

MSL_ImgVi

ew_Destroy()

dspl_set_to_mmi_mode

MMiplane execute, SK plane idle

MMI updates screen

EmptyThisBuffer()

Figure 2.

Image Viewer sequence diagram

Q’ TeExASs
INSTRUMENTS

Page 42 of 44

TI Proprietary Information — Strictly Private

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

5 Performance Data

Detail performance data is captured in the cssd_performancedata locosto_mm_msl.xls document which
is released along with the software.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 43 of 44

Design Specification
Revision 1.0 DRAFT 29 June 2006 Design Specification Nucleus MSL API N5.x

6 Memory Requirements

Total ROM for codec - 24.2 Kbytes
Total Flash size for codec - 24 Kbytes (it is not 5K)
Total internal ram size for codec - 5.5 Kbytes (some portion of the code runs from

internal memory)

Total Flash code size for MM framework - 30.3 Kbytes

Apart from this the whole MM framework needs (614K x 2 + 150K x 3 = 1.52MBytes) of RAM space for
processing the VGA image data.

% TEXAS TI Proprietary Information — Strictly Private
INSTRUMENTS Page 44 of 44

