
Locosto Multimedia Services Layer
(MSL)

CSSD – MULTIMEDIA

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


What is MSL?

• Multimedia Service Layer (MSL) provides high-level
APIs for applications to manage different use case
pipeline.

• MSL abstracts internal complexities and provides a
simple platform independent “c” API interface to
applications.

• Regardless of the pipe line type, the API exposed is
similar which enables customers to quickly
incorporate a new pipelines.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


Locosto MSL System Diagram
MMI/APPLICATION LAYER

MSL Pipeline (ImgThmb, ImgView, ImgCap)

Camera middleware
(OMX_CAM)

Camera driver

Screen Services
Layer
(SSL)

LCD driver

Screen services Middleware
(OMX_SSL)

Codec
Middleware
(OMX_IMG)

Emuzed Codecs

Codec Server
(IMG)

API interface. No task
context

Separate system Tasks

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL Pipelines
• Current release provides MSL interface for camera and imaging applications.

– Audio, Midi applications still use non-MSL older interface.

• Three pipelines are provided for imaging and camera applications
1. MSLImgCap: This pipeline handles viewfinder application and image capture. This

pipe line can be configured for different features like border frame, zoom, rotate etc
for both viewfinder and image capture scenarios.

2. MSLImgView: This pipeline handles image viewer scenario and image editing
scenario. It supports decoding a jpeg image, do image processing operation over that
like rotation, rescale/zoom, overlay etc and then finally display it to LCD using SSL.

3. MSLImgThmb: This pipeline handles generation of thumbnail images. It is a generic
pipeline which can decode JPEG files, rescale it down to user specified dimension
and then re-encode. The use case envisioned for this pipe line is thumb nail image
generation.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL APIs
• Each of the three pipelines expose following five APIs, which are common across all

pipelines.

1. MSL_<UCP>_Create (MSL_HANDLE *)

2. MSL_<UCP>_Init (MSL_HANDLE)

3. MSL_<UCP>_SetConfig(MSL_HANDLE, MSL_<UCP>_INDEXTYPES, MSL_VOID *)

4. MSL_<UCP>_Deinit(MSL_HANDLE)

5. MSL_<UCP>_Destroy (MSL_HANDLE)

<UCP> - is the specific pipeline. It could be ImgCap, ImgView or ImgThmb.

• Apart from the above five, each of the pipelines expose one or two API for carrying out the
core functionality. This is the only API which is specific to usecase pipeline. Even these
APIs have same signature (takes same parameter)!
– For e.g. ImgCap has an API MSL_ImgCap_Viewfinder(MSL_HANDLE hIMGCap); which starts the

viewfinder.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL API details
• MSL_<UCP>_Create (MSL_HANDLE *);

– This is the first API that application needs to call. Application should
pass a pointer to MSL_HANDLE and this API will do all needed
memory allocation and returns.

– This is a synchronous API. i.e. no separate callbacks to indicate that
functionality is complete.

– The return status will indicate if the call was successful. It returns
MSL_<UCP>_STATUS_OK. Most probably reason of unsuccessful
return would be memory not sufficient.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL API details…
• MSL_<UCP>_SetConfig(MSL_HANDLE, MSL_<UCP>_INDEXTYPES,

MSL_VOID *)

– This API is used to set various MSL parameters. INDEXTYPES (second
parameter) is used to indicate the parameter type. MSL will interpret the
third parameter depending on INDEXTYPE value.

– The index types are defined in the msl use case pipeline (ucp) header file
(there is one header file per ucp).

– There are two main INDEXTYPES, one used for initialization at the
beginning for all parameters and the second index type for run time
configuration of parameters. Run time parameter configuration would be like
zoom change or rotate. This API could be called at any time.

– This is a synchronous API. i.e. no separate callbacks to indicate that
functionality is complete.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL API details…
• MSL_<UCP>_Init(MSL_HANDLE)

– This API is used to initialize the MSL ucp pipeline.

– This API should be called after the first (only first)
MSL_<UCP>_SetParam API is called.

– This is a asynchronous API. i.e. there will be a callbacks to indicate
that functionality is complete. Note that a callback function of type
MSL_CALLBACK will be called by MSL to indicate that initialization
is complete. The callback API needs to implemented by application.

– Application should not call any other MSL APIs until the callback
function returns!

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL API details…
• Process APIs
• ImgCap

– MSL_ImgCap_Viewfinder(MSL_HANDLE hIMGCap)
• This API will start the viewfinder application. This API after starting the viewfinder pipeline returns immediately to caller application.

Viewfinder will keep running until a DEINIT API is called.
• This API will call an asynchronous call back function MSL_CALLBACK once the initial viewfinder configuration is completed.
• Different configuration for viewfinder like zoom, rescale, overlay needs to be set using setConfig API before calling this API

– MSL_ImgCap_Snapshot(MSL_HANDLE hIMGCap);
• This API will do the snapshot capture. After the init API either Snapshot or Viewfinder API can be called. This API can be

configured to run in burst mode or single capture mode. This is decided by burst count parameter passed to setconfig API. Other
configuration options are zoom, rotate and overlay.

• This API will call an asynchronous call back function MSL_CALLBACK once the snapshot is completed. Snapshot involves
capturing an image, do various image processing over that (rotate, overly, zoom etc) and then rescale it down and display a
preview image.

• ImgView
– MSL_ImgView_View(MSL_HANDLE hIMGView);

• This API will start the image viewing pipeline. The image to be decoded and the post processing operation like overlay, rotate,
zoom etc need to specific using a setcofnig API.

• Once the image is decoded, post processed and display is completed it will make an asynchronous MSL_CALLBACK to indicate
that the operation is completed.

• ImgThmb
– MSL_ImgThmb_Generate(MSL_HANDLE hIMGThmb);

• This API start the thumbnail generation pipeline. The original image, thmbnail dimension and thmbnail image name need to
specific using a setcofnig API.

• Once the thmbnail generation is over, it will make an asynchronous MSL_CALLBACK to indicate that the operation is completed.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL API details…
• MSL_<UCP>_DeInit(MSL_HANDLE);

– This API is used to de-initialize the MSL ucp pipeline.

– This API should be called before destroying an instance of MSL <UCP>
pipeline. This API could be called at any instance. The normal use case is
to call this application once the functionality is completed.

– This is a asynchronous API. i.e. there will be a callbacks to indicate that
functionality is complete. Note that a callback function of type
MSL_CALLBACK will be called by MSL to indicate that de-initialization is
complete. The callback API needs to implemented by application.

– Application should not call any other MSL APIs until the callback function
returns!

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL API details
• MSL_<UCP>_Destroy (MSL_HANDLE *);

– This is the last API that application needs to call. Application should
pass MSL_HANDLE and this API will do de-allocation of MSL
instance.

– This is a synchronous API. i.e. no separate callbacks to indicate that
functionality is complete. Once this function returns all memory
allocated to the specific MSL instance will be deleted.

– The return status will indicate if the call was successful. It returns
MSL_<UCP>_STATUS_OK. Most probably reason of unsuccessful
return would be memory de-allocation issues (which should not
happen in a production system!).

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


Integrating MSL with applications
• MSL provides a top level header file, “msl_api.h” which defines

all data types used across all msl pipelines. Applications should
include this header file for using MSL layer.

• For each of the use case pipe lines a header file is provided and
depending on the application this header file should be included.
msl_imgcap.h, msl_imgthmb.h and msl_imgview.h are the three
header files defined for currently defined pipelines.

• More detail documentation is provided in .\msl\docs\guides
folder. Please do refer
to .\msl\doc\release\cssd_relnotes_locosto_mm_msl.doc for
change history.

• High-level estimate for integrating MSL is close to 1-week.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL ARCHITECTURE

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – DESIGN PHILOSOPHY
• This framework defines a complete layered architecture

starting from codecs, all the way up to applications.

• It covers task models, component grouping strategies,
memory allocation model and data pipelines.

• The framework deploys a novel statically configured
piggyback chaining approach which enables simple
component stacking for complex multimedia use cases

• The proposed multimedia framework is designed to be
memory/performance efficient and statically scalable
compared to other high-level multimedia frameworks
where the focus is on generality and dynamic scalability.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MM layer-1 Task1 MM layer-1 Task2

algo2 algo3 driver1

BOTTOM LAYERBOTTOM LAYER

--provides a taskprovides a task
context for algorithmcontext for algorithm
and drivers.and drivers.
-- groups similargroups similar
algorithms to singlealgorithms to single
task.task.
--Communication toCommunication to
upper layer throughupper layer through
message interfacemessage interface

MM layer-1 Task3

driver2

Middle layer interface abstractionMiddle layer interface abstraction
for MM task1for MM task1

Middle layer interface abstractionMiddle layer interface abstraction
for MM task2for MM task2

Middle layer interface abstractionMiddle layer interface abstraction
for MM task3for MM task3

API InterfaceAPI Interface

Message interfaceMessage interface

-Abstracts out low level task messaging
interface to common API interface
-Enables instance creation and deletion.
-Adds buffer management capabilities

MIDDLE LAYERMIDDLE LAYER

UPPER LAYERUPPER LAYER Use-case pipeline 1 Use-case pipeline 2

-Combines multiple middle-ware components to
form use case.
-Handles memory allocation for the use case.
-Enables use case instance creation and deletion.

MSL – framework layers

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – Bottom Layer
• The bottom layer constitutes of algorithms and drivers.

• This layer either generates data, consumes data or process
data.

• This layer runs in its own task context. This layer does not deal
with buffer handling or interfacing with other modules.

• This layer groups the data processing features. For e.g. all
image processing algorithms are encapsulated as one single
layer.

• This layer does not maintain states (pause, stop, play etc).

• The interface to this layer is always through message interface
and status returns status to upper layer through callback APIs

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – Middle Layer
• The middle layer abstracts out creation, deletion and data

passing mechanism to/from components.

• This layer provides mechanism for instances creation for a
specific functionality. This layer maintains states.

• This layer provides an API interface (unlike bottom layer which
provides message interface) and do not have a separate task
context.

• The interface at this layer is common, regardless of underlying
feature it abstracts out. The model that is followed in the
proposed framework is very similar to industry standard
OpenMax layer

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – Upper Layer
• The uppermost layer combines different middleware

components to form final complex use cases. The use-case
could be camera application, which combines capturing data
from camera, pre-processing the data, encoding data to jpeg,
generating preview image and displaying them on screen.

• This layer creates instances of middleware components,
facilitates configuration of use-case features (like encode
image dimension and quality, preview image dimension etc)
and does the data chaining of these different middle layer
components.

• This layer provides an API interface and do not have a
separate task context. Regardless of the final usecase, this
layer exposes a similar set of APIs, divided into synchronous
and asynchronous set.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – Event Driven Architecture
• The proposed multimedia framework is completely event

driven.

• Middle layer carrier out the actual processing through the
bottom layer, which runs from a separate task context. This
ensures that upper layer is interrupted only when the required
event processing is complete.

• Typical e.g. of events are, camera capture completed event by
the driver or notification of image processing operation
complete by the imaging task. These events are notified to top
layer through a common set of middleware call back APIs.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – Component Chaining
• In MSL model, the data pointers are passed from one

component to another middle layer component in the first
component’s data callback function.

• To do away with the complexities of multiple callback function
and their interaction, all middle-layer components for a specific
use case (i.e. an instance of top layer) are configured to call
the exact same callback API implemented in the upper layer.

• This API depending on the usecase, the configuration and
state of the usecase (whether it is in the state of processing or
in the state of stopping) decides whether and where to pass
the data to the next component in the chain. This centralized
callback/event manager brings in the simplicity and ability to
add/remove a new component (or feature) from the usecase.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


MSL – Camera Usecase study
• In the upper layer (to which the application layer communicates to),

one instance each of omx_cam and omx_ssl is created. For each of
the image processing requirement, a separate instance of OMX IMG
module is created i.e. total of 4 instance (overlay, rotate, rescale/zoom,
encode).

• The processing is initiated by the application by calling
MSL_ImgCap_Viewfinder API.

• In the steady state, camera capture goes on in parallel with image
processing (zoom, rotation, overlay etc) and data rendering to LCD.

• To enable this parallel processing of camera capture, image
processing and data rendering, this use-case makes use of four
buffers approach. This is done firing two buffers each to camera
middle layer and to first img middle layer component in the chain. This
ensures that after the first buffer is delivered to upper layer, post
processed and delivered to ssl middle-layer, camera captures in
parallel with image processing and display rendering.

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com


Cam buff2
Camera driver task

IMG task

SSL task

rotate In place
overlay

rescale

wait

wait

Cam buff1

t à

t à

Img buff2

Img buff1 Img buff2

MSL – Camera Usecase buffer flow

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

http://www.go2pdf.com

