
Normal.dot

Copyright © 2003 Texas Instruments
Texas Instruments Proprietary Information – Internal Data

Technical Document

GSM PROTOCOL STACK

G23

GDI – GENERIC DRIVER INTERFACE

FUNCTIONAL SPECIFICATION

Document Number: 8415.026.99.020
Version: 0.18
Status: Draft
Approval Authority:
Creation Date: 1998-Sep-08
Last changed: 2005-May-13 by Joerg Deiss
File Name: 8415_026.doc
ECCN: EAR99

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 27

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and ser-
vices at any time and to discontinue any product, software or service without notice. Customers should
obtain the latest relevant information during product design and before placing orders and should ver-
ify that such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-
knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tech-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated
by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-
sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be
used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement
industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third
party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may
require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electroni-
cally or mechanically, including photocopying and recording, for any purpose without the express writ-
ten permission of TI.

Export Control Statement

Recipient agrees that it will not knowingly export or re-export, directly or indirectly, any product or
technical data (as defined by the U.S, EU and other Export Administration Regulations) including soft-
ware, or any controlled product restricted by other applicable national regulations, received from Dis-
closing party under this Agreement, or any direct product of such technology, to any destination to
which such export or re-export is restricted or prohibited by U.S or other applicable laws, without ob-
taining prior authorisation from U.S. Department of Commerce and other competent Government au-
thorities to the extent required by those laws. This provision shall survive termination or expiration of
this Agreement.
According to our best knowledge of the state and end-use of this product or technology, and in com-
pliance with the export control regulations of dual-use goods in force in the origin and exporting coun-
tries, this technology is classified as given on the front page.
This product or technology may require export or re-export license for shipping it in compliance with
certain countries regulations.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 27

Change History

Date Changed by Approved by Version Status Notes
1998-Sep-08 LM et al. 0.1 1
1998-Oct-28 LM et al. 0.2 2
1998-Nov-24 MS et al. 0.3 3
1998-Dec-14 LM et al. 0.4 4
1998-Dec-15 LM et al. 0.5 5
1998-Dec-17 LM et al. 0.6 6
1999-Mar-02 MS et al. 0.7 7
1999-Mar-10 LM et al. 0.8 8
1999-Jun-04 LE et al. 0.9 9
1999-Dec-01 TSE et al. 0.10 10
1999-Dec-08 TSE et al. 0.11 11
2000-Jan-11 MP et al. 0.12 12
2000-Jan-19 MP et al. 0.13 13
2000-Jan-19 MP et al. 0.14 14
2000-Jun-07 MP 0.15 15
2001-Oct-14 SBK 0.16 16
2001-Nov-13 MP 0.17 17

Notes:
1. Initial version
2. API changed
3. Editorial
4. Complete API change
5. Editorial, auto data types changed
6. Draft version
7. New document template/English check
8. Introduction of the chapter “Signals”/Clarification of the use of ProcHandle
9. Consistency check/Submitted
10. Introduction, variable type updated
11. Drv_SignalID_Type updated
12. Redesign of data types and functions
13. T_DRV_SIGNAL modified
14. T_DRV_SIGNAL modified
15. Update the current gdi.h
16. Editorial improvements, minor corrections
17. Change length values to ULONG

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 27

Table of Contents

1.1 References .. 5

1.2 Abbreviations... 5

3.1 Data types.. 7
3.1.1 T_DRV_DCB – Driver Control Block ... 7
3.1.2 T_DRV_CB_FUNC – Driver Call-Back Function... 8
3.1.3 T_DRV_SIGNAL – Driver Signal ... 8
3.1.4 T_DRV_FUNC – Driver Functions... 8
3.1.5 T_DRV_LIST_ENTRY – Driver List... 8
3.1.6 T_DRV_EXPORT – Driver's Properties (exported by the Driver) 9

3.2 Constants... 10

3.3 Signals ... 11
3.3.1 DRV_SIGTYPE_READ ... 11
3.3.2 DRV_SIGTYPE_WRITE.. 11
3.3.3 DRV_SIGTYPE_CLEAR ... 11
3.3.4 DRV_SIGTYPE_FLUSH.. 12

3.4 Driver Setup and Call-back Mechanism.. 13

3.5 Functions ... 14
3.5.1 drv_Init – Driver Initialization ... 15
3.5.2 drv_Exit – Driver Finalization... 16
3.5.3 drv_Read - Read Data from the Driver.. 17
3.5.4 drv_Write – Write Data to the Driver.. 18
3.5.5 drv_Look – Look at Data from the Driver .. 19
3.5.6 drv_Clear – Clear internal Driver Buffers .. 20
3.5.7 drv_Flush – Flush internal Driver Buffers .. 21
3.5.8 drv_SetSignal – Setup a Signal... 22
3.5.9 drv_ResetSignal – Remove a Signal... 23
3.5.10 drv_SetConfig – Set a Driver Configuration .. 24
3.5.11 drv_GetConfig – Retrieve the Driver Configuration... 25
3.5.12 drv_Callback – Callback Function of the Driver .. 26

A. Acronyms... 27

B. Glossary... 27

List of Figures and Tables

List of References
[ISO 9000:2000] International Organization for Standardization. Quality management sys-

tems - Fundamentals and vocabulary. December 2000

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 27

1.1 References
[C_8415.033] 8415.033, VSI/PEI- Frame/Body Interfaces; Condat

1.2 Abbreviations
API Application Programming Interface

GDI Generic Driver Interface

NVRAM Non Volatile Random Access Memory

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 27

2 Introduction
G23 is a software package implementing Layers 2 and 3 of the ETSI-defined GSM air interface signaling protocol, and as
such represents the part of a GSM mobile station's protocol software which is both, platform and manufacturer independent.
Therefore, G23 can be viewed as a building block providing standardized functionality through generic interfaces for easy
integration.

The G23 suite of products consists of the following items:

• Layers 2 and 3 for speech & short message services,
• Layers 2 and 3 for fax & data services,
• Application Control Interface/AT Command Interface,
• MMI and MMI Framework (MFW) and
• Test and integration support tools.

This document describes the general design of the drivers and driver interfaces (driver APIs) used in the G23 Protocol Stack.
Drivers are function libraries that export reusable functionality for different applications (processes). In general, drivers do not
attend to scheduling.

There are two kinds of drivers recognized in the context of the G23 Protocol Stack, communication drivers and "plain" func-
tion drivers.

Communication drivers include communication functionality. This means that they can send data to and receive data from a
hardware device such as a serial interface. The communication drivers signal specific events, such as the reception of data,
to the parent application using one of two methods (signals or call-backs). Signals are part of the common driver API specifi-
cation. Call-back functionality is an optional implementation and is therefore not described in this document.

In contrast to communication drivers, plain drivers act as simple common function libraries that can access hardware de-
vices. An LED driver, or a ring buffer manager are examples for such a plain drivers. They allow processes to write in and
read from the NVRAM via one standardized interface, the driver.

The following chapters describe the functions from which the drivers must be derived. There is also a differentiation between
plain drivers and communication drivers, in that a different amount of standard functions must be implemented. All drivers
must implement the functions drv_Init() and drv_Exit(). All communication drivers must implement the functions drv_Read(),
drv_Write(), drv_Look(), drv_Flush(), drv_SetSignal(), drv_ResetSignal() and drv_Clear(). Drivers may implement the func-
tions drv_SetConfig(), drv_GetConfig() and drv_Callback().

function plain driver communica-
tion driver

drv_Init() mandatory mandatory

drv_Exit() mandatory mandatory

drv_Read() optional mandatory

drv_Write() optional mandatory

drv_Look() optional mandatory

drv_Flush() optional mandatory

drv_SetSignal() optional mandatory

drv_ResetSignal() optional mandatory

drv_Clear() optional mandatory

drv_SetConfig() optional optional

drv_GetConfig() optional optional

drv_Callback() optional optional

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 27

drv signifies the name of the specific driver e.g. emi_Init(). Instances of drv will have to be substituted by a sequence of
letters denoting the actual driver.

The standard driver API as defined by this document may be extended by adding additional functions, constants and data
types.

3 Generic Driver Interface

3.1 Data types
Name Description

ULONG Unsigned 32 bit integer data type
USHORT Unsigned 16 bit integer data type
SHORT Signed 16 bit integer data type
T_VOID_STRUCT Unsigned 32 bit integer data type (equivalent to un-
signed long)
T_DRV_DCB Driver Control Block (may be different for different drivers)
T_DRV_SIGNAL Signal information data type
T_DRV_CB_FUNC Signal call-back function type
T_DRV_FUNC Driver's function type
T_DRV_LIST Drivers List data type
T_DRV_EXPORT Driver's property type (exported by the driver)

3.1.1 T_DRV_DCB – Driver Control Block

Definition:
typedef struct T_DRV_DCB
{
 ...
 } T_DRV_DCB;

Description:
The driver control block data type T_DRV_DCB is a prototype for driver-specific implementations of a driver control block. A
driver control block contains all parameters used to configure a driver.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 27

3.1.2 T_DRV_CB_FUNC – Driver Call-Back Function

Definition:
typedef void (*T_DRV_CB_FUNC) (T_DRV_SIGNAL * Signal) ;

Description:
This type defines a call-back function used to signal driver events, e.g. driver is ready to accept data. The driver calls the
signal call-back function when a specific event occurs and the driver has been instructed to signal the event to a specific
process (see 3.5.8).

A process can set or reset event signaling by calling one of the driver functions drv_SetSignal(), drv_ResetSignal(). Event
signaling can only be performed when a signal call-back function has been installed at driver initialization.

The signal call-back has only one single parameter Signal containing all data required to identify the signal. For more infor-
mation about the T_DRV_SIGNAL data type, refer to 3.1.3.

3.1.3 T_DRV_SIGNAL – Driver Signal

Definition:
typedef struct
{
 USHORT SignalType;
 USHORT DrvHandle;
 ULONG DataLength;
 T_VOID_STRUCT * UserData;
} T_DRV_SIGNAL

Description:
This type defines the signal information data used to identify a signal. This data type is used to define and to report a signal.
A signal is defined by a process by calling the driver function drv_SetSignal(). An event is signaled by a driver by calling the
pre-defined signal call-back function (see 3.5.1).

3.1.4 T_DRV_FUNC – Driver Functions

Definition:
typedef struct
{
 void (*drv_Exit)();
 USHORT (*drv_Read)();
 USHORT (*drv_Write)();
 USHORT (*drv_Look)();
 USHORT (*drv_Clear)();
 USHORT (*drv_Flush)();
 USHORT (*drv_SetSignal)();
 USHORT (*drv_ResetSignal)();
 USHORT (*drv_SetConfig)();
 USHORT (*drv_GetConfig)();
 void (*drv_Callback)();
} T_DRV_FUNC

Description:
This type defines the functions exported by the driver. If any of the functions is not implemented for a driver, a NULL-pointer
has to be entered in this table.

3.1.5 T_DRV_LIST_ENTRY – Driver List

Definition:

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 27

typedef struct
{
 char * Name;
 USHORT (*drv_Init)(USHORT, T_DRV_CB_FUNC, T_DRV_EXPORT const **);
 char * Process;
 void * DrvConfig;
} T_DRV_LIST_ENTRY

Description:
This data type defines the parameters needed to setup a driver.

Name name of the driver

drv_Init() driver initialization function

Process process to be notified by driver call-back, e.g. "TST"

DrvConfig pointer to driver control block

3.1.6 T_DRV_EXPORT – Driver's Properties (exported by the Driver)

Definition:
typedef struct
{
 char * Name
 USHORT Flags
 T_DRV_FUNC DrvFunc
} T_DRV_EXPORT

Description:
This data type defines the properties exported by the driver.

Name Name of the driver

Flags Bit (0): Call-back function is called during ISR(1)/not called during ISR(0)

DrvFunc functions to access the driver

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 27

3.2 Constants
Name Description

DRV_BUFFER_FULL The internal buffer is exhausted
DRV_DISABLED Driver is not enabled
DRV_ENABLED Driver is enabled
DRV_NOTCONFIGURED Driver is not configured
DRV_INITFAILURE Driver initialization failed
DRV_INITIALIZED Driver is already initialized
DRV_INTERNAL_ERROR Unspecified internal driver error
DRV_INPROCESS The requested function is currently being executed
DRV_INVALID_PARAMS One or more parameters are out of range or invalid
DRV_OK Return value indicating the function completed successfully
DRV_SIGFCT_NOTAVAILABLE The requested event signaling functionality is not available
DRV_SIGTYPE_CLEAR Used to specify clear ready event signaling (refer to 3.5.8)
DRV_SIGTYPE_FLUSH Used to specify flush ready event signaling (refer to 3.5.8)
DRV_SIGTYPE_READ Used to specify read event signaling (refer to 3.5.8)
DRV_SIGTYPE_USER Used to specify additional driver dependent signals (refer to 3.5.8)
DRV_SIGTYPE_WRITE Used to specify write event signaling (refer to 3.5.8)
DRV_BUFTYPE_WRITE Used to specify the write buffer type of buffer (refer to 3.5.6)
DRV_BUFTYPE_READ Used to specify the read buffer type of buffer (refer to 3.5.6)
DRV_MAX_SIGNAL Maximum number of processes to be notified by a driver call-back

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 27

3.3 Signals
Signals are used to inform the using process about selected events asynchronously. Signaling is done by passing a signal
call-back function to the driver at the time of initialization (see “3.5.1 drv_Init – Driver Initialization”). When no call-back func-
tion is defined event signaling cannot be performed. A signal can be set using the function drv_SetSignal() which can be
found in Chapter 3.5.8. Event signaling can be disabled by calling the function drv_ResetSignal(), for more details on this
function refer to Chapter 3.5.9.

The following chapters describe the contents of the T_DRV_SIGNAL information structures defined for the common driver
signals.

3.3.1 DRV_SIGTYPE_READ

This signal is indicated when the driver has received data which can now be read using the drv_Read() function. A prerequi-
site to being informed asynchronously about this event is that the signal has been set using the drv_SetSignal() function. The
event will only be signaled each time new data is available. The behavior depends on the driver's functionality i.e. the event
may be signaled for example each time a character is received via an RX line of a RS232 HW or each time a complete data
block is available. Call the drv_Look() or drv_Read() function as a reaction to the signal.

Parameter Value
SignalType DRV_SIGTYPE_READ
DataLength not used
UserData not used

3.3.2 DRV_SIGTYPE_WRITE

This signal will be indicated when the write buffer is ready to take new data. A prerequisite to being informed asynchronously
about this event is that the signal has been set using the drv_SetSignal() function. The event will only be signaled once,
however each time the write buffer is ready to take new data using the drv_Write() function.

Parameter Value
SignalType DRV_SIGTYPE_WRITE
DataLength not used
UserData not used

3.3.3 DRV_SIGTYPE_CLEAR

This signal is indicated when the read and/or write buffer of the driver has been cleared asynchronously. Prerequisite to
being informed asynchronously about this event is that the signal has been set using the drv_SetSignal() function and a call
to the drv_Clear() function has been performed which returned DRV_INPROCESS meaning that the buffers could not be
cleared at once (synchronously) or clearing is currently in process. The event will be signaled as soon as the selected
buffer(s) is/are cleared.

Parameter Value
SignalType DRV_SIGTYPE_CLEAR
DataLength sizeof(USHORT)
UserData Buffertype (Bitmask, values:

DRV_BUFTYPE_WRITE, DRV_BUFTYPE_READ)

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 27

3.3.4 DRV_SIGTYPE_FLUSH

This signal is indicated when the driver buffer has been flushed asynchronously. Prerequisite to being informed asynchro-
nously about this event is that the signal has been set using the drv_SetSignal() function and that a call to the drv_Flush()
function has been performed which returned DRV_INPROCESS meaning that the buffers could not be flushed at once (syn-
chronously) or flushing is currently being performed.

Parameter Value
SignalType DRV_SIGTYPE_FLUSH
DataLength not used
UserData not used

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 27

3.4 Driver Setup and Call-back Mechanism
All test interface drivers used in the protocol stack are entered in a driver list. In this list the address of the drv_Init() function,
the names of the entitiy, that must be notified in the case of a driver call-back, and a pointer to a default configuration string.

The frame reads the driver list, calls the drv_Init() function and stores the handles of the process to be in a table under the
index corresponding to the index in the driver list. This index is also passed to the drv_Init() function and serves as the driver
handle. The address of a call-back function that is located in the frame is also passed to the drv_Init() function and a pointer
to the properties exported by the driver is stored in the driver table.

In the case of a test interface driver call-back, the frame finally notifies the process which name is entered for the uppermost
driver in the driver list and passes a signal to it if the corresponding signal type is enabled. The frame acts as dispatcher.

To enable/disable signal types the functions vsi_d_setsignal() or vsi_d_resetsignal() must be used, refer to [C_8415.033].

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 27

3.5 Functions
Name Description

drv_Init Initialization of the driver
drv_Exit Termination of the driver
drv_Clear Re-initialize all buffers
drv_Write Write data to the driver
drv_Look Read data from a driver but leave data unchanged
drv_Read Read data from the driver
drv_Flush Flush all buffers
drv_SetSignal Define a signal the driver uses to indicate an event
drv_ResetSignal Un-define a signal the driver uses to indicate an event
drv_SetConfig Set driver configuration
drv_GetConfig Get driver configuration
drv_Callback Callback function of the higher layer driver

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 27

3.5.1 drv_Init – Driver Initialization

Definition:
USHORT drv_Init
(
 USHORT DrvHandle
 T_DRV_CB_FUNC CallbackFunc
 T_DRV_EXPORT ** DrvInfo
) ;

Parameters:
Name Description

DrvHandle unique handle of the driver

CallbackFunc This parameter points to the function that is called at the time an event that is
to be signaled occurs. This value can be set to NULL if event signaling should
not be possible. This function must not be confused with the drv_Callback()
function in 3.5.12

DrvInfo Pointer to the driver parameters.

Return values:
Name Description

DRV_OK Initialization successful
DRV_INITIALIZED Driver already initialized
DRV_INITFAILURE Initialization failed

Description
This function needs to be implemented in all drivers.

The driver exports its properties like its name, the functions to access driver functionality and a bitfield called flags. As the
drivers exports only the address of its properties, these must not be located on the stack but as static structure.

The function initializes the driver's internal data. The function returns DRV_OK in the case of a successful completion.

The function returns DRV_INITIALIZED if the driver has already been initialized and is ready to be used or is already in use.
In case of an initialization failure, which means that the driver cannot be used, the function returns DRV_INITFAILURE.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 27

3.5.2 drv_Exit – Driver Finalization

Definition:
void drv_Exit
(
 void

) ;

Parameters:
Name Description

- -

Return values:
Name Description

- -

Description
This function needs to be implemented in all drivers.

The function is called when the driver functionality is no longer needed. The function “de-allocates” all allocated resources
and finalizes the driver.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 27

3.5.3 drv_Read - Read Data from the Driver

Definition:
USHORT drv_Read
(

 void * Buffer
 ULONG * Length
) ;

Parameters:
Name Description

Buffer This parameter points to the buffer wherein the data is to be copied

Length On call: number of characters to read. If the function returns DRV_OK, it
contains the number of characters read. If the function returns
DRV_INPROCESS, it contains 0.

Return values:
Name Description

DRV_OK Function successful

DRV_INPROCESS The driver is currently reading data. The data is incomplete.

Description
This function needs to be implemented in all communication drivers.

This function is used to read data from a driver. The data is copied into the buffer to which Buffer points. The parameter
*Length contains the size of the buffer in characters.

In the case of a successful completion, the driver's buffer is cleared. The driver keeps the data available when calling the
function drv_Look().

NOTE: When calling the function with a buffer size of 0, the function will return DRV_OK. The size of the buffer needed to
store the available data is stored in the parameter *Length. In this case, Buffer can be set to NULL.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 27

3.5.4 drv_Write – Write Data to the Driver

Definition:
USHORT drv_Write
(
 void * Buffer
 ULONG * Length
) ;

Parameters:
Name Description

Buffer This parameter points to the buffer that is passed to the driver for further
processing

Length On call: number of characters to write. If the function returns
DRV_BUFFER_FULL, it contains the maximum number of characters that
can be written. If the function returns DRV_OK, it contains the number of
characters written. If the function returns DRV_INPROCESS, it contains 0.

Return values:
Name Description

DRV_OK Function successful
DRV_BUFFER_FULL Not enough space
DRV_INPROCESS Driver is busy writing data

Description
This function needs to be implemented in all communication drivers.

This function is used to write data to the driver. The parameter * Length contains the number of characters to write.

In the case of a successful completion, the function returns DRV_OK.

If the data cannot be written because the storage capacity of the driver has been exhausted, the function returns
DRV_BUFFER_FULL and the maximum number of characters that can be written in * Length.

If the driver is currently busy writing data and therefore cannot accept further data to be written, it returns DRV_INPROCESS
and sets the parameter *Length to 0.

NOTE: When calling the function with a buffer size of 0, the function will return the number of characters that can be written
in the parameter *Length. In this case, Buffer can be set to NULL.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 27

3.5.5 drv_Look – Look at Data from the Driver

Definition:
USHORT drv_Look
(
 void * Buffer
 ULONG * Length
) ;

Parameters:
Name Description

Buffer This parameter points to the buffer wherein the data is to be copied

Length On call: number of characters to read. If the function returns DRV_OK, it
contains the number of characters read. If the function returns
DRV_INPROCESS, it contains 0.

Return values:
Name Description

DRV_OK Function successful

DRV_INPROCESS The driver is currently reading data. The data is incomplete.

Description
This function needs to be implemented in all communication drivers.

This function is used to read data from the driver. The data is copied into the buffer to which Buffer points. The parameter
*Length contains the size of the buffer in characters. The driver's internal buffer is not cleared.

In the case of a successful completion, the function returns DRV_OK and sets the value of *Length to the number of charac-
ters read.

NOTE: When calling the function with a buffer size of 0, the function will return DRV_OK. The size of the buffer needed to
store the available data is stored in the parameter *Length. In this case, Buffer can be set to NULL.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 27

3.5.6 drv_Clear – Clear internal Driver Buffers

Definition:
USHORT drv_Clear
(
 USHORT BufferType
) ;

Parameters:
Name Description

BufferType Bit-mask used to specify if the read, write or read and write buffer is cleared

Return values:
Name Description

DRV_OK Function successful

DRV_INPROCESS The driver could not complete the clearance of the buffers at once. The driver
is busy clearing the buffers.

Description
This function needs to be implemented in all communication drivers.

This function is used to clear the driver's internal buffers. The parameter BufferType is used to specify which buffer is to be
cleared. The value of BufferType can be one of the values or a combination of the values defined in the following table.
Combining DRV_BUFTYPE_READ and DRV_BUFTYPE_WRITE using bit wise OR will cause the driver to clear the read
and write buffers.

Buffer type Value
DRV_BUFTYPE_WRITE 1
DRV_BUFTYPE_READ 2

Figure 1

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 27

3.5.7 drv_Flush – Flush internal Driver Buffers

Definition:
USHORT drv_Flush
(
 void
) ;

Parameters:
Name Description

- -

Return values:
Name Description

DRV_OK Function successful

DRV_INPROCESS The driver could not complete flushing the buffers at once. The driver is busy
flushing the buffers.

Description
This function needs to be implemented in all communication drivers.

This function is used to flush the driver's internal buffers. This means data that is currently stored in the driver's internal write
buffer is written to the device at once.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 27

3.5.8 drv_SetSignal – Setup a Signal

Definition:
USHORT drv_SetSignal
(
 USHORT SignalType
) ;

Parameters:
Name Description

SignalType Signal type to be set

Return values:
Name Description

DRV_OK Function completed successfully
DRV_INVALID_PARAMS Invalid signal type
DRV_SIGFCT_NOTAVAILABLE Event signaling functionality is not available

Description
This function needs to be implemented in all communication drivers.

This function is used to define a single signal or multiple signals that is/are indicated to the process when the event identified
by SignalType occurs. Standard signals are defined in the following table. The signals can be extended for derived drivers,
using DRV_SIGTYPE_USER shifted left to define new signals.

Signal Value
DRV_SIGTYPE_WRITE 0x0001
DRV_SIGTYPE_READ 0x0002
DRV_SIGTYPE_FLUSH 0x0004
DRV_SIGTYPE_CLEAR 0x0008
DRV_SIGTYPE_USER 0x0010

Figure 2

To remove a signal, call the function drv_ResetSignal().

If the passed signal type is not implemented, the driver returns DRV_INVALID_PARAMS.

If no signal call-back function has been defined at the time of initialization, the driver returns
DRV_SIGFCT_NOTAVAILABLE.

This function is normally not called directly by the process, but indirectly via the frame function vsi_d_setsignal(): For dy-
namic enabling of signals, the process calls vsi_d_setsignal() to enable the frame to store the new signal type mask for the
calling process (refer to 3.4).

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 27

3.5.9 drv_ResetSignal – Remove a Signal

Definition:
USHORT drv_ResetSignal
(
 USHORT SignalType
) ;

Parameters:
Name Description

SignalType Signal type to be reset

Return values:
Name Description

DRV_OK Function completed successfully
DRV_INVALID_PARAMS Invalid signal type
DRV_SIGFCT_NOTAVAILABLE Event signaling functionality is not available

Description
This function needs to be implemented in all communication drivers.

It is used to remove a single signal or multiple signals that have previously been set. The signal type is a bit mask containing
the signal(s) to be reset.

If the passed signal type is not implemented the driver returns DRV_INVALID_PARAMS.

If no signal call-back function has been defined at the time of initialization, the driver returns
DRV_SIGFCT_NOTAVAILABLE.

This function is normally not called directly by the process but indirectly via the frame function vsi_d_resetsignal(): For dy-
namic disabling of signals the process calls vsi_d_resetsignal() to enable the frame to store the new signal type mask for the
calling process (refer to 3.4).

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 27

3.5.10 drv_SetConfig – Set a Driver Configuration

Definition:
USHORT drv_SetConfig
(
 T_DRV_DCB * DCBPtr
) ;

Parameters:
Name Description

DCBPtr Pointer to the driver control block

Return values:
Name Description

DRV_OK Function successfully completed
DRV_INVALID_PARAMS One or more values are out of range or invalid in that combination

Description
Implementation of this function is optional for all types of drivers and governed by the functional specification of the respec-
tive driver.

This function is used to configure a driver (transmission rate, flow control, etc). For detailed information about the contents of
the driver control block, refer to the functional specification of the specific driver.

If any value of the configuration is out of range or invalid in combination with any other value of the configuration, the function
returns DRV_INVALID_PARAMS.

Call the drv_GetConfig() function to retrieve the driver's current configuration.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 25 of 27

3.5.11 drv_GetConfig – Retrieve the Driver Configuration

Definition:
USHORT drv_GetConfig
(
 T_DRV_DCB * DCBPtr
) ;

Parameters:
Name Description

DCBPtr Pointer to the driver control block

Return values:
Name Description

DRV_OK Function successfully completed
DRV_NOTCONFIGURED The driver is not yet configured

Description
Implementation of this function is optional for all types of drivers and governed by the functional specification of the respec-
tive driver.

This function is used to retrieve the configuration of the driver. The configuration is returned in the driver control block to
which the pointer provided DCBPtr points. For detailed information about the contents of the driver control block, refer to the
functional specification of the specific driver.

Some drivers may have a default configuration. If these drivers have not been configured a call of drv_GetConfig() returns a
pointer to a control block containing this default configuration data and DRV_OK as return value. For drivers that have to be
configured, in this case DRV_NOTCONFIGURED is returned.

Call the drv_SetConfig() function to configure the driver.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 26 of 27

3.5.12 drv_Callback – Callback Function of the Driver

Definition:
void drv_Callback
(
 T_DRV_SIGNAL * Signal
) ;

Parameters:
Name Description

Signal Pointer to the driver signal (information data)

Return values:
Name Description

- -

Description
This function must not be confused with the parameter CallbackFunc passed to drv_Init().

This function is only needed for cascaded drivers where the lower layer driver calls the call-back function of the upper layer
driver via the frame and thus in general optional. It is the callback entry for the lower layer driver.

Technical Document
GSM Protocol Stack G23 GDI – Generic Driver Interface Functional Specifications (8415.026.99.020), v0.18 Draft

Texas Instruments Proprietary Information – Internal Data Page 27 of 27

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Te-
lecommunication 2000
(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/family of standards for 3G. This
initiative provides a global infrastructure through both satellite and terres-
trial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roam-
ing. <URL: http://www.imt-2000.org/>

