
Application Report
APNSWCA008 – 01 2006

Locosto LCD Driver
Customization Guidelines

Application note

Contents
1 Introduction ...3

1.1 Current LCD Overview ...3
1.2 Current LCD Main Features: ...4

2 Locosto LCD Interface summary and data structure details ..5
2.1 Locosto LCD driver API summary : ..5
2.2 Locosto LCD Driver Data Structure details ...9
Types definitions and constants..9

2.2.1 T_LCD_SELECT ...9
2.2.2 T_LCD_ENDIAN..9
2.2.3 T_LCD_PIXFORMAT ..9
2.2.4 T_LCD_ORIENTATION...9
2.2.5 T_LCD_REFCONTROL ..10
2.2.6 T_LCD_COMMAND ..10
2.2.7 lcd_fb_coordinates ..10
2.2.8 lcd_configParams ..11
2.2.9 lcd_tuningtable ..11
2.2.10 #define directives used..11

3 Adoption of different LCD Hardware...11
3.1 Functions requiring modification to adapt to new hardware: ...12

3.1.1 lcd_initialization ...12
3.1.2 lcd_control ...12
3.1.3 lcd_pwr_interface ..13
3.1.4 lcd_parallel_config...13
3.1.5 f_lcd_if_poll_write ..14
3.1.6 f_lcd_if_dma_enable ...15
3.1.7 f_lcd_if_dma_disable...16
3.1.8 f_lcd_if_set_cs_and_data_type ...16
3.1.9 lcd_parallel_display ...17

3.2 Data Structure requiring modification to adapt to new hardware: ...18
3.2.1 T_LCD_SELECT ...18
3.2.2 T_LCD_PIXFORMAT ..18
3.2.3 T_LCD_COMMAND ..18

1

APNSWCA008

3.2.4 # defines directives need to change with hardware...19
References...19
Appendix A. Listing Figures and Tables...20

Figures
Figure 1. Lists the signals between the LOCOSTO device and LCD controller4
Figure 2. Architecture for LCD Driver...5
Figure 3. API structure in the LCD Driver ..6
Figure 4. lcd_fb_coordinates ..10

Tables
Table 1. LCD API impact summary to adapt new LCD hardware ...9

WARNING:

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products,
software and services at any time and to discontinue any product, software or service without
notice. Customers should obtain the latest relevant information during product design and
before placing orders and should verify that such information is current and complete.
All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment. TI warrants performance of its hardware products to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other
quality control techniques are used to the extent TI deems necessary to support this warranty.
Except where mandated by government requirements, testing of all parameters of each product
is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI products, software and/or services. To
minimize the risks associated with customer products and applications, customers should
provide adequate design, testing and operating safeguards.
Any access to and/or use of TI software described in this document is subject to Customers
entering into formal license agreements and payment of associated license fees. TI software
may solely be used and/or copied subject to and strictly in accordance with all the terms of
such license agreements.
Customer acknowledges and agrees that TI products and/or software may be based on or
implements industry recognized standards and that certain third party may claim intellectual
property rights therein. The supply of products and/or the licensing of software does not
convey a license from TI to any third party intellectual property rights and TI expressly
disclaims liability for infringement of third party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under
any TI patent right, copyright, mask work right, or other TI intellectual property right relating to
any combination, machine, or process in which TI products, software or services are used.
Information published by TI regarding third–party products, software or services does not
constitute a license from TI to use such products, software or services or a warranty,

2

APNSWCA008

endorsement thereof or statement regarding their availability. Use of such information,
products, software or services may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.
No part of this document may be reproduced or transmitted in any form or by any means,
electronically or mechanically, including photocopying and recording, for any purpose without
the express written permission of TI.

1 Introduction
The purpose of this App-Note is to identify and mark the changes required in the LCD Driver in

TCS 3.2 in order to support the new hardware modules in the Locosto.
 In the reference design LCD Controller HD66774+HD66772 and Philips panel LPH8754 is

used. The scope of this document is to describe the changes required to TCS 3.2 LCD controller driver
to interface with a different LCD module other than the one used in the reference design.

The document is divided into three logical parts.
1. First part describes current LCD features, current LCD driver architecture, and

hardware connection between Locosto and LCD controller.
2. Second part describes about Data structures used, the API summary as well the impact

on API to adapt new LCD hardware.
3. Changes identified to adapt new hardware with respect to API as well Data structures.

1.1 Current LCD Overview

The liquid crystal display (LCD) interface used in TCD 3.2 reference design (RD) connects an

external color graphical controller to the digital base band (DBB) device (LOCOSTO). This 8-bit parallel
interface is compliant with the 8-bit 6800-series and 8086-series parallel standard to support a large
range of LCD displays available on the market.

The configuration and data information are transferred from the microprocessor unit (MPU) to
the LCD interface through the TI peripheral bus (TIPB) by 16-bit words up to a rate of 52 Mwords/s.
The control and data information are transferred from the LCD interface to the external LCD controller
at a speed that is a fraction (1, 2, 4, or 8) of the 13-MHz GSM clock. Data are transferred in 8-bit
words.

This interface targets LCD device with the following features:
 _ Color LCD screens (passive or active matrix)
 _ 8-bit 6800-series or 8086-series parallel interface
 _ 16-bit (RGB 656) or 24-bit (RGB 888) color
 _ Up to QVGA (320 x 240) format

 3

APNSWCA008

1.2 Current LCD Main Features:
The main features of the LCD interface are:

_ Receive and transmit capability
_ Two interface modes: 6800 or 8086
_ 16-bit word width between memory and the LCD interface
_ 52 M words/s transfer rate between memory and the LCD interface
_ Speed of data and control transfer is a fraction (1, 2, 4, or 8) of the 13-MHz GSM clock
_ Receive and transmit interrupts
_ FIFO buffer used for adapting transfer rate
_ Two-port FIFO of 128 x 16-bit words
_ FIFO used in transmission data or commands
_ Register used in reception

Main LCD connection with LOCOSTO

Figure 1. Lists the signals between the LOCOSTO device and LCD controller

4

APNSWCA008

API for NEW LCD Driver

Primary
LCD

Secondary
LCD

APP

Release
Build

Figure 2. Figure 2: Architecture for LCD Driver

2 Locosto LCD Interface summary and data structure details
This section will focus on API summary and Data structures used.
2.1. Locosto driver API summary
2.2. Locosto LCD driver Data Structure details

2.1 Locosto LCD driver API summary :

The functions in LCD are divided into four categories.

1. Top level framework API – These are the API’s which are exposed to the framework. These
will be the entry-point for the driver. These API will call to one or More than one Top level
API. These API’s are abstracted from hardware knowledge. These API will be low impact
/no impact API.

2. Top level API – These are the API’s which are exposed to the application and are
abstracted from hardware knowledge. These API will call the other functions in the LCD
driver, so these are identified as API with low impact / no impact.

 5

APNSWCA008

3. High level API: These are the API’s which are internal to the LCD driver. These are called
by Top level API, and will make request to low level API. These API either have little
information regarding the hardware or doesn’t have. These API‘s are identified as low
impact /no impact API’s.

4. Low level API: These are the API which requires the hardware knowledge and are tightly
coupled with underneath hardware. Any change in hardware, requires change in these
functions accordingly. These API’s are identified as high level impact APIs

Frame work
API

Top Level API

High Level
API

Low Level
API

Figure 3. API structure in the LCD Driver

Definition of the terminologies used

High impact: Most part of the function needed to be rewritten with the change in the hardware.

Medium impact: Some part of the function may need to be rewritten with the change in the hardware.

Low impact: minimal changes may be required with change in the hardware. Like change in
parameters that are passed to the function

 No impact: No changes are required with the change in the hardware.

6

APNSWCA008

Sr No Type Name File Name Impact Remark

1 Top Level API lcd_initialization lcd_manager.h Low
If customer decides to use only one
LCD then, DISPLAY_MAIN_LCD

should be select by default.

2 Top Level API lcd_display lcd_manager.h No

3 Top Level API lcd_control lcd_manager.h Low

For new hardware if different
operations are required then add

required commands in the
Command union

4 High Level API lcd_pri_if_init lcd_interface.c No
5 High Level API lcd_pri_if_display lcd_interface.c No
6 High Level API lcd_pri_if_control lcd_interface.c No

7
Top Level

Framework
API

pei_monitor lcd_pei.c No
These are the framework APIs and
are hardware independent. So need

not to change these APIs.

8
Top Level

Framework
API

pei_config lcd_pei.c No Hardware independent function.

9
Top Level

Framework
API

pei_timeout lcd_pei.c No Hardware independent function.

10
Top Level

Framework
API

pei_signal lcd_pei.c No Hardware independent function.

11
Top Level

Framework
API

pei_exit lcd_pei.c No Hardware independent function.

12
Top Level

Framework
API

pei_primitive lcd_pei.c No Hardware independent function.

13
Top Level

Framework
API

pei_run lcd_pei.c No Hardware independent function.

14
Top Level

Framework
API

pei_init lcd_pei.c No Hardware independent function.

15
Top Level

Framework
API

pei_create lcd_pei.c No Hardware independent function.

16
Top Level

Framework
API

lcd_start lcd_pei.c No Hardware independent function.

18
Top Level

Framework
API

lcd_stop lcd_pei.c No Hardware independent function.

19 Top Level lcd_kill lcd_pei.c No Hardware independent function.

 7

APNSWCA008

Framework
API

20
Top Level

Framework
API

lcd_init lcd_pei.c No Hardware independent function.

21
Top Level

Framework
API

lcd_get_info lcd_env.c No Hardware independent function.

22
Top Level

Framework
API

lcd_set_info lcd_env.c No Hardware independent function.

23
Top Level

Framework
API

lcd_start lcd_env.c No Hardware independent function.

24
Top Level

Framework
API

lcd_stop lcd_env.c No Hardware independent function.

25
Top Level

Framework
API

lcd_kill lcd_env.c No Hardware independent function.

26
Top Level

Framework
API

lcd_init lcd_env.c No Hardware independent function.

27 Low Level API lcd_pwr_interface lcd_pwr.c High

Function is hardware dependent. It
sets the control register of the LCD
controller, function need to change

with new hardware.

28 High Level API Lcd_Vote_DeepSlee
pStatus lcd_pwr.c Low

This function updates the Sleep
status and is hardware independent.
Need to verify the calling sequence.

29 Low Level API lcd_parallel_config lcd_transport High

This function is used to initialize the
LCD .It also initializes the LCD
interface and the LCD controller.
This function need to be changed

30 Low Level API f_lcd_if_poll_write lcd_transport High The writing sequence may be
different for different controller

31 Low Level API f_lcd_if_dma_enable lcd_transport Low

This function grabs the bus and
enables the DMA. Need to be

modified if no other device is there
on bus

32 Low Level API f_lcd_if_dma_disabl
e lcd_transport Low

This function disables the DMA
capabilities and releases the bus.

Need to be modified if no other
device is there on bus

8

APNSWCA008

33 Low Level API f_lcd_if_set_cs_and
_data_type lcd_transport High Updates LCD_CNTL_REG to set

data type and read or write access

34 Low Level API lcd_parallel_display lcd_transport High Need to be Changed
35 Low Level API r2d_dma_callback lcd_transport Low Need to check the Impact

Table 1. LCD API impact summary to adapt new LCD hardware

2.2 Locosto LCD Driver Data Structure details

Types definitions and constants

2.2.1 T_LCD_SELECT

T_LCD_SELECT selects a specific LCD

Synopsis: typedef enum {

 DISPLAY_MAIN_LCD,
 DISPLAY_SUB_LCD

 } T_LCD_SELECT;

2.2.2 T_LCD_ENDIAN

T_LCD_ENDIAN selects the endianness to be used for the Pixel data

Synopsis: typedef enum {

 LITTLE_ENDIAN,
 BIG_ENDIAN

 } T_LCD_ENDIAN;

2.2.3 T_LCD_PIXFORMAT

T_LCD_PIXFORMAT selects the Pixel format for the pixel data

Synopsis: typedef enum {

 RGB565,
 RGB666,
 RGB888

 } T_LCD_PIXFORMAT;

2.2.4 T_LCD_ORIENTATION
T_LCD_ORIENTATION selects the orientation of the LCD

Synopsis: typedef enum {

 HORIZONTAL,
 VERTICAL

 } T_LCD_ORIENTATION;

 9

APNSWCA008

2.2.5 T_LCD_REFCONTROL

T_LCD_REFCONTROL selects if LCD refresh is enabled or disabled

Synopsis: typedef enum {

 REF_ENABLED,
 REF_DISABLED

 } T_LCD_REFCONTROL;

2.2.6 T_LCD_COMMAND

T_LCD_COMMAND Command to be issued to the LCD driver

Synopsis: typedef enum {

 LCD_CLEAR,
 LCD_DISPLAYON,
 LCD_DISPLAYOFF,
 LCD_GETCONFIG,
 LCD_SETCONFIG

 } T_LCD_COMMAND;

2.2.7 lcd_fb_coordinates

Lcd_fb_coordinates selects the Pixel co-ordinates to be refreshed

Synopsis: typedef struct {

 Uint16 start_x;
 Uint16 start_y;
 Uint16 end_x;
 Uint16 end_y;

 } lcd_fb_coordinates;

end_x,
end_y)

(start_x,
start_y)

Window area to be refreshed

Figure 4. Figure 4: lcd_fb_coordinates

10

APNSWCA008

2.2.8 lcd_configParams

lcd_configParams Parameters for LCD configuration. These are the parameters which
could be configured from the application.

Synopsis typedef struct {
 Uint16 height /* height of the display panel */
 Uint16 width /* width of the display panel */

T_LCD_ORIENTATION orientation /* orientation of the LCD */
 T_LCD_PIXFORMAT pixel_format; /* RGB format */
 T_LCD_ENDIAN endianness /* Endianness of the pixel data */
 T_LCD_REFCONTROL refresh_control /* refresh control */

 } lcd_configparams;

2.2.9 lcd_tuningtable

lcd_TuningTable parameters of the tuning table. This table gives the whole list of
parameters which the application can configure as well as the read-only parameters which
are controlled at the driver level.

Synopsis Typedef struct {
 bool partial_update; /* does it support windowing or partial update of the LCD framebuffer*/
 bool OSD; /* does it support OSD (On Screen Display */
 bool dedicated_dma; /* is there dedicated dma */
 lcd_configparams *p_lcd_configparams

 }lcd_tuningtable;

2.2.10 #define directives used

#define LCD_HEIGHT 220 // Change LCD Height with new hardware
#define LCD_WIDTH 175 // Change LCD Width with new hardware
#define LCD_PIXEL_FORMAT RGB565
#define LCD_REFRESH_PERIOD 40

3 Adoption of different LCD Hardware
This section will focus on changes required to adapt to new hardware:

3.1. Functions requiring modification to adapt to new hardware.
3.2. Data structure requiring modification to adapt new hardware.

 11

APNSWCA008

3.1 Functions requiring modification to adapt to new hardware:

We are listing here the functions which have probable impact to adhere to new hardware.

3.1.1 lcd_initialization
 T_RV_RET lcd_initialization (T_LCD_SELECT sel //selects a specific LCD main or

Sub
)

Description

This function initialises the LCD display and the LCD controller driver. This API should be called before
any other functions in this driver.

Parameters

• sel specifies whether this API is intended for main or sub-LCD.

Immediate Return

• T_RV_RET

Possible changes required
If the customer is using only one LCD then parameter is overhead. Still to adhere to the architecture we
insist to keep API unchanged and select Main LCD.

3.1.2 lcd_control
T_RV_RET lcd_control(T_LCD_SELECT sel, // selects a specific LCD main or Sub
 T_LCD_COMMAND command, // Command to be issued to the LCD driver
 void *p_cmd_param // void pointer to send param if req

)

Description

This is a generic API which could be further scaled for any additional commands which might come up
later. Currently added commands are listed below:

Command Description

 LCD_GETCONFIG Need to pass a structure pointer of type “lcd_tuningtable” to get
 the configuration items.

 LCD_SETCONFIG Need to pass a structure pointer of type “lcd_configparams” to
 set the configuration items.

 LCD_DISPLAYON Only command is sufficient. Display is switched ON.
 LCD_DISPLAYOFF Only command is sufficient. Display is switched OFF.
 LCD_CLEAR Only command is sufficient. Contents of the LCD are cleared.

12

APNSWCA008

Parameters

• sel Specifies whether this API is intended for main or sub-LCD.

• Command Command that can be given to the LCD driver for eg., clear, Display

on, Display OFF, etc.

• p_cmd_param Structure to pass parameters if required for the commands.

Immediate Return

• T_RV_RET

Possible changes required
To add any additional command which might be required to support new hardware. The available
commands should support most of the LCD’s.

Example:
If LCD hardware has separate control register for ICON display
LCD_DISPLAY_ICON_ON This will enable the ICON display
LCD_DISPLAY_ICON_OFF This will disable the ICON display

3.1.3 lcd_pwr_interface
 UINT8 lcd_pwr_interface(UINT8 command) // Sleep, wakeup or Clock enable

Description

This function is used to set Clock Mask command, Sleep command, Wake up command.
Parameters

• Command Sleep, wakeup or Clock enable. Specifies on of these command

Immediate Return

• UINT8

Possible changes required
If the customer is using new hardware then depending on the new hardware need to set the required
state to control register.

Example:
In LCD_ACTIVE command enable clock and come out of power saving mode. Incase of
DISPLAY_OFF or CLOCK_OFF (If the hardware supports any power saving mode) enter into power
saving mode.

3.1.4 lcd_parallel_config
 ELCD_PAR_RET lcd_parallel_config(void)

 13

APNSWCA008

Description

This function is used to initialize the LCD manager. It also initializes the LCD interface and the LCD
controller.
Parameters

• Void

Immediate Return

• ELCD_PAR_RET

Possible changes required
LCD interface and LCD controller initialization to be put under this function. Depending on the
hardware used the initialization sequence of LCD controller and LCD interface need to be taken care.

Example of Initialization sequence for I-Sample

1. Reset LCD Interface
2. Enable clock
3. Disable /Enable DMA
4. Select type of interface 8086 /6800
5. Reset Start of LCD controller
6. Reset End of LCD controller
7. Power on sequence
8. Turn on sequence.

Example of Initialization sequence for 4 level grayscale LCD module

1. Power on
2. Wait for Stabilizing power
3. Set power save
4. Oscillator on
5. Regulator register select
6. Electronic volume register select
7. LCD Bias register select
8. Gray scale select
9. power control
10. Release power state and wait for stabilizing the LCD power level.
11. End of Initialization sequence

3.1.5 f_lcd_if_poll_write
 void f_lcd_if_poll_write(E_LCD_IF_CS d_cs, // LCD Controller Chip select
 SYS_UWORD16 *p_data, // pointer on data buffer
 SYS_UWORD32 d_size, // data buffe size to write
 E_LCD_IF_DATA_TYPE d_type// Instruction or Data type selector
)

Description

This function specifies the LCD Controller write procedure in polling mode.

14

APNSWCA008

Parameters

• d_cs // LCD Controller Chip select
• *p_data // pointer on data buffer
• d_size // data buffe size to write
• d_type // Instruction or Data type selector

Immediate Return

• Void

Possible changes required
Depend on the hardware used the customer has to implement the write sequence with polling method.

Current write procedure in polling method

1. Acquire bus
2. Configure pin
3. Set the chip select and data type
4. While (data to write) wait
5. Exit while loop if you don’t have any data to write

Example:
Sequence for writing display data for NT7506

1. Acquire bus if it is shared between peripherals.
2. Set page address
3. Set column address
4. Data write
5. Increment column and check still data to be written
6. If yes then go to step3
7. if no increment column and come out of loop

3.1.6 f_lcd_if_dma_enable
 void f_lcd_if_dma_enable(E_LCD_IF_CS d_cs, // LCD Controller Chip select
 E_LCD_IF_FRAME_SZ d_min_frame_sz, //LCD Interface Minimum frame size
 E_LCD_IF_DATA_TYPE d_type) // Instruction / Data type selector

Description
The DMA capabilities are enabled using this function. In the LCD driver context DMA is used to copy the data
between the frame buffer and Transmit FIFO.
Parameters

• d_cs // LCD Controller Chip select
• d_min_frame_sz //LCD Interface Minimum frame size
• d_size // data buffe size to write
• d_type // Instruction or Data type selector

Immediate Return

 15

APNSWCA008

• Void

Possible changes required
The data transfer is executed by using either a DMA request or interrupt. The bus is shared between
camera, LCD and nand flash. If the bus is shared between other peripherals then the sequence to grab
the bus need to be modified.

The following explains the current sequence:

1. Acquire bus // Need to modify accordingly as the bus is shared.
2. Configure Pin
3. Set chip select and data or instruction type
4. Enable DMA capabilities //Enable DMA capability.

3.1.7 f_lcd_if_dma_disable
E_LCD_IF_RET f_lcd_if_dma_disable(E_LCD_IF_CS d_cs,// LCD Controller Chip select
 T_LCD_IF_CALLBACK pf_callback_sts // Status Callback function pointer
)

Description

DMA capabilities are disabled using this function.
Parameters

• d_cs // LCD Controller Chip select
• pf_callback_sts // Status Callback function pointer

Immediate Return

• E_LCD_IF_RET

Possible changes required
The bus is shared between camera, LCD and nand flash. If the bus is shared between other
peripherals then the sequence to release the bus need to be modified.

The following explains the current sequence:

1. Disable DMA capabilities from device // Disable the DMA capabilities.
2. Install status callback function
3. Release bus // Need to modify accordingly as the bus is shared.

3.1.8 f_lcd_if_set_cs_and_data_type
void f_lcd_if_set_cs_and_data_type(E_LCD_IF_CS d_cs, // LCD Controller Chip select
 E_LCD_IF_DATA_TYPE d_type, // Instruction Data type selector
 E_LCD_IF_DATA_ACCESS d_access // Data access
)

Description

16

APNSWCA008

Updates the CNTL_REG and LCD_CNTL_REG to change LCD Controller addressing.
Updates LCD_CNTL_REG to set data type and read or write access
Parameters

• d_cs // LCD Controller Chip select
• d_type, // Instruction Data type selector
• d_access // Data access

Immediate Return

• Void

Possible changes required
The following things need to be write to the new hardware used

Current procedure to Chip select ad set data type

1. Update CNTL_REG with new chip select // Changes required with new hardware
2. Set clock enable bit in CNTL_REG // Changes required with new hardware
3. Set the defied type Instruction or data // Changes required with new hardware
4. Set access type // Changes required with new hardware

3.1.9 lcd_parallel_display
 ELCD_PAR_RET lcd_parallel_display(UINT16 *ImageDataPtrPAR
)

Description

This function is responsible to copy the data to the display buffer.
Parameters

• d_ ImageDataPtrPAR // Pointer to a impage data buffer
Immediate Return

• LCD_PAR_RET_OK
• LCD_PAR_RET_FAIL

Possible changes required
Depending on the hardware used customer has to write sequence to copy the data to display buffer. If
customer is using DMA mode, then the number of bytes to be transferred (depends on the resolution of
LCD panel) should be recalculated.

The following explains the current sequence:
Copying data to display buffer can be done in either way.
1. By using polling method
2. By using DMA

A) By using polling method
1. Lock mutex
2. Set ram address

 17

APNSWCA008

3. Wait in for till copy is complete
4. In for loop check for little endian or big endian

B) By using DMA method

1. Calculate bytes to transfer
2. Calculate number of frames
3. Call DMA for data transfer
4. Wait till we get event from DMA callback

3.2 Data Structure requiring modification to adapt to new hardware:

3.2.1 T_LCD_SELECT

T_LCD_SELECT selects a specific LCD

Synopsis typedef enum {

 DISPLAY_MAIN_LCD,
 DISPLAY_SUB_LCD

 } T_LCD_SELECT;

If customer is using only one LCD then by default DISPLAY_MAIN_LCD should be selected.

3.2.2 T_LCD_PIXFORMAT

T_LCD_PIXFORMAT selects the Pixel format for the pixel data

Synopsis typedef enum {

 RGB565,
 RGB666,
 RGB888

 } T_LCD_PIXFORMAT;
If customer decides to use any other format then customer need to add pixel format to
T_LCD_PIXFORMAT. The pixel format input to the frame buffer should be same as the pixel format
supported by LCD panel. Any kind of pixel format conversion does not take place in the LCD driver.

3.2.3 T_LCD_COMMAND
T_LCD_COMMAND Command to be issued to the LCD driver

Synopsis typedef enum {

 LCD_CLEAR,
 LCD_DISPLAYON,
 LCD_DISPLAYOFF,
 LCD_GETCONFIG,
 LCD_SETCONFIG

 } T_LCD_COMMAND;

Customer need to add the commands required to support new hardware.

Example:
If LCD hardware has separate control register for ICON display

18

APNSWCA008

LCD_DISPLAY_ICON_ON //This will enable the ICON display
LCD_DISPLAY_ICON_OFF //This will disable the ICON display

3.2.4 # defines directives need to change with hardware

#define LCD_HEIGHT 220 // Change LCD Height with new hardware
#define LCD_WIDTH 175 // Change LCD Width with new hardware
#define LCD_PIXEL_FORMAT RGB565 // The pixel format input to the frame buffer should be same as
 // the pixel format supported by LCD panel.

References
1. Locosto_BSP_API.doc
2. locsto_bum_LCD.pdf
3. Data Sheet NT7506

 19

APNSWCA008

Appendix A. Listing Figures and Tables

 Figure 1. Main LCD connection with LOCOSTO

 Figure 2. Architecture for LCD Driver

 Figure 3. API structure in the LCD Driver

 Figure 4. lcd_fb_coordinates

 Table -1. LCD API impact summary to adapt new hardware

20

	Types definitions and constants

