Q‘ TEXAS
INSTRUMENTS

Locosto BSP
Application Programming Interface

Technical Document

Document Number: 13_04_04_03073

TI Department Cellular Systems Software Division
Version: 03

Status: Draft

Date (mm-dd-yyyy): 16-MAY-2006

Copyright © 2005 Texas Instruments
Texas Instruments — Proprietary Information
Strictly Private

Locosto_BSP_API Version 0.3

Q’ Texas Instruments — Proprietary Information Page 2 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Important Notice

IMPORTANT NOTICE

Texas Instruments Incorporated and / or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and
services at any time and to discontinue any product, software or service without notice. Customers
should obtain the latest relevant information during product design and before placing orders and
should verify that such information is current and complete.

All products are sold subject to TI's terms and conditions of sale supplied at the time of order
acknowledgement. Tl warrants performance of its hardware products to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are used to the extent T| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl products, software and / or services. To
minimise the risks associated with customer products and applications, customers should provide
adequate design, testing and operating safeguards.

Any access to and / or use of Tl software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. Tl software may solely be
used and / or copied subject to and strictly in accordance with all the terms of such license
agreements.

Customer acknowledges and agrees that Tl products and / or software may be based on or implement
industry recognised standards and that certain third parties may claim intellectual property rights
therein. The supply of products and / or the licensing of software do not convey a license from Tl to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third
party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl
patent right, copyright, mask work right, or other Tl intellectual property right relating to any
combination, machine, or process in which Tl products, software or services are used.

Information published by Tl regarding third—party products, software or services does not constitute a
license from Tl to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may
require a license from a third party under the patents or other intellectual property of the third party, or
a license from Tl under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written
permission of TI.

% Texas Instruments — Proprietary Information Page 3 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

WARNING:

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical
data (as defined by the U.S, EU and other Export Administration Regulations) including software, or
any controlled product restricted by other applicable national regulations, received from Disclosing
party under this Agreement, or any direct product of such technology, to any destination to which such
export or re-export is restricted or prohibited by U.S or other applicable laws, without obtaining prior
authorisation from U.S. Department of Commerce and other competent Government authorities to the
extent required by those laws. This provision shall survive termination or expiration of this Agreement.
According to our best knowledge of the state and end-use of this product or technology, and in
compliance with the export control regulations of dual-use goods in force in the origin and exporting
countries, this technology is classified as follows:

-US ECCN: 5E991
-EU ECCN: 5E991

and may require export or re-export license for shipping it in compliance with the applicable
regulations of certain countries.

% Texas Instruments — Proprietary Information Page 4 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Topics

CHAPTER 1 CAMD DRIVER 7
CHAPTER 2 CAMCORE 19
CHAPTER 3 IMAGE SERVICE 30
CHAPTER 4 LCD DRIVER 50
CHAPTER 5 DMA CONTROLLER 59
CHAPTER 6 EMIF DRIVER 7
CHAPTER 7 RFS 79
CHAPTER 8 LFS 130
CHAPTER 9 FFS 136
CHAPTER 10 USB 158
CHAPTER 11 USBFAX 170
CHAPTER 12 USBMS 173
CHAPTER 13 TIMER 176
CHAPTER 14 UART FAX & DATA 182
CHAPTER 15 UART 200
CHAPTER 16 12C 218
CHAPTER 17 KEYPAD 228
CHAPTER 18 RTC 252
Q’ T s Texas Instruments — Proprietary Information Page 5 of 401
EXA,

INSTRUMENTS

Locosto_BSP_API

Version 0.3

CHAPTER 19 MPK

262

CHAPTER 20 GBI 265
CHAPTER 21 LLS 280
CHAPTER 22 MKS 283
CHAPTER 23 NAND 286
CHAPTER 24 SIM 296
CHAPTER 25 DAR 314
CHAPTER 26 AUDIO 322
CHAPTER 27 MEMORY CARD 372
APPENDICES 399
Q’ Texas Instruments — Proprietary Information Page 6 of 401
TExXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 1 CAMD DRIVER

1.1 Introduction 8
1.2 Interface description Camera Driver 8
1.3 Driver functions definition 8
1.4 Message definition 11
1.5 Type definition 14
1.6 ENTITY State diagram 16
1.7 Usage Scenarios 18
Q’ T Texas Instruments — Proprietary Information Page 7 of 401
EXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

1.1 Introduction

This document describes the GPF CAMD API for the Locosto camera module driver.
The API offers straightforward access to the camera module. To this end, the CAMD ENTITY uses
services offered by the lower level drivers to provide

camera sensor control (e.g. image size, gamma correction)

data acquisition (viewfinder frames, snapshots)

All API entries honour the Return Path concept, which means that the client can be notified of the
result of a service request by

Receiving a message in its mailbox or

Using a callback function.

When using a callback function, the response to the service request is passed as a parameter to this
function.

If a message is received from the CAMD driver, the client is responsible for releasing any associated
memory.

1.2 Interface description Camera Driver
In this paragraph the interface of the camera driver is described.

1.3 Driver functions definition

1.3.1 camd_registerclient

T RV RET camd registerclient (BOOL enable sensor, T RV _RETURN rp)

Description

This function switches the sensor between the enabled and disabled state. In the disabled state the
sensor might use less power. It is disabled by default. When switching to the enabled state, the driver
will perform the necessary hardware initialisations. The camera must be enabled before any other API
entries (except camd _get sw_version()) may be used.

Parameters

enable_sensor
TRUE enables the sensor, FALSE disables the sensor.

- rp
Return path.

Immediate Return

T_RV_RET
The possible values are:
id Definition
RV_OK The API function was successfully executed.
RV_NOT_READY CAMD SWE is not running
RV_MEMORY_ERR Not enough memory

Event Return
Q’ Texas Instruments — Proprietary Information Page 8 of 401

TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

A CAMD STATUS RSP _MSG indicating success or failure is returned.

Current restriction of use

None.

1.3.2 camd_set_configparams

T RV RET camd set configparams (T CAMD PARAMETERS * param p,
T RV _RETURN rp)

Description

This function sets all parameters.

Parameters

param p

Pointer to a parameter blocks containing the parameters to be used. See section Error! Reference

source not found. for a description of parameters.

- rp
Return path.

Immediate Return

T_RV_RET
The possible values are:
. d4 ___ ____________ Defiion
RV_OK The API function was successfully executed.
RV_NOT_READY CAMD SWE is not running or sensor not enabled
RV_MEMORY_ERR Not enough memory

Event Return

A CAMD STATUS RSP _MSG indicating success or failure is returned.

Current restriction of use

The sensor must be enabled.

1.3.3 camd_get_configparams

T RV RET camd get configparams (T RV _RETURN rp)

Description

This function fetches all parameters currently in use by the driver.

Parameters

- rp
Return path.

Immediate Return

T_RV_RET

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 9 of 401

Locosto_BSP_API Version 0.3

The possible values are:

id Definition
RV_OK The API function was successfully executed.
RV _NOT READY CAMD SWE is not running or sensor not enabled
RV_MEMORY_ERR Not enough memory

Event Return

A CAMD GET CONFIGPARAMS RSP MSG is returned. See section Error! Reference source not
found. for a description of viewfinder or snapshot parameters.

Current restriction of use

The sensor must be enabled.

1.3.4 camd_usebuff

T RV RET camd usebuff (UINT8 *buff, T RV _RETURN rp)

Description

This function captures a snapshot image and stores it.

Parameters

The return path.

Immediate Return

T_RV_RET
The possible values are:
RV_OK The API function was successfully executed.
RV_NOT_READY CAMD SWE is not running or sensor not enabled
RV_MEMORY_ERR Not enough memory

Event Return

A CAMD SNAPSHOT DATA RSP MSG or CAMD VIEWFINDER DATA RSP MSG is returned by
CAMD after the snapshot or viewfinder data has been captured and stored.

Current restriction of use

The sensor must be enabled. Destination memory and data format and mode must be selected first
with camd_set configparams ().

1.3.5 camd_get_sw_version

UINT32 camd get sw _version (void)

Description

This function returns the driver version.

Parameters

Q’ Texas Instruments — Proprietary Information Page 10 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

None.

Immediate Return

UINT32
Bit Name Function
[0-15] BUILD Build number
[16-23] MINOR Minor version number
[24-31] MAJOR Major version number

Event Return

None.

Current restriction of use
None.

1.4 Message definition

Some of the message fields are common to all requests and responses. These fields are described in
the next two sections, which assume the definition of a T CAMD MSG *msg p.

1.4.1 Request

Generally, a CAMD request is formed as follows:

msg _p->os _hdr.msg id = CAMD xxx REQ MSG
msg p->rp = <return path>

Other fields may be defined depending on the message ID. Note that it is more convenient to use the
function call API to do requests.
1.4.2 Response

The CAMD driver will respond to a request with the following message:

msg_p->os _hdr.msg id = CAMD xxx RSP MSG
msg p->status = <CAMD OK | CAMD INVALID PARAMETER | CAMD NOT READY |
CAMD TRANSFER COMPLETE>

Other fields may be defined depending on the message ID.

Status values indicating normal operation

CAMD OK request is being processed
CAMD TRANSFER COMPLETE | data transfer (snapshot or viewfinder frame) complete

If the status is not CAMD OK or CAMD TRANSFER COMPLETE, all other fields of the response are
undefined. Some API calls result in more than one response message. If a response to such a call
indicates an error, no further responses will be sent.

Q’ Texas Instruments — Proprietary Information Page 11 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Status values indicating errors
CAMD INVALID PARAMETER | indicates that the request contained one or more invalid parameters,

e.g. a range error an unexpected NULL pointer

CAMD NOT READY indicates that the driver is not ready to handle the request, because
the CAMD task is either not running (and initialized) or because the

sensor is not enabled

1.4.3 CAMD_STATUS_RSP_MSG

This message is returned to indicate the successful completion or failure of the following requests:
Setting parameters, and
Acquisition of frame data.

The following fields are defined:
msg_p->os _hdr.msg id = CAMD STATUS RSP MSG

msg_p->status <CAMD OK | CAMD INVALID PARAMETER |
CAMD TRANSFER COMPLETE>

CAMD NOT READY |

See section Error! Reference source not found. for a description of the status field.

1.44 CAMD_REGISTERCLIENT_REQ_MSG

This message enables or disables the sensor.
The following fields are defined:

msg_p->o0s_hdr.msg id = CAMD REGISTERCLIENT REQ MSG
msg p->rp = <return path>
msg_p->body.enable sensor

/* TRUE FALSE disable */

enable,

A CAMD STATUS RSP MSGis returned by CAMD.

1.4.5 CAMD_SET_CONFIGPARAMS_REQ_MSG
This message sends a block of parameters to the CAMD SWE.

The following fields are defined:

msg_p->o0s_hdr.msg id = CAMD SET CONFIGPARAMS REQ MSG
msg p->rp = <return path>

msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.

configparams.
configparams.
configparams
configparams
configparams
configparams.
configparams.
configparams
configparams.
configparams.
configparams.
configparams.

capturemode
resolution

.mode
.encoding
.gamma_correction

imagewidth
imageheight

.black and white

flip x
flip vy
rotate
zoom

See section Error! Reference source not found. for a description of the parameters. A
CAMD STATUS RSP MSG is returned by CAMD.

{'f TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 12 of 401
Strictly Private

Locosto_BSP_API Version 0.3

1.4.6 CAMD_GET_CONFIGPARAMS_REQ_MSG

This message requests the snapshot parameters currently in use by the CAMD SWE.
The following fields are defined:

msg_p->o0s hdr.msg id = CAMD GET SNAPSHOT PARAMETERS REQ MSG
msg p->rp = <return path>

See section 6.1.5 for a description of the snapshot parameters.
A CAMD GET SNAPSHOT PARAMETERS RSP MSGis returned by CAMD.

1.4.7 CAMD_GET_CONFIGPARAMS_RSP_MSG

This message returns the parameters currently in use by the CAMD SWE.

The following fields are defined:

msg_p->os_hdr.msg id = CAMD GET CONFIGPARAMS RSP MSG

msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.
msg_p->body.

configparams.
configparams.
.mode

.encoding
configparams.
configparams.
configparams.
.black and white
configparams.
configparams.
configparams.
configparams.

configparams
configparams

configparams

capturemode
resolution

gamma correction
imagewidth
imageheight

flip x
flip vy
rotate
zoom

See section Error! Reference source not found. for a description of the parameters. A
CAMD STATUS RSP _MSG is returned by CAMD.

1.4.8 CAMD_USEBUFF_REQ_MSG

This message triggers the CAMD to take a snapshot or a viewfinder image and store the result in the
preselected memory bank, in the preselected format.

The following fields are defined:

msg_p->o0s_hdr.msg id = CAMD USEBUFF REQ MSG
msg p->rp = <return path>

A T CAMD SNAPSHOT DATA RSP MSG or
CAMD TRANSFER COMPLETE is returned by CAMD.

CAMD VIEWFINDER DATA RSP MSG indicating

1.4.9 CAMD_VIEWFINDER_DATA_RSP_MSG
This message is sent by CAMD to indicate the arrival of new viewfinder image.
The following fields are defined:
msg_p->os_hdr.msg_id = CAMD VIEWFINDER DATA RSP MSG

msg_p->status = < CAMD TRANSFER COMPLETE | CAMD MEMORY ERROR |
CAMD NOT READY | CAMD INTERNAL ERR >

1.4.10 CAMD_SNAPSHOT_DATA_RSP_MSG

This message is sent by CAMD to indicate the arrival of new snapshot image.

Texas Instruments — Proprietary Information Page 13 of 401

{'f TeEXAS
INSTRUMENTS

Strictly Private

Locosto_BSP_API

Version 0.3

The following fields are defined:

msg_p->o0s _hdr.msg id = CAMD SNAPSHOT DATA RSP MSG

msg p->status = < CAMD TRANSFER COMPLETE | CAMD INVALID PARAMETER |

1.5

1.5.1

typedef enum { CAMD VGA, CAMD QCIF } T CAMD RESOLUTION;

typedef enum { CAMD YUYV INTERLEAVED, CAMD RGB_ 888,

CAMD NOT READY | CAMD INTERNAL ERR >

Type definition

T_CAMD_RESOLUTION

1.5.1 T_CAMD_ENCODING

T CAMD ENCODING

CAMD RGB 565 }

Note: for viewfinder frames, only T CAMD RGB 888 is not supported for any mode.

1.5.2 T_CAMD_VIEWFINDER_MODE

typedef enum { CAMD SINGLE SHOT, CAMD CONTINUOUS } T CAMD VIEWFINDER MODE

Note: only T CAMD CONTINUOUS is supported.

typedef enum

1.5.3 T_CAMD_GAMMA

{ CAMD GAMMA CORR DEFAULT, CAMD GAMMA CORR 3 2 } T CAMD GAMMA;

Specifies the gamma correction to be used by the sensor. The valid range is from CAMD GAMMA MIN

tOCAMD_GAMMA_MAX.CAMD_GAMMA_NEUTRALIﬂeansnoganﬂnaCOHECﬁon

1.5.4 T_CAMD_ PARAMETERS

typedef struct

{

}

BOOL capturemode;

T CAMD RESOLUTION resolution;
T CAMD VIEWFINDER MODE mode;
T_CAMD_ENCODING encoding;

T CAMD GAMMA gamma correction;
UINT16 imagewidth;

UINT16 imageheight;

BOOL black and white;

BOOL flip x;

BOOL flip y;

UINT16 rotate;

UINT16 zoom;

void (*start transfer cb) (void);

T CAMD PARAMETERS;

This type specifies the snapshot parameters to be used by CAMD:
Capturemode: viewfinder or snapshot mode

mode: viewfinder operation mode
resolution : image size

% Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 14 of 401

Locosto_BSP_API Version 0.3

encoding: how to encode the pixel data

gamma_correction: gamma correction value

imagewidth: image width

imageheight: image height

black and white: black and white mode

flip x: flip x direction

flip y: flip y direction

rotate: rotation: 0 = no rotation, 1 = 90 degrees counterclockwise, etc.
zoom: zoom level, 0 = no zoom, 1 = 2x zoom, etc.

1.5.5 T_CAMD_MSG
The framework for all CAMD messages is defined as follows:

typedef struct

{

T RV_HDR os_hdr;

T RV RET status;

T RV_RETURN rp;

union

{
T CAMD PARAMETERS configparams;
BOOL enable sensor;
UINT8 *buff;

}

body;

}

T CAMD MSG;

% Texas Instruments — Proprietary Information Page 15 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

1.6 ENTITY State diagram

STOPPED

Figure 1 ENTITY diagram for CAMD

Figure 1 State Diagram

States
Un-initialized

Description:
In this state the SWE is not initialised and not active.

Accepted Messages/Functions:

None.
Event to state Description
camd_init() initialised Changing the state from “un-initialised” to “initialised” requires

the following events: The Operating system needs to call the
generic functions camd_get_info() and camd_set_info() then
the camd_init() shall be called.

Initialised

Description:
In this state the SWE is initialised. The driver functionality is not available at this point.

Accepted Messages/Functions:

None.

Event to state Description

camd_start() | Idle The Operating system shall call the camd_start() after which
the entity enters the “idle” state.

Disabled

Description:

In this state the SWE is ready to handle requests from the client. The sensor HW is disabled.
Accepted Messages/Functions:

camd_get sw_version(), camd_registerclient()

Event to state Description
CAMD_REGISTERCLIENT | Enabled The sensor HW is enabled.
_REQ_MSG(true)
Q’ Texas Instruments — Proprietary Information Page 16 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

camd_stop() Stopped When this function is called the driver will go
into stopped state.
Enabled
Description:

In this state the SWE is ready to handle requests from the client. The sensor HW is enabled.
Accepted Messages/Functions:

Event to state Description

CAMD_REGISTERCLIENT_REQ_MSG | disabled The sensor HW is disabled.

(false)

CAMD_SET_CONFIGPARAMS() viewfinder/ | configure sensor for one of the mode.
shapshot

CAMD_USEBUFF() viewfinder/ | Acquire data frame.
shapshot

Description:

In this state the sensor is ready to generate viewfinder frames.
Accepted Messages/Functions:
All CAMD functions.

Event to state Description
any request enabled Any function will return CAMD to the enabled state.
Description:

In this state the SWE will be stopped and not ready for any requests
Accepted Messages/Functions:

None.
Event to state Description
camd_init() initialised Changing the state from “un-initialised” to “initialised” requires

the following events: The Operating system needs to call the
generic functions camd_get_info() and camd_set_info() then
the camd_init() shall be called.

camd_kill() killed Changing from Stopped to Killed requires that the Operating
system calls camd_kill(). In this function the xxx swe will free its
allocated memory.

| ied |
Description:

In this state the driver is inactive and will not be ready for any requests
Accepted Messages/Functions:

None.

Event to state Description

camd_init() initialised Changing the state from “un-initialised” to “initialised” requires
the following events: The Operating system needs to call the
generic functions camd_get_info() and camd_set_info() then
the camd_init() shall be called.

Q’ Texas Instruments — Proprietary Information Page 17 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

1.7 Usage Scenarios

1.71 Reading viewfinder frames and taking a snapshot

This section shows how to read viewfinder frames, until some external trigger calls for a snapshot. A
typical application would restart the viewfinder mode with camd _get viewfinder frames () after
the snapshot is complete.

Client

external trigger
'take snapshot'

camd_registerclient(TRUE)

CAMD

4

CAMD_STATUS_RSP_MSG(CAMD_OK)

Y

A

camd_set_configparams()

Y

CAMD_STATUS_RSP_MSG(CAMD_OK)

camd_usebuff()

yY_L v i_

CAM

A

VIEWFINDER DATA RSP_MSG(CAMD_TRANSFER_COMPLETE)

AT

camd_set_configparams()

CAMD_STATUS_RSP_MSG(CAMD_OK)

-
|t

I~

camd_usebuff()

.
=
)
|
)

CAMD_SNAPSHOT_DATA_RSP_MSG(CAMD_TRANSFER_COMPLETE)

>|

{'f TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 18 of 401

Locosto_BSP_API Version 0.3

Chapter 2 CAMCORE

2.1 Introduction 20
2.2 Interface description Application 20
2.3 Type definitions and constants 25
2.4 Camcore hwapi.h 27
2.5 Configuration Items 28
2.6 Limitations 29
Q’ TEXAS Texas Instruments — Proprietary Information Page 19 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

2.1 Introduction

This document describes the API of Camera Core. Camera Core module can interface with variety of
external image sensors. It stores the image data in a FIFO and can generate DMA request.

<C
X = < X
dl E]):l E %Idl g|
%) %) D| oo o
I | o | I
= = | =>= =
< < s < < <
[3) (&) = 00 O
| | ©
l l A 4 \ 4 A\ 4 A\ 4
Serial to Parallel BT.656 |[+— TIMING CTRL |
I [
Camera Core
PROCESSING
FIFO
4 CLOCK > CAM_XCLK
/
OCP SLAVE PORT II DMA
REGS
A
MMU
OCP Slave port |
CAM_MCLK
Master
interface

Figure 2 the camera core module interface

The above figure shows the Camera Core top level diagram and how the camera core module can be

connected to the rest of the system.

2.2 Interface description Application

In the following sections the APIs of Camera Core are described.

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 20 of 401

Locosto_BSP_API Version 0.3

2.21 camcore_config

T CAMCORE RET camcore con fig (T CAMCORE CONFIGPARAM *params)

Description

This API would configure the camera core based on the desired input parameters. The input
parameter would typically depend on: external sensor, chip-clock requirements etc. Camera needs to
be enabled only after it is configured.

Parameters

*param
It specifies the parameters necessary to configure the camera core. The parameters are
T_CAMCORE_MODE: States whether the camera is in viewfinder or snapshot mode.

T_CAMCORE_FIFOSIZE: Software is not allowed to change this value. FIFO size is fixed for camera
core.

T_CAMCORE_THRESHOLD: size of FIFO threshold; software should configure this value for optimal
data flow.

vsynch: VSYNCH is not available for Locosto. That's why it is always set to be ON.
T_CAMCORE_CCPMODE: Identifies the mode of the data flow. NoBT, BT656..etc..

xclk_div: CAM_XCLK = CAM_MCLK/ xclk_div. If this value is -1, then sensor is supplied with its own
clock.

Immediate Return

T_CAMCORE_RET

The possible values are:

id Definition
CAMCORE_OK The API function was successfully executed. Expect status message.
CAMCORE_INTERNAL_ERROR Some internal error has occurred. Configuration is not Successful.
CAMCORE_NOT SUPPORTED g(;)rrfli‘igljjrza;i.on is not Successful. Cam core is not ready to be
CAMCORE_INVALID PARAMETERS Configuration is not Successful. The input parameters are not valid.

2.2.2 camcore_enable

T CAMCORE RET camcore enable (void) ;

Description

The API would enable the camera core. This function needs to be called only after camera is
configured.

Q’ Texas Instruments — Proprietary Information Page 21 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

void

Immediate Return

T_CAMCORE_RET

The possible values are:

id Definition
CAMCORE_OK The API function was successfully executed. Expect status message.
CAMCORE_INTERNAL_ERROR Some internal error has occurred. Configuration is not Successful.
CAMCORE_NOT SUPPORTED gg:fgffrfj_on is not Successful. Cam core is not ready to be
CAMCORE_INVALID PARAMETERS Configuration is not Successful. The input parameters are not valid.

Current Restriction

This function needs to be called only after camera is configured.

2.2.3 camcore_disable

T CAMCORE RET camcore disable (void) ;

Description

The API would disable the camera core.

Parameters

None.

Immediate Return

T_CAMCORE_RET

The possible values are:

id Definition
CAMCORE_OK The API function was successfully executed. Expect status message.
CAMCORE_INTERNAL _ERROR Some internal error has occurred. Configuration is not Successful.
CAMCORE_NOT SUPPORTED Conflguratlon is not Successful. Cam core is not ready to be
configured.
CAMCORE_INVALID PARAMETERS Configuration is not Successful. The input parameters are not valid.
Q’ Texas Instruments — Proprietary Information Page 22 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Current Restriction

This function needs to be called only after camera is configured and enabled.

2.2.4 camcore_getRevision

T CAMCORE RET camcore getRevision (T CAMCORE REVISION *revision);

Description

Reads the IP Revision code from CC_REVISION register. In the register [7:4] bits give Major revision
and [3:0] bits give Minor revision.

Parameters

. *revision
Pointer to the T_CAMCORE_REVISON structure, which consists of field major and minor number.

Immediate Return

T_CAMCORE_RET

The possible values are:

id Definition
CAMCORE_OK The API function was successfully executed. Expect status message.
CAMCORE_INTERNAL ERROR Some internal error has occurred. Configuration is not Successful.
CAMCORE_NOT SUPPORTED ggr:;g;féi.on is not Successful. Cam core is not ready to be
CAMCORE_INVALID PARAMETERS Configuration is not Successful. The input parameters are not valid.

Current restriction of use
None.

2.2.5 camcore_reset

T CAMCORE RET camcore reset (I CAMCORE RESET TYPE reset type);

Description

The API would reset the camera core depending on the 'reset_type' required.

Parameters

reset_type

Q’ Texas Instruments — Proprietary Information Page 23 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This parameter passes the structure T_CAMCORE_RESET_TYPE to reset the Cam Core. The
possible modes of reset are

CAMCORE_RESET_ALL: The API would reset the whole camera core; camcore_config needs to be
called after this.

CAMCORE_RESET_FSM: Resets all the internal finite state machines of the camera core module.
Must be applied when CC_EN = 0. Configuration settings will not be altered here.

Immediate Return

T_CAMCORE_RET

The possible values are:

id Definition
CAMCORE_OK The API function was successfully executed. Expect status message.
CAMCORE_INTERNAL ERROR Some internal error has occurred. Configuration is not Successful.
CAMCORE_NOT SUPPORTED ggr:c:igljjrrgéi.on is not Successful. Cam core is not ready to be
CAMCORE_INVALID PARAMETERS Configuration is not Successful. The input parameters are not valid.

Current restriction of use
None.

2.2.6 camcore_setGpioPins

void camcore setGpioPins (void) ;

Description

Sets the General purpose 10 pins for Camera Core.

CONF_GPIO 0 Cam_d3 0xF100 10
CONF_GPIO_19 Cam_hs OxF16A 001
CONF_GPIO 20 Cam_d3 OxF16C 010
CONF_GPIO_21 Cam_Iclk OxF16E 01
CONF_GPIO_22 Cam_slck 0xF170 001
CONF_GPIO_28 D7 0xF17C 11
CONF_GPIO_29 D6 OxF17E 11
CONF_GPIO_30 D5 0xF180 11
CONF_ND_NWP D4 0xF184 10
CONF_GPIO_47 DO OxF1B6 10
CONF_GPIO_7 D2 OxF1BA 101
Parameters

void
Q’ Texas Instruments — Proprietary Information Page 24 of 401

TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Immediate Return

Void

Current restriction of use

None.

2.2.7 camcore_setmode

T CAMCORE RET camcore setmode (T CAMCORE MODE mode) ;

Description

The API would set the Cam Core either on View finder or in Snapshot mode, depending on the
argument passes.

Parameters

mode

Defines the different mode of settings of the Cam Core. Especially two modes are there, SNAPSHOT
and VIEWFINDER.

Immediate Return

T_CAMCORE_RET

The possible values are:

id Definition
CAMCORE_OK The API function was successfully executed. Expect status message.
CAMCORE_INTERNAL ERROR Some internal error has occurred. Configuration is not Successful.
CAMCORE_NOT SUPPORTED ggr:;g;féi.on is not Successful. Cam core is not ready to be
CAMCORE_INVALID PARAMETERS Configuration is not Successful. The input parameters are not valid.

Current restriction of use

None.

2.3 Type definitions and constants

API type definitions and constants are located in the configuration file img_api.h in the common
directory.

Q’ Texas Instruments — Proprietary Information Page 25 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

2.3.1 T_CAMCORE_MODE

Specifies different modes of Camera operation.

typedef enum {
CAMCORE_SNAPSHOT =0,
CAMCORE_VIEWFINDER

} T_CAMCORE_MODE;

2.3.2 T_CAMCORE_CCPMODE

Specifies different CCP (Compact Camera Port) mode, for example, CCP serial sensor interface or
parallel interface etc.

typedef enum {
CAMCORE_CCP_EN =0,
CAMCORE_CCP_PARNOBT_8,
CAMCORE_CCP_PARNOBT_10,
CAMCORE_CCP_PARNOBT_12,
CAMCORE_CCP_RESV_1,
CAMCORE_CCP_PARBT_S8,
CAMCORE_CCP_PARBT_10,
CAMCORE_CCP_RESV_2,
CAMCORE_CCP_FIFO_TEST

} T_CAMCORE_CCPMODE;

2.3.3 T_CAMCORE_RETURN

Defines all possible return types from Cam Core.

typedef enum {

CAMCORE_OK =0,

CAMCORE_INTERNAL_ERR,

CAMCORE_NOT_SUPPORTED,

CAMCORE_INVALID_PARAMS
} T_CAMCORE_RET;

2.3.4 T_CAMCORE_RESET TYPE
Defines the possible options to reset Cam Core.
typedef enum {

CAMCORE_RESET_ALL =0,

CAMCORE_RESET_FSM
}T_CAMCORE_RESET_TYPE;

2.3.5 T_CAMCORE_FIFOSIZE

typedef UINT16 T_CAMCORE_FIFOSIZE;

Sets the Cam Core FIFO Size. The number of 32 bit words in the camera core FIFO is 20518

FIFOSIZE can be any value of the range [1-7], in the following table.

% Texas Instruments — Proprietary Information Page 26 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Generic Parameter Default Value Description

T_CAMCORE_FIFOSIZE 6 1: 2*32 bits word data RAM

2: 4*32 bits word data RAM

3: 8*32 bits word data RAM

4:16*32 bits word data RAM

5:32*32 bits word data RAM

6:64*32 bits word data RAM

7:128*32 bits word data RAM

In present case FIFOSIZE is set as 128, the maximum.

2.3.6 T_CAMCORE_THRESHOLD

typedef UINT16 T_CAMCORE_THRESHOLD;

Sets a threshold for the FIFO. In present case it is set as 64.

2.3.7 T_CAMCORE_CONFIGPARAM
This defines the required parameter to configure Cam Core.

typedef struct

{
T_CAMCORE_MODE mode;

T_CAMCORE_THRESHOLD fifothreshold;

BOOL vsynch; /* if vsynch = 0, VSYNCH is not available, which is the case for Locosto */
T_CAMCORE_CCPMODE ccpmode;

UINT16 xclk_div; /* CAM_XCLK = CAM_MCLK/ xclk_div */

} T_CAMCORE_CONFIGPARAM;

2.3.8 T_CAMCORE_REVISION

This defines the required parameter for scaling and cropping operation.
typedef struct
INT8 major_rev;

INT8 minor_rev;
} T_CAMCORE_REVISION;

2.4 Camcore_hwapi.h

This file contains parameters related to Camera controller.
THIS FILE SHOULD NOT BE CHANGED FOR DIFFERENT PLATFORMS.

#define CAMCORE_ISRESETDONE (CAMCORE_REG (CC_SYSSTATUS)):;

Return Values

The possible values are:

Q’ Texas Instruments — Proprietary Information Page 27 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Value Definition

Internal Module reset is on-going
0

Reset completed
1

#define camcore_enablelnterrupts (MASK) {CAMCORE_REG (CC_IRQENABLE) = 0X0000001F;

#define camcore_enableDMA (CAMCORE_REG (CC_CTRL_DMA) = (CAMCORE_REG
(CC_CTRL_DMA) | 0X00000100));

#define camcore_disableDMA (CAMCORE_REG (CC_CTRL_DMA) =
(CAMCORE_REG (CC_CTRL_DMA) & OXFFFFFEFF));

#define CC_FIFO_DEPTH (CAMCORE_REG (CC_GENPAR) &0x00000007);
Actual FIFO size would be: 2"CC_FIFO_DEPTH

#define FIFOREAD (CAMCORE_REG (CC_FIFODATA));

#define FIFOWRITE (DATA) (CAMCORE_REG (CC_FIFODATA) = DATA);

USAGE: data = FIFOREAD;
FIFOWRITE (data);

2.5 Configuration Items

DATA COMING FROM CAMERA STUB:

The following section describes the data rate achieved for camera in viewfinder mode.

Pixel clock input = 6.5 MHz.
Stub is sending data of: 176*2 bytes/line

HSYNCH HIGH = (1/6.5)*176*2 = 54 MICRO SEC.

HSYNCH LOW = (1/6.5)*160 = 24.6 MICRO SEC

AS VSYNCH is always high:

So for a QCIF IMAGE: TIME FOR ONE FRAME = 144 * 78.6 MICRO SEC = 11.318 msec.
Which is equivalent = 88 frames/sec.

LCD

LCD is running at 13 MHz.

DMA CONFIGURATION

DMA is configured from peripheral to peripheral transfer mode.
SUMMARY

Camera configuration with the support of DMA having peripheral to peripheral capability, and with
minimum overhead from the camera software, we have achieved the frame rate of 88 frames/sec.

Q’ Texas Instruments — Proprietary Information Page 28 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

2.6 Limitations

None.

Q’ Texas Instruments — Proprietary Information Page 29 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 3 IMAGE SERVICE

3.1 Introduction 31
3.2 Interface description Application 32
3.3 Message definition 39
3.4 Types definitions and constants 43
3.5 Configuration Items 49
{Z’ Texas Texas Instruments — Proprietary Information Page 30 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

3.1 Introduction

This document describes the API of the GPF IMG Services. The Camera Application (CAMA) and
MMI use IMG services for the following purposes:

- JPEG encoding

- JPEG decoding

= Image Processing
MMI

T —

Camera application
CAMA

A

Low level
Camera driver LCD driver

(R2D)

Figure 3 CAMA and IMG Services

IMG Service will use the Emuzed’s JPEG encoder on ARM architecture based processors. The
Service encodes one raw image or partial image (if streaming mode flag is enabled) in YUV (4:2:2)
format to JPEG format.

Similarly, for decoding purpose, IMG Service will use the Emuzed’s JPEG decoder. The Service
decodes the encoded image in JPEG standard format to YUV (4:2:2) formats.

In order to display the image in LCD driver, IMG should be able to convert the stored image of
VGA-YUV format to QCIF-RGB format. To do that first it needs to have a scale down from VGA to
QCIF followed by color space conversion from YUV (4:2:2) to RGB (5:6:5).

The API entries honor return path concept, which means that the client can be notified of the result of
a service requested by
. Receiving a message in its mail box.

Using a call back function.

When using a call back function, the response to the service request is passed as a parameter to this
function.
If a message is received from IMG, the client is responsible for releasing any associated memory.

@ Texas Instruments — Proprietary Information Page 31 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

3.2 Interface description Application

In the following sections the APIs of IMG Service are described. The IMG service is applicable for
Calypso+ (CHIPSET=12) and Locosto (CHIPSET=15). However, there may be few differences in the
behavior of the APIs between Locosto and Calypso, which have been explained below.

3.21 img_abort (Applicable for both Cal+ and Locosto)

T IMG RETURN img abort (T IMG RETURN operation id);

Description

It marks an img operation as aborted.

Parameters

. operation_id
It is the id of the operation that is to be aborted.

Immediate Return

T_IMG_RET

The possible values are:

id Definition

IMG_OK The API function was successfully executed. Expect status message.
IMG_NOT_SUPPORTED The function is not supported.

IMG_MEMORY_ERR Insufficient memory to create the context.

IMG_ABORTED The function is aborted due to some internal reason.
IMG_INVALID_ID The current operation id is not valid.

3.2.2 g_encode_to_ram (Applicable for both Cal+ and Locosto)

T IMG RETURN img encode to ram (UINT8 *buf,
UINT32 buf size,
T RVF MB ID mb id,
T IMG IMAGE FORMAT image format,
T IMG ENCODE PARAM encode param,
T RV _RETURN PATH return path,
void *user data)

Description

This function encodes an image of format YUV (4:2:2) to standard JPEG format.

Parameters

*buf

Q’ Texas Instruments — Proprietary Information Page 32 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This parameter is the pointer to the input buffer that holds the YUV image buffer which needs to be
encoded.

buf _size
Size of the input buffer.

. mb_id
This parameter passes the Memory bank id of the corresponding ENTITY. IMG will allocate buffer
either from external memory pool or from internal memory pool.

. image_format

Specify the input image format, in present case the input format will be typically YUV (4:2:2).

(Please note that while decoding the image format obtained would be the same as given here for input
buffer at the time of encoding).

encode_param
This parameter passes the necessary parameters as a structure T_IMG_ENCODE_PARAM for
encoding an image.

return_path
Specifies the return path.

*user_data
Pointer to the user data, if any. If there is no such data, the field takes NULL value.

Immediate Return

T_IMG_RET

The possible values are:

id Definition

IMG_OK The API function was successfully executed. Expect status message.
IMG_NOT_SUPPORTED The function is not supported.

IMG_MEMORY_ERR Insufficient memory to create the context.

IMG_ABORTED The function is aborted due to some internal reason.

IMG_INVALID ID The current operation id is not valid.

Event Return

If the encoding is successful, a message IMG_ENCODED_IMAGE is sent to the calling function
depending on the return path specified.

If the encoding is aborted, a message IMG_ABORT_CFM is sent through return path.

In case of error, the corresponding error message IMG_ERROR is sent to the calling function.

Current restriction of use

None.

3.2.3 img_decode (Applicable only for Locosto)

Q’ Texas Instruments — Proprietary Information Page 33 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

T IMG RETURN img decode (UINTS8 *buf,
UINT32 buf size,
T RVF MB ID mb_id,
T IMG IMAGE FORMAT image format,
T IMG DECODE PARAM decode param,
T RV _RETURN PATH return path,
void *user data

)

Description

This function decodes an image of standard JPEG format to YUV (4:2:2).

Parameters

*buf

This parameter is the pointer to the input buffer that holds the JPEG image that needs to be decoded.
buf _size

Size of the input JPEG buffer.
mb_id

This parameter tells from where memory has to be allocated. (To hold the resultant decoded image,
based on SCALING factor IMG would allocate memory to its requirement).

image_format

Specify the input image format, in present case the input format will be JPEG (IMG_FORMAT_JPG).
No other format is supported.

decode_param

This parameter passes the necessary parameters as a structure T_IMG_DECODE_PARAM for
decoding an image.

return_path
Specifies the return path.
*user_data

Pointer to the user data, if any. If there is no such data, the field takes NULL value.

Immediate Return

T_IMG_RET

The possible values are:

Definition
IMG_OK The API function was successfully executed. Expect status message.
Q’ Texas Instruments — Proprietary Information Page 34 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

IMG_NOT_SUPPORTED The function is not supported.
IMG_MEMORY_ERR Insufficient memory to create the context.
IMG_ABORTED The function is aborted due to some internal reason.
IMG_INVALID ID The current operation id is not valid.

Event Return

If the decoding is successful, a message IMG_RAW_IMAGE is sent to the calling function depending
on the return path specified.

If the decoding is aborted, corresponding message IMG_ABORT_CFM is sent through return path.
In case of error, the corresponding error message IMG_ERROR is sent to the calling function.

3.2.4 img_color_convert (Applicable for Locosto)

T IMG RETURN img color convert (T IMG YUV BUFFER *inputbuf,
T IMG COLORCONV_ PARAM colorconv_param,
UINT8 *outbuf,
T RV RETURN PATH return path)

Description

This function converts the input YUV (420, 422, 444), Monochrome, RGB444 or YUYV frame to 16-bit
(5-6-5) interleaved RGB or 24Bit interleaved RGB format depending on the RGB Format chosen.

Parameters

*inputbuf
This is a pointer pointing the buffer of the input image of YUV (4:2:2) format.

colorconv_param
This parameter passes the necessary parameters as a structure T_IMG_COLORCONV_PARAM
necessary for colour conversion of an image.

*outbuf
This parameter points the buffer containing the output image in RGB format.

return_path
Specifies the return path

Immediate Return

T_IMG_RET

The possible values are:

Definition
IMG_OK The API function was successfully executed. Expect status message.
Q’ Texas Instruments — Proprietary Information Page 35 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

IMG_NOT_SUPPORTED The function is not supported.
IMG_MEMORY_ERR Insufficient memory to create the context.
IMG_ABORTED The function is aborted due to some internal reason.
IMG_INVALID ID The current operation id is not valid.

Event Return

Store the converted image to output buffer.

If color conversion is successful, a message IMG_CHANGED_FORMAT_IMAGE is sent to the calling
function through the return path specified.

If color conversion is aborted, corresponding message IMG_ABORT_CFM is sent through return
path.

In case of error, the corresponding error message IMG_ERROR is sent to the calling function.

Current restriction of use

None.
3.2.5 Img_scale (Applicable for Locosto)
T IMG RETURN img scale (T _IMG YUV BUFFER *inputbuf,
T IMG SCALE PARAM scaling param,
T IMG YUV BUFFER *outbuf,
T RV _RETURN_ PATH return path
)
Description

This function performs up-scaling and down-scaling of YUV (420, 422, 444), Monochrome,
RGB444 or YUYV frame. The output color format is same as the input color format. Only the cropped

region is scaled. In present scenario, the input image format is YUV (4:2:2) only.

Parameters

*inputbuf
This is a pointer pointing the buffer of the input image.

scaling_param
This parameter passes the necessary parameters as a structure T_IMG_SCALE_PARAM necessary
for up scaling and downscaling of an image.

*outbuf
This parameter points the buffer containing the output image.

return_path
Specifies the return path

Immediate Return

T_IMG_RET

Q’ Texas Instruments — Proprietary Information Page 36 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

The possible values are:

id Definition

IMG_OK The API function was successfully executed. Expect status message.
IMG_NOT_SUPPORTED The function is not supported.

IMG_ MEMORY ERR Insufficient memory to create the context.

IMG_ABORTED The function is aborted due to some internal reason.

IMG_INVALID ID The current operation id is not valid.

Event Return

Store the scaled image to output buffer.

If scaling is successful, a message IMG_CHANGED_FORMAT_IMAGE is sent to the calling function
through the return path specified.

If scaling is aborted, corresponding message IMG_ABORT_CFM is sent through return path.

In case of error, the corresponding error message IMG_ERROR is sent to the calling function.

Current restriction of use

None.
3.2.6 Img_rotate (Applicable for Locosto)
T IMG RETURN img rotate (T IMG YUV BUFFER *inputbuf,
T IMG ROTATION PARAM rotation param,
T IMG YUV BUFFER *outbuf,
T RV RETURN PATH return path
)
Description

This function performs rotation of YUV (420, 422, 444), Monochrome or RGB444 input buffer by 90
degree, 180 degree or 270 degree as specified by rotation parameter rotate_flag. The output color

format is same as input color format except for YUV 422.

If the source is of type YUV422H the output format will be in YUV422V and vice versa for 90degree
and 270 degree rotation.

Parameters

*inputbuf
This is a pointer pointing the buffer of the input image.

rotation_param
This parameter passes the necessary parameters as a structure T_IMG_ROTATION_PARAM
necessary for rotating an image.

*outbuf
This parameter points the buffer containing the output image.

return_path
Specifies the return path

Immediate Return

T_IMG_RET

Q’ Texas Instruments — Proprietary Information Page 37 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

The possible values are:

id Definition

IMG_OK The API function was successfully executed. Expect status message.
IMG_NOT_SUPPORTED The function is not supported.

IMG_ MEMORY ERR Insufficient memory to create the context.

IMG_ABORTED The function is aborted due to some internal reason.

IMG_INVALID ID The current operation id is not valid.

Event Return

Store the rotated image to output buffer.

If scaling is successful, a message IMG_CHANGED_FORMAT_IMAGE is sent to the calling function
through the return path specified.

If scaling is aborted, corresponding message IMG_ABORT_CFM is sent through return path.

In case of error, the corresponding error message IMG_ERROR is sent to the calling function.

Current restriction of use

None.

3.2.7 Img_change_format (Applicable for Locosto)

T IMG RETURN img change format (UINT8 *inbuf,
UINT32 inbuf size,
T IMG CHANGE FORMAT PARAM change format param,
T IMG YUV _BUFFER *outbuf,
T RV RETURN PATH return path,
void *user data

)

Description

This function decodes an image of standard JPEG format to the required output format. In present
scenario the output format would be QCIF/RGB (5-6-5).

Typically this function will decode the stored JPEG image to YUV/VGA image, at the first step. Then
depending on the output format, it can scale down the VGA image to QCIF format (scaling) followed
by colour conversion from YUV (4:2:2) to RGB (5:6:5), if required.

Parameters

*inbuf
This parameter is the pointer to the input buffer that holds the JPEG image that needs to be decoded.
inbuf _size

Size of the input JPEG buffer.

change_format_param

Required parameter necessary to change an image from one format to another, passed as a structure
T_IMG_CHANGE_FORMAT_PARAM.

Q’ Texas Instruments — Proprietary Information Page 38 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

*outbuf

This parameter is the pointer to the output buffer that holds the output image.
return_path

Specifies the return path.
*user_data

Pointer to the user data, if any. If there is no such data, the field takes NULL value.

N.B. The IMG will allocate the buffer to hold intermediate image from memory allocated to CAMD.

Immediate Return

T_IMG_RET

The possible values are:

id Definition

IMG_OK The API function was successfully executed. Expect status message.
IMG_NOT_SUPPORTED The function is not supported.

IMG_ MEMORY ERR Insufficient memory to create the context.

IMG_ABORTED The function is aborted due to some internal reason.

IMG_INVALID _ID The current operation id is not valid.

Event Return

If the process is successful, a message IMG_CHANGED_FORMAT_IMAGE is sent to the calling
function through the return path specified.

If the process is aborted, corresponding message IMG_ABORT_CFM is sent through return path.
In case of error, the corresponding error message IMG_ERROR is sent to the calling function.

Current restriction of use

Output image format supports only RGB (5-6-5).

3.3 Message definition

There are two types of messages, request messages and response messages. All the request
message definitions contain return path and the response message structures contain operation id as
their status information. The message definitions are located in the directory Img_message.h.

Q’ Texas Instruments — Proprietary Information Page 39 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

3.3.1 IMG_ENCODE

This request message is sent to IMG ENTITY containing all the necessary information regarding
encoding of the input image.

typedef struct

{
T_RV_HDR hdr;
UINT8 *buf;
T_RVF_MB_ID mb_id;

T_IMG_IMAGE_FORMAT
T_IMG_ENCODE_PARAM
T_IMG_RETURN operation_id,;
T_RV_RETURN_PATH return_path;
void *user_data;

} T_IMG_ENCODE;

image_format;
encode_param;

3.3.2 IMG_DECODE

This request message is sent to IMG ENTITY containing all the necessary information regarding
decoding of the input image.

typedef struct

{
T_RV_HDR hdr;
UINT8 *buf;
UINT32 buf_size;
T_RVF_MB_ID mb_id;

T_IMG_DECODE_PARAM
T_IMG_IMAGE_FORMAT
T_RV_RETURN_PATH
T_IMG_RETURN

decode_param;
image_format;
return_path;
operation_id,;

void *user_data;
} T_IMG_DECODE;

3.3.3 IMG_COLORCONV

This request message is sent to IMG ENTITY containing all the necessary information regarding
conversion of the colour format of the input image.

typedef struct

{
T_RV_HDR hdr;
T_IMG_YUV_BUFFER *inbuf;
T_IMG_COLORCONV_PARAM colorconv_param;
T_IMG_YUV_BUFFER *outbuf;
T_IMG_RETURN operation_id,;

T_RV_RETURN_PATH return_path;
void *user_data;

}T_IMG_COLORCONV:

Texas Instruments — Proprietary Information Page 40 of 401

{'f TeEXAS
INSTRUMENTS

Strictly Private

Locosto_BSP_API

Version 0.3

3.3.4 IMG_SCALING

This request message is sent to IMG ENTITY containing all the necessary information regarding up
scaling or down scaling of the image format of the input image.

typedef struct

T_RV_HDR
T_IMG_YUV_BUFFER
T_IMG_SCALE_PARAM
T_IMG_YUV_BUFFER
T_IMG_RETURN
T_RV_RETURN_PATH
void

}T_IMG_SCALING;

3.3.5 IMG_ROTATION

hdr;

*inbuf;
scaling_param;
*outbuf;
operation_id,;
return_path;
*user_data;

This request message is sent to IMG ENTITY containing all the necessary information regarding
rotation of the image format of the input image.

typedef struct

T_RV_HDR
T_IMG_YUV_BUFFER
T_IMG_ROTATION_PARAM
T_IMG_YUV_BUFFER
T_IMG_RETURN
T_RV_RETURN_PATH

void

} T_IMG_ROTATION;

3.3.6 IMG_CHANGE_IMAGE

hdr;

*inbuf;
rotation_param;
*outbuf;
operation_id,;
return_path;
*user_data;

This request message is sent to IMG ENTITY containing all the necessary information regarding
change the image format of the input image.

typedef struct

{
T_RV_HDR
UINT8
UINT32

hdr;
*inbuf;
inbuf_size;

T_IMG_CHANGE_FORMAT_PARAM change_format_param;

T_IMG_YUV_BUFFER
T_IMG_RETURN
T_RV_RETURN_PATH
void

} T_IMG_CHANGE_IMAGE;

*outbuf;
operation_id,;
return_path;
*user_data;

{'f TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 41 of 401
Strictly Private

Locosto_BSP_API Version 0.3

3.3.7 IMG_RAW_IMAGE

This message sends a positive response to the IMG stating decoding is successful, and points to the
decoded image by *image_list_p.

typedef struct

{
T_RV_HDR hdr;

T_IMG_IMAGE_LIST *image_list_p;
T_IMG_RETURN operation_id,;
void *user_data;

}T_IMG_RAW_IMAGE:

3.3.8 IMG_ABORT_CFM

This message sends a response to the IMG when the current image is aborted.
typedef struct

T_RV_HDR hdr;
T_IMG_RETURN operation_id,;

} T_IMG_ABORT_CFM;

3.3.9 IMG_ERROR

Message to tell service user that current operation is unsuccessful.

typedef struct

{
T_RV_HDR hdr;
T_IMG_RETURN operation_id,;
T_IMG_RESULT_CODE error_code;
void *user_data;

} T_IMG_ERROR,;

3.3.10 IMG_ENCODED_IMAGE

This message sends a positive response to the IMG stating encoding is successful, and points to the
encoded image by *encoded_data_p.

typedef struct
{
T_RV_HDR hdr;
T_RVF_BUFFER *encoded_data_p;
UINT32 encoded_size;
T_IMG_RETURN operation_id,;
void *user_data;
% Texas Instruments — Proprietary Information Page 42 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

} T_IMG_ENCODED_IMAGE;

3.3.11 IMG_CHANGED_FORMAT_IMAGE

This message sends a positive response to the IMG ENTITY stating the necessary modification is
successful, and points to the modified image by *changed_data_p.

typedef struct

{
T_RV_HDR hdr;
T_IMG_RETURN operation_id,;
T_RVF_BUFFER *output_data_p;
Void *user_data;

} T_IMG_CHANGED_IMAGE;

3.4 Types definitions and constants

API type definitions and constants are located in the configuration file img_api.h in the common
directory.

3.41 T_IMG_RETURN
Currently they are the standard RV return types, but they may be customized in the future.

typedef T_RV_RET T_IMG_RETURN;

#define IMG_OK RV_OK

#define IMG_NOT_SUPPORTED RV_NOT_SUPPORTED

#define IMG_MEMORY_ERR RV_MEMORY_ERR

#define IMG_ABORTED -100

#define IMG_INVALID_ID -101

% Texas Instruments — Proprietary Information Page 43 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

3.4.2 T_IMG_IMAGE_LIST
Specifies the properties of an image.

typedef struct T_IMG_IMAGE_LIST_TAG {
UINT8 *lum;
UINT8 *cb;
UINT8 *cr;
UINT16 image_width;
UINT16 image_height;
UINT32 duration;
BOOLEAN loop;

void *next_image; /[Pointer to next T_IMG_IMAGE_LIST_TAG

} T_IMG_IMAGE_LIST;

typedef T_IMG_IMAGE_LIST *T_IMG_IMAGE_LIST_PTR;

3.4.3 T_IMG_IMAGE_FORMAT

The following structure specifies the possible formats that an image may have

typedef enum IMG_IMAGE_FORMAT_TAG{
IMG_FORMAT_JPG =1,
IMG_FORMAT_BMP,
IMG_FORMAT_GiIF,
IMG_FORMAT_wBMP,
IMG_FORMAT_PNG,
IMG_FORMAT_RAW_YUYV,
IMG_FORMAT_EMPTY

} T_IMG_IMAGE_FORMAT;

3.44 T IMG_RESULT CODE_TAG

Defines all possible results for an IMG operation.

typedef enum IMG_IMAGE_FORMAT_TAG{
IMG_SUCCESS

—_

IMG_ERROR_ABORTED =1,
IMG_ERROR_FORMAT_UNKNOWN = -2,
IMG_ERROR_IMAGE_CORRUPT =3,
IMG_ERROR_INT_MEMORY =4,
IMG_ERROR_EXT_MEMORY =5

} T_IMG_RESULT_CODE;

3.4.5 T_IMG_ENCODING_MODE

Defines the possible encoding modes.
typedef enum {
IMG_JPEG_BASELINE=0,

IMG_JPEG_PROGRESSIVE =1
} T_IMG_ENCODING_MODE;

IMG_JPEG_PROGRESSIVE is not supported presently.

% Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 44 of 401

Locosto_BSP_API Version 0.3

3.4.6 T_IMG_ENCODE_PARAM

Defines the parameter for encoding.
(For Calypso+)

typedef struct {
UINT16 max_x;
UINT16 max_y;
T_IMG_ENCODING_MODE encoding_mode;
UINT16 precision; /* bits per channel */
UINT16 quality_factor; /* Q-factor (JPEG encoding) */
} T_IMG_ENCODE_PARAM,;

(For Locosto)

typedef struct {
uint32 max_x;
uint32 max_y;
T_IMG_ENCODING_MODE encoding_mode;
uint32 quality_factor; /* Q-factor (JPEG encoding) */
uint32 streaming_mode;
} T_IMG_ENCODE_PARAM,;

max_x: Maximum dimension value in horizontal direction among all the components of the
input raw image.

max_y: Maximum dimension value in vertical direction among all the components of the
input raw image.

Precision: It indicates bits per channel.
encoding mode: In our case, only BASELINE MODE is supported.

quality_factor: This parameter is used to control the quality of encoding. It can take values
from 1 to 100. Quality factor 1 produces least quality and 100 gives best quality. If the value of input
quality_factor is out of the range (1, 100) its value shall be forced to 50 internally.

streaming_mode: This flag is to indicate whether encoding needs to be done in one shot (if
the flag is set to ‘E_OFF’) for whole image or in multiple times (if the flag is set ‘E_ON’) based on the
available output buffer size. However the output buffer size must be at least enough to hold bytes to
encode one MCU row. As the API does not support the encoding of partial image, streaming_mode
should always be 0.

3.4.7 T_IMG_DECODE_PARAM

Defines the parameter for decoding

typedef struct {

UINT32 x_offset;

UINT32 y_offset;

UINT8 sampling_factor;

UINT8 num_rows;

UINT8 scaling_factor;
} T_IMG_DECODE_PARAM,;

% Texas Instruments — Proprietary Information Page 45 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

x_offset: [IN] Crop window start position in the source frame.

y_offset: [IN] Crop window start position in the source frame.

sampling_factor: [IN] indicates the sampling factor that determines the relation between Y
and Cr, Cb components. For YUV (422) image (which is our present case) it should be 1.

num_rows: [IN] Indicates the number of MCU rows to be decoded for baseline JPEG
image. For the entire image to be decoded, the typical value of num_rows is 0.

scaling_factor: [IN] indicates the scale down factor in DCT domain. The supported
values are 1, 2, 4 and 8 only. Any other value passed will return E ERROR_ARGUMENT.

3.4.8 T_IMG_COLORCONV_PARAM

This defines the required parameter for color conversion operation.

typedef struct{
UNIT16 actWidth;
UINT16 actHeight;
UINT8 srcCIrFfmt;
int32 numBytes;
UINT8 destCIrFmt;
} T_IMG_COLORCONV_PARAM;

actWidth : [IN] Actual width of the image
actHeight: [IN] Actual height of the image.

srcClrFmt: [IN] Color format of the source buffer. The possible color formats are

Color Formats Corresponding values
YUV420 0x01
YUV422H 0x02
Yuv422v 0x03
YUV444 0x04
RGB444 0x05
MONOCHROME 0x06
YUYV 0x07

numBytes : [IN] The number of Bytes in a row of RGB buffer. This is required for
RGB24 output format as some display devices expect each row of data to be word aligned.

destCIrFmt: [IN] Color format of the destination (0 - RGB565 and 1 - RGB24).

3.49 T_IMG_SCALE_PARAM

This defines the required parameter for scaling and cropping operation.

typedef struct{

Q’ Texas Instruments — Proprietary Information Page 46 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

UINT32 x_offset;

UINT32 y_offset;

UINT32 cropWidth;

UINT32 cropHeight;

UINT32 srcCIrFmt;

}T_IMG_SCALE_PARAM;
x_offset : [IN] Crop window start position in the source frame.
y_offset : [IN] Crop window start position in the source frame.
cropWidth : [IN] Width of the crop window.
cropHeight : [IN] Height of crop window.

srcClrFmt: [IN] specifies the color format of the input video. Possible color formats are.

Color Formats Corresponding values
YUV420 0x01
YUV422H 0x02
Yuv422v 0x03
YUV444 0x04
RGB444 0x05
MONOCHROME 0x06
YUYV 0x07

3.4.10 T_IMG_ROTATION_PARAM

This defines the required parameter necessary for rotation operation.

typedef struct{
UINT8 rotate_flag;
UINT32 srcCIrFmt;

} T_IMG_ROTATION_PARAM;

rotate_flag: this specifies the angle of rotation.
0: No rotation
1: 90deg rotation
2:180deg rotation
3:270deg rotation

srcClrFmt: Specifies the colour format of the input image. It also returns the output colour
format after rotation.

3.4.11 T_IMG_CHANGE_FORMAT_PARAM

This defines the required parameter for changing the encoded image to a standard image format that
is valid for LCD display.

Q’ Texas Instruments — Proprietary Information Page 47 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

typedef struct {
T_IMG_IMAGE_FORMAT input_image_format;
T_IMG_DECODE_PARAM decode_param;
T_IMG_COLOR_FORMAT output_format;
} T_IMG_CHANGE_FORMAT_PARAM,;

input_image_format: the format of the input image that is subjected to be changed. In
present case the input image format is JPEG.

decode_param: necessary parameters for decoding the input image.

Output_format: the format of the output image. This will contain resolution, destination colour

format etc. of the final image.

3.4.12 T_IMG_COLOR_FORMAT

The structure defines a colour format as well as its resolution of an image.

typedef struct{
T_IMG_RESOLUTION resolution;
UINT16 x_length;
UINT16 y_length;
T_IMG_FORMAT color_format;
int32 numBytes;

}T_IMG_COLOR_FORMAT;

. resolution: defines the resolution of the image. Possible values of the resolution are defined
by the enum T_IMG_RESOLUTION, i.e., VGA, QVGA, CIF, and QCIF.

x_length: number of pixels per line in a given resolution.
y_length: number of lines that a given resolution can support.

color_format: defines the colour format of the image. The possible colour formats are defined
by the enum T_IMG_FORMAT.

numBytes: [IN] The number of Bytes in a row of RGB buffer. This is required for
RGB24 output format as some display devices expect each row of data to be word aligned.

3.413 T_IMG_RESOLUTION
Defines all possible resolutions:
typedef enum IMG_RESOLUTION{

IMG_VGA=1,

IMG_QVGA,

IMG_CIF,

IMG_QCIF
} T_IMG_RESOLUTION;

3.4.14 T_IMG_FORMAT

Defines all possible colour formats:

% Texas Instruments — Proprietary Information Page 48 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

typedef enum IMG_FORMAT{

IMG_RGB565=0,
IMG_RGB444,
IMG_RGB666,
IMG_RGB888,
IMG_YUV444,
IMG_YUV422,
IMG_YUV420,

} T_IMG_FORMAT;

3.415 T_IMG_YUV_BUFFER

Defines the structure of a YUV buffer. If the buffer does not contain YUV image format, then only I*lum
component will point to the required data.

typedef struct IMG_YUV_BUFFER({
UINT8 *lum;
UINT8 *cb;
UINT8 *cr;
UITN16 width;
UINT16 height;
UINT8 color_format;
} T_IMG_YUV_BUFFER;

*lum: pointer to the buffer for storing the luminance component.

*cb: pointer to the buffer for storing the Cb (chrominance) component.
*cr: pointer to the buffer for storing the Cr (chrominance) component.
Height: Height of the luminance frame buffer.

Width: Width of the luminance frame buffer.

3.5 Configuration Items

None
% Texas Instruments — Proprietary Information Page 49 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 4 LCD DRIVER

/* LCD DRIVER COMPLETELY CHANGED */
/* CONTACT VAIDY */

4.1 Purpose of the Document 51
4.2 Overview514.3System Overview 51
4.4 Interface Description 52
4.5 API Description 52
4.6 Types definitions and constants 56
Q’ TEXAS Texas Instruments — Proprietary Information Page 50 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

4.1 Purpose of the Document

This document describes the new APlIs that are proposed for Locosto LCD driver. These APIs provide
basic LCD functionalities and don’t provide any graphics features.

4.2 Overview

The current LCD driver supports two LCD’s .Earlier , driver used R2D heavily . But due to high
memory requirements by R2D , now R2D is used only by RTEST (For test build) .

4.3 System Overview

The LCD driver is memory optimized .This LCD driver directly interacts with MMI . The LCD Manager
provides an abstraction for the different LCDs that might be present in the hardware. The LCD
interface layer abstracts the different interfaces through which an LCD could be connected in the

hardware.
[
i)
®
Q
a
Q
<
LCIj Manager
,» l

. Primary LCD Secondary LCD

Q Interface Interface

a

y A
DMA Parallel SPI Transport
Driver Transport Layer
Layer
A y

g Philips Panel Sitronix Panel

3 LPH8754 ST8451

T

T

Figure 4 Design of LCD Driver
Q’ Texas Instruments — Proprietary Information Page 51 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

TEST
Build

Release
RTEST APP Build

R2D

I ,

API for NEW LCD Driver

A A

Primary Secondary
LCD LCD

Figure 5 Architecture for LCD Driver

The API for the LCD driver will facilitate the following:

1) Uniform Interface for the Application / MMI

2) Handle different interfaces and panels possible

3) Facilitate configuration of LCD parameters like endianness, RGB format, etc.,

4.4 Interface Description

The following section describes the interface APIs from the LCD driver.
There are only 3 APls:
1. Icd_init — Initialisation of the LCD interface, controller and display

2. Icd_display — for dumping the framebuffer data received onto the LCD display
3. Icd_control — control of the LCD display.

4.5 API Description

4.5.1 lcd_initialization

T RV RET lcd initialization (T LCD SELECT sel)

Description

% Texas Instruments — Proprietary Information Page 52 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This function initialises the LCD display and the LCD controller driver.This APl should be called before
any other functions in this driver.

Parameters

sel specifies whether this APl is intended for main or sub-LCD.

Immediate Return

T_RV_RET

The possible values are:

id value Definition

RV_OK 0
RV_NOT_SUPPORTED

-2
RV_NOT_READY

-3
RV_MEMORY_WARNING

-4
RV_MEMORY_ERR

-5
RV_MEMORY_REMAINING

-6
RV_INTERNAL_ERR

-9
RV_INVALID_PARAMETER

-10

Event Return

Current restriction of use
The API should be called before any other functions in this driver.

4.5.2 lcd_display

T RV _RET lcd display(lcdSelect sel, Uintl6 *imageDataptr, Icd fb coordinates
*p lcd coord)

Description

This function loads the pixel data only, from the frame buffer onto the LCD display. This function alone
will be part of the “lcd refresh” task. Once the refresh operation is complete, the client will be sent a
message. This API could take care of multiple requests and respond accordingly.

Parameters

Q’ Texas Instruments — Proprietary Information Page 53 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

. sel
specifies whether this API is intended for main or sub-LCD.

imageDataPtr
Pointer to the image data to be transferred. The size of the pixel data buffer is assumed to be for the
entire LCD screen.

p_lcd_coord
Structure where the LCD pixel co-ordinates are specified for the start and end position.

Immediate Return

T_RV_RET

The possible values are:

id value Definition
RV_OK 0
RV_NOT_SUPPORTED
-2
RV_NOT_READY
-3
RV_MEMORY_WARNING
-4
RV_MEMORY_ERR Event
-5 Return
None "RV MEMORY REMAINING
-6 Current
RV_INTERNAL_ERR
-9
RV_INVALID_PARAMETER
-10

restriction of use

Icd_init, Icd_config should have been called once before this call.

4.5.3 lcd_control

T RV RET lcd control (IcdSelect sel, T LCD COMMAND command, void
*p cmd_param)

Description

This is a generic API which could be further scaled for any additional commands which might come up
later. Currently added commands are listed below:

Command Description

> LCD_GETCONFIG Need to pass a structure pointer of type “lcd_tuningtable” to get
the configuration items.
Q’ Texas Instruments — Proprietary Information Page 54 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

> LCD_SETCONFIG Need to pass a structure pointer of type “lcd_configparams” to
set the configuration items.
> LCD_DISPLAYON Only command is sufficient. Display is switched ON.
> LCD_DISPLAYOFF Only command is sufficient. Display is switched OFF.
> LCD_CLEAR Only command is sufficient. Contents of the LCD are cleared.
Parameters
sel specifies whether this API is intended for main or sub-LCD.
Command Command that can be given to the LCD driver for eg., clear, Display On,

Display OFF, etc.
p_cmd_param Structure to pass parameters if required for the commands.

Immediate Return

T_RV_RET

The possible values are:

id value Definition
RV _OK 0
RV_NOT_SUPPORTED
-2
RV_NOT_READY
-3
RV_MEMORY_WARNING
-4
RV_MEMORY_ERR
-5
RV_MEMORY_REMAINING
-6
RV_INTERNAL_ERR
-9
RV_INVALID_PARAMETER
-10
Event Return
None.
Current restriction of use
None.
i Texas Instruments — Proprietary Information Page 55 of 401
(/
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

4.6 Types definitions and constants

4.6.1 T_LCD_SELECT

[T LCD_SELECT selects a specific LCD

Synopsis typedef enum {
DISPLAY_MAIN_LCD,
DISPLAY_SUB_LCD
} T_LCD_SELECT;

4.6.2 T_LCD_ENDIAN

[T LCD_ENDIAN selects the endianness to be used for the Pixel data
Synopsis typedef enum {
LITTLE_ENDIAN,
BIG_ENDIAN

} T_LCD_ENDIAN;

4.6.3 T_LCD_PIXFORMAT

[T_LCD_PIXFORMAT selects the Pixel format for the pixel data

Synopsis typedef enum {
RGB565,
RGB666,
RGB888
} T_LCD_PIXFORMAT;

4.6.4 T_LCD_ORIENTATION

[T LCD_ORIENTATION selects the orientation of the LCD

Synopsis typedef enum {
HORIZONTAL,
VERTICAL
} T_LCD_ORIENTATION;

4.6.5 T_LCD_REFCONTROL

| T_LCD_REFCONTROL selects if LCD refresh is enabled or disabled

Synopsis typedef enum {
REF_ENABLED,
REF_DISABLED
} T_LCD_REFCONTROL;

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private

INSTRUMENTS

Page 56 of 401

Locosto_BSP_API Version 0.3

4.6.6 T_LCD_COMMAND

[T_LCD_COMMAND Command to be issued to the LCD driver

Synopsis typedef enum {
LCD_CLEAR,
LCD_DISPLAYON,
LCD_DISPLAYOFF,
LCD_GETCONFIG,
LCD_SETCONFIG
} T_LCD_COMMAND:;

4.6.7 lcd_fb_coordinates

[Lcd_fb_coordinates selects the Pixel co-ordinates to be refreshed

Synopsis typedef struct {
Uint16 start_x;
Uint16 start_y;
Uint16 end_x;
Uint16 end_y;
} led_fb_coordinates;

(start_x,
start_y)

end_x,
end_y)
I
I:I Window area to be refreshed
4.6.8 lcd_configparams
Icd_configParams Parameters for LCD configuration. These are the parameters which
could be configured from the application.
Q’ Texas Instruments — Proprietary Information Page 57 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Synopsis typedef struct {

Uint16 height /* height of the display panel */

Uint16 width /* width of the display panel */

T_LCD_ORIENTATION orientation /* orientation of the LCD */
T_LCD_PIXFORMAT pixel_format; /* RGB format */
T_LCD_ENDIAN endianness /* Endianness of the pixel data */
T _LCD_REFCONTROL refresh_control /* refresh control */

} led_configparams;

4.6.9 lcd_tuningtable

lcd_TuningTable parameters of the tuning table. This table gives the whole list of
parameters which the application can configure as well as the read-only parameters which are
controlled at the driver level.

Synopsis Typedef struct {
bool partial_update; /* does it support windowing or partial update of the LCD framebuffer*/
bool OSD; /* does it support OSD (On Screen Display */
bool dedicated_dma; /* is there dedicated dma */
Icd_configparams *p_lcd_configparams
Hed_tuningtable;

Q’ Texas Instruments — Proprietary Information Page 58 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 5 DMA CONTROLLER

5.1 Introduction 60
5.2 Return Mechanism 60
5.3 Service functions definition 61
5.4 Message definition 69
5.5 SWE State diagram 70
5.6 Usage Scenarios 70
{Z’ TEXAS Texas Instruments — Proprietary Information Page 59 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

5.1 Introduction

The Direct Memory Access driver (DMA) is a new ENTITY. It is created to support the new DMA
controller hardware device of the Locosto chipset. This document describes the application interface
of the DMA SWE.

The main task of the DMA SWE is the management of the available DMA channels.
The DMA ENTITY can be seen as a high level driver (the DMA driver with the API), a low-level DMA
driver, and the GPF components HISR + generic functions.

ENTITY DMA
DMA Driver A
| IV
High-level B.
______________________ c. < _
Low-level . Client
eneri <_ o
Low level DMA c
HISR Driver 2'

Hardware y
DMA Controller Device n |

(DMA capa Device y
(DMA capable)

Figure 6 API of DMA

The DMA ENTITY is developed as a GPF compatible entity . The ENTITY is not using (depending on)
other ENTITIES. All API’s (with the exception of dma_get sw_version()) are accessible through
function call and GPF messages.

5.2 Return Mechanism

All the functions return an immediate value, providing information on the success or the failure of the
function call. In some cases, extra processing time might be needed to perform the action requested
when calling the function. In this case, the function is exit and later on, one or several MESSAGEs are
sent back by the DMA entity.

The DMA entity use the MESSAGE format and the return path method defined in GPF Environment.
Basically, in order to send information back, the DMA entity sends MESSAGEs to the client. A
MESSAGE is a buffer, with a header, common to any MESSAGE, and a custom field related to the
MESSAGE. The header is a C structure, containing the msg_id field. This field contains the unique
msg_id of the MESSAGE and is the only way to know which kind of MESSAGE has been received.
Based on this value, the client can re-cast the buffer and access to custom information related to the
MESSAGE.

Clients have two ways to get access to the MESSAGEs:
Call back functions or message posted with its ADDRESS ID.

A call back function is a function name, provided by client as a parameter and will be called by the
DMA SW when a MESSAGE occurs. When a callback function is defined, it is always the callback
function mechanism that is used to return MESSAGE to the client.

Q’ Texas Instruments — Proprietary Information Page 60 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

But, for more efficient implementation it also possible to directly send a message to the client. In this
case, the ADDR ID of the client must be provided to the DMA entity. That implies that the client is a
GPF entity.

The client can define which return mechanism should be used. For that purpose, it must provide a
return_path. The generic return_path type is a C structure, defined as:

typedef struct {
T RVF ADDR_ID addr_id;

VOID (*callback func) (void *);
} T RV _RETURN PATH;

This chapter is used for the ENTITY interface description. It is not required to specify the Generic
interface.

5.3 Service functions definition

5.3.1 dma_reserve_channel

T RV _RET dma reserve channel (T DMA SPECIFIC specific,
T DMA CHANNEL channel,
T DMA QUEUE queue,
T DMA SW_PRIORITY sw priority,
T RV _RETURN return path)
Description

This function allows the reservation of a free DMA channel or of a specific channel.
If the request is honoured, a channel number shall be returned as a result. This channel number is
required for other function calls like programming DMA transfer information and to enable the transfer.

A limited number of channels are available. If the request can not be granted at the time, it can be
queued as an option. When a channel comes available later, waiting reservation requests are handled
with respect to the given software priority.

The function returns immediately and handles the request asynchronously. The message is then
validated and handled. The return path is used to inform the client about the result of the message
processing and to inform the client of any asynchronous events.

An example of an asynchronous event is a status message informing the client that the reservation
request is granted at a later time.

Parameters

specific
specific indicates whether the client request a specific channel or the first available.

channel
The channel number if the client request an specific channel (see parameter specific). If the request is
not for a specific channel, this parameter is ignored.
Channel range is from DMA_MIN_CHANNEL to DMA_MAX_CHANNEL.

queue
queue indicates if the request is to be queued when it can not be granted immediately.

sSw_priority

% Texas Instruments — Proprietary Information Page 61 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

The sw_priority number is used when a reservation is handled from the queue. The reservation with
the highest sw_priority (lowest number) is handled first. When several reservations are made with the
same sw_priority, the reservations are handled on a first-in/first-out basis.

If the request is not queued, this parameter is ignored.

sw_priority range is from DMA_SW_PRIORITY_LOWEST to DMA_SW_PRIORITY_HIGHEST.

return_path
Return path for notifications See 5.2 for a description.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed. Expect status message.
RV_MEMORY_ERR Insufficient memory to create the context.

The driver is not able to handle this request at this moment. (SWE

RV_NOT_READY initialization is not done correctly).

Event Return

DMA_STATUS_RSP_MSG
This message is send to the client to return the status and result of the requested action. Other API’s
also uses this message to return status or to notify clients of asynchronous events.

structure member result.status

For this action, the value of the message structure member result.status can have the following
values:

Message Definition

DMA_RESERVE_OK Request is granted. The structure member
result. Channel holds the granted channel
number.

DMA_QUEUED Request could not be granted now and is

queued. The structure member result. channel
holds a channel queue identifier that can be
used to remove the reservation

from the queue (with the function
dma_remove_from_queue()).

DMA_NO_CHANNEL Request denied because there is no free
channel available.

DMA_TOO_MANY_REQUESTS Request could not be granted and the queue is
full.

DMA_INVALID_PARAMETER One ore more of the parameters is incorrect.

DMA_NOT_READY Requested process is supported but cannot be
processed now. (SWE initialization is not done
correct).

DMA_MEMORY_ERR The available memory within the DMA SWE is

insufficient to process the command.

Q’ Texas Instruments — Proprietary Information Page 62 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

structure member result.channel

For this action, the value of the message structure member result.channel holds only a valid value if
the member result.status has the value DMA_RESERVE_OK or DMA_QUEUED. For
DMA_RESERVE_OK the member holds the assigned channel number. For DMA_QUEUED the
member holds a channel queue identifier that can be used by the client if he wants to remove the
request from the queue (using the function dma_remove_from_queue()).

Note that this API functionality can also be invoked with the message
DMA_RESERVE_CHANNEL_REQ_MSG.

Current restriction of use

None

5.3.2 dma_remove_from_queue

T RV _RET dma remove from queue (T DMA CHANNEL channel queue id)

Description

This function allows the removal of the queued channel reservation request.

The function returns immediately and handles the request asynchronously. The message is then
validated and handled. The return path is used to inform the client about the result of the message
processing and to inform the client of any asynchronous events.

If the client is not queued, the message status DMA_ACTION_NOT_ALLOWED is returned.
If it was queued, the message status DMA_OK is returned.

Parameters

channel_queue_id
This parameter is the returned queue identifier that has been returned by the driver at the moment of
reservation (see dma_reserve_channel()).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed. Expect status message.
RV_MEMORY_ERR Insufficient memory to create the context.

The driver is not able to handle this request at this moment. (ENTITY

RV_NOT_READY initialization is not done correctly).

Event Return

DMA_STATUS_RSP_MSG
This message is send to the client to return the status and result of the requested action. Other API's
also uses this message to return status or to notify clients of asynchronous events.

structure member result.status

For this action, the value of the message structure member result.status can have the following
values:

Message Definition

DMA_OK The provided information is validated and

Q’ Texas Instruments — Proprietary Information Page 63 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

accepted. The channel reservation request is
removed from the queue.

DMA_INVALID_PARAMETER The parameter is incorrect.
The driver is not able to handle this request at
DMA_NOT_READY this moment. (ENTITY initialization is not done

correctly or the channel is already dequeued).

There is no queued channel reservation

DMA_ACTION_NOT_ALLOWED request of this client available.

The available memory within the DMA ENTITY

DMA_MEMORY_ERR is insufficient to process the command.

structure member result.channel

For this action, the value of the message structure member result.channel holds the provided
channel_queue_id.

Note that this API functionality can also be invoked with the message
DMA_REMOVE_FROM_QUEUE_REQ_MSG.

Current restriction of use

None.

5.3.3 dma_set_channel_parameters

T RV _RET dma set channel parameters (T DMA CHANNEL channel,
T DMA CHANNEL PARAMETERS *channel info p)

Description

This function allows the programming of the specific channel parameters.
All operational settings required for executing a DMA transfer, has to be provided within the
channel_info structure. Examples of parameters are:
The client can indicate if he wants to be notified when the DMA transfer is completed or not.
The client can indicate if he wants to enable the transfer immediately or later.
Software or hardware start-source (which hardware source.
length, endian, hardware priority, data width, DMA mode etc.

The function must be called after the channel reservation is granted and before the DMA transfer is
enabled. The function returns immediately and handles the request asynchronously. The message is
then validated and handled. The return path is used to inform the client about the result of the
message processing and to inform the client of any asynchronous events.

Parameters

channel
channel contains the number of the reserved channel. This number is returned at the moment the
reservation is granted.

channel_info_p
channel_info_p must point to a structure containing all the information required to prepare the DMA
transfer.

Q’ Texas Instruments — Proprietary Information Page 64 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed. Expect status message.
RV_MEMORY_ERR Insufficient memory to create the context.

The driver is not able to handle this request at this moment. (ENTITY
initialization is not done correctly).

RV_NOT_READY

Event Return

DMA_STATUS_RSP_MSG
This message is send to the client to return the status and result of the requested action. Other API’s
also uses this message to return status or to notify clients of asynchronous events.

structure member result.status

For this action, the value of the message structure member result.status can have the following
values:

The provided information is validated and
DMA_OK accepted. Hardware settings are updated

accordingly.
DMA_INVALID PARAMETER The parameter is incorrect.

The driver is not able to handle this request at
DMA_NOT_READY this moment. (ENTITY initialization is not done

correctly or the channel is already dequeued).
There is an incorrect sequence of API
invocations (command ignored).

The available memory within the DMA ENTITY
is insufficient to process the command.

DMA_ACTION_NOT_ALLOWED

DMA_MEMORY_ERR

structure member result.channel

For this action, the value of the message structure member result.channel holds the processed
channel number.

Note that this API functionality can also be invoked with the message
DMA_SET_CHANNEL_PARAMETERS_REQ_MSG.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 65 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

5.3.4 dma_enable_transfer

T RV _RET dma enable transfer(T DMA CHANNEL channel)

Description

This function allows the start of the prepared DMA transfer.If the DMA parameters have been set-up
to use the hardware synchronisation, this is armed. The DMA device can initiate the transfer at any
time.If the DMA parameters have been set-up to use software synchronisation, the DMA transfer is
started immediately.The function can be called again, after a transfer is completed (if the channel is
not released). Called more then once before the transfer is completed shall result in the error
DMA_CHANNEL_ENABLED.

The function must be called after the channel reservation is granted and channel
parameters has been set. The function returns immediately and handles the request asynchronously.
The message is then validated and handled. The return path is used to inform the client about the
result of the message processing and to inform the client of any asynchronous events.

Parameters

channel
channel contains the number of the reserved channel. This number has been returned at the moment
the reservation was granted.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed. Expect status message.
RV_MEMORY_ERR Insufficient memory to create the context.

The driver is not able to handle this request at this moment. (ENTITY

RV_NOT_READY initialization is not done correctly).

Event Return

DMA_STATUS_RSP_MSG
This message is send to the client to return the status and result of the requested action. Other API's
also uses this message to return status or to notify clients of asynchronous events.

structure member result.status

For this action, the value of the message structure member result.status can have the following
values:

Message Definition
DMA_OK The provided information is validated and
accepted. The DMA is started or armed.
DMA_INVALID PARAMETER The parameter is incorrect.
The driver is not able to handle this request at

DMA NOT READY .
- - this moment.

There is an incorrect sequence of API

DMA_ACTION_NOT_ALLOWED .) i
— - - invocations (command ignored).

DMA_MEMORY_ERR The available memory within the DMA ENTITY
Q’ Texas Instruments — Proprietary Information Page 66 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

is insufficient to process the command.

DMA_CHANNEL_ENABLED The channel is already enabled.

structure member result.channel

For this action, the value of the message structure member result.channel holds the processed
channel number.

Note that this API functionality can also be invoked with the message
DMA_ENABLE_TRANSFER_REQ_MSG.

Current restriction of use

None.

5.3.5 dma_release_channel

T RV RET dma release channel (T DMA CHANNEL channel)

Description

This function allows the release of the reserved DMA channel. Depending on the state of transfer, the
release may be immediately or postponed till the busy transfer is completed.

If the release must be postponed, the client shall be notified asynchronous as soon as the release is
possible (status message DMA_CHANNEL_RELEASED, using the return path provided at reserving
time).

Releasing a channel enables the DMA ENTITY to serve a queued reservation request. The channel
shall be assigned to a queued client with the highest priority.

When a client receives an asynchronous error event from the DMA ENTITY, the client has still the
obligation to release the channel.

The function returns immediately and handles the request asynchronously. The message is then
validated and handled. The return path is used to inform the client about the result of the message
processing and to inform the client of any asynchronous events.

Parameters

channel
channel contains the number of the channel to be released. This identification has been returned at
the moment the reservation was granted.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed. Expect status message.
RV_MEMORY_ERR Insufficient memory to create the context.

The driver is not able to handle this request at this moment. (ENTITY

RV_NOT_READY initialization is not done correctly).

Event Return

Q’ Texas Instruments — Proprietary Information Page 67 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

DMA_STATUS_RSP_MSG
This message is send to the client to return the status and result of the requested action. Other API's
also uses this message to return status or to notify clients of asynchronous events.

structure member result.status

For this action, the value of the message structure member result.status can have the following
values:

Message Definition

DMA OK The provided informatiqn is validated and
— accepted. The channel is released.
DMA_INVALID_PARAMETER The parameter is incorrect.
DMA NOT READY The driver is not able to handle this request at
— - this moment.
DMA_ACTION_NOT ALLOWED There is an incorrect sequence of API

invocations (command ignored).

The available memory within the DMA ENTITY
is insufficient to process the command.

The channel could not be released now. An
asynchronous message is send as soon the
channel could be released (status
DMA_CHANNEL_RELEASED).

DMA_MEMORY_ERR

DMA_CHANNEL_BUSY

structure member result.channel

For this action, the value of the message structure member result.channel holds the
processed channel number.

Optional event return

DMA_STATUS_RSP_MSG
When a channel is released, the DMA driver will check if there are queued reservations left in it's
queue buffer. If so, a queued reservation might be processed when it meets the conditions for the
freed DMA channel. In that case an additional message is send to the client of the queued
reservation. The structure member result.status holds the value: DMA_QUEUE_PROC.
The structure member result.channel holds both the processed channel number as well as the queue
index provided at the time the reservation was queued.

The information in the structure member result.channel is stored as follows:
bits 2-0: channel number processed
bits 7-4: provided queue index at the time the reservation was queued.

Note that this API functionality can also be invoked with the message
DMA_RELEASE_CHANNEL_REQ_MSG.

Current restriction of use

None.

5.3.6 dma_get_sw_version

| UINT32 dma get sw version (void)

Description

Q’ Texas Instruments — Proprietary Information Page 68 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

This function returns the driver version.

Parameters

None.

Immediate Return

UINT32
Bit Name Function
[0-15] BUILD Build number
[16-23] MINOR Minor version number
[24-31] MAJOR Major version number

Event Return

None.

Current restriction of use

None.

5.4 Message definition

5.41 Messages from the driver

54.1.1 DMA_STATUS_RSP_MSG

This message is sent to a client to provide the result of a command or to give notice of an

asynchronous event occurs.

typedef struct {
T_RV_HDR hdr;
T_DMA_RESULT result;

} T_DMA_STATUS_RSP_MSG;

5.4.2 Messages to the driver

5.4.21 DMA_RESERVE_CHANNEL_REQ_MSG

This message is send by the client to request a channel.

typedef struct {
T_RV_HDR hdr;
T_DMA_SPECIFIC specific;
T_DMA_CHANNEL channel;
T_DMA_QUEUE queue;
T_DMA_SW_PRIORITY sw_priority;
Q’ Texas Instruments — Proprietary Information Page 69 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

T_RV_RETURN return_path;
}T_DMA_RESERVE_CHANNEL_REQ_MSG;

5.4.2.2 DMA_REMOVE_FROM_QUEUE_REQ_MSG
This message is send by the client to remove a queued channel reservation.
typedef struct ({
T RV_HDR hdr;

T DMA CHANNEL channel queue id;
}T DMA REMOVE FROM QUEUE REQ MSG;

5.4.2.3 DMA_SET_CHANNEL_PARAMETERS_REQ_MSG

This message is send by the client to provide detailed channel information specifying the DMA
transfer.

typedef struct {
T_RV_HDR hdr;
T_DMA_CHANNEL channel;
T_DMA_CHANNEL_PARAMETERS channel_info;
}T_DMA_SET_CHANNEL_PARAMETERS_REQ_MSG;

5.4.2.4 DMA_ENABLE_TRANSFER_REQ_MSG

This message is send by the client to enable the DMA transfer.

typedef struct {
T_RV_HDR hdr;
T_DMA_CHANNEL channel;
}T_DMA_ENABLE_TRANSFER_REQ_MSG;

5.4.2.5 DMA_RELEASE_CHANNEL_REQ_MSG

This message is send by the client to release a reserved channel.

typedef struct {
T_RV_HDR hdr;
T_DMA_CHANNEL channel;
}T_DMA_RELEASE_CHANNEL_REQ_MSG;

5.5 SWE State diagram
TBD

5.6 Usage Scenarios
TBD

% Texas Instruments — Proprietary Information Page 70 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 6 EMIF DRIVER

6.1 Introduction 72
6.2 Locosto EMIF 72
6.3 EMIF driver architecture 73
6.4 EMIF configuration flow 73
6.5 EMIF configuration information 74
6.6 EMIF driver API 74
Q’ TEXAS Texas Instruments — Proprietary Information Page 71 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

6.1 Introduction

This document outlines

1 Design of EMIF driver for Locosto
2. Configuration information of EMIF chip-selects for specific memory devices connected.
3 Boot time initialization of different chip-selects.

6.2 Locosto EMIF

The External Memory Interface (EMIF) is part of MCU sub-system that manages the read/writes
between MCU/DMA and external memory (like flashes and SRAMs). The following block diagram
shows the various interconnections to EMIF.

E £y
DMA CTRL DMA BUS
M < P NTERFACE [€ =P
16 I
——— F
MCU BUS 32
Prefetch MCU BUS
buffer < I P NTERFACE €T
CONTROL & CONFIGURATION
REGISTERS

Figure 7 EMIF interface block diagram

Locosto EMIF supports four chip selects (CS0...CS3) for external memories. Each of them has an
address range of 32 Mbytes. In Locosto, only two chip selects CS0 and CS3 are used. 28 Mbytes of
pSRAM is connected to CSO and 32 Mbytes of NOR flash is connected to CS3.

% Texas Instruments — Proprietary Information Page 72 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

6.3 EMIF driver architecture

6.4 EMIF configuration flow

EMIF configuration in Locosto is done in two parts.

1 Default initialization during boot-up
2. Complete configuration

The flow diagram below shows the actual EMIF configuration flow.

[Boot-up]

- Default EMIF
INT_Initialize > configuration

|

Application_Initialize

ﬂ Complete

Init_Target ——— configuration of
JL EMIF using EMIF

Init_Driver

Figure 8 EMIF configuration flow

The default configuration during boot-up is done just to make external memory access work. This
doesn’t take care of arbitration involved between MCU and DMA and the efficiency of the memory
access. This configures the default values for the external memories attached to EMIF. This is done
as part of INT_lInitialize assembly routine.

The complete configuration of EMIF is done to take care of arbitration involved between MCU and
DMA and the efficiency of the external memory access. This is done as part of Init_Target and calls
the EMIF driver APIs as described in 6.6 to make the configuration.

Q’ Texas Instruments — Proprietary Information Page 73 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

6.5 EMIF configuration information

The complete configuration information of different memory attached to EMIF is given below.

6.5.1 CS0-pSRAM

Memory access mode — Asynchronous mode

No. | Configuration item in EMIF registers Timing in ns Cycles for 54Mhz
clock

1. BTWST — Wait states for read to write | O 0
transition

2. WELEN — Write enable length 70 4

3. WRWST — Wait states for write operation | 55 3

4. RDWST — Wait states for read operation | 90 5

5. OESETUP - cycles inserted from CS low | 40 3
to OE low

6. OEHOLD - cycles from OE high to CS | 0 0
high

7. ADVHOLD - address valid hold 20 2

6.5.2 CS3-Flash

Memory access mode — Asynchronous mode

No. | Configuration item in EMIF registers Timing in ns Cycles for 54Mhz
clock

1. BTWST — Wait states for read to write | O 0
transition

2. WELEN — Write enable length 50 3

3. WRWST — Wait states for write operation | 80 5

4. RDWST — Wait states for read operation | 70 4

5. OESETUP - cycles inserted from CS low | 56 4
to OE low

6. OEHOLD - cycles from OE high to CS | 0 0
high

7. ADVHOLD - address valid hold 12 1

6.6 EMIF driver API
The EMIF driver implements the following API.

6.6.1 f_emif_set_priority

SYS UWORDS f emif set priority (SYS UWORD8 d dma access,
SYS UWORD8 d mpu access)

Description

This is to set the number of continuous MCU and DMA accesses.

Q’ Texas Instruments — Proprietary Information Page 74 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

d_dma_access
Number of continuous DMA access.

d_mpu_access
Number of continuous MCU access.

6.6.2 f_emif_set_conf

SYS UWORDS f emif set conf (T _EMIF CONF* emif conf)

Description

This APl is to do generic EMIF configuration.

Parameters

emif_conf

EMIF configuration as defined below.

typedef struct {

T_EMIF_PREFETCH_MODE d_prefetch_mode; [*Prefetch mode */
T_PDE_STATE d_pde_enable; [*Power down enable*/
T_PWD_STATE d_pwd_enable; /*Global power down enable*/
SYS_UWORDS flush_prefetch; /* Flush prefetch buffer */
SYS_UWORDS write_protect; /* write protect control */

}T_EMIF_CONF;

6.6.3 f_emif cs_mode

SYS UWORDS f emif cs mode (SYS UWORDS8 d cs,
T EMIF CS CONFIG* p emif cs config)

Description

This APl is to do the chip-select specific EMIF configuration.

Parameters

d_cs
Chip select
p_emif_cs_config

EMIF chipset specific configuration as defined below.

Q’ Texas Instruments — Proprietary Information Page 75 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

typedef struct { /* CONF_CSx register configuration */
SYS_UWORDS8 d_wait_read_write_trans; /* read to write transition wait cycles */
SYS_UWORD8 d_memmode; /* memory mode */
SYS_UWORDS8 d_we; /* Write enable cycles */
SYS_UWORDS8 d_wait_write; [*Write wait cycles*/
SYS_UWORDS8 d_wait_read; /* Read wait cycles®*/
SYS_UWORDS d_retime;
SYS_UWORDS d_flash_clk_div; /* Flash clock divider */
SYS_UWORDS8 d_non_full_handshake_mode;
SYS_UWORDS8 d_oe_setup; /* Output enable Setup */
SYS_UWORDS8 d_oe_hold; /* Output enable hold cycles */
SYS_UWORDS8 d_adv_hold; /* Address hold cycles */
SYS_UWORDS8 d_bus_turn_mode; /* Bus turn around mode*/

SYS_UWORDS8 d_clk_mask;
SYS_UWORDS8 d_ready_configuration;
} T_MEMIF_CS_CONFIG;

6.6.4 f_emif_abort_conf

SYS UWORDS f emif abort conf (SYS UWORD8 d timeout enable,
SYS UWORD8 d timeout) ;

Description

This API does the abort configurations.

Parameters

d_timeout_enable
Enable/Disable abort timeout.
d_timeout

Abort time-out value.

6.6.5 f_emif_abort_status

SYS UWORDS f emif abort status (T ABORT STATUS* p abort status);

Description

This gets the abort status.

Parameters

p_abort_status
Pointer to T_ABORT_STATUS that returns the abort status of EMIF.

typedef struct {

SYS_UWORDS d_abort_state; /* Current abort state */
SYS_UWORDS8 d_abort_address; /* Abort address */
SYS_UWORDS d_abort_host; /* abort host MCU or DMA */
Q’ Texas Instruments — Proprietary Information Page 76 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

SYS_UWORDS d_abort_protect; /* Protect abort */
SYS_UWORDS d_abort_timeout; /* Timeout abort*/
} T_ABORT_STATUS;

6.6.6 f_emif_protect_conf

SYS UWORDS f emif protect conf (SYS UWORD32 d bound address,
SYS UWORD32 d protect cs,
SYS UWORD32 d protect mask) ;

Description

This does the protect configuration.

Parameters

d_bound_address
Protection bound address
d_protect_cs
Protection chip select
d_protect_mask

Protection mask

6.6.7 f_emif_protect_enable

SYS UWORDS f emif protect enable();

Description

This enables the protection unit of EMIF.

6.6.8 f_emif_protect_conf

SYS UWORDS f emif api rhea conf (SYS UWORDS strobe(access size adapt,
SYS UWORDS strobel access size adapt,
SYS UWORDS api access size adapt,
SYS UWORDS debug enable) ;

Description

This enables RHEA and API access size adaptation.

Parameters

strobe0_access_size_adapt

Q’ Texas Instruments — Proprietary Information Page 77 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Enable/Disable strobe 0 access size adaptation
strobe1_access_size_adapt

Enable/Disable strobe 1 access size adaptation
api_access_size_adapt

Enable/Disable API access size adaptation
debug_enable

Enable/Disable ARM Debug.

6.6.9 f_emif boot_mode_conf

SYS UWORDS f emif boot mode conf (SYS UWORDS boot ctrl,
SYS UWORD8 secure mem select);

Description

This API does the boot mode configurations.

Parameters

boot_ctrl

Gives whether the boot should be performed from internal memory or external memory
secure_mem_select

Secure memory is MCU ROM/Internal RAM.

6.6.10 f_emif_debug_unit_enable

SYS UWORDS f emif debug unit enable (SYS UWORDS8 enable) ;

Description

This enables/disables the debug-unit.

Parameters

enable

Enables or disables debug unit using C_EMIF_ENABLE_DU and C_EMIF_DISABLE_DU

Q’ Texas Instruments — Proprietary Information Page 78 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3
Chapter 7 RFS
7.1 Introduction 80
7.2 RES features 80
7.3 Device independent 80
7.4 Storage Device Auto-Detection 80
7.5 Mount point 80
7.6 Limitations 81
7.7 Performance 81
7.8 Asynchronous and Synchronous I/O operations 81
7.9 POSIX compliant non-blocking 82
7.10 Riviera compliant non-blocking 83
7.11 Non-blocking created by the client 83
7.12 Request and response pairing 84
7.13 Permission attributes 84
7.14 Interface description 85
7.15 POSIX compliant service functions definition 85
7.16 POSIX and REMU compliant service functions definition 93
7.17 Make symbolic link 115
7.18 Message definition 115
7.19 Configuration Items 129
Page 79 of 401

% Texas Instruments — Proprietary Information
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

7.1 Introduction

This document is the programmer’s manual for RFS (Riviera Files System). RFS is a file system with
an API inspired by the POSIX file 1/0 interface. Objects in RFS are hierarchically organized in
directories and sub-directories. This chapter describes the RFS in general and the remaining part of
the document concerns the RFS API.

This RFS interface intends to provide an easy access to RFS for applications; it gathers the
applications requirements for a common File System

7.2 REFS features

The RFS is capable to support following features:

Well known API (POSIX look-alike)

The File System Core that actually knows the file structure (FAT/FFS/etc..) on the media is
interchangeable.
- Support removable devices (e.g.: MMC, SD...)

Dynamic object allocation and garbage collection

Power fail recovery

Wear leveling

Device mounting

7.3 Device independent

The application programmer doesn’t have to know about the flash, in which the file is stored, because
RFS is independent from the underlying flash device hardware.

7.4 Storage Device Auto-Detection

RFS will mount every available device upon boot process and automatically mount removable devices
on insertion and unmount them on removal. The information whether a device is inserted or removed
is provided by the GBI. When these situations occur, the RFS is responsible for passing the
information to the file system cores.

7.5 Mount point

A mount point is a file system object, typically a directory associated with every storage device and its
partitions. The mount point is the root directory of any given storage device partition. The root
directory of a mount point is the highest directory in the directory hierarchy. This means the RFS
doesn’t have a root directory indicated by /.

During the boot sequence information of all devices is gathered by the GBI plug-ins. The GBI (see
[Error! Reference source not found.]) is among others responsible for creating the mount point
names. Next a principle is described, which could be used. Note, this is just an example, the exact
principle used, is the responsibility of the GBI.

When there is only one occurrence of a storage device type and this device has one partition, the
mount point will be indicated without a specific identifier. If there is more than one occurrence of a
storage device type, they will be distinguished by a letter. If a given storage device has more than one
partition, an index will be used to distinguish them. The device name and the number of occurrence
and partition information could be separated by a ‘-‘. This decision however can be made during the
configuration phase.

Example of mountpount information gathered after the boot sequence:

NOR flash /nor

NAND flash /nand

Q’ Texas Instruments — Proprietary Information Page 80 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

SD flash /sd

1st MMC 1st partition /mmc-ai
1st MMC 2nd partition /mmc-a2
2nd MMC (one partition) /mmc-b

When a removal storage device is inserted during runtime and there is already a similar device
inserted the mount point of the new device will identified with a letter. This letter becomes the
successor of the last used identifier letter for this storage device type. When no identifier letter was
used before (one device available during the boot sequence), this letter will be 'a'.

For example, when there is initially one MMC storage device inserted, it's mount point name will be
‘/mmc’. After inserting another MMC storage device, it's mount point name will become ‘/mmc-a’.

When there is a need to retrieve information about mount points, a sequence of following actions can
be performed. First the root directory should be opened with the function rfs_opendir(), whereby the
given pathname is /. The mount point names in the root directory are read by using the function
rfs_readdir(). Reading the mount point directory entries are performed sequential until all entries are
read (the function rfs_readdir returns zero). After a mount point name is available the statistics of
mount point can be obtained by using the rfs_stat() function, whereby the given pathname is the
mount point name. The statistic information contains among others size information of the mount
point.

For more information about reading directory entries, see chapter 7.16.8 and for more information
about reading directory entries, see chapter 7.16.3.

7.6 Limitations

RFS object names (fles and directories) have a maximum length based on a minimum
guaranteed value independent of file system core below (This value will be set in the system constant:
RFS_FILENAME_MAX).

RFS path names have a maximum length based on a minimum guaranteed value independent of
file system core below (This value will be set in the system constant: RFS_PATHNAME_MAX).

RFS has a maximum number of currently opened files within RFS. This value is configurable. The
default value is 10.

RFS has a maximum number of currently opened directories within RFS. This value is
configurable. The default value is 10.

Some of the RFS API functionality (e.g. permission attributes) is not available for particular file
systems. In this case the file system ignores the feature and returns ok.

7.7 Performance

Besides depending on the system load, performance is also depending on the hardware and software
environment. This environment affects the read and write performance of RFS.

Read performance is almost exclusively affected by the flash memory speed. Write performance can
be severely degraded if the file system is near full and fragmented. Otherwise write performance
depends on the write speed of the flash device and the size of the buffers being written. In general,
larger buffers mean higher throughput.

7.8 Asynchronous and Synchronous I/O operations

The definition of asynchronous and synchronous operations is based on the fact whether operations
are running in the context of a client or running in the context of it's own process. An operation is
called synchronous or blocking when the operation runs in the context of client. When an operation
runs in the RFS its own context, it is a non-blocking or asynchronous operation.

% Texas Instruments — Proprietary Information Page 81 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

The decision whether the RFS operations should be blocking or non-blocking is based on the fact,
whether the operation is time-consuming or not. For a time consuming operation it can be decided to
use non-blocking operation.

To obtain non-block operations, there are several mechanisms:

1. Creating asynchronous operations via the POSIX compliant RFS API interfaces.
2. Make use of Riviera compliant non-blocking RFS API functions.
3. The client/caller of blocking RFS API functions, creates its own non-blocking mechanism

The three non-blocking possibilities will be described in detail in following sub-chapters.

7.9 POSIX compliant non-blocking

In order to make calls non-blocking, the POSIX compliant interface rfs_fcntl() supports a possibility to
enable or disable asynchronous I/O operations. The rfs_fcntl() has only control over open files.

When there is a need for asynchronous operations for an open file, the programmer should first
enable asynchronous I/O operations (by setting F_SETFL to O_AIO). For asynchronous operations,
the RFS requires that all data passed to a non-blocking function (file descriptor and file data) must be
valid until the operation has finished.

In order to fulfil this requirement, especially in the case of dynamically allocated memory, the
application should provide either a callback function pointer or a message, as specified at the time of
calling, in order to get a notification when the operation has finished. The concept of specifying a call
back function or a message to be sent on completion of a modify operation, is generally called a
confirmation path or a return path. When this notification has been received, the application can free
the memory.

As mentioned the client/caller can define which return mechanism should be used. For that purpose, it
must provide a return_path. The generic return_path type is a C structure, defined as:

typedef struct ({
T RVF _ADDR ID addr_ id;
VOID (*callback func) (void *);
} T RV _RETURN;

Most of the time , message answers are sent back using the addr_id information. In that case, the
callback function pointer is NULL and the addr_id field is set to the addr_id of the ENTITY that gets
the answer. This receiving ENTITY is responsible for de-allocating the message buffer.

In some cases, it may be very useful that a ENTITY sends the message answer by using a callback
function and not directly by sending message in a mailbox. In this case, the sending ENTITY is
responsible for de-allocating the message buffer.

Setting the return path with the POSIX compliant interface the rfs_fcntl(), can be achieve using the
flag F_SETRETPATH.

When there is no more need for asynchronous operations for an open file, the programmer should
disable asynchronous I/O operations (by setting F_SETFL to O_SIO).

% Texas Instruments — Proprietary Information Page 82 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Example of POSIX compliant non-blocking mechanism in case of a write operation:

/* Open file */
fd = rfs_open("/tmpf/file", O_WRONLY | O_CREAT, S_IWUSR);

/* force asynchronous 1/O operations */
error = rfs_fentl(fd, F_SETFL, O_AIO);

/* specifying a return path, needed for notification and de-allocation of memory */

ret_path.addr_id = xxx_get_addr_id();
ret_path.callback_func = NULL;

/* Set return path */
error = rfs_fentl(fd, F_SETRETPATH, ret_path);

/* start operation */
error = rfs_write(fd, buf, &size);

/* Client waits for ready response */
xxx_wait_for_message (XXX_READY_RSP_MSG);

/* go back to default synchronous I/O operations */
error = rfs_fentl(fd, F_SETFL, O_SIO);

7.10 Riviera compliant non-blocking

In many cases the RFS API operates with object names instead of a file descriptor. In these cases the
application should call a non-blocking RFS API function (functions suffix ‘_nb’). These API functions
send a message to the RFS background task. The API function then returns and the caller's task
continue to run. This means that the RFS operation has been scheduled and has not begun
execution. Later, when the RFS task gets the CPU, it will read the message and execute the
requested operation.

When it is finished, it will return the result of the operation to the caller by means of the return path
mechanism. This will be either a message or a callback function, as specified at the time of calling.
Also all exceptions are returned through this return path mechanism.

For more information about the return path, see chapter 7.9 and for more information about the
complete Riviera concepts, see [Error! Reference source not found.].

7.11 Non-blocking created by the client

When a blocking RFS API function is used by an application and it is not possible to use the non-
blocking variant of that RFS function, the application can create it's own synchronisation mechanism.
For example using the mutex/semaphores and sleep principle.

% Texas Instruments — Proprietary Information Page 83 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.12 Request and response pairing

To be able to compare a response of an operation with the request previously made, a principle with
returning a pair value in the response message is introduced. The pair value depends on the request
made.

When the request concerns an open file operation, the pair value in the response message will consist
of the file descriptor, which is handed over by the start of the operation. The client can use the
returned file descriptor to pair it with the file descriptor used at the start of the request. When multiple
requests are made to an open file, only one request is in progress. The other requests are queued
and executed sequential.

In case the request doesn’t concern an operation on an open file (operations, which don'’t have file
descriptor as an input parameter), the request (non-blocking) function returns, in case of success, a
unique pair ID (a positive value of the type T_RFS_RET). When the requested operation is finished,
the pair value in the response message contains the same unique pair ID (also of type T_RFS_RET).
This means the unique pair ID should be handed over through the entire function call cycle. When
multiple requests of the same type are made, only one request is in progress. The other requests are
queued and executed sequential.

The described principles only concern asynchronous functions.

7.13 Permission attributes

Everything the RFS manages with regards to objects has a set of permissions governing who can
read, write, and execute the resource.

The POSIX standard defines three possible types of object access actors: the user who owns it (u),
another user in the same system group (g), any other user in any other group (0). The permission
attributes of a file are defined as execute (x), write (w) or read (r). It is possible to combine these
attributes. Not all file system cores support object actors and modes. In this case user will become the
default actor.

This overall numerical definition within a RFS is following:

User Group Other
symbolic value mode bit symbolic value mode bit symbolic value mode bit
u+x 0x0100 S_IXUSR g+x 0x0010 S_IXGRP 0+X 0x0001 S_IXOTH
u+w 0x0200 S_IWUSR gtw 0x0020 S_IWGRP o+tw 0x0002 S_IWOTH
u+r 0x0400 S_IRUSR g+r 0x0040 S_IRGRP otr 0x0004 S_IROTH
U+rwx 0x0700 S IRWXU g+rwx 0x0070 S IRWXG 0+rwx 0x0007 S IRWXO

Directories are also treated as files. They have read, write, and execute permissions. The executable
bit for a directory has a slightly different meaning than that of files. When a directory is marked
executable, it means it can be traversed into. In this case it is possible to change directory into.

In order to perform a directory listing, read and execute permission must be set on the directory, whilst
to delete a file that one knows the name of, it is necessary to have write and execute permissions to
the directory containing the file.

Q’ Texas Instruments — Proprietary Information Page 84 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.14 Interface description

7.15 POSIX compliant service functions definition

7.15.1 rfs_fentl

T RFS RET rfs fcntl(T RFS_FD £d,
INTS8 cmd,
/* optional, void* arg */)

Description

This function provides control on the properties of a file that is already open. The argument fd is a
descriptor to be operated on by cmd as described below. The third parameter is called arg and is
technically a pointer to void, but the interpretation depends on the command.

This function is a synchronous function. Switching from synchronous to asynchronous operations or
vice-versa, by setting flag F_SETFL, has only effect on the succeding operations (like file writing or
reading) and not on the function rfs_fcntl() itself. When a switch from asynchronous operations to
synchronous operations is made and there are some pending asynchronous operations, the
return_path of these pending operations should stay valid.

Parameters

fd
File descriptor obtained when the file was opened.

- cmd
The commands are:

id Definition
Set the file status associated with the file descriptor fd (arg is interpreted
F_SETFL
- as an UINT8)
F_GETFL Get the file status associated with fd (arg is ignored)

Sets the return path to be used for notification (arg is interpreted as an
pointer to T_RV_RETURN)

F_SETRETPATH

The flags F_SETFL and F_GETFL can be as follows:
O_AIO Force time consuming call to operate asynchronously, the caller will be notified either by the

return path (callback function or message).
O_SIo Default blocking (i.e: synchronous) I/O operations

arg
Arguments depending on cmd, Possible parameters are the flag (enabling and disabling
asynchronous operations) and the command for setting the return path.

Q’ Texas Instruments — Proprietary Information Page 85 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(positive value) Value of flags (in case of successful F_GETFL command execution)
RFS_EOK Ok. (in case of successful command execution others than F_GETFL)
RFS_EBADFD Invalid file descriptor.
RFS_EINVALID invalid argument (Invalid command or invalid return_path)

Event Return

No message is returned.

Current restriction of use

None.

7.15.2 rfs_close

T RFS RET rfs close(T RFS FD fd)

Description

This function closes an open file.

Parameters

- fd
File descriptor obtained when the file was opened.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.

RFS_EBADFD The file argument is not a valid file descriptor.

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_CLOSE_RSP. Also the file descriptor used for this initiated
operation is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 86 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.15.3 rfs_write

T RFS SIZE rfs write(T RFS FD £d
const void ‘*buf,
T RFS SIZE size)

Description

This function writes data to a previously opened file identified by fd. It writes size bytes of data from
the buffer pointed by buf at the current position of the file pointer in the file. When the write operation
completes, the current position of the file pointer is set to the end of the newly added data.

If the operation succeeds the (positive) number of written bytes is returned. Otherwise an error is
returned (negative value).

Parameters

fd
File descriptor obtained when the file was opened.

buf
Pointer to buffer of data to write.

size
Number of bytes to write.

Immediate Return

T_RFS_SIZE

The possible values are:

id Definition
(Positive value) Number of bytes actually written.
RFS_EBADFD The file argument is not a valid file descriptor.
RFS_EACCES The file is not writable.
RFS_EBADOP The file is not open for writing.
RFS_EFBIG An attempt was made to write a file that exceeds the maximum file size.
RFS_ENOSPACE Out of data space.
RFS_EDEVICE Device /O error

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_WRITE_RSP. Also the file descriptor used for this initiated operation
is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 87 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.15.4 rfs_read

T RFS SIZE rfs read(T RFS _FD fd,
void *buf,
T RFS SIZE size)
Description

This function reads data from the previously opened file identified by fd. A maximum of size bytes is
read from the file into the buffer pointed by buf. The buffer memory needs to be allocated by the client.
When the read operation completes, the file pointer is advanced to the end of the data read.

If the operation succeeds the (positive) number of bytes read is returned. Otherwise an error is
returned (negative value).

Parameters

fd
File descriptor obtained when the file was opened.

buf
Pointer to a buffer where the data will be copied into (The size of this buffer has to be at least size
bytes).

size

Maximum number of bytes to read.

Immediate Return

T_RFS_SIZE

The possible values are:

id Definition
(Positive value) Number of bytes actually read.
RFS_EBADFD The file argument is not a valid file descriptor.
RFS_EACCES The file is not readable.
RFS_EBADOP The file is not open for reading.
RFS_ENOSPACE Out of data space.
RFS_EDEVICE Device /O error

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_READ_RSP. Also the file descriptor used for this initiated operation
is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 88 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.15.5 rfs_Iseek

T RFS OFFSET rfs lseek(T RFS FD fd,
T RFS OFFSET offset,
INTS8 whence)
Description

This function repositions the offset of the file descriptor fd to the argument offset according to the
directive whence. The argument fd must be an open file descriptor.

If the operation succeeds the (positive) new position of the file pointer is returned. Otherwise an error
is returned (negative value).

Note:

When the whence is set to RFS_SEEK_END the file offset is set to size of the file plus the offset. In
this case new blocks will be added to the file and this can take additional time. This means, also
depending on system load, the blocking version (synchronous operation) this function can block the
caller for a time.

Parameters

- fd
File descriptor obtained when the file was opened.

offset
Offset (in bytes) to move the file pointer.

whence
Reference used to reposition the file pointer defined as follow:

id Definition
RFS SEEK SET Absolute offset from start of file
RFS SEEK CUR the offset is set to its current location plus offset bytes
RFS SEEK END the offset is set to the size of the file plus offset bytes.

Immediate Return

T_RFS_OFFSET

The possible values are:

id Definition
(Positive value) New position of the file pointer
RFS_EBADFD The fd argument is not a valid file descriptor.
RFS_EINVALID \':'Vt;il\évrt\)een;e\l;irg.ument is not a proper value, or the resulting file offset
RFS_EBADOP Bad operation. Seek not allowed with the flags used to open the file.
RFS_EDEVICE Device /O error

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_LSEEK_RSP. Also the file descriptor used for this initiated operation
is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 89 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.15.6 rfs_fchmod

T RFS RET rfs_fchmod (T RFS_FD £d,
T RFS_MODE mode)

Description

The function rfs_fchmod() sets the permission bits of the specified file descriptor fd to required mode.
A mode is created from OR'd permission bit masks defined in chapter 7.18.25.

Parameters

- fd
File descriptor obtained when the file was opened.

mode
Specifies the attribute (permission bits) of the file (See chapter 7.18.25).

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok
RFS_EBADFD The fd argument is not a valid file descriptor.
RFS_ENAMETOOLONG Object's name is too long.
RFS_ENOTDIR A component of the path prefix is not a directory.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EBADNAME Object's name contains illegal characters.
RFS_ENOTAFILE Object is not a file.
RFS_ENOENT No such file or directory.
RFS_EINVALID Bad mod option
RFS_ELOCKED The file is locked (already opened in a conflicting mode).

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_FCHMOD_RSP. Also the file descriptor used for this initiated
operation is returned.

Current restriction of use

Some file system types may not support one or more of the mode attribute bits. (They return doing
nothing, without an error).

Q’ Texas Instruments — Proprietary Information Page 90 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.15.7 rfs_fstat

T RFS RET rfs fstat(T RFS_FD £d,
T RFS_STAT *stat)

Description

The rfs_fstat() function obtains information about an open file associated by the file descriptor fd. For
more details about the returned information concerning the file, see 7.18.29).

The stat memory needs to be allocated by the client.

Parameters

fd
File descriptor obtained when the file was opened.

stat
Contains information (meta-data) about the specified object.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_ENOENT Object not found.
RFS_ENOTDIR A component of the path prefix is not a directory.
RFS_EBADFD Bad file descriptor.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Object's name contains illegal characters.

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_FSTAT_RSP. Also the file descriptor used for this initiated operation
is returned.

Current restriction of use

Some file system types may not support some specific stat items.

Q’ Texas Instruments — Proprietary Information Page 91 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.15.8 rfs_fsync

T RFS RET rfs fsync(T RFS FD fd)

Description

This function cause the transfer of all modified data and attributes of fd, which wasn’t immediately
written to the storage device, to the permanent storage device associated with the file described by fd.
The reason that sometimes the data is not immediately written on the storage device, can be caused
by different reasons, like different buffer sizes that are used by various software and hardware
components, task scheduling or hardware delays.

To ensure that the data is consistent and really written on the physical media, this function can be
used. Saving unwritten data on storage devices is also known as flushing.

Parameters

fd
File descriptor obtained when the file was opened.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_EBADFD Invalid file descriptor.
RFS_ENOSPACE Out of data space.
RFS_EFSFULL File system full, no free inodes.
RFS_EDEVICE Device /O error

Event Return

In case of enabled asynchronous operations, T_RFS_READY_RSP_MSG event is returned
containing command index: RFS_FSYNC_RSP. Also the file descriptor used for this initiated
operation is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 92 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16 POSIX and REMU compliant service functions definition

7.16.1 Open file

7.16.1.1 rfs_open

T RFS FD rfs open (const char *pathname,
T RFS FLAGS flags,
T RFS MODE mode)
Description

The file specified by pathname is opened for reading and/or writing as specified by the argument flags
and the file descriptor is returned to the calling process. The flags argument may indicate the file is to
be created if it does not exist (by specifying the RFS_O_CREAT flag), in which case the file is created
with mode mode. Else the mode will be ignored.

If the operation succeeds the file pointer used to mark the current position within the file is set to the
beginning of the file and a (positive) file descriptor is returned. Otherwise an error is returned
(negative value).

Parameters

pathname
Null terminated string containing the unique name of the file to open or create.

flags
Specifies the attribute used to open the file (see chapter 7.18.24).

mode

Specifies the mode argument (permission bits of the file) and will be used when the RFS_O_CREAT
flag is specified in flags (see chapter 7.18.25).

Immediate Return

T_RFS_FD
The possible values are:

id Definition
(Positive value) File descriptor of file opened.

RFS_EEXISTS An object of the same name already exists.

- Search permission is denied for a component of the path prefix.

- or the required permissions (for reading and/or writing) are denied
RFS_EACCES for the given flags.

- or RFS_O_CREAT is specified, the file does not exist, and the
directory in which it is to be created does not permit writing.

RFS_ENAMETOOLONG Object's name is too long.

RFS_EBADNAME Object's name contains illegal characters.

RFS_ENUMFD Max number of used file descriptors reach

RFS_ENOENT No such file or directory.

RFS_ENOTDIR A component of the path prefix is not a directory.

RFS_EINVALID Bad open flag options.

RFS_ELOCKED The file is locked (already opened for writing, in a conflicting mode).

RFS_EMOUNT Invalid mount point

Q’ Texas Instruments — Proprietary Information Page 93 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Event Return

No message is returned.

Current restriction of use

None.

7.16.1.2 rfs_open_nb

T RFS RET rfs open nb(const char *pathname,
T RFS FLAGS flags,
T RFS MODE mode,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_open(). For a detailed description see according chapter.

Parameters

pathname
Null terminated string containing the unique name of the file to open or create.

flags
Specifies the attribute used to open the file (see chapter 7.18.24).

mode
Specifies the mode argument (permission bits of the file) and will be used when the RFS_O_CREAT
flag is specified in flags (see chapter 7.18.25).

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_OPEN_RSP. Also a
unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 94 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

7.16.2 Change mode

7.16.2.1 rfs_chmod

T RFS RET rfs chmod (

const char *pathname,
T RFS MODE mode)

Description

The function rfs_chmod() sets the file permission bits of the file specified by the pathname pathname

to required mode.

A mode is created from OR'd permission bit masks defined in chapter 7.18.25.

Parameters

pathname

Null terminated string containing the unique name of the file for changing the mode.

mode

Specifies the attribute (permission bits) of the file (See chapter 7.18.25).

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok
RFS_EBADFD The fd argument is not a valid file descriptor.
RFS_ENAMETOOLONG Object's name is too long.
RFS_ENOTDIR A component of the path prefix is not a directory.
RFS_EACCES Search permission is denied for a component of the path prefix.

RFS_EBADNAME

Object's name contains illegal characters.

RFS_ENOTAFILE

Object is not a file.

RFS_ENOENT No such file or directory.

RFS_EINVALID Bad mod option

RFS_ELOCKED The file is locked (already opened in a conflicting mode).
RFS_EMOUNT Invalid mount point

Event Return

No message is returned.

Current restriction of use

Some file system types may not support one or more of the mode attribute bits. (They return doing

nothing, without an error).

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 95 of 401

Locosto_BSP_API Version 0.3

7.16.2.2 rfs_chmod_nb

T RFS RET rfs chmod nb(const char *pathname,
T RFS MODE mode,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_chmod(). For a detailed description see according
chapter.

Parameters

pathname
Null terminated string containing the unique name of the file for changing the mode.

mode
Specifies the attribute (permission bits) of the file (See chapter 7.18.25).

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index RFS_CHMOD_RSP. Also
a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

Some file system types may not support one or more of the mode attribute bits. (They return doing
nothing, without an error).

Q’ Texas Instruments — Proprietary Information Page 96 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.3 Retrieve data

7.16.3.1 rfs_stat, rfs_Istat

T RFS RET rfs stat(const char *pathname,
T RFS STAT *stat)

Description

The rfs_stat() function obtains information about the file or device associated to the mountpoint
pointed to by pathname.

If pathname is NULL, general information about the file system is returned (e.g. file system limits). If
pathname is ‘/mountpoint’, information on the device associated to the mount point is returned (e.g.
speed data of the mount pount). if pathname ends with a directory or file, the appropriate information
for the directory or file is returned. For more details about the returned information concerning the
pathname, see 7.18.29).

The stat memory needs to be allocated by the client.

Parameters

stat
Contains information (meta-data) about the specified object.

pathname
Terminated string containing NULL or the name of the mount pount, file or directory.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_ENOENT Object not found.
RFS_ENOTDIR A component of the path prefix is not a directory.
RFS_EBADFD Bad file descriptor.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EMOUNT Invalid mount point
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Object's name contains illegal characters.

Event Return

No message is returned.

Current restriction of use

Some file system types may not support some specific stat items.

Q’ Texas Instruments — Proprietary Information Page 97 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.3.2 rfs_stat_nb, rfs_Istat_nb

T RFS RET rfs stat nb(const char *pathname,
T RFS_STAT *stat,
T RV _RETURN return path)
Description

This the non-blocking function variant of rfs_stat(). For a detailed description see according chapter.

Parameters

pathname
Null terminated string containing the name of the file or directory.

stat
Contains information (meta-data) about the specified object.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_STAT_RSP. Also a
unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

Some file system types may not support some specific stat items.

Q’ Texas Instruments — Proprietary Information Page 98 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.4 Remove

7.16.4.1 rfs_remove

T RFS RET rfs remove (const char *pathname)

Description

This function removes the object with the pathname given by pathname. The pathname is a null
terminated string. If the object does not exist, RFS_ENOENT is returned. If a directory is to be
removed, it must be empty, otherwise RFS_ENOTEMPTY is returned. It is not possible to remove a
file that is open.

Parameters

pathname
Null terminated string containing the unique name of the object.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_ENOENT File was not found.
RFS_ENOTDIR A component of the path is not a directory.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Object's name contains illegal characters.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EACCES File could not be removed (read-only).
RFS_ELOCKED The file is open
RFS_EDEVICE Device /O error
RFS_EMOUNT Invalid mount point
RFS_ENOTEMPTY The named directory contains files other than ‘.’ and .. in it.

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 99 of 401
TExXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.4.2 rfs_remove_nb

T RFS RET rfs remove nb (const char *pathname,
T RV _RETURN return path)

Description

This is a non-blocking function variant of rfs_remove(). For a detailed description see according
chapter.

Parameters

pathname
Null terminated string containing the unique name of the object.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_REMOVE_RSP. Also
a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 100 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.5 Rename

7.16.5.1 rfs_rename

T RFS RET rfs rename (const char *oldname,
const char *newname)

Description

This function renames files and directories. The names are the full path to the object. It is possible to
move the object to a different path simple by specifying a new path in the newname string. The
oldname object must exist and the newname must not exist or else an error will be returned.

Renaming (moving) of a file is only granted on the same mountpoint (media partition). If the new path
indicates another mountpoint an error is returned.

Parameters

oldname
Null terminated string containing the unique name including the path of the existing object in the File
System.

newname
Null terminated string containing the unique name including the path, which oldname is desired to
change name or location to.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_ENOENT Oldname object does not exist.
RFS_EEXISTS Newname object already exists.
RFS_EACCES Object could not be modified (read-only).
RFS_ENOTDIR A component of the path is not a directory.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Object's name contains illegal characters.
RFS_EFSFULL Failed to allocate an inode for the changed object.
RFS_ENOTALLOWED Renaming is not allowed (another new path contains another mountpoint)

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 101 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.5.2 rfs_rename_nb

T RFS RET rfs rename nb (const char *oldname,
const char *newname,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_rename(). For a detailed description see according
chapter.

Parameters

oldname
Null terminated string containing the unique name including the path of the existing object in the File
System.

newname
Null terminated string containing the unique name including the path, which oldname is desired to
change name or location to.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index RFS_RENAME_RSP. Also
a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 102 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.6 Make directory

7.16.6.1 rfs_mkdir

T RFS RET rfs mkdir(const char *pathname,
T RFS MODE mode)

Description

This function creates a directory with the pathname given by pathname. The pathname is a null
terminated string. All components of the pathname must be already existing directories. This means
that it is not possible to rfs_mkdir("/gsm/rf/tx") if the directories /gsm/ and /gsm/rf are not already
created.

Parameters

pathname
Null terminated string containing the unique name of the directory to create

mode
Specifies the attribute (permission bits) of the directory (See chapter 7.18.25).

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_EEXISTS Directory already exists.
RFS_ENOTDIR A component of the path is not a directory.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EBADNAME Name of the directory contains illegal characters
RFS_ENOSPACE Failed to allocate space for object's data.
RFS_EFSFULL Failed to allocate an inode for the object.
RFS_EDEVICE Device /O error
RFS_EMOUNT Invalid mount point

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 103 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.6.2 rfs_mkdir_nb

T RFS RET rfs mkdir nb(const char *pathname,
T RFS MODE mode,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_mkdir(). For a detailed description see according chapter.

Parameters

pathname
Null terminated string containing the unique name of the directory to create

mode
Specifies the attribute (permission bits) of the directory (See chapter 7.18.25).

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_MKDIR_RSP. Also a
unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 104 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.7 Remove directory

7.16.7.1 rfs_rmdir

T RFS RET rfs rmdir(const char *pathname)

Description

This function removes a directory file whose name is given by pathname. The directory must be
empty.

Parameters

pathname
Null terminated string containing the unique name of the directory to remove.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_ENOENT The named directory does not exist
RFS_ENOTDIR A component of the path is not a directory.
RFS_ENAMETOOLONG Object's name is too long.
RFS_ENOTEMPTY The named directory contains files other than ‘.’ and .. in it.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EACCES No write permission to delete the directory entry
RFS_EBUSY I:utahgirceucrtrc;rr)]/ttgirt;troer?oved is the mount point for a mounted file system
RFS_EBADNAME Name of the directory contains illegal characters
RFS_EMOUNT Invalid mount point

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 105 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.7.2 rfs_rmdir_nb

T RFS RET rfs rmdir nb(const char *pathname,
T RV _RETURN return path)

Description

This is a non-blocking function variant of rfs_rmdir(). For a detailed description see according chapter.

Parameters

pathname
Null terminated string containing the unique name of the directory to remove.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_RMDIR_RSP. Also a
unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 106 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.8 Directory contents determination

7.16.8.1 Introduction

The RFS knows two basic directory operations: open directory and reading directory, to determine the
names of files and subdirectories in a directory.

A directory is opened for reading by calling the open directory function and specifying the name of the
directory to be opened. The function call returns a pointer to a directory descriptor, which identifies a
directory stream. The stream is initially positioned at the first entry in the directory.

Once a directory stream is opened, the reading directory function is used to obtain individual entries
from it. Each call to this function returns information of one directory entry, in sequence from the start
of the directory. The reading directory function returns the name of the file (or directory) and its name
size. In order to read all entries in a directory, the reading directory function should be called until it
returns zero.

7.16.8.2 Open directory

7.16.8.2.1 rfs_opendir

T RFS SIZE *rfs opendir(const char *pathname,
T RFS DIR *dirp)

Description

This function opens the directory named by pathname and associates a directory stream with it
pointed by pointer dirp. This pointer can be used to identify the directory stream in subsequent
operations.

If the operation succeeds, the function returns the number of objects in the directory. Otherwise an
error is returned (negative value).

Parameters

pathname
Null terminated string containing the unique name of the directory we want to open.

dirp
Pointer to a RFS structure, which has to be used for the read directory operations. The user is
responsible to allocate this structure.

Immediate Return

T_RFS_SIZE

The possible values are:

id Definition
(Positive value) Number of objects in the specified directory (At the time of call).
RFS_ENOTDIR A component of the path is not a directory.
RFS_ENOENT Directory not found.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Name of the directory contains illegal characters
RFS_ENOSPACE Out of data space.
Q’ Texas Instruments — Proprietary Information Page 107 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

RFS_EMOUNT Invalid mount point

Event Return

No message is returned.

Current restriction of use

None.

7.16.8.2.2 rfs_opendir_nb

T RFS RET rfs opendir nb(const char *pathname,
T RFS DIR *dirp,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_opendir(). For a detailed description see according
chapter.

Parameters

pathname
Null terminated string containing the unique name of the directory we want to open.

dirp
Pointer to a RFS structure, which has to be used for the read directory operations. The user is
responsible to allocate this structure.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_OPENDIR_RSP.
Also a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 108 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.8.3 Read directory

7.16.8.3.1 rfs_readdir

T RFS SIZE rfs readdir(T RFS DIR *dirp,
char *buf,
T RFS SIZE size)
Description

This function reads an entry from a directory previously opened by rfs_opendir(). The input parameter
is a pointer to the opened directory stream (specified by the argument dirp). The structure associated
with the pointer dirp, keeps track of the directory entry last read by the function rfs_readdir(). To
achieve this, the pointer dirp is also an output parameter.

The other (output) parameters concern directory entry information, which is read. This information
exists of a pointer to a buffer containing the name of the entry and the size of the buffer. The buffer
memory needs to be allocated by the client.

A positive return value denotes that the buffer pointed to by buf, contains the null-terminated name of
the entry found. A zero is returned if there were no more entries in the directory and the buffer pointed
to by buf is left untouched. The function returns a negative value if an exception is encountered.

In order to read all entries in a directory, rfs_readdir() should be called until it returns zero.

Parameters

dirp
(1) Pointer to a T_RFS_DIR structure obtained in a previous call to rfs_opendir(), representing a
directory stream.

buf
Pointer to a buffer, which should contain the name of the directory entry.

size
Size in bytes of the buffer pointed by buf.

Immediate Return

T_RFS_SIZE

The possible values are:

id Definition
(Positive value) Number of bytes actually read.
RFS_EBADDIR Invalid directory descriptor
RFS_ENOSPACE Out of data space.

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 109 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.8.3.2 rfs_readdir_nb

T RFS RET rfs readdir nb (T RFS DIR *dirp,

char *buf,

T RFS SIZE size,

T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_readdir(). For a detailed description see according
chapter.

Parameters

dirp
(2) Pointer to a T_RFS_DIR structure obtained in a previous call to rfs_opendir() or
rfs_opendir_nb(), representing a directory stream.

buf
Pointer to a buffer, which should contain the name of the directory entry.

size
Size in bytes of the buffer pointed by buf.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_READDIR_RSP.
Also a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 110 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.9 Pre-formatting

7.16.9.1 rfs_preformat

T RFS RET rfs preformat (const char *pathname,
UINT16 magic)

Description

With this pre-format function it is only possible to erase the data in a media partition. Within RFS a
media partition is the same as a mountpoint. For this pre-format function it is required that the given
pathname should be a mountpunt ‘/mountpoint’. If this is not the case, no pre-formatting takes place
and an error is returned.

The pre-format operation cannot be reversed or undone. Note that depending on the underlying flash
hardware, the pre-format operation can take anything from a few milliseconds to several seconds.
Most flash memories in a normal environment take around one second (typical) to erase each sector.
The magic number must equal the hexadecimal constant OXDEAD. If the magic number given by
magic is incorrect, RFS_EMAGIC is returned.

Parameters

pathname
Null terminated string containing the name of the partition to format.

magic
Magic value to access the function. Must be OxDEAD.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_EMAGIC Magic number is incorrect.
RFS_EINVALID grt]e(rerase operation is currently in progress. Retry the operation again
RFS_ENODEVICE The flash device is unknown (not supported).
RFS_EMEMORY Message allocation failed.
RFS_EMSGSEND Message sending failed.
RFS_EDEVICE Device /O error
RFS_ENOTALLOWED Pre-formatting is not allowed (pathname is no mountpoint)

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 111 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.9.2 rfs_preformat_nb

T RFS RET rfs preformat nb(const char *pathname,
UINT16 magic,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_preformat(). For a detailed description see according
chapter.

Parameters

pathname
Null terminated string containing the name of the partition to format.

magic
Magic value to access the function. Must be OxDEAD.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS_EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_PREFORMAT_RSP.
Also a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 112 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.10 Formatting

7.16.10.1 rfs_format

T RFS RET rfs format (const char *pathname,
const char *name,
UINT16 magic)
Description

This function formats the RFS. With this format function a new file system is created on the requested
media partition. Within RFS, a media partition is the same as a mount point. For this format function it
is required that the given pathname should be a mount punt /mountpoint’. If this is not the case, no
formatting takes place and an error is returned.

With the optional name given by the argument name the volume name of the root directory. However
the name is completely ignored and has absolutely no meaning to RFS. It can not be read or retrieved
later on. If name is the null pointer, a default name is used. Otherwise name is a null terminated string
and optionally followed by some arbitrary descriptive name for the RFS volume.

This function must be called after rfs_preformat() and before any other operation on RFS. In order to
avoid spurious calls of this dangerous, unrecoverable function, the magic number must have the
hexadecimal value of 0x2BAD to format the flash.

Parameters

pathname
Null terminated string containing the name of the partition to format.

name
Null terminated string containing the name of the RFS volume.

magic
Magic value to access the function. Must be 0x2BAD.

Immediate Return

T_RFS_RET

The possible values are:

id Definition
RFS_EOK Ok.
RFS_EAGAIN Previous RFS_preformat() has not finished yet.
RFS_EINVALID Magic number is incorrect.
RFS_EBADNAME Name contains illegal characters
RFS_EMEMORY Message allocation failed.
RFS_EMSGSEND Message sending failed.
RFS EDEVICE Device /O error
RFS_ENOTALLOWED Formatting is not allowed (pathname is no mountpoint)

Event Return

No message is returned.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 113 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.16.10.2rfs_format_nb

T RFS RET rfs format nb (const char *pathname,
const char *name,
UINT16 magic,
T RV _RETURN return path)
Description

This is a non-blocking function variant of rfs_format(). For a detailed description see according
chapter.

Parameters

pathname
Null terminated string containing the name of the partition to format.

name
Null terminated string containing the name of the RFS volume.

magic
Magic value to access the function. Must be 0x2BAD.

return_path
Return path for notifications.

Immediate Return

T_RFS_RET

The possible values are:

Id Definition
(Positive value) Unique pair ID used to pair a initiated request with a received response.
RFS EACCES The RFS is not able to handle this request at this moment.
RFS_EMEMORY Insufficient memory to create message request
RFS_EINVALID Invalid argument (return_path is invalid)

Event Return

T_RFS_READY_RSP_MSG event is returned containing command index: RFS_FORMAT_RSP. Also
a unique pair ID is returned. This pair ID can be used to pair a response with an initiated request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 114 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

7.17 Make symbolic link

7171 rfs_symlink

T RFS RET rfs symlink (const char *namel, const char*nameZ2)

Description

This function creates a symbolic link. The symbolic link name2 is created to name1 (name2 is the
name of the symbolic link created, name1 is the string used in creating the symbolic link).

The name may be an arbitrary path name. The files need not be on the same file system and also the
file specified by name1 needs not to exist at all.

To create a directory link both name1 and name2 character string must end with a /' character.

Parameters

name1
Null terminated string containing the unique name of the symbolic link to be created.

name2
Null terminated string containing the name of the actual object.

Immediate Return

T_RFS_RET

7.18 Message definition

7.18.1 Close

7.18.1.1 Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_CLOSE_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

id Definition
RFS_EOK Ok.
RFS EBADFD The file argument is not a valid file descriptor.
7.18.2 Write

7.18.2.1 Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_WRITE_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

id Definition
(Positive value) Number of bytes actually written.
RFS EBADFD The file argument is not a valid file descriptor.
RFS_EACCES The file is not writable.
RFS_EBADOP The file is not open for writing.
RFS_EFBIG An attempt was made to write a file that exceeds the maximum file size.
Q’ Texas Instruments — Proprietary Information Page 115 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

RFS_ENOSPACE

Out of data space.

RFS_EDEVICE

Device 1/O error

7.18.3 Read

7.18.3.1 Response message
The RFS responds

T _RFS_READY_RSP_MSG and contains command

RFS_READ_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

id Definition
(Positive value) Number of bytes actually read.
RFS_EBADFD The file argument is not a valid file descriptor.
RFS_EACCES The file is not readable.
RFS EBADOP The file is not open for reading.
RFS ENOSPACE Out of data space.
RFS EDEVICE Device /O error

7.18.4 Lseek

7.18.4.1 Response message
The RFS responds

T_RFS_READY_RSP_MSG and contains command

RFS_LSEEK_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

id
(Positive value)

Definition
New position of the file pointer

RFS_EBADFD The fd argument is not a valid file descriptor.

RFS EINVALID The when_ce a_rgument is not a proper value, or the resulting file offset
- would be invalid.

RFS_EBADOP Bad operation. Seek not allowed with the flags used to open the file.

RFS_EDEVICE Device /O error

7.18.5 Fchmod

7.18.5.1 Response message
The RFS responds

T_RFS_READY_RSP_MSG and contains command

RFS_FCHMOD_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

id Definition
RFS_EOK Ok
RFS EBADFD The fd argument is not a valid file descriptor.
RFS_ENAMETOOLONG Object's name is too long.
RFS ENOTDIR A component of the path prefix is not a directory.
RFS EACCES Search permission is denied for a component of the path prefix.

RFS_EBADNAME

Object's name contains illegal characters.

RFS_ENOTAFILE

Obiject is not a file.

RFS_ENOENT

No such file or directory.

RFS_EINVALID

Bad mod option

RFS_ELOCKED

The file is locked (already opened in a conflicting mode).

7.18.6 Fstat

7.18.6.1 Response message
The RFS responds

T_RFS_READY_RSP_MSG and contains command

RFS_FSTAT_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

index:

index:

index:

index:

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 116 of 401

Locosto_BSP_API Version 0.3

id Definition
RFS_EOK Ok.
RFS_ENOENT Object not found.
RFS ENOTDIR A component of the path prefix is not a directory.
RFS_EBADFD Bad file descriptor.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Object's name contains illegal characters.

7.18.7 Fsync

7.18.7.1 Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_FSYNC_RSP. Also the file descriptor used for this initiated operation is returned.

The possible values for ‘result’ are:

RFS_EOK Ok.

RFS_EBADFD Invalid file descriptor.

RFS ENOSPACE Out of data space.

RFS EFSFULL File system full, no free inodes.
RFS EDEVICE Device 1/O error

7.18.8 Open

The T_RFS_OPEN_REQ_MSG message can be used to open a file. This message is similar to the
rfs_open_nb() function. One exception is the parameter: pair_id. This parameter is returned by the
non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_OPEN_RSP. Also the pair_id, provided via the request message, is returned via the response
message and can be used for pairing the handled request with a response.

7.18.8.1 T_RFS_OPEN_REQ_MSG
typedef struct {

T RV_HDR hdr;

const char pathname;

T RFS_FLAGS flags;

T RFS_MODE mode ;

T RFS RET pair id,

T RV_RETURN return path;

} T RFS_OPEN REQ MSG

7.18.8.2 Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_OPEN_RSP.

The possible values for ‘result’ are:

id Definition
(Positive value) File descriptor of file opened.
RFS_EEXISTS An object of the same name already exists.
- Search permission is denied for a component of the path prefix.
- or the required permissions (for reading and/or writing) are denied
RFS_EACCES for the given flags.
- or RFS_O_CREAT is specified, the file does not exist, and the
directory in which it is to be created does not permit writing.

RFS_ENAMETOOLONG Object's name is too long.

RFS_EBADNAME Object's name contains illegal characters.

RFS_ENUMFD Max number of used file descriptors reach

Q’ Texas Instruments — Proprietary Information Page 117 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

RFS_ENOENT No such file or directory.

RFS_ENOTDIR A component of the path prefix is not a directory.

RFS_EINVALID Bad open flag options.

RFS_ELOCKED The file is locked (already opened for writing, in a conflicting mode).
RFS EMOUNT Invalid mount point

7.18.9 Chmod

The T_RFS_CHMODE_REQ_MSG message can be used to open a file. This message is similar to
the rfs_chmod_nb() function. One exception is the parameter: pair_id. This parameter is returned by
the non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_CHMOD_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.10 T_RFS_CHMOD_REQ_MSG
typedef struct {

T RV_HDR hdr;

const char *pathname;
T RFS_MODE mode ;

T RFS RET pair id,

T RV_RETURN return path;
} T _RFS _CHMOD REQ MSG

7.18.11 Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_CHMOD_RSP.
The possible values for ‘result’ are:
id Definition
RFS_EOK Ok
RFS_EBADFD The fd argument is not a valid file descriptor.
RFS_ENAMETOOLONG Object's name is too long.
RFS_ENOTDIR A component of the path prefix is not a directory.
RFS_EACCES Search permission is denied for a component of the path prefix.

RFS_EBADNAME

Object's name contains illegal characters.

RFS_ENOTAFILE

Object is not a file.

RFS_ENOENT No such file or directory.

RFS_EINVALID Bad mod option

RFS_ELOCKED The file is locked (already opened in a conflicting mode).
RFS_EMOUNT Invalid mount point

7.18.12 Stat and Lstat

The T_RFS_STAT_REQ_MSG message can be used to open a file. This message is similar to the
rfs_stat_nb () function. One exception is the parameter: pair_id. This parameter is returned by the
non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_STAT_RSP. Also the pair_id, provided via the request message, is returned via the response
message and can be used for pairing the handled request with a response.

The T_RFS_LSTAT_REQ_MSG message can be used to obtain information about the file, directory
or device. This message is similar to the rfs_Istat_nb() function.

7.18.12.1T_RFS_STAT REQ_MSG

typedef struct {

Texas Instruments — Proprietary Information Page 118 of 401

{9 TeEXAS
INSTRUMENTS

Strictly Private

Locosto_BSP_API

Version 0.3

T RV_HDR hdr;

const char *pathname;

T _RFS_STAT *stat;

T RFS_RET pair_id,
T_RV_RETURN return_path;

} T_RFS_STAT_REQ_MSG

7.18.12.2T_RFS_LSTAT_REQ_MSG

typedef struct {
T_RV_HDR
const char
T_RFS_STAT
T_RV_RETURN

} T_RFS_LSTAT_REQ_MSG

7.18.12.3 Response message

hdr;
*pathname;
*stat;
*return_path;

The RFS responds with T_RFS_READY_RSP_MSG and contains command index: RFS_STAT_RSP.

The possible values for ‘result’ are:

id Definition
RFS_EOK Ok.
RFS_ENOENT Object not found.
RFS_ENOTDIR A component of the path prefix is not a directory.
RFS_EBADFD Bad file descriptor.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EMOUNT Invalid mount point

RFS_ENAMETOOLONG

Object's name is too long.

RFS_EBADNAME

Object's name contains illegal characters.

7.18.13 Remove

The T_RFS_REMOVE_REQ_MSG message can be used to open a file. This message is similar to
the rfs_remove_nb () function. One exception is the parameter: pair_id. This parameter is returned by
the non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_REMOVE_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.13.1 T_RFS_REMOVE_REQ_MSG

typedef struct {
T_RV_HDR
const char
T_RFS_RET
T_RV_RETURN

} T_RFS_REMOVE_REQ_MSG

7.18.13.2Response message

The RFS responds with

RFS_REMOVE_RSP.

hdr;
*pathname;
pair_id,
return_path;

T_RFS_READY_RSP_MSG and contains command index:

The possible values for ‘result’ are:

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information Page 119 of 401
Strictly Private

Locosto_BSP_API Version 0.3

id Definition
RFS_EOK Ok.
RFS ENOENT File was not found.
RFS ENOTDIR A component of the path is not a directory.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Object's name contains illegal characters.
RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EACCES File could not be removed (read-only).
RFS_ELOCKED The file is open
RFS_EDEVICE Device /O error
RFS_EMOUNT Invalid mount point
RFS_ENOTEMPTY The named directory contains files other than ‘.’ and “.." in it.

7.18.14 Rename

The T_RFS_RENAME_REQ_MSG message can be used to open a file. This message is similar to
the rfs_rename_nb () function. One exception is the parameter: pair_id. This parameter is returned by
the non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_RENAME_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.14.1 T_RFS_RENAME_REQ_MSG

typedef struct {

T_RV_HDR hdr;

const char *oldname;
const char *newname,;
T_RFS_RET pair_id,
T_RV_RETURN return_path;

} T_RFS_RENAME_REQ_MSG

7.18.14.2Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_RENAME_RSP.

The possible values for ‘result’ are:
Id Definition

RFS_EOK Ok.

RFS_ENOENT Oldname object does not exist.

RFS_EEXISTS Newname object already exists.

RFS_EACCES Object could not be modified (read-only).

RFS_ENOTDIR A component of the path is not a directory.

RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_ENAMETOOLONG Object's name is too long.

RFS_EBADNAME Object's name contains illegal characters.

RFS_EFSFULL Failed to allocate an inode for the changed object.
RFS_ENOTALLOWED Renaming is not allowed (another new path contains another mountpoint)

7.18.15 Mkdir

The T_RFS_MKDIR_REQ_MSG message can be used to open a file. This message is similar to the
rfs_mkdir_nb () function. One exception is the parameter: pair_id. This parameter is returned by the
non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_MKDIR_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

Q’ Texas Instruments — Proprietary Information Page 120 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3
7.18.15.1 T_RFS_MKDIR_REQ_MSG
typedef struct {
T_RV_HDR hdr;
const char *pathname;
T_RFS_MODE mode;
T_RFS_RET pair_id,
T_RV_RETURN return_path;
} T_RFS_MKDIR_REQ_MSG
7.18.15.2Response message
The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_MKDIR_RSP.
The possible values for ‘result’ are:
RFS_EOK Ok.
RFS_EEXISTS Directory already exists.
RFS ENOTDIR A component of the path is not a directory.
RFS_ENAMETOOLONG Object's name is too long.
RFS EACCES Search permission is denied for a component of the path prefix.

RFS_EBADNAME

Name of the directory contains illegal characters

RFS_ENOSPACE

Failed to allocate space for object's data.

RFS_EFSFULL

Failed to allocate an inode for the object.

RFS EDEVICE Device /O error
RFS EMOUNT Invalid mount point
7.18.16 Rmdir

The T_RFS_RMDIR_REQ_MSG message can be used to open a file. This message is similar to the
rfs_rmdir_nb () function. One exception is the parameter: pair_id. This parameter is returned by the
non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_RMDIR_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.16.1 T_RFS_RMDIR_REQ_MSG

typedef struct {
T RV_HDR
const char
T RFS RET
T RV_RETURN
} T RFS RMDIR REQ MSG

7.18.16.2Response message

hdr;
*pathname;
pair id,
return path;

The RFS responds with T_RFS_READY_RSP_MSG and contains command
RFS_RMDIR_RSP.

The possible values for ‘result’ are:

RFS_EOK Ok.

RFS_ENOENT The named directory does not exist

RFS ENOTDIR A component of the path is not a directory.

RFS_ENAMETOOLONG

Object's name is too long.

RFS_ENOTEMPTY

The named directory contains files other than . and ".." in it.

index:

RFS_EACCES Search permission is denied for a component of the path prefix.
RFS_EACCES No write permission to delete the directory entry
RFS_EBUSY The directory tq be removed is the mount point for a mounted file system
or the current directory.
RFS_EBADNAME Name of the directory contains illegal characters
RFS_EMOUNT Invalid mount point
Q’ Texas Instruments — Proprietary Information Page 121 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

7.18.17 Opendir

The T_RFS_OPENDIR_REQ_MSG message can be used to open a file. This message is similar to
the rfs_opendir_nb () function. One exception is the parameter: pair_id. This parameter is returned by
the non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_OPENDIR_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.17.1T_RFS_OPENDIR_REQ_MSG

typedef struct {
T_RV_HDR hdr;
const char *pathname;
T_RFS_DIR *dirp,
T_RFS_RET pair_id,
T_RV_RETURN return_path;

} T_RFS_OPENDIR_REQ_MSG

7.18.17.2Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_OPENDIR_RSP.

The possible values for ‘result’ are:

id Definition
(Positive value) Number of objects in the specified directory (At the time of call).
RFS ENOTDIR A component of the path is not a directory.
RFS_ENOENT Directory not found.
RFS EACCES Search permission is denied for a component of the path prefix.
RFS_ENAMETOOLONG Object's name is too long.
RFS_EBADNAME Name of the directory contains illegal characters
RFS ENOSPACE Qut of data space.
RFS EMOUNT Invalid mount point

7.18.18 Readdir

The T_RFS_READDIR_REQ_MSG message can be used to open a file. This message is similar to
the rfs_readdir_nb () function. One exception is the parameter: pair_id. This parameter is returned by
the non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_READDIR_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.18.1 T_RFS_READDIR_REQ_MSG

typedef struct {

T_RV_HDR hdr;
T_RFS_DIR *dirp;

char *buf
T_RFS_SIZE size
T_RFS_RET pair_id,
T_RV_RETURN return_path;

} T_RFS_READDIR_REQ_MSG

Q’ Texas Instruments — Proprietary Information Page 122 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3
7.18.18.2Response message
The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_READDIR_RSP.
The possible values for ‘result’ are:

id Definition

(Positive value)

Number of bytes actually read.

RFS_EBADDIR

Invalid directory descriptor

RFS_ENOSPACE

Qut of data space.

7.18.19 Preformat

The T_RFS_PREFORMAT_REQ_MSG message can be used to open a file. This message is similar
to the rfs_preformat_nb () function. One exception is the parameter: pair_id. This parameter is
returned by the non-blocking function and is handed over to operation, which handles the request via
this request message. The RFS responds with a T_RFS_READY_RSP_MSG message, with
command index: T_RFS_PREFORMAT_RSP. Also the pair_id, provided via the request message, is
returned via the response message and can be used for pairing the handled request with a response.

7.18.19.1 T_RFS_PREFORMAT_REQ_MSG

typedef struct {
T_RV_HDR hdr;
UINT16 magic;
T_RFS_RET pair_id,
T_RV_RETURN return_path;

} T_RFS_PREFORMAT_REQ_MSG

7.18.19.2Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_PREFORMAT_RSP.
The possible values for ‘result’ are:
id Definition
RFS_EOK Ok.
RFS_EMAGIC Magic number is incorrect.

An erase operation is currently in progress. Retry the operation again

RFS_EINVALID
— later.

RFS_ENODEVICE The flash device is unknown (not supported).

RFS_EMEMORY Message allocation failed.

RFS_EMSGSEND Message sending failed.

RFS _EDEVICE Device 1/O error

RFS_ENOTALLOWED Pre-formatting is not allowed (pathname is no mountpoint)

7.18.20 Format

The T_RFS_FORMAT_REQ_MSG message can be used to open a file. This message is similar to
the rfs_format_nb () function. One exception is the parameter: pair_id. This parameter is returned by
the non-blocking function and is handed over to operation, which handles the request via this request
message. The RFS responds with a T_RFS_READY_RSP_MSG message, with command index:
T_RFS_FORMAT_RSP. Also the pair_id, provided via the request message, is returned via the
response message and can be used for pairing the handled request with a response.

7.18.20.1 T_RFS_FORMAT_REQ_MSG

Texas Instruments — Proprietary Information Page 123 of 401

{9 TeEXAS
INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

typedef struct {
T_RV_HDR hdr;
const char *name;
UINT16 magic;
T_RFS_RET pair_id,
T_RV_RETURN return_path;

} T_RFS_FORMAT REQ_MSG

7.18.20.2 Response message

The RFS responds with T_RFS_READY_RSP_MSG and contains command index:
RFS_FORMAT_RSP.

The possible values for ‘result’ are:

RFS_EOK Ok.

RFS_EAGAIN Previous RFS_preformat() has not finished yet.
RFS_EINVALID Magic number is incorrect.

RFS_EBADNAME Name contains illegal characters

RFS_EMEMORY Message allocation failed.

RFS_EMSGSEND Message sending failed.

RFS_EDEVICE Device /O error

RFS_ENOTALLOWED Formatting is not allowed (pathname is no mountpoint)

7.18.21 Generic response message

The RFS defines one generic response message T_RFS_READY_RSP_MSG. The command index
indicates the asynchronous operation, which is finished. The result value varies for each finished
operation. To pair a response message with the requested operation, a pair value is returned. This
can be either a valid file descriptor or unique pair ID is returned.

7.18.21.1T_RFS_READY_RSP_MSG
typedef struct {

T RV_HDR hdr;

T RFS CMD _ID command id;
T RFS PAIR VALUE pair value;
T RFS RET result;

} T RFS READY RSP MSG
Type’s definition

7.18.22 T_RFS_CMD_ID

This defines the index of the asynchronous operation (command), which is finished.

typedef enum{
RFS_CLOSE_RSP,
RFS_WRITE_RSP,
RFS_READ_RSP,
RFS_LSEEK_RSP,
RFS_FCHMOD_RSP,
RFS_FSTAT_RSP,
RFS_FSYNC_RSP,
RFS_OPEN_RSP,
RFS_CHMOD_RSP,
RFS_STAT_RSP,
RFS_REMOVE_RSP,
RFS_RENAME_RSP,
RFS_MKDIR_RSP,
RFS_RMDIR_RSP,

Q’ Texas Instruments — Proprietary Information Page 124 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

RFS_OPENDIR_RSP,
RFS_READDIR_RSP,
RFS_PREFORMAT RSP,
RFS_FORMAT_RSP
}T_RFS_CMD_ID;

7.18.23 T_RFS_PAIR_VALUE

This defines the union containing a file descriptor and unique pair ID. Depending on the request
operation the valid member should be used.

typedef union {
T_RFS_FD fd;
T_RFS_RET pair_id
} T_RFS_PAIR_VALUE;

7.18.24 T_RFS_FLAGS

This defines the flag type and values. The open mode is established as a combination of the bits
defined below. Of the following first three values, only one can be set. The other flags can be OR’ed to
one of these first three values. When a file is opened for write-only it can not be read and when a file
is opened for read only, it can not be written.

typedef UINT16 T_RFS_FLAGS;
#define RFS_O_RDONLY 0x00

#define RFS_O_WRONLY 0x01
#define RFS_O_RDWR 0x02

#define RFS_O_CREAT 0x04
#define RFS_O_APPEND 0x08
#define RFS_O_TRUNC 0x10

Additional information about the flag values:

id Definition

RFS_O RDONLY File is opened as read only.

RFS_ O WRONLY File is opened as write only

RFS O _RDWR File is opened for reading and writing.

RFS O APPEND If set, the file offset shall be set to the end of the file prior to each write.

RFS_O CREAT If the file exists, this flag has no effec. Otherwise, the file shall be created
In case the file is opened in writing mode, the file size will be set to zero

RFS_O_TRUNC (file pointer point set to begin of the file). When opened in read only
mode, this flag will be ignored.

7.18.25 T_RFS_MODE

Defines the mode attribute and values. The mode is an attribute of a file indicating the permission bits.
The mode attribute is formed by OR'ing the values below.

typedef UINT16 T_RFS_MODE;

#define S_IXUSR 0x0100 // Execute permission for the user
#define S_IWUSR 0x0200 // Write permission for the user
#define S_IRUSR 0x0400 // Read permission for the user

#define S_IRWXU 0x0700 // Read Write permission mask (default) for user

#define S_IXGRP 0x0010 // Execute permission for group

#define S_IWGRP 0x0020 // Write permission for group

#define S_IRGRP 0x0040 // Read permission for group

#define S_IRWXG 0x0070 // Read Write permission mask (default) for group

Q’ Texas Instruments — Proprietary Information Page 125 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

#define S_IXOTH 0x0001 // Execute permission for others
#define S_IWOTH 0x0002 // Write permission for others
#define S_IROTH 0x0004 // Read permission for others

#define S_IRWXO 0x0007 // Read Write permission mask (default) for others

7.18.26 T_RFS_FD

Defines the file descriptor.

typedef INT16 T_RFS_FD;

7.18.27 T_RFS_SIZE
Defines the size type.

typedef INT32 T RFS SIZE;

7.18.28 T_RFS_OFFSET
Defines the offset type.

typedef INT32 T RFS OFFSET;

7.18.29 T_RFS_STAT

Defines the overall statistics type, which contains information (meta-data) about the status of a file
system or mount point or file/directory.

typedef union {

T_RFS_FS_STAT file_system;
T_RFS_MP_STAT mount_point;
T_RFS_FILE_DIR_STAT file_dir;

} T_RFS_STAT,;

7.18.30 T_RFS_FS_STAT

Defines the structure containing information (meta-data) about the statistics of a file system

typedef struct {
UINT16 oname_length; /I Maximum length object names in characters
UINT16 pname_length; /I Maximum length path names in characters

UINT8 max_openfiles; // Maximum number of open files for all device
/I (static number)
UINT8 max_opendirs; /I Maximum number of open directories for all
/I devices (static number)
UINT8 cur_openfiles; // Number of files currently opened for all devices
UINT8 cur_opendirs; /I Number of directories currently opened for all
// devices

} T_RFS_FS_STAT,

7.18.31 T_RFS_MP_STAT
Defines the structure containing information (meta-data) about the statistics of a mount point
typedef struct {

UINT32 dev; /I Device identification, the device serial
/I number if available.

% Texas Instruments — Proprietary Information Page 126 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

UINT32 read_speed, // Read speed in Kb/s.
/I Measurement conditions: average speed,
/I 20 blocks, 100 Kb, clock-cycle 12 MHz
UINT32 write_speed; /I Write speed in Kb/s
/I Measurement conditions: average speed,
/I 20 blocks, 100 Kb, clock-cycle 12 MHz

UINT32 max_fsize; /I Maximum file size (in Kb)

UINT32 dev_size; /I Total device size (in Kb)

UINT32 free_space; /I Available space for storage on media’s
/I partition (in Kb)

UINT32 partition_size; // Total partition size (in Kb)

UINT32 used_size; /I Used partition size (in Kb)
T_RFS_MODE mode; /I Object permission (ugo)

UINT8 max_mp_openfiles; /I Maximum number of open files per

// mount point

UINT8 max_mp_opendirs; /Il Maximum number of open directories per
/I mountpount

char fs_type[16]; /I Type of media (string format)

char media_type[16];// Type of file system (string format)

} T_RFS_MP_STAT;

7.18.32 T_RFS_FILE_DIR_STAT

Defines the structure containing information (meta-data) about the statistics of a file/directory.

typedef struct {
UINT32 ino; /I Object inode number (unique id)
UINT32 size; /I Object size in bytes
time_t mtime; /I Last modification time
time_t ctime; /I Last status change time
T_RFS_MODE mode; /I Object permission (ugo)

} T_RFS_FILE_DIR_STAT;

Note:

- The type time_t is a definition extracted from the C-Library and specifies a type containing time
and date information.

- If mtime is supported, ctime needs also to be supported. If mtime is not supported, it is returned
the same as ctime. If ctime is not supported they are both returned as 0.

7.18.33 T_RFS_DIR

Defines the DIR type. This represents a directory stream, which is an ordered sequence of all the
directory entries (files) in a particular directory.

typedef struct {
UINT32 opendir_ino; /I inode of directory that was opened
UINT32 lastread_ino; // last inode of the read directory entry

} T_RFS_DIR;

7.18.34 Error definitions

Below is a list of all defined RFS exceptions. All exceptions returned are of type T_RFS_RET unless
otherwise stated. All exception codes, except RFS_EOK, are negative. In order to provide source
compatibility with future version of RFS, the application programmer should only check for exceptions
by testing if the return code is less than zero. A zero or positive return code should be treated as a
success indication unless otherwise noted.

Error Definition Description
Q’ Texas Instruments — Proprietary Information Page 127 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3
RFS_EOK Ok

RFS_ENODEVICE flash device unknown

RFS_EAGAIN not ready, try again later

RFS_ENOSPACE

out of file space (no free data space)

RFS_EFSFULL

file system full (no free inodes)

RFS_EBADNAME

bad filename

RFS_ENOENT object not found

RFS_EEXISTS object exists

RFS_EACCES object access permission violation
RFS_ENAMETOOLONG filename too long

RFS_EINVALID invalid argument
RFS_ENOTEMPTY directory not empty
RFS_ENOTDIR object is not a directory
RFS_EFBIG file too big

RFS_ENOTAFILE object is not a file

RFS_ENUMFD Max number of used file descriptors reach
RFS_EBADFD Bad file descriptor
RFS_EBADDIR Bad directory descriptor
RFS_EBADOP Bad operation

RFS_ELOCKED The file is locked (in use)
RFS_EMOUNT Invalid mount point

RFS EDEVICE Device /O error

RFS_EBUSY Resource busy

RFS_ENOTADIR object is not a directory
RFS_EMAGIC magic number is incorrect.

RFS_EMEMORY

message allocation failed.

RFS_EMSGSEND

message sending failed.

RFS_ENOTALLOWED

Function is not allowed

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 128 of 401

Locosto_BSP_API Version 0.3

7.19 Configuration Items

7.19.1 Constants

7.19.1.1 RFS_MAX_NR_OPEN_FILES
The following constant defines maximum number of currently opened files within RFS

RFS MAX NR _OPEN FILES

The default number will be 10. This number is configurable to enable the customer to change the
maximum number of currently opened files within RFS.

7.19.1.2 RFS_MAX_NR_OPEN_DIRS
The following constant defines maximum number of currently opened directories within the RFS.

RFS MAX NR_OPEN DIRS

The default number will be 10. This number is configurable to enable the customer to change the
maximum number of currently opened directories within RFS.

% Texas Instruments — Proprietary Information Page 129 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3
Chapter 8 LFS
8.1 Introduction 131
8.2 Interface description 132
8.3 Service functions definition 132
Q’ Texas Instruments — Proprietary Information Page 130 of 401
TEXAS

Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

8.1 Introduction

The purpose of the linear FFS is to be able to provide direct access to the data stored in the flash by
the means of a direct read through a pointer. This is not possible in the existing FFS due to the
segmentation of files through the iNode/chunk structure.

]
. L
[]
-
[]
]
-l
_ il - _
]
[]
-
T |
1
—]
]
1

Figure 9 API of LFS

The Linear file system will allow creation of files that could fit on one physical block so that the file
could be read using a pointer. As such the maximum size of a linear file system will be restricted to a
little less than 64 KB. The file can be written to only once, that is at the time of creation. Once the file
is closed after being created and written to, it cannot be opened for writing again. The interfaces
provided by LFS are described in the next section.

% Texas Instruments — Proprietary Information Page 131 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

8.2 Interface description

LFS will provide 5 APIs for opening/creating, reading, writing, closing and removing a linear file. A
linear file will reside on a single block and hence it's maximum size will be a little less than 64 KB.
Reading an LFS file will be fatster because no intermediate buffering is required. The flash is read
directly using a pointer. The description of the APlIs is given below. The actual APIs called by the user
are wrapper APIs.

8.3 Service functions definition

8.3.1 Ifs_open

fd t 1fs open (const char *pathname,

ffs options t option,

unsigned int *size of file)
Description

Ifs_open () can be used to create a new LFS file as well as open an existing one for reading. If the
option FFS_O_CREATE is specified, then a new linear file will be created and its size will be equal to
the passed value in the size_of file pointer. The file will not be created if it already exists and an error
will be returned. If the size of the file is >= 64KB, then also an error will be returned. The reserved field
of the inode structure will be assigned a value of Oxee to denote that it is an LFS file. This field is used
by ffs_open () to check if the user wants to open an LFS file, and if that is the case then return an
error value.

The LFS file can be written to only once, that is, at the time of creation and not after that. The user
needs to call Ifs_write () just after Ifs_open () to write to the file. The option FFS_O_CREATE is
stored in the returned file descriptor so that it could be checked in Ifs_write (), and Ifs_write () will
proceed only if the option is FFS_O_CREATE, otherwise it will return an error.

If the option is FFS_O_RDONLY, then if the file exists, a file descriptor is returned that should then be
passed to Ifs_read () to get the pointer for reading the file. Additionally, the size of the file is also
passed in the size_of_file pointer so that the application may know how much to read.

Parameters

pathname
Null terminated string containing the unique name of the file to open or create.

option

Specifies the attribute used to open the file.

size_of_file
size_of file will specify size of file and will be used when the FFS_O_CREAT option is specified in
option.

Immediate Return

fd_t

% Texas Instruments — Proprietary Information Page 132 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

The possible values are:

id Definition

(Positive value) File descriptor of file opened.

EFFS_INVALID Minimum one of the flags read_only or create must be specified.

EFFS_ACCESS It is not a LFS file.

EFFS_NOTAFILE It's not a valid file name.

EFFS_EXISTS File exists the option should be FFS_O_RDONLY.
Try to open for non existing file for operation and option filed should not

EFFS_NOTFOUND be FFS_O_CREATE.

EFFS_NOSPACE The a_vallable memory within the file system is insufficient to allocate for
new file.

EFFS_NUMFD Too many open files in system.

8.3.2 Ifs_write

int 1fs write(fd t fdi,

void *src,
int amount)

Description

If the file descriptor is valid and the open option used was FFS_O_CREATE, then the amount
numbers of bytes are written to the flash. Ifs_write () can be called many times in succession.
Irrespective of the number of bytes passed by the user, the number of bytes actually written is not
greater than the size specified while creating the file.

Parameters

fdi
File descriptor of opened file.

- src
Source data buffer address.

amount
Data buffer size in number of bytes.

Immediate Return

int

The possible values are:

id Definition
(Positive value) Number of bytes written to a file.
EFFS_INVALID Invalid parameter value.
EFFS_BADFD Invalid file descriptor value.

8.3.3 Ifs_read

Q’ Texas Instruments — Proprietary Information Page 133 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

req id t 1fs read(fd t fdi,
char **src)

Description

If the file descriptor is valid and the open option used was FFS_O_RDONLY, then a pointer to the
flash address from where to start reading is passed back in the src parameter.

EFFS_OK on success else an error value. The pointer to be used for reading is passed in src.

Parameters

: fdi
File descriptor of opened file.

src
Pointer to the flash address from where to start reading.

Immediate Return

req_id_t

The possible values are:

id Definition
EFFS_OK The API function was successfully executed.
EFFS_BADFD Invalid file descriptor value.
EFFS_AGAIN Already an erase or write in progress.
EFFS_INVALID Invalid option flag, it should be FFS_O_RDONLY

8.3.4 Ifs_close

effs t 1fs close(fd t fdi)

Description

If the file descriptor is valid then the file descriptor is released and EFFS_OK is returned else
EFFS_BADFD is returned.

Parameters

: fdi
File descriptor of opened file.

Immediate Return

effs_t

The possible values are:

id Definition
EFFS_OK The API function was successfully executed.
Q’ Texas Instruments — Proprietary Information Page 134 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

EFFS_BADFD Invalid file descriptor value.

8.3.5 Ifs_remove

effs t 1fs remove (const char *pathname)

Description

If the file exists and if it is not already in use then the file is removed from the file system.

Parameters

pathname
Null terminated string containing the unique name of the file to remove.

Immediate Return

effs_t

The possible values are:

id Definition
EFFS_OK The API function was successfully executed.
EFFS_LOCKED File locked, not able to remove.
Q’ Texas Instruments — Proprietary Information Page 135 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3
Chapter 9 FFS

9.1 Introduction 137
9.2 Interface description 138
9.3 FFS Callback Related Types 138
9.4 FFS exceptions 139
9.5 ffs preformat 139
9.6 ffs format 140
9.7 ffs_open 141
9.8 ffs close 142
9.9 ffs write 142
9.10 ffs read 143
9.11 ffs seek 143
9.12 ffs truncate, ffs ftruncate 144
9.13 ffs_fdatasync 145
9.14 ffs stat, ffs fstat, ffs Istat, ffs xlIstat 145
9.15 ffs remove 146
9.16 ffs mkdir 146
9.17 ffs_opendir 147
9.18 ffs readdir 147
9.19 ffs symlink 148
0

ffs readlink 149
9.21 ffs renamel49
9.22 ffs file write 150
9.23 ffs file read, ffs fread 151

% T S Texas Instruments — Proprietary Information Page 136 of 401
EXA!

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

9.24 ffs fcreate 151
9.25ffs_fupdate 152
9.26ffs_fwrite 153
9.27ffs_fcontrol 154
9.28ffs_query 155
9.29ffs_is_modifiable 156

9.1 Introduction

This document is the programmer’s manual for FFS. FFS is a flash file system with an APl and
implementation loosely modeled after and inspired by the POSIX file 1/O interface. Objects in FFS are
hierarchically organized in directories and sub-directories. FFS is crash resilient, meaning that it is
able to cleanup and recover after a power failure.

% Texas Instruments — Proprietary Information Page 137 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This FFS interface intends to provide an easy access to FFS for applications; it gathers the
applications requirements for a common File System.

9.2 Interface description

This chapter describes the API of FFS. For each function input parameters and output results are
defined and described. All applications using FFS should include the £fs.h include file where all
exception codes, data structures and functions are defined.

All functions with suffix °_nb’ are non-blocking. All other functions are blocking unless otherwise noted.

All object path in the file system are absolute path, there is no relative path and no working directory
concept. The path does not have to specify a volume name (not “C:/msg/inbox’, but “/msg/inbox”).

9.3 FFS Callback Related Types

A pointer to the following structure is supplied to all callback-enabled FFS functions (suffix nb). The
name is derived from CoNFirmationPATH and denotes the path through which, the caller wants
confirmation of the operation.

In case the caller of an FFS modify-function specified the mail or function callback mechanism, a
pointer to the following structure is returned. The name is derived from CoNFirmation.

typedef struct {
T_RV_HDR header,;
int error;
int request_id;
char *path;

} T_FFS_FILE_CNF;

Except if it is ffs_write_nb(), ffs_seek_nb(), ffs_truncate_nb(), ffs_fdatasync() or ffs_close_nb() where
the below structure will be used. Both functions don’t have the path so instead is the file descriptor
(fdi) is returned.

typedef struct {
T_RV_HDR header,;
int error;
int request_id;

T FFS_FD fdi;
} T_FFS_STREAM_CNF;

where error is the exception code of FFS operation, or zero in case of success.
path is the full pathname of the object the operation was performed on.

In order for the caller to be able to pair a request with the corresponding confirmation, a unique
identifier, request_id, is used. The request ID is returned by all non-blocking functions. See also the
section “Error! Reference source not found.”.

The format of the header is explained in RIV010 chapter 2.4.
IMPORTANT: If any of the callback types is used (mail or function callback), it is up to the receiver to

de-allocate the message buffer. See examples in section Error! Reference source not found. and
Error! Reference source not found..

% Texas Instruments — Proprietary Information Page 138 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

9.4 FFS exceptions

Below is a list of all defined FFS exceptions. All exceptions returned are of type T FFS_RET unless
otherwise stated. All exception codes, except EFFS_OK, are negative. In order to provide source
compatibility with future version of FFS, the application programmer should only check for exceptions
by testing if the return code is less than zero. A zero or positive return code should be treated as a
success indication unless otherwise noted.

All modify functions can return EFFS_MEMORY and EFFS_MSGSEND exception codes in addition to the
other codes they returned to the client assigned callback functions or mailboxes.

(3) EFFs ok ok

(4) EFFS NODEVICE flash device unknown

(5) EFFS CORRUPTED filesystem corrupted!?

(6) EFFS NOPREFORMAT FFS not preformatted

(/) EFFS NOFORMAT FFS not formatted

(8) EFFS BADFORMAT FFS format not recognized (too old?)
(9) EFFS AGAIN not ready, try again later

(10) EFFS NOSYS function not implemented

(]]) EFFS NOSPACE out of file space (no free data space)
(]2) EFFS FSFULL file system full (no free inodes)
(13) EFFS BADNAME bad filename

(14) EFFS NOTFOUND object not found

(15) EFFS EXISTS object exists

(16) EFFS ACCESS file access permission violation
(17) EFFS NAMETOOLONG filename too long

(18) EFFs INVALID invalid argument

(19) EFFS DIRNOTEMPTY directory not empty

(20) EFFS NOTADIR object is not a directory

(21) EFFS FILETOOBIG file too big

(22) EFFS NOTAFILE object is not a file

(23) EFFS PATHTOODEEP path too deep

(24) EFFS TOOBIG too big (tmffs buffer overflow)

(25) EFFS NUMFED Max number of used file descriptors reach
(26) EFFS BADFD Bad file descriptor

(27) EFFS BADOP Bad operation

(28) EFFs APPEND Append option not specified

(29) EFFS LOCKED The file is locked (in use)

These two exceptions can always be returned by any FFS modify-function.

(30)
(31) EFFS MEMORY message allocation failed
(32) EFFS MSGSEND message send failed

9.5 ffs_preformat

| T _FFS_RET ffs_preformat(UINT16 magic);

Q’ Texas Instruments — Proprietary Information Page 139 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T _FFS REQ_ID ffs preformat nb(UINT16 magic, T RV_RETURN *return_path);

Description:

Erase all data in FFS. This function must be called before £fs_ format (). WARNING: The operation
cannot be reversed or undone. Note that depending on the underlying flash hardware, the pre-format
operation can take anything from a few milliseconds to several seconds. Most flash memories in a
normal environment take around one second (typical) to erase each sector. The magic number must
equal the hexadecimal constant 0xDEAD. If the magic number given by magic is incorrect,
EFFS MAGIC is returned.

Parameters:

magic Magic value to access the function. Must be OxDEAD.

Return value:

id Definition
EFFS OK Ok.
EFFS MAGIC Magic number is incorrect.
An erase operation is currently in
EFFS INVALID progress. Retry the operation again
later.

(34) The flash device is

EFFS NODEVICE
(33) S_NO ¢ unknown (not supported).

(36) Message allocation
failed.

(37) EFFS MSGSEND (38) Message sending failed.

(35) EFFS MEMORY

9.6 ffs_format

T _FFS_RET ffs_format(const char *name, UINT16 magic);
T FFS_REQ_ID ffs format nb(const char *name, UINT16 magic, T RV_RETURN *return_path);

Description:

Format FFS. Miscellaneous initial meta data are written to FFS and the root directory is created with
an optional volume identifier or name given by the argument name. The name is completely ignored
and has absolutely no meaning to FFS. It can not be read or retrieved later on. If name is the null
pointer, a default name is used. Otherwise name is a null terminated string starting with a slash (/")
and optionally followed by some arbitrary descriptive name for the FFS volume. For an empty FFS
system, this function must be called after ffs preformat () and before any other operation on
FFS. In order to avoid spurious calls of this dangerous, unrecoverable function, the magic number
must have the hexadecimal value of 0x2BAD to format the flash.

Parameters:

name Null terminated string starting with a slash(‘/’)containing the name of the FFS volume.
magic Magic value to access the function. Must be 0x2BAD.

Return value:

(39) ida (40) Dpefinition

(41) EFFs ox (42) ok.

% Texas Instruments — Proprietary Information Page 140 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3
(43) EFFS AGAIN (44) pPrevious ffs preformat () has

not finished vyet.
(45) EFFs_INVALID (46) Magic number is incorrect.

EFFS_BADNAME Name does not start with a slash (/') or

contains illegal characters

(47) EFFS_MEMORY (48) Message allocation failed.
(49) EFFS_MSGSEND (50) Message sending failed.
9.7 ffs_open

T _FFS FD ffs open(const char * pathname, T FFS OPEN_FLAGS flags);
T FFS_REQ_ID ffs_open_nb(const char * pathname, T FFS OPEN_FLAGS flags,
T RV_RETURN *return_path);

Description:

This function opens or creates a file. The pathname is the name of the file to open or create. If the
operation succeeds, a (positive) file descriptor is returned. Otherwise an error is returned (negative
value).

Parameters:

pathname Null terminated string containing the unique name of the file to open or
create.

flags Specifies the mode used to open the file:

. FFS O RDONLY File is opened as read only.

. FFS O WRONLY File is opened as write only.

. FFS_O_ RDWR File is opened for reading and writing.

. FFS O APPEND Append on each write.

. FFS O CREATE File is created if it does not exist.

= FFS_ O EXCL Generate error if FFS_O_CREATE is also specified
and the file already exists.

= FFS_O_ TRUNC If file already exists and it is opened for writing, its

length is truncated to zero.

Return value:

Id Definition
(Positive value) File descriptor of file opened.

EFFS EXISTS

An object of the same name already exists.

EFFS NAMETOOLONG

Object's name is too long.

EFFS BADNAME

Object's name contains illegal characters.

EFFS NUMED

Max number of used file descriptors reach

EFFS NOTFOUND

No such file or directory.

EFFS INVALID

Bad open flag options.

{'f TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 141 of 401

Locosto_BSP_API Version 0.3

EFFS_LOCKED The file is locked (already opened in a
conflicting mode)

9.8 ffs_close

T _FFS RET ffs close(T_FFS_FD fd);
T FFS_REQ ID ffs close_ nb(T_FFS FD fd, T RV_RETURN *return_path);

Note that the calling task can be suspended in several seconds by a call to the blocking function!
Description:
Close an open file.
Parameters:
fd File descriptor obtained when the file was opened.

Return value:

Id Definition
EFFS OK Ok.
EFFS BADFD The file argument is not a valid file descriptor.
EFFS FILETOOBIG The file is too big.
EFFS NOSPACE Out of data space.

9.9 ffs_write

T _FFS SIZE ffs write(T_FFS_FD fd, void * buf, T FFS_SIZE size);
T _FFS REQ ID ffs write nb(T _FFS_FD fd, void * buf, T _FFS SIZE size,
T_RV_RETURN *return_path);

Description:

Write data to the previously opened file identified by fd. It writes size bytes of data from the buffer
pointed to by buf at the current position of the file pointer in the file. When the write operation
completes, the current position of the file pointer is set to the end of the newly added data.

Parameters:

fd File descriptor obtained when the file was opened.
buf Pointer to buffer of data to write.
size Number of bytes to write.

Return value:

Id Definition
(Positive value) Number of bytes actually written.
EFFS BADFD The file argument is not a valid file descriptor.
EFFS BADOP The file is not open for writing.
EFFS FILETOOBIG The file is too big.
EFFS NOSPACE Out of data space.
Q’ Texas Instruments — Proprietary Information Page 142 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

9.10 ffs_read

T _FFS SIZE ffs read(T_FFS_FD {d, void * buf, T _FFS_SIZE size);

Description:

Read data from the previously opened file identified by fd. A maximum of size bytes is read from the
file into the buffer pointed by buf. When the read operation completes, the file pointer is advanced to
the end of the data read. On success, the number of bytes read is returned as a positive value.
Otherwise, a negative exception code is returned.

Parameters:

fd File descriptor obtained when the file was opened.

buf Pointer to a buffer where the data will be copied. (The size of this buffer has to be at
least size bytes)

size Maximum number of bytes to read.

Return value:

id Definition
(Positive value) Number of bytes actually read.
EFFS BADFD The fd argument is not a valid file descriptor.
EFFS_BADOP The file is not open for reading

9.11 ffs_seek

T _FFS SIZE ffs seek (T_FFS_FD fd, T FFS SIZE offset, T FFS WHENCE whence);
T FFS_REQ ID ffs seek nb (T_FFS FD fd, T FFS_SIZE offset, T FFS WHENCE whence,
T _RV_RETURN *cp);

Description:

Set the file pointer of an open file. It is not allowed to set the file pointer beyond the end of the file.
Neither may the resulting file pointer become negative.

Note that, depending on system load, the blocking version of this function can block the caller for a
substantial amount of time.

Parameters:
fd File descriptor obtained when the file was opened.
offset Offset (in bytes) to move the file pointer.
whence Origin from which the move of the current position will start:
FFS_SEEK_SET = Absolute offset from start of file.
FFS_SEEK_CUR = Relative to current.
FFS_SEEK_END = Absolute offset from end of file.
% Texas Instruments — Proprietary Information Page 143 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Return value:

id Definition
(Positive value) New position of the file pointer
EFFS BADFD The files argument is not a valid file descriptor.

The whence argument is not a proper value, or

EFES_INVALID the resulting file offset would be invalid.

Bad operation. Seek not allowed with the flags

EFES_BADOP used to open the file

9.12 ffs_truncate, ffs_ftruncate

T _FFS_RET ffs_truncate(const char *path, T FFS_OFFSET length);

T FFS_ REQ ID ffs_truncate nb(const char *path, T FFS OFFSET length, T RV_RETURN *cp);
T _FFS RET ffs ftruncate(T_FFS FD fd, T FFS_OFFSET length);

T FFS_REQ _ID ffs_ftruncate nb(T_FFS_FD fdi, T FFS OFFSET length, T RV_RETURN *cp);

Description:

Truncate causes the file named by path or referenced by fd to be truncated to at most length bytes in
size. If the file previously was larger than length, the extra data is lost. If it was previously shorter than
length, nothing will be done. The functions do not modify the file pointer for any open files.

With ftruncate, the file must be open for writing. It is not possible to truncate an open file to a size less
than the current file pointer. Otherwise EFFS_INVALID is returned.

Truncate only succeeds if the file being truncated is not already opened. Otherwise EFFS_LOCKED is
returned.

Parameters:
pathname Null terminated string containing the unique name of the file to be truncated.
fd File descriptor obtained when the file was opened.

length The new requested size of the file.

Return value:

id Definition
EFFS OK Ok.
EFFS BADFD Invalid file descriptor.
EFFS BADNAME Object's name contains illegal characters.
EFFS NOTFOUND No such file or directory.
EFFS ACCESS The file is not writable.
EFFS NOTAFILE Object is not a file.
EFFS INVALID The fd is not open for writing.
EFFS_LOCKED The file is already opened.
% Texas Instruments — Proprietary Information Page 144 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

9.13 ffs_fdatasync

T _FFS_RET ffs fdatasync(T_FFS_FD fd);
T _FFS_REQ ID ffs fdatasync nb(T_FFS FD fd, T RV_RETURN *cp);

Description:
Flush the write buffer of the specified file descriptor, fd.

Parameters:

fd File descriptor obtained when the file was opened.

Return value:

id Definition
EFFS OK Ok
EFFS BADFD Invalid file descriptor.
EFFS NOSPACE Out of data space.
EFFS FSFULL File system full, no free inodes

9.14 ffs_stat, ffs_fstat, ffs_Istat, ffs_xIstat

T _FFS RET ffs_stat(const char *pathname, T _FFS STAT *stat)

T FFS RET ffs fstat(T_FFS_FD fd, T FFS STAT *stat)

T FFS_RET ffs_Istat(const char *pathname, T FFS STAT *stat);

T _FFS_RET ffs_xIstat(const char *pathname, T FFS XSTAT *stat);

Description:

Read and return object meta-data of the object with the pathname given by pathname. If the file
exists, the meta-data is written into the structure stat. If the object does not exist, EFFS_NOTFOUND
is returned. The contents of the T FFS STAT and T FFS_XSTAT structure is documented in the
ffs.h include file. The xstat functions return more data than the corresponding stat functions.

fstat is identical to stat, except that a file descriptor, fd is stated in place of pathname.

Istat/xIstat:
These functions are similar to £fs_stat () except that these functions do not follow symbolic links
thus these can be used to read meta-data of symbolic links.

Parameters:

pathname Null terminated string containing the unique name of the object in the File
System.
. fd File descriptor obtained when the file was opened.

stat (Output parameter) Contains information (meta-data) about the specified object.

Return value:

% Texas Instruments — Proprietary Information Page 145 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

id Definition
EFFS_OK Ok.
EFFS NOTFOUND Object not found.
EFFS BADFD Bad file descriptor.

9.15 ffs_remove

T _FFS_RET ffs_remove(const char *pathname)
T FFS_REQ _ID ffs remove nb(const char *pathname, T RV_RETURN *return_path)

Description:

Remove the object with the pathname given by pathname. The pathname is a null terminated string.
If the object does not exist, EFFS_NOTFOUND is returned. If a directory is to be removed, it must be
empty, otherwise EFFS_DIRNOTEMPTY is returned. It is not possible to rename a file that is open.

Parameters:

pathname Null terminated string containing the unique name of the object.

Return value:

Id Definition
EFFS OK Ok.

EFFS NOTFOUND

Object was not found.

EFFS_ACCESS

File could not be removed (read-only).

EFFS DIRNOTEMPTY

Directory is not empty

(51) EFFs MEMORY

(52) Message allocation failed.

EFFS MSGSEND

Message sending failed.

EFFS LOCKED

The file is open

9.16 ffs_mkdir

T _FFS_RET ffs_mkdir(const char *pathname)
T FFS_REQ _ID ffs_mkdir nb(const char *pathname, T RV_RETURN *return_path)

Description:

Create a directory with the pathname given by pathname. The pathname is a null terminated string.
All components of the path must be already existing directories. This means that it is not possible to
ffs mkdir ("/gsm/rf/tx") if the directories /gsm/ and /gsm/r £ are not already created.
Parameters:

pathname Null terminated string containing the unique name of the directory to create.

Return value:

Id Definition

% Texas Instruments — Proprietary Information Page 146 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

EFFS OK Ok.

EFFS EXISTS Directory already exists.

EFFS NAMETOOLONG Object's name is too long.

EFFS BADNAME Name of the directory contains illegal
characters

EFFS NOSPACE Failed to allocate space for object's data.

EFFS FSFULL Failed to allocate an inode for the object

(53) EFFS_MEMORY (54) Message allocation failed.

(55) EFFS_MSGSEND (56) Message sending failed.

9.17 ffs_opendir

T _FFS SIZE ffs opendir(const char *pathname, T FFS DIR *dir);

Description:

Open the directory with the pathname given by pathname for reading. The pathname is a null
terminated string. If the directory exists the directory structure dir is updated and EFFS_OK is
returned. The directory structure dir is used internally by FFS and has no meaning to the user. If the
directory does not exist, EFFS_NOTFOUND is returned. On success, the function returns the number of
objects in the directory. Otherwise, in case an exception occurred, the exception code is returned.

Parameters:

pathname Null terminated string containing the unique name of the directory we want to
open.

dir Internal FFS structure which has no meaning for the user and has to be used to call

ffs_readdir(). The user is responsible to allocate this structure.

Return value:

Id Definition
(Positive value) Number of objects in the specified directory (At
the time of call).
EFFS NOTADIR Not a directory.
EFFS NOTFOUND Directory not found.

9.18 ffs_readdir

| T _FFS SIZE ffs readdir(T_FFS_DIR *dir, char *buf, T FFS_SIZE size);

Description:

Read an entry from a directory previously opened by £fs_opendir (). The name of next entry in the
directory is copied into the buffer pointed to by buf. The size of the buffer is given by size. A positive
return value denotes that the buffer pointed to by buf contains the null-terminated name of the entry
found. A zero is returned if there were no more entries in the directory and the buffer pointed to by

Q’ Texas Instruments — Proprietary Information Page 147 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

buf is left untouched. The function returns a negative value if an exception is encountered. In order to
read all entries in a directory, ffs readdir () should be called until it returns zero.

Parameters:

dir Pointer to a T_FFS_DIR structure obtained in a previous call to ffs_opendir().

buf (Output parameter) Pointer to a buffer which will contain the name of the directory
entry.

size Size in bytes of the buffer pointed by buf.

Return value:

Id Definition
(Positive value) Number of bytes actually read.
EFFS NOTADIR Not a directory.
EFFS NOTFOUND Directory not found

9.19 ffs_symlink

T _FFS_RET ffs_symlink(const char *actualpath, const char *pathname)
T FFS_REQ _ID ffs symlink nb(const char *actualpath, const char *pathname,
T _RV_RETURN *return_path)

Description:

Create a symbolic link with the pathname given by pathname. The pathname is a null terminated
string. The pathname of the actual file is given by actualpath.

Parameters:

actualpath Null terminated string containing the unique name of the symbolic link we
want to create.

pathname Null terminated string containing the name of the actual file.

Return value:

Id Definition

EFFS OK

Ok.

EFFS EXISTS

Another object of the same name already
exists.

EFFS NAMETOOLONG

Object's name is too long.

EFFS BADNAME

Name of the directory contains illegal
characters

EFFS NOSPACE

Failed to allocate space for object's data.

EFFS FSFULL

Failed to allocate an inode for the object.

(57) EFFs MEMORY

(58) Message allocation failed.

(59) EFFS MSGSEND

(60) Message sending failed

{'f TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 148 of 401

Locosto_BSP_API Version 0.3

9.20 ffs_readlink

T _FFS _SIZE ffs readlink(const char *pathname, char *buf, T_FFS_SIZE size)

Description:

Read the contents of the symbolic link with the pathname given by pathname. The pathname is a null
terminated string. If the link exists, the contents are copied into the buffer pointed to by buf. The size
of the buffer is given by size. If the link does not exist, EFFS NOTFOUND is returned. On success, the
function returns the number of bytes actually read. Otherwise, in case an exception occurred, the
exception code is returned.

Parameters:

pathname Null terminated string containing the unique name of the symbolic link we
want to read the content.

buf (Output parameter) Pointer to a buffer which will contain the contents of the symbolic
link.

size Size in bytes of the buffer pointed by buf.

Return value:

Id Definition
(Positive value) Number of bytes actually read.
EFFS_NOTFOUND The symbolic link object does not exist.
EFFS FILETOOBIG Buffer is too small to contain link content.
EFFS NOTAFILE Object is not a file

9.21 ffs_rename

T _FFS_RET ffs_rename(const char *oldname, const char *newname);
T _FFS_REQ_ID ffs rename nb(const char *oldname, const char *newname,
T RV_RETURN *return_path);

Description:

Rename files, directories and symbolic links. The names are the full path to the object. It is possible to
move the object to a different path simple by specifying a new path in the newname string.
The oldname object must exist and the newname must not existe or else an error will be returned.

Parameters:

oldname Null terminated string containing the unique name including the path of the
existing object in the File System.

newname Null terminated string containing the unique name including the path which

oldname is desired to change name or location to.

% Texas Instruments — Proprietary Information Page 149 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Return value:

id Definition
(61) EFFs oK (62) Ok
EFFS NOTFOUND oldname object does not exist.
EFFS EFFS EXISTS newname object already exists.
EFFS ACCESS Object could not be modified (read-only).
EFFS NAMETOOLONG Object's name is too long.
EFFS BADNAME Object's name contains illegal characters.
EFFS_FSFULL Failed to allocate an inode for the changed

object.

(63) EFFS MEMORY (64) Message allocation failed.
(65) EFFS MSGSEND (66) Message sending failed

9.22 ffs_file_write

T _FFS_RET ffs _file write(const char *pathname, void *buf, T _FFS_SIZE size,
T FFS_OPEN_FLAGS flags);
T FFS_REQ_ID ffs file write_nb(const char *pathname, void *buf, T _FFS_SIZE size,
T _FFS OPEN_FLAGS flags, T RV_RETURN *return_path);

Description:

Write the file data of the file given by the pathname pathname. The pathname is a null terminated
string. The data are written from the buffer described by the pointer buf that points to the start of the
data. The size of the buffer is given by size.

Parameters:

pathname Null terminated string containing the unique name of the file to create.
bufr Pointer to buffer of data to write.
size Number of bytes to write.
: flags Specifies the mode used to write the file:
FFS_O CREATE = Fileis created if it does not exist.
FFS_0 EXCL = Generate an error if FFS_O_CREATE is also specified and the file already exists.
FFS_O_ TRUNC = If file already exists, replace it with the new data.

Return value:

Id Definition

EFFS OK Ok.
EFFS ACCESS File cannot be modified (read-only).
EFFS EFFS EXISTS Object exists.
EFFS NOTAFILE Object is not a file.
EFFS NAMETOOLONG Object's name is too long.
EFFS BADNAME Object's name contains illegal characters.
EFFS FILETOOBIG File data size is too big.
EFFS NOSPACE Failed to allocate space for object's data.
EFFS FSFULL Failed to allocate an inode for the object.
(67) EFFS MEMORY (68) Message allocation failed.
(69) EFFS MSGSEND (70) Message sending failed
% Texas Instruments — Proprietary Information Page 150 of 401

TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

9.23 ffs_file_read, ffs_fread

T _FFS SIZE ffs file read(const char *pathname, void *buf, T _FFS_SIZE size);
T _FFS SIZE ffs fread(const char *pathname, void *buf, T _FFS_SIZE size);

Note important: ffs_fread() is deprecated and should not be used. Use ffs_file_read() instead.

Description:

Read the entire file with the pathname given by pathname. The pathname is a null terminated string.
If the file does not exist, EFFS_NOTFOUND is returned. The file data are read from the file and copied
to the buffer pointed to by buf. The size of the buffer is given by size. On success, the function
returns the number of bytes actually read. Otherwise, in case an exception occurred, the exception
code is returned.

Parameters:

pathname Null terminated string containing the unique name of the file we want to read.

buf Pointer to a buffer where the data will be copied to. (The size of this buffer has to be
at least size bytes)

size Size of buffer.

Return value:

Id Definition
(Positive value) Number of bytes actually read.
EFFS NOTFOUND File not found.
EFFS_FILETOOBIG I;!ezgata is larger than the buffer size given by
EFFS NOTAFILE The pathname refers not to a file

9.24 ffs_fcreate

T _FFS_RET ffs_fcreate(const char *pathname, void *buf, T FFS_SIZE size);
T FFS_REQ_ID ffs fcreate nb(const char *pathname, void *buf, T FFS_SIZE size,
T RV_RETURN *return_path);

Note: ffs fcreate() is deprecated and should not be used. Use ffs file write(...,
FFS_O CREATE | FFS_O EXCL) instead.

Description:

Create a file with a pathname given by pathname, which is a null terminated string. If the file already
exists, EFFS_EXISTS is returned. The file data are written from the buffer described by the pointer
buf which points to the start of the data. The size of the buffer is given by size.

Parameters:

pathname Null terminated string containing the unique name of the file to create.
buf Pointer to buffer of the data to write.
size Number of bytes to write.

% Texas Instruments — Proprietary Information Page 151 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Return value:

Id Definition
EFFS OK Ok.
EFFS EXISTS An object of the same name already exists.
EFFS NAMETOOLONG Object's name is too long.
EFFS BADNAME Object's name contains illegal characters.
(71) EFFS FILETOOBIG (72) File data size is too big.
EFFS NOSPACE Failed to allocate space for object's data.
EFFS FSFULL Failed to allocate an inode for the object.
(73) EFFS_MEMORY (74) Message allocation failed.
(75) EFFS MSGSEND (76) Message sending failed

9.25 ffs_fupdate

T _FFS_RET ffs_fupdate(const char *pathname, void *buf, T FFS_SIZE size);
T _FFS_REQ _ID ffs fupdate nb(const char *pathname, void *buf, T FFS SIZE size,
T RV_RETURN *return_path);

Note: ffs fupdate () is deprecated and should not be used. Use
ffs file write(...,FFS_O_ TRUNC) instead.
Description:

Update the contents of the file with the pathname given by pathname, which is a null terminated
string. If the file does not exist, EFFS_NOTFOUND is returned. The file data are written from the buffer
described by the pointer buf which points to the start of the data. The size of the buffer is given by
size.

Parameters:

pathname Null terminated string containing the unique name of the file to update.
buf Pointer to buffer of data to write.
size Number of bytes to write.

Return value:

Id Definition
EFFS OK Ok.
EFFS NOTFOUND Object not found.
EFFS_ACCESS File cannot be modified (read-only).
EFFS NAMETOOLONG Object's name is too long.
EFFS BADNAME Object's name contains illegal characters.
EFFS FILETOOBIG File data size is too big.
% Texas Instruments — Proprietary Information Page 152 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

EFFS NOSPACE Failed to allocate space for object's data.
EFFS FSFULL Failed to allocate an inode for the object.
(77) EFFS_MEMORY (78) Message allocation failed.
(79) EFFS MSGSEND (80) Message sending failed

9.26 ffs_fwrite

T _FFS_RET ffs_fwrite(const char *pathname, void *buf, T FFS_SIZE size);
T FFS_REQ _ID ffs fwrite nb(const char *pathname, void *buf, T FFS_SIZE size,
T RV_RETURN *return_path);

Note: ffs fwrite() is deprecated and should not be used. Use
ffs file write(...,FFS_O CREATE | FFS_O_ TRUNC) instead.
Description:

Write the file data of the file given by the pathname pathname. The pathname is a null terminated
string. If the file does not exist, it is created. If file exists, it is updated. The file data are written from
the buffer described by the pointer buf that points to the start of the data. The size of the buffer is
given by size.

Parameters:
pathname Null terminated string containing the unique name of the file to create.
buf Pointer to buffer of data to write.
size Number of bytes to write.

Return value:

Id Definition
EFFS OK Ok.

EFFS_ACCESS File cannot be modified (read-only).

EFFS NAMETOOLONG

Object's name is too long.

EFFS BADNAME

Object's name contains illegal characters.

EFFS FILETOOBIG

File data size is too big.

EFFS NOSPACE

Failed to allocate space for object's data.

EFFS FSFULL

Failed to allocate an inode for the object.

(81) EFFs MEMORY

(82) Message allocation failed.

(83) EFFS MSGSEND

(84) Message sending failed

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 153 of 401

Locosto_BSP_API Version 0.3

9.27 ffs_fcontrol

T _FFS RET ffs_fcontrol(const char *pathname, INTS type, int param);
T FFS_REQ_ID ffs fcontrol nb(const char *pathname, INTS type, int param,
T RV_RETURN *return_path);

Description:

Write meta-data of the object with the pathname given by pathname. The meta-data written is
denoted by type and the value written is given by param. If an invalid type or parameter is given,
EFFS INVALID is returned.

Parameters:
pathname Null terminated string containing the unique name of the object in the File
System.
type Object actions:
OC_FLAGS = Set object flags.
param Object flags:

OF_READONLY = Object can not be modified or deleted.

Return value:

(85) 1a (86) Definition

(87) EFFs ok (88) Ok

(89) EFFs _INVALID (90) The specified meta-data
type is unknown or param value 1is
invalid.

EFFS NOTFOUND Object does not exist.

EFFS_ACCESS Object could not be modified (read-only).

EFFS_FSFULL Failed to allocate an inode for the changed
object.

(9]) EFFS_MEMORY (92) Message allocation failed.

(93) EFFS MSGSEND (94) Message sending failed

(95)

Note: ffs_fcontrol() will change name to ffs_file_control() in a future version.

% Texas Instruments — Proprietary Information Page 154 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

9.28 ffs_query

| T _FFS RET ffs_query(INT8 query, void *buf);

Description:

Read and return the FFS parameter given by query. If query is valid, the value is read and copied to
the buffer pointed to by buf. If an unknown query is attempted, EFFS_INVALID is returned. Valid
queries, their size (in bytes) and description are as given below:

Parameters:

Query | Size | Description

(96) Q BLOCKS FREE 2 number of free blocks

(97) Q BLOCKS LOW 2 garbage collection parameter

(98)

(99) o BYTES FREE 4 number of free bytes in FFS

(]OO) Q BYTES USED 4 number of used bytes in FFS

(101) o BYTES L.OST 4 number of lost bytes in FFS

(102) Q BYTES MAX 4 number of max available bytes

in FFS

(103)

(104) o FILENAME MAX 2 max filename length

(105)

(106) o T™ BUFADDR 4 testmode buffer addr

(107) Q TM BUFSIZE 4 testmode ffs buffer size

(108)

(109) o FFs API VERSION 2 FFS API Version

(110) o FFs DRV VERSION 2 FFS Driver Version

(111) o FFs REVISION 2 FFS Revision

(112) o FFs FORMAT WRITE 2 FFS version as formatted in

flash blocks

(113) 0 FFs FORMAT READ 2 FFS version as read from ffs

(114) o FFs LASTERROR 2 FFS last exception (from

init)

(115) o FFs T VERSION 2 FFS testmode version

(116) o PATH DEPTH MAX 2 max path/directory nesting

depth

(117)

(118) Q OBJECTS_ FREE 2 number of objects that can be

created

Q’ Texas Instruments — Proprietary Information Page 155 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

(119) o OBJECTS MAX
allowed

max number of valid objects

(120) ¢ OBJECTS TOTAL
objects in FFS

accumulated number of wvalid

(121)

(122) o INODES MAX
inodes

physical total max number of

(123) o INODES USED

number of inodes used

(124) o INODES LOST

number of inodes lost

(125) ¢ INODES HIGH
will be

watermark for when inodes

(126)

reclaimed

(127)

(128) ¢ DEV MANUFACTURER

flash manufacturer ID

(129) © DEV DEVICE

flash device 1ID

(130) ¢ DEV BLOCKS
device

number of FFS blocks in

(131) o DEV _ATOMSIZE
device

atomsize used by FFS for this

(132) o DEV BASE

FFS device base address

(133) o DEV DEVICE

flash device 1ID

(134)

(135) o FD BUF SIZE
functions

size of buffer used by stream

(136) o FD MAX

open files

max number of simultaneous

(137)

value.

Return value:

buf (Output parameter) Pointer to a buffer which will contain the contents of the query

(138) 1a (139) Definition
(140) EFFs ox (141) ok.
(142) EFFs INVALID (143) 1nvalid argument

9.29 ffs_is_modifiable

| T _FFS_RET ffs_is _modifiable(const char *pathname)

Description:

This function is not really an FFS API function but since it is closely related to all modify functions it is
mentioned here. It can be considered an intrinsic FFS API function.

This function is to be implemented by the user. The function is by default located in the file cfgffs.c.
It is called by FFS when an application tries to modify an object which has the read-only flag set. The

% Texas Instruments — Proprietary Information Page 156 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

user can use the null-terminated pathname string to determine if the object being modified should
indeed be considered read-only.

The coding rules for the application programmer are:

ffs is modifiable () must return zero in order to enforce read-only. As a result of this, the
originally called FFS function will return the exception EFFS_ACCESS.

ffs is modifiable () must return value of non-zero to allow modifications to happen. Then
FFS will proceed with the operation.

% Texas Instruments — Proprietary Information Page 157 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3
Chapter 10 USB
10.1 Introduction 159
10.2 Interface description 159
10.3 Message definition 163
10.4 Types definitions and constants 168

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 158 of 401

Locosto_BSP_API Version 0.3

10.1 Introduction

10.2 Interface description

This chapter is used for the ENTITY interface description. It is not required to specify the Generic
interface

10.2.1 usb_fm_subscribe

T RV RET usb_fm subscribe (UINT8 interface id, T RV RETURN return path)

Description

The function is called by a FM to subscribe to an interface.

Every interface is controlled by a function manager. In the "usb_interface_cfg.h" is defined which FM
controls which interface. This function is used to actually subscribe the defined FM to the specified
interface. Theoretically the usb driver can see which FM is subscribing by reading the

"hdr". In the case that 1 FM supports more than 1 interface the FM must indicate during subscription,
to which interface it will subscribe.

Parameters

interface_id holds the interface number as described in "usb_interface_cfg.h"

return_path return path of the function call

Immediate Return

T_RV_RET
The possible values are:

RV _OK
RV_NOT_SUPPORTED
RV_NOT_READY
RV_MEMORY_WARNING
RV_MEMORY_ERR
RV_MEMORY REMAINING
RV _INTERNAL ERR
RV _INVALID PARAMETER

10.2.2 usb_fm_unsubscribe

T RV RET usb fm unsubscribe (UINT8 interface id)

Description

This function must be called by a FM to release its subscription to an interface.

Every interface is controlled by a function manager. In the "usb_interface_cfg.h" is defined which FM
controls which interface. This function is used to release the subscription with the defined FM to the
specified interface.

Q’ Texas Instruments — Proprietary Information Page 159 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

interface_id holds the interface number as described in “usb_interface_cfg.h.

Immediate Return

T_RV_RET
The possible values are:

RV_OK
RV_NOT_READY
RV_INVALID_PARAMETER

10.2.3 usb_get_status

T RV RET usb _get status (UINT8 interface id, T USB STATUS* status p)

Description

This function must be called by a FM to get status info.
The FM calls this function to retrieve status information about the endpoints and the USB Hardware.

The diver will respond to this function call by sending a T_RV_HDR type variable to the callback
function that belongs with the requester FM.

Parameters

interface_id holds the interface number as described in "usb_interface_cfg.h"

status_p pointer to status information storage space created by FM, filled by usb
driver.

Immediate Return

T_RV_RET
The possible values are:

RV _OK
RV_NOT_READY
RV _INVALID PARAMETER

10.2.4 usb_set_rx_buffer

T RV RET usb_set rx buffer (UINT8 interface id, UINTS endpoint, UINT8*
buffer p, UINT16 size)

Description
Q’ Texas Instruments — Proprietary Information Page 160 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

This function provides the usb driver with a buffer into which the received data can be placed.

The driver places all the data packets as large as the available endpoints into this buffer as one large
data packet.

Parameters

Interface_id holds the interface number of the specified endpoint.

Endpoint endpoint number
buffer_p pointer to the provided data buffer
size size of the provided buffer

Immediate Return

. d Definton
RV_OK
RV_NOT_READY
RV_INVALID_ PARAMETER

Restriction

This function must always be called after the interface has been notified of received data.

10.2.5 usb_reclaim_rx_buffer

T RV RET usb_reclaim rx buffer (UINT8 interface id, UINT8 endpoint)

Description

This function gives the FM back the control over the buffer. The USB expects to get a new buffer.

Parameters
Interface_id holds the interface number of the specified endpoint.
endpoint endpoint number

Immediate Return

T _RV_RET
RV OK

RV_NOT_READY
RV_INVALID_PARAMETER

10.2.6 usb_set_tx_buffer

T RV RET usb_set tx buffer (UINT8 interface id, UINT8 endpoint, UINT8*
buffer p, UINT16 size,BOOL shorter transfer)

Description

This function provides the usb driver with a buffer containing data to be send.The driver splits the
buffer in data packets as large as the available endpoints

Q’ Texas Instruments — Proprietary Information Page 161 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters
interface_id holds the interface number of the specified endpoint.
endpoint endpoint number
buffer_p pointer to the provided data buffer
size size of the provided buffer

Immediate Return

T _RV_RET
RV _OK

RV_NOT READY
RV_INVALID_PARAMETER

10.2.7 usb_get_hw_version

UINT8 usb_get hw version (void)

Description

This function must be called to get the USB hardware version. This function is called this to retrieve
hardware version information of the USB hardware.

Parameters

void

Immediate Return

UINT8: b0-3 minor version number (4bits),
b4-7 major version number (4bits)

10.2.8 usb_get_sw_version

UINT32 usb get sw version (void)

Description

This function must be called to get the USB software driver version.The function is called this to
retrieve software version information of the USB driver.
Parameters

void

Immediate Return

UINT32: b0-15 build number (8bits)
b16-23 minor version number (8bits)
b24-32 major version number (8bits)

Q’ Texas Instruments — Proprietary Information Page 162 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

10.2.9 usb_con_int

void usb con int ()

Description

This function is called by the ABB external interrupt handler.

This function is called to initialize the USB transceiver (TRITON - TWL3029).
In functional terms, it is responsible for bringing up the USB Connectivity.

Parameters

void

Immediate Return

void

10.2.10 usb_discon_int

void usb discon int ()

Description

This function is called by the ABB external interrupt handler.

This function is called to disconnect the USB transceiver (TRITON - TWL3029).
In functional terms, it is responsible for bringing down the USB Connectivity.

Parameters

void

Immediate Return

void

10.3 Message definition

There are two types of messages, request messages and response messages. All the request
message definitions contain return path and the response message structures contain operation id as
their status information. The message definitions are located in the directory usb_message.h.

10.3.1 USB_FM_SUBSCRIBE_MSG

This message must be used by a FM to subscribe to an interface.

Every interface is controlled by a function manager. This message is used to actually subscribe the
defined FM to the specified interface. Theoretically the usb driver can see which FM is subscribing by
reading the "hdr". In the case that 1 FM supports more than 1 interface the FM must indicate during
subscription, to which interface it will subscribe.

Q’ Texas Instruments — Proprietary Information Page 163 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

typedef struct {
T_RV_HDR hdr;
UINT8 interface_id ;
T_RV_RETURN return_path;

}T_USB_FM_SUBSCRIBE_MSG;

hdr hearder of the message.
interface_id this variable is used by FM to indicate to which IF wants to subscribe
return_path use this path to notify swe of buffer full / empty etc

10.3.2 USB_FM_UNSUBSCRIBE_MSG

This message must be used by a FM to release it subsrciption to an interface. Every interface is
controlled by a function manager. This message is used to release the subsription with the defined FM
to the specified interface.

typedef struct {
T_RV_HDR hdr;
UINT8 interface_id;
} T_USB_FM_UNSUBSCRIBE_MSG;

hdr Header of the message

interface_id This variable is used by FM to indicate to which IF it wants to subscribe

10.3.3 USB_GET_STATUS_MSG

This message must be used by a FM to get status info.The FM send this message to retrieve status
information about the endpoints and the USB Hardware. The diver will respond to this message by
sending a T_USB_STATUS_READY_MSG.

typedef struct {
T_RV_HDR hdr;
UINT8 interface_id;
T_USB_STATUS* status_p;

}T_USB_GET _STATUS MSG;

hdr Message header.

interface_id This variable holds an interface_id part of the FM that placed the get
status request so that a response can be send to it.

status_p pointer to status information storage space created by FM, filled by usb
driver.

10.3.4 USB_SET_TX_BUFFER_MSG

This message provides the usb driver with a buffer containing data to be send.The driver splits the
buffer in data packets as large as the available endpoints fifo.

typedef struct{
T_RV_HDR hdr;
UINT8 interface_id;
UINT8 endpoint;
UINT8* buffer_p;
UINT16 size;
BOOL shorter_transfer;

}T_USB_SET TX_BUFFER_MSG;

% Texas Instruments — Proprietary Information Page 164 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

hdr header of the message

interface_id This variable is used by FM to indicate to which IF the specified
endpoint belongs.

endpoint endpoint associated with the buffer

buffer_p pointer to the reserved buffer

size Size of buffer in bytes. The size mainly depends on the
interface description.

shorter_transfer shorter than expected by the host

10.3.5 USB_SET_RX_BUFFER_MSG

typedef T_USB_SET_TX_BUFFER_MSG T_USB_SET_RX_BUFFER_MSG;

10.3.6 USB_RECLAIM_RX_BUFFER_MSG

This message gives the FM back the control over the buffer. The USB expects to get a new buffer.

typedef struct {
T_RV_HDR hdr;
UINT8 interface_id;
UINT8 endpoint;
} T_USB_RECLAIM_RX_BUFFER_MSG;
hdr Message header
interface_id This variable is used by FM to indicate to which IF the specified
endpoint belongs
endpoint endpoint associated with the buffer

This part describes the message definitions of messages that are sent from the usb driver
to the FM. the memory claimed for those message by the usb driver will be freed by the FM.

10.3.7 USB_FM_RESULT_MSG

This message returns whether the subscription or unsubscription was successful or not.

typedef struct {
T_RV_HDR hdr;
T_USB_RESULT result;
} T_USB_FM_RESULT_MSG;

Hdr Message header

result contains the execution result of action

10.3.8 USB_BUS_CONNECTED MSG

This message is used by the usb driver to inform the FM of a USB bus connection.The USB
Driver sends this message to ALL FMs to indicate that the USB bus has been connected.

% Texas Instruments — Proprietary Information Page 165 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

typedef struct {
T_RV_HDR hdr;
} T_USB_BUS_CONNECTED_MSG;

10.3.9 USB_BUS_DISCONNECTED_MSG

This message is used by the usb driver to inform the FM of a USB bus disconnection. The USB driver
sends this message to ALL FMs to indicate that the USB bus has been disconnected. Thus the FM
cannot transfer data anymore.

typedef struct {

T RV_HDR hdr;
} T_USB_BUS_DISCONNECTED_MSG;

10.3.10 USB_BUS_SUSPEND_MSG

This message is used by the usb driver to inform the FM that the bus bus enters the suspend
state.This message is sent to ALL FMs.

typedef struct {

T RV_HDR hdr:
} T_USB_BUS_SUSPEND_MSG;

10.3.11 USB_BUS_RESUME_MSG

This message is send to the interfaces that are part of the current active configuration to indicate that
the USB bus is now resuming. Host to device transfers will start soon.

typedef struct {

T RV_HDR hdr:
} T_USB_BUS_RESUME_MSG;

10.3.12 USB_STATUS_READY_MSG

This message is used by the usb driver to inform the FM that the requested status data is available.

typedef struct {
T_RV_HDR hdr;
} T_USB_STATUS_READY_MSG;

10.3.13 USB_RX_BUFFER_FULL_MSG

This message is used by the usb driver to inform the FM that the rx buffer is full. The USB driver sends
this message to an FM to indicate that a the buffer of a specified endpoint of the specified interface
has been filled and that it is ready to be consumed.

typedef struct {
T_RV_HDR hdr;
UINT8 endpoint;
UINT8 interface;
UINT16 size;
BOOL end_of packet;
}IT_USB_RX_ BUFFER_FULL_MSG;
% Texas Instruments — Proprietary Information Page 166 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Hdr Message Header

endpoint endpoint associated with the buffer
interface interface associated with the buffer

size number of bytes written in buffer
end_of_packet TRUE = driver has detected end of packet

FALSE= no end of packet has been detected

10.3.14 USB_TX_BUFFER_EMPTY_MSG

This message is used by the usb driver to inform the FM that the tx buffer is empty.This message is
sent by the driver to the FM that owns the endpoint to indicate that the TX buffer has been sent. The
FM can now fill the buffer again.

typedef struct {
T_RV_HDR hdr;
UINT8 endpoint;
UINT8 interface;

} T_USB_TX_BUFFER_EMPTY_MSG;

hdr Message Header
endpoint endpoint associated with the buffer
interface endpoint associated with the buffer

10.3.15 USB_TX_EP_INTERRUPT

This message is used by the usb driver to inform the FM that the tx buffer is empty. This message is
sent by the driver to the FM that owns the endpoint to indicate that the TX buffer has been sent. The
FM can now fill the buffer again.

typedef struct {
T_RV_HDR hdr;
UINT8 endpoint;
} T_USB_TX_EP_INTERRUPT_MSG;

Hdr Message header
endpoint endpoint associated with the buffer

10.3.16 USB_TX_BUFFER_EMPTY_MSG

This message is used by the usb driver to inform the FM that the tx buffer is empty. This message is
sent by the driver to the FM that owns the endpoint to indicate that the TX buffer has been sent. The
FM can now fill the buffer again.

typedef struct {
T_RV_HDR hdr;
UINT8 endpoint;
} T_USB_RX_EP_INTERRUPT_MSG;
Hdr Message header
endpoint endpoint associated with the buffer
% Texas Instruments — Proprietary Information Page 167 of 401
TExXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

10.3.17 USB_HOST_RESET_MSG

This message is send by the driver to signal the interfaces of the FM that the USB Host has reset the
USB device. The necessary actions must be taken by the interface.

typedef struct {
T_RV_HDR hdr;
} T_USB_HOST_RESET_MSG;

10.4 Types definitions and constants

API type definitions and constants are located in the configuration file usb_api.h in the common
directory.

10.4.1 T_RV_RET T_USB_RETURN

USB Return type and return values. Currently they are the standard RV return types, but they may be
customized in the future.

typedef T RV_RET T_USB_RETURN:

#define USB_OK RV_OK

#define USB_NOT_SUPPORTED RV_NOT_SUPPORTED
#define USB_MEMORY_ERR RV_MEMORY_ERR
#define USB_INTERNAL_ERR RV_INTERNAL_ERR

10.4.2 T_USB_FM_ID

USB interface information::This is type describes the class of this interface, which is just like the
subclass, USB defined (compile time is known what class the interface belongs to) what the class
does and how it works is defined by USB.

typedef struct {
UINT8 interface_id; [*interface class id (usb defined)*/
UINT8 subclass_id; [*interface subclass id*/
}T_USB_FM_ID;

10.4.3 T_USB_EP_STAT

This is type describes the information that is returned on a get status request for a specific endpoint.

typedef enum {

enabled=0, /* endpoint is enabled */
stalled, /* endpoint is stalled */
unassociated /* endpoint does not belong to this interface */

}T_USB_EP_STAT;

10.4.4 USB_STATUS

name USB Status typ::This is type describes the information that is returned on a get status request.
typedef struct {
UINT8 active_config;
T_USB_EP_STAT* ep_status_p;

% Texas Instruments — Proprietary Information Page 168 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

UINT8 nr_of _ep;
BOOL driver_ready;
BOOL usb_connected;
}T_USB_STATUS;

active_config number of the active configuration,-1 if no configuration is active
yet.

ep_status_p static list of 30 elements with status per logical endpoint.

nr_of_ep number of endpoints in list assigned to the interface.-1 when
interface is not part of current active configuration.

driver_ready Indicates if the USB device has been configured and is ready.

usb_connected Indicates if the USB is connected to an USB bus. Can be used,

when a FM is started and does not know if the bus is active.

10.4.5 T_USB_RESULT

USB Status type::This is type is used to report back the result of a sucbscribe etc.

typedef enum {

succes = 0, /laction performed successfully
fail_subscribe, /lgeneric failure to subscribe
fail_unsubscribe, /lgeneric failure to unsubscribe
not_subscribed, /lunsubscribe while not subscribed
config_error, /lerror in configuration
param_error, /lparameter error
unexpected_error /lgeneric failure

JT_USB_RESULT

% Texas Instruments — Proprietary Information Page 169 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 11 USBFAX

11.1 Introduction 171

11.2 Interface description 171

Q’ Texas Instruments — Proprietary Information Page 170 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

11.1 Introduction

11.2 Interface description

11.2.1 dio_init_usb

Ulé dio init usb (T _DIO DRV *drv_handle)

Description

The function initializes USB driver.

Parameters

drv_handle unique handle for DIO drivers

Immediate Return

u16

The possible values are:

id Definition
DRV_OK When initialization successful
DRV_INITIALIZED When driver is already initialized
DRV_INITFAILURE On failed initialization

11.2.2 dio_export_usb

void dio export usb (T DIO FUNC** dio func)

Description

USB driver function set export.

Parameters

dio_func pointer to the list of functions exported by the driver

Immediate Return

none

11.2.3 usbfax_getdio_sw_version

U32 usbfax getdio sw version (void)

Q’ Texas Instruments — Proprietary Information Page 171 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Description

This function gives software version of usbfax.

Parameters

void

Immediate Return

u32

Value of software version.

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 172 of 401

Locosto_BSP_API Version 0.3

Chapter 12 USBMS

12.1 Introduction 174
12.2 Interface description 174
12.3 Types definitions and constants 174
Q’ TEXAS Texas Instruments — Proprietary Information Page 173 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

12.1 Introduction

12.2 Interface description

12.2.1 usbms_send_sample

T USBMS RETURN usbms send sample ()

Description

Parameters

void

Immediate Return

T_USBMS_RETURN

id Definition

USBMS_OK
USBMS_NOT_SUPPORTED

USBMS_MEMORY_ERR

USBMS_INTERNAL_ERR

USBMS_ERROR

12.3 Types definitions and constants

API type definitions and constants are located in the configuration file usb_api.h in the common
directory.

12.3.1 T_USBMS_RETURN

USBMS Return type and return values. Currently they are the standard RV return types, but they may
be customized in the future.

typedef T_RV_RET T_USBMS_RETURN;

#define USBMS_OK RV_OK

#define USBMS_NOT_SUPPORTED RV_NOT_SUPPORTED

#define USBMS_MEMORY_ERR RV_MEMORY_ERR

#define USBMS_INTERNAL_ERR RV_INTERNAL_ERR

#define USBMS_ERROR -12

Q’ Texas Instruments — Proprietary Information Page 174 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Q’ Texas Instruments — Proprietary Information Page 175 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 13 TIMER

13.1 Introduction 177

13.2 Interface description 177

Q’ Texas Instruments — Proprietary Information Page 176 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

13.1 Introduction

13.2 Interface description

13.2.1 TIMER_Read

SYS UWORD16 TIMER Read (unsigned short regNum)

Description

This function reads one of the TIMER register.

Parameters

regNum number of the register to be read

Immediate Return

SYS_UWORD16

Value of the timer register read.

13.2.2 TM_ResetTimer

void TM ResetTimer (SYS UWORD16 timerNum,

SYS UWORD16 autoReload,

SYS UWORD16 countValue,
SYS UWORD16 clockScale)

Description

This function gives the timewr state

Parameters
timerNum timer number (1 or 2) to be read
countValue timer value
autoReload reload yes or not
clockScale scaling of the clock

Immediate Return

None

13.2.3 TM_StopTimer

void TM StopTimer (int TimerNum)

Description

Q’ Texas Instruments — Proprietary Information Page 177 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

This function stops the timer.

Parameters

TimerNum timer number (1 or 2) to be stopped

Immediate Return

None

13.2.4 TM_ReadTimer

SYS UWORD16 TM ReadTimer (int timerNum)

Description

This function returns current timer value.

Parameters

timerNum timer number (1 or 2) to be read

Immediate Return

SYS_UWORD16

Returns current timer value.

13.2.5 TM_StartTimer

void TM StartTimer (int timerNum)

Description

This function asks the required timer to start.

Parameters

timerNum timer number (1 or 2) to be started

Immediate Return

None

13.2.6 TM_DisableWatchdog

void TM DisableWatchdog (void)

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 178 of 401

Locosto_BSP_API

Version 0.3

Description

This function disables watchdog timer.

Parameters

Void

Immediate Return

None

13.2.7 TM_EnableWatchdog

void TM EnableWatchdog (void)

Description

This function enables the watchdog timer.

Parameters

Void

Immediate Return

None

13.2.8 TM_ResetWatchdog

void TM ResetWatchdog (SYS UWORD16 count)

Description

This function resets watchdog timer.

Parameters

count Use a different value each time, otherwise watchdog bites

Immediate Return

None
Q’ Texas Instruments — Proprietary Information Page 179 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

13.2.9 TM_EnableTimer

TM EnableTimer (int TimerNum)

Description

This function enables the timer.

Parameters

TimerNum timer to enable (timer1 or timer2)

Immediate Return

None

13.2.10 TM_DisableTimer

void TM DisableTimer (int TimerNum)

Description

This function disables the timer.

Parameters

TimerNum timer number (1 or 2) to be disabled

Immediate Return

void

13.2.11 TIMER_ReadValue

unsigned short TIMER ReadValue (void)

Description

This function reads the timer value.

Parameters

Void

Immediate Return

None
Q’ Texas Instruments — Proprietary Information Page 180 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

13.2.12 TIMER_WriteValue

unsigned short TIMER WriteValue (SYS UWORD16 value)

Description

This function reads the timer value.

Parameters

Void

Immediate Return

None

Q’ Texas Instruments — Proprietary Information Page 181 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3
Chapter 14 UART FAX & DATA
14.1 Introduction 183
14.2 Interface description 184
14.3 Types definition 196
Q’ Texas Instruments — Proprietary Information Page 182 of 401
TEXAS

Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

14.1 Introduction

The purpose of this document is to describe the interface of the functions provided by the UART
driver, when the UART device is used for Fax & Data.

This driver only allows managing the UART Modem serial device of the B-Sample,
C-Sample, D-Sample and E-Sample Texas Instruments Development Boards. Indeed, the UART IrDA
device of these boards can’t be used for Fax & Data because the hardware flow control (either
CTS/RTS for B-Sample or DCD/DTR for C-Sample, D-Sample and E-Sample) is not supported.
Moreover the UART Modem2 of the E-Sample platform cannot be used for Fax & Data because this
device is not directly accessible through a DB9 connector.

The use of serial ports of Texas Instruments Development Boards (B-Sample, C-Sample,
D-Sample or E-Sample) is directly managed by a software module called serialswitch .

A software application (GSM/GPRS Protocol Stack) deals with several serial data flows that are
dynamically connected by the serialswitch module to the hardware serial devices through software
UART drivers.

The figure below illustrates how the serial data flows of a GSM/GPRS Protocol Stack application could
be linked to the hardware serial devices.

Flow #1 Flow #2 Flow #3 Flow #4
PS Trace Layer1/Riviera Fax & Data Bluetooth
(Old Frame) Trace AT Cmd HCI

.

SERIAL PORTS
DYNAMIC SWITCH

Dummy Trace 7" DummyF&D

Driver . Driver
M M
UART Trace UART F&D UART BT HCI
Driver Driver Driver
UART UART
IrDA Modem

I:I Hardware device
I:I Software module

Dynamic link at runtime

Figure 10 Data flows and HW devices

% Texas Instruments — Proprietary Information Page 183 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

14.2 Interface description

14.2.1 UAF_Init

T FDRET UAF Init (T fd UartId uartNo)

Description

This function initializes the UART hardware used for Fax & Data, and installs the interrupt handlers.
The parameters are set to the following default values:

19200 bps,
8 data bits per character,
1 stop bit,
no parity,
no flow control.

All functionalities of the UART driver are disabled, and must be enabled by calling the function
UAF_Enable.

Parameters

uartNo This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET
The function returns immediate with the following possible values:

Id Definition

FD_OK which corresponds to a successful operation.

if uartNo corresponds to the UART IrDA or UART Modem2
FD_NOT_SUPPORTED which can’t be used for Fax & Data on Tl Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware..

14.2.2 UAF_Enable

T FDRET UAF Enable (T fd uartid uartNo,SYS BOOL enable)

Description

This function enables or disables the functionalities of the UART driver used for Fax & Data, according
to the value of enable. In the deactivated state, all information about the communication parameters
are stored and recalled if the driver is again enabled. When the driver is enabled the Rx and Tx
buffers are cleared.

Parameters

uartNo This parameter indicates which UART this function applies to.

enable The allowed values are:

Q’ Texas Instruments — Proprietary Information Page 184 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

> 0 to disable the functionalities of the UART driver.
> 1 to enable the functionalities of the UART driver.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2
which can’t be used for Fax & Data on Tl Development Boards,
FD_INTERNAL_ERR in case of internal problems with the hardware..

14.2.3 UAF_SetComPar

T FDRET UAF SetComPar (T fd UartId uartNo,
T baudrate baudrate,
T bitsPerCharacter bpc,
T stopBits sb,
T parity parity)

Description

This function sets up the communication parameters of the Fax & Data serial data flow: used
baudrate, bpc data bits and sb stop bits per character, and used parity.

Parameters

uartNo
This parameter indicates which UART this function applies to.
baudrate
This parameter indicates the used baud rate for the serial connection.
Bpc
This parameter corresponds to the number of used data bits per character.
Sb
This parameter indicates the number of used stop bits per character.
Parity

This parameter corresponds to the used parity for the serial connection.

Immediate Return

T_FDRET
The function returns immediate with the following possible values:

Id Definition

Q’ Texas Instruments — Proprietary Information Page 185 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

FD_OK which corresponds to a successful operation.

FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2
which can’t be used for Fax & Data on Tl Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware..

14.2.4 UAF_SetBuffer

T FDRET UAF SetBuffer (T fd UartId uartNo,
SYS UWORD16 bufSize,
SYS UWORD16 rxThreshold,
SYS UWORD16 txThreshold)

Description

This function sets up the size of the circular buffers and the related thresholds of the UART driver.
This function may be called only if the UART has been previously disabled with UAF_Enable.

Parameters

uartNo

This parameter indicates which UART this function applies to.
bufSize

This parameter indicates the size of the Rx and Tx circular buffers.
RxThreshold

This parameter corresponds to the amount of received bytes that leads to a call to the suspended
read-out function, which is passed to the function UAF_ReadData.

TxThreshold

This parameter corresponds to the amount of bytes in the Tx buffer that leads to a call to the
suspended write-in function, which is passed to the function UAF_WriteData.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2

which can’t be used for Fax & Data on Tl Development Boards
or if the bufSize exceeds the maximal possible capabilities of
the driver or the threshold values don’t correspond to the
bufSize,

FD_INTERNAL_ERR in case of internal problems with the hardware or if the function
has been called while the UART is enabled .

14.2.5 UAF_SetFlowCtrl

Q’ Texas Instruments — Proprietary Information Page 186 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T FDRET UAF SetFlowCtrl (T fd UartId uartNo,
T flowCtrlMode fcMode,
SYS UWORDS XON,
SYS UWORD8 XOFF)

Description

This function changes the flow control mode of the UART driver to fcMode. If no flow control is set, a
loss of character should be prevented by the application. If a flow control is set, DTR or RTS is
activated or XOFF is sent if the Rx buffer is not able to store the received characters. Otherwise DTR
or RTS is deactivated or XON is sent.

Parameters

uartNo
This parameter indicates which UART this function applies to.
fcMode
This parameter indicates the used flow control mode for the serial connection.
XON

This parameter corresponds to the ASCII code of the XON character. This parameter is ignored if
fcMode is not set to fc_xoff.

XOFF

This parameter corresponds to the ASCII code of the XOFF character. This parameter is ignored if
fcMode is not set to fc_xoff.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2

which can’t be used for Fax & Data on Tl Development Boards
or if the selected flow control mode is not supported

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.6 UAF_SetEscape

T FDRET UAF SetEscape (T fd UartId uartNo,
char escChar,
SYS UWORD16 guardPeriod)

Description

To return to the command mode of the ACI while a data connection is established, an escape
sequence (composed of three escChar) has to be detected. To distinguish between user data and the
escape sequence a defined guardPeriod duration is necessary before and after this sequence. With
this function the escape character and the guard period related to the UART driver can be set up.

Q’ Texas Instruments — Proprietary Information Page 187 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

uartNo
This parameter indicates which UART this function applies to.
escChar

This parameter corresponds to the ASCII code of the character which could appear three times as an
escape sequence.

guardPeriod

This parameter denotes the minimal duration of the rest before the first and after the last
escChar character of the escape sequence, and the maximal receiving duration of the whole escape
string. This value is expressed in milliseconds (see document [3] for type definition).

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2

which can’t be used for Fax & Data on Tl Development Boards
or if the selected flow control mode is not supported

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.7 UAF_ReadData

T FDRET UAF ReadData (T fd UartId uartNo,

T suspendMode suspend,

void (readOutFunc (SYS BOOL cldFromIrqg,
T relInstMode *relnstall,
SYS UWORDS nsource,
SYS UWORDS *sourcel[],
SYS UWORD16 sizel],
SYS UWORD32 state)))

Description

To read the received characters out of the Rx buffer the address of a function is passed. If characters
are available, the driver calls this function and passes the source address and the amount of readable
characters. Because the Rx buffer is circular, callback function may be called with more than one
address of buffer fragment. The readOutFunc function modifies the contents of the size array to return
the driver the number of processed characters. Each array entry is decremented by the number of
bytes read in the fragment. If the function is called while the Rx buffer is empty, it depends on the
suspend parameter to suspend the callback or to leave without any operation. In the case of
suspension, the return value is FD_SUSPENDED (refer to §5.2). A delayed callback will be performed
if:

the Rx buffer reaches the adjusted threshold (rxThreshold of UAF_SetBuffer - refer to §6.4),

the state of a V.24 input line has changed,

a break is detected,

Q’ Texas Instruments — Proprietary Information Page 188 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

an escape sequence is detected.

If no suspension is necessary the function returns the number of processed bytes.

Parameters

uartNo
This parameter indicates which UART this function applies to.
suspend
This parameter indicates the mode of suspension in case of Rx buffer empty.
void (readOutFunc (SYS_BOOL cldFromirq,
T_relnstMode *relnstall,
SYS_UWORDS8 nsource,
SYS_UWORDS *sourcel],
SYS_UWORD16 size[],
SYS_UWORD32 state)))
This parameter corresponds to the callback function with all its parameters:
CldFromirq

Indicates if the callback function is called from an interrupt service routine (= TRUE = 1) or not (=
FALSE = 0).

relnstall

The callback function sets this parameter to rm_relnstall if the driver must call again the callback
function when the Rx threshold level is reached. Else it will be set to rm_nolnstall. Before to call the
readOutFunc function this parameter is set to rm_notDefined.

nsource

This parameter informs the callback function about the number of fragments which are ready to
copy from the circular Rx buffer.

source

Corresponding to nsource, this array contains the addresses of the fragments.
size

Corresponding to nsource and source, this array contains the sizes of each fragments.
state

This parameter corresponds to the status of the V.24 lines and the break / escape detection.

Immediate Return

T_FDRET
The function returns immediate with the following possible values:

Id Definition
which corresponds to a successful operation and

Any values 2 0 especially to the amount of processed data

if uartNo corresponds to the UART IrDA or UART

FD_NOT_SUPPORTED Modem2 which can’t be used for Fax & Data on
T1 Development Boards,
FD_SUSPENDED when the callback is suspended until the buffer or
% T Texas Instruments — Proprietary Information Page 189 of 401
EXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

state condition change,

if the function is called while the callback
FD_NOT_READY mechanism is activated and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.8 UAF_WriteData

T FDRET UAF WriteData (T fd UartId uartNo,
T suspendMode suspend,
void (writeInFunc (SYS BOOL cldFromIrg,
T relInstMode *relnstall,
SYS UWORDS ndest,
SYS UWORDS *dest [],
SYS UWORD16 size [])))

Description

To write characters into the Tx buffer the address of a function is passed. If free space is available in
the buffer, the driver calls this function and passes the destination address and the amount of space.
Because the Tx buffer is circular, the callback function may be called with more than one address of
buffer fragment. The writelnFunc function modifies the contents of the size array to return the driver
the number of processed bytes. Each array entry is decremented by the number of bytes written in
this fragment. If the function is called while the Tx buffer is full, it depends on the suspend parameter
to suspend the callback or to leave this function without any operation. In the case of suspension the
returned value is FD_SUSPENDED . A delayed callback will be performed if the Tx buffer reaches the
adjusted threshold . If no suspension is necessary the function returns the number of processed
bytes.

Parameters

uartNo
This parameter indicates which UART this function applies to.
suspend

This parameter indicates the mode of suspension in case of Tx buffer empty (see §5.8 for allowed
values).

void (writelnFunc (SYS_BOOL cldFromirq,
T_relnstMode *relnstall,
SYS_UWORDS ndest,
SYS_UWORDS *dest([],
SYS_UWORD16 size[])))

This parameter corresponds to the callback function with all its parameters

CldFromirq

Indicates if the callback function is called from an interrupt service routine (= TRUE = 1) or not (=
FALSE = 0).

relnstall

The callback function sets this parameter to rm_relnstall if the driver must call again the callback
function when the Tx threshold level is reached. Else it will be set to rm_nolnstall.Before to call the
writelnFunc function this parameter is set to rm_notDefined.

Ndest

Q’ Texas Instruments — Proprietary Information Page 190 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This parameter informs the callback function about the number of fragments which are available in the
Tx buffer.

dest
Corresponding to ndest, this array contains the addresses of the fragments.
Size

Corresponding to ndest and dest, this array contains the sizes of each fragments.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

[of Definition
Any values =0 which corresponds to a successful operation and
especially to the amount of processed data
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem?2 which can’t be used for Fax & Data on
T1 Development Boards,

FD_SUSPENDED when the callback is suspended until the buffer or
state condition change,

FD_NOT_READY if the function is called while the callback
mechanism is activated and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.9 UAF_InpAuvail

T FDRET UAF InpAvail (T fd UartId uartNo)

Description

This function allows knowing the number of available characters in the Rx circular buffer of the UART
driver.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
Any values > 0 Which correspond to the amount of data in the Rx
buffer.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 which can’t be used for Fax & Data on
T1 Development Boards,

0 if the function is called while the driver is

Q’ Texas Instruments — Proprietary Information Page 191 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

disabled,
FD_NOT_READY if the function is called while the callback
mechanism is activated and still not terminated,
FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.10 UAF_OutpAvail

T_FDRET UAF_OutpAvail (T_fd_Uartld uartNo)

Description

This function allows knowing the number of characters in the Tx circular buffer of the UART driver.

Parameters

uartNo
This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
Any values > 0 which correspond to the amount of data in the Tx
buffer.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem?2 which can’t be used for Fax & Data on
T1 Development Boards,

0 if the function is called while the driver is
disabled,

FD_NOT_READY if the function is called while the callback
mechanism is activated and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.11 UAF_EnterSleep

T FDRET UAF EnterSleep (T fd UartId uartNo)

Description

This function determines if the UART device is ready to enter deep sleep mode or not. Moreover, if
the UART is ready, it is set up so that it may be waked up by the dedicated wake-up interrupt.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Q’ Texas Instruments — Proprietary Information Page 192 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_NOT_SUPPORTED

Definition
if uartNo corresponds to the UART IrDA or UART
Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards,

(= FALSE) when the UART device is not ready to
enter deep sleep mode

(= TRUE) when the UART is ready to enter deep
sleep mode and has also been set up in order to
be waked-up

14.2.12 UAF_WakeUp

T FDRET UAF WakeUp (T fd UartId uartNo)

Description

When called, this function wakes up the UART device: wake-up interrupt disabled and usual Rx, Tx

and Modem interrupts again unmasked.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_NOT_SUPPORTED

Definition
if uartNo corresponds to the UART IrDA or UART
Modem2 which can’t be used for Fax & Data on
T1 Development Boards,

FD_OK

which corresponds to a successful operation.

14.2.13 UAF_StopRec

T FDRET UAF StopRec (T fd UartId uartNo)

Description

If a flow control mode is set, this function tells the terminal equipment (e.g. a PC) that no more data
can be received by the UART driver: DTR or RTS is deactivated, or XOFF is sent. If this function is
called, only a call to UAF_StartRec or an initialization restarts the transmission from the terminal

equipment.
Q’ Texas Instruments — Proprietary Information Page 193 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation,
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.14 UAF_StartRec

T FDRET UAF StartRec (T fd UartId uartNo)

Description

If a flow control mode is set, this function tells the terminal equipment (e.g. a PC) that the receiver of
the UART driver is able to receive some data: DTR or RTS is activated, or XON is sent.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation,
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.15 UAF_GetLineState

Q’ Texas Instruments — Proprietary Information Page 194 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T FDRET UAF GetLineState (T fd Uartid uartNo,SYS UWORD32 *state)

Description

This function returns the state of the V.24 lines, the flow control state and the result of the break /
escape detection process as a bit field, related to the Fax & Data serial data flow.

Parameters

uartNo
This parameter indicates which UART this function applies to.
state

This parameter represents the state of the V.24 lines, the flow control state and the result of the break
/ escape sequence detection process as a bit field (see document [3] for type definition).

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation,
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards

FD_NOT_READY if the function is called while the callback
mechanism of the read-out function is activated
and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

14.2.16 UAF_SetLineState

T FDRET UAF SetLineState (T fd Uartld uartNo,
SYS UWORD32 state,
SYS UWORD32 mask)

Description

This function sets the states of the V.24 status lines according to the bits fields of the parameters state
and mask.

Parameters

uartNo
This parameter indicates which UART this function applies to.

state

This parameter corresponds to the bits field used to change the states of the V.24 status lines.

Q’ Texas Instruments — Proprietary Information Page 195 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

mask

This parameter corresponds to the mask used to manipulate the bits of the states of the V.24 status

lines.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_OK

Definition
which corresponds to a successful operation

FD_NOT_SUPPORTED

if uartNo corresponds to the UART IrDA or UART
Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards

FD_INTERNAL_ERR

in case of internal problems with the hardware.

14.2.17 UAF_CheckXEmpty

T FDRET UAF CheckXEmpty (T fd UartId

uartNo)

Description

This function checks the empty condition of the transmitter of the UART driver: hardware FIFO and

software buffer both empty and last character sent.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_OK

Definition
which means that the empty condition is OK,

FD_NOT_SUPPORTED

if uartNo corresponds to the UART IrDA or UART
Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on Tl
Development Boards

FD_NOT_READY

indicates that the transmitter is not empty,

FD_INTERNAL_ERR

in case of internal problems with the hardware.

14.3 Types definition

14.3.1 T_fd_Uartid

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 196 of 401

Strictly Private

Locosto_BSP_API Version 0.3

The purpose of this type is to define the different UARTSs available on Hercules chipset (see document
[2] for more details):

typedef enum {
UAF_UART_O0,
UAF_UART_1,
UAF_UART_2
} T_fd_Uartld;

UAF_UART_O0: This value corresponds to the UART IrDA,
UAF_UART_1: This value corresponds to the UART Modem.
UAF_UART_2: This value corresponds to the UART Modem?2 available on E-Sample platform only.

Note: The current implementaton of IrDA on Tl Development Boards B-Sample,
C-Sample, D-Sample and E-Sample does not support hardware flow control (either CTS/RTS or
DCD/DTR) and thus can’t be used for Fax & Data. Moreover on E-Sample platform, Modem2 can’t be
use for Fax & Data since this UART device is not accessible through a DB9 connector.

14.3.2 T_FDRET

The purpose of this type is to define the returned values of each UAF_XXX functions. This type only
re-defines the signed short integers (16 bits). The allowed values vary from - 32 768 till + 32 767:

typedef short T_FDRET;
Some specific values of this type are defined through user constants:

FD_OK (= 0): Value usually returned by a function when the performed operation is successful.
FD_SUSPENDED (= -1): Value usually returned by a function to indicate that the performed operation
has been suspended.

FD_NOT_SUPPORTED (= -2): Value usually returned by a function when its input parameters don't fit
to the hardware or driver capabilities.

FD_NOT_READY (= -3): Value usually returned by a function called while the hardware or the driver
was not ready to perform the requested operation.

FD_INTERNAL_ERR (= -9): Value usually returned by a function in case of internal problems with the
hardware.

This type definition is within the file “faxdata.h”.

14.3.3 T_baudrate

The purpose of this type is to define the various baudrates available on the UART device:

typedef enum {
FD_BAUD_AUTO,
FD_BAUD_75,
FD_BAUD_150,
FD_BAUD_300,
FD_BAUD_600,
FD_BAUD_1200,
FD_BAUD_2400,
FD_BAUD_4800,
FD_BAUD_7200,
FD_BAUD_9600,
FD_BAUD_14400,
FD_BAUD_19200,

% Texas Instruments — Proprietary Information Page 197 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

FD_BAUD_28800,
FD_BAUD_33900,
FD_BAUD_38400,
FD_BAUD_57600,
FD_BAUD_115200,
FD_BAUD_203125,
FD_BAUD_406250,
FD_BAUD_812500
} T_baudrate;

This type definition is within the file “faxdata.h”.

14.3.4 T _bitsPerCharacter

The purpose of this type is to describe the number of used data bits per character:
typedef enum {

bpc_7,

bpc_8

} T_bitsPerCharacter;

This type definition is within the file “faxdata.h”.

14.3.5 T_stopBits

The purpose of this type is to describe the number of used stop bits per character:

typedef enum {
sb_1,
sb_2
} T_stopBits;

This type definition is within the file “faxdata.h”.

14.3.6 T_parity

The purpose of this type is to describe the used parity for the serial connection:

typedef enum {
pa_none,
pa_even,
pa_odd,
pa_space
} T_parity;

This type definition is within the file “faxdata.h”.

14.3.7 T_flowCtriMode

The purpose of this type is to describe the used flow control mode for the serial connection:

typedef enum {
fc_none,
fc_rts,

% Texas Instruments — Proprietary Information Page 198 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

fc_dtr,
fc_xoff
} T_flowCtriMode;

This type definition is within the file “faxdata.h”.

14.3.8 T_suspendMode

The purpose of this type is to describe the mode of suspension when a callback mechanism is
activated while the related buffer of the driver (Rx or Tx) is empty.

typedef enum {
sm_noSuspend,
sm_suspend
} T_suspendMode;

This type definition is within the file “faxdata.h”.

14.3.9 T_relnstMode

The purpose of this type is to describe the install mode of the callback function.

typedef enum {
rm_notDefined,
rm_relnstall,
rm_nolnstall
} T_relnstMode;

This type definition is within the file “faxdata.h”.

% Texas Instruments — Proprietary Information Page 199 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 15 UART

Error! Reference source not found. Error! Reference source not found. Error!
Bookmark not defined.

Error! Reference source not found. Interface Definition Error! Bookmark not
defined.

Error! Reference source not found. Error! Reference source not found. Error!
Bookmark not defined.

Q’ Texas Instruments — Proprietary Information Page 200 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

15.1 Introduction

The purpose of this document is to describe the interface of the functions provided by the UART
driver, when the UART device is used for Fax & Data.

This driver only allows managing the UART Modem serial device of the B-Sample,
C-Sample, D-Sample and E-Sample Texas Instruments Development Boards. Indeed, the UART IrDA
device of these boards can’t be used for Fax & Data because the hardware flow control (either
CTS/RTS for B-Sample or DCD/DTR for C-Sample, D-Sample and E-Sample) is not supported.
Moreover the UART Modem2 of the E-Sample platform cannot be used for Fax & Data because this
device is not directly accessible through a DB9 connector.

The use of serial ports of Texas Instruments Development Boards (B-Sample, C-Sample,
D-Sample or E-Sample) is directly managed by a software module called serialswitch .

A software application (GSM/GPRS Protocol Stack) deals with several serial data flows that are
dynamically connected by the serialswitch module to the hardware serial devices through software
UART drivers.

The figure below illustrates how the serial data flows of a GSM/GPRS Protocol Stack application could
be linked to the hardware serial devices.

Flow #1 Flow #2 Flow #3 Flow #4
PS Trace Layer1/Riviera Fax & Data Bluetooth
(Old Frame) Trace AT Cmd HCI

e T

SERIAL PORTS
DYNAMIC SWITCH

Dummy F&D

'uDummy BT HC

/" Dummy Trace
Driver ' Driver Driver
UART Trace UART F&D UART BT HCI
Driver Driver Driver
UART UART
IrDA Modem

I:I Hardware device
I:I Software module

Dynamic link at runtime

Figure 11 Data flows and HW devices

Texas Instruments — Proprietary Information Page 201 of 401

{'f TeEXAS
INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

15.2 Interface description

15.2.1 UAF_Init

T FDRET UAF Init (T fd UartId uartNo)

Description

This function initializes the UART hardware used for Fax & Data, and installs the interrupt handlers.
The parameters are set to the following default values:

19200 bps,
8 data bits per character,
1 stop bit,
no parity,
no flow control.

All functionalities of the UART driver are disabled, and must be enabled by calling the function
UAF_Enable.

Parameters

uartNo This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET
The function returns immediate with the following possible values:

Id Definition

FD_OK which corresponds to a successful operation.

if uartNo corresponds to the UART IrDA or UART Modem2
FD_NOT_SUPPORTED which can’t be used for Fax & Data on Tl Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware..

15.2.2 UAF_Enable

T FDRET UAF Enable (T fd uartid uartNo,SYS BOOL enable)

Description

This function enables or disables the functionalities of the UART driver used for Fax & Data, according
to the value of enable. In the deactivated state, all information about the communication parameters
are stored and recalled if the driver is again enabled. When the driver is enabled the Rx and Tx
buffers are cleared.

Parameters

uartNo This parameter indicates which UART this function applies to.

enable The allowed values are:

Q’ Texas Instruments — Proprietary Information Page 202 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

> 0 to disable the functionalities of the UART driver.
> 1 to enable the functionalities of the UART driver.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2
which can’t be used for Fax & Data on Tl Development Boards,
FD_INTERNAL_ERR in case of internal problems with the hardware..

15.2.3 UAF_SetComPar

T FDRET UAF SetComPar (T fd UartId uartNo,
T baudrate baudrate,
T bitsPerCharacter bpc,
T stopBits sb,
T parity parity)

Description

This function sets up the communication parameters of the Fax & Data serial data flow: used
baudrate, bpc data bits and sb stop bits per character, and used parity.

Parameters

uartNo
This parameter indicates which UART this function applies to.
baudrate
This parameter indicates the used baud rate for the serial connection.
Bpc
This parameter corresponds to the number of used data bits per character.
Sb
This parameter indicates the number of used stop bits per character.
Parity

This parameter corresponds to the used parity for the serial connection.

Immediate Return

T_FDRET
The function returns immediate with the following possible values:

Id Definition

Q’ Texas Instruments — Proprietary Information Page 203 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

FD_OK which corresponds to a successful operation.

FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2
which can’t be used for Fax & Data on Tl Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware..

15.2.4 UAF_SetBuffer

T FDRET UAF SetBuffer (T fd UartId uartNo,
SYS UWORD16 bufSize,
SYS UWORD16 rxThreshold,
SYS UWORD16 txThreshold)

Description

This function sets up the size of the circular buffers and the related thresholds of the UART driver.
This function may be called only if the UART has been previously disabled with UAF_Enable.

Parameters

uartNo

This parameter indicates which UART this function applies to.
bufSize

This parameter indicates the size of the Rx and Tx circular buffers.
RxThreshold

This parameter corresponds to the amount of received bytes that leads to a call to the suspended
read-out function, which is passed to the function UAF_ReadData.

TxThreshold

This parameter corresponds to the amount of bytes in the Tx buffer that leads to a call to the
suspended write-in function, which is passed to the function UAF_WriteData.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem?2

which can’t be used for Fax & Data on Tl Development Boards
or if the bufSize exceeds the maximal possible capabilities of
the driver or the threshold values don’t correspond to the
bufSize,

FD_INTERNAL_ERR in case of internal problems with the hardware or if the function
has been called while the UART is enabled .

15.2.5 UAF_SetFlowCtrl

Q’ Texas Instruments — Proprietary Information Page 204 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T FDRET UAF SetFlowCtrl (T fd UartId uartNo,
T flowCtrlMode fcMode,
SYS UWORDS XON,
SYS UWORDS XOFF)

Description

This function changes the flow control mode of the UART driver to fcMode. If no flow control is set, a
loss of character should be prevented by the application. If a flow control is set, DTR or RTS is
activated or XOFF is sent if the Rx buffer is not able to store the received characters. Otherwise DTR
or RTS is deactivated or XON is sent.

Parameters

uartNo
This parameter indicates which UART this function applies to.
fcMode
This parameter indicates the used flow control mode for the serial connection.
XON

This parameter corresponds to the ASCII code of the XON character. This parameter is ignored if
fcMode is not set to fc_xoff.

XOFF

This parameter corresponds to the ASCII code of the XOFF character. This parameter is ignored if
fcMode is not set to fc_xoff.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2

which can’t be used for Fax & Data on Tl Development Boards
or if the selected flow control mode is not supported

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.6 UAF_SetEscape

T FDRET UAF SetEscape (T fd UartId uartNo,
char escChar,
SYS UWORD16 guardPeriod)

Description

To return to the command mode of the ACI while a data connection is established, an escape
sequence (composed of three escChar) has to be detected. To distinguish between user data and the
escape sequence a defined guardPeriod duration is necessary before and after this sequence. With
this function the escape character and the guard period related to the UART driver can be set up.

Q’ Texas Instruments — Proprietary Information Page 205 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

uartNo
This parameter indicates which UART this function applies to.
escChar

This parameter corresponds to the ASCII code of the character which could appear three times as an
escape sequence.

guardPeriod

This parameter denotes the minimal duration of the rest before the first and after the last
escChar character of the escape sequence, and the maximal receiving duration of the whole escape
string. This value is expressed in milliseconds (see document [3] for type definition).

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART Modem2

which can’t be used for Fax & Data on Tl Development Boards
or if the selected flow control mode is not supported

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.7 UAF_ReadData

T FDRET UAF ReadData (T fd UartId uartNo,

T suspendMode suspend,

void (readOutFunc (SYS BOOL cldFromIrqg,
T relInstMode *relnstall,
SYS UWORDS nsource,
SYS UWORDS *sourcel],
SYS UWORD16 sizel],
SYS UWORD32 state)))

Description

To read the received characters out of the Rx buffer the address of a function is passed. If characters
are available, the driver calls this function and passes the source address and the amount of readable
characters. Because the Rx buffer is circular, callback function may be called with more than one
address of buffer fragment. The readOutFunc function modifies the contents of the size array to return
the driver the number of processed characters. Each array entry is decremented by the number of
bytes read in the fragment. If the function is called while the Rx buffer is empty, it depends on the
suspend parameter to suspend the callback or to leave without any operation. In the case of
suspension, the return value is FD_SUSPENDED (refer to §5.2). A delayed callback will be performed
if:

the Rx buffer reaches the adjusted threshold (rxThreshold of UAF_SetBuffer - refer to §6.4),

the state of a V.24 input line has changed,

a break is detected,

Q’ Texas Instruments — Proprietary Information Page 206 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

an escape sequence is detected.

If no suspension is necessary the function returns the number of processed bytes.

Parameters

uartNo
This parameter indicates which UART this function applies to.
suspend
This parameter indicates the mode of suspension in case of Rx buffer empty.
void (readOutFunc (SYS_BOOL cldFromirq,
T_relnstMode *relnstall,
SYS_UWORDS nsource,
SYS_UWORDS *sourcel],
SYS_UWORD16 size[],
SYS_UWORD32 state)))
This parameter corresponds to the callback function with all its parameters:
CldFromirq

Indicates if the callback function is called from an interrupt service routine (= TRUE = 1) or not (=
FALSE = 0).

relnstall

The callback function sets this parameter to rm_relnstall if the driver must call again the callback
function when the Rx threshold level is reached. Else it will be set to rm_nolnstall. Before to call the
readOutFunc function this parameter is set to rm_notDefined.

nsource

This parameter informs the callback function about the number of fragments which are ready to
copy from the circular Rx buffer.

source

Corresponding to nsource, this array contains the addresses of the fragments.
size

Corresponding to nsource and source, this array contains the sizes of each fragments.
state

This parameter corresponds to the status of the V.24 lines and the break / escape detection.

Immediate Return

T_FDRET
The function returns immediate with the following possible values:

Id Definition
which corresponds to a successful operation and

Any values 2 0 especially to the amount of processed data

if uartNo corresponds to the UART IrDA or UART

FD_NOT_SUPPORTED Modem2 which can’t be used for Fax & Data on
T1 Development Boards,
FD_SUSPENDED when the callback is suspended until the buffer or
% T Texas Instruments — Proprietary Information Page 207 of 401
EXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

state condition change,

if the function is called while the callback
FD_NOT_READY mechanism is activated and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.8 UAF_WriteData

T FDRET UAF WriteData (T fd UartId uartNo,
T suspendMode suspend,
void (writeInFunc (SYS BOOL cldFromIrg,
T relInstMode *relnstall,
SYS UWORDS ndest,
SYS UWORDS *dest [],
SYS UWORD16 size [])))

Description

To write characters into the Tx buffer the address of a function is passed. If free space is available in
the buffer, the driver calls this function and passes the destination address and the amount of space.
Because the Tx buffer is circular, the callback function may be called with more than one address of
buffer fragment. The writelnFunc function modifies the contents of the size array to return the driver
the number of processed bytes. Each array entry is decremented by the number of bytes written in
this fragment. If the function is called while the Tx buffer is full, it depends on the suspend parameter
to suspend the callback or to leave this function without any operation. In the case of suspension the
returned value is FD_SUSPENDED . A delayed callback will be performed if the Tx buffer reaches the
adjusted threshold . If no suspension is necessary the function returns the number of processed
bytes.

Parameters

uartNo
This parameter indicates which UART this function applies to.
suspend

This parameter indicates the mode of suspension in case of Tx buffer empty (see §5.8 for allowed
values).

void (writelnFunc (SYS_BOOL cldFromirq,
T_relnstMode *relnstall,
SYS_UWORDS ndest,
SYS_UWORDS *dest([],
SYS_UWORD16 size[])))

This parameter corresponds to the callback function with all its parameters

CldFromirq

Indicates if the callback function is called from an interrupt service routine (= TRUE = 1) or not (=
FALSE = 0).

relnstall

The callback function sets this parameter to rm_relnstall if the driver must call again the callback
function when the Tx threshold level is reached. Else it will be set to rm_nolnstall.Before to call the
writelnFunc function this parameter is set to rm_notDefined.

Ndest

Q’ Texas Instruments — Proprietary Information Page 208 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This parameter informs the callback function about the number of fragments which are available in the
Tx buffer.

dest
Corresponding to ndest, this array contains the addresses of the fragments.
Size

Corresponding to ndest and dest, this array contains the sizes of each fragments.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

[of Definition
Any values =0 which corresponds to a successful operation and
especially to the amount of processed data
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem?2 which can’t be used for Fax & Data on
T1 Development Boards,

FD_SUSPENDED when the callback is suspended until the buffer or
state condition change,

FD_NOT_READY if the function is called while the callback
mechanism is activated and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.9 UAF_InpAvail

T FDRET UAF InpAvail (T fd UartId uartNo)

Description

This function allows knowing the number of available characters in the Rx circular buffer of the UART
driver.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
Any values > 0 Which correspond to the amount of data in the Rx
buffer.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 which can’t be used for Fax & Data on
T1 Development Boards,

0 if the function is called while the driver is

Q’ Texas Instruments — Proprietary Information Page 209 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

disabled,
FD_NOT_READY if the function is called while the callback
mechanism is activated and still not terminated,
FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.10 UAF_OutpAvail

T_FDRET UAF_OutpAvail (T_fd_Uartld uartNo)

Description

This function allows knowing the number of characters in the Tx circular buffer of the UART driver.

Parameters

uartNo
This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
Any values > 0 which correspond to the amount of data in the Tx
buffer.
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem?2 which can’t be used for Fax & Data on
T1 Development Boards,

0 if the function is called while the driver is
disabled,

FD_NOT_READY if the function is called while the callback
mechanism is activated and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.11 UAF_EnterSleep

T FDRET UAF EnterSleep (T fd UartId uartNo)

Description

This function determines if the UART device is ready to enter deep sleep mode or not. Moreover, if
the UART is ready, it is set up so that it may be waked up by the dedicated wake-up interrupt.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Q’ Texas Instruments — Proprietary Information Page 210 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_NOT_SUPPORTED

Definition
if uartNo corresponds to the UART IrDA or UART
Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards,

(= FALSE) when the UART device is not ready to
enter deep sleep mode

(= TRUE) when the UART is ready to enter deep
sleep mode and has also been set up in order to
be waked-up

15.2.12 UAF_WakeUp

T FDRET UAF WakeUp (T fd UartId uartNo)

Description

When called, this function wakes up the UART device: wake-up interrupt disabled and usual Rx, Tx

and Modem interrupts again unmasked.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_NOT_SUPPORTED

Definition
if uartNo corresponds to the UART IrDA or UART
Modem2 which can’t be used for Fax & Data on
T1 Development Boards,

FD_OK

which corresponds to a successful operation.

15.2.13 UAF_StopRec

T FDRET UAF StopRec (T fd UartId uartNo)

Description

If a flow control mode is set, this function tells the terminal equipment (e.g. a PC) that no more data
can be received by the UART driver: DTR or RTS is deactivated, or XOFF is sent. If this function is
called, only a call to UAF_StartRec or an initialization restarts the transmission from the terminal

equipment.
Q’ Texas Instruments — Proprietary Information Page 211 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation,
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.14 UAF_StartRec

T FDRET UAF StartRec (T fd UartId uartNo)

Description

If a flow control mode is set, this function tells the terminal equipment (e.g. a PC) that the receiver of
the UART driver is able to receive some data: DTR or RTS is activated, or XON is sent.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation,
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards,

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.15 UAF_GetLineState

Q’ Texas Instruments — Proprietary Information Page 212 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T FDRET UAF GetLineState (T fd Uartid uartNo,SYS UWORD32 *state)

Description

This function returns the state of the V.24 lines, the flow control state and the result of the break /
escape detection process as a bit field, related to the Fax & Data serial data flow.

Parameters

uartNo
This parameter indicates which UART this function applies to.
state

This parameter represents the state of the V.24 lines, the flow control state and the result of the break
/ escape sequence detection process as a bit field (see document [3] for type definition).

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id Definition
FD_OK which corresponds to a successful operation,
FD_NOT_SUPPORTED if uartNo corresponds to the UART IrDA or UART

Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards

FD_NOT_READY if the function is called while the callback
mechanism of the read-out function is activated
and still not terminated,

FD_INTERNAL_ERR in case of internal problems with the hardware.

15.2.16 UAF_SetLineState

T FDRET UAF SetLineState (T fd Uartld uartNo,
SYS UWORD32 state,
SYS UWORD32 mask)

Description

This function sets the states of the V.24 status lines according to the bits fields of the parameters state
and mask.

Parameters

uartNo
This parameter indicates which UART this function applies to.

state

This parameter corresponds to the bits field used to change the states of the V.24 status lines.

Q’ Texas Instruments — Proprietary Information Page 213 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

mask

This parameter corresponds to the mask used to manipulate the bits of the states of the V.24 status

lines.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_OK

Definition
which corresponds to a successful operation

FD_NOT_SUPPORTED

if uartNo corresponds to the UART IrDA or UART
Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards

FD_INTERNAL_ERR

in case of internal problems with the hardware.

15.2.17 UAF_CheckXEmpty

T FDRET UAF CheckXEmpty (T fd UartId

uartNo)

Description

This function checks the empty condition of the transmitter of the UART driver: hardware FIFO and

software buffer both empty and last character sent.

Parameters

uartNo

This parameter indicates which UART this function applies to.

Immediate Return

T_FDRET

The function returns immediate with the following possible values:

Id
FD_OK

Definition
which means that the empty condition is OK,

FD_NOT_SUPPORTED

if uartNo corresponds to the UART IrDA or UART
Modem2 (UAF_UART_0 or UAF_UART_2 - refer
to §5.1) which can’t be used for Fax & Data on TI
Development Boards

FD_NOT_READY

indicates that the transmitter is not empty,

FD_INTERNAL_ERR

in case of internal problems with the hardware.

15.3 Types definition

15.3.1 T_fd_Uartld

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 214 of 401

Strictly Private

Locosto_BSP_API Version 0.3

The purpose of this type is to define the different UARTSs available on Hercules chipset (see document
[2] for more details):

typedef enum {
UAF_UART_O0,
UAF_UART_1,
UAF_UART_2
} T_fd_Uartld;

UAF_UART_O0: This value corresponds to the UART IrDA,
UAF_UART_1: This value corresponds to the UART Modem.
UAF_UART_2: This value corresponds to the UART Modem?2 available on E-Sample platform only.

Note: The current implementaton of IrDA on Tl Development Boards B-Sample,
C-Sample, D-Sample and E-Sample does not support hardware flow control (either CTS/RTS or
DCD/DTR) and thus can’t be used for Fax & Data. Moreover on E-Sample platform, Modem2 can’t be
use for Fax & Data since this UART device is not accessible through a DB9 connector.

15.3.2 T_FDRET

The purpose of this type is to define the returned values of each UAF_XXX functions. This type only
re-defines the signed short integers (16 bits). The allowed values vary from - 32 768 till + 32 767:

typedef short T_FDRET;
Some specific values of this type are defined through user constants:

FD_OK (= 0): Value usually returned by a function when the performed operation is successful.
FD_SUSPENDED (= -1): Value usually returned by a function to indicate that the performed operation
has been suspended.

FD_NOT_SUPPORTED (= -2): Value usually returned by a function when its input parameters don't fit
to the hardware or driver capabilities.

FD_NOT_READY (= -3): Value usually returned by a function called while the hardware or the driver
was not ready to perform the requested operation.

FD_INTERNAL_ERR (= -9): Value usually returned by a function in case of internal problems with the
hardware.

This type definition is within the file “faxdata.h”.

15.3.3 T_baudrate

The purpose of this type is to define the various baudrates available on the UART device:

typedef enum {
FD_BAUD_AUTO,
FD_BAUD_75,
FD_BAUD_150,
FD_BAUD_300,
FD_BAUD_600,
FD_BAUD_1200,
FD_BAUD_2400,
FD_BAUD_4800,
FD_BAUD_7200,
FD_BAUD_9600,
FD_BAUD_14400,
FD_BAUD_19200,

% Texas Instruments — Proprietary Information Page 215 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

FD_BAUD_28800,
FD_BAUD_33900,
FD_BAUD_38400,
FD_BAUD_57600,
FD_BAUD_115200,
FD_BAUD_203125,
FD_BAUD_406250,
FD_BAUD_812500
} T_baudrate;

This type definition is within the file “faxdata.h”.

15.3.4 T _bitsPerCharacter

The purpose of this type is to describe the number of used data bits per character:
typedef enum {

bpc_7,

bpc_8

} T_bitsPerCharacter;

This type definition is within the file “faxdata.h”.

15.3.5 T_stopBits

The purpose of this type is to describe the number of used stop bits per character:

typedef enum {
sb_1,
sb_2
} T_stopBits;

This type definition is within the file “faxdata.h”.

15.3.6 T_parity

The purpose of this type is to describe the used parity for the serial connection:

typedef enum {
pa_none,
pa_even,
pa_odd,
pa_space
} T_parity;

This type definition is within the file “faxdata.h”.

15.3.7 T_flowCtriMode

The purpose of this type is to describe the used flow control mode for the serial connection:

typedef enum {
fc_none,
fc_rts,

% Texas Instruments — Proprietary Information Page 216 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

fc_dtr,
fc_xoff
} T_flowCtriMode;

This type definition is within the file “faxdata.h”.

15.3.8 T_suspendMode

The purpose of this type is to describe the mode of suspension when a callback mechanism is
activated while the related buffer of the driver (Rx or Tx) is empty.

typedef enum {
sm_noSuspend,
sm_suspend
} T_suspendMode;

This type definition is within the file “faxdata.h”.

15.3.9 T_relnstMode

The purpose of this type is to describe the install mode of the callback function.

typedef enum {
rm_notDefined,
rm_relnstall,
rm_nolnstall
} T_relnstMode;

This type definition is within the file “faxdata.h”.

% Texas Instruments — Proprietary Information Page 217 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 16 12C

16.1 Introduction 219
16.2 Service functions definition 219
16.3 Test functions definition 223
16.4 Message definition 224
16.5 Types definition 226
16.6 Configuration Items 226
16.7 ENTITY State diagram 226
{Z’ TEXAS Texas Instruments — Proprietary Information Page 218 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

16.1 Introduction

This document describes the interface (API) of the 12C driver . This driver provides high level services
for communication with 12C devices which are connected to the 12C controller of the Locosto
processor. The API of the I12C driver is a REMU type interface which is re-entrant and non-blocking.

The driver supports Multi-master transmitter/receiver communication mode but does not support Slave
receiver/transmitter communication mode. This means that the Locosto will always be master.

The driver support 7-bit and 10-bit addressing mode which is configurable at compile time. The driver
support standard mode (up to 100 Kbits/s) and fast mode (up to 400 Kbits/s) which is configurable at
compile time.

The detailed requirements of the 12C-SWE can be found in Error! Reference source not found..
Specification of the 12C hardware sub-system can be found in Error! Reference source not found..
Information about the I°C bus standard can be found in Error! Reference source not found..

(Provide a short description of this document. Describe which driver is documented, the purpose of
the driver, the services it provides, the scope of the driver, who will use the driver, which entities this
driver is using (linked entities), etc.

16.2 Service functions definition

16.2.1 i2c_set_transfer_mode

T RV RET i2c set transfer mode (E_I2C TRANFER MODE 1iZ2c _mode)

Description

This function selects the Transfer mode to be used by the driver. Default setting will be
[2C_INTERUPT.

Parameters

I2c_mode
Indicates whether to use interrupt-, or polling- base method to transfer data between the i2c
controllers to the application.
I2C_INTERRUPT (Transfer data to the client ENTITY interrupt based)
I2C_POLLING (Transfer data to the client ENTITY polling based)
For interrupt and polling based transfer see also [I2C_HW_SPEC].

Immediate Return

T_RV_RET

The function returns immediate with the following possible values:

Id Definition
RV_OK The API function was successfully executed.
RV_NOT_READY The driver is not able to handle this request at this moment (SWE not initialised).
RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.
Event Return
Q’ Texas Instruments — Proprietary Information Page 219 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

I2C_TRANSFER_MODE_RSP_MSG event is returned to the calling ENTITY in case the pointer to the
call-back function in the return path contains NULL, if the pointer to the calback function is not NULL,
the message will be returned as parameter of the callbackfunction.

Current restriction of use

None.

16.2.2 i2c_read

T I2C RETURN i2c read (UINT16 address, UINT16 *read buffer p,UINTI16
nmb_of bytes, T I2C ENDIAN endian, T RV _RETURN return path);

Description

This function reads a number of bytes from an i2c address.

Parameters

address
I2c address where the data is read from.

read_buffer_p
Buffer where the readdata must be placed. (The client must allocate this buffer)

nmb_of bytes
Number of bytes to read from the i2c address

endian
Indicates if Big endian or little endian is used.
Big endian first the high byte then low byte
Little endian first the low byte then high byte.

return_path
The return path of the client. The structure provides information about the way the driver must react
asynchronous (whether to use a call-back principle or a return message).

Immediate Return

T_RV_RET
The function returns immediate with the following possible values:

Id Definition

RV_OK The API function was successfully executed.

The driver is not able to handle this request at this moment (SWE not

RV_NOT_READY P
- - initialised).

RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.

Event Return

An 12C_READ_RSP_MSG event is returned to the calling ENTITY in case the pointer to the call-back
function in the return path contains NULL, if the pointer to the calback function is not NULL, the
message will be returned as parameter of the callbackfunction.

Q’ Texas Instruments — Proprietary Information Page 220 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Current restriction of use

None.

16.2.3 i2c_write

T I2C RETURN i2c write (UINT16 address, UINT16* write buffer p, UINTI16
nmb_of bytes, T I2C ENDIAN endian, T RV _RETURN return path);

Description

This function writes a number of bytes to an i2c address.

Parameters

address
I2c address of the device, where the data is written to

write_buffer_p
Pointer to the “buffer which contains the data that must be written. (The client must allocate this
buffer)

nmb_of bytes
Number of bytes to write to the i2c address

Endian
Indicates if Big endian or little endian is used.
Big endian first the high byte then low byte
Little endian first the low byte then high byte.

return_path
The return path of the client. The structure provides information about the way the driver must react
asynchronous (whether to use a call-back principle or a return message).

Immediate Return

T_RV_RET

The function returns immediate with the following possible values:

id Definition
RV_OK The API function was successfully executed.
RV_NOT_READY The driver is not able to handle this request at this moment (SWE not initialised).
RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.

Event Return

An 12C_WRITE_RSP_MSG event is returned to the calling ENTITY in case the pointer to the call-back
function in the return path contains NULL, if the pointer to the calback function is not NULL, the
message will be returned as parameter of the callbackfunction.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 221 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

16.2.4 i2c_get_sw_version

UINT32 i2c _get sw version (void)

Description

This function returns the driver version.

Parameters

None.

Immediate Return

UINT32
Bit Name Function
[0-15] BUILD Build number
[16-23] MINOR Minor version number
[24-31] MAJOR Major version number

Current restriction of use

None.

16.2.5 i2c_get_hw_version

UINT8 iZ2c get hw version (void)

Description

This function returns the hardware version of the 12C device.

Parameters

None.

Immediate Return

UINTS8
Bit Name Function
[0-3] MINOR Minor version number
[4-7] MAJOR Major version number

Current restriction of use

None.
Q’ Texas Instruments — Proprietary Information Page 222 of 401
TExXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

16.3 Test functions definition

16.3.1 i2c_set_system_test

T RV RET i2c set system test (T I2C FREERUN freerun mode,
T I2C INT SET int status,
T I2C TEST test mode,
UINTS8 scl value,
UINTS8 sda value)
Description

This function is used to facilitate system-level tests by overriding some of the standard functional
features of the peripheral. It can permit the test of SCL counters, control the signals that connect to
I/0 pins for digital loop-back for self-test. It also provides stop/no-stop functionality in debug mode.
Caution: never use this register for normal 12C operation.

Parameters

freerun_mode
With freerun_mode the behaviour of the I12C controller can be defined when a breakpoint is
encountered in the debugger.

int_status
With int_status the interrupt status bits as defined in T_I2C_INTERRUPT can all be set to 1.

test_mode
With test_mode the device can put in two different test modes.
. The SCL counter test mode
Generate continuous clock signal on SCL pin. This is useful to test the prescaler and SCL high/low
counters. (Verify speed settings). Parameters scl_value and sda_value has no meaning in this
mode.
. Loopback mode.
The value of the scl_value and sda_value parameters are routed to the SCL and SDA lines. Use the
function i2c_get_test data to read back the effect on the output lines.
Possible open lines or shortcuts can be detected in this way.

scl_value and sda_value
Used only in combination with the parameter test_mode and only then when it selects the loopback
test mode mode. Possible values for scl_value and sda_value are 1 for high and O for low.

Immediate Return

T_RV_RET

The function returns immediate with the following possible values:

id Definition
RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER The parameter is incorrect.
RV_NOT READY Eigﬁzt;;j process is supported but cannot be processed now (SWE not

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 223 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

16.3.2 i2c_get_test_data

T RV RET iZ2c get test data(UINTS *scl value p,
UINTS *sda value p)

Description

This function is used to read the status of the data and clock lines (SDA and SCL).
The returned values are only defined when the device is already set in the loopback system test mode
(see Error! Reference source not found.).

Parameters

scl_value_p and sda_val_p
Must point to the location where the state of the SCL and SDA lines is to be written.
The returned values are only in valid when the system test mode is selected in the loopback .

Immediate Return

T_RV_RET

The function returns immediate with the following possible values:

id Definition
RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER The parameter is incorrect.
RV_NOT READY ﬁ;etgtljsz‘ga)d process is supported but cannot be processed now (ENTITY not

Current restriction of use

None.

16.4 Message definition

16.4.1 12C_TRANSFER_MODE_REQ_MSG

The I2C_TRANSFER_MODE_REQ_MSG can be used to set the transfer mode The driver does not
respond

typedef struct {
[** Message header. */
T_RV_HDR os_hdr;
T_12C_TRANFER_MODE transfer_mode;
T_RV_RETURN return_path

}T_12C_TRANSFER_MODE_REQ_MSG;

16.4.2 12C_READ_REQ_MSG

The 12C_READ_REQ_MSG message can be used to retrieve the data of an 12C address. The driver
responds with a T_12C_READ_RSP_MSG message.

typedef struct {
T_RV_HDR os_hdr;
UINT16 address
UINT8 * read_buffer_p;
Q’ T Texas Instruments — Proprietary Information Page 224 of 401
EXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

UINT16 nmb_of bytes;
T_RV_RETURN return_path;
T_12C_ENDIAN endian

} T_12C_READ_REQ_MSG;

16.4.3 12C_READ_RSP_MSG

Response to the T_12C_READ_REQ_MSG message
typedef struct {
T_RV_HDR os_hdr;

T RV_RET result;
} T_T_I2C_READ_RSP_MSG;

The possible values for ‘result’ are:

Id Definition
RV_OK The API function was successfully executed.

RV NOT READY Req_ug_ste_d process is supported but cannot be processed now (ENTITY
- = not initialized).

RV_INVALID_ PARAMETER A parameter is out of it's valid range
RV INTERNAL ERROR There was an internal error while executing the request. Execution was
- - unsuccessful.

16.4.4 12C_WRITE_REQ_MSG

The 12C_WRITE_REQ_MSG message can be used to send the data to an I12C address. The driver
responds with a T_I12C_WRITE_RSP_MSG message.

typedef struct {

T_RV_HDR os_hdr;
UINT16 address;
UINT16 write_buffer_p;
UINT16 nmb_of bytes;
T_12C_ENDIAN endian;
T_RV_RETURN return_path;

} T_12C_READ_REQ_MSG;

16.4.5 12C_WRITE_RSP_MSG
Response to the T_12C_WRITE_REQ_MSG message
typedef struct {

T_RV_HDR os_hdr;

T RV_RET result;
} T_T_I2C_READ_RSP_MSG;

The possible values for ‘result’ are:

Id Definition
RV_OK The API function was successfully executed.
RV_NOT READY _R_elqulested process is supported but cannot be processed now (SWE not
initialized).
RV_INVALID_PARAMETER A parameter is out of it's valid range
RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.
Q’ Texas Instruments — Proprietary Information Page 225 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

16.5 Types definition

API type definitions are located in the configuration file i2c_api.h in the common directory.
None of the numbers used in definitions are to be changed by the client programmer!

16.5.1 T_I2C_TRANSFER_MODE
Defines the way the data is transferred to or from a calling ENTITY

T_l2c_TRANSFER_MODE can have the following values:
typedef enum {

[2C_INTERRUPT =0,

12C_POLLING,

12C_DMA

} T_I2C_TRANFER_MODE;

16.5.2 T_I2C_ENDIAN
Defines the way the data is transferred to or from a calling ENTITY

T_l2c_TRANSFER_MODE can have the following values:
typedef enum {
[2C_LITTLE_ENDIAN = (0x000),
12C_BIG_ENDIAN = (0x4000)
} T_I2C_ENDIAN;

16.6 Configuration Items

#define 12C_PRESCALE_VALUE 0x01
The Locosto system clock is divided by this (value +1) to give the internal sampling clock in the i2c
device

#define 12C_OWN_ADDRESS <value>
Possible values: 7 bit or 10 bit value depending on the selected addressing mode.

#define 12C_CLOCK_TIME_HIGH <value>
Possible values: ESAMPLE_100KHZ_HIGH, ESAMPLE_400KHZ_HIGH, user specific value.

#define 12C_CLOCK_TIME_LOW <value>
Possible values: ESAMPLE_100KHZ_LOW, ESAMPLE_400KHZ_LOW, user specific value.

#define I2C_ADRESS_MODE
Possible values: 12C_07_BITS_ADDRESS_MODE, [2C_10_BITS_ADDRESS_MODE.

16.7 ENTITY State diagram

% Texas Instruments — Proprietary Information Page 226 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

init UNINITIALISED

INITIALISED it
READY |«—start
request msg-—
|
HISR event
BUSY init KILLED
HISR event stop
STOPPED kill
Figure 12 State machine behaviour
Q’ Texas Instruments — Proprietary Information Page 227 of 401
TExXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

Chapter 17 KEYPAD

SUMMARY

1. INTRODUCTION 230

2. OVERVIEW 231

2.1

Generality 231

3. SOFTWARE DESIGN 234

31 Constants 234
3.2 Types definition 234
3.2.1 T KPD SUBSCRIBER 234
322 T KPD_VIRTUAL KEY ID 234
323 T KPD VIRTUAL KEY TABLE 234
324 T _KPD MODE 234
3.2.5 T KPD NOTIF_LEVEL 234
3.2.6 T KPD KEY STATE 235
327 T KPD PRESS STATE 235
3.2.8 T KPD KEY INFO 235
3.3 Messages definition 235
3.3.1 T KPD KEY EVENT MSG 235
332 T _KPD STATUS_MSG 235
34 Interface functions description236
34.1 kpd_subscribe 236
342 kpd unsubscribe 238
3.4.3 kpd_define key notification 239
3.4.4 kpd change mode 242
3.4.5 kpd own keypad 244
3.4.6 kpd_set key config 246
3.4.7 kpd_get available keys 248
348 kpd get ascii_key code 249
3.49 KP_Init (Deprecated function) 250
% Texas Instruments — Proprietary Information Page 228 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Reference documents

Doc # Document Title Name
1 Riviera Manager Overview RIV021 v0.5 (Texas Instruments)
Glossary
SWE SoftWare Entity
MMI Man Machine Interface
Q’ Texas Instruments — Proprietary Information Page 229 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Introduction

This document provides an interface specification of the KEYPAD SW entity.

Q’ Texas Instruments — Proprietary Information Page 230 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Overview

Generality

The main purpose of the keypad driver is to send messages to registered SWE when keys are
pressed or released on the mobile.

Some notions used in the next paragraphs must be explained :

Client/server:

Keypad uses the client/server relationship. Indeed, the keypad is defined like a messages server for
key pressed and keys released actions.

Numerous clients can subscribe to the keypad driver in order to receive these messages

Physical/virtual keys:

Two kinds of keys have been defined to break the link between user action on the physical key and
the key message sent to the client.

Physical keys define the set of keys available on the physical keypad.

Virtual keys are just an abstraction of these physical keys in order to redefine the link between
physical and virtual keys. One or more virtual keys can be linked to the same physical key.

This simplifies development and allows to change the keypad configuration without changing source
code.

A client has no visibility on the physical keys. It only use virtual key ID for all the keypad
services.

Mode:

A mode defines the link between physical and virtual keys. Two pre-defined mode exist, the first is the
default mode, the second is the alphanumeric mode. Additional mode can be added when keypad
driver is implemented according to the customer need.

The keypad driver allows to:

- Subscribe several SWE'’s for a predefined set of key. When one of these is pressed or
released, SWE’s and/or modules concerned are automatically informed.

- Unsubscribe from keypad (for all keys),

- Define repetition for a key (long press and repetition available for a specific subscriber)

- Define a keypad owner. subscriber is the only notified from key pressed or released until
unsubscribe or cancel this privilege.

- Many definable mode (and one dynamic mode (for game configuration)) for associating
physical key and functional key,

- Dynamically change mode,

- Characters association to key pressed/released in default or alphanumeric mode

Below a sequence chart for example :

% Texas Instruments — Proprietary Information Page 231 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Appli 1 Appli 2 Keypad driver

Subscribe(return path, key 1, key 2)

) key 1 pressed
Subscribe(return path, keyl, key3) 5

Inform (key1, pressed)

key 1 released

Inform (key1, pressed) 5
Inform (key1, released)
key 2
Inform (key1, released) §ey pressed
key 2 released
P Inform (key?2, pressed) 5

Inform (key?2, released)

A

key 1 pressed

Unsubscribe() 5

key 1 released
Inform (keyl, pressed) 5

Inform (keyl1, released)

Figure 13: General sequence chart

All the services provided by the keypad SW entity are accessed via direct function call. These
functions are listed in this document. The keypad SW entity use the return mechanism defined in the
Riviera Environment to provide information back to the client.

Return Mechanism

All the functions return an immediate value, providing information on the success or the failure of the
function call. In some (most of the) cases, extra processing time is needed to perform the action

Q’ Texas Instruments — Proprietary Information Page 232 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

requested when calling the function. In this case, the function is exit and later on, one or several
MESSAGEs are sent back by the keypad SW entity.

The keypad SW entity use the MESSAGE format and the return path method defined in Riviera
Environment. Basically, in order to send information back, the keypad SW entity sends MESSAGEs to
the client. A MESSAGE is a buffer, with a header, common to any MESSAGE, and a custom field
related to the MESSAGE. The header is a C structure, containing the msg_id field. This field contains
the unique msg_id of the MESSAGE and is the only way to know which kind of MESSAGE has been
received. Based on this value, the client can re-cast the buffer and access to custom information
related to the MESSAGE.

Client have two ways to get access to the MESSAGEs:
Call back functions or message posted with its ADDRESS ID.

A call back function is a function name, provided by client as a parameter and which will be called by
the keypad SW when an MESSAGE occurs. When a callback function is defined, it is always the
callback function mechanism that is used to return MESSAGE to the client.

But for more efficient implementation, it also possible to directly send a message to the client. In this
case, the ADDR ID of the client must be provided to the keypad SW entity. That implies that the client
is a Riviera SW entity.

The client can define which return mechanism should be used. For that purpose, it must provide a
return_path. The generic return_path type is a C structure, defined as:

typedef struct {
T RVF ADDR_ID addr_id;
VOID
}T RV_RETURN;

% Texas Instruments — Proprietary Information Page 233 of 401
TEXAS Strictly Private
INSTRUMENTS

(*callback

Locosto_BSP_API Version 0.3

Software design

Constants
Label Type Definition
KPD_NB_PHYSICAL_KEYS Integer Define the number of physical keys on the keypad
>0)

Note that this constant is in kpd cfg.h file for keypad driver configuration.

Types definition
T_KPD_SUBSCRIBER

This type defines a subscriber identification for using keypad driver services.
This identification is set by kpd_subscribe function.

typedef void* T_KPD_SUBSCRIBER

T_KPD_VIRTUAL_KEY_ID

This type defines a virtual key identification.

typedef UINT8 T_KPD_VIRTUAL_KEY_ID

T_KPD_VIRTUAL_KEY_ TABLE

This structure defines a set of keys available in a particular mode.

typedef struct { UINT8 nb_notified_keys;
T_KPD_VIRTUAL_KEY_ID notified_keys[KPD_NB_PHYSICAL_KEYS];
} T_KPD_VIRTUAL_KEY_TABLE

T_KPD_MODE

This type list all the mode (default, alphanumeric, and customer mode) possibly used by the client.

Available values are:
KPD DEFAULT MODE
KPD ALPHANUMERIC_MODE
<Other customer mode>

T_KPD_NOTIF_LEVEL

This type list different kind of available notification for a key event (cf § Error! Reference source not found.).

Available values are:
KPD NO_NOTIF
KPD_FIRST PRESS NOTIF
KPD _LONG_PRESS_NOTIF
KPD_INFINITE_REPEAT NOTIF
KPD RELEASE NOTIF

Q’ Texas Instruments — Proprietary Information Page 234 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

T _KPD_KEY_STATE

This type defines the state pressed and released.

Available values are:
- KPD KEY PRESSED
- KPD KEY RELEASED

T_KPD_PRESS_STATE

This type defines the particular state for a pressed key.

Available values are:
- KPD_FIRST_PRESS
- KPD_LONG_PRESS
- KPD_REPEAT_PRESS
- KPD_INSIGNIFICANT_VALUE (used when key is released)

T_KPD_KEY_INFO
This type give key information when its state change (pressed « release)
typedef struct { T_KPD_VIRTUAL_KEY_ID virtual_key_id

T_KPD_PRESS_STATE press_state;
char* ascii_value_p
} T_KPD_KEY_INFO

Messages definition

T_KPD_KEY_EVENT_MSG
This message is sent to a client when a key is pressed or released.
typedef struct ({
T RV_HDR hdr;

T KPD KEY INFO key info;
}T KPD KEY EVENT MSG;

T_KPD_STATUS_MSG

T_KPD_KEY_STATE state;

This message is sent to a client to return the status of an asynchronous process requested by a client.

typedef struct ({

T RV_HDR hdr;
UINTS8 operation;
UINTS status value;

}T KPD KEY EVENT MSG;

% Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 235 of 401

Locosto_BSP_API Version 0.3

Interface functions description

kpd_subscribe

T RV RET kpd subscribe (T _KPD SUBSCRIBER* subscriber p,
T KPD MODE mode,
T KPD VIRTUAL KEY TABLE* notified keys p,
T RV _RETURN return path)

Description

This function needs to be called by the client before any use of the keypad driver services.

If number of notified key is KPD_NB_PHYSICAL_KEYS, client has not to fulfil the structure, this will
be automatically done by the SWE.

By default, client is notified only when the key is released.

Parameters

T_KPD_SUBSCRIBER
Subscriber identification value set by keypad driver to use all the services.

T_KPD_MODE
Mode used by the keypad client (default, alphanumeric, or one amongst those defined by customer).

T_KPD_VIRTUAL_KEY_TABLE
Define all the keys the client want to be notified.

T_RV_RETURN
Return path for key pressed or key released notification.

C.f. paragraph 5.2 : Return Mechanism.

Immediate Return

T_RV_RET

The possible values are:

RV_OK The API function was successfully executed.
RV_INTERNAL_ERR - Max of subscriber is reached,
- Software entity is not started, not yet initialized or initialization has failed
RV_INVALID_ PARAMETER Number of virtual keys is not correct
RV_MEMORY_ERR Memory reaches its size limit

Event Return

KPD_STATUS_MSG
This event is the status sent at the end of the subscription or if an error occurred.
C.f. paragraph 0 for structure definition

The value of operation is : KPD_SUBSCRIBE_OP

The possible values of status_value are:

id Definition
KPD PROCESS OK The asynchronous operation is successful
KPD ERR KEYS TABLE At least one key is not available in the requested mode
Q’ Texas Instruments — Proprietary Information Page 236 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

KPD_ERR_RETURN_PATH_EXISTING Subscriber return path is already defined by
another subscriber
KPD_ERR_INTERNAL An internal error occured

KPD_KEY_EVENT_MSG
This event is sent each time a key changes its state or when repetition key event occurs.
C.f. paragraph 0 for structure definition

The value of virtual_key id is the virtual key id.

The possible values of state are:

id Definition
KPD_KEY_PRESSED Key is pressed
KPD_KEY RELEASED Key is released

The possible values of press_state are:

id Definition
KPD_FIRST_PRESS First press of the key
KPD LONG PRESS Long press of the key
KPD REPEAT PRESS Repeat press of the key
KPD INSIGNIFICANT VALUE Defined when key is released

The value of ascii_value_p is the ASCII code associated to the virtual key

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 237 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

kpd_unsubscribe

T RV RET kpd unsubscribe (T KPD SUBSCRIBER* subscriber p)

Description

This function unsubscribes a client from the keypad driver.

Parameters

T_KPD_SUBSCRIBER
Subscriber identification value.

Immediate Return

T_RV_RET

The possible values are:

RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER Subscriber identification is incorrect
RV_MEMORY ERR Memory reaches its size limit

Event Return

No message is returned for asynchronous process.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 238 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

kpd_define_key_notification

T RV _RET
kpd define key notification (T KPD SUBSCRIBER subscriber,
T KPD VIRTUAL KEY TABLE* notif key table p,
T KPD NOTIF LEVEL notif level,
UINT16 long press time,
UINT16 repeat time)

Description

This function defines notification level for a set of keys. By default, at subscription, all the keys are
defined as KPD_RELEASE_NOTIF for notification level.

It's not mandatory that all the keys defined in the notif_key_table are notified to the subscriber. If one
or more key is set in this table but is not notified to the subscriber, this will have no effect.

If number of notified key is KPD_NB_PHYSICAL_KEYS, client has not to fulfil the structure, this will
be automatically done by the KPD.

Parameters

T_KPD_SUBSCRIBER
Subscriber identification value.

T_KPD_VIRTUAL_KEY_TABLE
Set of keys for level notification definition.

T_KPD_NOTIF_LEVEL
Define what kind of notification is set for all the keys. Mix of the following values can be used. There
are five different values:

- KPD_NO_NOTIF : The client is not notified by any event for this key.

- KPD_FIRST_PRESS_NOTIF The client is not notified of.
= the immediate key press,

- KPD_LONG_PRESS_NOTIF : The client is notified of
= the long press if the key is still pressed after “long_press_time”,

- KPD_INFINITE_REPEAT_NOTIF : The client is notified of
= the long press if the key is still pressed after “long_press_time”,
= the key pressed every “repeat_time” tenth of seconds, until key is released,

- KPD_RELEASE_NOTIF : The client is notified of
= the key release.

UINT16 (long_press_time)
Time tenth of seconds before long press time notification.

UINT16 (repeat_time)
Time in tenth of seconds for key repetition.

% Texas Instruments — Proprietary Information Page 239 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3
Immediate Return

T_RV_RET
The possible values are:

RV_OK

The API function was successfully executed.

RV_INVALID_PARAMETER

- Subscriber identification is incorrect

- Number of virtual keys is not correct

- long_press_time = 0 and repeat_level = KPD_LONG_PRESS_NOTIF
or KPD_INFINITE_REPEAT_NOTIF

- repeat_time=0 and repeat_level = KPD_INFINITE_REPEAT NOTIF

RV_MEMORY_ERR

Memory reaches its size limit

Event Return

KPD_STATUS_MSG

This event is the status sent at the end of the repeat key definition or if an error occurred.
C.f. paragraph 0 for structure definition

The value of operation is : KPD_REPEAT_KEYS_OP

The possible values of status_value are:

id Definition

KPD_PROCESS_OK

The asynchronous operation is successful

KPD_ERR _KEYS_TABLE

At least one key is not available in the subscriber mode

Current restriction of use

Values for long_press_time and repeat_time are available for the subscriber but for all the key defined
in repeat mode. So if a subscriber call the function twice with different values for long_press_time and
repeat_time, only latest values will be taken into account.

Process flow

- Key defined for “first press” and “release”

Keypad

key 1 pressed
Inform (key 1 pressed, FIRST_PRESS)

Client

»

key 1 released 2

Inform (key 1 released)

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information Page 240 of 401
Strictly Private

Locosto_BSP_API Version 0.3

- Key defined for “long press” and “release”

Keypad Client

key 1 pressed 2

A

<long_press_time>
ms elapsed

Inform (key 1 pressed, LONG_PRESS)

>

key 1 released
Inform (key 1 released)

- Key defined for “infinite repeat”, “first press” and “release”

Keypad Client

key 1 pressed
Inform (key 1 pressed, FIRST_PRESS)
X

»

<long_press_time>

ms elapsed
v Inform (key 1 pressed, LONG_PRESS)
A -
<repeat_time> : m
elapsed H Inform (key 1 pressed, REPEAT_PRESS)
A -
<repeat_time> i m
elapsed v Inform (key 1 pressed, REPEAT_PRESS)
A
<repeat_time> i m
elapsed y | Inform (key 1 pressed, REPEAT_PRESS)
key 1 released
2 Inform (key 1 released)
s Texas Instruments — Proprietary Information Page 241 of 401
‘b TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

kpd_change_mode

T RV _RET kpd change mode (T KPD SUBSCRIBER subscriber,
T KPD VIRTUAL KEY TABLE* notified keys p,
T KPD MODE new mode)

Description

This function changes the mode for the specific client.

If number of notified key is KPD_NB_PHYSICAL_KEYS, client has not to fulfil the structure, this will
be automatically done by the KPD.

Parameters

T_KPD_SUBSCRIBER
Subscriber identification value.

T_KPD_VIRTUAL_KEY_TABLE
Define all the keys the client want to be notified in the new mode.

T_KPD_MODE
New mode in which the client want to switch.

Immediate Return

T_RV_RET

The possible values are:

RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER - Subscriber identification value is incorrect,
- Number of virtual keys is not correct
RV_MEMORY ERR Memory reaches its size limit

Event Return

KPD_STATUS_MSG
This event is the status sent at the end of the change mode request or if an error occurred.
C.f. paragraph O for structure definition
The value of operation is : KPD_CHANGE_MODE_OP

The possible values of status_value are:

id Definition
KPD_PROCESS OK The asynchronous operation is successful
KPD _ERR_KEYS TABLE At least one key is not available in the new requested mode

Current restriction of use

Call to this function cancel, for the subscriber, all the repeat mode defined for the keys with the
function kpd_define_repeat_key.

Q’ Texas Instruments — Proprietary Information Page 242 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

If the subscriber was the owner of the keypad, this privilege is cancelled and keypad is set in multi-
notified mode.

If RV_INVALID_PARAMETER is returned, the current mode for the subscriber (if it exists) is the old
mode.

Q’ Texas Instruments — Proprietary Information Page 243 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

kpd_own_keypad

T RV RET kpd own keypad (T KPD SUBSCRIBER subscriber,
BOOL is keypad owner,
T KPD VIRTUAL KEY TABLE* keys owner p)

Description

This function allows a subscriber being the only client to be notified by action on keypad (less CPU
time used).
After this call, the keypad is in the “single notified” state.
This action is cancelled when:
- The function is called with parameter is_keypad_owner to FALSE,
- The subscriber (keypad owner) unsubscribes from keypad.
- The subscriber (keypad owner) changes its mode.

Note that keypad is in the “multi notified” state if there is no subscriber (particularly at the keypad
initialisation)

Parameters

T_KPD_SUBSCRIBER
Subscriber identification value.

BOOL

Define the state to change
- TRUE : keypad pass in “single notified” state
- FALSE : keypad pass in “multi notified” state

T_KPD_VIRTUAL_KEY_TABLE
Set of keys only notified to the subscriber that calls this function. It is mandatory that this table is a
subset of keys defined at the subscription.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER - Subscriber identification value is incorrect,
- Number of virtual keys is not correct
RV_MEMORY ERR Memory reaches its size limit

Event Return

KPD_STATUS_MSG
This event is the status sent at the end of the own keypad request or if an error occurred.
C.f. paragraph O for structure definition
The value of operation is : KPD_OWN_KEYPAD_OP

The possible values of status_value are:

id Definition
KPD PROCESS OK The asynchronous operation is successful
KPD ERR KEYS TABLE At least one key is not defined in the subscriber mode
Q’ Texas Instruments — Proprietary Information Page 244 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

KPD_ERR_SN_MODE

Keypad driver is already in SN mode

KPD_ERR_ID_OWNER_KEYPAD

the keypad owner.

Subscriber try to remove own keypad privilege but it is not

Current restriction of use

None

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 245 of 401

Locosto_BSP_API Version 0.3

kpd_set_key_config

T RV RET kpd set key config (T KPD SUBSCRIBER subscriber,
T KPD VIRTUAL KEY TABLE* reference keys p,
T KPD VIRTUAL KEY TABLE* new keys p)

Description

This function allows setting dynamically a configuration for new or existing virtual keys. The two tables
define a mapping between each entry (new_keys[1] is mapped with reference_keys[1], new_keys[2] is
mapped with reference_keys|[2], ...).

The call of this function doesn’t change the mode of the client.

Parameters

T_KPD_SUBSCRIBER
Subscriber identification value.

T_KPD_VIRTUAL_KEY_TABLE (reference_keys_p)
Set of keys available on keypad in default mode.

T_KPD_VIRTUAL_KEY_TABLE (new_keys_p)
Set of keys that must map with the reference keys.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER - Subscriber identification value is incorrect,

- At least, one reference key is not defined in the default mode
- Number of virtual keys is not correct (in reference key or new key table)
RV_NOT_SUPPORTED Configurable mode is not supported.

RV_MEMORY_ERR Memory reaches its size limit

Event Return

KPD_STATUS_MSG
This event is the status sent at the end of the ey configuration request or if an error occurred.
C.f. paragraph 0 for structure definition

The value of operation is : KPD_SET_CONFIG_MODE_OP

The possible values of status_value are:

id Definition
KPD_PROCESS _OK The asynchronous operation is successful
KPD_ERR_CONFIG_MODE_USED Some subscribers use Config mode.

Current restriction of use

Q’ Texas Instruments — Proprietary Information Page 246 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

None

Q’ Texas Instruments — Proprietary Information Page 247 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

kpd_get_available_keys

T RV RET kpd get available keys (T KPD VIRTUAL KEY TABLE*
available keys p)

Description
This function allows knowing all the available keys in default mode.

Parameters

T_KPD_VIRTUAL_KEY_TABLE
Set of keys available on keypad in default mode. The structure must be declared by the caller, and is
filled by the function.

Immediate Return

T_RV_RET
The possible values are:

id Definition
RV_OK The API function was successfully executed.

Event Return

None.

Current restriction of use

None.
Q’ Texas Instruments — Proprietary Information Page 248 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

kpd_get_ascii_key_code

T RV RET kpd get ascii key code (T KPD VIRTUAL KEY ID key,
T KPD MODE mode,
char** ascii code pp)

Description

This function return associated ASCII value to defined key.

Parameters

T_KPD_VIRTUAL_KEY_ID
Define key identification value.

T_KPD_MODE
Mode in which is defined the link between “key” and “ascii_code”

char (ascii_code_pp)
Associated ASCII code to parameter “key”.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RV_OK The API function was successfully executed.
RV_INVALID_PARAMETER - Mode is different of KPD_DEFAULT_MODE or

KPD_ALPHANUMERIC_MODE
- Key doesn't exist in the defined mode

If returned value is RV_INVALID_PARAMETER, empty string is set in ascii_code_pp variable.

Event Return

None.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 249 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

KP_lInit (Deprecated function)

void KP Init (void(pressed (T KPD VIRTUAL KEY ID)),
void (released (void)))

Description

This function is defined for backward compatibility with Condat.

It register two functions which notify Condat that Power key is pressed for power ON, power OFF
indication.

For information, virtual key id of power key is KPD_PWR

Parameters

pressed
Function called when power key is pressed.

released
Function called when power key is released.

Immediate Return

None

Event Return

None.

Current restriction of use

This function will be removed as soon as possible, when Condat will define one or two
function to call when mobile is power ON and mobile is power OFF.

kpd_retrieve_key_status

T RV RET kpd retrieve key status(T KPD VIRTUAL KEY ID key 1id,
T KPD MODE mode,
T KPD KEY STATE* state) ;)

Description

This function allows application to check the status of a key (whether pressed or released). This API
has been newly added to fix KPD release interrupt miss issue.
Parameters

key_id
Function called when power key is pressed.

mode
Function called when power key is released.

Q’ Texas Instruments — Proprietary Information Page 250 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

state
This will habe the status of the key (KPD_KEY_RELEASED or KPD_KEY_PRESSED).

Immediate Return

RV_OK if operation is successfull,

RV_INVALID_PARAMETER if :
- mode is different of KPD_DEFAULT_MODE or KPD_ALPHANUMERIC_MODE,
- the key doesn't exist in the defined mode.

Event Return

None.

Q’ Texas Instruments — Proprietary Information Page 251 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 18 RTC

18.1 Introduction 253

18.2 Interface description 255

Q’ Texas Instruments — Proprietary Information Page 252 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

18.1 Introduction
This chapter provides an interface specification of the RTC SW entity.

18.1.1 Generality

The main purpose of the RTC driver is to provide the current date and time related functions
incorporating features like setting and unsetting of alarm .

RTC device driver is divided into two parts,
1. Framework and OS agnostic part and
2. Framework/OS dependent part.

All access to the RTC device on the TRITON happens through the 12C driver.

RTC GPF Task —
Framework/OS dependent part

A

A

Low Level RTC driver — I12C device driver (to access
bspTwl3029_Rtc TRITON)

All the APIs defined are framework agnostic. All APIs that use framework related functions are given a
wrapper.The wrapper function takes care of framework related functions. In other case where,

1. HISRis activated from ISR
2. Message is sent from ISR

A call-back function is registered to this Framework agnostic driver which is called from ISR context.
This call-back function handles the HISR activation or message sending.

18.1.2 Sequence Diagrams

% Texas Instruments — Proprietary Information Page 253 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3
12C task] [RTC Task] [bspTwl3029_Rtc

12C_lInitialize
RTC_Initialize

Registers a callback

for Alarm event.

bspTwl3029_Rtc_Init
RTC initialization
Application] [RTC Task] [bspTwl3029_Rtc]

Set Alarm date and time.

Registers

the callback

function or mailbox Address)

RTC SetAlarm

Alarm HISR

the RTC Task

Interrupt context —{

Activate Alarm HISR 4_]

Send message to

bspTwlI3029_Rtc_SetAlarm -

Alarm IT callback function

r g

Transmit callback
or send message
to the application

Y

Set Alarm Sequence diagram

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 254 of 401

Locosto_BSP_API Version 0.3

18.2 Interface description

18.2.1 RTC_INITIALIZE

T RVF RET RTC INITIALIZE (void)

Description

This function does initialization and starts the RTC by calling bspTwl3029_Rtc_Init. This registers a
call-back to the bspTwI3029_Rtc driver which is called when an interrupt occurs.

Parameters

None

Immediate Return

T_RVF_RET

The possible values are:

id Definition
RVF OK The API function successfully executed.
RV_INTERNAL_ERR -Triton Initialization function failed.
RV_MEMORY_ERR Memory allocation for alarm event failed

Event Return

None

Current restriction of use

This is the first API to be called before the useof any API of RTC.

18.2.2 RTC_RtcReset

BOOL RTC RtcReset (void)

Description

This function indicates if RTC reset has occurred. This function calls the bspTwl3029_Rtc_IsReset.

Parameters

None

Immediate Return

BOOL

The possible values are:

id Definition
TRUE RESET has successfully executed.
FALSE RESET Failed
Q’ Texas Instruments — Proprietary Information Page 255 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

Event Return

None

Current restriction of use

None

18.2.3 RTC_GetDateTime

T RVF RET RTC GetDateTime (T RTC DATE TIME* date time)

Description

This function provides the current date and time by calling the bspTwl3029_Rtc_GetDateTime .

Parameters

T_RTC_DATE_TIME

This parameter, a structure, is updated by the API to provide date and time.

typedef struct { UINT8 second; /* seconds after the minute - [0,59] */

UINT8 minute; /* minutes after the hour - [0,59] */
UINT8 hour; /* hours after the midnight - [0,23] */

UINTS8 day; /* day of the month -[1,31] ¥/
UINT8 month; /* months -[01,12] ¥/
UINT8 year; /* years - [00,99] ¥/
UINT8 wday; /* days in a week -[0,6] ¥/

BOOL mode_12_hour; /* TRUE->12 hour mode ; FALSE-> 24 hour mode */

BOOL PM_flag; /*if 12 hour flag = TRUE
TRUE->PM ; FALSE->AM %/
} T_RTC_DATE_TIME;

Immediate Return

T_RVF_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RVF_INTERNAL_ERR bspTwl3029_Rtc_GetDateTime function failed.

Event Return

None

Current restriction of use

None

18.2.4 RTC_SetDateTime

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 256 of 401

Locosto_BSP_API

Version 0.3

T RVF RET RTC SetDateTime (T RTC DATE TIME date time)

Description

This function sets date and time into RTC registers using bspTwl3029_Rtc_SetDateTime.

Parameters

T_RTC_DATE_TIME

This parameter, a structure, is updated by the API to provide date and time.

typedef struct { UINT8 second; /* seconds after the minute - [0,59] */

UINTS8
UINTS8
UINT8
UINT8
UINTS8
UINT8
BOOL
BOOL

}T_RTC_

minute; /* minutes after the hour - [0,59] */
hour; /* hours after the midnight - [0,23] */
day; /* day of the month -[1,31] ¥/
month; /* months -[01,12] %/
year; /* years - [00,99] ¥/
wday; /* days in a week -[0,6] ¥/
mode_12_hour; /* TRUE->12 hour mode ; FALSE-> 24 hour mode */
PM_flag; /*if 12 hour flag = TRUE
TRUE->PM ; FALSE->AM %/
DATE_TIME;

Immediate Return

T_RVF_RET

The possible values are:

id
RVF_OK

Definition
The API function successfully executed.

RV_INTERNAL_ERR

-Triton bspTwl3029_Rtc_SetDateTime function failed.

Event Return

None

Current restriction of use

None

18.2.5 RTC_GetAlarm

T RVF RET RTC_

GetAlarm (T RTC DATE TIME* date time)

Description

This function provides the current alarm value.

Parameters

T_RTC_DATE_TIME

{5’ TExXAS

INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 257 of 401

Locosto_BSP_API

Version 0.3

This parameter, a structure, is updated by the API to provide date and time.

typedef struct { UINT8 second; /* seconds after the minute - [0,59] */

UINT8 minute; /* minutes after the hour - [0,59] */
UINT8 hour; /* hours after the midnight - [0,23] */

UINTS8 day; /* day of the month -[1,31] ¥/
UINT8 month; /* months -[01,12] ¥/
UINT8 year; /* years - [00,99] ¥/
UINT8 wday; /* days in a week -[0,6] ¥/

BOOL mode_12_hour; /* TRUE->12 hour mode ; FALSE-> 24 hour mode */

BOOL PM_flag; /*if 12 hour flag = TRUE
TRUE->PM ; FALSE->AM */
} T_RTC_DATE_TIME;

Immediate Return

T_RVF_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.

Event Return

None

Current restriction of use

None.

18.2.6 RTC_SetAlarm

T RVF RET RTC SetAlarm(T RTC DATE TIME date time, T RV _RETURN return path)

Description

This sets alarm date and time using bspTwI3029_Rtc_SetAlarm function.

Parameters

T_RV_RETURN
Return path for Alarm event notification

T_RTC_DATE_TIME

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 258 of 401

Locosto_BSP_API Version 0.3

This parameter, a structure, is updated by the API to provide date and time.

typedef struct { UINT8 second; /* seconds after the minute - [0,59] */
UINT8 minute; /* minutes after the hour - [0,59] */
UINT8 hour; /* hours after the midnight - [0,23] */

UINTS8 day; /* day of the month -[1,31] ¥/
UINT8 month; /* months -[01,12] ¥/
UINT8 year; /* years - [00,99] ¥/
UINT8 wday; /* days in a week -[0,6] ¥/

BOOL mode_12_hour; /* TRUE->12 hour mode ; FALSE-> 24 hour mode */
BOOL PM_flag; /*if 12 hour flag = TRUE
TRUE->PM ; FALSE->AM %/
} T_RTC_DATE_TIME;

Immediate Return
T_RVF_RET

The possible values are:

Id Definition
RVF_OK The API function successfully executed.
RVF_INTERNAL_ERR -Triton bspTwl3029_Rtc_SetAlarm function failed.

Event Return
None

Current restriction of use
None

18.2.7 RTC_UnsetAlarm

T RVF RET RTC UnsetAlarm(void)

Description

This disables the alarm interrupts, thus preventing the alarm event from occurring, using
bspTwl2039_Rtc_UnsetAlarm.

Parameters
None

Immediate Return

T_RVF_RET

The possible values are:

Id Definition
RVF_OK The API function successfully executed.
RVF_INTERNAL_ERR -Triton bspTwI3029_Rtc_UnsetAlarm function failed.

Event Return

None
Q’ Texas Instruments — Proprietary Information Page 259 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Current restriction of use

None

18.2.8 RTC_Rounding30s

void RTC Rounding30s (void)

Description

This API calls the bspTwl3029_Rtc_Rounding30s to rounds the current time to the nearest minute.

Parameters

None

Immediate Return

None

Event Return

None

Current restriction of use

None

18.2.9 RTC_Set12HourMode

void RTC SetlZHourMode (BOOL ModelZHour)

Description

This API calls bspTwl3029_Rtc_Set12HourMode to set the hour in 24 hour or 12 hour mode

Parameters

BOOL

Accept whether the desired format should be in 12hour format(TRUE) or in 24hour format(FALSE)

Immediate Return

None

Event Return

None

Current restriction of use

None

Q’ Texas Instruments — Proprietary Information Page 260 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

18.2.10 RTC_Is12HourMode

BOOL RTC IslZHourMode (void)

Description

This calls the bspTwlI3029_Rtc_Is12HourMode to get the current hour mode.

Parameters

None

Immediate Return

BOOL

This returns whether the RTC is in 12hour mode(TRUE) or in 24hour mode(FALSE).

Event Return

None

Current restriction of use

None
Q’ Texas Instruments — Proprietary Information Page 261 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 19 MPK

20.1 Introduction 263

19.2 Interface description 263

Q’ Texas Instruments — Proprietary Information Page 262 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

19.1 Introduction

This chapter provides an interface specification of the MPK .

19.1.1 Generality

The Manufacturer Public Key driver (MPK) provides a service to read the Manufacturer Public Key
register. The MPK-identifier is a 128-bit register composed of fuse cells electrically programmed and
enclosing the 128 Isb of the hashing value (SHA-1) of the Public Key component of the manufacturer’s
Public Key pair. This value is used to authenticate any certificate signed with the Private Key from the

Manufacturer.

19.2 Interface description

19.2.1 mpk_get_mpk_id

T RV RET mpk get mpk id (UINT8* id p)

Description

This function returns the Manufacturer Public Key id 128-bit value.

Parameters

id_p

Pointer to client buffer of at least 16 bytes.

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_INTERNAL_ERR Pointer to client buffer is NULL

Event Return

None

Current restriction of use

None.

19.2.2 mpk_get_sw_version

UINT32 mpk get sw version (void)

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 263 of 401

Locosto_BSP_API Version 0.3

Description

This function returns the software version of the driver.

Parameters

None

Immediate Return

UINT32
Software Version number is returned. The version is hard coded in BCD format within the software.

Event Return

None

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 264 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 20 GBI

20.1 Introduction 266

20.2 Interface description 267

Q’ Texas Instruments — Proprietary Information Page 265 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

20.1 Introduction

This document provides an interface specification of the GBI.

20.1.1 Generality

The GBI is a generic interface on top of storage devices drivers and provides a block oriented data
exchange. The functionality is required for file management in the Universal File System (UFS)
concept of Texas Instruments Riviera environment. Other parts of the UFS is the Riviera File System
(RFS) and the different File system Cores.

The GBI Task interacts with media drivers such as NAND and MMC/SD.

A single media driver can be able to handle more then one media devices (like several MMC cards). It
is also possible that a single media device can have more then one partition. It is also possible that a
single media device can have more then one partition.

Task A Task B
| RFS Task

FSFAT FSNAND

Core Core

Task Task

GBI Task
NAND

Plugin

| NAND Driver Task

NAND Hardware Controller

| NAND Flash

20.1.2 Detailed Design of GBI API functions

The GBI API provides bridge functions and some non-bridge functions to the client.

Bridge functions

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 266 of 401

Locosto_BSP_API Version 0.3

Bridge functions transfer control of the operation to the GBI entity by sending the function request as
an internal message. Execution of the functionality is than done in the context of this entity. In this way
the client is not blocked and the execution is done asynchronous. When the GBI entity is ready, it
notifies this to the client in the way that he has requested it (call-back or message).

Non-bridge functions

Some functions of the GBI API are non-bridge functions or can be used as non-bridge functions. If a
requested functionality can be fulfilled without significant delay, it can be done in the client context.
Because of the fast execution it is then non-blocking. If the execution takes considerable time and the
non-bridge function is not used asynchronous, the function will be blocking. The execution in the client
context is then postponed (sleep/wait) and in the GBI context continued (like bridge functions by
internal messages). When GBI is ready, the client task becomes ready for execution again.

Reantrance
All GBI API functions are reentrance. Whenever atomic data operations or execution sequences are in
risk of interruption, a mutex is used to guarantee that it stays atomic.

20.1.3 Design of GBI API functions

Send ‘startup’
message

fgbi_start() INITIALISED

OPERATIONAL

- STOPPED
gbi_stop()

20.2 Interface description

20.2.1 gbi_read

T RV RET gbi read (UINTS8 media nmb,
UINTS8 partition nmb,
T GBI BLOCK first block nmb,
T GBI BLOCK number of blocks,
T GBI BYTE CNT remainder length,
UINT32 *buffer p,
T RV _RETURN return path)

Description

This function reads a number of data blocks from the partition on the specified media. The data is
copied to the buffer that is to be reserved by the client. The read starts from the first logical block
first_block_nmb and reads number_of_blocks blocks. After the last block it completes by reading
remainder_length bytes.

% Texas Instruments — Proprietary Information Page 267 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

media_nmb
This identifies the media for which the command is intended. This number is provided when retrieving
the overall partition table from the GBI.

partition_nmb
This identifies the partition for which the command is intended. The partition must be located on the
media specified by the media_nmb parameter. This number is provided when retrieving the overall
partition table from the GBI .

first_block_nmb
The first logical block number from where the data is requested.

number_of_blocks
The number of logical blocks to read. The number may be from one to the last possible block number.
The block size (the number of bytes per block) can be obtained by reading overall partition table from
the GBI.

remainder_length
The number of bytes to read after the last whole block. A value of zero indicates no remainder.

buffer_p
This is a pointer to the buffer to which the data shall be copied.

return_path

This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Pointer to client buffer is NULL
RV_INVALID_PARAMETER Both Callback function and address id are absent .
RVF_INTERNAL_ERR GSPTaskldTable[id] returns value zero.

Event Return

T_GBI_READ_RSP_MSG
typedef struct { T_RV_HDR hdr;
T RV_RET result;
} T_GBI_READ_RSP_MSG;

Possible values of result are :

id Definition
RV OK The asynchronous operation is successful

One ore more of the parameters is incorrect (invalid

RV INVALID PARAMETER media_nmb, partition_nmb, first_block_nmb out of range,
- - number_of_blocks out of range, remainder_length out of

range, buffer_p is null pointer).

Q’ Texas Instruments — Proprietary Information Page 268 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

The driver is not able to handle this request at this moment

RV_NOT_READY (TASK not initialised).

The driver has insufficient RAM resources to process the

RV_MEMORY_ERR
- - request.

There was an internal error while executing the request.
RV_INTERNAL_ERROR Execution was unsuccessful. Check if the media is removed
or exchanged.

Current restriction of use
None.

20.2.2 gbi_write

T RV RET gbi write (UINTS8 media nmb,

UINTS8 partition nmb,
T GBI BLOCK first block nmb,
T GBI BLOCK number of blocks,
T GBI BYTE CNT remainder length,
UINT32 *buffer p,
T RV _RETURN return path)

Description

This function writes a number of data blocks to the partition on the specified media. The data is copied
to the buffer, which is to be reserved by the client. The write starts from the first logical block
first_block_nmb and continues for number_of_blocks blocks. After this, remainder_length bytes are
written.The function returns immediately. Only the return path is verified immediately.Processing is
done asynchronous and the result is returned through the return path.If the media requires this, the
driver shall erase the blocks prior to the actual write.

Parameters

media_nmb
This identifies the media for which the command is intended. This number is provided when retrieving
the overall partition table from the GBI.

partition_nmb
This identifies the partition for which the command is intended. The partition must be located on the
media specified by the media_nmb parameter. This number is provided when retrieving the overall
partition table from the GBI .

first_block_nmb
The first logical block number to where the data must be written.

number_of_blocks
The number of logical blocks to write. The number may be from one to the last possible block number.
The block size (the number of bytes per block) can be obtained by reading overall partition table from
the GBI.

remainder_length
The number of bytes to write after the last whole block. A value of zero indicates no remainder.

buffer_p
This is a pointer to the buffer from where the data will be copied.

return_path

Q’ Texas Instruments — Proprietary Information Page 269 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.
RV_INVALID_PARAMETER Both Callback function and address id are absent .
RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return
T_GBI_WRITE_RSP_MSG

typedef struct { T_RV_HDR hdr;
T RV_RET result;
} T_GBI_WRITE_RSP_MSG;

Possible values of result are :

id Definition
RV OK Success

One ore more of the parameters is incorrect. (Invalid
media_nmb, partition_nmb, first_block_nmb out of range,
number_of_blocks out of range, remainder_length out of
range, buffer_p is null pointer).

RV_INVALID_PARAMETER

RV MEMORY ERR The driver has insufficient RAM resources to process the
- - request.
RV_NOT READY The driver is not able to handle this request at this moment

(SWE not initialised).

There was an internal error while executing the request.
RV_INTERNAL_ERROR Execution was unsuccessful. Check if the media is removed
or exchanged.

Current restriction of use
None.

20.2.3 gbi_write_with_spare

T RV RET gbi write with spare (UINTS8 media nmb,
UINTS partition nmb,
T GBI BLOCK first block nmb,
T GBI BLOCK number of blocks,
T GBI BYTE CNT remainder length,
UINT32 *data buffer p,
UINT32 *spare buffer p,
T RV _RETURN return path)
Q’ Texas Instruments — Proprietary Information Page 270 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Description

This function writes a number of data blocks to the partition on the specified media. The data is copied
to the buffer, which is to be reserved by the client. The write starts from the first logical block
first_block_nmb and continues for number_of_blocks blocks. After this, remainder_length bytes are
written.When spare_buffer_p is used for each block the spare data will be written. This function is only
available for media where spare data is available.The function returns immediately. Only the return
path is verified immediately. Processing is done asynchronous and the result is returned through the
return path. If the media requires this, the driver shall erase the blocks prior to the actual write.

Parameters

media_nmb
This identifies the media for which the command is intended. This number is provided when retrieving
the overall partition table from the GBI.

partition_nmb
This identifies the partition for which the command is intended. The partition must be located on the
media specified by the media_nmb parameter. This number is provided when retrieving the overall
partition table from the GBI .

first_block_nmb
The first logical block number to where the data must be written.

number_of_blocks
The number of logical blocks to write. The number may be from one to the last possible block number.
The block size (the number of bytes per block) can be obtained by reading overall partition table from
the GBI.

remainder_length
The number of bytes to write after the last whole block. A value of zero indicates no remainder.

buffer_p
This is a pointer to the buffer from where the data will be copied.

spare_buffer_p
A pointer to the buffer from where the spare data is copied.

return_path

This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.
RV_INVALID_PARAMETER Both Callback function and address id are absent .
RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return

T_GBI_WRITE_WITH_SPARE_RSP_MSG

Q’ Texas Instruments — Proprietary Information Page 271 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

typedef struct { T_RV_HDR hdr;
T RV_RET result;
} T_GBI_WRITE_SPARE_DATA_RSP_MSG;

Possible values of result are :

id Definition
RV OK Success

RV _NOT READY The driver is not able to handle this request at this moment.

One or more parameters are invalid (media_nmb,
partition_nmb is incorrect, first_block is out of range,
number_of_blocks is out of range, info_data_p pointer is a
null pointer, offset_first_byte is behind size of the spare area,
nmb_bytes in combination with offset first_byte is behind
size of the spare area)

RV_INVALID_PARAMETER

RV_MEMORY_ERR The driver has insufficient RAM resources to process the

request
RV _INTERNAL ERROR There was an internal error while executing the request.
RV _NOT SUPPORTED The driver does not support the spare data feature.
Current restriction of use
None.
20.2.4 gbi_erase
T RV RET gbi erase (UINTS8 media nmb,

UINTS8 partition nmb,

T GBI BLOCK first block nmb,

T GBI BLOCK number of blocks,

T RV _RETURN return path)

Description

This function erases a number of data blocks from the partition on the specified media. The erase
starts from the first logical block first_block_nmb and continues for number_of blocks blocks. The
function returns immediately. Only the return path is verified immediately.Processing is done
asynchronous and the result is returned through the return path.

Parameters

media_nmb
This identifies the media for which the command is intended. This number is provided when retrieving
the overall partition table from the GBI.

partition_nmb
This identifies the partition for which the command is intended. The partition must be located on the
media specified by the media_nmb parameter. This nhumber is provided when retrieving the overall
partition table from the GBI .

first_block_nmb
The first logical block number to where the data must be written.

number_of_blocks
The number of logical blocks to erase. The number may be from one to the last possible block
number. The block size (the number of bytes per block) can be obtained by reading overall partition
table from the GBI.

return_path

Q’ Texas Instruments — Proprietary Information Page 272 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.
RV_INVALID_PARAMETER Both Callback function and address id are absent .
RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return

T_GBI_ERASE_RSP_MSG
typedef struct { T_RV_HDR hdr;
T RV_RET result;
} T_GBI_ERASE_RSP_MSG;

The possible values of the result are :

id Definition
RV OK Success
One ore more of the parameters is incorrect. (Invalid
RV_INVALID_PARAMETER media_nmb, partition_nmb, first_block_nmb out of range,

number_of _blocks out of range,).

The driver has insufficient RAM resources to process the

RV_MEMORY_ERR
- - request.

The driver is not able to handle this request at this moment

RV_NOT_READY (Task not initialised).

There was an internal error while executing the request.
RV_INTERNAL_ERROR Execution was unsuccessful. Check if the media is removed
or exchanged.

Current restriction of use

None.

20.2.5 gbi_flush

T RV RET gbi flush (UINTS8 media nmb,
UINTS partition nmb,
T RV _RETURN return path)
Description

When a client writes data to a media partition, this data is often not immediately written on the
physical media. This may be caused by different buffer sizes that are used by various software and
hardware components. Another reason may be task scheduling or hardware delays. To ensure that
the data is consistent and really written on the physical media, the flush function can be used.The
function returns immediately. Only the return path is verified immediately.Processing is done
asynchronous and the result is returned through the return path.

Q’ Texas Instruments — Proprietary Information Page 273 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

media_nmb
This identifies the media for which the command is intended. This number is provided when retrieving
the overall partition table from the GBI.

partition_nmb
This identifies the partition for which the command is intended. The partition must be located on the
media specified by the media_nmb parameter. This number is provided when retrieving the overall
partition table from the GBI .

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return
T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.
RV_INVALID_PARAMETER Both Callback function and address id are absent .
RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return
T_GBI_FLUSH_RSP_MSG

typedef struct { T_RV_HDR hdr;
T RV_RET result;
} T_GBI_FLUSH_RSP_MSG;

The possible values of result are :

id Definition
RV OK Success
RV _NOT READY The driver is not able to handle this request at this moment.
RV _INVALID PARAMETER The media_nmb or partition nmb parameter is incorrect.
RV MEMORY ERR The driver has insufficient RAM resources to process the
- - request.
There was an internal error while executing the request.
RV_INTERNAL_ERROR Execution was unsuccessful. Check if the media is removed
or exchanged.

Current restriction of use

None.

20.2.6 gbi_get_media_info

T RV RET gbi get media info (T RVF MB ID mb_id,
T RV _RETURN return path)

Q’ Texas Instruments — Proprietary Information Page 274 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Description

This function return detailed information about all the media known by the GBI entity.The function
returns immediately. Only the return_path parameter is verified immediately. Processing (checking
and filling the media information structure) is done asynchronous and the result is returned through
the return path.When the processing is started, GBI first allocates the client's memory where the
media information shall be copied in. After the information is copied into the allocated memory, the
response message is send. This message contains the pointer to this media information structure.
The client accesses the information through this pointer.The client is responsible for de-allocating the
memory when the data is not longer needed.

Parameters
mb_id
Memory bank ID of the client's memory bank (and where the media information shall be copied to).

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.

Either Both Callback function and address id are absent or mb_id is

RV_INVALID_PARAMETER incorrect

RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return
T_GBI_MEDIA_INFO_RSP_MSG

typedef struct { T_RV_HDR hdr;
T RV_RET result;
UINT8 nmb_of _media; //see note

T_GBI_MEDIA_INFO *info_p; //see note
} T_GBI_MEDIA_INFO_RSP_MSG;

Note: the members “nmb_of _media” and “info_p” are only valid if the “result” member has the value
RV_OK. The “info_p” member is a pointer to an array of structures of type “T_GBI_MEDIA_INFO”.
The array is “nmb_of_media” long.

The possible values of result are :

id Definition
RV_OK Success
RV _NOT READY The driver is not able to handle this request at this moment.
RV_INVALID PARAMETER mb_id parameters is incorrect
RV_INTERNAL_ERROR There was an internal error while executing the request.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 275 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

20.2.7 gbi_get_partition_info

T RV RET gbi get partition info (T RVF MB ID mb_1id,
T RV _RETURN return path) ;

Description

This function return detailed information about all the partitions that are known by the GBI entity.

The function returns immediately. Only the return_path parameter is verified immediately. Processing
(copying the partition information) is done asynchronous and the result is returned through the return
path. When the processing is started, GBI first allocates the client's memory where the partition
information shall be copied in. After the information is copied into the allocated memory, the response
message is send. This message contains the pointer to this partition information. The client then
accesses the information through this pointer.The client is responsible for de-allocating the memory
when the data is not longer needed.

Parameters

mb_id
Memory bank ID of the client's memory bank (and where the media information shall be copied to).

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.

Either Both Callback function and address id are absent or mb_id is

RV_INVALID_PARAMETER .
- — incorrect

RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return
T_GBI_PARTITION_INFO_RSP_MSG

typedef struct{ T_RV_HDR hdr;
T RV_RET result;
UINT8 nmb_of partitions; //see note

T_GBI_PARTITION_INFO *info_p; //see note
}T_GBI_PARTITION_INFO_RSP_MSG;

Note: the members “nmb_of_partitions” and “info_p” are only valid if the “result” member has the value
RV_OK. The “info_p” member is a pointer to an array of structures of type “T_GBI_MEDIA_INFO".
The array is “nmb_of_media” long.

The possible values of the result are :

id Definition
RV_OK Success
RV _NOT READY The driver is not able to handle this request at this moment.
RV_INVALID PARAMETER The mb_id parameter is incorrect.
The driver has insufficient RAM resources to process the
RV_MEMORY_ERR request.
RV_INTERNAL_ERROR There was an internal error while executing the request.
Q’ Texas Instruments — Proprietary Information Page 276 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Current restriction of use

None.

20.2.8 gbi_subscribe_events

T RV RET gbi subscribe events (T GBI EVENTS event,
T RV _RETURN return path) ;

Description

This function allows the client to subscribe to certain events. A maxmum of
GBI_MAX_EVENT_SUBSCRIBERS can subscribe to a specific event. The function returns
immediately after the parameters are verified. After this subscription, the client can expect to be
notified asynchronous in the way specified in the return_path parameter.

Parameters

T_GBI_EVENTS
A combination of events (logical OR) to which the client can subscribe. For example is media-removal.

T_RV_RETURN

The return path of the client. The structure provides information about the way the driver must react
asynchronous (whether to use a call-back principle or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.

Either Both Callback function and address id are absent or event

RV_INVALID_PARAMETER A
— — supplied is incorrect

RVF_INTERNAL_ERR Gpf_Send_msg failed.

Event Return

T_GBI_EVENT_MSG
This event is the status sent at the end of the API.

Id Definition
GBI_EVENT_MEDIA_NONE No media present
GBI EVENT MEDIA INSERT Media has been inserted
GBI_EVENT_MEDIA_REMOVEAL Media can been removed
GBI_EVENT_NAN_MEDIA_AVAILABLE Nan media is available

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 277 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

20.2.9 gbi_read_with_spare

T RV RET gbi read with spare (UINTS8 media nmb,
UINTS partition nmb,
T GBI BLOCK first block,
T GBI BLOCK number of blocks,
UINT32 *info data p
T RV _RETURN return path)
Description

This function reads the spare area for a number of blocks. The blocks are consecutive and belong to
the media and partition specified. The data is copied to the buffer, which is to be reserved by the cli-
ent. The read starts from the first logical block first_block.The function returns immediately (non-
blocking). Only the return path is verified immediately.Processing is done asynchronous and the result
is returned through the return path

Parameters

media_nmb
This identifies the media for which the command is intended. This number is provided when retrieving
the overall partition table from the GBI.

partition_nmb
This identifies the partition for which the command is intended. The partition must be located on the
media specified by the media_nmb parameter. This number is provided when retrieving the overall
partition table from the GBI .

first_block_nmb
The first logical block number from where the information is requested.

number_of_blocks
The number of logical blocks for which the information is to be read. The number may be from one to
the last possible block number.

info_data_p
This is a pointer to the buffer to which the block information is to be copied.

return_path
This is the return path of the client. The structure provides information about the way the driver must
react synchronous (call-back pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

id Definition
RVF_OK The API function successfully executed.
RV_MEMORY_ERR Allocation for messge buffer failed.
RV_INVALID_PARAMETER Both Callback function and address id are absent .
RVF_INTERNAL_ERR Gpf_Send_msg failed.
Event Return
Q’ Texas Instruments — Proprietary Information Page 278 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

T_GBI_READ_SPARE_DATA_RSP_MSG
typedef struct { T_RV_HDR hdr;
T RV_RET result;
} T_GBI_READ_SPARE_DATA RSP_MSG;

The possible values of result are :

id Definition

RV_OK Success

RV_NOT_READY The driver is not able to handle this request at this moment.
One or more parameters are invalid (media_nmb,

RV_INVALID_PARAMETER partition_nmb is |nc_orrect, flrst_blogk is out of range,
number_of_blocks is out of range, info_data_p pointer is a
null pointer)

RV_MEMORY_ERR 'rl'ehqeugggler has insufficient RAM resources to process the

RV_INTERNAL ERROR There was an internal error while executing the request.

RV_NOT_SUPPORTED The driver does not support the spare data feature.

Current restriction of use

None.

20.2.10 gbi_ get_sw_version

UINT32 gbi get sw version (void)

Description

This function returns the version of this service entity.

Parameters

None

Immediate Return

UINT32

Returns version number.

Event Return

None

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 279 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 21 LLS

21.1 Introduction 281

21.2 Interface description 281

Q’ Texas Instruments — Proprietary Information Page 280 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

21.1 Introduction

This document provides an interface specification of the LLS(LED and Backlight control).

LLS is a separate task responsible for glowing of LEDs. LLS also controls the backlight of the
handset.It's a independent task.

21.2 Interface description

21.2.1 lis_switch_on

T RV RET 1ls switch on (T LLS EQUIPMENT equipment sort)

Description

This function can enable the LED or BACKLIGHT

Parameters

T_LLS_EQUIPMENT
This parameter specifies the equipment to be switched on. Following are the values possible:
LLS_KEYPAD_LIGHT
LLS BACKLIGHT
LLS_SUBPANEL_LIGHT

Immediate Return

T_RV_RET
The possible values are:

id Definition
RVF_OK The API function successfully executed.
RVF_INTERNAL_ERR Environment block or parameter initialized is false
RV_INVALID_PARAMETER Equipment value is not correct

Event Return

None

Current restriction of use
None.

21.2.2 lis_switch_off

T RV RET 1ls switch on (T LLS EQUIPMENT equipment sort)

Description
This function can disable the LED or BACKLIGHT

Parameters

T_LLS_EQUIPMENT
This parameter specifies the equipment to be switched on. Following are the values possible:
LLS_KEYPAD_LIGHT
LLS BACKLIGHT
LLS_SUBPANEL_LIGHT

Q’ Texas Instruments — Proprietary Information Page 281 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Immediate Return

T_RV_RET
The possible values are:

id Definition
RVF_OK The API function successfully executed.
RVF_INTERNAL_ERR Environment block or parameter initialized is false
RV_INVALID_PARAMETER Equipment value is not correct

Event Return

None

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 282 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 22 MKS

22.1 Introduction 284

22.2 Interface description 284

Q’ Texas Instruments — Proprietary Information Page 283 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

22.1 Introduction

This chapter provides an interface specification of the MKS(Magic Key Sequence).

MKS allows special sequence to get configured using keypad .When the special sequence is pressed
then message is sent to the subscriber.Each key sequence have a name and completion of sequence
can be of two types : sequence completed or post sequence.

22.2 Interface description

22.2.1 mks_add_key_sequence

T RV _RET mks add key sequence (T MKS INFOS KEY SEQUENCE *
infos key sequence p)

Description
Function initializes a magic key sequence.

Parameters
T_MKS_INFOS_KEY_SEQUENCE

typedef struct { char name[KPD_MAX_CHAR_NAME+1];
UINT8 nb_key_of sequence;
T _KPD_VIRTUAL_KEY_ID key_id[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE];
UINT8 completion_type ;
UINT8 nb_key_for_post_sequence;
T_RV_RETURN return_path;
} T_MKS_INFOS_KEY_SEQUENCE;

Immediate Return
T_RV_RET
The possible values are:

id Definition
RV_OK The API function successfully executed.
RV_MEMORY_ERR Memory allocation for message failed
RV_INVALID_PARAMETER Actual parameters are not valid

Event Return
None

Current restriction of use
None.

22.2.2 mks_remove_key_sequence

T RV _RET mks remove key sequence (char name [KPD MAX CHAR NAME+1]);

Description
Function removes an existing magic key sequence.

Parameters

Q’ Texas Instruments — Proprietary Information Page 284 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

name[KPD_MAX_CHAR_NAME + 1]
Name of the key sequence to be removed.

Immediate Return

T_RV_RET
The possible values are:

id Definition
RV OK The API function successfully executed.
RV_MEMORY_ERR Memory allocation for message failed

Event Return

None

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 285 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 23 NAND

23.1 Introduction 287
23.2 Interface description 274
23.3 Message definition 279
23.4 Types definition 281
23.5.Configuration Items 281
{Z’ TEXAS Texas Instruments — Proprietary Information Page 286 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

23.1Introduction

This document describes the Riviera API for the NAND Block Manager entity (NAND_BM). This entity
provides read and write access to the NAND-hardware through a logical block interface. Besides the
low level access to the NAND-hardware the entity takes care of wear-levelling, bad block
management and error correction (ECC).

The NAND_BM provides an asynchronous interface to the user. Both the read and write function allow
multiple blocks to be read/written in a single request.

The API provides a logical block interface to the user. This means that the user accesses logical
blocks which are translated to physical NAND-pages by the NAND_BM. The user will not be able to
access physical NAND-pages directly.

Each logical block consists of a main area (512 bytes) and a spare area (16 bytes) according to the
NAND-physical structure. The main area of a logical block maps to the main area of a NAND page
and spare area of a logical block maps to the spare area of a NAND page. The NAND main area is
completely available to the user. The NAND spare area however is only partly available to the user
because it contains NAND_BM meta data as well (e.g. the ECC value). Note that a FAT file system is
not using this spare area. However a NAND specific file system will use it to store administration data.

23.2 Interface description

23.2.1 nan_bm_read

T RV RET nand bm read(UINT32 first block,
UINT32 number of blocks,
UINT32 remainaer_length,
UINT32 *puffer p,
UINT32 *spare buffer p,
T RV_RETURN return path)
Description

This function reads a number of logical blocks including spare data from NAND

Parameters

first_block
The first logical block number from where the data is requested.

number_of_blocks
The number of logical blocks to read. The number may be in range from one to the last possible block
number.

remainder_length
The number of bytes to read after the last whole block. A value of zero indicates no remainder.

buffer_p
This is a pointer to the destination buffer to which the main data will be copied. Shall be set to NULL if
not used.

spare_buffer_p
This is a pointer to the destination buffer to which the spare data shall be copied. Shall be set to NULL
if not used.

% Texas Instruments — Proprietary Information Page 287 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET
The possible values are:
RV_OK The API function was successfully executed.
RV _INVALID PARAMETER Invalid return path.
RV_NOT_READY The entity is not able to handle this request at this moment (SWE not
initialised).
RV _MEMORY ERR The entity has insufficient RAM resources to process the request.
RV _INTERNAL ERR There was an internal error and the request could not be processed.
RV _ECC ERROR The ECC correction failed. Data returned is corrupt.

Event Return

NAND_BM_READ_RSP_MSG
This message is returned when the read request is processed. The message may indicate an error or
completion of the read. In case of the completion of the read, the buffer holds the requested data. In
case of error, the buffer contents is undefined.

Current restriction of use
None.

23.2.2 nand_bm_write

T RV RET nand bm write(UINT32 first block,
UINT32 number of blocks,
UINT32 remainder length,
UINT32 *buffer p,
UINT32 *spare buffer p,
T RV _RETURN return path)
Description

This function writes a number of logical blocks including spare data to NAND.

Parameters

first_block
The first logical block number to where the data must be written.

number_of_blocks
The number of logical blocks to write. The number may be in range from one to the last possible block
number.

remainder_length
The number of bytes to write after the last whole block is written. A value of zero indicates no
remainder.

buffer_p
A pointer to the source buffer from where the main data is to be copied. Shall be set to NULL if not
used.

spare_buffer_p

Q’ Texas Instruments — Proprietary Information Page 288 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This is a pointer to the source buffer from where the spare data shall be copied. Shall be set to NULL
if not used.

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET
The possible values are:
RV_OK The API function was successfully executed.
RV_INVALID PARAMETER Invalid return path.
RV_NOT_READY The entity is not able to handle this request at this moment (SWE not

initialised).

RV_MEMORY_ERR The entity has insufficient RAM resources to process the request.
RV_INTERNAL _ERR There was an internal error and the request could not be processed.

Event Return

NAND_BM_WRITE_RSP_MSG
This message is returned when the request is processed. The message may indicate an error or
success when the write is completed. The data buffer needs to be unchanged until this response
message is send.

Current restriction of use
None.

23.2.3 nan_bm_erase

T RV RET nand bm erase (UINT32 first block,
UINT32 number of blocks,
T RV _RETURN return path)
Description

This function erases a number of logical data blocks from the NAND (main+spare area). The erase
starts from the first logical block first_block and continues for number_of blocks blocks. After an erase
the block data will be OxFF.

Parameters

first_block
The first logical block number to erase.

number_of_blocks
The number of logical blocks to erase. The number may be from one to the last possible block
number.

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Q’ Texas Instruments — Proprietary Information Page 289 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Immediate Return

T_RV_RET

The possible values are:

Id Definition

RV_OK The API function was successfully executed.

RV _INVALID PARAMETER Invalid return path.

RV_NOT_READY The driver is not able to handle this request at this moment (SWE not
initialised).

RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.

RV_INTERNAL _ERR There was an internal error and the request could not be processed.

Event Return

NAND_BM_ERASE_RSP_MSG
This message is returned when the request is processed. The message may indicate an error or
success when the write is completed. The data buffer needs to be unchanged until this response
message is send.

Current restriction of use
None.

23.2.4 nand_bm_flush

T RV _RET nand bm flush (T RV _RETURN return path)

Description

Flushes all cached data inside NAND_BM to the NAND-hardware. After receiving the response
message of this function it is guaranteed that all data is synchronised to the NAND-hardware.

Parameters

return_path
This structure provides information about the way the driver must react asynchronous (call-back
pointer or a return message).

Immediate Return

T_RV_RET

The possible values are:

Id Definition

RV_OK The API function was successfully executed.

RV_INVALID PARAMETER The return_path parameter is invalid.

RV_NOT_READY The driver is not able to handle this request at this moment (SWE not
initialised).

RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.

RV_INTERNAL _ERR There was an internal error and the request could not be processed.

Event Return

NAND_BM_FLUSH_RSP_MSG
This message is returned when the request has been processed. The message may indicate an error
or completion of the request. In case of the completion, all unwritten data has been written to the
media.

Current restriction of use

None.

Q’ Texas Instruments — Proprietary Information Page 290 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

23.2.5 nand_bm_get_media_info

T RV RET nand bm get media info (T NAND BM MEDIA INFO *media info)

Description

This function returns NAND-media info. Information returned in T_NAND_BM_MEDIA_INFO is:

variable Description

nr_logical_blocks Total number of logical blocks. Note that this value is smaller than the
number of physical NAND pages in the device. This is because part of the
NAND area is used to store meta data.

logical_block_size Logical block size in bytes. Note that this excludes the spare size.
logical_block_spare_size Spare size in bytes for each logical block. Will be 6 bytes
Parameters

media_info

Pointer to T_NAND_BM_MEDIA_INFO structure which is allocated by the user.

Immediate Return

T_RV_RET
The possible values are:
RV_OK The API function was successfully executed.
RV _INVALID PARAMETER The return_path parameter is invalid.
RV_NOT_READY The driver is not able to handle this request at this moment (SWE not
initialised).

Event Return

None

Current restriction of use

None.

23.2.6 nand_bm_get_sw_version

| UINT32 nand bm get sw version (void)

Description

This function returns the version of this service entity.

Parameters

None.

Immediate Return

UINT32

Q’ Texas Instruments — Proprietary Information Page 291 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Bit ame Function

[0-15] BUILD Build number

[16-23] MINOR Minor version number
[24-31] MAJOR Major version number

Event Return
None

Current restriction of use
None.

23.3 Message definition

One generic message type is defined called T_NAN_BM_MSG which is used for all request and
response messages. The field used will depend on the request/response.

23.3.1 Request
Generally, a NAN_BM request is formed as follows:

m->0s_hdr.msg id = NAN BM xxx REQ MSG
m->rp = <return path>

Other fields may be defined depending on the message ID.

23.3.2 Response
The NAND driver will respond to a request with the following message:

m->0s_hdr.msg id = NAN xxx RSP MSG
m->result = < RV_OK |
RV_INVALID PARAMETER |
RV_NOT READY |
RV_INTERNAL ERR |
RV_MEMORY ERR >

23.3.3 NAND_BM_READ_REQ_MSG
The following fields shall be provided:

m->o0s_hdr.msg id = NAN BM READ REQ MSG
m->rp = <return path>

m->first block = <first block number>
m->number of blocks = < number of blocks>
m->remainder length = <remainder length>
m->buffer p = <source buffer>

m->spare buffer p = <spare buffer>

23.3.4 NAND_BM_READ_RSP_MSG

The NAN driver responds to a NAND_BM_READ_REQ_MSG event by returning a message with the
following fields filled in:

m->o0s_hdr.msg id = NAN BM READ RSP MSG
m->result = <result>

The possible values for result are:

Id Definition

RV OK Success

Q’ Texas Instruments — Proprietary Information Page 292 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

RV_INVALID_PARAMETER One ore more of the parameters is incorrect (first_block_nmb out of
range, number_of_blocks out of range, remainder_length out of range,
buffer_p is null pointer).

RV_NOT_READY The driver is not able to handle this request at this moment (SWE not
initialised).

RV _MEMORY ERR The driver has insufficient RAM resources to process the request.

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check if the media is removed or exchanged.

RV_ECC_ERROR The ECC correction failed. Data returned is corrupt.

23.3.5NAND_BM_WRITE_REQ_MSG

The client must supply the following fields for programming:

m—>os_hdr.msg_id = NAN_BM WRITE REQ MSG
m->rp = <return path>

m->first block = <first block number>
m->number of blocks = < number of blocks>
m—>remainaer:length = <remainder length>
m->buffer p = <source buffer>

m->spare buffer p = <spare buffer>

23.3.6 NAND_BM_WRITE_RSP_MSG

The NAN driver responds to a NAND_BM_WRITE_REQ_MSG event by returning a message with the
following field filled in:

m->o0s hdr.msg _id = NAN BM WRITE RSP MSG
m->result = <result>

The possible values for result are:

Id Definition
RV_OK Success
RV_INVALID_PARAMETER One ore more of the parameters is incorrect (first_block_nmb out of

range, number_of_blocks out of range, remainder_length out of range,
buffer_p is null pointer).

RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.

RV_NOT_READY The driver is not able to handle this request at this moment (SWE not
initialised).

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was

unsuccessful. Check if the media is removed or exchanged.

23.3.7 NAND_BM_ERASE_REQ_MSG
The following fields shall be provided:

m->o0s_hdr.msg id = NAN BM ERASE REQ MSG
m->rp = <return path>

m->first block = <first block number>
m->number of blocks = < number of blocks>

23.3.8 NAND_BM_ERASE_RSP_MSG

m->o0s _hdr.msg id = NAN BM ERASE RSP MSG
m->result = <result>

The possible values for result are:

RV_OK Success
RV_INVALID_PARAMETER One ore more of the parameters is incorrect. (Invalid first_block_nmb out
of range, number_of blocks out of range,).
RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.
RV_NOT_READY The driver is not able to handle this request at this moment (SWE not
initialised).
Q’ Texas Instruments — Proprietary Information Page 293 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check if the media is removed or exchanged.

23.3.9NAND_BM_FLUSH_REQ_MSG
The following fields shall be provided:

m->o0s _hdr.msg id = NAN BM FLUSH REQ MSG
m->rp = <return path>

23.3.10 NAND_BM_FLUSH_RSP_MSG

m->o0s _hdr.msg id = NAN BM FLUSH RSP MSG
m->result = <result>

The possible values for result are:

RV OK Success

RV _NOT READY The driver is not able to handle this request at this moment.

RV_MEMORY_ERR The driver has insufficient RAM resources to process the request.

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check if the media is removed or exchanged.

23.4 Types definition
23.4.1 T_NAND_BM_MEDIA_INFO

This structure defines the information for the NAND-media.

typedef struct{

UINT32 nr logical blocks;
UINT32 logical block size;
UINT32 logical block spare size;

} T NAND BM MEDIA INFO;

23.5 Configuration Items

23.5.1 Feature settings

23.5.1.1 NAND_BM_ECC

Defines if ECC shall be enabled or not. To disable ECC the macro shall be commented out. Note that
enabling ECC will decrease the read/write performance.

#define NAN BM ECC_ENABLED.

23.5.2 Hardware settings
23.5.2.1 Memory size

23.5.2.1.1 NAN_BM_MAX_CHIP_SELECT
Defines the chip select which shall be used.

#define NAN BM MAX CHIP SELECT 0

23.5.2.1.2 NAN_BM_FLASH_NOF_BLOCKS
Defines the number of NAND-blocks in the device.

Q’ Texas Instruments — Proprietary Information Page 294 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

#define NAN BM FLASH NOF BLOCKS 4096 //64MB device

23.5.2.1.3 NAN_BM_FLASH _PAGES_PER BLOCK
Defines the number of NAND-pages per NAND-block.

#define NAN BM FLASH PAGES PER BLOCK 32 //16kB/block

23.5.2.1.4 NAN_BM_FLASH_PAGE_SIZE
Defines the number of bytes per NAND-page (main+spare).

#define NAN BM FLASH PAGE SIZE 528 //bytes

23.5.2.1.5 NAN_BM_FLASH_SPARE_OFFSET
Defines the offset in NAND-page for the spare area (or the size of the main area).

#define NAN BM FLASH SPARE OFFSET 512 //bytes

23.5.2.2 Timing

The NAND flash controller contains a number of timing settings which can be configured at compile
time.

23.5.2.2.1 NAN_BM_FLASH_CLK DIV
Clock divider value for the prescaler, 1 — 15:

#define NAN BM FLASH CLK DIV 4

23.5.2.2.2 NAN_BM_DUMMY_CYCLE
NAND Busy delay, range 0-15 cycles:

#define NAN BM DUMMY CYCLE 15

NOTE: this value is scaled by the pre-scaler.

% Texas Instruments — Proprietary Information Page 295 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 24 SIM

24.1 Introduction 297
24.2 SIM Driver Services functions 298
24.3 SIM Driver Return Values 311
24.4 Type and Other Definitions 313

Q’ T s Texas Instruments — Proprietary Information Page 296 of 401
EXA!

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

24.1 Introduction

This document provides an interface specification of the SIM Driver entity. The purpose of the SIM
Driver entity is to provide a low level access (L1) to the SIM Card content.

The Driver API is based on the ETSI/3GPP 11.11 and ISO/CEIl 7816-3 commands. For detailed
requests, refer to them.

ATTENTION :
A) The actual version of the SIM Driver is not compliant with the Riviera
Technology.
B) The caller must plan 10 machine words in it’s stack in order to prevent
Stack overflow.

C) The SIM Driver is not protected against concurrential accesses.

NOT IN THE SCOPE OF THIS DOCUMENT

Read Phonebook, Short mess...

\Write Phonebook, Short mess...

" INetwork Operations: IMSI, LAI, LOCI...
Miscellaneous

SIM L2/L3 Functions

A

Card Holder Verif Op. (Change, Disable, Enable, Unblock, Verify)
General Op. (Status, Getresponse)

File Mngt Op. (Select, Readbin, Readrec, Updatebin, Updaterec,
Increase, Seek)

Special Op. (RunGsmAlgo, Invalidate, Rehabilitate)

Sim ToolKit Op. (Fetch, Envelope, Terminalresponse, Terminalprofile)

% Texas Instruments — Proprietary Information Page 297 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

24.2 SIM Driver Services functions

24.2.1 Initializing and cleaning up operations

For starting the SIM Driver you need three functions. They are:

SIM_Register for register yours callbacks for insertion and removal of the Card,
SIM_Initialize for initialize internal structures and the SIM Driver timer,
SIM_Reset for hardware power on of the interface and the Card.

The above chronology is to be fulfilled. At the end of these three steps, the SIM Card is accessible to
requests

For cleaning up the SIM Driver you need only one function viz SIM_PowerOff for cleaning all the
registers and the Card.

24.2.1.1 SIM_Register

SYS UWORD16 SIM Register (void (Insert (SIM CARD *cP)),
void (Remove (void)))

Description

This function allows a entity to register the callbacks functions managing the hardware insertion or
removal of the Card. This function should be called several times during a session, but usually it is
called only one time in a session.

Parameters

Insert
Function name of the callback for insertion.

Remove
Function name of the callback for removal.

Return value

SIM_OK

24.2.1.2 SIM_lInitialize

void SIM Initialize (void)

Description

This function initializes the internal structures and set the SIM Driver timer. Shall be called only once
by GSM/GPRS session.

Parameters

None.

Return value

None

Q’ Texas Instruments — Proprietary Information Page 298 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

24.2.1.3 SIM_Reset

SYS UWORD16 SIM Reset (SIM CARD *cP)

Description

This function performs the hardware initialization of the Interface and then the SIM Card.
The main steps of this function are:
o Sets the right values in the right registers depending on the hardware used (voltage etc)
Manual start procedure
Dynamic ATR Procedure
PTS Procedure (speed operations)
Voltage switching (depending on the behavior of the interface and the Card)
File characteristics detection (clock stop, speed for authentication procedure).

o O O OO

This function shall be called only one time during a GSM/GPRS session.

Parameters

cP
Pointer on some characteristics of the Card (ATR, ATR size, convention type)

Immediate Return

Only internal values, see return value chapter.

24.2.1.4 SIM_PowerOff

void SIM PowerOff (void)

Description

This function shutdown all the signals between the Interface and the Card, clean the registers of the
Interface and delete the SIM Driver timer.

Parameters

None.

Immediate Return

None.

24.2.2 Card Holder Verification Operations

24.2.21 SIM_VerifyCHV

SYS UWORD16 SIM VerifyCHV(SYS UWORD8 *result, SYS UWORDS *dat,
SYS UWORD8 chvType, SYS UWORD16 *rcvSize)

Description

This function allows the user to verify his CHV (level 1 or more), by sending a command to the SIM
Card. It execute the VERIFY CHV command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

dat
Pointer on the CHV to verify. It must be composed of 8 bytes.

Q’ Texas Instruments — Proprietary Information Page 299 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

chvType
Type of CHV. Used for parameter P2 of a SIM command

rcvSize
Pointer on the number of bytes received.

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.2.2 SIM_ChangeCHV

SYS UWORD16 SIM ChangeCHV (SYS UWORD8 *result, SYS UWORDS *oldChv,
SYS UWORD8 *newChv, SYS UWORD8 chvType,
SYS UWORD16 *1P)

Description

This function allows the user to change his CHV (level 1 or more), by sending a command to the SIM
Card. It execute the CHANGE CHV command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

oldChv
Pointer on the old CHV to use. It must be composed of 8 bytes

newChv
Pointer on the new CHV to use. It must be composed of 8 bytes

chvType
Type of CHV. Used for parameter P2 of a SIM command

IP
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.2.3 SIM_DisableCHV

SYS UWORD16 SIM DisableCHV (SYS UWORD8 *result, SYS UWORD8 *dat,
SYS UWORD16 *1P)

Description

This function allows the user to disable his CHV1 typed required, by sending a command to the SIM
Card. It executes the DISABLE CHYV type 1 command specified by ETSI 11.11.

Parameters

Q’ Texas Instruments — Proprietary Information Page 300 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

result
Pointer on the bytes received

dat
Pointer on the current CHV1. It must be composed of 8 bytes

IP
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.2.4 SIM_EnableCHV

SYS UWORD16 SIM EnableCHV(SYS UWORD8 *result, SYS UWORDS *dat,
SYS UWORD16 *1P)

Description

This function allows the user to enable his CHV1 typed required, by sending a command to the SIM
Card. It executes the ENABLE CHV type 1 command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

dat
Pointer on the current CHV1. It must be composed of 8 bytes

|
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.2.5 SIM_UnblockCHV

SYS UWORD16 SIM UnblockCHV (SYS UWORDS *result, SYS UWORD8 *unblockChv,
SYS UWORDS *newChv, SYS UWORD8 chvType,
SYS UWORD16 *1P)

Description

This function allows the user to unblock his CHV, by sending a command to the SIM Card. When
using a wrong CHV code three times in succession, the CHV becomes unusable and by the way the
Card too. It is possible to unblock the CHV (and the Card) by using this function. It executes the
UNBLOCK CHV command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

Q’ Texas Instruments — Proprietary Information Page 301 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

unblockChv
Pointer on the unblock CHV to use. It must be composed of 8 bytes

newChv
Pointer on the new CHV to use. It must be composed of 8 bytes

chvType
Type of CHV. Used for parameter P2 of a SIM command

|
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.3 General Operations

24.2.3.1 SIM_Status

SYS UWORD16 SIM Status (SYS UWORD8 *dat, SYS UWORD16 *rcvSize)

Description

This function allows the user to get several generals informations about the current position on the
Card. In a second way, it gives the ability to Check if the Card want to send a SimToolKit request to
the mobile. It execute the STATUS command specified by ETSI 11.11.

Parameters

dat
Pointer on the bytes received

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.3.2 SIM_Status_Extended

SYS UWORD16 SIM Status Extended(SYS UWORD8 *dat, SYS UWORD16 len,
SYS UWORD16 *rcvSize)

Description

This function allows the user to get several generals informations about the current position on the
Card. This is a derivation of the SIM_Status function; It allows the user not to read all (22 bytes) the
bytes of the header of the current position, but only the number required. In a second way, it gives the
ability to Check if the Card wants to send a SimToolKit request to the mobile. It executes the STATUS
command specified by ETSI 11.11.

Q’ Texas Instruments — Proprietary Information Page 302 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Parameters

dat
Pointer on the bytes received

len
Number of bytes to read. Up to 22 bytes

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.3.3 SIM_GetResponse

SYS UWORD16 SIM GetResponse (SYS UWORD8 *dat, SYS UWORD16 len,
SYS UWORD16 *rcvSize)

Description

This function allows the user obtain the answers to a previous command. It executes the GET
RESPONSE command specified by ETSI 11.11.

Parameters

dat
Pointer on the bytes received

len
Number of bytes to return. (used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 : Command versus possible status responses) and
internal return value (see Return value Chapter).

Q’ Texas Instruments — Proprietary Information Page 303 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

24.2.4 File Management Operations

24.2.41 SIM_Select

SYS UWORD16 SIM Select (SYS UWORD16 id, SYS UWORDS *dat,
SYS UWORD16 *rcvSize)

Description

This function allows the user to position the logical internals pointers (R, W) of the SIM Card on the
required directory or file. It execute the SELECT command specified by ETSI 11.11.

Parameters

- id
ETSI Identity of the file selected

dat
Pointer on the bytes received

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.4.2 SIM_ReadBinary

SYS UWORD16 SIM ReadBinary (SYS UWORDS *dat, SYS UWORD16 offset,
SYS UWORD16 len, SYS UWORD16 *rcvSize)

Description

This function allows the user to read a Binary file previously selected. It executes the READ BINARY
command specified by ETSI 11.11.

Parameters

dat
Pointer on the bytes received

offset
Offset from where you start to read the bytes in the file. (Used in parameters P1 and P2 of the SIM
Command)

len
Number of bytes to read (Used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

Q’ Texas Instruments — Proprietary Information Page 304 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

24.2.4.3 SIM_UpdateBinary

SYS UWORD16 SIM UpdateBinary (SYS UWORD8 *result, SYS UWORDS8 *dat,
SYS UWORD16 offset, SYS UWORD16 len,
SYS UWORD16 *rcvSize)

Description

This function allows the user to update a Binary file previously selected. It executes the UPDATE
BINARY command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes to write limited by /en

offset
Offset from where you start to update the bytes in the file. (Used in parameters P1 and P2 of the SIM
Command)

len
Number of bytes to write (Used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.4.4 SIM_ReadRecord

SYS UWORD16 SIM ReadRecord(SYS UWORD8 *dat, SYS UWORDS mode,
SYS UWORD8 recNum, SYS UWORD16 len,
SYS UWORD16 *rcvSize)

Description

This function allows the user to read a Record Structured file (linear Fixed, or cyclic) previously
selected. It executes the READ RECORD command specified by ETSI 11.11.

Parameters

dat
Pointer on the bytes received

mode
Specify the mode chosen to read this record. (Used in parameter P2 of the SIM command)

recNum
Specify the record to read. (Used in parameter P1 of the SIM command)

len
Number of bytes to read (Used in parameter P3 of the SIM command)

rcvSize

Q’ Texas Instruments — Proprietary Information Page 305 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.4.5 SIM_UpdateRecord

SYS UWORD16 SIM UpdateRecord(SYS UWORD8 *result, SYS UWORD8 *dat,
SYS UWORD8 mode, SYS UWORD8 recNum,
SYS UWORD16 len, SYS UWORD16 *rcvSize)

Description

This function allows the user to update a Record Structured file (linear Fixed, or cyclic) previously
selected. It executes the UPDATE RECORD command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes to write limited by /en

mode
Specify the mode chosen to update this record. (Used in parameter P2 of the SIM command)

recNum
Specify the record to update. (Used in parameter P1 of the SIM command)

len
Number of bytes to write (Used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.4.6 SIM_Seek

SYS UWORD16 SIM Seek (SYS UWORD8 *result, SYS UWORD8 *dat, SYS UWORDS mode,
SYS UWORD16 len, SYS UWORD16 *rcvSize)

Description

This function allows the user to be positioned directly on the required record number of a Record
Structured file (linear Fixed, or cyclic) previously selected. It executes the SEEK command specified
by ETSI 11.11.

Parameters

Q’ Texas Instruments — Proprietary Information Page 306 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

result
Pointer on the bytes received

dat
Pointer on the pattern to seek

mode
Specify the mode chosen to seek a field. (Used in parameter P2 of the SIM command)

len
Number of bytes to seek (Used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.4.7 SIM_Increase

SYS UWORD16 SIM Increase (SYS UWORD8 *result, SYS UWORDS *dat,
SYS UWORD16 *rcvSize)

Description

This function allows the user to be positioned directly on the required record number of a Record
Structured file (linear Fixed, or cyclic) previously selected. It executes the SEEK command specified
by ETSI 11.11.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes composing the value to use to increase the original field

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.5 Special Operations

24.2.5.1 SIM_RunGSMAIgo

SYS UWORD16 SIM RunGSMAlgo (SYS UWORDS *result, SYS UWORDS8 *dat,
SYS UWORD16 *rcvSize)

Description

Q’ Texas Instruments — Proprietary Information Page 307 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

This function allows the user execute the A3-A8 algorithm (specified by ETSI 11.11). It executes the
RUN GSM ALGO command specified by ETSI 11.11.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes to send to the SIM Card; There are 16 bytes to send

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.5.2 SIM_Invalidate

SYS UWORD16 SIM Invalidate (SYS UWORD8 *rP, SYS UWORD16 *1P)

Description

This function allows the user to INVALIDATE a file (set it as unusable). It executes the INVALIDATE
command specified by ETSI 11.11.

Parameters

rP
Pointer on the bytes received

|
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.5.3 SIM_Rehabilitate

SYS UWORD16 SIM Rehabilitate (SYS UWORDS *rP, SYS UWORD16 *1P)

Description

This function allows the user to REHABILITATE a file (set it as usable). It executes the
REHABILITATE command specified by ETSI 11.11.

Parameters

rP
Pointer on the bytes received

. IP

Q’ Texas Instruments — Proprietary Information Page 308 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.6 SimToolKit Operations

24.2.6.1 SIM_TerminalProfile

SYS UWORD16 SIM TerminalProfile(SYS UWORD8 *result, SYS UWORD8 *dat,
SYS UWORD16 len, SYS UWORD16 *rcvSize)

Description

This function allows the user to send the capabilities of the mobile concerning the SIM Application
ToolKit (specified by ETSI 11.11 and 11.14). It executes the TERMINAL PROFILE command specified
by ETSI 11.11 and 11.14.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes composing the profile, to send to the SIM Card

len
Number of bytes to send (Used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.6.2 SIM_Fetch

SYS UWORD16 SIM Fetch(SYS UWORD8 *result, SYS UWORD16 len,
SYS UWORD16 *rcvSize)

Description

This function allows the user to send an Application ToolKit command from the SIM Card to the ME,
or keypad, or display or earpiece, or network, or another device. It executes the FETCH command
specified by ETSI 11.11, and ETSI 11.14.

Parameters

result
Pointer on the bytes received

len
Number of bytes to send (Used in parameter P3 of the SIM command)

rcvSize

Q’ Texas Instruments — Proprietary Information Page 309 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.6.3 SIM_TerminalResponse

SYS UWORD16 SIM TerminalResponse (SYS UWORD8 *result, SYS UWORD8 *dat,
SYS UWORD16 len, SYS UWORD16 *rcvSize)

Description

This function allows the user to transfer from ME to SIM the response to a previously fetched SIM
Application ToolKit command. It executes the TERMINAL RESPONSE command specified by ETSI
11.11, and ETSI 11.14.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes composing the response, to send to the SIM Card

len
Number of bytes to send (Used in parameter P3 of the SIM command)

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.6.4 SIM_Envelope

SYS UWORD16 SIM Envelope (SYS UWORD8 *result, SYS UWORDS *dat,
SYS UWORD16 len, SYS UWORD16 *rcvSize)

Description

This function allows the user to transfer data to the SIM Application ToolKit in the SIM. It executes the
ENVELOPE command specified by ETSI 11.11, and ETSI 11.14.

Parameters

result
Pointer on the bytes received

dat
Pointer on the bytes composing the data, to send to the SIM Card

len
Number of bytes to send (Used in parameter P3 of the SIM command)

Q’ Texas Instruments — Proprietary Information Page 310 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

rcvSize
Pointer on the number of bytes received

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11: Command versus possible status responses) and
internal return value (see Return value Chapter).

24.2.7 Transparent Data Exchange

24.2.71 SIM_XchTPDU

SYS UWORDI 6 SIM XchTPDU (SYS_UWORD8 *dat, SYS UWORDI 6 trxLen,
SYS UWORD8 *result, SYS UWORD16 rcvLen,
SYS UWORD16 *rcvSize)

Description

This function allows the user to transparently exchange command and responses in TPDU format with
the SIM. The sent data must at least contain a valid SIM command according to GSM 11.11 or ISO
7816-3. Response data is only returned, when rcvLen is non-zero. The function shall be able return
less data as expected by the value given in rcvLen. The SIM status code is not part of the received
data, it is given by the function's return value.

Parameters

dat
Pointer on the bytes to be sent limited by trxLen (at least a valid SIM Command, extended by up to
255 bytes of data)

trxLen
Length of the bytes to be sent

result
Pointer on the bytes (excluding SIM Status Code SW1/SW2) received

rcvLen
Number of bytes expected to be received (excluding SIM Status Code SW1/SW2)

rcvSize
Pointer on the number of bytes received (excluding SIM Status Code SW1/SW2)

Immediate Return

Possible values are SW1 / SW2 (see ETSI 11.11 and ISO 7816-3: Command versus possible status
responses) and internal return value (see Return value Chapter).

24.3SIM Driver Return Values
Size: 16 bits.

Q’ Texas Instruments — Proprietary Information Page 311 of 401
TEXAS Strictly Private
INSTRUMENTS

Version 0.3

Locosto_BSP_API
Label Values Description
SIM_OK 0 Operation Successful
SIM ERR NOCARD 1 SIM card extraction indication
SIM_ERR_NOINT 2 Not used
SIM_ERR NATR 3 problem with ATR reception
SIM_ERR_READ 4 Problem during reception of
bytes
SIM_ERR_XMIT 5 Problem during transmission of
bytes
SIM_ERR_OVF 6 Overflow of the FIFO
SIM_ERR _LEN 7 the answer is not corresponding
toa
correct answer of T=0 protocol
SIM_ERR_CARDREJECT 8 Card not acceptable for protocol
T=0
SIM ERR WAIT 9 Indicates SW timer overflow
SIM_ERR_ABNORMAL_CASE1 10 abnormal case of the
asynchronous state machine
SIM_ERR_ABNORMAL_CASE2 11 abnormal case of the
synchronous state machine
SIM_ERR_BUFF_OVERFL 12 SIM copy exceeds 255
characters
SIM_ERR_HARDWARE_FAIL 13 Power on failure of the interface
(valid for only for IOTA)
SIM_ERR_RETRY_FAILURE 14 Software retry failed

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 312 of 401

Locosto_BSP_API Version 0.3

24.4Type and Other Definitions

These type definitions are used at the driver interface:
typedef unsigned char SYS BOOL;

typedef unsigned char SYS UWORDS;
typedef signed char SYS WORDS;

typedef unsigned short SYS UWORD16;
typedef short SYS WORD16;

typedef unsigned long SYS UWORD32;
typedef long SYS WORD32;

typedef struct
{

SYS UWORDS8 Inverse;
SYS UWORDS8 AtrSize;
SYS_UWORD8 AtrData [MAX_ATR_S IZE];

} SIM CARD;

These constant definitions are used at the driver interface:

#define MAX ATR SIZE 33
% T Texas Instruments — Proprietary Information Page 313 of 401
EXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 25 DAR

25.1 Introduction 315
25.2 Interface Description 315
25.3 Message Definition 319
25.4 Type Definition 319
Q’ TEXAS Texas Instruments — Proprietary Information Page 314 of 401

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

25.1 Introduction
This document describes the APIs of DAR (Diagnistics And Recovery) module.

25.2 Interface Description

In this paragraph the interface of the DAR module is described.
25.2.1 Recovery Functions Definitions

25.2.1.1 dar_recovery_get_status

T RV _RET dar recovery get status (T DAR RECOVERY STATUS* status)

Description

This function is called by the MMI at the beginning of the procedure, in order to get the status of the
last reset of the system.

Parameters

status
DAR recovery status is stored in *status.

Immediate Return

T _RV_RET

This function always returns RV_OK.

25.2.1.2 dar_recovery_config

T RV RET dar recovery config(T RV RET (*dar store recovery data)
(T DAR BUFFER buffer p,
UINT16 length))

Description

This function is used to store a callback function that will be called by the recovery system when a
recovery procedure has been initiated.

Parameters

dar_store_recovery data
dar callback function

Immediate Return

T_RV_RET

This function always returns RV_OK.

25.2.1.3 dar_get_recovery_data

T RV RET dar get recovery data(T DAR BUFFER buffer p, UINT16 length)

Q’ Texas Instruments — Proprietary Information Page 315 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Description

This function is used to retrieve data that have been stored in the buffer just before a reset.

Parameters

buffer p
The buffer in whom important data have been stored before the reset

length
The length of the buffer

Immediate Return

T _RV_RET

This function always returns RV_OK.

25.2.2 Watchdog Functions Definitions

25.2.2.1 dar_start_watchdog_timer

T RV RET dar start watchdog timer (UINT16 timer expiration value)

Description

This function uses the timer as a general purpose timer instead of Watchdog. It loads the timer, starts
it and then unmasks the interrupt.

Parameters

timer expiration value
Timer's interval in milliseconds before the timer expires.

Immediate Return

T _RV_RET

This function always returns RV_OK.

25.2.2.2 dar_reload_watchdog_timer

T RV RET dar reload watchdog time (void)

Description

This function is used to maintain the timer in reloading it periodically before it expires.

Parameters

None

Immediate Return

T _RV_RET

This function always returns RV_OK.

Q’ Texas Instruments — Proprietary Information Page 316 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

25.2.2.3 dar_stop_watchdog_timer

T RV RET dar stop watchdog timer (void)

Description

This function stops the timer used as a general purpose timer instead of watchdog.

Parameters

None

Immediate Return

T_RV_RET

This function always returns RV_OK.

25.2.3 Reset Functions Definition

25.2.3.1 dar_reset_system

T RV RET dar reset system(void)

Description

This function can be used to reset the system voluntarily.

Parameters

None

Immediate Return

T _RV_RET

This function always returns RV_OK.

25.2.4 Diagnose Functions Definition

25.2.4.1 dar_diagnose_swe_filter

T RV RET dar diagnose swe filter(T RVM USE ID dar use 1id,
T DAR LEVEL dar level)

Description

This function is called to configure the Diagnose filtering. It allows to determine what Software Entity (
dar_use_id) wants to use the Diagnose and allows to indicate the level threshold of the diagnose
messages (Warning or Debug).

Parameters

dar_use_id
The dar use id.

dar level

The dar level.
Q’ Texas Instruments — Proprietary Information Page 317 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

Immediate Return

T_RV_RET
The possible values are:

id
RV_OK

Definition

The API function was successfully executed.

RV_NOT_READY

DAR Entity is not running

RV_NOT_SUPPORTED

Insufficient resources

RV_MEMORY_ERR

Not enough memory

25.2.4.2 dar_diagnose_write

T RV RET dar diagnose write(T DAR INFO *buffer p,

T DAR FORMAT format,
T DAR LEVEL diagnose info level,
T RVM USE ID dar use id)

Description

This function is called to store diagnose data in RAM buffer.

Parameters

buffer p

Pointer to the message to store.

format

Data Format (the Binary format is not supported).

Data level

: dar_use_id
Data Use ID

Immediate Return

diagnose_info_level

T _RV_RET

This function always returns RV_OK.

25.2.4.3 dar_diagnose_generate_emergency

T RV RET dar diagnose generate emergency(T DAR INFO *buffer p,

T DAR FORMAT format,
T RVM USE ID dar use id)

Description

This function is called to store diagnose data in RAM buffer when an emergency has been detected

and goes to emergency (automatic reset).

Parameters
buffer p
Q’ Texas Instruments — Proprietary Information Page 318 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API

Version 0.3

Pointer to the message to store.

format
Data Format (the Binary format is not supported).

: dar use_id
Data Use ID

Immediate Return

T_RV_RET
The possible values are:
id Definition

RV_OK The API function was successfully executed.

RV_NOT_READY DAR entity is not running

25.3 Message Definition

The messages used in the DAR module are given below:

25.3.1 Diagnose Messages

25.3.1.1 DAR_FILTER_REQ

This message is used to diagnose filter and non-filter messages. The following fields are defined for

this message:
msg_p->0s_hdr.msg_id = DAR_FILTER_REQ

msg_p->0s_hdr.src_addr_id = <dar address id>

msg_p->use_msg_parameter.group_nb = <group number>
msg_p->use_msg_parameter.mask = <mask>
msg_p->use_msg_parameter.level = <dar_level>

25.3.1.2 DAR_WRITE_REQ
This is the diagnose write message. The following fields aredefined:

msg_p->0s_hdr.msg_id = DAR_WRITE_REQ
msg_p->0s_hdr.src_addr_id = <dar address id>
msg_p->data_write.char_p = <buffer>
msg_p->data_write.data_format = <format>
msg_p->data_write.level = <diagnose info level>
msg_p->data_write.use_id.group_nb = <group number>
msg_p->data_write.use_id.mask = <mask>

25.4 Type Definition

25.4.1 T_DAR_RECOVERY_STATUS
typedef UINT16 T_DAR_RECOVERY_STATUS;

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 319 of 401

Locosto_BSP_API

Version 0.3

25.4.2 T_DAR_STATE
typedef INT8 T_DAR_STATE;

25.4.3 T_DAR_FORMAT
typedef INT8 T_DAR_FORMAT;

25.4.4 T_DAR_LEVEL
typedef UINT8 T_DAR_LEVEL;

25.4.5 T_DAR_BUFFER
typedef UINT8* T_DAR_BUFFER;

25.4.6 T_DAR_INFO
typedef char T_DAR_INFO;

25.4.7 T_DAR_USE_ID
typedef struct

UINT16 group_nb;
UINT16 mask;
}T_DAR_USE_ID;

25.4.8 T_DAR_STATUS
typedef struct
T_RV_HDR os_hdr;

INT8 status;
} T_DAR_STATUS;

25.4.9 T_DAR_RECOVERY_CONFIG

typedef struct{
UINT16 msg_id; /* id of the message */
T _DAR_BUFFER buffer_p; /* pointer on the buffer */
UINT8 length; * buffer length */

} T_DAR_RECOVERY_CONFIG;

25.4.10 T_DAR_FILTER_START

typedef struct
T_RV_HDR os_hdr;
T_DAR_MSG_PARAM use_msg_parameter;
T_RV_RETURN return_path;

} T_DAR FILTER_START;

25.4.11 T_DAR_ WRITE_START

typedef struct
T_RV_HDR os_hdr;
Q’ Texas Instruments — Proprietary Information Page 320 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

T_DAR_WRITE data_write;
T_RV_RETURN return_path;
} T_DAR_WRITE_START;

Q’ Texas Instruments — Proprietary Information Page 321 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 26 AUDIO

26.1 Introduction 323

26.2 Overview 323

26.3 Audio-Modem Incompatibilities 324

26.4 Audio Task Compatibilities 325

26.5 Interface Description 327
26.6 Audio Mode Configuration 349

26.7 Full Access Family 365

{Z’ TExAs Texas Instrum(esrltrTC;yP:r)i;\)lreij;ary Information Page 322 of 401

INSTRUMENTS

26.1

26.2

Locosto_BSP_API Version 0.3

Introduction

This document provides an interface specification of the AUDIO entity. The purpose of the AUDIO
entity is to provide an abstraction layer to SW developers in order to access the audio services
available on the platform.

Voice Memo, Voice Recognition, Melody generation, Key Beep generation, Tones generation, audio
mode configuration and speaker volume are part of the services provided by the AUDIO entity.

Overview

26.2.1 Generality

The AUDIO services provided by the AUDIO entity can be accessed by any entity running on the
mobile. Several entities can use the audio services at the same time. Note that for commodity
reasons, the entity using the AUDIO services will be called MMI in the rest of the document.

All the services provided by the audio entity can be accessed via direct function call. These functions
are listed in this document. The AUDIO entity use the return mechanism to provide information back
to the MMI.

26.2.2 Return Mechanism

All the functions return an immediate value, providing information on the success or the failure of the
function call. In some (most of the) cases, extra processing time is needed to perform the action
requested when calling the function. In this case, the function is exit and later on, one or several
EVENTs are sent back by the AUDIO entity. Note that for commodity, all the events are always
mentioned in upper case.

The AUDIO entity use the EVENT format and the return path method defined in Riviera Environment.
Basically, in order to send information back, the AUDIO entity sends EVENTSs to the MMI. An event is
a buffer, with a header, common to any EVENT, and a custom field related to the EVENT. The header
is a C structure, containing the opcode field. This field contains the unique opcode of the EVENT and
is the only way to know which kind of EVENT has been received. Based on this value, the MMI can
re-cast the buffer and access to custom information related to the EVENT.

MMI have two ways to get access to the EVENTS: Call back functions or message posted in its
mailbox.

A call back function is a function name, provided by MMI as a parameter and which will be called by
the AUDIO SW when a EVENT is available. When a callback function is defined, it is always the
callback function mechanism that is used to return EVENTSs to the MMI.

But for more efficient implementation, it also possible to directly post a message into the MMI mailbox.
In this case, the task id and mailbox id of the MMI must be provided to the AUDIO SW entity.

For every audio service, the MMI can define which return mechanism should be used. For that
purpose, it must provide a return_path. The generic return_path type is a C structure, defined as:

/* unique ADDRess IDentifier of a SWE */
typedef UINT16 T RVF ADDR ID;

typedef struct
{

T RVF ADDR _ID addr id;

void (*callback func) (void *);
} T RV _RETURN;

% Texas Instruments — Proprietary Information Page 323 of 401
TEXAS Strictly Private
INSTRUMENTS

26.3

Locosto_BSP_API Version 0.3

Audio-Modem Incompatibilities

Due to the share of the CPU load and of the memory in DSP, some audio task can’t run with certain
modem state. For instance, the audio MCU software doesn’t manage this constraint. Therefore any
user of the audio services described in this document must follow the audio-modem incompatibilities
described in the table below.

In case of incompatibilities, the user of the audio must stop as soon as possible the audio before to
enter to a modem state incompatible with the current audio task.

26.3.1 DSP codes <= 33

DSP CODE in B-sample
GSM GPRS GSM->GPRS | GPRS->GSM
ldle SMS Dedicated Idle Transfer
Speech | FACCH| TCH/Data

CAPTION:

can run in this mode.
-can‘t run.in this mode.
With DSP code 17/18/32, the Voice Memo Play
SR enroll feature does not w ork w ith IDS module

at 9600bps in non-transparent mode. GSM-DSP
SR update
BUG00670 describes this problem.
SRreco

DSP CODE 33
GSM GPRS GSM->GPRS | GPRS->GSM
Dedicated
Speech | FACCH| TCH/Data

Transfer

Melody E1

| Speech recognition tasks in GPRS needs
some L1 modifications (c.f. spec. $924).
SR enroll
SR update
SRreco

26.3.2 DSP code 34

0x3416, 0x4180
Feature/Modem GSM Dedicated mode GPRS GSM>GPRS | GPRS>GSM
Idle | SMS | FACCH|Speech] TCHData| IDS | Idle [Transfed]
Keybeep v v v v v v v v v v
Tones v v v v v v v v v v
Melody_E1 v v v v v v v v
Voice Memo v v v v v v v v v
AMRMMS v v v v v v v
Speech Reco v v v v v v
TTY v
FIR v v v v v v v v v v
AEC v
Audio Mode v v v v v v v v v v
TIDEDCO | v v v v v v v v v
% T s Texas Instruments — Proprietary Information Page 324 of 401
EXA!

Strictly Private

INSTRUMENTS

26.4

Locosto_BSP_API

Version 0.3

26.3.3 DSP code 35

Feature/Modem

GSM

Dedicated non AMR

Dedicated AMR

GPRS

GSM->GPRS

GPRS->GSM

Idle

SMS

FACCH

Ringer

Speech

TCHData | IDS

Ringer

Speech

Idle

[Transfer]

Keybeep

Tones

Melody_E1

Voice Memo

AMRMMS

Speech Reco

TTY

FIR

AEC

Audio Mode

TIDEDCO

26.3.4 DSP code 36

0x3606, 0x6180

Feature/Modem

Dedicated non AMR

Dedicated AMR

GPRS

GSM->GPRS

GPRS->GSM

Idle

FACCH

Ringer

Speech

TCHData | IDS

Ringer

Speech

Idle

[Transfer]

Keybeep

Tones

Melody_E1

Melody_E2

Voice Memo

AMRMMS

Speech Reco

TTY

FIR

AEC

Audio Mode

TIDEDCO

(*): 2™ melody E1 should be started during (and not at beginning of) Melody E1, it corresponds to
“‘game mode” Idem for melody E2.

Audio Task Compatibilities

The sheets below show the compatibility of all audio tasks with another audio task.

{5’ TExXAS

INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 325 of 401

Locosto_BSP_API Version 0.3

26.4.1 DSP codes <= 33

DSP CODE in B-sample

Keybeep | Tones |Melody E1] VM play | VMrec | SR enroll | SR update | SRreco | FIR| AEC

Keybeep
Tones
Melody E1
VM play
VMrec
SR enroll
SR update
SR reco
FIR
AEC

DSP CODE in C-sample compatibility unknow n??

Keybeep | Tones |Melody E1] VM play | VMrec | SR enroll | SR update | SRreco | FIR| AEC Audigamgde Melody E2
Keybeep /
Tones /]

Melody E1 P
VM play
VMrec
SR enroll

SR update
SR reco

FIR
AEC
Audio Mode
Melody E2

CAPTION:

can run with this task

- can't run with this task.

26.4.2 DSP code 34

0x3416, 0x4180
yb Tones |Melody E1| Voice Memo | AMRMMS | Speech Reco | TTY FIR AEC Audio Mode | TIDEIDCO

feature/feature

Keybeep
Tones
Melody Et
Voice Memo
AMRMMS
Speech Reco
TTY
AR
AEC
Audio Mode
TIDEDCO

Q’ Texas Instruments — Proprietary Information Page 326 of 401
TEXAS Strictly Private
INSTRUMENTS

26.5

Locosto_BSP_API Version 0.3

26.4.3 DSP code 35

feature/feature

0x3507, 0x5190
ybeep] Tones | Melody E1] Melody E2 | Voice Memo| AMRMMS | Speech Reco | TTY | FR AEC Audio Mode] TIDEDCO

Keybeep
Tones
Melody Et see (*)
Voice Memo
AMRMMS
Speech Reco
TTY
FIR
AEC
Audio Mode
TIDEDCO

26.4.4 DSP code 36

feature/feature

03606, 0x6180
%eybeep] Tones | Melody E1] Melody E2 | Voice Memo] AMRMMS | SpeechReco] TTY | FR AEC Audio Mode| TIDEDCO

Keybeep
Tones
Melody Et see (*)
Melody E2 see (*)
Voice Memo
AMRMMS
Speech Reco
TTY
FIR
AEC
Audio Mode
TIDEDCO

Interface Description

26.5.1 Keybeep Generation Functions

26.5.1.1 audio_keybeep_start

T AUDIO RET audio keybeep start(T AUDIO KEYBEEP PARAMETER parameter,
T RV _RETURN return path)

Description

This function is called to initiate a key beep generation and DTMF generation. The key beep is the
generation of two simultaneous sine waves.

Parameters

T_AUDIO_KEYBEEP_PARAMETER
Specifies the characteristic of the keybeep to start.

typedef struct {

UINT1l6 frequency beep[2]; // Frequency of the 2 beeps
INTS8 amplitude beep[2]; // Amplitude of the 2 beeps
UINT16 duration;

}T AUDIO KEYBEEP PARAMETER;

Below the detail of each parameters:

Q’ Texas Instruments — Proprietary Information Page 327 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

frequency_beep[2]
Specifies the frequency of the beeps 1 and 2 in 1 Hz unit. Note the range is [0...2000] Hz.
If the frequency value is equal to NO_BEEP, the beep isn’'t generated.

amplitude_beep[2]
Specifies the amplitude of the beeps 1 and 2 in 1 dB unit. Note the range is [-48...0] dB.

duration
Specifies the duration of the key beep in ms. Note this duration can’t be equal to 20ms.

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

T_AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T AUDIO RET;

The possible values are:

value id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR An error is occurred during the execution of this function

Event Return

AUDIO_KEYBEEP_STATUS_MSG
This event is the status send at the end of the keybeep generation or if an error occurred.
typedef struct {
T RV_HDR os_hdr;
INTS8 status;
}T_AUDIO KEYBEEP STATUS;

The possible values of status are:

value id Definition
0 AUDIO_ OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’'t the case, the good
functionality of the complete system isn’t guarantee.

Note: these following restrictions are only available in the latest version of the software.

An entity isn’t allowed to call this API function if the following audio features is running:
A speech recognition task (enroll, update, reco).

Note: this restriction is managed by the Audio entity, therefore the keybeep isn’t started if the speech
recognition is running.

Q’ Texas Instruments — Proprietary Information Page 328 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Process flow

MMmI AUDIO
| |

»
>

| audio_keybeep_start(parameter, return_path) |

A

AUDIO_KEYBEEP_STATUS_MSG |

26.5.1.2 audio_keybeep_stop

AUDIO RET audio keybeep stop (T RV _RETURN return path)

Description

This function is called in order to stop the key beep generation.

Parameters

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

T_AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

AUDIO_KEYBEEP_STATUS_MSG
C.f. API function audio_keybeep_start.

Current restriction of use

none

Process flow

MMmI AUDIO
| |

»
»

| audio_keybeep_start(parameter, return_path) |

v

| audio_keybeep_stop(return_path) l

N AUDIO_KEYBEEP_STATUS_MSG |

Q’ Texas Instruments — Proprietary Information Page 329 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

<
|‘

26.5.2 Tones Generation Functions

26.5.2.1 audio_tones_start

T AUDIO RET audio tones start (T AUDIO TONES PARAMETER *p parameter,
T RV _RETURN return path)

Description

This function is called to initiate the tones generation. The tones are the generation of up to three
scheduled sine waves.

Parameters

T_AUDIO_TONES_PARAMETER
Specifies the characteristic of the keybeep to start.
typedef struct {

T _AUDIO_TONE_DESC tones[3]; // Description of the 3 tones
UINT16 frame_ duration; // duration of the tones frame
UINT16 sequence duration; // duration of the sequence
UINT16 period duration; // duration of the period
UINT16

}T AUDIO TONES PARAMETER;

typedef struct {

UINT16 start tone; // start date of the tone
UINT16 stop tone; // stop date of the tone
UINT16 frequency tone;// frequency of the tone
INT8 amplitude tone;// amplitude of the tone

}T_AUDIO TONE DESC;

Below the detail of each parameters:

start_tone
Specifies when the tone 1, 2, 3 must be start in ms unit.

stop_tone
Specifies when the tone 1, 2, 3 must be stop in ms unit. Note the stop_tone > start_tone and
stop_tone-start_tone > 20ms.

frequency_tone
Specifies the frequency of the tone 1, 2, 3 in 1 Hz unit. Note the range is [0...2000] Hz.
If the frequency value is equal to NO_TONE, the beep isn’'t generated.

amplitude_tone
Specifies the amplitude of the tone 1, 2, 3 in 1 dB unit. Note the range is [-48...0] dB.

frame_duration
Specifies the duration of the tones frame (c.f. figure below) in ms unit. Note this duration can’t be equal to
20ms.

sequence_duration
Specifies the duration of the sequence (c.f. figure below) in ms unit. Note the sequence_duration >=
frame_duration.

period_duration
Specifies the duration of the repetition (c.f. figure below) in ms unit. Note the repetition_duration >=
sequence_duration.

repetition
Specifies the number of repetition the tones defined with the parameters above must be played (c.f. figure
below). If the repetition = TONE_INFINITE, the tones is played indefinitely.

% Texas Instruments — Proprietary Information Page 330 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

To understand each parameter, please see the figure and example below:

0ms | 40 ms | 80 ms | 120 ms | 160 ms | 200ms | 240 ms | 280 ms | 320 ms | 360 ms | 400 ms
20 ms 60 ms 100 ms 140 ms 180 ms 220 ms 260 ms 300 ms 340 ms 380 ms .

start_tone_1 stop_tone_1

start_tone_2 stop_tone_2

start_tone_3 stop_tone_3

frame_duration

sequence_duration

repetition_duration

The parameters corresponding to the figure above are:

parameter->tone[0] .start tone = 0;
parameter->tone[0] .stop_ tone = 60;
parameter->tone[0] .frequency tone = 520// Hz
parameter->tone[0] .amplitude tone = -24// dB
parameter->tone[l].start tone = 20;
parameter->tone[l] .stop tone = 80;
parameter->tone[l].frequency tone = 775// Hz
parameter->tone[l].amplitude tone = -15// dB
parameter->tone[2] .start tone = 100;
parameter->tone[2] .stop_ tone = 140;
parameter->tone[2].frequency tone = 643 // Hz
parameter->tone[2] .amplitude tone = - // dB
parameter->frame_duration = 160;
parameter->sequence duration = 320;
parameter->period duration = 320;
parameter->repetition = TONE INFINITE; // infinite tones

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

T_AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

AUDIO_TONES_STATUS_MSG
This event indicates that the tones task is stopped or an error occured.
typedef struct {
T RV_HDR os hdr;
INTS8 status;
}T_AUDIO TONES STATUS;

The possible values of status are:

value id Definition
0 AUDIO_ OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’'t the case, the good
functionality of the complete system isn’t guarantee.

Note: these following restrictions are only available in the latest version of the software.

Q’ Texas Instruments — Proprietary Information Page 331 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

An entity isn’t allowed to call this API function if the following audio features is running:

A melody E1.
A voice memorization (recording).
A speech recognition task (enroll, update, reco).

Note: this restriction is managed by the audio entity, therefore the tone isn’t started if the speech

recognition or voice memorization recording or melody E1 is running.

Process flow

MMmI AUDIO

»
>

| audio_tones_start(p_parameter, return_path) |

A

AUDIO_TONES_STATUS_MSG |

26.5.2.2 audio_tones_stop

T AUDIO RET audio tones stop (T RV _RETURN return path)

Description

This function is called in order to stop the tones generation.

Parameters

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

T_AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

AUDIO_TONES_STATUS_MSG
C.f. API function audio_tones_start.

Current restriction of use

C.f. API function audio_tones_start.

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 332 of 401

Locosto_BSP_API Version 0.3

Process flow

MMmI AUDIO
| |

»
>

| audio_tones_start(p_parameter, return_path) |

v

| audio_tones_stop(return_path) |

A

AUDIO_TONES_STATUS_MSG |

26.5.3 Melody E1 Generation

26.5.3.1 audio_melody_E1_start

T AUDIO RET audio melody EI1 start (T AUDIO MELODY EI PARAMETER *p parameter,
T RV _RETURN return path)

Description

This function is called to initiate the melody E1 generation.
Note: two melodies can be run in parallel.

Parameters

T_AUDIO_MELODY_E1_PARAMETER
Specifies the characteristic of the melody to start.

typedef struct {
char melody name[AUDIO MELODY PATH NAME MAX SIZE];
// File name of the melody
BOOL loopback; // the melody is played indefinitely
BOOL melody mode; // mode of the melody

}T AUDIO MELODY E1 PARAMETER;

Below the detail of each parameters:

melody_name

Specifies the file name of the melody. Note that this file name is used by the audio entity to request the
melody data to the File Flash System. Moreover, the file name must contain the entire path to access to the
melody file. Note the maximum size of the path plus the name is 20 characters.

loopback
If loop_back = AUDIO_MELODY_LOOPBACK the melody is played indefinitely else one time else if
loop_back = AUDIO_MELODY_NO_LOOPBACK the melody is played only one time.

melody_mode

If melody_mode = AUDIO_MELODY_GAME_MODE two melody can be played in parallel in order to use the
melody for the game (Note the 8 notes resource is shared between this two melody). If melody _mode =
AUDIO_MELODY_NORMAL_MODE only one melody is played. So all the 8 notes resource is for this
melody.

% Texas Instruments — Proprietary Information Page 333 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

AUDIO_MELODY_E1_STATUS_MSG
This event indicates that the melody task is stopped correctly or an error occurred during the
execution.
typedef struct {
T RV_HDR os_ hdr;
INTS8 status;
}T_AUDIO MELODY E1 STATUS;

The possible values of status are:

value id Definition
0 AUDIO_ OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed
-2 AUDIO_MODE_ERROR A melody is running in normal mode. Therefor, no more melody
can not be run.

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good
functionality of the complete system isn’t guarantee.

Note: these following restrictions are only available in the latest version of the software.

An entity isn’t allowed to call this API function if the following audio features is running:
" Atone.
A voice memorization (recording and playing).
A speech recognition (enroliment, update, recognition).
Note: this restriction is managed by the audio entity, therefore the melody E1 isn’t started
if the speech recognition or voice memorization recording or playing and tone is running.
In normal mode, only one melody can be run.
Two melodies with the same name can’t be run together (i.e. in game mode).

Process flow

MMmI AUDIO
| |

»

audio_melody_E1_start(p_parameter, return_path) |

A

AUDIO_MELODY_E1_STATUS_MSG |

26.5.3.2 audio_melody_E1_stop

Q’ Texas Instruments — Proprietary Information Page 334 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T AUDIO RET audio melody EI1 stop (
T AUDIO MELODY E1_STOP PARAMETER *p parameter,
T RV _RETURN return path)

Description

This function is called in order to stop the melody generation.

Parameters

T_AUDIO_MELODY_E1_STOP_PARAMETER

Specifies the characteristic of the melody to stop.
typedef struct {
char melody name[AUDIO MELODY PATH NAME MAX SIZE];
// File name of the melody
}T_AUDIO MELODY E1 PARAMETER;

Below the detail of each parameters:

melody_name

Specifies the file nhame of the melody to stop. Note that this file name must be the name of the melody
previously started. Moreover, the file name must contain the entire path to access to the melody file. Note
the maximum size of the path plus the name is 20 characters.

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

T_AUDIO_RET
C.f. API function audio_keybeep_start.

Event Return

AUDIO_MELODY_E1_STATUS_MSG
C.f. API function audio_melody E1_start.

Current restriction of use

C.f. API function audio_melody E1_start.

Process flow

| |
MMmI AUDI

»

»
audio_melopdy_E1_start(p_parameter, return_path) l

v

| audio_melody_E1_stop(return_path) |

A

AUDIO_MELODY_E1_STATUS_MSG |

Q’ Texas Instruments — Proprietary Information Page 335 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

26.5.4 Voice Memorization Functions

26.5.4.1 audio_vm_record_start

T AUDIO RET audio _vm record start (
T AUDIO VM RECORD PARAMETER *p record parameter,
T AUDIO TONES PARAMETER *p tones parameter,
T RV _RETURN return path)

Description

This function is called to initiate the voice memorization recording phase. Note tones are generated

only if the conversation is recording during a call.

Parameters

T_AUDIO_VM_RECORD_PARAMETER
Specifies the parameters using during the voice memorization phase.
typedef struct {

char memo name [AUDIO MEMO PATH NAME MAX SIZE];

UINT32 memo_duration; // maximum duration of the voice memo
BOOL compression mode; // activate the compression

UINT16 microphone gain; // recording gain applies to microphone
UINT16 network gain; // gain applies to the network voice

}T AUDIO VM RECORD PARAMETER;

Below the detail of each parameters:

memo_name

Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the
memo data to the File Flash System. Moreover, the file name must contain the entire path to declare the
memo file. Note the maximum size of the path plus the name is 20 characters.

memo_duration

Specifies the duration of the voice memo in second unit when the compression of the voice recorded is
deactivated. In case of COMPRESSION_MODE, this duration indicates the minimum duration of the voice
memo.

microphone_gain
Specifies the gain multiplied to the voice sample from the microphone. The format is Q8.8, for example: if
microphone_gain = 0x0100, the gain is 1 and if microphone_gain = 0x0080, the gain is 0,5.

network_gain

Specifies the gain multiplied to the voice sample from the network (if the mobile is in dedicated mode). The
format is Q8.8, for example: if network_gain = 0x0100, the gain is 1 and if network_gain = 0x0080, the gain
is 0,5.

compression_mode
Activate (COMPRESSION_MODE) or deactivate (NO_COMPRESSION_MODE) the compression of the
voice recorded. It means that the silence between two voice activity are compressed.

T_AUDIO_TONES_PARAMETER
See the API function: “audio_tones_start’. Note that these tones are generated only if
conversation is recording during a call.

T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

the

C.f. API function audio_keybeep_start.

Event Return

% Texas Instruments — Proprietary Information Page 336 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

AUDIO_VM_RECORD_STATUS_MSG
This event indicates that the melody task is stopped or an error is occurred.
typedef struct {
T RV_HDR os_hdr;
INTS8 status;
UINT16 recorded duration;
}T_AUDIO VM RECORD STATUS;

Below the detail of the parameter:

recorded_duration
Specifies the size in seconds’ unit of the recorded data.

The possible values of status are:

value Id Definition
0 AUDIO_ OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good
functionality of the complete system isn’t guarantee.

Note: these following restrictions are only available in the latest version of the software.

An entity isn’t allowed to call this API function if the following audio features is running:

" A melody E1.
A tone.
A speech recognition (enroliment, update, update-check, recognition).
A voice memorization playing.
Note: this restriction is managed by the audio entity, therefore the Voice memorization
recording isn’t started if the speech recognition or voice memorization playing or tone or
melody E1 is running.

All directories included in the pathname must be declared before

Process flow

MMmI AUDIO
| |

»
»

audio_vm_record_start(p_record_parameter,
p_tones_parameter, return_path)

A

AUDIO_VM_RECORD_STATUS_MSG |

26.5.4.2 audio_vm_record_stop

T AUDIO RET audj_o_vm_record_stop (T RV _RETURN return path)

Q’ Texas Instruments — Proprietary Information Page 337 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Description

This function is called in order to stop the current voice memorization record.

Parameters

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

AUDIO_VM_RECORD_STATUS_MSG
C.f. API function audio_vm_record_start.

Current restriction of use

C.f. API function audio_vm_record_start.

Process flow

MMmI AUDIO

v

audio_vm_record_start(p_record_parameter,
p_tones_parameter, return_path)

v

| audio_vm_record_stop(return_path) |

A

AUDIO_VM_RECORD_STATUS_MSG |

26.5.4.3 audio_vm_play_start

T AUDIO RET audio vm play start (T AUDIO VM PLAY PARAMETER *p parameter,
T RV _RETURN return path)

Description
This function is called to initiate the voice memorization playing phase.

Parameters

T_AUDIO_VM_PLAY_PARAMETER
Specifies the parameters using during the voice memorization phase.
typedef struct {
char memo name [AUDIO MEMO PATH NAME MAX SIZE];
}T AUDIO VM PLAY PARAMETER; B B B o

Q’ Texas Instruments — Proprietary Information Page 338 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Below the detail of each parameters:

memo_name
Specifies the file name of the voice memo. Note that this file name is used by the audio entity to request the
memo data to the File Flash System. Moreover, the file name must contain the entire path to declare the
memo file. Note the maximum size of the path plus the name is 20 characters.

T_RV_RETURN
C.f. previous section (return mechanism).

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

AUDIO_VM_PLAY_STATUS_MSG
This event indicates that the voice memorization playing task is stopped or an error is occurred.
typedef struct {
T RV_HDR os_ hdr;
INTS8 status;
}T_AUDIO VM PLAY STATUS;

The possible values of status are:

value id Definition
0 AUDIO OK The audio features was successfully executed and stopped.
-1 AUDIO_ERROR The audio features was not successfully executed

Current restriction of use

The following restriction of use MUST BE followed by the entity. If it isn’t the case, the good
functionality of the complete system isn’t guarantee.

Note: these following restrictions are only available in the latest version of the software.

An entity isn’t allowed to call this API function if the following audio features is running:
A melody E1.
A speech recognition (enroliment, update, update-check, recognition).
A voice memorization recording.
Note: this restriction is managed by the audio entity, therefore the voice memorization playing
isn’t started if the speech recognition or voice memorization playing is running.
All directories included in the pathname must be declared before

Process flow

MMmI AUDIO
| |

»
»

| audio_vm_play_start(parameter, return_path) |

A

| AUDIO_VM_PLAY_STATUS_MSG |

Q’ Texas Instruments — Proprietary Information Page 339 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

26.5.4.4 audio_vm_play_stop

T AUDIO RET audio _vm play stop (T RV _RETURN return path)

Description

This function is called in order to stop the current voice memorization play.

Parameters

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

C.f. API function audio_keybeep_start.

Event Return

AUDIO_VM_PLAY_STATUS_MSG
C.f. API function audio_vm_play_start.

Current restriction of use

C.f. API function audio_vm_play_start.

Process flow

AUDIO

»
»

| audio_vm_play_start(parameter, return_path) |

| audio_vm_play_stop(return_path)

v

AUDIO_VM_PLAY_STATUS_MSG

A

26.5.5 MP3 Functions

MP3 controls for MP3 file playing are:
Start/Stop: start and stop playing MP3 file.
Pause: pause playing.

Resume: resume playing after a pause

Rules to respect:

The MMI must respect the following rules to play a MP3 file:

The MMI isn’t allowed to play a new MP3 before receiving an Audio MP3 Status.
The MMI can receive a stop confirmation (Audio MP3 status) in the following cases:
The MMI requested to stop the playing (audio_mp3_stop function) and the Audio entity confirms

this action

Q’ Texas Instruments — Proprietary Information Page 340 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

The MP3 decoding is finished and the Audio entity informs the MMI with a stop confirmation
message.

An error occurred from while playing the MP3 file.

After a pause request (audio_mp3_pause function), the MMI is allowed to request a resume or a
stop playing (audio_mp3_resume or audio_mp3_stop).

The MMI isn’t allowed to use the start command during a pause: resume should be used instead.
Resume commands has no effect outside pause mode.

The MMI isn’t allowed to request two pauses in a row .

The MMI isn’t allowed to request MP3 information before sending a start request
(audio_mp3_start function) or after sending a stop request (audio_mp3_stop function).

This section describes how to play a MP3 melody, using the AUDIO SW entity service.

26.5.5.1 audio_mp3_start

T AUDIO RET audio mp3 start (T AUDIO MP3 PARAMETER *p parameter,
T RV _RETURN *p _return path)

Description
This function is called to start a MP3 melody generation.

Parameters
T_AUDIO_MP3_PARAMETER

typedef struct
{

char mp3_name [AUDIO_MP3 PATH NAME MAX SIZE]; // File name of the melody
BOOL mono_stereo; // channel configuration
UINT32 size file start; // size in bytes

} T AUDIO MP3 PARAMETER;

Below the detail of each parameter:

mp3_name

Specifies the file name of the MP3 melody.

Note that this file name is used by the audio entity to request the melody data to the File Flash System.
Moreover, the file name must contain the entire path to access to the melody file.

Mono_stereo

Specifies the configuration of the channel.

If Mono_stereo = AUDIO_MP3_MONO, the channel configuration is Mono
If Mono_stereo = AUDIO_MP3_STEREO, the channel configuration is Stereo

size_file_start

Specifies the size (in bytes) from where the melody should be started

If size_file_start = 0, the melody is played from the beginning of the MP3 file
If size_file_start = XXX, the melody is played from the byte XXX.

T_RV_RETURN
C.f. section return mechanism.

Immediate Return

% Texas Instruments — Proprietary Information Page 341 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T_AUDIO_RET

The immediate value returned is defined as:
typedef INT8 T AUDIO RET;

The possible values are:

Value Id Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not
compiled...)

Event Return

AUDIO_MP3_STATUS
typedef struct {
T RV_HDR os_ hdr;
INTS8 status;
} T_AUDIO MP3 STATUS;

The possible values of status are:

VELT Id Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not
compiled...)

Process flow

MMmI AUDIO

| audio_mp3 start(mp3_parameter, return_path) |

»
»

AUDIO_MP3_STATUS_MSG.

26.5.5.2 audio_mp3_stop

T AUDIO RET audio mp3 stop (UINT32 *size played)

Description

This function is called to stop playing a MP3 melody.

Parameters

UINT32 *size_played
This parameter returns the size of the file that has been played before the audio_mp3_stop function
was called. This size is in bytes.

Q’ Texas Instruments — Proprietary Information Page 342 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Immediate Return

T_AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T AUDIO RET;

The possible values are:

value [¢]

0 AUDIO_OK The API function was successfully executed.

Definition

-1 AUDIO_ERROR Error (bad parameters,

compiled...)

not enough memory,

feature not

Event Return (if start APl was called)

AUDIO_MP3_STATUS

typedef struct {
T RV_HDR os_hdr;
INT16 status;
} T_AUDIO MP3 STATUS;

The possible values of status are:

Value [¢]
0 AUDIO_ OK

0x0002 C_MP3_SYNC_NOT FOUND

0x0004 C_MP3_NOT LAYER3

0x0008 C MP3 FREE FORMAT

0x0010 C MP3 ALG ERROR

0x0020 C_MP3_DECODING _DELAY
0x04000 C_MP3_CHECK BUFFER KO
0x08000 C MP3 CHECK BUFFER DELAY

MMI AUDIO
| audio_mp3_stop(size_played) |
AUDIO_MP3_STATUS_MSG.

26.5.5.3 audio_mp3_pause
T AUDIO RET audio mp3 pause (void)
Description
Q’ Texas Instruments — Proprietary Information Page 343 of 401

TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

This function is called to pause playing a MP3 melody. The MP3 melody can be restarted using the
audio_mp3_resume function.

Immediate Return

T_AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T AUDIO RET;

The possible values are:

value Id Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not
compiled...)

Event Return (if start APl was called)

AUDIO_MP3_STATUS

typedef struct {
T RV_HDR os_hdr;
INTS8 status;
} T_AUDIO MP3 STATUS;

The possible values of status are:

VELT Id Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not
compiled...)

Process flow

MMmI AUDIO

audio_mp3_pause()

AUDIO_MP3_STATUS_MSG.

26.5.5.4 audio_mp3_resume

T AUDIO RET audio mp3 resume (void)

Description

This function is called to resume a MP3 melody, after a pause.

Immediate Return

Q’ Texas Instruments — Proprietary Information Page 344 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T_AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T AUDIO RET;

The possible values are:

value Id Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not
compiled...)

Event Return (if start APl was called)

AUDIO_MP3_STATUS

typedef struct {
T RV_HDR os_hdr;
INTS8 status;
} T_AUDIO MP3 STATUS;

The possible values of status are:

VELT Id Definition

0 AUDIO_OK The API function was successfully executed.

-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not
compiled...)

Process flow

MMmI AUDIO

| audio_mp3_resume(void) |

. AUDIO_MP3_STATUS_MSG

26.5.5.5 audio_mp3_info

T AUDIO RET audio mp3 info (void)

Description

This function is called to request information about the currently decoded MP3 frame.

Immediate Return

T_AUDIO_RET
The immediate value returned is defined as:
typedef INT8 T AUDIO RET;

The possible values are:

Q’ Texas Instruments — Proprietary Information Page 345 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Value Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not

compiled...)

Event Return (if start APl was called)

AUDIO_MP3_STATUS

typedef struct {
T RV_HDR os_hdr;
INTS8 status;

T MP3 HEADER INFO info;

} T_AUDIO MP3_STATUS;

The possible values of status are:

VELT Id Definition
0 AUDIO_OK The API function was successfully executed.
-1 AUDIO_ERROR Error (bad parameters, not enough memory, feature not

compiled...)

info (T_MP3_HEADER_INFO)

Structure containing information about current MP3 frame:

Field Type

Possible values

frequency | UINT8

C_MP3_HEADER_FREQ_48000
C_MP3_HEADER_FREQ_44100
C_MP3_HEADER_FREQ_32000
C_MP3_HEADER_FREQ_24000
C_MP3_HEADER_FREQ_22050
C_MP3_HEADER_FREQ_16000
C_MP3_HEADER_FREQ_12000
C_MP3_HEADER_FREQ_11025
C_MP3_HEADER_FREQ_8000

bitrate UINT8

C_MP3_HEADER_BITRATE_320
C_MP3_HEADER_BITRATE_256
C_MP3_HEADER_BITRATE_224
C_MP3_HEADER_BITRATE_192
C_MP3_HEADER_BITRATE_160
C_MP3_HEADER_BITRATE_128
C_MP3_HEADER_BITRATE_112
C_MP3_HEADER_BITRATE_96
C_MP3_HEADER_BITRATE_80
C_MP3_HEADER_BITRATE_64
C_MP3_HEADER_BITRATE_56
C_MP3_HEADER_BITRATE_48
C_MP3_HEADER_BITRATE_40
C_MP3_HEADER_BITRATE_32

mpeg_id UINT8

C_MP3_HEADER_MPEGID_1
C_MP3_HEADER_MPEGID_2
C_MP3_HEADER_MPEGID_2_5

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 346 of 401

Locosto_BSP_API Version 0.3

layer UINT8 | C_MP3_HEADER_LAYER |

C_MP3_HEADER_LAYER_II

C_MP3_HEADER_LAYER _llI

Note: different layer values than LAYER Il can be returned in theory. But
this is a LAYER Il only decoder.

padding BOOL | TRUE, FALSE
private UINT8 | 0, 1

channel | UINT8 | C_MP3_HEADER_STEREO
C_MP3_HEADER_JSTEREO
C_MP3_HEADER_DUAL_MONO
C_MP3_HEADER_MONO

copyright | BOOL | TRUE, FALSE
original BOOL | TRUE, FALSE

emphasis | UINT8 | C_MP3_HEADER_EMPHASIS_NONE
C_MP3_HEADER_EMPHASIS_50_15
C_MP3_HEADER_EMPHASIS_CCIT_J17

Process flow

MMI AUDIO

| audio_mp3_info() |

v

—A

AUDIO_MP3_STATUS_MSG |

26.5.6 How to use the MP3 APlIs

26.5.6.1 “Pause” MP3 in order to play another melody
If the user wants to “pause” the MP3 melody in order to play an other melody (for example Midi

ringer), it is necessary to stop the MP3 melody and then restart it. Indeed, due to Hardware
constraints the MP3 can’t be in “pause” mode when an other melody is playing.

Example of code — the user is listening to a MP3 melody when a Midi ringer needs to be played:
Start the MP3 melody from the beginning:
strepy(mp3_parameter.mp3_name,"/mp3/mp3_file");
mp3_parameter.mono_stereo = AUDIO_MP3_MONO;
mp3_parameter.size_file_start = 0;

if (audio_mp3_start(&mp3_parameter, return_path) == AUDIO_ERROR)

{
*error_type = FUNCTION_ERROR;
return (audio_test_regr_return_verdict(*error_type));
}
Q’ Texas Instruments — Proprietary Information Page 347 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Midi Ringer must be played
- First Stop the MP3 melody:

if (audio_mp3_stop(size_played) == AUDIO_ERROR)
{
*error_type = MEMORY_ERROR;
return (audio_test_regr_return_verdict(*error_type));

- Play the Midi ringer
Use the start function to resume the MP3 melody
mp3_parameter.size_file_start = *size_played;

if (audio_mp3_start(&mp3_parameter, return_path) == AUDIO_ERROR)

*error_type = FUNCTION_ERROR;
return (audio_test _regr_return_verdict(*error_type));

}

26.5.6.2 “Pause” MP3 and resume it
If the user want to pause the MP3 melody and no melody is played in parallel:

Start the MP3 melody from the beginning:
strepy(mp3_parameter.mp3_name,"/mp3/mp3_file");
mp3_parameter.mono_stereo = AUDIO_MP3_MONO;

mp3_parameter.size_file_start = 0;

if (audio_mp3_start(&mp3_parameter, return_path) == AUDIO_ERROR)
{

*error_type = FUNCTION_ERROR;

return (audio_test _regr_return_verdict(*error_type));

}

Pause the MP3 melody:
if (audio_mp3_pause() == AUDIO_ERROR)
{
*error_type = FUNCTION_ERROR;
return (audio_test _regr_return_verdict(*error_type));

}

And then resume the MP3 melody thanks to the resume function:
if (audio_mp3_resume() == AUDIO_ERROR)
{

*error_type = FUNCTION_ERROR;

return (audio_test_regr_return_verdict(*error_type));

}

% Texas Instruments — Proprietary Information Page 348 of 401
TEXAS Strictly Private
INSTRUMENTS

26.6

Locosto_BSP_API Version 0.3

Audio Mode Configuration

26.6.1 Introduction

This section sums up all the API functions useful to handle all possible the audio paths embedded in a
mobile. These API functions can be grouped in several family of use:
- The MMI family:
These API functions are dedicated to facilitate the creation, the calibration, and the change of
the audio mode.
Note: An audio mode is a fixed setting of all audio features embedded in the mobile. For
example, during an incoming call, the mobile rings so this task uses a particular setting of all
audio features therefore it corresponds to a particular audio mode. In this case, the audio
mode is called RING_MODE.
The full access family:
These API functions are dedicated to permit a direct tuning of all audio module involved in the
audio paths. For example, with these functions, you can directly tune the PGA gain of the
microphone connected to the Analog Base Band.

26.6.2 The MMI Family

This section describes all the API functions belong to the MMI family. Before to define these API
functions, the first step is to define several vocabulary and concept used in this chapter.

Audio mode:

An audio mode is a fixed setting of all audio features embedded in the mobile. For
example, during an incoming call, the mobile rings so this task uses a particular setting of all audio
features therefore it corresponds to a particular audio mode. In this case, the audio mode is called
RING_MODE.

The list of all standard audio modes is listed below, but there’s a possibility to extend this
list.

Moreover, the audio setting of an audio mode can be grouped in several family of audio
setting:

Audio path setting:
This group of setting is used to define the audio path used. The different audio paths
are:
- GSM normal path: voice samples are exchanged between GSM network and GSM Analog
Base Band.
- Bluetooth Cordless path: voice samples are exchanged between the GSM Analog Base
Band and the Bluetooth module.
- Bluetooth Headset path: voice samples are exchanged between GSM network and
Bluetooth module.
- DAl encoder path: path to test the speech encoder and its DTX functions.
- DAl decoder path: path to test the speech decoder and its DTX functions.
- DAl acoustic path: path to test the acoustic devices and the audio A/D and D/A devices.
Microphone voice path setting:
This group of setting configures the audio voice path of the microphone.
Speaker voice path setting:
This group of setting configures the audio voice path of the speaker.
Microphone speaker loop setting:
This group of setting configures the audio module involved in the microphone and
speaker voice loop.
Speaker audio stereo path:
This group of setting configures the audio stereo path of the speaker.

26.6.2.1 Audio mode file structure

% Texas Instruments — Proprietary Information Page 349 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

The audio mode is described by the structure below T_AUDIO_MODE. So for each audio mode (i.e.
game, audio off, ringer, handheld...), a T_AUDIO_MODE variable is saved in a flash file in the folder
/aud/ with the extension .cfg. The file name is specified by the customer (c.f. audio_mode_save/load

function)

26.6.2.1.1 Analog Base Band — TRITON

26.6.2.1.1.1 T_AUDIO_MODE

Specifies the structure of each audio mode:

typedef struct

{
/* group of setting to define the audio path used */

T AUDIO VOICE PATH SETTING audio path setting;

/* group of setting to configure the audio voice path of the microphone */
T_AUDIO MICROPHONE_SETTING audio_microphone_setting;

/* group of setting to configure the audio voice path of the speaker */
T_AUDIO_ SPEAKER_SETTING audio_speaker_setting;

/* group of setting to configure the audio stereo path of the speaker */
T_AUDIO_STEREO_SPEAKER SETTING audio_stereo_speaker_setting;

/* group of setting to configure the audio mode involved */

/* in the microphone and speaker loop */

T_AUDIO MICROPHONE_ SPEAKER LOOP_SETTING audio microphone_ speaker_ loop setting;
/* group of settings to configure audio features common to */

/* microphone and speaker */

T_AUDIO_MICROPHONE_ SPEAKER SETTING audio_microphone_ speaker_ setting;

}
T AUDIO MODE;

26.6.2.1.1.2 T_AUDIO_VOICE_PATH_SETTING

This parameter specifies the audio path mode.

/* audio path used */
typedef UINT8 T AUDIO VOICE PATH SETTING;

The different values are:
Value
AUDIO_GSM_VOICE_PATH
AUDIO_BLUETOOTH_CORDLESS_VOICE_PATH
AUDIO_BLUETOOTH_HEADSET_PATH
AUDIO_DAI_ENCODER
AUDIO_DAI_DECODER
AUDIO_DAI_ACOUSTIC

26.6.2.1.1.3 T_AUDIO_MICROPHONE_SETTING

Specifies the setting of the microphone voice path,

typedef struct
{
/* mode of the microphone */
INTS8 mode;
/* Setting of the current mode */
T_AUDIO_MICROPHONE_MODE setting;
}
T_AUDIO_MICROPHONE_SETTING;

Where the microphone modes are :

typedef union

Path
GSM normal
Bluetooth cordless
Bluetooth headset
DAI encoder
DAI decoder
DAI acoustic

% Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 350 of 401

Locosto_BSP_API Version 0.3

/* handheld mode parameters */

T AUDIO MICROPHONE MODE HANDSET 25 6DB
/* handheld mode parameters */
T_AUDIO_MICROPHONE_MODE_HEADSET_4_9_DB
/* handheld mode parameters */

T AUDIO MICROPHONE MODE_HEADSET 25 6DB
/* handheld mode parameters */

T AUDIO MICROPHONE MODE HEADSET 18DB
/* Aux mode parameters */

handset_25_6db;
headset_4_9db;
headset_25_6db;

headset_18db;

T AUDIO MICROPHONE MODE AUX_ 4 9DB aux_4_9db;

/* Aux mode parameters */

T AUDIO MICROPHONE MODE AUX 28 2DB aux_28_2db;
/* handfree mode parameters */

T AUDIO MICROPHONE MODE_FM MONO fm_mono;

/* headset mode parameters */

T_AUDIO_MICROPHONE MODE_CARKIT carkit;

/* EM */

T AUDIO MICROPHONE MODE FM fm;

}
T_AUDIO_MICROPHONE_MODE;

typedef struct
{
/* gain of the microphone */
INTS8 gain;
/* microphone output bias */
INT8 output_bias;
/* coefficients of the microphone FIR */
T AUDIO_FIR COEF fir;
/* ANR configuration */
T AUDIO_ANR_CFG anr;
/* ES configuration */
T AUDIO_ES_CFG es;
}
T AUDIO MICROPHONE MODE_HANDSET 25 6DB;

typedef T AUDIO MICROPHONE MODE HANDSET 25 6DB
typedef T AUDIO MICROPHONE MODE HANDSET 25 6DB
typedef T AUDIO MICROPHONE MODE HANDSET 25 6DB
typedef T AUDIO MICROPHONE MODE HANDSET 25 6DB
typedef T AUDIO MICROPHONE MODE HANDSET 25 6DB
typedef T AUDIO MICROPHONE MODE HANDSET 25 6DB

typedef struct
{
/* gain of the microphone */
INTS8 gain;
/* microphone output bias */

T AUDIO MICROPHONE MODE HEADSET 4_9 DB;
T AUDIO MICROPHONE MODE HEADSET 25 6DB;
T _AUDIO MICROPHONE MODE HEADSET 18DB;

T AUDIO MICROPHONE MODE AUX_ 4 9DB;

T AUDIO MICROPHONE MODE AUX 28 2DB;

T AUDIO MICROPHONE MODE CARKIT;

INT8 output_bias;
/* microphone output bias */
INT8 extra_gain;

}
T AUDIO MICROPHONE MODE FM MONO;

typedef T AUDIO MICROPHONE MODE_FM MONO T_AUDIO MICROPHONE_ MODE FM;

Mode

Specifies the mode of the microphone: AUDIO_MICROPHONE_MODE_HANDSET_25_6DB or

AUDIO_MICROPHONE_MODE_HEADSET 4 9 DB or
AUDIO_MICROPHONE_MODE_HEADSET 25 6DB or
AUDIO_MICROPHONE_MODE_HEADSET _18DB or
AUDIO_MICROPHONE_MODE_AUX_4 9DB or

AUDIO_MICROPHONE_MODE_AUX 28 2DB or AUDIO_MICROPHONE_MODE_CARKIT or
T AUDIO MICROPHONE MODE FM MONO or T AUDIO MICROPHONE MODE FM

All the modes are available in GSM, bluetooth cordless voice and all DAI path mode.

Gain
gain of the microphone in 1dB unit. The range is from —12 dB to 12 dB. Note if the gain is equal to
AUDIO MICROPHONE MUTE, the microphone is muted.

Texas Instruments — Proprietary Information Page 351 of 401

{'?‘ TeEXAS
INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

output_bias

Specifies the output voltage of the microphone. This value could be 2.0V
(AUDIO_MICROPHONE_OUTPUT BIAS 2 0V)or2.5V

(AUDIO MICROPHONE OUTPUT BIAS 2 5V).

extra_gain
Specifies the FM gain. The range is -2dB to 14dB in 2dB steps which corresponds to 0 to 8.
Applicable only for T AUDIO MICROPHONE MODE FM MONO and T AUDIO MICROPHONE MODE_FM.

fir_coef

List of the 31 coefficients of the FIR of the microphone. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1
= 0x4000 and —1=0xc000.

Note: the FIR is available only in DAI and GSM path mode.

anr
See 28.6.2.1.1.3.1 for details.

es
See 28.6.2.1.1.3.2 for details

26.6.2.1.1.3.1 T_AUDIO_ANR_CFG
ANR (Ambiant Noise Reduction) module allows reducing the noise present in the speech uplink path.

ANR is only available in TCS 3.x software except TCS 3.0. Other software versions do not
include this structure in the microphone settings.
ANR module only works in DAI acoustic and GSM path mode.

ANR settings are inside following structure of the microphone settings:

typedef struct
{
BOOLEAN anr_enable;

INT16 min_gain;
INTS8 div_factor_shift;
UINT8 ns_level;

}
T AUDIO_ANR CFG;

ANR excepted noise attenuation (dB) = Temp. Att. (dB) + Spec. Att. (dB).

anr_enable

Enable/disable the ANR (Ambiant Noise Reduction) module:
0- disable
1- enable

In case of Read Access, the following parameters are valid only if anr_enable = 1.

min_gain

Temp. Att. (dB): temporal attenuation applied on signal detected as noise, considering speech isn’t
attenuated. Format is Q15.

Temp. Att. (dB) =20*log(d_anr_min gain/32768);

Ex: d_anr min_gain = 0x4000 -> Temp. Att. = -6dB

Recommended value is 0x3313 (-8 dB)

div_factor_shift

Used to control variations of temporal attenuation. Time periods where signal is considered as noise
are attenuated. In order to avoid erroneous speech attenuation, this value permits to adjust the
freezing of the gain after the speech detection.

Recommended value is -2.

Q’ Texas Instruments — Proprietary Information Page 352 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

anr_ns_level
Spec. Att. (dB) : spectral subtraction in 6dB steps.
Ex: d_anr ns_level | Spec. Att. (dB)

Ex: -l | 0dB (%)
0 | x dB (**)
1 | 6dB
2 | -12dB

(*) Customers shouldn’t use ANR2.0 without spectral subtraction ;
(**) ANR 2.0 performs the maximum of spectral subtraction depending on the incoming signal.
Recommended value is 1 (-6 dB).

26.6.2.1.1.3.2 T_AUDIO_ES_CFG

The echo suppressor (ES) role is to control the residual echo in a speakerphone application, where
the AEC is unable to cancel the entire echo in the uplink due to non-ideal acoustical environment such
as a non-linear loudspeaker response for example. Please refer to [8] for an overview of the module.

ES is only available in TCS 3.x software except TCS 3.0. Other software versions do not

include this structure in the microphone settings.
ES module only works in DAI acoustic and GSM path mode.

ES settings are inside following structure of the microphone settings:

typedef struct
{
BOOLEAN es_enable;
UINTS8 es_behavior;
UINT8 es_mode;
INT16 es_gain_dil;
INT16 es_gain_ul 1;
INT16 es_gain_ul_ 2;
INT16 tcl fe 1s_thr;
INT16 tcl dt_1s_thr;
INT16 tcl fe ns_thr;
INT16 tcl dt_ns_thr;
INT16 tcl ne_ thr;
INT16 ref 1ls pwr;
UINT16 switching time;
UINT16 switching time dt;
UINT16 hang_time;
INT16 gain_lin_dl_vect[4];
INT16 gain_lin_ul vect[4];
}
T_AUDIO_ES_CFG;

es_enable

Enable/disable the echo suppressor module:
0- disable
1- enable

In case of Read Access, the following parameters are valid only if es_enable =1.

es_behavior
Permit to setup pre-defined ES behavior as described in [9]:
0- Behavior 1
1- Behavior la
2- Behavior 2a
3- Behavior 2b
4- Behavior 2c
5- Behavior 2c_idle
6- Custom: all parameters setup by the user

% Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 353 of 401

Locosto_BSP_API Version 0.3

In ’custom’ mode, following parameters must be set. Custom mode isn’t recommended.
In other modes, following parameters aren’t used.

es_mode
Bitmap defining the ES mode:

bit

0 [ESUL 0- Disable ES on UL path
1- Enable ES on UL path
1 [ESDL 0- Disable ES on DL path
1- Enable ES on DL path

2 | CNG 0- Disable CNG* algorithm
1- Enable CNG* algorithm
3 | NSF 0- Disable NSF** algorithm

1- Enable NSF** algorithm

4 | ALSUL 0- Disable ALS*** on UL path
1- Enable ALS*** on UL path
5 | ALSDL 0- Disable ALS*** on DL path
1- Enable ALS*** on DL path
* CNG = Comfort Noise Generation

** NSF=Noise Floor

*x ALS = Attenuation Level Smoothing

Notes:
Disabling ES UL has no sense
CNG and NSF mustn’t be enabled together

es_gain_dl
es_gain_dl is the receive loss compensation.

es_gain_ul 1
es_gain_ul 1 is the coupling loss compensation.

es_gain_ul 2
es_gain_ul 2 is the near-end propagation loss compensation.

tcl_fe_Is_thr
d_tcl _fe Is thris the TCL reference threshold in far-end mode for loud signals. This value is in Q15
format.

tel_dt_Is_thr
d_tcl fd Is_thr is the TCL reference threshold in double-talk mode for loud signals. This value is in
Q15 format

tcl fe_ns_thr
d_tcl fe ns_thr is the TCL reference threshold in far-end mode for nominal signals. This value is in
Q15 format

tcl_dt_ns_thr
d_tcl fd ns_thris the TCL reference threshold in double-talk mode for nominal signals. This value is
in Q15 format

tcl_ne_thr
d_tcl ne_thr is the TCL reference threshold in near-end mode. This value is in Q15 format

ref Is_pwr
d_ref Is_pwr is the TCL reference threshold in near-end mode. This value is in Q15 format

Q’ Texas Instruments — Proprietary Information Page 354 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

switching_time
d_ switching_time_dt is the switching time value in milliseconds.

switching_time_dt

d_ switching_time_dt is the double-talk switching time value in milliseconds.

hang_time
d_hang_time is the hangover time for switching

gain_lin dl vect
Table containing downlink linear attenuation levels per state:
gain_lin dl vect[0] - idle state
gain_lin dl vect[1]- double talk
gain lin dl vect[2] - far-end
gain_lin dl vect[3]- near-end
Format is Q15.

gain_lin ul vect

Table containing uplink linear attenuation levels per state:
gain_lin ul vect[0] - idle state
gain_lin ul vect[1]- double talk
gain_lin ul vect[2]- far-end
gain_lin ul vect[3]- near-end

Format is Q15.

26.6.2.1.1.4 T_AUDIO_SPEAKER_SETTING

Specifies the characteristic of the speaker voice path.

typedef struct

{
/* mode of the speaker */

INTS8 mode;
/* Setting of the current mode */
T AUDIO_SPEAKER MODE setting;

}
T AUDIO_ SPEAKER SETTING;

where the speaker modes are:

typedef union
/* handheld mode parameters */
T_AUDIO_SPEAKER_MODE_HANDHELD handheld;
/* handfree mode parameters */
T_AUDIO_SPEAKER_MODE_HANDFREE handfree;
/* headset mode parameters */
T_AUDIO_SPEAKER_MODE_HEADSET headset;

T_AUDIO_SPEAKER_MODE_AUX aux;
T_AUDIO_SPEAKER_MODE_CARKIT carkit;

}
T_AUDIO_SPEAKER_MODE;

Where the speaker modes are,

typedef struct
{
% Texas Instruments — Proprietary Information Page 355 of 401
TExXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_filter;

/* use the audio highpass filter */
INT8 audio_highpass_filter;

[* extra gain of the speaker */

INT8 extra_gain;
* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;

/* Limiter parameter */
T_AUDIO_LIMITER_CFG limiter;
/* IR filter parameters */
T_AUDIO_IIR_CFG iir;

T_AUDIO_SPEAKER_MODE_HANDHELD;

typedef struct

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_filter;

/* use the audio highpass filter */
INT8 audio_highpass_filter;

[* extra gain of the speaker */

INT8 extra_gain;
* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;

/* Limiter parameter */
T_AUDIO_LIMITER_CFG limiter;
/* IR filter parameters */
T_AUDIO_IIR_CFG iir;

}
T_AUDIO_SPEAKER_MODE_HANDFREE;
typedef struct

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_filter;

/* use the audio highpass filter */
INT8 audio_highpass_filter;

* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;

/* Limiter parameter */
T_AUDIO_LIMITER_CFG limiter;
/* IR filter parameters */
T_AUDIO_IIR_CFG iir;

T_AUDIO_SPEAKER_MODE_HEADSET;
typedef struct
/* gain of the speaker */
INT8 gain;

/* use the audio filter */
INT8 audio_filter;

% Texas Instruments — Proprietary Information Page 356 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

/* use the audio highpass filter */
INT8 audio_highpass_filter;

* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;

/* Limiter parameter */
T_AUDIO_LIMITER_CFG limiter;
/* IR filter parameters */
T_AUDIO_IIR_CFG iir;

}
T_AUDIO_SPEAKER_MODE_AUX;
typedef struct

/* gain of the speaker */

INT8 gain;

/* use the audio filter */

INT8 audio_filter;

/* use the audio highpass filter */
INT8 audio_highpass_filter;
* coefficients of the speaker FIR */
T_AUDIO_FIR_COEF fir;
/* Limiter parameter */
T_AUDIO_LIMITER_CFG limiter;
/* IR filter parameters */
T_AUDIO_IIR_CFG iir;

}
T_AUDIO_SPEAKER_MODE_CARKIT;

Mode

Specifies the mode of the microphone: AUDIO_SPEAKER MODE_HANDHELD,
AUDIO SPEAKER MODE HANDFREE or AUDIO SPEAKER MODE HEADSET or
AUDIO SPEAKER MODE AUX or AUDIO SPEAKER MODE CARKIT.

All these modes are available in GSM, bluetooth cordless voice and all DAI path mode.

gain
Specifies the gain in 1 dB unit of the speaker. The range is from —6 dB to 6 dB.

audio_filter

Add an audio filter in the speaker path in order to enhance the audio quality. The filter is added if audio_filter =
AUDIO_SPEAKER FILTER ON else the filter is bypassed if audio_filter = AUDIO_SPEAKER FILTER_OFF.
The frequency response of this hardware filter is the following:

Frequency Response Gain relative to reference Min Typ Max Unit
gain at 1kHz s
<=100 Hz -20 DB
100 Hz to 200 Hz -10 dB
300 Hz to 400 Hz -2 0 +1 dB
400 Hz to 3300 Hz -1 0 +1 dB
3300 Hz to 3400 Hz -2 0 +1 dB
4000 Hz to 4600 Hz -17 dB
4600 Hz to 6000 Hz -40 dB
>= 6000 Hz -45 dB

WARNING: IF THE FILTER IS BYPASSED, THE GAIN IS EQUAL TO 0 AND THE VOLUME TOO (c.f.
speaker volume API function).

audio_highpass_filter
Add or bypass the high-pass part of the audio filter: AUDIO SPEAKER HIGHPASS FILTER ON to add it,

AUDIO SPEAKER_HIGHPASS FILTER_ OFF to bypass it.

Texas Instruments — Proprietary Information Page 357 of 401
Strictly Private

{9 TeEXAS
INSTRUMENTS

Locosto_BSP_API Version 0.3

extra_gain
Extra gain for AUDIO_SPEAKER HANDHELD and AUDIO_SPEAKER HANDFREE modes.

AUDIO_SPEAKER SPK_GAIN 2 5DB, AUDIO_SPEAKER SPK_GAIN_MINUS 3 5DB
AUDIO_SPEAKER SPK_GAIN_MINUS 22 5DB.

AUDIO EAR GAIN 1DB.

For AUDIO_SPEAKER HANDHELD the extra gain values are AUDIO_SPEAKER SPK GAIN_8 5DB,

and

For AUDIO_SPEAKER HANDFREE the extra gain values are AUDIO_EAR_GAIN_MINUS_11DB and

fir_coef

Note: the FIR is available only in DAI and GSM path mode.
The FIR filter is replaced by IIR filter in TCS3.x software, except TCS 3.0.

List of the coefficient of the FIR of the speaker. The format of each coefficient is F2.14. For example: 0,5 = 0x2000, 1 = 0x4000 and —1=0xc000.

limiter
See 28.6.2.1.1.4.1 for details.

iir
See 28.6.2.1.1.4.2 for details.

26.6.2.1.1.4.1 T_AUDIO_LIMITER_CFG

Limiter aim is to avoid using the non-linear regions of the speaker response in order to avoid audio
saturation/distortion. Please refer to [5] for an overview of the module,

Limiter is only available in TCS 3.x software except TCS 3.0. Other software versions do not
include this structure in the speaker settings.
Limiter module only works in DAI acoustic and GSM path mode.

Limiter settings are inside following structure of the speaker settings:

typedef struct

{
BOOLEAN limiter_ enable;
UINT16 block size;
UINT16 slope_update_period;
UINT16 nb_fir coefs;

INT16 filter coefs[16];
UINT16 thr_low_O;

INT16 thr low_slope;
UINT16 thr high 0;

INT16 thr _high _slope;
INT16 gain_fall;

INT16 gain_rise;

}
T_AUDIO_LIMITER CFG;

limiter_enable
Enable/disable the limiter
0- disable
1- enable

In case of Read Access, the following parameters are valid only if limiter_enable = 1.

block_size
Number of samples in an input block.
Currently, mandatory value is 160.

slope_update_period
Number of samples between each update of the limiter slope. It must be a divider of block_size.
Recommended value is 160.

nb_fir coefs
Number of coefficients in the filter. It must be an odd number. Maximum number is 31.
Recommended value is 31.

Q’ Texas Instruments — Proprietary Information Page 358 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

filter_coefs
Array containing the filter coefficients. This array must contains (nb_fir coefs-1)/2+1 coefficients. The
filter being a symmetric one, other coefficients do not need to be saved in the array.

thr_low_0/ thr_low_slope
thr_high 0/ thr_high_slope

thr_X_0 (range 0..32767)

percentage of the maximum level of signal wanted at the output of the limiter with respect to the
maximum possible level set to 1. It has to be multiplied by 32767 to be expressed with only 1 bit
significant for integer part and 15 for decimal part.

thr_X_slope (range -30..+6)

Slope threshold above which signal has to be decreased. It is expressed in dB.

Minimum and maximum values depend on possible values for voiceband downlink control
register.

These values permit to define Thr(low) and Thr(high) characteristic function to volume setup in
the ABB.
Thr(low) and Thr(high) define the maximum level of the signal wanted at the output of the limiter:
Thr(low) for the low frequency part of the signal
Thr(high) for the high frequency part of the signal

: Following scheme shows a model of the audio patch after the limiter:

DSP ABB
audio samples Limiter /P(' {>_> DAC —>—>
Variable ABB
audio gain
Thr

Thr(low) or Thr(high) are processed using the following characteristic:

= For Volumegg) <= thr_low_slopegg),
Thr(low) = thr_low_0
= For Volumegg) > thr_low_slope g,
Thr(low) = thr_low_0 x thr_low_slope / Volume
or
Thr('OW) =thr low 0 x 10(thr_low_slope(dB) - Volume(dB))/20

= For Volume gy <= thr_high_slopeg),
Thr(high) = thr_high_0
= For Volumegg) > thr_high_slopegg),
Thr(high) = thr_high_0 x thr_high_slope) / Volumen
or
Thr(hlgh) = thr hlgh 0 x 10(thr_high_slope(dB) - Volume(dB))/20

% Texas Instruments — Proprietary Information Page 359 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Thr
17 32767

—— Thr=f(ABB_volume)

—— Thr_0/32767

D

40 -30 -20 -10 0 10
Volume (variable audio gain) in dB

NB:

The name of the thr_low_slope on the L1 code is thr_ABB_vol_low.
The name of the thr_high_slope on the L1 code is thr_ABB_vol_high.

gain_fall

Decrease the slope when saturation has been detected on the previous block of samples. Format is Q15.
Recommended value is 26214

Ex: gain fall = 26214 => slope(n+1) = 0.8 * slope(n)

gain_rise

Increase the slope when no saturation has been detected on the previous block of samples. The top limit of
the slope is 1. Format is Q15 and 1 is added to get the coefficient of the multiplication.

Recommended value is 655

Ex: gain_rise = 655 => slope(n+1) = max(1, 1.02 * slope(n))

Information about Limiter parameters setting can be found in [6].

26.6.2.1.1.4.2 T_AUDIO_IIR_CFG

lIR filter replaces the FIR filter by having best performances using fewer coefficients. The aim of the
lIR filter is to compensate the speaker frequency response in order to fit in ETSI requirements. Please
refer to [3] for an overview of the module,

IR filter is only available in TCS 3.x software except TCS 3.0. Other software versions do not
include this structure in the speaker settings. When IIR is supported, the FIR filter isn’t used so
the FIR coefficients aren’t included in the speaker settings.
IIR module only works in DAI acoustic and GSM path mode.

[IR settings are inside following structure of the speaker settings:

typedef struct
{
BOOLEAN iir_enable;

UINT8 nb_iir blocks;
INT16 iir coefs[80];
UINT8 nb_fir coefs;
INT16 fir coefs[32];
INTS8 input_scaling;
INTS8 fir scaling;
INTS8 input_gain_scaling;
INTS8 output_gain_scaling;
UINT16 output_gain;
INT16 feedback;
% Texas Instruments — Proprietary Information Page 360 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

}
T AUDIO IIR CFG;

iir_enable

Enable/disable the IIR filter
0- disable
1- enable

In case of Read Access, the following parameters are valid only if iir_enable = 1.

nb_iir_blocks
Number of blocks for the given implementation of the systolic lattice IIR filter.
Value can be:
0 Recursive filtering part is disabled
1 Forbidden
[4:6] Number of IR blocks

iir_coefs
Array containing the coefficients of the IIR lattice filter. There are 8 coefficients per block. The coefficients
are generated by the MATLAB script sections.m. See [4] for more information.

nb_fir coefs
Number of coefficients for the FIR (degree+1 of the FIR polynomial). Thus number must be greater or
equal to 2 or the FIR filtering will be removed. It must be lower or equal to 32.

fir_coefs
Array containing the coefficients of the FIR filter. First coefficient (index 0) is the last coefficient
corresponding to the term of higher degree in the FIR polynomial.

input_scaling

Used to scale the input at entry of the IIR to avoid overflows inside the IIR.

Note that the output of the filter (after the FIR) is scaled in the opposite way to compensate for this initial
scaling.

The scaling is in [- 16,15] range.

fir_scaling
Used to scale the output of the IIR before using the FIR to avoid any scaling in the FIR. The output of the
filter is scaled in the opposite way to compensate for this temporary scaling.

The scaling is in [- 16,15] range.

input_gain_scaling
The scaling factor applied at input of the filter for the global gain. Useful if the gain to implement is lower
than 1 and if there are some overflows in the filter.

The scaling is in [- 16,15] range.

output_gain_scaling
Scaling factor at the output of the filter for the gain. Useful if the global gain to implement is higher than 1.

The scaling is in [- 16,15] range.

output_gain
A gain between [0,2[to tune the value of the global gain applied by the module. Format is unsigned Q15.

feedback
Used to tune the rounding noise of the IIR implementation and to remove the bias. This value is filter
dependent and should be tuned for a given set of IIR coefficients. Format is Q15.

Information about IIR parameters setting can be found in [4].

26.6.2.1.1.5 T_AUDIO_STEREO_SPEAKER_SETTING

Specifies the characteristic of the speaker audio stereo path.
typedef struct
{
/* mode of the speaker */

% Texas Instruments — Proprietary Information Page 361 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

INTS8 mode;
/* Setting of the current mode */
T_AUDIO_STEREO_SPEAKER MODE setting;
}
T AUDIO STEREO_ SPEAKER SETTING;

typedef union

/* headphone mode parameters */

T_AUDIO_STEREO_SPEAKER_MODE_HEADPHONE headphone;

/* handheld mode parameters */

T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD handheld;

/* handfree mode parameters */
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE handfree;
T_AUDIO_STEREO_SPEAKER_MODE_AUX aux;
T_AUDIO_STEREO_SPEAKER_MODE_CARKIT carkit;
}
T_AUDIO_STEREO_SPEAKER_MODE;
typedef struct

/* stereo/mono configuration of the speaker */

INT8 stereo_mono;

/* sampling rate frequency */

INT8 sampling_frequency;
}
T_AUDIO_STEREO_SPEAKER_MODE_HEADPHONE;
typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

}
T_AUDIO_STEREO_SPEAKER_MODE_HANDHELD;
typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

}
T_AUDIO_STEREO_SPEAKER_MODE_HANDFREE;
typedef struct

/* sampling rate frequency */
INT8 sampling_frequency;

}
T_AUDIO_STEREO_SPEAKER_MODE_AUX;
typedef struct

/* stereo/mono configuration of the speaker */
INT8 stereo_mono;
/* sampling rate frequency */
INT8 sampling_frequency;
}

T_AUDIO_STEREO_SPEAKER_MODE_CARKIT;

| Mode
% Texas Instruments — Proprietary Information Page 362 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

Specifies the mode of the microphone: AUDIO_STEREO_SPEAKER MODE_HEADPHONE,
AUDIO_STEREO_SPEAKER_MODE_HANDHELD,
AUDIO_STEREO_SPEAKER_MODE_HANDFREE, AUDIO_STEREO_SPEAKER MODE_AUX,
AUDIO STEREO SPEAKER MODE_CARKIT

AUDIO_STEREO_SPEAKER MODE_HEADPHONE mode: this mode is only available with the
analog base band SYREN.

stereo_mono:
Specifies the possible stereo-mono conversion:
- AUDIO_STEREO (no conversion)
- AUDIO_MONO_LEFT (convert to mono and transmit on left channel)
- AUDIO MONO_RIGHT (convert to mono and transmit on right channel)
- AUDIO MONO_LEFT | AUDIO MONO RIGHT (convert to mono and transmit on both
channels)

sampling_frequency:

Specifies the audio stereo sampling rate frequency
- AUDIO STEREO SAMPLING FREQUENCY_ 48KHZ
- AUDIO STEREO SAMPLING FREQUENCY 44 1KHZ
- AUDIO STEREO SAMPLING FREQUENCY_ 32KHZ
- AUDIO STEREO SAMPLING FREQUENCY 24KHZ
- AUDIO STEREO SAMPLING FREQUENCY 22 05KHZ
- AUDIO STEREO SAMPLING FREQUENCY_16KHZ
- AUDIO STEREO SAMPLING FREQUENCY_12KHZ
- AUDIO _STEREO SAMPLING FREQUENCY_11 025KHZ
- AUDIO STEREO SAMPLING FREQUENCY_8KHZ

WARNING: sampling frequency can not be changed after PLL power on.

AUDIO STEREO SPEAKER MODE HANDHELD mode:

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO_ MONO_LEFT.

AUDIO STEREO SPEAKER MODE HANDFREE mode:

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO_ MONO_LEFT.

AUDIO STEREO SPEAKER MODE AUX mode:

sampling_frequency: See above

Note: stereo-mono conversion is set to AUDIO_ MONO_LEFT.

AUDIO_STEREO_SPEAKER MODE_CARKIT mode:

stereo_mono: See above

sampling_frequency: See above

26.6.2.1.2 T_AUDIO_MICROPHONE_SPEAKER_LOOP_SETTING

Specifies the characteristic of the features involved in the loop between the speaker and the
microphone. For DSP codes >= 33, there is a new version of AEC called NEW AEC.:

typedef struct

{
/* gain of the sidetone */

INT16 sidetone_gain;
/* configuration of the acoustic echo cancellation */
T_AUDIO_AEC_CFG aec;

}
T AUDIO MICROPHONE SPEAKER LOOP SETTING;

Q’ Texas Instruments — Proprietary Information Page 363 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Sidetone

Specifies the gain in 3 dB unit to add to the loop between the microphone and the speaker. The range is
from —23 dB to 1 dB (3 dB by 3 dB). Note if the variable is equal to AUDIO_SIDETONE_OPEN, there’s

no loop between the microphone and the speaker.

This mode is only available in GSM and bluetooth cordless voice path mode.

WARNING: IF THE SPEAKER FILTER IS BYPASSED, THE SIDETONE IS OPEN.

AEC

aec_enable

Specifies if the AEC module must be enabled (AUDIO_AEC_ENABLE) or disabled (AUDIO_AEC_DISABLE).

Note: AEC is only available in GSM and all DAI mode.

In case of Read Access, the following parameters are valid only if anr_enable = 1.

aec_mode

Specifies the mode of the cancellation: AUDIO_SHORT_ECHO: short echo cancellation, AUDIO_LONG_ECHO: long echo

cancellation.
Note: AEC is only available in GSM all DAI mode.

echo_suppression_level

Specifies the additional echo suppression level.

Note: noise suppression is only available in GSM and all mode.

Level name

AUDIO_ECHO_0dB
AUDIO_ECHO_6dB
AUDIO_ECHO_12dB
AUDIO_ECHO_18dB

noise_enable

Specifies if the noise suppression module must be enable (AUDIO_NOISE_SUPPRESSION_ENABLE) or disable

(AUDIO_NOISE_SUPPRESSION_DISABLE).
Note: noise suppression is only available in GSM and all DAI mode.
Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.

noise_suppression_level
Specifies the noise suppression limitation level.
Note: AEC is only available in GSM and all DAI mode.

Level name
AUDIO_NOISE_NO_LIMIT
AUDIO_NOISE_6dB
AUDIO_NOISE_12dB
AUDIO_NOISE_18dB
Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.
NEW AEC (detailed format of the parameters can be found in [2])

no limitation

aec_enable

Specifies if the AEC module must be enabled (AUDIO_AEC_ENABLE) or disabled (AUDIO_AEC_DISABLE).

Note: NEW AEC is only available in GSM and all DAI mode.

In case of Read Access, the following parameters are valid only if aec_enable = 1.

continuous_filtering
Enable (TRUE) or disable (FALSE) continuous mode filtering.

granularity attenuation
granularity of the smoothed attenuation.

smoothing_coefficient
smoothing coefficient.

max_echo_suppression_level
maximum attenuation level. Some values are defined as constants:
AUDIO MAX ECHO xdB with x being 0, 2, 3, 6, 12, 18, 24.

vad_factor
VAD factor relative to the current estimated energy.

absolute_threshold
VAD absolute offset relative to the current estimated energy.

factor_asd_filtering
modifying factor of d far end noise for filtering decision.

factor_asd_muting
modifying factor of d far end noise for muting decision.

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 364 of 401

Locosto_BSP_API Version 0.3

aec_visibility

Enable (AUDIO_AEC VISIBILITY ENABLE) or disable (AUDIO_AEC_VISIBILITY DISABLE)
AEC visibility. A copy of far end pow and far end noise is traced in Layerl every
SC_AEC_VISIBILITY INTERVAL frames. It is intended for debug purposes and can only be disabled by
a new AEC request (i.e. going back to idle mode won’t disable visibility for next call).

noise_enable

Specifies if the noise suppression module must be enabled (AUDIO_NOISE_SUPPRESSION_ENABLE) or disabled
(AUDIO_NOISE_SUPPRESSION_DISABLE).

Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.

noise_suppression_level
Specifies the noise suppression limitation level.
Note: AEC is only available in GSM and all DAI mode.

Level name level (dB)

AUDIO_NOISE_NO_LIMIT no limitation
AUDIO_NOISE_6dB -6
AUDIO_NOISE_12dB -12
AUDIO_NOISE_18dB -18

Note: The noise suppressor is replaced by ANR in TCS3.x except 3.0.

26.6.2.1.2.1 T_AUDIO_MICROPHONE_SPEAKER_SETTING

Specifies the characteristic of the features that are common to the speaker and the microphone.

typedef struct
{
/* volume speed control */
INT16 volume_speed,
/* audio on/off */
INT8 audio_onoff;

§
T_AUDIO MICROPHONE SPEAKER_SETTING;

Below the detail of each parameter:

volume_speed (only available in case of non-TI audio ABB used with P2 samples)
speed to change the volume in downlink and in uplink

values are from 0x0001 (low speed) to Ox7FFF (high speed) in signed Q15 format, ex:
0x1 = (2715)/1 = 32768 samples to reach the volume level

0x2 = (2715)/2 = 16384 samples to reach the volume level

0x7FFF - (2715)/32767 = 1 sample to reach the volume level

Audio_onoff (only available on Calypso+ and Perseus 2 samples)
If set to 1, it starts ABB audio and disable the automatic stop when no DSP audio activity is running.
If set to 0, it will stop ABB audio when there is no DSP audio activity running.

26.7 Full Access Family

This section describes all the API functions belong to the full access family.

26.7.1 API Functions

26.7.1.1 audio_full_access_write

T AUDIO RET audio full access write (

T AUDIO FULL ACCESS WRITE *p parameter,
T RV _RETURN return path)
% Texas Instruments — Proprietary Information Page 365 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

Description

This function is called to configure any value belonging to the audio mode structure.

Parameters

T_AUDIO_FULL_ACCESS_WRITE

typedef struct {
UINTS8 variable indentifier;

// identifier of the variable to configure

void *data;

// data corresponding to the variable to set

}T AUDIO FULL ACCESS WRITE;

Below the detail of each parameters (note for the description of the data please see the MMI family

chapter):
Identifier Associated data format
AUDIO_PATH_USED typedef UINT8 T AUDIO VOICE PATH SETTING;
AUDIO_MICROPHONE_MODE (1) INT8
AUDIO_MICROPHONE_GAIN (2) INT8
AUDIO_MICROPHONE_EXTRA_GAIN (1) INT8
AUDIO_MICROPHONE_OUTPUT_BIAS (1) INT8

AUDIO_MICROPHONE_FIR

typedef struct
{
UINT16 coefficient[31];
}
T AUDIO FIR COEF;

AUDIO_MICROPHONE_ANR (6)

T AUDIO ANR CFG (see 28.6.2.1.1.3.1)

AUDIO_MICROPHONE _ES (6)

T AUDIO ES CFG (see 28.6.2.1.1.3.2)

AUDIO_SPEAKER_MODE (1) INTS8
AUDIO_SPEAKER_GAIN (2) INTS8
AUDIO_SPEAKER_EXTRA_GAIN (1) INTS8
AUDIO_SPEAKER_FILTER (1) INTS8
AUDIO_SPEAKER_HIGHPASS_FILTER (1) INTS8

AUDIO_SPEAKER _FIR (5)

typedef struct
{
UINT16 coefficient[31];
}
T AUDIO FIR COEF;

AUDIO_SPEAKER_IIR (6)

T AUDIO IIR CFG (see
source not found.)

Error! Reference

AUDIO_SPEAKER_LIMITER (6)

T _AUDIO_LIMITER CFG (see Error! Reference
source not found.)

AUDIO_SPEAKER BUZZER (1)

INTS8

AUDIO_MICROPHONE_SPEAKER_LOOP_SIDETONE
(2

INTS8

AUDIO_MICROPHONE_SPEAKER_LOOP_AEC

typedef struct

{
/* Enable the AEC */
UINT16 aec_enable;
/* Mode of the AEC */
UINT16 aec_mode;
/* level of the echo cancellation */
UINT16 echo suppression level;
/* enable the noise suppression */
UINT16 noise suppression enable;
/* level of the noise suppression */
UINT16 noise suppression level;

}

T AUDIO AEC CFG;

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 366 of 401

Strictly Private

Locosto_BSP_API

Version 0.3

noise_suppression_level and
noise_suppression_enable not available in
TCS3.0 software except TCS3.0 (replaced by
ANR)

AUDIO_STEREO_SPEAKER_MODE (1) INTS8
AUDIO_STEREO_SPEAKER_STEREO_MONO (1) INTS8
AUDIO_STEREO_SPEAKER_SAMPLING_FREQUENCY INTS8

AUDIO_SPEAKER_VOLUME_LEVEL (7)

typedef struct

{
/* volume of the audio speaker */
UINT8 audio_speaker_ level;

}

T AUDIO SPEAKER LEVEL;

AUDIO_STEREO_SPEAKER_VOLUME_LEVEL (1)

typedef struct
{
/* volume of the audio speaker */
UINT8 audio stereo speaker level left;
UINT8 audio stereo speaker level right;
}
T AUDIO STEREO SPEAKER LEVEL;

AUDIO_ONOFF (3) INT8
AUDIO_VOLUME_SPEED (4) INT16
(1) Not available when using a non-T| ABB for audio tasks
(2) When using a non-TI ABB for audio tasks, type of parameter is Int16 instead of Int8
(3) Only available on Calypso+ and Perseus2 samples
(4) Only available when using a non-TI ABB for audio tasks
(5) Not available in TCS3.x software except TCS3.0
(6) Only available in TCS3.x software except TCS3.0
. T_RV_RETURN
C.f. API function audio_mode_load.
Immediate Return
T_AUDIO_RET
C.f. API function audio_mode_load.
Event Return
AUDIO_FULL_ACCESS_WRITE_DONE
This event informs that the value was written.
typedef struct {
T RV_HDR os_hdr;
INT8 status;
}T AUDIO FULL ACCESS WRITE DONE;
The possible values of status are:
value Id Definition
0 AUDIO_OK The audio features was successfully executed and stopped
-1 AUDIO_ERROR A problem occurs during the writing process..

Current restriction of use

None.

Process flow

AUDIO

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 367 of 401

Strictly Private

Locosto_BSP_API

Version 0.3

»

»
audio_full_access_write(p_parameter, return_path) |

| AUDIO_FULL_ACCESS_WRITE_DONE |

26.7.1.2 audio_full_access_read

T AUDIO RET audio full access read (
T AUDIO FULL ACCESS READ *p parameter)

Description

This function is called to read any value belonging to the audio mode structure.

Parameters

T_AUDIO_FULL_ACCESS_READ

typedef struct {
UINTS8
VOID *data

}T_AUDIO FULL ACCESS READ;

variable_indentifier; // identifier of the variable to read
// data to return

Below the detail of each parameters (note for the description of the data please see the MMI family

chapter):
Identifier Associated data format
AUDIO_PATH_USED typedef UINT8 T AUDIO VOICE PATH SETTING;
AUDIO_MICROPHONE_MODE (1) INTS8
AUDIO_MICROPHONE_GAIN (2) INTS8
AUDIO_MICROPHONE_EXTRA_GAIN (1) INTS8
AUDIO_MICROPHONE_OUTPUT _BIAS (1) INTS8

AUDIO_MICROPHONE_FIR

typedef struct

UINT16 coefficient[31];

}

T AUDIO FIR COEF;
AUDIO_MICROPHONE_ANR (6) T AUDIO ANR CFG (see 28.6.2.1.1.3.1)
AUDIO_MICROPHONE_ES (6) T AUDIO ES CFG (see 28.6.2.1.1.3.2)
AUDIO_SPEAKER_MODE (1) INTS8
AUDIO_SPEAKER_GAIN (2) INTS8
AUDIO_SPEAKER_EXTRA_GAIN (1) INTS8
AUDIO_SPEAKER_FILTER (1) INTS8
AUDIO_SPEAKER_HIGHPASS_FILTER (1) INTS8

AUDIO_SPEAKER _FIR (5)

typedef struct
{
UINT16 coefficient[31];
}
T AUDIO FIR COEF;

AUDIO_SPEAKER_IIR (6)

T AUDIO IIR CFG (see 28.6.2.1.1.4.2)

AUDIO_SPEAKER LIMITER (6)

T AUDIO LIMITER CFG (see 28.6.2.1.1.4.1)

AUDIO_SPEAKER BUZZER (1)

INTS8

AUDIO_MICROPHONE_SPEAKER_LOOP_SIDETONE

INTS8

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Page 368 of 401

Strictly Private

Locosto_BSP_API

Version 0.3

(2)

AUDIO_MICROPHONE_SPEAKER_LOOP_AEC

typedef struct

{
/* Enable the AEC */

UINT16 aec_enable;

/* Mode of the AEC */

UINT16 aec_mode;

/* level of the echo cancellation */
UINT16 echo suppression level;

/* enable the noise suppression */
UINT16 noise suppression enable;
/* level of the noise suppression */
UINT16 noise suppression level;

}
T AUDIO AEC_CFG;

noise_suppression_level and
noise_suppression_enable not available in
TCS3.0 software except TCS3.0 (replaced by
ANR)

AUDIO_STEREO SPEAKER MODE (7) UINTS
AUDIO_STEREO SPEAKER STEREO MONO (7) UINTS
INT8

AUDIO_STEREO_SPEAKER_SAMPLING_FREQUENCY
(1)

AUDIO_SPEAKER_VOLUME_LEVEL (1)

typedef struct

{
/* volume of the audio speaker */
UINT8 audio_speaker_level;

}

T AUDIO SPEAKER LEVEL;

AUDIO_STEREO_SPEAKER_VOLUME_LEVEL (7)

typedef struct

{
/* volume of the audio speaker */
UINTS8 audio stereo speaker level;

}
T AUDIO STEREO SPEAKER LEVEL;

AUDIO_ONOFF (3)

INTS8

AUDIO_VOLUME_SPEED (4)

INT16

(1) Not available when using a non-T| ABB for audio tasks

(2) When using a non-TI ABB for audio tasks, type of parameter is Int16 instead of Int8
(3) Only available on Calypso+ and Perseus2 samples

(4) Only available when using a non-TI ABB for audio tasks

(5) Not available in TCS3.x software except TCS3.0

(6) Only available in TCS3.x software except TCS3.0

T_RV_RETURN
C.f. API function audio_mode_load.

Immediate Return

T_AUDIO_RET
C.f. API function audio_mode_load.

Moreover the data pointer of the T_AUDIO_FULL_ACCESS_READ structure points to the
data to returned data if the T_AUDIO_RET value is equal to AUDIO_OK.

Event Return

None.

Current restriction of use

None.
Q’ Texas Instruments — Proprietary Information Page 369 of 401
TEXAS Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

Process flow

AUDIO

audio_full_access_read(p_parameter)

v

{9 TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information

Strictly Private

Page 370 of 401

Locosto_BSP_API Version 0.3

Q’ Texas Instruments — Proprietary Information Page 371 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Chapter 27 Memory Card

27.1 Introduction 373

27.2 Interface description 373

27.3 Message definition 387

27.4 Types definition 397

{Z’ Texas Instruments — Proprietary Information Page 372 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

27.1Introduction

This section describes the Memory Card(TFlash Driver) APIs used for Locosto.

27.2 Interface description

27.2.1 mc_subscribe

T RV RET mc_subscribe (T MC SUBSCRIBER *subscriber p
T RV _RETURN return path)

Description

This functions can be used by a client to subscribe to the MC-driver. The client shall provide a return
path which will be used for all functions returning an event. The client will receive an
MC_SUBSCRIBE_RSP_MSG response event from the driver indicating the result of the subscription
request. If the result is successful the client is able to use the driver services like reading and writing
data.

Parameters

subscriber_p
Subscriber identification value, which shall be allocated by the client and is filled by the driver.

return_path
The return path of the client.

Immediate Return

T_RV_RET
The possible values are:
RV_OK Success
RV _NOT READY The driver is not initialised.
RV_MEMORY ERR Insufficient memory to create message request

Event Return

MC_SUBSCRIBE_RSP_MSG event is returned to the calling SWE.

Current restriction of use

None.

27.2.2 mc_unsubscribe

T RV RET mc _unsubscribe (T _MC SUBSCRIBER *subscriber p)

Description

This function can be used by a client to unsubscribe from the driver. The client will receive an
MC_UNSUBSCRIBE_RSP_MSG response event from the driver indicating the result of the un-

Q’ Texas Instruments — Proprietary Information Page 373 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

subscription request. If the result is successful the T_MC_SUBSCRIBER area is no longer useful and
can be safely reused by the client.

The driver will handle each request sequentially. Pending requests after a un-subscription, means that
the client has issued the requests after the un-subscription request. These messages will be
discarded. The client has to re-subscribe if it wants to send requests again.

Parameters

subscriber_p
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request.
RV _INVALID PARAMETER subscriber is invalid

Event Return

MC_UNSUBSCRIBE_RSP_MSG event is returned to the calling SWE.

Current restriction of use

None.

27.2.3 mc_read

T RV RET mc _read (T MC RCA rca, T MC RW MODE mode,
UINT32 addr, UINTS *data p,
UINT32 data size,
T MC SUBSCRIBER subscriber)

Description

This function reads data from an MMC/SD-card using a specific transfer mode. If partial reads are
allowed (if CSD parameter READ_BL_PARTIAL is set) the start address can start and stop at any
address within the card address space, otherwise it shall start and stop at block boundaries. The client
is responsible for setting the correct address and data size parameter according to the device
properties. The client can obtain these properties by reading the CSD-register.

Parameters

rca
Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

mode
Indicate the desired read method.
MC_RW_STREAM
MC_RW_BLOCK

addr
The physical start address in bytes units from where to read data.

data_p
Pointer to a destination buffer, provided by the client, where the driver will put the data. The buffer size
shall be at least dafa_size bytes.

Q’ Texas Instruments — Proprietary Information Page 374 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

data_size
Number of bytes to be read from the card.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_PARAMETER subscriber is invalid

Event Return
MC_ READ_RSP_MSG event is returned to the calling SWE.

Current restriction of use
Only block oriented data transfer (MC_RW_BLOCK) is supported at this moment.

27.2.4 mc_write

T RV RET mc write (T _MC RCA rca, T MC RW MODE mode,
UINT32 addr, UINTS *data p,
UINT32 data size,
T MC SUBSCRIBER subscriber)

Description

This function writes data to an MMC/SD-card using a specific transfer mode. If partial reads are
allowed (if CSD parameter WRITE_BL_PARTIAL is set) the start address can start and stop at any
address within the card address space, otherwise it shall start and stop at block boundaries. The client
is responsible for setting the correct address and data size parameter according to the device
properties. The client can obtain these properties by reading the CSD-register.

Parameters

- rca

Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

mode
Indicate the desired write method.
MC_RW_STREAM
MC_RW_BLOCK

addr
The physical start address in bytes units from where to read data.

data_p
Pointer to a source buffer, provided by the client, from where the driver will read the data. The buffer
size shall be at least data_size bytes.

data_size
Number of bytes to be write to the card.
Q’ T Texas Instruments — Proprietary Information Page 375 of 401
EXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

subscriber
Subscriber identification value.

Immediate Return

T _RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV _MEMORY ERR Insufficient memory to create message request
RV _INVALID PARAMETER subscriber is invalid

Event Return

MC_ WRITE_RSP_MSG event is returned to the calling SWE.

Current restriction of use

This service is not available for MMC/SD ROM cards.
Only SD cards provide a mechanical write protect switch. If the write protect switch of the SD-card
is set to write protect, this service is not available.
In the above cases, the MC driver will respond with a RV_NOT_SUPPORTED in the write response
message.
Only block oriented data transfer (MC_RW_BLOCK) is supported at this moment.

27.2.5 mc_erase

T RV RET mc _erase (T _MC RCA rca, UINT32 erase group start,
UINT32 erase group end, T MC SUBSCRIBER subscriber)

Description

This function erases a range of erase groups on the card. The size of the erase group is specified in
the CSD. The erase group start and end address is given in bytes units. This address will be rounded
down to the erase group boundary.

Parameters

- rca
Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

start_group
Erase group address in bytes units where erasing will start.

end_group
Erase group address in bytes units where erasing will end.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
Id Definition
RV OK Success
RV_NOT_READY The driver is not initialised.
Q’ Texas Instruments — Proprietary Information Page 376 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_PARAMETER subscriber is invalid

Event Return
MC_ERASE_GROUP_MSG event is returned to the calling SWE.

Current restriction of use

This service is not available for MMC/SD ROM cards.

If the write protect switch of the SD-card is set to write protect, this service is not available.
In the above cases, the MC driver will respond with a RV_NOT_SUPPORTED in the write response
message.

27.2.6 mc_set_write_protect

T RV RET mc_set write protect (T MC RCA rca, UINT32 wr prot group,
T MC SUBSCRIBER subscriber)

Description

This function sets the write protection of the addressed write protect group against erase or write. The
group size is defined in units of WP_GRP_SIZE erase group as specified in the CSD.

This function does not write protect the entire card which can be done by setting the permanent or
temporary write protect bits in the CSD. For this the Error! Reference source not found.() function
shall be used.

Parameters

- rca

Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

wr_prot_group
The group address in byte units. The LSB’s below the group size will be ignored.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_ PARAMETER subscriber is invalid

Event Return

MC_SET_WRITE_PROTECT_RSP_MSG event is returned to the calling SWE.

Current restriction of use

This service is not available for MMC/SD ROM cards.

27.2.7 mc_clr_write_protect

‘ T RV RET mc _clr write protect (T MC RCA rca, UINT32 wr prot group,

Q’ Texas Instruments — Proprietary Information Page 377 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T MC SUBSCRIBER subscriber)

Description

This function clears the write protection of the addressed write protect group. The group size is
defined in units of WP_GRP_SIZE erase group as specified in the CSD.

This function does not disable write protect of the entire card which can be done by erasing the
temporary write protect bits in the CSD. For this the Error! Reference source not found.() function
shall be used.

Parameters

- rca

Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

wr_prot_group
The group address in byte units. The LSB’s below the group size will be ignored.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV_MEMORY ERR Insufficient memory to create message request
RV _INVALID PARAMETER subscriber is invalid

Event Return
MC_CLR_PROTECT_RSP_MSG event is returned to the calling SWE.

Current restriction of use
This service is not available for MMC/SD ROM cards.

27.2.8 mc_get_write_protect

T RV RET mc _get write protect (T MC RCA rca, UINT32 wr prot group,
T MC SUBSCRIBER subscriber)

Description

This function reads 32 write protection bits representing 32 write protect groups starting at the
specified address.

Parameters

rca
Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

wr_prot_group
The group address in byte units. The LSB’s below the group size will be ignored.

subscriber
Subscriber identification value.

Q’ Texas Instruments — Proprietary Information Page 378 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Immediate Return

T_RV_RET
The possible values are:
RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_PARAMETER subscriber is invalid

Event Return

MC_GET_PROTECT_RSP_MSG event is returned to the calling SWE.

Current restriction of use

This service is not available for MMC/SD ROM cards.

27.2.9 mc_get_card_status

T RV RET mc _get card status (T MC RCA rca, T MC SUBSCRIBER subscriber)

Description

This function returns the 32-bit status register of the MMC/SD-card. This status is not buffered in the
driver but will be read directly from the card. See [MMC], paragraph 4.10 for an explanation of the
status bits.

Parameters

rca
Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_ PARAMETER subscriber is invalid

Event Return

T_MC_CARD_STATUS_RSP_MSG is returned.

Current restriction of use

None

27.2.10 mc_dma_mode

T RV _RET mc_dma mode (T MC DMA MODE dma mode)

Q’ Texas Instruments — Proprietary Information Page 379 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Description

This function selects the DMA mode to be used by the driver. Default setting will be MC_DMA_AUTO.

Parameters

dma_mode
Indicates whether to use DMA or let the CPU handle the copying. Possible values:
MC_FORCE_CPU (Use CPU to transfer data to RAM)
MC_FORCE_DMA (Use DMA to transfer data to RAM)
MC_DMA_AUTO (Driver determines CPU or DMA transfer)

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV_INVALID_PARAMETER invalid mode.

Event Return

None

Current restriction of use

None

27.2.11 mc_update_acq

T RV RET mc _update acq (T _MC SUBSCRIBER subscriber)

Description

This function starts an identification cycle of a card stack (acquisition procedure). The card
management information in the controller will be updated. New cards will be initialised; old cards keep
their configuration. At the end all active cards are in Stand-by state.

After this function has completed the number of cards connected can be retrieved with the
mc_get stack_size() function. The session address of each connected card can be retrieved with the
mc_read_card_stack() function.

Parameters

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET

The possible values are:

Id Definition

RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_INVALID_ PARAMETER subscriber is invalid
RV_MEMORY_ERR Insufficient memory to create message request

Event Return

MC_UPDATE_ACQ_RSP MSG event is returned to the calling SWE.

Q’ Texas Instruments — Proprietary Information Page 380 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Current restriction of use
Only 1 MMC/SD card supported at this moment.

27.2.12 mc_reset

T RV RET mc _reset (T MC SUBSCRIBER subscriber)

Description

This function resets all cards to idle state. This function executes the GO_IDLE_STATE command
(CMDO0) on the bus. After completion of this service the mc_update_acq() function shall be called
before the MMC/SD-cards can be used.

Parameters

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV_NOT_READY The driver is not initialised.
RV _INVALID PARAMETER subscriber is invalid
RV_MEMORY ERR Insufficient memory to create message request

Event Return

MC_RESET_RSP_MSG event is returned to the calling SWE.

Current restriction of use

None.

27.2.13 mc_get_stack_size

T RV RET mc _get stack size (UINT16 *size p)

Description

This function returns the number of connected MMC/SD-cards.

Parameters

size_p
Pointer to integer value allocated by the client, in which the driver stores the stack size.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV_INVALID PARAMETER size_p is NULL.

Event Return

Q’ Texas Instruments — Proprietary Information Page 381 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Not applicable

Current restriction of use

None.

27.2.14 mc_read_card_stack

T RV RET mc _read card stack (T _MC RCA *stack p, UINT16 size)

Description

This function returns the relative card address of each individual MMC/SD-card on the MMC/SD-bus.
The client needs to provide an array of T_MC_RCA. The size of the array can be determined with the
mc_get stack_size() function.

Parameters

stack_p
Pointer to T_MC_RCA array.

size
Array size in units of T_MC_RCA.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV_INVALID_PARAMETER -stack_p is NULL.
-size is too small.

Event Return

None.

Current restriction of use

At this moment only 1 MMC/SD card is supported.

27.2.15 mc_read_OCR

T RV RET mc _read OCR (T MC RCA rca, UINT32 *ocr p,
T MC SUBSCRIBER subscriber)

Description

This function returns the 32-bit OCR-register from an MMC/SD-card. This register is not buffered in
the driver and therefore will be read directly from the card.

Parameters

rca
Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

ocr_p
Pointer to an 32-bits data location, provided by the client, to which the driver copies the OCR.

subscriber

Q’ Texas Instruments — Proprietary Information Page 382 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
... 4 . Defntion
RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_PARAMETER subscriber is invalid

Event Return
MC_READ_OCR_RSP_MSG event is returned to the calling SWE.

Current restriction of use
None.

27.2.16 mc_read_CID

T RV RET mc _read CID (T MC RCA rca, UINT8 *cid p,
T MC SUBSCRIBER subscriber)

Description

This function returns the 128-bit CID register from a MMC/SD-card. This register is not buffered in the
driver and therefore will be read directly from the card.

Parameters

- rca

Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

cid_p
Pointer to a 128-bit buffer, allocated by the client, to which the driver copies the CID. cid_p points to
the LSB of the CID.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET

The possible values are:

Id Definition

RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV _INVALID_PARAMETER subscriber is invalid

Event Return

MC_READ_CID_RSP_MSG event is returned to the calling SWE.

Current restriction of use

None.

27.2.17 mc_read_CSD

Q’ Texas Instruments — Proprietary Information Page 383 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

T RV RET mc _read CSD (T MC RCA rca, UINT8 *csd p,
T MC SUBSCRIBER subscriber)

Description
This function returns the 128-bit CSD from a MMC/SD-card. This register is not buffered in the driver
and therefore will be read directly from the card.

Parameters

- rca

Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

csd_p
Pointer to a 128-bit buffer, allocated by the client, to which the driver copies the CSD. csd_p points to
the LSB of the CSD.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_PARAMETER subscriber is invalid

Event Return
MC_READ_CSD_RSP_MSG event is returned to the calling SWE.

Current restriction of use
None.

27.2.18 mc_sd_read_SCR

T RV RET mc_sd read scr (T MC RCA rca, UINT8 *scr p,
T MC SUBSCRIBER subscriber)

Description

This function returns the 64-bit SCR (SD Card Configuration Register) from a SD card. This register is
not buffered in the driver and therefore will be read directly from the card.

Parameters

- rca
Relative Card Address. This relative card address of the connected SD card can be read using the
mc_read_card_stack() function.

scr_p
Pointer to a buffer of 64-bits, allocated by the client, to which the driver copies the SCR. scr_p points
to the LSB of the SCR.

Q’ Texas Instruments — Proprietary Information Page 384 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV _MEMORY ERR Insufficient memory to create message request
RV _INVALID PARAMETER subscriber is invalid

Event Return
MC_READ_SCR_RSP_MSG event is returned to the calling SWE.

Current restriction of use
None.

27.2.19 mc_get_sw_version

UINT32 mc_get sw version (void)

Description

This function returns the software version of the driver. The version is a 32-bit value which is
organised as follows:

major version number (8 bits) minor version number (8bits) build number (16 bits)
31 24 | 23 16 | 15 0
Parameters

Not applicable.

Immediate Return
UINT32

The 32-bit software version

Event Return
Not applicable.

Current restriction of use
None.

27.2.20 mc_get_card_type

T MC CARD TYPE mc get card type (T MC RCA rca)

Description
This function returns the card type.

Parameters
Q’ Texas Instruments — Proprietary Information Page 385 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

- rca
Relative Card Address. This relative card address of the connected MMC/SD-cards can be read using
the mc_read_card_stack() function.

Immediate Return

T_MC_CARD_TYPE

Card type at requested Relative Card Address.
The possible values are:

Id Definition
NO_CARD No card available at given RCA
SD_CARD SD card present on given RCA

MMC _CARD MMC card present on given RCA

Event Return

Not applicable.

Current restriction of use

None.

27.2.21 mc_sd_get_card_status

T RV RET mc_sd get card status (T MC RCA rca, UINT8 *sd status p,
T MC SUBSCRIBER subscriber)

Description

This function returns the 512-bit SD status register of the SD-card. This status is not buffered in the
driver but will be read directly from the card. See [SD], paragraph 4.10.2 for an explanation of the
status bits.

Parameters

- rca
Relative Card Address. This relative card address of the connected SD-cards can be read using the
mc_read_card_stack() function.

sd_status_p
Pointer to a 512-bit buffer, allocated by the client, to which the driver copies the SD status.
sd_status_p points to the LSB of the status.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
... d4 _____________ Defiton
RV_OK Success
RV_NOT_READY The driver is not initialised.
RV_MEMORY_ERR Insufficient memory to create message request
RV_INVALID_PARAMETER subscriber is invalid

Event Return

T_MC_SD_CARD_STATUS_RSP_MSG is returned.

Q’ Texas Instruments — Proprietary Information Page 386 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Current restriction of use
None

27.2.22 mc_send_notification

T RV RET mc_send notification (T _MC EVENT event, T MC SUBSCRIBER subscriber)

Description

This function is used to inform the MC driver the subscriber wants to be notified if an MMC/SD event
occurs. The currently supported events are for card insertion and card removal detection. After an
event occurs, the MC driver will send a notification to all subscribers that requested it.

Parameters

event
A combination of events (logical OR) to which the subscriber wants to be notified.

subscriber
Subscriber identification value.

Immediate Return

T_RV_RET
The possible values are:
RV OK Success
RV _NOT READY The driver is not initialised.
RV_MEMORY ERR Insufficient memory to create message request
RV _INVALID PARAMETER subscriber is invalid

Event Return
T_MC_NOTIFICATION_RSP_MSG is returned. If the response message indicates that the notification
request has succeeded, the client can expect an event notification indication from the MC driver.

T_MC_EVENT_IND_MSG is send to the client when an event occurs.

Current restriction of use
None

27.3 Message definition

In this paragraph all messages are described. The response messages will return the result of the
command and most of the time the content of the card status register (i.e. if the used MMC/SD-
commands have a R1 response type). The RV_INTERNAL_ERROR result will be set if at least one
error in the card status register is set.

The driver will set the RV_INVALID_PARAMETER response if one of parameter values is invalid.
Example situations:
Invalid RCA. The current card-stack does not contain an MMC/SD-card with this address;
provided pointer value is NULL;
etc.

Q’ Texas Instruments — Proprietary Information Page 387 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

Note: the parameter ‘subscriber’ is checked in the API functions not to be a NULL pointer. So invalid
‘subscriber’ parameter results in an API-function return value of RV_INVALLID_PARAMETER and
does not result in a response message with status RV_INVALLID_PARAMETER.

27.3.1 Subscribe

The T_MC_SUBSCRIBE_REQ_MSG message can be used to subscribe to the MC-driver. This
message is similar to the mc_subscribe() function (see 27.2.1). The driver responds with a
T_MC_SUBSCRIBE_RSP_MSG message.

27.3.1.1 T_MC_SUBSCRIBE_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T MC SUBSCRIBER *subscriber p;
T RV_RETURN return path;

} T _MC SUBSCRIBE REQ MSG

27.3.1.2 T_MC_SUBSCRIBE_RSP_MSG

typedef struct {
T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>
T MC SUBSCRIBER *subscriber p;
} T _MC SUBSCRIBE RSP _MSG

The possible values for ‘result’ are:

Id Definition
RV_OK Success
RV_INVALID_PARAMETER subscriber_p is NULL
RV_INTERNAL_ERROR -There was an internal error while executing the request. Execution was
unsuccessful;
-Maximum number of clients reached;

27.3.2 Unsubscribe

The T_MC_UNSUBSCRIBE_REQ_MSG message can be used to unsubscribe from the MC-driver.
This message is similar to the mc_unsubscribe() function (see 27.2.2). The driver responds with a
T_MC_UNSUBSCRIBE_RSP_MSG message.

27.3.21 T_MC_UNSUBSCRIBE_REQ_MSG

typedef struct {

T RV_HDR os_hdr;

T MC SUBSCRIBER *subscriber p;
} T _MC UNSUBSCRIBE REQ MSG

27.3.2.2 T_MC_UNSUBSCRIBE_RSP_MSG

typedef struct {
T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT_READY | RV_INTERNAL ERROR>
} T _MC UNSUBSCRIBE RSP MSG

The possible values for ‘result’ are:

RV_OK Success
RV_INVALID_PARAMETER -subscriber_p is NULL;
-invalid subscriber;
RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.
Q’ Texas Instruments — Proprietary Information Page 388 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

27.3.3 Data read

The T_MC_READ_REQ_MSG message can be used to read data from an MMC/SD card. This
message is similar to the mc_read() function (see 27.2.3). The driver responds with a
T_MC_READ_RSP_MSG message.

27.3.3.1 T_MC_READ_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T_MC_RCA rca;

UINT32 addr;
UINTS8 *data_p;
UINT32 data size;

T MC SUBSCRIBER subscriber;
} T MC_READ REQ MSG

27.3.3.2 T_MC_READ_RSP_MSG
typedef struct {

T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>
UINT32 card status;
UINTS8 *data_p;
UINT32 data size;
} T MC READ RSP MSG
The possible values for ‘result’ are:
RV_OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-addr is invalid;

-data_p is NULL;

-data_size is invalid;

-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the Card status

27.3.4 Data write

The T_MC_ WRITE_REQ_MSG message can be used to write data to an MMC/SD card. This
message is similar to the mc_write() function (see 27.2.4). The driver responds with a
T_MC_WRITE_RSP_MSG message.

27.3.41 T_MC_WRITE_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T_MC_RCA rca;

UINT32 addr;
UINTS8 *data_p;
UINT32 data size;

T MC SUBSCRIBER subscriber;
} T MC WRITE REQ MSG

27.3.4.2 T_MC_WRITE_RSP_MSG
typedef struct {

T RV _HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>
UINT32 card status;
% Texas Instruments — Proprietary Information Page 389 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

UINTS8 *data_p;
UINT32 data size;
} T MC WRITE RSP MSG

The possible values for ‘result’ are:

RV_OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-addr is invalid;
-data_p is NULL;
-data_size is invalid;
-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the Card status
RV_NOT SUPPORTED The selected card is a ROM card or write protected.

27.3.5 Ease group

The T_MC_ERASE_GROUP_REQ_MSG message can be used to erase a range of erase groups on
the card. This message is similar to the mc_erase_group () function (see 27.2.5). The driver responds
with a T_MC_ERASE_GROUP_RSP_MSG message.

27.3.5.1 T_MC_ERASE_GROUP_REQ_MSG
typedef struct {

T RV_HDR os_hdr;

T MC RCA rca;

UINT32 erase_group_ start;
UINT32 erase_group_end;

T MC SUBSCRIBER subscriber;
} T MC_ERASE GROUP REQ MSG

27.3.5.2 T_MC_ERASE_GROUP_RSP_MSG
typedef struct {

T RV_HDR os_hdr;

T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>

UINT32 card status;

} T MC ERASE GROUP RSP MSG

The possible values for ‘result’ are:

RV OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-erase_selection of erase groups;
-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the Card status
RV_NOT SUPPORTED The selected card is a ROM card or write protected.

27.3.6 Set write protect

The T_MC_SET_PROTECT_REQ_MSG message can be used to set the write protection of the
addressed write protect group. This message is similar to the mc_set write_protect() function (see
27.2.6). The driver responds with a T_MC_SET_PROTECT_RSP_MSG message.

27.3.6.1 T_MC_SET_PROTECT _REQ_MSG
typedef struct {

T RV _HDR os_hdr;
T MC RCA rca;
UINT32 Wr_prot group;
T MC SUBSCRIBER subscriber;
Q’ Texas Instruments — Proprietary Information Page 390 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

} T MC SET PROTECT REQ MSG

27.3.6.2 T_MC_SET_PROTECT RSP_MSG
typedef struct {

T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>

UINT32 card status;

} T MC CLR PROTECT RSP MSG

The possible values for ‘result’ are:

RV OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-write protect group is invalid;

-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the Card status

27.3.7 Clear write protect

The T_MC_CLR_PROTECT _REQ_MSG message can be used to clear the write protection of the
addressed write protect group. This message is similar to the mc_clr_write_protect() function (see
27.2.7). The driver responds to an MC_CLR_PROTECT_REQ_MSG message with a
T_MC_CLR_PROTECT_RSP_MSG message.

27.3.7.1 T_MC_CLR_PROTECT_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T MC RCA rcay;
UINT32 Wr_prot group;

T MC SUBSCRIBER subscriber;
} T MC_CLR PROTECT REQ MSG

27.3.7.2 T_MC_CLR_PROTECT_RSP_MSG
typedef struct {

T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>

UINT32 card status;

} T MC CLR PROTECT RSP MSG

The possible values for ‘result’ are:

RV_OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-write protect group is invalid;

-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the Card status

27.3.8 Get write protect

The T_MC_GET_PROTECT _REQ_MSG message can be used to read 32 write protection bits
representing 32 write protect groups starting at a specified address. This message is similar to the
mc_get _write_protect() function (see 27.2.8). The driver responds with a
T_MC_GET_PROTECT_RSP_MSG message. The wr_prot_grps variable contains the write
protection groups.

Q’ Texas Instruments — Proprietary Information Page 391 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API Version 0.3

27.3.8.1 T_MC_GET_PROTECT_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T MC RCA rcay;
UINT32 Wr_prot group;

T MC SUBSCRIBER subscriber;
} T MC_GET PROTECT REQ MSG

27.3.8.2 T_MC_GET_PROTECT RSP_MSG
typedef struct {

T RV_HDR os_hdr;
T RV RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>

UINT32 card status;
UINT32 wr_prot grps;

} T MC GET PROTECT RSP MSG

The possible values for ‘result’ are:

RV_OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-write protect group is invalid;

-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the Card status

27.3.9 Get card status

The T_MC_CARD_STATUS_REQ_MSG message can be used to read 512-bit SD status register of
an SD-card. This message is similar to the mc_sd_get_card_status() function (see 27.2.9). The driver
responds with a T_MC_CARD_STATUS_RSP_MSG message.

27.3.9.1 T_MC_CARD_STATUS_REQ_MSG

typedef struct {
T RV_HDR os_hdr;
T MC SUBSCRIBER subscriber;

} T MC CARD STATUS REQ MSG

27.3.9.2 T_MC_CARD_STATUS_RSP_MSG
typedef struct {

T RV_HDR os_hdr;
T RV _RET result;
UINT32 card status;

} T MC CARD STATUS RSP MSG

The possible values for ‘result’ are:

RV OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.

Q’ Texas Instruments — Proprietary Information Page 392 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API Version 0.3

27.3.10 Get SD card status

The T_MC_CARD_SD_STATUS_REQ_MSG message can be used to read -bit status register of an
MMC/SD-card. This message is similar to the mc_get_card_status() function (see27.2.21). The driver
responds with a T_MC_SD_CARD_STATUS_RSP_MSG message.

27.3.10.1T_MC_SD_CARD_STATUS_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
UINTS *sd_status_p;
T MC SUBSCRIBER subscriber;

} T MC SD CARD STATUS REQ MSG;

The possible values for ‘result’ are:

Id Definition

RV_OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-invalid subscriber;
There was an internal error while executing the request. Execution was
unsuccessful.

RV_INTERNAL_ERROR

27.3.10.2T_MC_SD_CARD_STATUS_RSP_MSG
typedef struct {

T RV_HDR os_hdr;

T RV _RET result;

UINT8 *sd status_p;
} T MC_SD _CARD STATUS RSP MSG;

The possible values for ‘result’ are:

RV OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;

-invalid subscriber;
There was an internal error while executing the request. Execution was
unsuccessful.

RV_INTERNAL_ERROR

27.3.11 Update acquisition

The T_MC_UPDATE_ACQ_REQ_MSG message can be used to start an identification cycle of the
card stack. This message is similar to the mc_update_acq () function (see 27.2.11). The driver
responds with a T_MC_UPDATE_ACQ_RSP_MSG message. The stack_size variable in the
response message contains the number of connected MMC/SD-cards.

27.3.11.1T_MC_UPDATE_ACQ_REQ_MSG

typedef struct {

T RV_HDR os_hdr;

T MC SUBSCRIBER subscriber;
} T MC UPDATE ACQ REQ MSG

27.3.11.2T_MC_UPDATE_ACQ_RSP_MSG
typedef struct {

T RV _HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>
UINT16 stack size;
Q’ Texas Instruments — Proprietary Information Page 393 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

} T MC UPDATE ACQ RSP_MSG

The possible values for ‘result’ are:

RV_OK Success
RV INVALID PARAMETER -invalid subscriber;
RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.

27.3.12 Reset cards

This function resets all cards to idle state. This message is similar to the mc_reset() function (see
27.2.12). The driver responds with a T_MC_RESET_MSG message.

27.3.121T_MC_RESET_REQ_MSG

typedef struct {

T RV_HDR os_hdr;

T MC SUBSCRIBER subscriber;
} T MC RESET REQ MSG

27.3.12.2T_MC_RESET_RSP_MSG
typedef struct {
T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |

RV_NOT READY | RV_INTERNAL ERROR>
} T MC RESET RSP _MSG

The possible values for ‘result’ are:

RV_OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_ PARAMETER -invalid subscriber;
RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.

27.3.13T_MC_READ_OCR_REQ_MSG

The T_MC_READ_OCR_REQ_MSG message can be used to retrieve the 32-bit OCR register of an
MMC/SD-card. This message is similar to the mc_read_OCR () function (see 27.2.15). The driver
responds with a T_MC_READ_OCR_RSP_MSG message.

27.3.13.1T_MC_READ_OCR_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T MC RCA rca;
UINT32 *ocr p;

T MC SUBSCRIBER subscriber;
} T MC _READ OCR_REQ MSG

27.3.13.2T_MC_READ_OCR_RSP_MSG
typedef struct {

T RV_HDR os_hdr;

T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>

UINT32 *ocr p;

} T MC _READ OCR RSP MSG
The possible values for ‘result’ are:

Id Definition
RV OK Success

Q’ Texas Instruments — Proprietary Information Page 394 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

RV_NOT_READY

The driver is in “DETACHED” state. No card is found

RV_INVALID_PARAMETER

-rca is invalid;
-ocr_p is NULL;
-invalid subscriber;

RV_INTERNAL_ERROR

There was an internal error while executing the request. Execution was
unsuccessful.

27.3.14 Read CID

The T_MC_READ_CID_REQ_MSG message can be used to retrieve the 128-bit OCR register of an
MMC/SD-card. This message is similar to the mc_read_CID () function (see 27.2.16). The driver
responds with a T_MC_READ_CID_RSP_MSG message.

27.3.14.1T_MC_READ_CID_REQ_MSG

typedef struct {
T RV_HDR
T MC_RCA
UINTS
T MC_SUBSCRIBER
} T MC READ CID REQ MSG

os_hdr;
rca;

*cid p;
subscriber;

27.3.14.2T_MC_READ_CID_RSP_MSG

typedef struct {

T RV_HDR os_hdr;

T RV RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>

UINTS8 *cid p;

} T MC READ CID RSP MSG

The possible values for ‘result’ are:

RV OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;
-cid_p is NULL;

-invalid subscriber;

RV_INTERNAL_ERROR

There was an internal error while executing the request. Execution was
unsuccessful.

27.3.15Read CSD

The T_MC_READ_CSD_REQ_MSG message can be used to retrieve the 128-bit CSD register of an
MMC/SD-card. This message is similar to the mc_read_CSD() function (see 27.2.17). The driver
responds with a T_MC_READ_CSD_RSP_MSG message.

27.3.15.1T_MC_READ_CSD_REQ_MSG

typedef struct {
T RV_HDR
T MC_RCA
UINTS
T MC_SUBSCRIBER
} T MC READ CSD REQ MSG

os_hdr;
rca;

*csd p;
subscriber;

27.3.15.2T_MC_READ_CSD_RSP_MSG

typedef struct {

T RV _HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>
Q’ Texas Instruments — Proprietary Information Page 395 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

UINTS8 *csd _p;
} T _MC _READ CSD_RSP_MSG

The possible values for ‘result’ are:

RV OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;
-csd_p is NULL;
-invalid subscriber;
RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.

27.3.16 Write CSD field

The T_MC_WRITE_CSD_REQ_MSG message can be used to write the programmable part of the -bit
CSD register of an MMC/SD-card. This message is similar to the mc_write_ CSD() function (see Error!
Reference source not found.). The driver responds witha T_MC_WRITE_CSD_RSP_MSG
message.

27.3.16.1T_MC_WRITE_CSD_REQ_MSG
typedef struct {

T RV_HDR os_hdr;
T MC RCA rca;

T MC CSD_FIELD field;
UINTS8 value;

T MC SUBSCRIBER subscriber;
} T_MC WRITE CSD REQ MSG

27.3.16.2T_MC_WRITE_CSD_RSP_MSG
typedef struct {

T RV _HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER |
RV_NOT READY | RV_INTERNAL ERROR>
UINT32 card status;
} T MC WRITE CSD RSP MSG
The possible values for ‘result’ are:
RV_OK Success
RV_NOT_READY The driver is in “DETACHED” state. No card is found
RV_INVALID_PARAMETER -rca is invalid;
-invalid field;
-invalid value;
-invalid subscriber;
RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful. Check the card status.

27.3.17 Read scr

The T_MC_SD_READ_SCR_REQ_MSG message can be used to retrieve the 64-bit SCR register of
an SD card. This message is similar to the mc_sd_read_SCR () function (see 27.2.18). The driver
responds witha T_MC_SD_READ_SCR_RSP_MSG message.

27.3.17.1T_MC_SD_READ_SCR_REQ_MSG
typedef struct {

T RV _HDR os_hdr;
T MC RCA rca;
UINTS *scr p;
Q’ Texas Instruments — Proprietary Information Page 396 of 401
TEXAS

Strictly Private

INSTRUMENTS

Locosto_BSP_API

Version 0.3

T MC SUBSCRIBER subscriber;
} T MC_SD READ SCR_REQ MSG

27.3.17.2T_MC_SD_READ_SCR_RSP_MSG
typedef struct {

RV_NOT READY | RV_INTERNAL ERROR>

T RV_HDR os_hdr;
T RV _RET result = <RV_OK | RV_INVALID PARAMETER
UINTS8 *scr_p;

} T MC SD READ SCR RSP MSG

The possible values for ‘result’ are:

RV_OK Success
RV _NOT READY The driver is in “DETACHED” state. No card is found

RV_INVALID_PARAMETER -rca is invalid;
-scr_p is NULL;
-invalid subscriber;

RV_INTERNAL_ERROR There was an internal error while executing the request. Execution was
unsuccessful.
27.4Types definition

27.41T_MC_CSD_FIELD

typedef enum {
CSD_FIELD FILE FORMAT GRP,
CSD_FIELD COPY,
CSD_FIELD PERM WRITE PROTECT,
CSD_FIELD TMP WRITE PROTECT,
CSD_FIELD FILE FORMAT,
CSD_FIELD FILE ECC,
CSD_FIELD FILE CRC,

} T MC CSD FIELD;

27.42T_MC_CSD_ACTION

typedef enum {
CSD_ACTION WRITE,
CSD_ACTION ERASE,
} T_MC CSD ACTION;

27.4.3T_MC_SUBSCRIBER
typedef UINT16 T MC SUBSCRIBER;

27.44T_MC_DMA_MODE

typedef enum {
MC FORCE CPU,
MC FORCE DMA,
MC_DMA_AUTO

} T MC DMA MODE;

Q’ Texas Instruments — Proprietary Information
TEXAS Strictly Private
INSTRUMENTS

Page 397 of 401

Locosto_BSP_API Version 0.3

27.45T_MC_RW_MODE

typedef enum {
MC RW STREAM,
MC_RW_BLOCK
} T MC RW MODE;

Q’ Texas Instruments — Proprietary Information Page 398 of 401
TEXAS Strictly Private
INSTRUMENTS

Locosto_BSP_API

Version 0.3

Appendices

B. Acronyms
API

CAMA

CAMD

DMA
EMIF
FAT

FFS

FIFO
I/0
ICT

IMG

JPEG
LFS
MCU
MIDI
MMC

MMU

NOR
POSIX
QCIF

R2D

RFS
RGB
SD

SWE

TI
VGA

Application Programming Interface

Camera Application

Camera driver

Direct memory access

External Memory Interface

File Allocation Table

Flash file system

First in first out

Input/Output

Company name: Industriéle Computer Toepassingen

Image library

Joint Photographer Engineering Group (compression

algorithm)
Linear File System

Micro-Controller Unit

MultiMedia Card

Memory management unit

Portable Operating System Interface

Quarter Common Intermediate Format: resolution is 144 by

176

Riviera 2D Graphics Library

Riviera File System

Colorspace: Red, Green, Blue components of color.

Secure Digital
software Entity

Company name: Texas Instruments

video graphics array: resolution is 640 by 480

Colorspace: Y stands for the luminance component (the

brightness) and U and V are the chrominance

components.

(color)

{'f TeEXAS
INSTRUMENTS

Texas Instruments — Proprietary Information
Strictly Private

Page 399 of 401

Locosto_|

BSP_API Version 0.3

C. References

[1].
[2].
[3].
[4].
“ST754

TCS3.1 Documentation on R2D — “88 02_03_00723_RIV151_Riviera2D_api.doc”
Datasheet of Hitachi HD66772 — “HD66772 - LCD Source Driver - 2002.10.pdf"
Datasheet of Philips LPH8754 — “LPH8754-1 - 2.2 inch 176x220 TFT - 2003.05.12.pdf"
Datasheet of Sitronix ST7541 —
1_4_gray_scale_dot_matrix_LCD_controller_driver_v1.1.pdf’

D. Agilent ADCM-2700 camera capabilities

struct
{
UINT

struct

{

}
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

} cama_

T CAMA CAMERA CAPABILITIES

16 number of resolutions = 1;

T CAMA RESOLUTION resolution = CAMA VGA;

T CAMA ENCODING encoding = CAMA YUV INTERLEAVED;
UINT16 width = 640;

UINT16 height = 480;

UINT8 R bits
UINT8 G bits
UINT8 B bits
UINT8 Y bits
UINT8 U bits
UINT8 V _bits
UINT16 max_zoom
resolution[];
black and white = FALSE; /* not supported */

flip x = FALSE; /* not supported */

flip y FALSE; /* not supported */

rotate FALSE; /* not supported */

positioning = FALSE; /* not supported */

refresh rate = FALSE; /* not supported (i.e. is fixed) */
camera_capabilities

B 00 X x
I Se Se S Ne N S

0; /* no zoom */

*=not applicable

E. Glossary

Object

An RFS object is an ordinary flat file or a directory. Objects in RFS are
hierarchically organised in directories and sub-directories. Each object
must have a unique name within the directory it resides. Whether the
object names are case sensitive depends on the file system (most file
systems are case sensitive, but for example FAT is not case sensitive).
An object name is valid if it contains a combination of the following
characters: a-z, A-Z, 0-9, %, $, #, .’ (dot), '+’ (plus), - (dash), *_’
(underscore) and ‘;’ (comma).

Directory An object in RFS is a directory. In directories, objects are hierarchically

Mount point

organised. These organised objects can be files or other directories.
A mount point is an object in the file system. It is to be seen as a
directory associated to a device partition of supported type.

A pathname is defined as a mount point, a series of directory names
separated by slashes (*/’) and ending with a object name (file or

Pathname directory). A pathname must begin with a slash and must never end with

a slash.
Example:

% Texas Instruments — Proprietary Information Page 400 of 401
TEXAS

INSTRUMENTS

Strictly Private

Locosto_BSP_API Version 0.3

rfs_open("/mmc/programsf/files/textfile.txt", RFS_O_CREATE);

- In this example “/mmc/programs/files/texffile.txt” is the path name
- ‘mmc’ is a mount point

- ‘programs’ is a directory

- ‘files’ is a directory

- ‘textfile.txt’' is a file(-name)

A pathname also can consist of only an object name (file). In this case
the default mount point and directory rules are applicable.

A device is the abstraction of any mass storage media or a partition of

Device this media if it is a partitionable one.

Inode An inode is identification for a group of data containing information about
an object, organised for fast and efficient access.
Symbolic links work more or less the same as POSIX symbolic links
except that they can only be used for referencing files and not other
symbolic links or directories. In general, use of symbolic links is
discouraged because they consume inodes and increase the object
lookup time.

% Texas Instruments — Proprietary Information Page 401 of 401

TEXAS Strictly Private

INSTRUMENTS

