%‘ TEXAS
INSTRUMENTS

s CSSD DESIGN SPECIFICATION
OpenMAX™ 1.0 Nucleus® LOCOSTO

Document Revision: 0.1
Issue Date: 25 January 2006

MakingWireless

Tl Proprietary Information — Internal Data

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

MakingWireless

OMAP™ js a Trademark of Texas Instruments Incorporated
OMAP-Vox™ s a Trademark of Texas Instruments Incorporated
Innovator™ is a Trademark of Texas Instruments Incorporated
Code Composer Studio™ is a Trademark of Texas Instruments Incorporated
DSP/BIOS™ is a Trademark of Texas Instruments Incorporated
eXpressDSP™ is a Trademark of Texas Instruments Incorporated
TMS320™ s a Trademark of Texas Instruments Incorporated
TMS320C28x™ is a Trademark of Texas Instruments Incorporated
TMS320C6000™ is a Trademark of Texas Instruments Incorporated
TMS320C5000™ is a Trademark of Texas Instruments Incorporated
TMS320C2000™ is a Trademark of Texas Instruments Incorporated
OpenGL® is a Registered Trademark of the Khronos Group
OpenML® is a Registered Trademark of the Khronos Group
OpenVG™ is a Trademark of the Khronos Group
OpenMAX™ is a Trademark of the Khronos Group

All other trademarks are the property of the respective owner.

Copyright © 2005 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The fumishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for the
products based from this document.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Table of Contents
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

Table of Contents

TaADIE OF CONTENTS ..ottt re e re e h et r e ea e st n s e s R e e be s e e st e sre e sreeneeereenea i
[o o [=T T TSP PR U TSP URPAPPTPPPPRIN iii
[o B 1= o] [ST PO O T PP TSP UPPAPPTORPPRIN iii
REVISTON HISTOIY ..ttt et et re e eh bbb et s e s ae e se e e st e eh e e eheea b e s b e s e nn e nne e nn e e e iv
AAD PIOVAIS ..ttt h e ea kb et R e eh e e R e Rt ne e ae e eR e er e n e en e ne e iv
A | 011 o Yo 1V L] A [0 o OSSP PRSPPSO 1
PUIDOSE ...ttt ettt e e et ea e e e s et e e er et n e nr et e s nn e e n e e ne e 1
Scopel
IR PAIN..... et h e er et ne e e nreea 1
FIlE INAIMIE et r e et eh e eh e s b e Rt e s e e s ae e ee e b et R et R e n e e e areereeereea 1
RETEIENCES ...ttt r bt h et bbbt e st e se e e se e b e e eh e e R e e ne e ae e anenreeereen 1
DIETINITIONS ... vttt et sr e er bbb bRt ae et R e R e eea e nne e nn e e anenreenreea 1
2 ArCHITECTUIAl OVEIVIBW .. .eeei ettt et sr e e se e eb e eh e b et s e st e nbe e nneereenreeas 3
P A V1 (=T o ¢ o 1= T | =0 o OO P TP UUPT PP PP 3
2.2 ArCHItECTUIE TIAGIAMieeitiet ettt et et er et e s e e re e e neeer e e ereenn e nnesnes 4
2.3 Software DesSign INTEITACESooceieere ettt e er e sr e 6
2.4 FRAIUIES.....oi ettt ettt et et R et er e er e R e et eR et nr e e e R nr e e e ne e r e e nrreas 6
3 DESIgN RALIONAIEc.iiei it sr e e sr e eh e eh e e e e s et nneereeeneea 6
3.1 Relevant SPECIfICALIONSociiieie ettt ettt re e er e e 7
3.2 DESIgN Trad@-0fFSeeiuiiieiiiiee ettt er et er e er e 7
3.3 HardWare DEPENUENCIES.......ccueeieeeeeeerte ettt et et rr et er bbb ne e e e e ereeer e e nnesnes 7
3.4 Other Pertinent DESIGN ISSUEBScoiiieiiiiiiieeiii ittt ettt et e re e ere e sr e e nennes 7
4 MEMOIY REQUITEIMENTS ..cutiiiiiiiiie ettt sttt ettt et re e se e eh e e e e s s e s bt e ne e e aeeer e e ereenn e snennnes 8
4.1 MEMOIY AlIOCALION ..ottt ettt er e er e es b s e b e b st e st e nne e e e ereeereenn e nnennes 8
5 SUD-COMPONENTS ... et sr e et b eh e b et s e st e sie e neeeneenreeas 9
5.1 Include files for the parent apPliCALION...........ooeiiiiiiee e 9
5.2 Include files for the OMX SSL ClIENTcoiiiiiiiiieee ettt 9
6 CoNLrol And DAta FlOWcceiiieiiiiir et e es b e e ere e enes 10
6.1 COMPONENT STALESeeerieiceee et e e e e e ne e s sr e e e s e e enn e e e e e nreennne e nnas 10
6.2 COMPONENT PRASES ..ottt ettt et er e er e st es e b e b b s b st e st e e e ereeenes 14
6.2.1 Component Load (Transition Invalid & Loaded)..........cccooevririrniiiiiee e 14
6.2.2 Component Unload (Transition Loaded & INvalid)ccooerrriiiiiiieceee e 14
6.2.3 Component Initialization (Transition Loaded & 1d1€)ccccooorriiiiiiiie i 15
6.2.4 Component Execution (Transition ldle & EXECULING)c.coeeriiriririiiiie e 17
6.2.5 Component Stop (Transition Executing @ IdI€)ccccooveviiiiiiiiiice 20
6.2.6 Component De-Initialization (Transition Idle & Loaded)...........ccoovieririenene e 21
6.2.7 Component Pause (Transition EXeCUtiNg & PAUSE).........ccccevuririniiiiieie e 22
6.2.8 Component Resume (Transition Pause & EXECULING)ccccvevriririiieie e 23
6.2.9 Component Stop (Transition Pause @ 1dI€)ccceeveiiiieiiiiiree e 23
6.3 Input and Output Buffer AllOCAtION SCENAIIOS........uuiririerieie e 24
T SOTtWAre REQUITEMENTS .. .ccuiiitiitiitire ettt e bbbt r e e bbbt nn e s b e re s be st e st e neeeneeenes 25
8 Requirements TraCaDilitycciiierieiie it e 25
8.1 DEfINEA TYPES ..ttt ettt ettt e he e e h e er e a e eh bbb et e nn e ere e enes 25
8.1.1 OMX BASIC DALA TYPES ...ueeieeireeireettiittetest st re et sr e sr et s e bbbt nre e nneene e ene e nennene 25
8.1.2 SSL COre DAta TYPES.....ceicuiiiieeeireirte et et sre e rr e e e s er e e e e e e e s nre e ne e s 25
8.2 DALA SITUCTUIES ..ottt ettt re e e s e e er et e e s nr e e e s e e ennneene e e rreennneeennas 27
8.2.1 Component private data SIrUCTUIEeocuirieriere ettt ere e 27
8.2.2 SSL Plane QUETY SIIUCTUIEccueeueieieitietirte sttt st sr et sne e nneene e sne e enanene 27
8.2.3 SSL Plane Configuration STIUCTUIE..........ccuirieriee et sre e 28
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0 26 July 2005
U TEXAS TI Proprietary Information — Internal Data

INSTRUMENTS i

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Table of Contents
Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification
Revision 0.1 25 January 2006

8.2.4 SSL Plane HandIe STTUCTUIEc.eiiiiiiiirierese ettt st se e sre e sre e enn e 28
8.2.5 SSL Display QUETY SIIUCIUIEccvtiueitirtirie ettt sr et sr e e snesreeene e ennnenes 29
8.2.6 SSL Display Configuration SrUCTUIEcocueiiere et 29
8.2.7 SSL Display Deives LiStiNG SrUCTUIE.........cocerieie ettt sre e 30
8.3 APIREQUINEMENTS COVEIAUEeoiuieieiieieeite ettt ettt ettt se e er e es bbb b b st s e e nn e e nneenes 30
8.3.1 COMMON Pre CONILIONScueivieriieiie ettt ettt es bbb et sre e seeereeeneesnennnene 30
8.3.2 OMX_SSL_COMPONENTINIT.....eeiirieiiieiiitiet ettt ere e sre e 30
8.3.3 OMX _SSL_SEtCaAIIDACKScorveereieuiieriitirt ettt sn e sre e sne e 31
8.3.4 OMX_SSL_GetCOMPONENTVEISIONocveirirrerierieeseeeseesreesre e re st sre e sreereesre e ennenes 32
8.3.5 OMX_SSL_SendCoOMIMANGcceeueieriitiitire ettt e e e sr e e sneereeene e ennenes 32
8.3.6 OMX _SSL_GEIPAIrAMELENciiiriiirie ettt nre e e 33
8.3.7 OMX _SSL_SEtPAIGMELEToeiiriiirieirree ettt e e s nre e e neas 34
8.3.8 OMX _SSL_GEICONTIG .veeverueerreerreetee ettt et sr et s et e e se e nr e e sneeneeeneennennnene 35
8.3.9 OMX _SSL_SELCONTIG ... eiteieeireerrietee ettt ettt et sr e e ne e ere e ene e 36
8.3.10 OMX _SSL_GEISTALE.eiteeeerteerte ettt ettt et sr et es bbb st e ne e e nnesreeeneensenanene 37
8.3.11 OMX_SSL_EMPLYTRISBUTEIcvieiii ittt 38
8.3.12 OMX_SSL_FillTRISBUFTEIeeiteiieeeee ettt e 38
8.3.13 OMX_SSL_ComponentTUNNEIREQUESTc.ciiiiieree ettt 39
8.3.14 OMX_SSL_COmMPONENIDEINIT......cceiieiitiitirte ettt ere e sre e 39
8.4 APPIICAtION CAIDACKSooueiiiiiee e e 40
8.4 L EVENTHANGIEottt et re st nr e e nreene e ene e enn e 40
8.4.2 EMPLYBUMEIDONE.eiii ettt ettt sr e e sn e ere e ene e nn e 41
8.4.3 FilIBUIFEIDONEoiiiiiiie ettt ettt et er e et s bt e e s e nn e e nn e ene e ene e enanene 41
8.5 INtEINAI FUNCHIONS ...ttt r et es bbb n e st e st e nneeneeenes 42
8.5.1 SSL COIE TASK....tiutiiiiite ettt sttt ettt re et er e er et es s e n e b b s nn e nr e ene e en e nea 42
8.6 NON-API REQUIrEMENTS COVEIAGEoiieiieeiteerieeteiteet e s et et se et sre et es e s e ss e b st e sie e sneereeens 42
O ASSUMIPTIONS ettt ettt ettt h et h e ea e ea s e R R R et R R eh e R e R e R e e e e enes 43
10 Appendix A — Direct SCreen ACCESS (DSA) ..ottt 43
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
@ TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS i

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Table of Contents
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

List of Figures

Figure 1 SYSEM AIAGTAIM ...ttt sttt re e er e e bbbt ese e e ere e ereennennnennes 3
Figure 2 OMX SSL Client architeCture Qiagrameoceeierieriee e e 4
Figure 3 MUIEIDIE PlanN@ CrEALIONc.veiieiiee ettt e seenreenreens 5
Figure 4 CompPOoNENt SEAtE DIAGIAMccoiiierierieeeierie ettt ettt e sr e e reeer e ereenn e neae 10
Figure 5 OMX Component state transitions and SSL Core Task TransitionsS..........c.cceveeveeeeseeieniienns 12
Figure 6 OMX Component state transitions and SSL Core Task transitionscccoceeveeveeeeneeiienienns 13
Figure 7 OMX COMPONENTIOAA.ee ettt ettt sr e e e er e ereen e 14
Figure 8 OMX COMPONENT UNIOAD ..ottt st e sr e e er e er e 15
Figure 9 OMX component iNItIAHZALIONeoiieiii e 16
Figure 10 OMX component Initialization: Plane Creation in SSL COreccccovceivveiviieieneene e 17
Figure 11 OMX component execution: ldle to Executing tranStioNccceeverieereeieeieneesese e 19
Figure 12 OMX COMPONENT SIOP.....veeueiereiireirertirte st e st se e re e s e es et e ss e st st e st e sr e e sreen s e ne e s e b e nsresaeenae s 20
Figure 13 OMX component de-initialization: Plane DeStroy ProCeSS........cccvevverveeriereeeenieesreriese e 21
Figure 14 OMX component eXeCUution: SSL PAUSING........cceieerieririeriee et 23
Figure 15 OMX Component Pause: Return t0 EXECULE STAte...........c.everieeieiieeie e 23
Figure 16 OMX Component Pause: Return t0 1d1€ STateccevverieriiie e 24
List of Tables
Table 1 TEIMS ANA ACTONYMIS ...ttt ettt et re e re e er e er e s st es e s e b e b s b e st e se e e nneeneeereenn e anennnes 2
Table 2 Memory requirements of the OMX SSL CHENTcociiiiiiiieere e 8
Table 3 INClude fileS FOr BMIMMI.........cviiiiiiiee ettt 9
Table 4 Include files for the OMX SSL CHENT.......coci it s 9
Table 5 State transitions in the OMX SSL CHENTcc.eoiieeeeee e 10
Table 6 Display Formats Supported and Bit poSition fOr QUETYcooceveieirieeeieee e 26
Table 7 OMX_SSL_COMPONENT_PRIVATE_DATA SIUCTUIEocviiriiriitirie e 27
Table 8 OMX_SSL_PLANE_QUERY INStANCE SIUCIUIEccoceerieerieeriiiieiieiene e ere e 27
Table 9 OMX_SSL_PLANE_CONFIG iNStanCe SIIUCIUIEc.cceiierieeiierieiietre e 28
Table 10 OMX_SSL_PLANE_HANDLE_TYPE SHUCIUIE.......cccoitiiiirieeeie ettt 28
Table 11 OMX_SSL_DISPLAY_QUERY_TYPE SIUCTUIEccocteirierieeiriieestistere st see e ene e 29
Table 12 OMX_SSL_DISPLAY_CONFIG_TYPE SHUCIUIE.......cccciierieeuieeiiiiirtere e ene e 29
Table 13 OMX_SSL_AVAILABLEDISP_TYPE SIIUCIUIEcccoitiriieriieiee ettt 30
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0 26 July 2005
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS i

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Revision History

Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification
Revision 0.1 25 January 2006

Revision History

REV DATE AUTHOR NOTES
th
01 25 January J Raghuram Karthik First Version
2006
Approvals
REV APPROVAL 1 DATE APPROVAL 2 DATE
0.1 Rajan Narendran Prabhavathy S

Please read the “Important Notice” on the next page

*’:‘ TeExAs
INSTRUMENTS

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

Tl Proprietary Information — Internal Data

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Approvals
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using Tl components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from Tl under the patents or other intellectual
property of Tl.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not
responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application

solutions:
1 Products 2 Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.comivideo
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2005, Texas Instruments Incorporated
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0 26 July 2005
d TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS v

PDF SCHF# 4] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless
http://www.fineprint.cn

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Introduction
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

1 Introduction

This document describes the design of the OpenMAX™ 1.0 compliant Screen Services Layer (SSL)
Component for the Locosto Imaging Subsystem. The typical operating environment for the SSL
Component would be:

n Nucleus® Operating System on LOCOSTO ™’s ARM7 processor.

n OpenMAX™ 1.0 core to expose a standardized API to the application.
n [-SAMPLE BOARD.

n Generic Protocol Framework (GPF) for System resource access.

Purpose
This document details the design specifications for OpenMAX™ 1.0 OMX SSL Client on LOCOSTO.

Scope
This document addresses only design specifications.

Additional technical data can be found by referring to the OMAP™SS&P Technical Perspective and Data
Package document.

The document provides information about technical data artifacts, including their title, standard
ClearCase® VOB location, a brief description and the System or Software Checkpoint where the artifact
is first introduced into the development process.

File Path

This design specification document shall be captured in ClearCase® path defined in the project CM Plan:
\ OVAPSW SysDev\ LOCOSTO Mul ti medi a\ Syst em Cor e\ Docs

File Name
The file name of this document is OMAPSSP_LOCOSTO_OMX_SSL_DesignSpec.doc.

References

All References can be found on the Cellular Systems web site or the World Wide Process and Tools
Group web site.

Definitions

Terms used in this document can be found in the Cellular Systems Glossary Document.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 1

PDF L "pdfFactory Pro™ i FH AL www.fineprint.cn

http://www.fineprint.cn

Introduction Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

Terms that are introduced in this document are detailed below:

Table 1 Terms and Acronyms
ACRONYM DEFINITION
DSP Digital Signal Processor
GPP General Purpose Processor
OMX OMX and OpenMAX™ 1.0 are used interchangeably in the document.
API Application Programming Interface
ARM Advanced RISC Machines
OSAL Operating System Adaptation Layer
Ul User Interface
DMM Dynamic Mapped Memory
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 2

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Architectural Overview
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

2 Architectural Overview

The Screen Services Layer (SSL) is middle-level layer that provides for an OpenMAX™ 1.0 compliant
interface to applications for the display feature on the LOCOSTO™ platform. The operating environment
for the SSL consists of the Nucleus® operating system and the Generic Protocol Framework (GPF). The
application layer uses the SSL for all of the display functionalities. With respect to the Imaging Subsystem,
the SSL operates in tandem with the IMG_Client and the CAMD_Client Components to provide for the
view-finder and capture features. The SSL Layer makes use of the IMG_Client component to compose
the multiple planes that it gets to the final frame buffer. At the lowest level, the SSL interacts with the LCD
Manager to access the physical display.

2.1 System diagram

Figure 1 shows the architecture of OMX SSL Client in context of the imaging sub-system.

Figure 1 System diagram

From the diagram, it is seen that there are 4 tasks in the system, namely:

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0- 26 July 2005

” TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 3

PDF SC{{#i] "pdfFactory Pro" i A6 www. Fineprint.cn

http://www.fineprint.cn

Architectural Overview Design Specification

Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006
1. MMI/Application Task
2. SSL Core Task (includes the LCD Manager)
3. Camera Driver Task (CAMD)
4. Imaging Wrapper (IMG) Task

The SSL Task is actually the LCD Manager Task with added functionality. The CAMD Task is the Camera
Driver task with enhanced functionality. The IMG Task includes the in it.

All these tasks make use of the GPF for using the system resources. The GPF abstracts the
functionalities offered by the operating system.

2.2 Architecture diagram

Figure 2 shows the architecture of the OMX SSL Client, as well as its interfaces with the MMI/Application
Layer. The OMX SSL Client runs in the same task context as the MMI/Appliacation Layer. The SSL Core
executes as a separates task and includes the LCD Manager in it.

MMI/Application

Oweredies
Oweredieo
(Byuooien

()1anngsiy1fsdwz
(Byuooes

(puewwodpuss

EventHandle

EmptyThisBufferDone()

Call Back
Functions

SSL Core Task

Figure 2 OMX SSL Client architecture diagram

Figure 3 indicates multiple applications each creating an instance of the OMX SSL Client for displaying a
‘plane’. A ‘plane’ as will be described later, is a logical region of disaply access to the physical display

device.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.0~ 26 July 2005
TEXAS Tl Proprietary Information — Internal Data
INSTRUMENTS 4

PDF {44 "pdfFactory Pro™ i RAGIE www. fineprint.cn

http://www.fineprint.cn

Design Specification Architectural Overview
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

Planel | Plane 2 Plane 3

AlphaBlend

Figure 3 Multiple Plane Creation

Each application that requests a plane creates a new SSL OMX component configures it and uses it.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0- 26 July 2005

” TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 5

PDF Cf4{#i] "pdfFactory Pro" i kA6 www. Fineprint.cn

http://www.fineprint.cn

Design Rationale Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

2.3 Software Design Interfaces

The SSL OMX™ component exposes the standard OMX Core APIs to the application. These are
disussed in Section 8.3. The component maps these functions to SSL Core Task functionalities through
messages and obtains responses through callbacks. It provides response to the application layer through
call backs wherever applicable as well.

2.4 Features

The SSL is a generic display manager layer. It uses the services of the IMG and LCD Manager to provide
for multiple logical planes and combines them to a single display. The interface exposed by SSL to
applications is Open MAX 1.0 compliant. Following are the key features of the SSL:

Multiple Plane Handling

Screen Composition using Alpha Blending
Always on Top plane specification
Background configuration

Direct Screen Access (DSA)

3 Design Rationale

The OMX SSL Component is a display sink. This means that, IN OMX terminology, it has only input
ports. The SSL Compoent provides a single input port on which the application can provide the image
data to be displayed.

An SSL Component instance is associated with 1) A Physical Display Device that it shares with other
applications 2) A logical display plane that is private to this SSL instance.

A plane is a memory region mapped to a screen area. It is characterized by the following properties:
1. Application Data Pointer: The ‘input’ data pointer provided by the application

2. SSL Shadow Buffer pointer: The copy of the Application Data that the SSL maintains.
The SSL Core task blends the shadow buffers into the actual frame buffer and displays it.

3. Always on Top Flag: This is a flag that indicates if this plane is an ‘Always on Top’ frame.
This feature is useful for On Screen Display functionality. Always on Top planes are the
last to be blended to form the frame buffer. The blending performed is binary blending
with the existing frame buffer. In case, more than one plane is ‘Always on Top’, then the
most recently activated plane takes precedence.

4. Alpha Parameter: This is the alpha blending parameter for this plane. This is used to
blend this plane with the current frame buffer.

5. Offset on the Screen comprising of: X offset and Y Offset. The Offset is measured with
the top left being considered (0, 0).

Dimensions comprising of: X Length and Y Length (Width and Height)

Active Flag: This is a flag indicates if this plane is ‘Active’ or ‘Inactive’. All ‘Active’ planes
are considered for blending into the framebuffer in the display scans. A plane may be
deactivated for updating the contents.

A display scan is where the ‘Active’ queue is examined in the SSL Core and blended to form the
FrameBuffer. After the ‘Active Queue’ scan is completer, the ‘Active Always on Top’ Queue is examined
and the planes are binary blended with the current framebuffer.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 6

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Design Rationale
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

An exception to the plane described arises in the case of Direct Screen Access (DSA). When a DSA is
requested by the application, the SSL Core returns the FrameBuffer pointer to the application through the
OMX Component. The application uses this to dump the display data. Thus a DSA Plane has the
framebuffer pointer, the offset and dimensions and the active flag associated with it. Even if a DSA plane
is active, other planes can be active and can be blended with the FrameBuffer to produce composite
images. The DSA feature is especially useful for ViewFinder type of applications. There can be more than
on DSA plane, but only to mutually exculsive regions. This can provide for exciting options like display
screen windowing etc.

The SSL OMX Component is associated with only one plane at a time. The SSL Core task is responsible
for handling multiple OMX SSL Clients and the associated planes. For more information on the SSL Core,
please refer to the CSSD Design Specification for SSL Core Task.

3.1 Relevant Specifications

Refer to the following specifications for additional information:
n OpenMAX™ 1.0 Standard (www.khronos.org)
CSSD Design Specification for CAMD Client OMX Component
CSSD Design Specification for IMG Client Component
CSSD Design Specification for SSL Core Task
GPF Architecture Documentation

n
n
n
n

3.2 Design Trade-offs

n The OMX SSL Client and MMI/Application run in the same Nucleus® task. This approach has been
adopted because a Nucleus® task is a costly resource.

n The OMX SSL Client and MMI/Application run in the same Nucleus® task and the OMX SSL Client
is not permitted to block the task. This means the OMX SSL Client is passive and can perform its
operations only when it is given control by BMI/MMI.

n The use of DSA provides for a fast mechanism for the application to display frames, but restricts the
number of planes that can be simultaneously displayed.

3.3 Hardware Dependencies

This component is designed to run on the Locosto platform. The development board used was an I
Sample Revision 3 board.

3.4 Other Pertinent Design Issues

There are no design issues.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 7

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.khronos.org
http://www.fineprint.cn

Memory Requirements Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

4 Memory Requirements
Memory requirements of the OMX SSL Client are listed in Table 2.
Table 2 Memory requirements of the OMX SSL Client

Type Size Structure Comments

From the above table, the total dynamic memory required for the OMX SSL Client can be obtained using
the following calculation. Sizes of buffer headers and buffers for a port will need to be included only if the
OMX SSL Client allocates buffers for that port.

Total dynamic memory size in bytes =

4.1 Memory Allocation

The MMI/Application shall allocate the memory region for the data to be displayed except in the case of
using DSA. The Application shall request a plane to be created for the data it wishes to display. The plane
properties are provided under section 3. It is important to note that in the DSA mode, planes need to
occupy mutually exclusive regions of memory.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 8

PDF SCf-ffiH "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification

Revision 0.1 25 January 2006

Sub-Components
Nucleus® OpenMAX™ 1.0 OMX SSL Client

5 Sub-Components

5.1 Include files for the parent application
The BMI/MMI, which uses the OMX SSL Client, must include the files listed in Table 3.

Table 3 Include files for BMI/MMI
File Function
OMX_Coreh Contains prototypes of the core functions and definitions used by both

the application and the component to access common items.

OMX_Component.h

Contains the definitions used to define the public interface of a
component. This header file is to be used by both the application and
the component.

OMX_Index.h

Contains the definitions of parameter and configuration indices for both
applications and components.

OMX_Image.h

Contains structures needed by Image applications to exchange
parameters and configuration data with the components.

OMX_IVCommon.h

Contains structures needed by Video and Image applications to
exchange parameters and configuration data with the components.

5.2 Include files for the OMX SSL Client

Table 4 Include files for the OMX SSL Client
File Function
OMX_Coreh Contains prototypes of the core functions and definitions used by both

the application and the component to access common items.

OMX_Component.h

Contains the definitions used to define the public interface of a
component. This header file is to be used by both the application and
the component.

OMX_Index.h

Contains the definitions of parameter and configuration indices for both
applications and components.

OMX_Image.h

Contains structures needed by Image applications to exchange
parameters and configuration data with the components.

OMX_IVCommon.h

Contains structures needed by Video and Image applications to
exchange parameters and configuration data with the components.

OMX_SSL_component.h

Contains prototypes of interal functions, structures for the private data
area and others.

%‘ TeExAS
INSTRUMENTS

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

Tl Proprietary Information — Internal Data

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Control and Data flow Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

6 Control and Data flow

6.1 Component States

The OMX SSL Client will exist in one of five states at any given time. Component states are controlled by
MMI/Application via the OMX_SendCommand macro. Figure 4 represents the state diagram for the OMX
SSL Client. The OMX core does not maintain the state for the components. The core is involved in two
only state transitions; which are from INVALID state to LOADED state (using function OMX_GetHandle)
and unloading (using OMX_FreeHandle). The remainders of all state transitions are controlled by
MMI/Application via the OMX_SendCommand macro.

Note that state transition from INVALID state to LOADED state refers to the scenario when component is
not yet loaded into the memory and BMI/MMI tries to load it using OMX_GetHandle. If component goes in
the INVALID state due to corruption of its data structures etc then component cannot change its state. In
this case the component should be de-initialized and unloaded and then should be loaded again.

The states are described in OpenMAX™ 1.0 Core Design Specifications. Table 5 describes transitions
between various states.

T1 OMX_StateLoaded T2 OMX_Stateldle

INVALID [*(LOADED g *(IDLE
T9 OMX_Statelnvalid U T3 OMX_StateLoaded

T8 OMX_Stateldle

T5 OMX_Stateldle

T4 OMX_StateExecute

y |

T6 OMX_StateExecute

> EXECUTE

T7 OMX_StatePause

Figure 4 Component State Diagram

Table 5 State transitions in the OMX SSL Client

Transition | State Change Operation

T1 Invalid->Loaded 8 Allocate component’s private data area.

8 Error handling: When the above operation fails, the components
state remains as Invalid.

8§ If there were no errors, change component’s state to Loaded.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 10

PDF L "pdfFactory Pro™ i FH R AGIHE www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 0.1 25 January 2006

Control and Data flow
Nucleus® OpenMAX™ 1.0 OMX SSL Client

Transition

State Change

Operation

T2

Loaded->Idle

§

Allocate the Shadow Buffer for the SSL Component instance’s
plane.

Before this is done, the Application needs to configure the plane
properties using the SetConfig function.

Error handling: When any of the above operations fails, the
components state remains as Loaded.

If there were no errors, change component’s state to Idle.

T3

Idle->Loaded

w W |

Release the Shadow buffer allocated for this instance’s plane.
Change component’s state to Loaded.

T4

Idle->Execute

Change component’s state to Execute.
Set this plane’s state to ‘Active’ using the SSL Core Task.
Call the EmptyThisBufferDone after display.

T5

Execute->Idle

w | U W W

Change the state of the current plane to ‘Inactive’ using the SSL
Core task.

Change the component state to Idle.

T6

Pause->Execute

Change component’s state to Execute.
Instruct the SSL Core Task to activate this plane again.

T7

Executing->Pause

Change component’s state to Pause.
Instruct the SSL Core Task to deactivate this plane.

T8

Pause->Idle

Same as transition T5.

T9

Loaded->Invalid

w [W | W W w w | W

Release component’s private data area.

Figure 5 shows state transitions in the OMX SSL Client and the corresponding SSL Core state
transitions. Figure 6 shows state transitions in the OMX SSL Client and the corresponding SSL Core
state transitions, when the OMX SSL Client enters or leaves its Pause state. Section 6.2 has detailed
diagrams indicating various phases during the life cycle of the OMX SSL Client.

%‘ TeExAS
INSTRUMENTS

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

Tl Proprietary Information — Internal Data
11

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data flow Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

OMX Component SSL Core
Application Task

(Current State)

GetHandle -> Componentinit Invalid
> Current
g State:
I STOP
SetParam (Plane Configuration Params)
Loaded
L Create Shadow Buffer for this Plane gtu rtrgnt
SendCommand (OMX_Stateldle) ith confi ate:
-~ Idle with configured parameters. START
|
SendCommand (OMX_StateExecute)
i Change this plane to Active.
Current
EmptyThisBuffer() Executing State:
> Update the contents of Shadow PROCESS
Buffer and refresh display.
EmptyThisBufferDone() Display update complete.
< <
SendCommand (OMX_Stateldle) 1 Change this plane to Inactive. ggtre‘?”t
Idle i START
Destroy this plane.
SendCommand (OMX_StateLoaded) Loaded >
FreeHandle -> Component Deinit Current
> Invalid State:
STOP
Figure 5 OMX Component state transitions and SSL Core Task Transitions
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.0~ 26 July 2005
TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 12

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Control and Data flow

Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client
Application OMX component SSTLaSEre

(Current State)

SendCommand (OMX_StatePause) Executing Current
> State:
START or
PROCFS]
SendCommand (OMX_StateExecuting) Pause
Executing
EmptyThisBuffer() Update the contents of Shadow
—> Buffer and refresh display.
Current
EmptyThisBufferDone() State:
< Display update complete. PROCESS
Application OMX component DSP/BIOS
bridge
(Current State)
SendCommand (OMX_Stateldle) Pause Current
> State:
START
Idle
Figure 6 OMX Component state transitions and SSL Core Task transitions
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 13

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data flow Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

6.2 Component Phases

There are various phases in life cycle of the OMX SSL Client. Using sequence diagrams, this section
describes the control and data flow between BMI/MMI and the OMX SSL Client. The OMX Component
depicted in these sequence diagrams is the OMX SSL Client.

6.2.1 Component Load (Transition Invalid & Loaded)
The OMX SSL Client is loaded as described in the OpenMAX™ 1.0 core design specification. During the
loading phase, the component performs the following actions:

n Populates the component handle structure with pointers to the functions implemented by it.

n Allocates and initializes its private data area. Contents of the private data area are described in detail
in section 8.2.1.

OMX core OMX SSL Core

Application
= component Task

Current
State:
Invalid

OMX_GetHandle Componentlnit
> » Transition:
Invalid to
Application receives SetCallbacks Loaded
component handle
structure with

A\ 4

pointers to OMX
component’s
functions
Figure 7 OMX component load
6.2.2 Component Unload (Transition Loaded & Invalid)

The SSL OMX Component is unloaded as described in the OpenMAX™ 1.0 Core design specification.
During the unload phase, the component performs the following actions:

n Releases the private data area that it had allocated during the load phase.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 14

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Control and Data flow
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

Application

OMX core OMX SSL Core
component Task

6.2.3

Current
State:
Loaded

OMX_FreeHandle ComponenDeilnit
Transition:
Loaded to
Invalid

A 4
A 4

Figure 8 OMX component unload

Component Initialization (Transition Loaded & Idle)

Figure 9 and Figure 10 show the initialization phase of the component. Initialization of the SSL OMX
Component proceeds as follows:

n The MMI/Application begins by defining the number of ports and how many buffers it needs on each
port. In this case, there shall be only one port — the input port and one buffer.

n The OMX component stores these definitions in its private data area.

n The Application obtains the list of available displays through the
OMX_GetParam(OMX_IndexParamSSLDisplayDevicesAvailable) command.

n The Application then sets the active display using the
OMX_SetParam(OMX_IndexParamSSLActiveDisplay) command.

n The BMI/MMI sends various parameters, which will be used by the component to initialize the Plane.
These are as per the OMX_SSL ShadowBufferConfig structure.

n The OMX component stores each parameter into its private data area.

n MMI/Application issues SendCommand with OMX_Stateldle to change the state of the component to
Idle

n The component allocates input and output buffers as required. For the SSL, the input buffer shall
always be allocated by the application itself. It shall however provide details of the plane it requests so
that a shadow buffer may be allocated (Except if DSA is to be used).

n After this, it sends a command to the SSL Core to create a plane (the shadow buffer). The SSL core
creates a plane with the given parameters. The default state of this plane is ‘inactive’. The OMX
Component now has a plane handle for future communications.

n The OMX Component transitions to the Idle state after the successful creation of the Shadow Buffer.

n EventHandler application callback is called to notify Application of a successful state transition or in
case there was an error.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.0~ 26 July 2005

% TEXAS Tl Proprietary Information — Internal Data
INSTRUMENTS 15

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data flow
Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification

Revision 0.1 25 January 2006

Application

OMX

component

GetParameter (OMX_IndexParamSSLDisplayDevicesAvailable)

A

SetParameter (OMX_IndexParamSSLActiveDisplay)

Current
state:
Loaded

SetParameter (OMX_IndexParamSSLInputPort) input port

SeConfig (OMX_IndexConfigSSLSourcePtr)

SetParameter (OMX_IndexParamSSLPlaneXOffset)

T Q o

=g

o © =

5 2 g‘ SetParameter (OMX_IndexParamSSLPlaneYOffset)
@ @ [

@3~

v2z

52)% SetParameter (OMX_IndexParamSSLPlaneXLength)
523

=

» 38

8¢ 5 SetParameter (OMX_IndexParamSSLPlaneY Length)
[7)]

(0]

: 3

5 2

2 SetConfig (OMX_IndexConfigSSLPlaneAlpha)

SetConfig (OMX_IndexConfigSSLPIlaneActiveFlag)

SetConfig (OMX_IndexConfigSSLPlaneAlwaysOnTop)

SendCommand (OMX_Stateldle)

Stores values passed by MMI/Application into

the components private structure

Transition:;
Loaded to
Idle

SSL Core
Task

OMX component
passes on
configuration to
the SSL Core for
creation of the
ShadowBuffer.

Figure 9 OMX component initialization
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.0~ 26 July 2005
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 16

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Control and Data flow

Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client
Application OMX SSL Core
(MSL UCP) component Task

Transition:
Loaded to
Idle

CreatePlane(SSLShadow
BufferConfig)

Creation of
Shadow
buffer; the
SSL Core
populates
additional
information
into the plane

configuration
structure.
The plane is

CreatePlaneReturn(SSLS e Fi)nactive

hadowB ufferConfig) ’
EventHandler (OMX_Stateldle)

Current

state:

Idle

6.2.4

Figure 10 OMX component Initialization: Plane Creation in SSL Core

Component Execution (Transition Idle & Executing)

Prior to component execution, the Application should have initialized the component without errors. After
initialization has been completed, the component is ready for execution with all required buffers allocated
and linked with appropriate data structures. Component execution proceeds as follows:

n Application issues SendCommand with OMX_StateExecuting to change the state of the component to
executing.

n The state of the current plane is set to active. This in turn causes the SSL core to queue the current
plane handle in its ‘Active’ Queue or the ‘Always on Top’ queue.

n The source pointer for the buffer may be initialized at create phase or at run time. The
EmptyThisBuffer call also updates the source pointer for the plane.

n The application then writes input data into the input and invokes EmptyThisBuffer.

n The SSL Core will update the shadow buffer for this plane, and refresh the framebuffer with all the
currently active planes.

n For each input buffer, the component calls EmptyBufferDone to indicate that the provided input has
been transferred to the shadow buffer and a display update has been performed.

n EventHandler application callback is called to notify Application of a successful state transition or in
case there was an error.

n In the execution state, the component shall continue to update the SSL Core with any new data that it
may get using an empty this buffer.

n If a configuration parameter change has been performed (using an EmptyBufferDone or a SetConfig),
the ShadowBufferParameterStructure is updated and a command is sent to the SSL Core to reflect
these changes. The SSL Core updates the structure and calls the refresh cycle and updates the SSL

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.0~ 26 July 2005

% TEXAS Tl Proprietary Information — Internal Data
INSTRUMENTS 17

PDF L "pdfFactory Pro™ i FH R AGIHE www. fineprint.cn

http://www.fineprint.cn

Control and Data flow Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

OMX component that this configuration change is complete. The configurable parameters are the
Source Pointer, the Alpha for this plane, the Always on Top Flag and the Active Flag. If an active
Always on Top plane is no longer configured to be Always on Top, the plane then becomes the plane
in the active queue for blending. If an active plane is configured to be Always on Top, the plane
becomes the first plane in the Always on Top Queue.

n The OMX Component then can call the EventHandler or the EmptyThisBufferDone functions.
Figure 11 shows the transition from Idle to Executing state and the ensuing events.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 18

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 0.1 25 January 2006

Control and Data flow
Nucleus® OpenMAX™ 1.0 OMX SSL Client

Application

OMX
component

SSL Core
Task

SendCommand (OMX_StateExecuting)

Current
state:
Idle

EventHandler (OMX_StateExecuting)

Set Current Plane as Active
q

)

<

Transition;
Idle to
Executing

EmptyThisBuffer(SrcPointer)

A 4

EmptyThisBufferDone(SrcPointer)

OMX_SetConfig(OMX_ConfigindexSSLPlaneAlpha)

A 4

Return/CallBack

Current
state:
Executing

Update the Source Pointer
for this plane.

Update Complete
Update the Alpha for this
plane. |

Update Complete

A

Figure 11 OMX component execution: Idle to Executing transition

-~

’

.,

’
’
’
’

.
.

N
N

,/ SSL Core adds !
the current plane)
to one of the 1
Active Queues. !
If the source has:
already been
set, the 1
shadowbuffer !
update and]
refresh cycles |

1
1
1

\, called.

SSL Core calls
the
shadowbuffer
update and
refresh cycles.

SSL Core calls
the refresh 1
cycle. 1

1

%‘ TeExAS
INSTRUMENTS 19

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

Tl Proprietary Information — Internal Data

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data flow

Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification
Revision 0.1 25 January 2006

6.2.5

Component stop proceeds as follows:
n MMI/Application issues SendCommand with OMX_Stateldle

n The SSL Component waits until the SSL has acknowledged the last buffer update request. The SSL
Component then sets the current state as inactive and sends a command to the SSL Core informing
the core of this change. The SSL core removes the plane from the appropriate queue and informs the
SSL Component that the update is complete and performs a refresh cycle.

n EventHandler application callback is called to notify Application of a successful state transition or in
case there was an error.

Component Stop (Transition Executing & Idle)

Application OMX SSL Core
component
Application Ctu:rc-?nt Execute
wants to SEMS phase
deactivate the Executing
plane
SendCommand (OMX_Stateldle)
» Transition:
Executing
to Idle
Component waits
for SSL to
acknowledge the
last update
request in case it
has not already
done so.
Update Complete JTTiT T
, Remove the
) plane from
Set Plane as Inactive the
Update Complete appropriate
queue and
~ refresh the
Current + framebuffer.
state: Vmmimmme
EventHandler (OMX_Stateldle) Idle
|
Figure 12 OMX component stop
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
i Revision 1.0~ 26 July 2005
U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS

PDF] "pdfFactory

Pro™ i A GIa: www. fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 0.1 25 January 2006

Control and Data flow
Nucleus® OpenMAX™ 1.0 OMX SSL Client

6.2.6 Component De-Initialization (Transition Idle & Loaded)

Component stop proceeds as follows:

n Application issues SendCommand with OMX_StateLoaded to change the state of the component to

Loaded

n The component instructs the SSL Core to destroy the plane. The SSL Core acknowledges the

destruction.

n EventHandler application callback is called to notify Application of a successful state transition or in

case there was an error.

Application

Application
wants to stop
the process

component

SendCommand (OMX_StateLoaded)

L Current

state:
Idle

Transition:
Executing
to Idle

Transition;
Idle to
Loaded

DestroyPlane

SSL Core

OMX component
destroys the local
structure that had
plane
configuration.

Destroy Done

+ Delete

/ details
g and

\ remove
. from

\ active.

EventHandler (OMX_StatelL oaded)

the plen

queue if

Figure 13 OMX component de-initialization: Plane Destroy process
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 21

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data flow
Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification
Revision 0.1 25 January 2006

6.2.7 Component Pause (Transition Executing & Pause)

Prior to pausing the component the must be in the executing state.
n The Application calls SendCommand with OMX_StatePause.

n The component will set its state to Pause.

n The component makes the current plane suspended. This would mean that the SSL Core would skip
this plane in the scan for refresh. The SSL Core updates the plane structure with this information. It
however does not remove it from the queue. It then refreshes the framebuffer.

n EventHandler application callback is called to notify Application of a successful state transition or in

case there was an error.

n While in the Pause state any input buffers sent by Application will cause the SSL Component to
instruct the SSL Core to update the shadowbuffer, but the plane shall be skipped in the refresh cycle.
If a content update has happened for a paused buffer, the refresh cycle is not called. Any
configuration parameter update would e reflected by the SSL in the plane structure, but no refresh

shall be called.

Application

Application
wants to pause
the operation

SendCommand (OMX_StatePause)

EventHandler (OMX_StatePause)

OMX SSL Core
component
Currc-? nt Execute
state: phase
Executing
Current
> state:
Pause

Suspend Plane

Suspend Complete

,’l Updates the
structure for
the plane;

. refreshes

% the queue.

PEN

A

A

EmptyThisBuffer(SrcPtr)

Current
state:
Pause

EmptyThisBufferDone(SrcPtr)

> Update Plane

’
,/ Updates the
,/ structure for

Update Complete

the plane;

PEN

: update
A function. No

A

A

SetConfig (OMX_ConfigindexSSLAlpha)

Update Plane

1

1

1

|

call the data .
1

|

3 refresh! |
1

’

K Updates the

Return/CallBack

\ 4

Update Complete

A 4

1
1
, structure for |
\ the plane; !
« Norefresh!

A |

{9 TeExAs
INSTRUMENTS 22

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

Revision 1.0~ 26 July 2005

Tl Proprietary Information — Internal Data

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Control and Data flow
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

6.2.8

Figure 14 OMX component execution: SSL Pausing

Component Resume (Transition Pause & Executing)

Prior to resuming the component the must be in the pause state.

n The Application calls SendCommand with OMX_StateExecuting.
n The component will set its state to Executing.
n The OMX SSL Component instructs the SSL Core to change the state of the plane from suspended to
normal.
n The SSL Core also calls the refresh cycle with the latest set of paramers available and acknowledges
the SSL Client.
n EventHandler application callback is called to notify Application of a successful state transition or in
case there was an error.
Application OMX SSL Core
component
. q Current
Application .
wants to resume state:
the operation Pause N
SendCommand (OMX_StateExecuting) _z'l SSL Core
Update Plane ¥ updates the
> F plane
Update Complete \ structure
< . and calls
— ‘. refresh.
Current A
EventHandler (OMX_StateExecuting) state:
< Executing
Figure 15 OMX Component Pause: Return to Execute state
6.2.9 Component Stop (Transition Pause a Idle)

From the pause state, it is possible for the component to be returned to the idle state.

n Application issues SendCommand with OMX_Stateldle.
n Ifthe SSL Clientis in Pause state, it need not wait for an update from the SSL. It sends the command
to the SSL Core to deactivate.
n Once the SSL Core acknowledges the deactivate call, the SSL Client moves the Idle State.
n EventHandler application callback is called to notify Application of a successful state transition or in
case there was an error.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 23

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Control and Data flow Design Specification

Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006
Application OMX DSP/BIOS
component bridge

Application Ctu:rc-?nt
wants to stop < state:

the process Pause

SendCommand (OMX_Stateldle)

» Transition:
Pause to
Idle

DeactivatePlane()

> SSL Core
changes the
structure of
the plane and
removes it
from the
appropriate
Acknowkedgement queue. No
< refresh is
called.

Current
EventHandle(OMX_Stateldle) state:
Idle

A

Figure 16 OMX Component Pause: Return to Idle state

6.3 Input and Output Buffer Allocation Scenarios

The input buffer shall always be allocated by the Application. It shall however configure the SSL Client
input port with the plane dimensions for the SSL to allocate its Shadow Buffer. The only exception to this
is the case where a DSA is requested. In this case, the Framebuffer shall be provided as the plane. The
Application shall use the Framebuffer region it has requested to directly write the input. Even after doing
this, the Application needs to call the EmptyThisBuffer() function. This causes the SSL Component to
instruct the SSL Core to update the Display. DSA Mode is explained in detail in Appendix.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 24

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Software Requirements
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

7 Software Requirements

This section needs to filled with the requirements table.

8 Requirements Traceability

This section describes the Data types, data structures, callbacks and macros, which are supported by the
OpenMAX™ 1.0.

8.1 Defined Types

8.1.1 OMX Basic Data Types

OpenMAX™ 1.0 Core exports set of data types which are given in OpenMAX™ 1.0 Core Design
Specification. OpenMAX™ 1.0 Core uses these data types instead of fundamental C-types like int; char
etc. in order to provide portability across different platforms, compilers and operating systems. These data
types are defined in OMX_Types.h file. The OMX SSL Client uses these basic data types and does not
define any other basic types of its own.
8.1.2 SSL Core Data Types

The SSL Core defines its own data types, which must be used in invoking the SSL Core features. The
OMX SSL Client uses these data types to communicate with the SSL Core. The OMX SSL Client also
translates data types passed by the Application to the types understood by the SSL Core.
8.1.21 OMX_SSL_DISPLAY_ORIENTATION_ENUM
This is an enumeration that is used to set the orientation of the display.
typedef enum{

ORIENTATION_PORTRAIT =0,

ORIENTATION_LANDSCAPE

} OMX_SSL_DISPLAY_ORIENTATION_ENUM;

8.1.2.2 OMX_CONFIG_SSLPLANE_APLHA_ENUM

This is an enumeration that lists the currently available alpha values for plane blending. This is in
agreement with the feature set supported by the IMG Layer with respect to Alpha Blending. This type oif
data can be used to set/get the alpha parameter configuration for the current plane.

8.1.2.3 OMX_CONFIG_DISPLAY_FORMATSSUPPORTED

This is an unsigned integer of type OMX_U32. The position and value of bits indicates the
presence/absence of support for the given formats.

Bit Position Format (0: UnSupported, 1: Supported)
0 OMX_COLOR_FormatMonochrome

1 OMX_COLOR_Format8bitRGB332

2 OMX_COLOR_Format12bitRGB444

3 OMX_COLOR_Format16bitARGB4444
4 OMX_COLOR_Format16bitARGB1555

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 25

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Requirements Traceability

Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification
Revision 0.1 25 January 2006

Bit Position Format (0: UnSupported, 1: Supported)
5 OMX_COLOR_Format16bitRGB565
6 OMX_COLOR_Format16bitBGR565
7 OMX_COLOR_Format18bitRGB666
8 OMX_COLOR_Format18bitARGB1665
9 OMX_COLOR_Format19bitARGB1666
10 OMX_COLOR_Format24bitRGB888
1 OMX_COLOR_Format24bitBGR888
12 OMX_COLOR_Format24bitARGB1887
13 OMX_COLOR_Format25bitARGB1888
14 OMX_COLOR_Format32bitBGRA8888
15 OMX_COLOR_Format32bitARGB8888
16 OMX_COLOR_FormatYUV411Planar
17 OMX_COLOR_FormatYUV411PackedPlanar
18 OMX_COLOR_FormatYUV420Planar
19 OMX_COLOR_FormatYUV420PackedPlanar
20 OMX_COLOR_FormatYUV420SemiPlanar
21 OMX_COLOR_FormatYUV422Planar
22 OMX_COLOR_FormatYUV422PackedPlanar
23 OMX_COLOR_FormatYUV422SemiPlanar
24 OMX_COLOR_FormatYCbYCr
25 OMX_COLOR_FormatYCrYCb
26 OMX_COLOR_FormatCbhYCrY
27 OMX_COLOR_FormatCrYChY
28 OMX_COLOR_FormatYUV444interleaved
29 OMX_COLOR_FormatRawBayer8bit
30 OMX_COLOR_FormatRawBayer10bit
31 OMX_COLOR_FormatRawBayer8bitcompressed
Table 6 Display Formats Supported and Bit position for query
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
¢ TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 26

PDF SCHF#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

8.2 Data Structures

8.2.1 Component private data structure

The OMX SSL Client maintains all the data required for its operation in this structure. This structure
cannot be accessed by the Application.

Table 7 OMX_SSL_COMPONENT_PRIVATE_DATA structure

Data field Name Description

Each element in this array is a pointer to an array of buffer headers.
OMX_BUFFERHEADERTYPE Each array of buffer headers is associated with one port (input port or
*puffer_headersflOMX_SSL_N_PORTS] output port) of the component. Each buffer header contains

information about the size of the buffer and its address.

A copy of the component’s handle as retumed by GetHandle is

OMX_COMPONENTT YPE *componentHandle maintained in the private data area

OMX_STATETYPE currentState Maintains the current state of the OMX SSL Client.

This is required when OMX SSL Client cannot make a state transition
immediately. For example, when transitioning from Execute to Idle
state or when transitioning from Pause to Idle state, the component
must wait until the owner has reclaimed all buffers.

OMX_VIDEO_PORTDEFINITIONTYPE An OMX structure which defines the ports. This includes both the input
portDefinitions [OMX_SSL_N_PORTS] and output port.

OMX_STATETYPE nextState

OMX_SSL_PLANE_HANDLE_TYPE planeHandle| An OMX structure which defines the plane details.

OMX_SSL_PLANE_CONFIG planeConfiguration | A structure that the SSL Client maintains for the plane configuration.

OMX_CALLBACKTYPE applicationCallbacks An OMX structure that stores callbacks provided by Application.

8.2.2 SSL Plane Query structure
This structure is used to convey the current plane configuration to the Application from the OMX SSL

Client.
Table 8 OMX_SSL_PLANE_QUERY instance structure
Data field Name Description
OMX_BYTE SourceDataPtr Address provided by the application for this plane.
OMX_BYTE SSLShadowPtr Address of the shadow buffer allocated by the SSL Core for this plane.
OMX_U32 XOffset X Axis Offset for this plane in the Framebuffer with (0,0) as the top left.
OMX_U32 XOffset Y Axis Offset for this plane in the Framebuffer with (0,0) as the top left.
OMX_U32 XLen Width of the plane.
OMX_U32 YLen Height of the plane.
gl'r\)ﬂr:;—CONFIG—SSLPLANE—APLHA—ENUM AlphaBlending Parameter for this plane.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
% TEXAS Tl Proprietary Information — Internal Data
INSTRUMENTS 27

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Requirements Traceability

Nucleus® OpenMAX™ 1.0 OMX SSL Client

Design Specification

Revision 0.1 25 January 2006

Data field Name

Description

OMX_BOOL bActive

Flag that indicates if the plane is active; default=0 = inactive.

OMX_BOOL bAwaysOnTop

Flag that indicate if this is an ‘Always On Top’ Plane.

OMX_BOOL bSuspended

queue, but not considered for a refresh.

Flag that is set if the OMX Component goes to Pause. Suspended
Buffers have their configuration updated, retain their place in the

OMX_BOOL bDSAPlane

Flag that indicates if this plane is a DSA plane. If this is the case, the
SSLShadowPtr and the FrameBuffPtr below should be identical.

OMX_BYTE SSLFrameBufferPtr

the SSLShadowPtr.

The framebuffer pointer. In case DSA is used, this field is identical to

OMX_BOOL bIsDSAPlane

Appendix for info on DSA.

This flag indicates if this plane is a DSA Region Plane. Refer to

8.2.3 SSL Plane Configuration Structure
This structure is used to configure the current plane. It is used by the Applicatio with a SetConfig call.
OMX_SSL_PLANE_CONFIG instance structure

Table 9

Data field Name

Description

OMX_U32 XOffset

X Axis Offset for this plane in the Framebuffer with (0,0) as the top left.

OMX_U32 YOffset

Y Axis Offset for this plane in the Framebuffer with (0,0) as the top left.

OMX_U32 XLen

Width of the plane.

OMX_U32 YLen

Height of the plane.

Alpha

OMX_CONFIG_SSLPLANE_APLHA_ENUM

AlphaBlending Parameter for this plane.

OMX_BOOL bAwaysOnTop

Flag that indicate if this is an ‘Always On Top’ Plane.

OMX_BOOL bDSAPlane

Appendix for more information.

Flag that makes this plane region accessible using DSA. Refer to

8.2.4 SSL Plane Handle Structure

This structure is defined in the SSL_Core.h and is used by the SSL OMX Component to provide plane
configuration parameters. The handle is provided by the SSL Core after a CreatePlane is performed. The
handle merely contains a pointer to the structure allocated by the SSL Core for the plane.

Table 10

OMX_SSL_PLANE_HANDLE_TYPE structure

Data field Name

Description

Default value

OMX_SSL_PLANE_CONFIG *

The SSL OMX Component obtains the pointer to the Structure

NULL

ssIPlaneConfiguration allocated by the SSL Core for the plane in this parameter.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
U’ TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 28

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

8.2.5 SSL Display Query Structure

This structure is used to Query a Physical Display for its parameters. This structure is used with the
GetParameter function of the SSL Client.

Table 11 OMX_SSL_DISPLAY_QUERY_TYPE structure

Data field Name Description

OMX_U32 DisplayMax\Width This is the maximum display width for the physical
display.

OMX_U32 DisplayMaxHeight This is the maximum display height for the
physical display.

OMX_CONFIG_DISPLAY_FORMATSSUPPORTED) The display formats supported. This is a bitmap —
DisplayDataFormats bit position and value indicate is a format is
supported or not.

OMX_BOOL DisplayDitherSupport
- spiay upp Indicates if dithering is supported or not.

OMX_SSL_DISPLAY_ORIENTATION_ENUM This is used to indicate the current orientation for
DisplayOrientation display.

OMX_BOOL DisplayEnabled
- N This is a parameter to enable the physical display.

MX 2 DisplayDevicelD
OMX_U32 DisplayDevice This is the hardware device id.

OMX_CONFIG_BACKLIGHTTYPE This is a structure that retums the current backlight
DisplayBacklightConfig configuration.

OMX_STRING VendorName

This indicates the vendor name for the display.

OMX_BOOL blsActive Indicates if this display is active or not for the
current plane.

8.2.6 SSL Display Configuration Structure
This structure is used to configure a Physical Disply using the SetParameter function of the SSL OMX

Client.
Table 12 OMX_SSL_DISPLAY_CONFIG_TYPE structure
Data field Name Description
OMX_COLOR_FORMATTYPE DisplayFormat This is used to set the display format for the
current physical display.
OMX_BOOL DitherEnable I .
- This is used to enadle dithering in the display.
OMX_SSL_DISPLAY_ORIENTATION_ENUM This parameter is used to set the orientation for
Orientation the currently set physical display.
OMX_BOOL bEnable This is used to switch ON/OFF the physical
display.
OMX_CONFIG_BACKLIGHTTYPE This is used to configure that backlight
DisplayBackLightConfig configuration.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0- 26 July 2005
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 29

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

8.2.7 SSL Display Dvices Listing Structure

This structure returns the number of devices available, the device id and vendor name for each of the

devices.
Table 13 OMX_SSL_AVAILABLEDISP_TYPE structure
Name Type Description
nDisplays OMX_U32 This parameter gives the number of display devices available.
VendorNames OMX_STRING This parameter gives the names of the vendors separated by a *,.

This is a null terminated string. There are nDisplay Vendor Names.

This parameter gives the Device IDs of the display devices
DevicelDs OMX_STRING|available separated by ‘,". This is a Null terminated string. There are
nDisplays devices ids.

8.3 API Requirements Coverage

The OpenMAX™ 1.0 core provides a set of macros that are used by Application to perform various
operations like loading the component, communicating with OMX component etc. These macros are
defined in OMX_Core.h. Each macro maps to a function implemented by the OMX component. Detailed
description of each function implemented by the OMX SSL Component and is given in following sub
sections. Application (BMI/MMI) must not call any of these functions directly and instead use the macros
provided by the OMX core.

8.3.1 Common pre conditions

Before BMI/MMI can invoke the functions of theOMX SSL Component, the component must be loaded.
BMI/MMI loads the component by calling OMX_GetHandle, which is an OMX core function. For details on
component loading and unloading refer to OpenMAX™ 1.0 Core Design Specification.

8.3.2 OMX_SSL_Componentlnit
OUX_ERRORTYPE OUX_SSL_Component I nit (OVX_HANDLETYPE hConp)
Description

This function is called by OMX core. BMI/MMI needs to call OMX_GetHandle, as described in
OpenMAX™ 1.0 Core Design Specification. The OMX core maintains a table that lists all the OMX
components and their Componentlnit functions. The OMX_SSL_Componentlnit function must be present
in this component table.

Parameters

Name Type Description

The component fills the handle structure with pointers to functions
hComp ouT that it implements. After this, BMI/MMI can use these function
pointers to access the functionality of this OMX component

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned. For a description of error codes, refer OpenMAX™ 1.0 Core
Design Specification.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 30

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.
Implementation
n Blocking function.
Entry function to the OMX component.
Populates hComp with function pointers to functions implemented by this particular OMX component.

Allocates private data of the OMX component.
Sets the current state of the OMX component as OMX_StatelL.oaded.

n
n
n
n
8.3.3 OMX_SSL_SetCallbacks
OVX_ERRORTYPE OMX_SSL_Set Cal | backs (OMX_HANDLETYPE hConp,
OWX_CALLBACKTYPE* pCal | Backs,
OWX_PTR pAppDat a)
Description

This function is called by OMX core. BMI/MMI needs to call OMX_GetHandle, as described in
OpenMAX™ 1.0 Core Design Specification. After calling Componentlinit, the OMX core calls this function
to provide application callbacks to the OMX component.

Parameters
Name Type Description
hCom N Handle of the component to be accessed. This is the component
P handle retumed by the call to the GetHandle function
CalBacks N Pointer to an OMX_CALLBACKTYPE structure used to provide
P the callback information to the component
Pointer to an application defined value. It is anticipated that the
AppData N application will pass a pointer to a data structure or a “this pointer”
PARP in this area to allow the callback (in the application) to determine
the context of the call
Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned. For a description of error codes, refer OpenMAX™ 1.0 Core
Design Specification.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Blocking function.
n Copies the contents of the callback structure into the private data area for later use.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 31

PDF SCf-ffiH "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

8.34 OMX_SSL_GetComponentVersion

OUWX_ERRORTYPE OMX_SSL_Get Conponent Ver si on (OVKX_HANDLETYPE hConp,
OMX_STRI NG* pConponent Nane,
OUX_VERSI ONTYPE* pConponent Ver si on,
OVX_VERSI ONTYPE* pSpecVer si on,

OVWX_UUI DTYPE* pConponent UUI D)
Description

Queries the component and returns information about the component. BMI/MMI calls this function to get
the version of the component.

Parameters
Name Type Description
hComp IN This input argument is the component handle.
This holds the name of the component at the successful return
PComponentName ouT from this macro. The maximum length of the name is 128

including the null terminating character.

This is a pointer to the OMX_VERSIONTYPE structure which is
PComponentVersion ouT filed by the component. The component fills the component
version information in this structure

This is a pointer to the OMX_VERSIONTYPE structure which is
pSpecVersion ouT filled by the component. The component fills the OMX
specification version information in this structure.

This is a pointer to the DSP_UUID structure which is be filled by
PComponentUuID ouT the component.

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Blocking function.
n Fills component version and OMX specification version in the structures passed by BMI/MMI.

8.3.5 OMX_SSL_SendCommand
OMX_ERRORTYPE OMX_SSL_SendCommand (OVX_HANDLETYPE hConp,
OVX_COMVANDTYPE Cnd,

OwW_U32 nPar am
Description

Sends a command to the component.

Parameters
Name Type Description
hComp IN This input argument is component handle.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 32

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification
Revision 0.1 25 January 2006

Requirements Traceability
Nucleus® OpenMAX™ 1.0 OMX SSL Client

Name

Type

Description

Cmd

This specifies the command type/category. The value of this
argument can be OMX_CommandStateSet.

Currently in OpenMAX™ 1.0, the only valid command is to set the
component state.

NParam

The value of this argument is dependent on the cmd argument. If the
value of the cmd is OMX_CommandStateSet, this argument contains
the state that is to be set for the component. The value can be one of
the values defined by OMX_STATETYPE.

Return

If the command successfully executes, the
appropriate OMX error will be returned.

Requirement Coverage

This method addresses requirement:

return code will be OMX_ErrorNone. Otherwise the

SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Non-blocking function.

n Handles state transitions as described in sections 6.1 and 6.2.

n Since the OMX component is executed in the same task as that of the BMI/MMI, SendCommand will
execute the command in-context.

n Calls ProcessFunction to handle input and output buffers. See details in section 8.6.
n For successful state transitions, EventHandler callback would be invoked.

n If new state specified is the same as the current state of the OMX component, no actual state change
processing will occur. The EventHandler callback is not called. Instead the component will only check
if there are any buffers waiting on the input and output data pipes and handle these as required.

8.3.6 OMX_SSL_GetParameter
OVX_ERRORTYPE OMX_SSL_Get Par anet er (OMX_HANDLETYPE hConp,

Description

OVX_| NDEXTYPE nPar aml ndex,
OWX_PTR pCompPar am

Gets the current parameter settings of the component. BMI/MMI should allocate memory for the correct
structure and pass it to this function.

Parameters
Name Type Description
hComp IN This input argument is the component handle.
This identifies the structure being used by the third argument .
NParamindex IN Values are defined in OMX_index.h
pCompParam ouT This is a pointer to the structure which needs to be filled in by

the component.

Supported nParamindex values and their corresponding structures are:

nParamindex DataType Include file
OMX_IndexParamSSL InputPort OMX_SSL_PORTDEFINITIONTYPE OMX_SSL_componenth
OMX_IndexParamAvailableDisplays OMX_SSL_AVAILABLEDISP_TYPE OMX_SSL_componenth
OMX_IndexParamDisplayProperties OMX_SSL_DISPLAY_QUERY_TYPE OMX_SSL_componenth
OMX_IndexParamDisplayMaxW idth OMX_U32 OMX_Types.h

%‘ TeExAS
INSTRUMENTS

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

Tl Proprietary Information — Internal Data
33

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification

Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006
OMX_IndexParamDisplayMaxHeight OMX_U32 OMX_Types.h
OMX_IndexParamDisplayDataFormat OMX_CONFIG_DISPLAY_FORMATSSUPPORTED | OMX_SSL_componenth
OMX_IndexParamDisplayDitherSupport | OMX_BOOL OMX_Types.h
OMX_IndexParamDisplayOrientation OMX_SSL_DISPLAY_ORIENTATION_ENUM OMX_SSL_componenth
OMX_IndexParamDisplayEnabled OMX_SSL_DISPLAY_ENABLE OMX_SSL_componenth
OMX_IndexParamDiplayBackLitConfig OMX_CONFIG_BACKLIGHTTYPE OMX_IVCommon.h
OMX_ IndexParamDisplayDevicelD OMX_U32 OMX_Types.h
OMX_IndexParamDisplayVendorName | OMX_STRING OMX_Types.h
OMX_IndexParamDisplaylsActive OMX_BOOL OMX_Types.h

For details on how each of these parameter structures are mapped to what is required by the Application,
refer to section 8.2.

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Pre Condition

The structure specified by the third argument must have its structure size and version information filled in
before invoking the macro.

Requirement Coverage

This method addresses requirement:

SR14062: This interface must comply with OpenMAX™ 1.0 specification.
Implementation

n Blocking function

n Copies the appropriate values from the component’s private data area and populates the structure
passed in the third argument

n Performs basic parameter checking by comparing the size passed in the structure (third argument to
this function) to the actual size of the structure.

8.3.7 OMX_SSL_SetParameter
OVX_ERRORTYPE QOWX_SSL_Set Par amet er (OVX_HANDLETYPE hConp,
OVX_| NDEXTYPE nPar aml ndex,

OWX_PTR pCompPar am
Description

Sets the various parameters of the component with desired values. BMI/MMI should allocate memory for
the correct structure, fill it with the required values and pass it to this function. The component makes a
local copy of this structure and uses it at the time of initialization. This function should be used to set the
initialization parameters of the component, when the component is in the LOADED state.

Parameters
Name Type Description
hComp IN This input argument is the component handle.

This identifies the structure being used by the third argument .
NParamindex IN Values are defined in OMX_index.h

This input argument is a pointer to a structure which the
pCompParam IN component uses to make its local copy.

Supported nParamindex values and their corresponding structures are:

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 34

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability

Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client
nParamIndex Structure Include file
OMX_IndexParamSSL InputPort OMX_SSL_PORTDEFINITIONTYPE OMX_SSL_componenth
OMX_IndexParamActiveDisplay OMX_BOOL OMX_Types.h
OMX_IndexParamDisplayProperties OMX_SSL_DISPLAY_CONFIG_TYPE OMX_SSL_componenth
OMX_IndexParamDisplayDataFormat OMX_COLOR_FORMATTYPE OMX_IVCommon.h
OMX_IndexParamDisplayDitherSupport OMX_BOOL OMX_Types.h
OMX_IndexParamDisplayOrientation OMX_SSL_DISPLAY_ORIENTATION_ENUM | OMX_SSL_componenth
OMX_IndexParamDisplayEnabled OMX_BOOL OMX_Types.h
OMX_IndexParamDisplaySetActive OMX_BOOL OMX_Types.h

For details on how each of these parameter structures are mapped to what is required by the Application,
refer to section 8.3.

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Blocking function.
n Copies the structure passed into the component’s private data area for later use.

n Performs basic parameter checking by comparing the size passed in the structure (third argument to
this function) to the actual size of the structure.

8.3.8 OMX_SSL_GetConfig
OWX_ERRORTYPE OMX_SSL_Get Confi g (OW_HANDLETYPE hConp,
OVX_I NDEXTYPE nConfi gl ndex,

OWX_PTR pConpConfi g)
Description
Gets the configuration parameters of the component. This function can be invoked at any time after the

component has been loaded. BMI/MMI allocates the required structure and passes it to this function. The
component fills this structure with the required information.

Parameters
Name Type Description
hComp IN This input argument is the component handle.
' This identifies the structure being used by the third argument.
nConfigindex IN Values are defined in OMX_index.h
' This output argument is the pointer to the structure to be filled b
pCompConfig ouT the co mtg on en% P Y

Supported nConfigindex values and their corresponding structures are:

nConfigIindex Type Include file
OMX_IndexConfigSSLPlaneAlpha OMX_CONFIG_SSLPLANE_APLHA_ENUM OMX_SSL_component.h
OMX_IndexConfigSSLPlaneAlwaysOnTop OMX_BOOL OMX_Types.h
OMX_IndexConfigSSLPlaneActiveFlag OMX_BOOL OMX_Types.h
OMX_IndexConfigSSLPlaneSuspendedFlag | OMX_BOOL OMX_Types.h
OMX_IndexConfigSSLPlaneSrcPtr OMX_BYTE OMX_Types.h
OMX_IndexConfigSSLPlaneShadowPtr OMX_BYTE OMX_Types.h

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 35

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification

Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006
OMX_IndexConfigSSLPlaneXOffset OMX_U32 OMX_Types.h
OMX_ IndexConfigSSLPlaneYOffset OMX_U32 OMX_Types.h
OMX_IndexConfigSSLPlaneXLen OMX_U32 OMX_Types.h
OMX_IndexConfigSSLPlaneYLen OMX_U32 OMX_Types.h
OMX_IndexConfigSSLPlaneFrameBuffPtr OMX_BYTE OMX_Types.h
OMX_IndexConfigSLLPlanelsDSAPIlane OMX_BOOL OMX_Types.h
OMX_IndexConfigSSLPlaneConfig OMX_SSL_PLANE_QUERY OMX_SSL_component.h

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Pre Condition

The structure specified by the third argument must have its structure size and version information filled in
before invoking the macro. Please refer to section 8.3 for the description of these structures.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with Texas Instruments OpenMAX™ 1.0 specification.

Implementation
n Blocking function

n Copies the appropriate values from the component’s private data area and populates the structure
passed in the third argument

n Performs basic parameter checking by comparing the size passed in the structure (third argument to
this function) to the actual size of the structure.

8.3.9 OMX_SSL_SetConfig
OMX_ERRORTYPE OMX_SSL_Set Confi g (OMX_HANDLETYPE hConp,
OVIX_I NDEXTYPE nConfi gl ndex,
OWX_PTR pConpConfi g)
Description

Sets the various parameters of the component with desired values. This function can be invoked at any
time after the component has been loaded. BMI/MMI should allocate memory for the correct structure, fill
it with the required values and pass it to this function. The component makes a local copy of this structure
and uses it configure the codec at the appropriate moment.

Parameters
Name Type Description
hComp IN This input argument is the component handle.
. This identifies the structure being used by the third argument .
NConfigindex IN Values are defined in OMX_index.h
. This input argument is a pointer to a structure that holds the
pCompConfig out values with which codec is to be configured

Supported nConfigindex values and their corresponding structures are:

nConfigindex Type Include file
OMX_IndexConfigSSLPlaneAlpha OMX_CONFIG_SSLPLANE_APLHA_ENUM OMX_SSL_component.h
OMX_IndexConfigSSLPlaneAlwaysOnTop OMX_BOOL OMX_Typesh
OMX_IndexConfigSSLPlaneXOffset OMX_U32 OMX_Typesh

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 36

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability

Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client
OMX_IndexConfigSSLPlaneYOffset OMX_U32 OMX_Types.h

OMX_ IndexConfigSSLPlaneXLen OMX_U32 OMX_Types.h
OMX_IndexConfigSSLPlaneYLen OMX_U32 OMX_Types.h
OMX_IndexConfigSSLPlaneConfig OMX_SSL_PLANE_CONFIG OMX_SSL_component.h
OMX_IndexConfigSSLPlaneDSAPIlane OMX_BOOL OMX_Typesh

For details on how each of these configuration structures is mapped to what is required by the Application,
refer to section 8.3.

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Blocking function.
n Copies the structure passed into the component’s private data area for later use.

n Performs basic parameter checking by comparing the size passed in the structure (third argument to
this function) to the actual size of the structure.

8.3.10 OMX SSL_GetState
OVX_ERRORTYPE OMX_SSL_Get Stat e (OMK_HANDLETYPE hConp,
OVWX_STATETYPE* pSt ate)

Description

The BMI/MMI calls this function to get the current state of the component.

Parameters

Name Type Description

hComp N Eg;sdigPut argument is the component
This is the output argument, which points

pSiate our Component houkSire s cumont sat.
This argument should not be NULL.

Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Requirement Coverage

This method addresses requirement:

SR14062: This interface must comply with OpenMAX™ 1.0 specification.
Implementation

n Blocking function

n Copies the current state value stored in the component's private data area into the structure passed to
the function

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 37

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

8.3.11 OMX_SSL_EmptyThisBuffer
OMX_ERRORTYPE OWX_SSL_Enpt yThi sBuf f er (OMX_HANDLETYPE hConp,
OwX_U32 nPortl ndex,

OMX_BUFFERHEADERTYPE* pBuf f er)
Description

BMI/MMI uses this function to send a buffer filled with input data to the input port of the component. This
function will write the buffer into the input data pipe of the component. Once the component completes
reading this buffer, it will notify BMI/MMI using the callback function EmptyBufferDone.

Parameters
Name Type Description
hComp N 'rl;g;]sdlg?ut argument is the component
nPortindex N 'Cl'glli sgﬁgrr]f;es an input port of the
Buffer N This is a pointer to the buffer header
P whose buffer is to be emptied.
Return

If the command successfully executes, the return code will be OMX_ErrorNone. Otherwise the
appropriate OMX error will be returned.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Stores the buffer provided by BMI/MMI into the input data pipe
n Calls SSL Core Task, which is an internal See details in section 8.5.

8.3.12 OMX_SSL_FillThisBuffer
OVX_ERRORTYPE OMX_SSL_Fi | | Thi sBuffer (OMX_HANDLETYPE hConp,

OwX_U32 nPort | ndex,
OVX_BUFFERHEADERTYPE* pBuf f er)

Description

This Function is not implemented in the current SSL Version.

Parameters

Name Type Description

hComp IN This input argument is the component handle.

nPortindex IN This specifies an output port of the component.

pBuffer ouT This is a pointer to the buffer header whose buffer is to be filled.
Return

This function always returns OMX_ErrorNotimplemented.
Requirement Coverage
This method addresses requirement:

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 38

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Notimplemented
n Always returns OMX_ErrorNotimplemented

8.3.13 OMX_SSL_ComponentTunnelRequest

OWX_ERRORTYPE OWX_SSL_Conponent Tunnel Request (OVX_HANDLETYPE hConp,
OVX_U32 nPort I nput,
OVX_HANDLETYPE hTunnel edConp,

OwX_U32 nTunnel edPort,
OWX_DI RTYPE eDir,

OVX_CALLBACKTYPE* pCal | backs)

Description
This function is not implemented in the current design of the SSL Component.

Parameters
Name Type Description

HComp IN This input argument is the component handle.
NPortinput IN
hTunneledComp
nTunneledPort
eDir

pCallbacks

Return

This function always returns OMX_ErrorNotimplemented.

Requirement Coverage

This method addresses requirement:

SR14062: This interface must comply with OpenMAX™ 1.0 specification.
Implementation

n Notimplemented
n Always returns OMX_ErrorNotimplemented

8.3.14 OMX_SSL_ComponentDelnit
OUX_ERRORTYPE OMX_SSL_Conponent Del ni t (OW_HANDLETYPE hConp)
Description

This function is called by OMX core when BMI/MMI calls OMX_FreeHandle, as described in OpenMAX™
1.0 Core Design Specification.

Parameters
Name Type Description
hCom ouT Handle of the component to be accessed. This is the component
P handle returned by the call to the GetHandle function
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309

. Revision 1.0~ 26 July 2005
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 39

PDF SCH#] "pdfFactory Pro™ X RAG)E www. Fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

Return

If the command successfully executes, the return code will be OMX_NoError. Otherwise the appropriate
OMX error will be returned.

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Blocking function.
n Releases private data of the OMX component.
n Performs component specific de-initializations, related to the underlying codec or algorithm.

8.4 Application callbacks

The OpenMAX™ 1.0 specification requires BMI/MMI to provide three callbacks for buffer exchange and
event handling. At loading time, the OMX component receives a structure containing pointers to the
callback functions. The OMX component makes a copy of this structure in the private data area. This
section describes the callback functions.

8.4.1 EventHandler

voi d (*Event Handl er) (
OWX_HANDLETYPE hConp,
OWX_PTR pAppbDat a,
OUWX_EVENTTYPE eEvent,
OVUX_U32 Dat a,

OVX_STRI NG cExt ral nf 0)

Description

The EventHandler method is used to notify BMI/MMI when an event of interest occurs. This event may be
change of state, an error occurred etc.

Parameters

Name Type Description

hComp IN This input argument is the component handle.
Pointer to data, which was defined by application when the

pAppData IN component was loaded. Using this data, the application identifies
who invoked this callback.
One of the component events that are defined in

eEvent IN OMX_EVENTTYPE enumeration. This can be state change, an
error efc.

Data N Used only if an error event occurs. Data will be
OMX_ERRORTYPE.

CExtralnfo N String, which may carry some more explanation about the error. It
is not always required for a component to use this argument.

Return

None

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 40

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Requirements Traceability
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

Implementation
n EventHandler is called to notify state changes in the OMX component to BMI/MMI.

n Inthe SSL OMX Component, this callback is invoked from ProcessFunction. See details in section
Error! Reference source not found..

8.4.2 EmptyBufferDone

voi d (*Enpt yBuf fer Done) (
OVX_HANDLETYPE hConp,

OWX_PTR pAppbDat a,
OVX_BUFFERHEADERTYPE* pBuf f er)

Description

This is the callback function provided by BMI/MMI, which the component uses to return an empty input
buffer, for BMI/MMI to write its input into. There is always a callback EmptyBufferDone from the
component for each OMX_EmptyThisBuffer call from the BMI/MMI.

When BMI/MMI allocates input buffers, it provides them to the SSL Component by calling
OMX_EmptyThisBuffer. Hence the first EmptyBufferDone, for each input buffer, would be called only after
the component has read the input buffer.

Parameters

Name Type Description

hcomp IN This input argument is the component handle.
Pointer to the data which was defined by the application when the

pAppData IN component was loaded. Using this data, the application identifies
who invoked this callback.

Buffer N Pointer to buffer header structure which contains pointer to

poutie emptied buffer, its size etc.

Return

None

Requirement Coverage
This method addresses requirement:
SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n EmptyBufferDone is invoked when the codec has completed processing the input data and generated
the output data.

n This happens when the SSL OMX Component receives the acknowledgement from the SSL Core
task for display update completion.

8.4.3 FillBufferDone

void (*Fill BufferDone)(
OVX_HANDLETYPE hConp,

OWX_PTR pAppbDat a,
OVX_BUFFERHEADERTYPE* pBuf fer)

Description

This is the callback function, provided by BMI/MMI, which the component uses to return a filled output
buffer, for BMI/MMI to read the output from. There is always a callback FillBufferDone from the
component for each call OMX_FillThisBuffer from BMI/MMI.

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS a1

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Requirements Traceability Design Specification
Nucleus® OpenMAX™ 1.0 OMX SSL Client Revision 0.1 25 January 2006

This is not implemented in the SSL OMX Component as it is a Sink.

Parameters

Name Type Description

HComp IN This input argument is the component handle.
Pointer to data which was defined by the application when the

pAppData IN component was loaded. Using this data, the application identifies
who invoked this callback.

PBuffer N Pointer to the buffer header structure which contains a pointer to

u the filled buffer, its size etc
Return

This function always returns OMX_ErrorNotimplemented.

Requirement Coverage

This method addresses requirement:

SR14062: This interface must comply with OpenMAX™ 1.0 specification.

Implementation
n Notimplemented
n Always returns OMX_ErrorNotimplemented

8.5 Internal Functions

85.1 SSL Core Task

The SSL Core Task is a separate thread that handles multiple OMX SSL Components. Each SSL
Component is associated with a plane and the SSL Core task is responsible for handling priorities as well
as using the services of the IMG for the framebuffer composition. Plese refer to the CSSD SSL Core Task
Design Specifications for more information on the SSL Core Task.

8.6 Non-API Requirements Coverage

This OpenMAX™ 1.0 core will comply with the TI coding guidelines, located in the Clear Case® VOB path:
\'\ OMAPSW docs\ Pr ocess\ Codi ng_St andar ds\ OVAPSW C_Codi ngSt andar ds. doc

OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
Revision 1.0~ 26 July 2005

U TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS a2

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

Design Specification Assumptions
Revision 0.1 25 January 2006 Nucleus® OpenMAX™ 1.0 OMX SSL Client

9 Assumptions

BMI/MMI and the SSL Client Component run in the same task.
The SSL Core task runs as a separate thread.

The IMG Server is active and running and supports alpha-blending.
The LCD Manager is active.

3 3 3 3

10 Appendix A — Direct Screen Access (DSA)

This appendix describes the DSA mode of operation for the SSL OMX Component.

10.1 Introduction to DSA

DSA or Direct Screen Access is a mechanism by which the application gets direct access to a display
region. In case of SSL, this means that, the application would have direct access to the FrameBuffer. The
FrameBuffer is the destination buffer from which the LCD update takes place.

In such a scheme, a data copy from the application memory region to the shadow buffer and the alpha
blending with other planes are avoided. This also saves the memory that would have otherwise been
allocated for a shadow buffer.

Since DSA provides direct access to the framebuffer, sufficient protection is need to prevent conflicting
data writes to DSA regions. Hence, although multiple DSA planes can exist, these must map to mutually
exclusive regions in the framebuffer.

Thus the primary difference between normal mode of operation and DSA mode of access is that, the SSL
Core task does not do any data/parameter update for that plane. It calls the refresh cycle (No Data
Update) wherein the framebuffer contents are all updated to the configured display.

10.2 DSA Usage

In order for the application to use DSA, the application needs to follow the regular plane creation
approach using a SetParameter call followed by a SetConfig call after initializing the OMX Component. In
addition to the regular plane configuration parameters, the application also needs to enable the DSA Flag
for this plane. In order to get control of the Framebuffer, the application needs to use the GetConfig with
the index corresponsing to the framebuffer pointer.

It must be remembered that, also the DSA flag has been provided as a configuration parameter, it cannot
be used once the plane has been created in the DSA mode. This is because, there would be no Shadow
Buffer allocated for this. The only way is to destroy the plane and create a new one in its place.

The SSL Core also permits DSA and Non-DSA planes to co-exist. In this case, the other planes need to
adhere to the same rule that applies to other DSA Planes — they need to occupy a region mutually
exclusive to the DSA Plane region.

The SSL Core composes the remaing planes into the remaining region of the framebuffer and refreshes

the display.
OMAPSSP_DesignSpec_Tmpl_95_00_02_01309
. Revision 1.0~ 26 July 2005
% TEXAS TI Proprietary Information — Internal Data
INSTRUMENTS 43

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn

http://www.fineprint.cn

