

Application Programming Interface

JPEG Image Encoder on ARM Platforms

Version: 1.2

Release Date: Dec 02nd, 2005

 Emuzed, Inc.
Proprietary & Confidential to Emuzed, Inc.

API for Emuzed JPEG Encoder on ARM Platforms

 ii

Revision History

Version Date Description of Change(s) Authors(s)

0.1 25-11-2004 Initial Draft G. Nageswara Rao

1.0 29-11-2004 Review comments incorporated G. Nageswara Rao

1.1 03-01-2005 Support for Writing Configuration data into a
given buffer is added.

G. Nageswara Rao

1.2 02-12-2005 Support for YUV420 Planner and YUV422
Planner color formats for input image is
added.

G. Nageswara Rao

API for Emuzed JPEG Encoder on ARM Platforms

 1

1 Introduction
This documents explains the Application Programming Interface (API) to use the Emuzed’s JPEG
encoder on ARM architecture based processors. JPEG encoder library exposes the functions to
create, encode and delete operations for the application. The generated images are compliant to
JPEG standard [1]. Section 2 explains about the API for the encoder.

2 JPEG Encoder API
This section describes about the Emuzed JPEG encoding API and each of the function services.

2.1 Base Object Definition
2.1.1 tBaseImageEncoder
This structure is base structure for JPEG image encoder. It contains the function pointers for
different functionalities provided by JPEG image encoder.
typedef struct tBaseImageEncoder

{

int32 (*vEncodeFrame) (tBaseImageEncoder *BaseJpegEnc, unsigned char
*FrameBuffer, unsigned char *outBuf, uint32 *numBytes);

 int32 (*vSetParam) (tBaseImageEncoder *base, uint32 flag, uint32 val);

 int32 (*vGetParam) (tBaseImageEncoder *base, uint32 flag, uint32 *val);

 int32 (*vDelete) (tBaseImageEncoder *base);

int32 (*vPutCongfigData) (tBaseImageEncoder *base, uint8 *outBuf, uint32

 *numBytes);

}

Following table gives details of each member in the base object structure.

Table 1 : Description of Base Object Structure Members (tBaseVideoEncoder)

Member Name Description

vEncodeFrame This is a virtual function to encode a raw image or partial image if
streaming mode (Refer Sec 3.1) is enabled to JPEG bit-stream

vSetParam This is a virtual function to set a parameter value of the encoder instance
vGetParam This is a virtual function to get a parameter value of the encoder instance
vDelete This is a virtual function to delete the encoder instance
vPutCongfigData This is a virtual function to write configuration (header data) into the

given buffer

2.2 Functions
2.2.1 Create JPEG Encoder Object Instance
Proto Type
int gCreateJpegImageEncoder(tBaseImageEncoder **base,

API for Emuzed JPEG Encoder on ARM Platforms

 2

tJpegImageEncParam *imageEncParam)

Description

Creates the JPEG encoder instance and returns the handle to JPEG encoder.

Parameters

• Base : [OUT]Handle to JPEG encoder instance.

• ImageEncParam : [IN]JPEG encoder parameters are passed through pointer to the

 Structure tJpegImageEncParam

Return Value

Returns E_SUCCESS if create is successful otherwise return error value corresponding to the errors
given in the following table.

Table 2 Error code description

Error Code Error Value Error Description
E_OUT_OF_MEMORY -2 Failure of memory allocation
E_INVALID_SIZE -13 Invalid image width and height values.
E_INVALID_MODE -12 Invalid streaming mode parameter.
E_INVALID_FORMAT -11 Invalid input color format

2.2.2 Encode One Raw image to JPEG Bit-stream
Proto Type
int vEncodeFrame (tBaseImageEncoder *BaseJpegEnc,

 unsigned char *FrameBuffer,

 unsigned char *outBuf,

 unsigned int *numBytes)

Description

Encodes one raw image or partial image (if streaming mode flag is enabled) in FrameBuffer to
outBuf. The raw video frame must start from FrameBuffer[0] and outBuf must be big enough to
hold all the encoded bytes. If the streaming mode flag is enabled outBuf must be big enough to hold
at least number of bytes required to encode one MCU row. numBytes parameter carries the number
of bytes allocated for the outBuf, and holds the number of encoded bytes on return of the function.

If the streaming mode flag is enabled vEncodeFrame function need to be called multiple times as
long as the function returns E_NOT_COMPLETE flag indicating that encoding is not completed.
Every time the partial image is encoded the outpBuff contents need to be captured by the
application. After each call the encoded bytes (signaled in numBytes parameter) are overwritten
into outBuff.

Parameters

• BaseJpegEnc : [IN]Pointer to JPEG encoder object.

• FrameBuffer : [IN] Pointer to input buffer of input raw image.

API for Emuzed JPEG Encoder on ARM Platforms

 3

• OutBuf : [OUT]Buffer in which the encoded stream needs to be written.1,2 .
The size of the buffer that needs to be allocated can be obtained using
the gGetParamJpegImageEncoder API as explained in Section 2.1.4.

• NumBytes : [IN/OUT]Number of bytes that are allocated for output buffer /
Number of bytes generated after encoding an image(or part of the
image).

Return Value

Returns E_SUCCESS if encoding is completed and successful or returns E_NOT_COMPLETE to
indicate encoding is not completed and required to invoke same function until E_SUCCESS is
returned. Following table lists the possible return values and corresponding description.

E_SUCCESS 0 One raw image is encoded successfully
E_FAILURE -1 Encoder failed to encode the given raw image.
E_NOT_COMPLETE -9 Encoding is not completed, required to invoke the

vEncodeFrame function again to complete encoding.
E_INSUFFICIENT_OUTBUFF -10 Output buffer is insufficient for encoding the image

or one MCU row (if streaming mode is enabled).

2.2.3 Delete the JPEG Encoder Object Instance
Proto Type
Int vDelete (tBaseImageEncoder * BaseJpegEnc)

Description:

Deletes the JPEG encoder object.

Parameters:

• BaseJpegEnc :[IN] Handle to JPEG encoder object.

Return Value

E_SUCCESS : The encoder object is deleted successfully.

E_FAILURE : Encoder object deletion failed.

2.2.4 Writing configuration data into a buffer
Proto Type
int32 (*vPutCongfigData) (tBaseImageEncoder *base, uint8 *outBuf, uint32

 *numBytes)

Description:

Writes the configuration data (JFIF header information) into the given buffer.

1 Enough buffer to hold the encoded stream corresponding to raw image should be given.
2 The buffer should be aligned on 4-byte boundary.

API for Emuzed JPEG Encoder on ARM Platforms

 4

Parameters:

• BaseJpegEnc :[IN] Handle to JPEG encoder object.

• uint8 : [IN] Pointer to output buffer into which data should be written. The
size of the buffer should me enough to hold the header data.

• uint32 :[IN/OUT]Number of bytes that are allocated for configuration data
buffer / Number of bytes generated after writing configuration data into
the buffer.

Return Value

Returns E_SUCCESS, if generation of configuration data is successful. Following table lists the
possible return values and corresponding description.

E_SUCCESS 0 One raw image is encoded successfully
E_FAILURE -1 Encoder failed to generate configuration data into

given buffer.
E_INSUFFICIENT_OUTBUFF -10 Configuration data buffer given is insufficient for

writing the header data.

2.2.5 Retrieve JPEG Encoding Parameter
Proto Type
Int32 vGetParam (tBaseImageEncoder *BaseJpegEnc,

Unsigned int flag,

Unsigned int *val)

Description

Get the parameter value from the encoder.

Parameters

• BaseJpegEnc :[IN]Handle to JPEG encoder object.

• flag :[IN]Parameter flag to be read. Supported flags are listed in the
following table with appropriate description.

GET_MAX_OUTBUF_SIZE 10 To return the maximum size of the output bit-stream
buffer needed for encoding the given input raw
image or one row of MCUs if streaming mode is
enabled. The buffer size is returned in number of
bytes.

GET_CONFIG_DATA_SIZE 11 To return the maximum size of the buffer needed for

generating the header into the buffer. The buffer size
is returned in number of bytes.

API for Emuzed JPEG Encoder on ARM Platforms

 5

• val :[OUT] Pointer to return the parameter value

Return Value

E_SUCCESS : The encoder parameter retrieved successfully.

E_FAILURE : The encoder could not retrieve the parameter value.

3 Data Types
3.1 tJpegImageEncParam
This structure is used to store and pass the user configuration parameters for the encoding process at
the time of encoder object creation.
typedef struct

{

int maxXDimension;

int maxYDimension;

int QualityFactor;

int InputColorFormat;

int StreamingMode;

} tJpegImageEncParam;

maxXDimension: Maximum dimension value in horizontal direction among all the components of
the input raw image. MaxXDimension should be integer multiples of 16.

maxYDimension: Maximum dimension value in vertical direction among all the components of the
input raw image. MaxYDimension should be integer multiples of 16.

QualityFactor: This parameter is used to control the quality of encoding. It can take values from 1
to 100. Quality factor 1 produces least quality and 100 gives best quality. If the value of input
QualityFactor is out of the range (1, 100) it’s value shall be forced to 50 internally.

InputColorFormat: This parameter is to signal the color format of the input image to the encoder.
The supported color formats are YUV 420Planner (1), YUV422 Planner (2) and YUV 422
Interleaved in YUYV color order (3).

StreamingMode: This flag is to indicate whether encoding needs to be done in one shot (if the flag
is set to ‘E_OFF’) for whole image or in multiple times (if the flag is set ‘E_ON’) based on the
available output buffer size. However the output buffer size must be at least enough to hold bytes to
encode one MCU row.

4 References
[1] JPEG Standard, “Information Technology- Digital Compression and Coding of Continuous-

Tone Still Images- Requirements and Guidelines,” Recommendation T.81, ITU, September
1992.

