{'f TEXAS
INSTRUMENTS

LLD Interface PSI - ACI

Project TCS 3.x

Document Type Technical Documentation
Title LLD Interface PSI - ACI
Author Liyi Yu

Creation Date 09. 02. 2004

Last Modified

ID and Version

To Be Assigned

Status

Being Processed

Copyright © 2002-2003 Texas Instruments, Inc. All rights reserved.

Texas Instruments Proprietary Information — Strictly Private

Texas Ins'gruments, Inc.
Being Processed

0 Document Control

© Copyright Texas Instruments, Inc. 2002-2003
All rights reserved.

Every effort has been made to ensure that the information contained in this document is accurate at the time of printing.
However, the software described in this document is subject to continuous development and improvement. Texas
Instruments reserves the right to change the specification of the software. Information in this document is subject to
change without notice and does not represent a commitment on the part of Texas Instruments. Texas Instruments
accepts no liability for any loss or damage arising from the use of any information contained in this document.

The software described in this document is furnished under a license agreement and may be used or copied only in
accordance with the terms of the agreement. It is an offence to copy the software in any way except as specifically set
out in the agreement. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the express written permission
of Texas Instruments.

0.1 Document History

ID Author Date Status

Liyi Yu 09.02.2004 Being processed

02 References

0.3 Abbreviations, Terms

Texas Instruments Proprietary Information — Private ii

Texas Instruments, Inc.
Being Processed

Table of Contents

1 L 0o [0k oY o T 3

2.1 GBNETAL ...ttt R 4
2.2 Detailed DESCIIPLION ...ouivieceeieeei ettt 5

3 SCENANTOS WITN IMISCS ...ttt e s et e ettt ettt
3.1 Connection Primitives Handling
3.1.1 PSI_CONN_IND: Creation 0f CONNECLIONcccceueuririeieiririeieies et seseees 6
3. 1.2 PSI_CONNL_RES ..ottt ettt se s st s et e ettt s e et s e
3.1.3 PSI_CONN_REJ....ccccocovrmmmmrrininernns
3.1.4 PSI_DTI_CLOSE_IND
3.1.5 PSI_DISCONN_IND: Erasing & CONNECLION.cceurriiireriricieeeisneseisieeseseasise st be s s sessees 9
3.2 Connection Line State Primitives Handling
3.2 1 PSI_LINE _STAT _IND .ottt sttt sess ettt sttt s et s ettt st neas
3.2.2 PSI_SETCONF_SER_REQ ..ottt sttt ettt bbb ees bbb
3.2.3 PSI_SETCONF_CNF
3.3 DTI Control Primitives HaNAING ..ottt
3.31 PSI_DTI_OPEN_REQ
3.32 PSI_DTI_OPEN_CON
3.3.3 PSI_DTI_CLOSE_REQ ...cottttttriueiriieirtieiseisirtiei it sess sttt bbb bbb
3.3:4 PSI_DTI_CLOSE_CNF ..ottt bbb
3.35 PSI_CLOSE_REQ
3.36 PSI_CLOSE_CNF
3.4 Status ManNAgeMENT.......cccviiierreee e
3.4.1 Handling of DTI Callbacks — AT COMMANGSc..cevierriririinieirece e 18
3.4.2 Handling of DT Callbacks — CoNNection OPENEMccevieerirnirniersiessse e seses 19
3.4.3 Handling of DT Callbacks — Buffer Ready INAICAtIONccveviericiriencncrieneeeee e 20

4 Modules to IMPIEMENT OF CRANGE ..o bbb
4.1 ACI Routine for New Primitive Handling
A.11 0 ACKN s Error! Book mark not defined.
412 ACI_PLIC. ittt Error! Book mark not defined.
4.2 Module PSA_PSI
A2 1 PSA_PSIN iR 22
A.2.11 T _ACIPSI_CAP .ttt ettt
4212 T _ACLPSI ..,
4213 T_DTI_MNG_PSI_MODE
4.2.1.4 T _PSI_SHRD_PRM ..ottt bbb s s s bbb bbbttt
4215 T_ACI_DTI_PRC_PSI
42,2 PSA_PSIP.Currrririreriiiieieteissesetessssesete et st st s s s st s s e bbbt s ARt s ARt A bR s AR b s e R bbb s At bes e Rt et st et e s 24
A R 1Y T [V 20 [TR
4.2.2.2 psi_src_params
o T 11] 10| o PSR
4.2.2.4 set_psi_share_params ()
4.2.25 get_psi_share_params ()

o T {10 T T o S o [o TR
4227 mNQ_PSI_AEYV_HST () .irireeeeeriieieiriiectsrs sttt sttt nne
4.2.2.8 mng_psi_src_param()
4.2.2.9 fiNd_USD BV _NO() .ottt e
o (T T T o =1 0071 (T

4.2.3 PSA_PSIS.Couvererreieriiernieenereeerseserssereenens

4.3 Module CMH_PSI

4.3 1 CMN_PSIN e R e 27

4.3.1.1 FUNCLION PrOTOTYPE. c..euieiceietriseeei ettt 27

Version 1 Texas Instruments Proprietary Information — Private 1

Texas Instruments, Inc.
Being Processed

T 1 1 o T - 1o PP 27
433 Cmh_psSifC .,
4.4 Module ATI_SRC _PSIcccovrrrrrereereseneeeseeenenns
441 AL_SIC_PSiN .
4.4.2 ALL_SIC_PSIiCoiiriiriirerceinrereeeeniene
443 ALi_SIC_PSi_0.C.coovrrrrirrrreeieine
4.5 Module SAP_ DTl ..o
4.6 Other Necessary Modifications

5 B IE=TS3 0 2 = o T
5.1 Windows Simulation Test
5.2 TAMGEE TESL...ee bbb

Table of Figures

FIQUIE 1 IMIOUUIE OVEIVIBWcvveieceeie ettt sttt et e ettt s n s
Figure 2 MSC for connection Creation WIth PSI.........c.coiriceiccs st sss s sssss
Figure 3 MSC for erasing of connection with PSI
Figure 4 MSC for processing of line state indication PrimitiVe ..o 11
Figure 5 MSC for sending of PSI_DTI_OPEN_REQ
Figure 6 MSC for processing PSI_DTI_OPEN_CNF

Figure 7 MSC for sending of PSI_DTI_CLOSE_REQ ..ot 15
Figure 8 MSC for processing 0f PSI_DTI_CLOSE_CNF ...t sesssssse s 16
Figure 9 MSC for AT command handling fromPSI

Figure 10 Handling of connection 0pen iNQICALIONc.ocirinicniin e
Figure 11 Handling of DTI callback — BUTTEr TUTL.......c.cccvioiiicec e

Version 1 Texas Instruments Proprietary Information — Private 2

Texas Instruments, Inc.
Being Processed

1 Introduction

G23 is a software package implementing Layers 2 and 3 of the ET SI-defined GSM air interface signalling
protocol, and as such represents that part of a GSM mobile station’s protocol software which is both, platform
and manufacturer independent. Therefore, G23 can be viewed as a building block providing standardised
functionality through generic interfaces for easy integration.

The G23 suite of products consists of the following items:

e Layers 2 and 3 for speech & short message services,
e Layers 2 and 3 for fax & data services,

o Application Control Interface,

e Slim MMI[02.30] and

e Testand integration support tools.

Version 1 Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.
Being Processed

2 Overview

2.1 General

This document is a Low Level Design (LLD) document, which describes the imp lementation of the interface
between entity PSI — Protocol Stack Entity and ACI.

Entity PSI is a new entity, which will replace the current entities UART, PKTIO and AAA, and includes a new
driver USB.

The implementation here will handle the communication between PSI and ACI. It is assumed that the user
already has the basic knowledge of PSI and DTI lib. Since the implementation is based on the existing module
UART and PKTIQ, the understanding of them might be helpful.

The communication between PSI and ACI includes primitive communications for data flow and for control flow
and some configuration primitives. Flow controls (data flow and control flow) are managed by the DTI manager,
which is located in ACI. Other than that ACl is able to handle all the configuration primitive and handle a very
special type of data: AT commands. The handling of AT commands is done in module SAP_DTI.

According to the HLD (refer 22?) the implementation of PSI is devided into 2 phases. At the end of the 1*' phase,
the PSI should be implemented with the USB functionality. Which means that the UART and PSI will exist at
the same time. This document only describes the PSI imp lementation with USB functionality.

The following figure shows the overview of the involved modules for phase 1. The changed or new added
modules for the implementation here are marked in yellow.

USB Driver
NNOA
o4
PSI 1
DTl Lib data flow DTl Lib
—
SAP PSI
PS
DTI Connect/
PSA PSI Control Manager
CMH_PSI | | sAP DTI
at_sre | ACI

Figure 1 Module owerview

From the above figure we can see that the implementation will take into account of modules PSA_PAI,
CMH_PSI, ATI_SRC, DTI Manager and SAP_DTI.

Version 1 Texas Instruments Proprietary Information — Private 4

Texas Instruments, Inc.
Being Processed

2.2 Detailed Description

As shown in the above figure, the modules should be modified or implemented in ACI are PSA module, CMH
module, ATl module and DT1 manager module. The following paragraphs describe briefly the modules that will
be implemented or changed. More details please refer to chapter 3 and chapter 4.

PSA_PSI:

This is a new module in ACI, which handles the incoming and outgoing primitives fromand to PSI entity.

CMH_PSI:
This module implements the CMH related functions for PSA_PSI.

ATI_SRC_PSI:

This module is responsible for creating new AT sources for PSI.

SAP_DTI:

In this module ACI acts as an entity that can receive data primitives from DTI. This is the handling for DTI
callbacks and the data primitives (AT commands) sent by DTI.

Version 1 Texas Instruments Proprietary Information — Private 5

Texas Instruments, Inc.
Being Processed

3 Scenarios with MSCs

The roll of ACI in this case is a bit complicated. ACI can receive AT commands from PSI (from DTI channel),
so ACI is a data receiver; Since PSI has the capability of sending AT commands. So ACI is also an ATI source
manager; and last but not least, ACI includes the DTI control manager.

Since PSl is a new entity added to communicate with ACI, the above-mentioned aspects should all be taken into
account in the implementation.

3.1 Connection Primitives Handling

3.1.1 PSI_CONN_IND: Creation of Connection

Description:

If the D1O driver wants to establish a connection with ACI, PSI will first send out a primitive PSI_CONN_IND
to ACI. When AClI receives this primitive, it registers the device in the PSA module, registers the new device in
the DTI control manager, creates ATI source for the driver and builds a DT | channel between PSI and ACI for
AT commands if the data mode has the capability of sending AT commands. If everything has gone well ACI
will reply with PSI_CONN_RES, otherwise PSI_CONN_REJ.

This primitive starts the first communication between PSland ACI.
Parameters:
devid (U32):

Contains values of device numbers. The parameter is a combination of an driver identifier (bit 24-31), type of
device (bit 8-23) and the actual number of devices (bit 0-7).

dio_cap:
The parameter contains all the driver capability parameter.

psi_data_mode:
This parameter describes the used data mode of the device.

Implementation:
When ACI receives the indication primitive, it will do the following:
1. AnewATIsource will be created according to < psi_data_mode> include command capability;

2. Register the device in DTI manager and create a DT connection using the functions provided by DTI
control manager;

3. Send out a response primitive (see 3.1.2) or a reject primitive (see 3.1.3).

MS C (see below)
312 PSIL.CONN_RES

Description:

This primitive is the positive respond to PSI_CONN_IND. It confirms the successful device registration in ACI.

Version 1 Texas Instruments Proprietary Information — Private 6

Texas Instruments, Inc.
Being Processed

Parameters:
devld (U32):

Contains values of device numbers. The parameter is a combination of an driver identifier (bit 24-31), type of
device (bit 8-23) and the actual number of devices (bit 0-7).

Implementation:

Send out the primitive with the input parameter <devid>.
MS C (see below)

3.13 PSI_CONN_REJ

Description:

This primitive rejects the driver registration request. If something in 3.1.1 went wrong, ACI will send back this
primitive instead of a positive one to the primitive PSI_CONN_IND.

Parameters:
devid (U32):

Contains values of device numbers. The parameter is a combination of an driver identifier (bit 24-31), type of
device (bit 8-23) and the actual number of devices (bit 0-7).

Implementation:

Send out the primitive with the input parameter <devlid>.

MSC (PSI_CONN_IND, PS|_CONN_RES and PSI_CONN_REJ):

Version 1 Texas Instruments Proprietary Information — Private 7

Texas Instruments, Inc.
Being Processed

Scenario: Creation of connection

ACI PE| PSA ATI SRC ATICMD CNTRL MNG
PSI_CONN_IND
|:“> psa_psi_connect_ind
(*psi_connect_ind)
psi_new_src (devld,dici,dchCtrl)
If device registeration or create src failed send
< PSI_CONN_REJ CMH
cmhPSI|_Ind
(*ush_indic_msg) g
dti_cntrl_new_device
(src_id, dev_id, dev_no, sub_no, port_num, capability)
dti_cntrl_est_dpath_indirect
(src_id, *entity_list,num_entities,mode,*ch,capability,cid)
psaPSI_ConnectRes
(device_no, * psi_cap)
PSI_CONN_RES
< cmhPSI_SetDebParToUnchang
ed
(device_entry) o
PSI_SETCONF_REQ
< Legend:

Primitive [

Function Call

Figure 2 MS C for connection creation with PS|

314 PSI_DTI_CLOSE_IND

Description:

This primitive indicates ACI that the DTI connection was closed. ACI will inform the DT I manager that the DTI
connection has been closed.

Parameters:

devld (U32):

Version 1 Texas Instruments Proprietary Information — Private 8

Texas Instruments, Inc.
Being Processed

Contains values of device numbers. The parameter is a combination of an driver identifier (bit 24-31), type of
device (bit 8-23) and the actual number of devices (bit 0-7).

link_id:

The link identifier for DTI. This parameter is used to identify the affected channel. This is used in target
environment.

Implementation:

ACI will look for the device number in the device list, if the device does not exist, ACI will ignore the primitive.
If the device exists, ACI will inform DTI manager that the DTI connection between PSI and the peer entity has
been closed. But the ATl source and entries in ACI will not be erased until the disconnect indication primitive is
received.

MS C (see below)

3.15 PSI_DISCONN_IND: Erasing a Connection

Description:

If the DIO driver wants to close a connection with ACI, PSI will send out a primitive PSI_DTI_CLOSE_IND to
ACI to close the DTI connection. And then send the primitive PSI_DISCONN_IND. The handling of primitive

PSI_DTI_CLOSE_IND will be described in section 3.1.4. The handling of PSI_DISCONN_IND is exactly the
opposite of creating a connection for PSI, which means to erase everything created during the connect process.

Parameters:

Devld: device Id

cause: The parameter indicates the outcome of any operation. The cause values given here are error codes
indicating internally recognized problems. This parameter is not used in ACI now, may be used in the future.
Implementation:

When the primitive PSI_DISCONN_IND is received, ACI will erase the ATI source, erase all the necessary
registrations and entries in DT 1 and finally erase the device entry in PSA.

MSC (PSI_DTI_CLOSE_IND and PS1_DISCONN_IND):

Version 1 Texas Instruments Proprietary Information — Private 9

Texas Instruments, Inc.
Being Processed

Scenario: Disconnect Primitive Received

ACI_PEI PSA_PSI CMH CNTRL_MNG
PSI_DTI_CLOSE_IND

[psa_psi__dti_close_ind
(*psi_dti_close_ind)

v

cmhPSI_Close

(device_no, state)
PSI_DISCONN_INE

o) dti_cntrl_entity_disconnected
I::> psa_psi_disconnect_ind (link_id, entity id)

(*psi_disconnect_ind)

A4

\ 4

ATI_SRC_PSI

psi_erase_'$rc (src_id)

\4

cmhPSI|_erase_src_el

m()

PS|_erase_dev_elem(}

Figure 3 MS C for erasing of connection with PS1

3.2 Connection Line State Primitives Handling

321 PSI_LINE_STAT_IND

Description:

The driver can indicate detected escape sequences and DTR line drops. ACI receives the line states parameter in
primitive PSI_LINE_STAT_IND. After ACI receives the primitive from PSI, it finds out the peer of PSI. Basing
on the peer and the different settings of the PSI share parameter, different behaviours will be performed. The
handling for PSI is very similar to UART.

Parameters:
Devld: device Id;

line_state: The parameter line_state contains information both about set/reset of serial line states and about the
escape sequence detection.

Version 1 Texas Instruments Proprietary Information — Private 10

Texas Instruments, Inc.
Being Processed

Handling:

If escape sequence is detected, or if the line drop is detected and the PSI should turn back to command mode or
the call should be cleared, PSI will connect back to ACI again with a command capability. In case line drop is
detected but this should be ignored, then ACI will do nothing.

MSC:

Scenario: Line State Indication Primitive Received

ACI_PEI PSA_PSI CMH CNTRL_MNG

PSI_LINE_STAT_IND

|:“> psa_psi_line_stat_ind
(*psi_line_stat_ind)

\ 4

cmhPSI_IND_ESC_DTR
(device, cause)

A4

dti_cntrl_est_dpath_indirect
(src_id, *entity_list, num_entities, mode,
*ch, capability,id)

[
| ot

Figure 4 MS C for processing of line state indication primitive

322 PSI_SETCONF_REQ

Description:

The user can set driver configuration parameter anytime. The parameter dio_dcb is defined as union because
there are three different configuration structures for serial. packet and multiple xer devices.

Parameters:

Devld: devld informs about the common driver characteristic. It contains the kind of device; the kind of
transported data and the device number chosen by driver.

DIO_DCB: The parameter defines the structure for T_DIO_DCB containing all of driver configuration
parameter. The union contains three different configuration structures referred to device_type (serial, packet,
muXx).

Version 1 Texas Instruments Proprietary Information — Private

11

Texas Instruments, Inc.
Being Processed

323 PSI_SETCONF_CNF

Description:

This primitive confirms A Cl the changed driver configuration.

Parameters:

Devld: devld informs about the common driver characteristic. It contains the kind of device; the kind of
transported data and the device number chosen by driver.

cause: The parameter indicates the outcome of any operation. The cause values given here are error codes
indicating internally recognized problems.

3.3 DTIPrimitives Handling

PSA sends out different control primitives to PSI if any of the entities wants to communicate with PSI or to
change some of the parameters.

331 PSI_DTI_ OPEN_REQ andPSI_DTI_OPEN_CON

3.3.1.1 PSI_DTI_ OPEN_REQ

Description:

This primitive PSI_DTI_OPEN_REQ initiate the data flow starting the DT | connection between PSI and the peer
entity. PSI opens the port to DTI.

Parameters:
Devld:

devld informs about the common driver characteristic. It contains the kind of device, the kind of transported data
and the device number chosen by driver.

Peer:

Peer defines the peer name as a C-String.

Linkid:

The link identifier for DTI. This parameter is used to identify the affected channel.
Dti_direction:

This parameter controls if PSI uses DTI in the normal way or if the primitives are inverted. In the normal way
data is sent as DTI_DATA_IND and received as DTI_DATA_REQ. In the inverted mode data is send as
DTI_DATA_REQ and received as DTI_DATA_IND (relay functionality). The appropriate constants are are
already defined in dti.h.

Handling:

PSA will just provide the interface for sending out the primitive to PSI. Since the sending of this primitive is by
the DTI control manager functions dti_cntrl_maintain_entity connect() and
dti_cntrl_maintain_entity_disconnect, adding of a switch case for DTI_ENTITY_PSI inside these functions is

Version 1 Texas Instruments Proprietary Information — Private 12

Texas Instruments, Inc.
Being Processed

necessary. Additionally the new entity Id DTI_ENTITY_PSI should be inserted in the list of
T_DTI_ENTITY_ID in dti_conn_mng.h.

MSC:

Scenario: Sending of PSI_DTI_OPEN_REQ

PSA_PSI CNTRL_MNG

psaPSI_Dti_Req
(link_id, peer, con_mode)

A

EXTRACT_DTI_ID(link_id)

>
. DTI ID
dti_cntrl_get_info_from_dti_id
(dti_id, *info) o
Info d

A

dti_cntrl_set_conn_parms
(link_id, ent_id, dev_no, sub_no)
TRUE

A

psaPSI_DTI_Req
(link_id, peer, con_mode)

A

psaPSI_DTIOpenReq
(device_no, * peer_name, link_id, dti_direction)

PSI_DTI_OPEN_REQ «

¢

Figure 5 MSC for sending of PS1 DTI_OPEN_REQ

3.3.12 PSI_DTI_ OPEN_CNF

Description:

This primitive confirms A CI the successful opened DTI connection.

Parameters:
Devld:

devld informs about the common driver characteristic. It contains the kind of device; the kind of transported data
and the device number chosen by driver.

Cause:

Version 1 Texas Instruments Proprietary Information — Private 13

Texas Instruments, Inc.
Being Processed

The parameter indicates the outcome of any operation. The cause values given here are error codes indicating
internally recognized problems.

Linkid:
The link identifier for DTI. This parameter is used to identify the affected channel.

Handling:
Informthe DTI control manager about the state change of the entity.

MSC:

Scenario: Receiving of PSI_DTI_OPEN_CNF

ACI_PEI PSA CMH CNTRL MNG

PS|_DTI_OPEN_CNF

I::> psa_psi_dti_open_ind

(*psi_dti_open_ind)

cmhPSI_OpenCnf
(device_number, result)

-,

dti_cntrl_entity_connected
(link_id,entity_id, result)

Figure 6 MSC for processing PSI_DTI_OPEN_CNF

332 PSI_.DTI_CLOSE REQ andPS| DTI_CLOSE CNF

3321 PSI_DTI_ CLOSE REQ

Description:

If the user is not be able to use the device any longer ACI requests PSI via primitive PSI_DTI_CLOSE_REQ
closing a existing DT | connection. PSI confirms the request with the primitive PSI_DTI_CLOSE_CNF. After
that ACI requests closing of the device via the primitive PSI_CLOSE_REQ. In the last step PSI sends the
confirmation primitive PSI_CLOSE_CNF to ACI.

Parameters:
Devld:

Version 1 Texas Instruments Proprietary Information — Private 14

devld informs about the common driver characteristic. It contains the kind of device; the kind of transported data
and the device number chosen by driver.

Linkid:

The link identifier for DTI. This parameter is used to identify the affected channel.

Handling:

PSA will just provide the interface to DTI control manager for sending out the primitive to PSI. Since the
sending of this primitive is by the DTI control manager functions dti_cntrl_maintain_entity _connect() and
dti_cntrl_maintain_entity_disconnect(), adding of a switch case for DTI_ENTITY_USB inside these functions is
necessary. Additionally the new entity
T_DTI_ENTITY_ID in dti_conn_mng.h.

MSC:

Scenario: Sending of PSI_DTI_CLOSE_REQ

PSI_DTI_CLOSE_REQ

PSA_PSI

Id DTI_ENTITY_PSI should be

psaPSI_Dti_Req
(link_id, peer, con_mode)

the list of

CNTRL_MNG

A

EXTRACT_DTI_ID(link_id)

DTI ID

) J

A

dti_cntrl_get_info_from_dti_id
(dti_id, *info)

Info

) J

A

dti_cntrl_set_conn_parms
(' link_id, ent_id, dev_no, sub_no)

TRUE

) J

A

psaPSI_DTI_Req
(link_id, peer, con_mode)

A

psaPSI_DTICloseReq
(device_no)

<

3.3.2.2 PSI.DTI_CLOSE CNF

Description:

Version 1

Figure 7 MSC for sending of PSI_DTI_CLOSE REQ

Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.
Being Processed

15

This primitive confirms ACI the successful opened DTI connection.

Parameters:

Devld:

devld informs about the common driver characteristic. It contains the kind of device, the kind of transported data

and the device number chosen by driver.
Linkid:

The link identifier for DTI. This parameter is used to identify the affected channel.
Handling:

Informthe DTI control manager about the state change of the entity.

Scenario: Receiving of PSI_DTI_CLOSE_CNF

ACI_PE PSA CMH

PS|_DTI_CLOSE_CNF

I::> psa_psi_dti_close_ind

(*psi_dti_close_ind)

\ 4

psi_find_element

(device_no, dev_list) o

y

cmhPSI_Close
(device_number, result)

[
P

Texas Instruments, Inc.
Being Processed

CNTRL MNG

dti_cntrl_entity_disconnected()

Figure 8 MSC for processing of PSI_ DTI_CLOSE_CNF

333 PSI_CLOSE REQ andPSI_CLOSE_CNF

333.1 PSI_CLOSE REQ

Description:

This primitive informs PSI that the protocol stack is not be able the use the device any longer.

Parameters:
devld (U32):

Version 1 Texas Instruments Proprietary Information — Private

|-
|

16

Texas Instruments, Inc.
Being Processed

Contains values of device numbers. The parameter is a combination of an driver identifier (bit 24-31), type of
device (bit 8-23) and the actual number of devices (bit 0-7). The part " type of device" is the same as described
for parameter device_type.

Implementation:
Send out the primitive with the devld after the primitive PSI_DTI_CLOSE_CNF is received.

3.3.3.2 PSI_CLOSE CNF

Description:
This primitive confirms ACl that PSI has close the device.

Parameters:
devid (U32):

Contains values of device numbers. The parameter is a combination of an driver identifier (bit 24-31), type of
device (bit 8-23) and the actual number of devices (bit 0-7). The part " type of device" is the same as described
for parameter device_type.

Implementation:
See3.15.

MSC:
Scenario: Receiving of PSI_CLOSE_CNF

ACI_PEI PSA ATI

PSI_CLOSE_CNF

ﬁ psa_psi_dti_close_ind

(*psi_dti_close_ind)

psi_find_element
(device_no, dev_list)

A

psi_erase_source()

CMH

[y
-

cmhPSI_erase_src_elem()

34 AT Commands Handling

This part of the code is stored in file sap_dti.c. This file handles the scenarios where ACI acts as a normal DTI
data receiver, which handles DTI primitives and handles the DTI callbacks. This is an existing module in ACI.
Since in earlier times only UART is able to send data to ACI, the existing handling is too specific to UART.

Version 1 Texas Instruments Proprietary Information — Private 17

Texas Instruments, Inc.
Being Processed

Now that we will add new device PSI that can also send AT commands to ACI, a small change in this module is
necessary.

34.1 Handling of DTI Callbacks — AT Commands

Description:

After the communication channel is established, ACl as an entity connected with PSI can receive data via DTI
connections. The data can only be AT commands. If some data are sent to ACI in the DT 1 channel, a callback
function will be called to inform A CI that reasonable data are received and ACI should do something with the
data. The possible parameters (instance, interface, channel, reason and *dti_data_ind) are included. But only the
parameter <instance>and <*dti_data _ind > are considered here.

Parameters:

Instance: Source Id

Interface: peer entity. No need to consider this because the only peer entity for ACI is PSI.

Channel: DT I channel. No need to consider this.

Reason: why the callback function has been called, for this scenario the reason is reasonable data received.

*Dti_data_ind: Pointer to the received data.

Implementation:

If this situation is met, ACI checks the connection situation. If everything is fine, ACI will call the function
psi_src_proc_char() to check if there are more data required. If the received data are already a complete AT
command, the ATI processing functions e.g. ati_execute() will be called to process the AT command.

MSC:

Version 1 Texas Instruments Proprietary Information — Private 18

Texas Instruments, Inc.
Being Processed

Scenario: Handling of DTI callbacks -
AT commands

DTI Entity SAP_DTI ATI_SRC ATI_CMD

DTI2_xxx_xxx aci_pei_sig_callback
|::> (instance, interfac, channel,
reason, *dti_data_ind)
sig_dti_data_received_ind
(src_id, dti_data_ind)
PSA_PSI
dti_stop . psi_dti_stop(srcld)
(hDTI, instance,
_,_interfac,channel)
psi_src_proc_chars
(chars_received, pos,
rc_cmd) o
ati_execute
(srcld, chars, len)
CMH_PSI
get more data
cmhPSI_getdata
psaPS|_getdata | (src_id)
_(Src_id, DTLENTITY_PSI)

dti_start
(hDTI, instance,
interfac, channel)

DTI2_XXX_XXX

<:I

Figure 9 MSC for AT command handling fromPS|

3.4.2 Handling of DTI Callbacks — Connection Opened

Description:

This is a scenario of opening a DT | connection for ACI. This happens when DTI wants to open a channel for any
reason. For instance PSI sends the PSI_CONN_IND and DT I control manager creates the DTI channel for PSI
and ACI. ACl as an entity connected with PSI can receive and send data via a DTI channel. Ifa DT 1 channel is
opened for ACI, a callback function is called to inform ACI. The possible parameters (instance, interface,
channel, reason and *dti_data_ind) are included. But only the parameter <instance> is used here.

Parameters:

Instance: Source Id

Version 1 Texas Instruments Proprietary Information — Private 19

Texas Instruments, Inc.
Being Processed

Interface: peer entity. No need to consider this because the only peer entity for ACI is PSI.
Channel: DT channel. No need to consider this.

Reason: why the callback function has been called, for this scenario the reason is DTI connection has been
opened for ACI.

*Dti_data_ind: Pointer to the received data.

Implementation:

If this situation is met, ACI should change the DTI connection status for aci_src_dti_params ->isDtiConnected
and inform the DTI manager. ACI also has to send out the buffered data to PSI by calling the function
psi_send_buffer_data() based on the source Id. The buffered data comes from the time when DTI channel was
closed.

MSC:
Scenario: Handling of DTl callbacks -
Connection Opened
DTI Entity SAP_DTI ATI_CMD CNTRL MNG
DTIZ_xxx_xxx aci_pei_sig_callback
|:“> (instance, interfac, channel,
reason, *dti_data_ind)
sig_dti_connection_opened_ind
(src_id) o
dti_cntrl_get_link_id
(ent_id, dev_no, sub_no) o
. link_id
dti_cntrl_entity_connected
(link_id, entity_id, result) o
PSA_PSI ATI_SRC
psi_send_buffer_data
(src_id)
=

psaDTI_psi_data_req
(*data, *src_infos, peer_id)

dti_send_data
(hDTI, instance, interfac,
_ channel, *dti_data_ind)

]DTIZ_xxx_xxx

Figure 10 Handling of connection open indication

3.4.3 Handling of DTI Callbacks — Buffer Ready Indication

Description:

Version 1 Texas Instruments Proprietary Information — Private 20

Texas Instruments, Inc.
Being Processed

DTl informs ACI that the buffer is ready to store more data for the transfer. In this case, ACI will change the
sending state from “not ready” to “ready” and send out the buffered data to PSI. The possible parameters
(instance, interface, channel, reason and *dti_data_ind) are included.

Parameters:

Instance: Source Id

Interface: peer entity. No need to consider this because the only peer entity for ACI is PSI.
Channel: DT 1 channel. No need to consider this.

Reason: why the callback function has been called, for this scenario the reason is buffer ready.

*Dti_data_ind: Pointer to the received data if there is.

Implementation:

If this situation is met, ACI changes its own sending status to ready and sends out the buffered data.
MS C:

Scenario: Handling of DTI callbacks -
Buffer Ready

DTI Entity SAP_DTI ATI_SRC

DTIZ2_xxx_Xxx aci_pei_sig_callback
[:> (instance, interfac, channel,
reason, *dti_data_ind)
>
sig_dti_tx_buffer_ready_ind
(src_id) o
PSA_PSI
psi_find_element
(srcld, src_list)
*info o
| psi_send_buffer_data (src_id)
>
psaDTI_psi_data_req
. (*data, *src_infos, peer_id)
dti_send_data T
('hDTI, instance, interfac,
channel, *dti_data_ind)
JDTI2_xxx_xxx

Figure 11 Handling of DTI callback — buffer full

Version 1 Texas Instruments Proprietary Information — Private 21

Texas Instruments, Inc.
Being Processed

4 Modules Implemented

4.1 Module PSA_PSI

This is a new module implemented for PSI. This module handles receiving and sending of the primitives from
and to PSI. Together with CMH and the DTI control manager, PSA_PSI handles all the status managements.

411 Psa_psi.h

In this file the prototype of psa_psis.c will be defined. Additionally the following structs will be defined.

4111 T_ACI_PSI_CAP

Definition:
typedefunion
{
T _dio_cap_ser dio_cap_ser;
T _dio_cap_ser_mux dio_cap_ser_mux;
T _dio_cap_pkt dio_cap_pkt;
}T_ACI_PSI_CAP;
Use:

Defines the struct of the dio capability union. It is used to define a union in PSA to hold the dio capabilities.

4112 T_ACLPSI

Definition:

typedef struct

{
U32 devld;

T _ctrl_dio_cap psi_cap_ctrl;
T_ACI_PSI_CAP psi_cap;
}T_ACIL_PSI;

Use:

It defines the struct to contain the information of the driver capability.

4113 T _DTI_MNG_PS|_MODE

Version 1 Texas Instruments Proprietary Information — Private 22

Texas Instruments, Inc.
Being Processed

Definition:

typedef enum{
PSI_CONNECT_DTI =0,
PSI_DISCONNECT_DTI

}T_DTI_MNG_PSI_MODE;

Use:

in function psaPSI_Dti_Req() to decide whether to call the open request sub function or the close request sub
function.

4114 T_PSI_SHRD_PRM

Definition:

typedef struct

{
T_ACI_DTR_BEHAVIOURdtr_behaviour;
BOOL dtr_clearcall;
BOOL reconnect_to_aci;

}

T_PSI_SHRD_PRM:;

Use:

To define <psiShrd Prm>. <PsiShrdPrm> is used to describe the line state.

4115 T_ACI_DTI_PRC_PSI

Definition:

typedef struct

{
U32 devld;
UBYTE dlci;
UBYTE srcld; & =c_id*/
T_ACI_DTI_REC STATE RecState;
T_ACI_DTI_LINE _STATE LineState;

BOOL run_cmd;
BOOL first_output;
BYTE data_cntr; F* DTl line flags (eg. SB-BIT) */

T_ACI_UART_MUX_PARMS *MuxPams;

BOOL large_type; F* isitalarge output? */
T_ACI_DTI_DATA_BUF data_buffer;
T_ACI_DEVICE_TYPE device_type;

Version 1 Texas Instruments Proprietary Information — Private 23

Texas Instruments, Inc.
Being Processed

}T_ACI_DTI_PRC PSI;
Use:

Defines the struct of source related parameters.
412 Psa_psip.c

Here only the new added functions are described in detail. The functions over taken fromthe similar modules for
UART or PKTIO will only be listed. This applies to all the .c file description following.

4121 psi_dev list

Definition:
GLOBAL T_ACI_LIST *psi_dev_list=NULL,

Use:

It is used to record the device list in ACI. See <Error! Reference source not found.> for more details.

4.1.2.2 psi_src_params

Definition:
GLOBAL T_ACI_LIST *psi_src_params = NULL;
Use:

It is used to record the parameters of the source list in ACI. See Error! Reference source not found.for more
details.

4.1.2.3 psiShrdPrm
GLOBAL T_PSI_SHRD_PRM psiShrdPrm;

4.1.2.4 set_psi_share_params ()

Prototype:

GLOBAL void set_psi_share_params (SHORT dtr_behaviour, BOOL dtr_clearcall, BOOL reconnect_to_aci,
USHORT src_id)

Parameters:
Returns:
Description:

for setting the shared parameter <psiShrdPrm>.

41.25 get psi_share _params ()

Version 1 Texas Instruments Proprietary Information — Private 24

Texas Instruments, Inc.
Being Processed

Prototype:

get_psi_share_params (SHORT *dtr_behaviour, BOOL *dtr_clearcall, BOOL *reconnect_to_aci, USHORT
src_id)

Parameters:
Returns:
Description:

To get the shared parameters <psiShrdPrm>.

4126 find _psi_dev_id()

Prototype:

LOCAL BOOL find_psi_dev_id (U32 devld, void * elem)
Parameters:

Returns:

Description:

4.1.2.7 mng_psi_dev_list()

Prototype:

LOCAL BOOL mng_psi_dev_list (T_PSI_CONNECT_IND *psi_connect_ind)
Parameters:

*psi_connect_ind:

Returns:

Description:

This function manages the PSI device list <psi_dev_list>.

4.1.2.8 mng_psi_src_param()

Prototype:

LOCAL BOOL mng_psi_src_param ()
Parameters:

Returns:

Description:

This function manages the PSI source parameter <psi_src_params>.

Version 1 Texas Instruments Proprietary Information — Private 25

Texas Instruments, Inc.
Being Processed

4.1.29 find_ usb_dev_no()

Prototype:

LOCAL BOOL find_usb_dev_no (U32deviceNum, void * elem)
Parameters:

DeviceNum: device number

Elem: list to search.

Returns:

Description:

This is a help function for finding device in the USB device list.

4.1.2.10 psi_find_element ()

Prototype:

GLOBAL void *psi_find_element (UBYTE criterium, UBYTE criterium_type)
Parameters:

Criterium: what to be search.

criterium_type: type of criterium (e.g. TYPE_SRC_ID or TYPE_DEVICE).
Returns:

A pointer to the message recorded with the criterium.

Description:

This function is a find_element() function for PSI_PSA. Because PSI is composed of three different types of
devices, but to the outside world only PSI would be consider. This function has the ability to define for the
different request of criterium, in which list to search.

Note: The following functions are similar to the functions in PKTIO and UART, so the detailed description will
not be provided, but a list of the prototype.

GLOBAL const void psaDTI_psi_data_req (T_desc2 *data, T_ACI_DTI_PRC *src_infos, T_DTI_ENTITY_ID
peer_id)

GLOBAL const void psaDTI_psi_getdata(UBYTEsrc_id, T_DTI_ENTITY_ID peer_id)
GLOBAL const void psa_psi_connect_ind (T_PSI_CONNECT_IND *psi_connect_ind)
GLOBAL const void psa_psi_disconnect_ind(T_PSI_DISCONNECT_IND* psi_disconnect_ind)
GLOBAL const void psa_psi_line_stat_ind(T_PSI_LINE_STAT_IND *psi_line_stat_ind)
GLOBAL const void psa_psi_dti_close_cnf (T_PSI_DTI_CLOSE_CNF * psi_dti_close_cnf)
GLOBAL const void psa_psi_dti_close_ind (T_PSI_DTI_CLOSE_IND *psi_dti_close_ind)
GLOBAL const void psa_pkt_dti_open_cnf (T_PKT_DTI_OPEN_CNF * pkt_dti_open_cnf)

413 Psa_psis.c

Version 1 Texas Instruments Proprietary Information — Private 26

Texas Instruments, Inc.
Being Processed

GLOBAL const void psaDTI_data_req (T_desc2 *data, T_ACI_DTI_PRC *src_infos, T_DTI_ENTITY_ID
peer_id)

GLOBAL const void psaDTI_getdata(UBYTE src_id, T_DTI_ENTITY_ID peer_id)

GLOBAL void psaPSI_ConnectRes (U32 device_no, T_ACI_PSI_CAP * psi_cap)

GLOBA L void psaPSI_ConnectRej (U32 device_no)

GLOBAL void psaPSI_Dti_Req (ULONG link_id, UBYTE peer, T_DTI_MNG_PSI_MODE con_mode)

GLOBAL void psaPSI_DTIOpenReq (U32 device_no, const char * peer_name,ULONG link_id, UBYTE
dti_direction)

GLOBAL void psaPSI_DTICloseReq (U32 device_no)

4.2 Module CMH_PSI

421 Cmh_psi.h

4.2.1.1 Function prototype
Prototype definition for file cmh_psir.c and cmh_psif.c.

422 Cmh_psir.c
GLOBAL void cmhPSI_DetectedESC_DTR(U32 device, UBYTE dici, UBYTE cause)

423 Cmh_psifc
This module defines the functions used by the command handler for the PSI module.

GLOBAL T_ACI_DTI_PRC*cmhPSI_find_dlci (T_ACI_LIST *search_list, U32 device, UBYTE dlci)
GLOBAL void cmhPSI_erase_elem_received_cmd (UBYTEsrcld)
GLOBAL void cmhPSI_SetComParToUnchanged(T_comPar *comPar)

4.3 Module ATI_SRC_PSI

431 Ati_src_psi.h
Function prototype definition for ati_src_psi.c and ati_src_psi_io.c.

432 Ati_src_psi.c

Other functions that should be implemented are listed below:
GLOBAL void psi_InitCmdStruct(T_ACI_DTI_PRC*cmd_struct)
GLOBAL void psi_InitCmdStruct(T_ACI_DTI_PRC *cmd_struct)
GLOBAL void psi_erase_source(UBYTE srcld)

Version 1 Texas Instruments Proprietary Information — Private 27

Texas Instruments, Inc.
Being Processed

GLOBAL BOOL atiPSI_dti_ch(UBYTE dti_id, T_DTI_CONN STATE rewult_type)
GLOBAL BOOL uart_src proc_chars (UBYTE *chars, USHORT len, T_ACI_DTI_PRC *elem)

433 Ati_src_psi_io.c
GLOBAL woid uart_src_result cb (UBYTE src_id, T_ATI_OUTPUT_TYPE output_type, UBYTE *output, USHORT output_len)
GLOBAL void uart_src_line_state_cb (UBYTE src_id, T_ATI_LINE_STATE_TYPE line_state type, ULONG line_state_param)

GLOBAL woid uart_send_buffer_data (UBYTE src_id)
LOCAL void io_DTlIsendString (UBYTE *string, USHORT string_len, T_ACI_DTI_PRC *src_infos, T_ATI_OUTPUT_TYPE output_type)

44 Module SAP_DTI

In this module only some changes according to section Error! Reference source not found. will be done.

4.5 Other Necessary Modifications
Allthe functions that are UART related will adapt to PSI.

Version 1 Texas Instruments Proprietary Information — Private 28

Texas Instruments, Inc.
Being Processed

5 Test Plan

5.1 Windows Simulation Test

5.1.1 New Test Cases
About 20 new added test cases are added in ACIDTI from test case 101 onwards.

5.1.2 Simulation Tests
With and without flag: FF_PSI

ACI
GACI
ACIDTI

5.2 Target Test

52.1 TagetBuild
MFW

ACI Only
GOLite

52.2 Target Test
MO Call

MO SMS
MT Call

AT Command
UART

Version 1 Texas Instruments Proprietary Information — Private 29

