
technical_document_20030404.dot

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical Document

GSM PROTOCOL STACK

GPF

OSX – CUSTOMER FRAME INTERFACE

FUNCTIONAL INTERFACE DESCRIPTION

Document Number: 06-03-10-ISP-0004

Version: 0.5

Status: Draft

Approval Authority:

Creation Date: 2000-Oct-25

Last changed: 2015-Mar-08 by MP

File Name: osx_api.doc

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 26

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, mod-

ifications, enhancements, improvements, and other changes to its products, software and se rvices at
any time and to discontinue any product, software or service without notice. Customers should obtain
the latest relevant information during product design and before placing orders and should verify that

such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-

knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tec h-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated

by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-

sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be

used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third

party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI

patent right, copyright, mask work right, or ot her TI intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may

require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronical-
ly or mechanically, including photocopying and recording, for any purpose without the express written
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

2000-Oct-25 MP et al. 0.1 Being

Processed

1

2001-May-04 MP et al. 0.2 Being

Processed

2

2001-Sep-07 MP et al. 0.3 Submitted 3

2003-May-20 XINTEGRA 0.4 Draft

2003-Sep-08 MP 0.5 Submitted 4

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 26

Notes:

1. Init ial version

2. Function names changed

3. Document number changed

4. new API function osx_config()

 xSignalHeaderRec modif ied

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 26

Table of Contents

Functional Interface Description ..1

1.1 Abbreviations ..5

2 Frame/Body Concept ..6

3 Customer Frame Interface ..7

3.1 Data Types ...7

3.1.1 T_VOID_STRUCT ...7
3.1.2 T_ENUM_OS_QUEUE ...7
3.1.3 xSignalHeaderRec ...8

3.2 Constants ...8

3.2.1 Return Codes ..8

3.3 int_osx Functions ..9

3.3.1 int_osx_alloc_prim() ...9
3.3.2 int_osx_alloc_mem() ..10
3.3.3 int_osx_free_prim() ..11
3.3.4 int_osx_free_mem() ...12
3.3.5 int_osx_send_prim()...13
3.3.6 int_osx_receive_prim() ...14
3.3.7 int_osx_send_sig() ...15

3.4 osx Functions..16

3.4.1 _osx_init ..16
3.4.2 _osx_config() ...17
3.4.3 _osx_open() ..18
3.4.4 osx_alloc_prim() ..19
3.4.5 osx_alloc_mem() ...20
3.4.6 osx_free_prim()..21
3.4.7 osx_free_mem()...22
3.4.8 osx_send_prim() ..23
3.4.9 osx_receive_prim()...24
3.4.10 osx_send_sig() ..25

Appendices ..26

A. Acronyms ...26

B. Glossary ...26

List of Figures and Tables

List of References

[ISO 9000:2000] International Organization for Standardization. Quality management sys-

tems - Fundamentals and vocabulary. December 2000

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 26

1.1 Abbreviations

RTOS Real-time Operating System

VSI Virtual System Interface

PEI Protocol Stack Entity Interface

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 26

2 Frame/Body Concept

The frame body concept has been designed in the context of the G23 Protocol Stack. In the case of
the G23 Protocol Stack, a process represents the protocol logic of a protocol stack entity. This archi-

tecture separates the process functionality into two logical modules, the process frame and the
process body. Common process functionality is located in the process frame. The main process func-
tionality is located in the process body.

 _init

 call back

 call back

 call back

Figure 1: Structure of GSM Protocol Stack

OS-Layer os_
Adaption to RTOS

Frame vsi_
Virtual OS

Operating System Extensions:
Passive Model

Routing
Trace
Memory Supervision

Timer Configuration

Start up

RTOS
Nucleus, Win32, pSOS, ...

Driver
Hardware Abstraction

OSX

L1 Entity
PS Functionality

 pei_

L23 Entity
PS Functionality

 pei_

Content of this Docu-
ment

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 26

The process frame has two interfaces. The Virtual System Interface (VSI) is the frames functional
interface to be accessed by the bodies. The Operating System Interface (OS) is also a functional inter-
face and provides the interface to the Real-time Operating System (RTOS). This interface is encapsu-

lated in the "OS Layer" in order to keep the frame itself independent from the underlying RTOS.

In the OS Layer, the request of system resources by the protocol stack entities via the VSI is adapted
to the implemented RTOS.

The intention of this interface is to provide a set of function calls that is independent of the underlying
RTOS. If an RTOS does not supply all the features described in the following, e.g. the possibility of
periodic timers, this must be adapted within the OS Interface.

Some functionality of the interface described in the following may not be necessary for all RTOSs and
therefore some functions do not have to be filled with code. The releasing of queue handles if they are
not longer used might not always be necessary when communication is closed.

The OSX interface has been designed for customers who do not like to access the Condat frame di-
rectly in order to keep there software independent of the Condat VSI.

3 Customer Frame Interface

The customer frame interface is split up into two parts. There are functions beginning with osx and
functions beginning with int_osx. The difference between the two variants is that the osx functions do

not have a parameter caller and the access to queues is done via identifiers that are determined by
the customer. The int_osx_ functions do also have a parameter caller that is needed for the memory
supervision feature and they access the queues via a frame queue handles.

For performance reasons it is recommended to use the int_osx interface.

The int_osx_ functions will be used by customers who use the queue handles that have been retrieved
in the pei_init() function of the specific task to access the interface, refer to 3.3.

Also there are customers who do not really use Condat’s PEI interface because they run their task in
active body variant. These customers also have a PEI interface but it is provided by Condat and co n-
sists only of a pei_create(), pei_init() and pei_run() function. In this case Condat need to know which

communication channels are required for this task and which identifiers the customer will use to ac-
cess them. For this reason the communication channels for the osx have to be opened by calling an
osx_open() function for every channel to be used later to assign a queue handle to every identifier.

Also this task has to be registered as the osx caller by a call of osx_open() with specific parameters,
refer to 3.4.3. Before osx_open() is called the first time the function osx_init() has to be called. Due to
this registration and opening of communication channels osx functions internally know their caller and

are able to convert the passed queue identifiers into queue handles. For osx functions refer to 3.4.

3.1 Data Types

3.1.1 T_VOID_STRUCT

Definition: typedef unsigned long T_VOID_STRUCT

Description: Pointers of type T_VOID_STRUCT are passed to functions in order to avoid

warnings when using void pointers with a subsequent cast operation within the called function.

3.1.2 T_ENUM_OS_QUEUE

Definition:

typedef enum
{
 L1_QUEUE, /* internal L1 communication */

 DL_QUEUE, /* L1->DL */

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 26

 RR_QUEUE, /* L1->RR */
 GRR_QUEUE, /* L1->GRR */
 LLC_QUEUE, /* L1->LLC e.g. ciphering via CCI */

 SNDCP_QUEUE, /* L1->SNDCP e.g. compression via CCI */
 MAX_OSX_QUEUE
} T_ENUM_OS_QUEUE;

Description: The values of this enum are used are used as queue_types for the osx func-
tions.

3.1.3 xSignalHeaderRec

Definition:
typedef struct xSignalHeaderStruct

{
 int SignalCode;
 int _dummy1;

 int _dummy2;
 int _dummy3;
 void *SigP;

 int _dummy4;
} xSignalHeaderRec;

Description: Pointers of this type are used as parameter for the (int_)osx_send_prim and
(int_)osx_receive_prim functions.

3.2 Constants

3.2.1 Return Codes

OSX_OK 0 successful execution

OS_ERROR -1 error

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 26

3.3 int_osx Functions

3.3.1 int_osx_alloc_prim()

Function definition:

xSignalHeaderRec* int_osx_alloc_prim (short caller, unsigned long len)

Parameters:

Type Name Meaning
short caller handle of calling task IN
unsigned long len size of partition to be allocated IN

Return:

Type Meaning
xSignalHeaderRec* pointer to allocated partition

Description:

The function int_osx_alloc_prim() allocates a partition of a size that is sufficient to hold len bytes.

If no free partition is available at calling time the calling task is suspended. If the request has been
satisfied but the underlying OS-layer function had to wait for a free partition a corresponding message

“SYSTEM WARNING: Waited for partition, task task , size size, opc opc" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the r e-
quest can be satisfied. In this case the calling task is suspended forever and an error message

“SYSTEM ERROR: No Partition available, task task size size, opc opc ” is traced and the system is

stopped.

In both cases the complete partition pool of the requested size is dumped via the test interface.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 26

3.3.2 int_osx_alloc_mem()

Function definition:

void * int_osx_alloc_mem (short caller, unsigned long len)

Parameters:

Type Name Meaning
short caller handle of calling task IN
unsigned long len size of memory buffer to be allocated IN

Return:

Type Meaning
void * pointer to allocated memory buffer

Description:

The function int_osx_alloc_mem() allocates a memory buffer of a size that is sufficient to hold len
bytes.

If no free partition is available at calling time the calling task is suspended. If the request has been

satisfied but the underlying OS-layer function had to wait for a free partition a corresponding message

“SYSTEM WARNING: Waited for memory, task task, size size" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the r e-

quest can be satisfied. If no partition is available the message

“SYSTEM ERROR: No memory available, task task size size ” is traced and the system is stopped.

In both cases the complete partition pool of the requested size is dumped via the test interface.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 26

3.3.3 int_osx_free_prim()

Function definition:

void osx_free_prim (short caller, xSignalHeaderRec *prim_ptr)

Parameters:

Type Name Meaning
short caller handle of calling task IN
xSignalHeaderRec * prim_ptr pointer to partition to be freed IN

Return: ---

Description:

The function int_osx_free_prim() deallocates the memory partition to which prim_ptr points.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 26

3.3.4 int_osx_free_mem()

Function definition:

void int_osx_free_mem (void * mem_ptr)

Parameters:

Type Name Meaning
short caller handle of calling task IN
void * mem_ptr pointer to memory to be freed IN

Return: ---

Description:

The function int_osx_free_prim() deallocates the memory partition to which prim_ptr points.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 26

3.3.5 int_osx_send_prim()

Function definition:

void int_osx_send_prim (short caller, xSignalHeaderRec *prim_ptr, short queue_handle)

 Parameters:

Type Name Meaning
short caller handle of calling task IN
xSignalHeaderRec * prim_ptr pointer to message to be sent IN
short queue_handle destination queue handle IN

Return: ---

Description:

The function int_osx_send_prim() sends the message to which prim_ptr points to the message queue
identified by queue_handle.

If there is no space available in the destination queue at calling time the calling task is suspended. If

the request has been satisfied but the underlying OS-layer function had to wait for a space in the des-
tination queue a corresponding message

"SYSTEM WARNING: task waited for space in task queue" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or n ot the re-
quest can be satisfied. If no space in the destination queue is available the message

"SYSTEM ERROR: task write attempt to task queue failed" is traced.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 26

3.3.6 int_osx_receive_prim()

Function definition:

xSignalHeaderRec * int_osx_receive_prim (short caller, short queue_handle)

Parameters:

Type Name Meaning
short caller handle of calling task IN
short queue_handle queue handle IN

Return:

Type Meaning
xSignalHeaderRec pointer to received message

Description:

The function int_osx_receive_prim() supervises the message queue specified by the parameter
queue_handle.

The calling task is suspended until a message is available in the queue.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 26

3.3.7 int_osx_send_sig()

Function definition:

void int_osx_send_sig (short caller, unsigned long opc, void *signal_ptr, short queue_handle)

 Parameters:

Type Name Meaning
short caller handle of calling task IN
unsigned long opc operation code of signal IN
void * signal_ptr pointer to signal to be sent IN
short queue_handle destination queue handle IN

Return: ---

Description:

The function int_osx_send_sig() sends the message to which signal_ptr points to the message queue
identified by queue_handle. Messages sent as a signal have a higher priority than primitives when the
destination queue is read out.

If there is no space available in the destination queue at calling time the calling task is suspended. If
the request has been satisfied but the underlying OS-layer function had to wait for a space in the des-
tination queue a corresponding message

"SYSTEM WARNING: task waited for space in task queue" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the r e-
quest can be satisfied. If no space in the destination queue is available the message

"SYSTEM ERROR: task write attempt to task queue failed" is traced.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 26

3.4 osx Functions

3.4.1 _osx_init

Function definition:

void _osx_init (void)

Parameters: ---

Return: ---

Description:

The function _osx_init() initializes the table that is used for the assignment of queue_types to

queue_handles that is done in osx_open(), refer to 3.4.3.

This function must only be called by processes that intend to access the queues via queue_types i n-
stead of the handles retrieved in the pei_init () function.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 26

3.4.2 _osx_config()

Function definition:

short _osx_config (const char * config)

Parameters:

Type Name Meaning
char * config configuration string IN

Return:

Type Meaning
short OSX_OK success
 OSX_ERROR error

Description:

The function _osx_config() allows dynamic configuration of the OSX layer. Currently only the disabling
of L1S traces is implemented.

L1S traces are sent from L1S to L1A via primitives using the primitive id TRACE_INFO (0x7d). When

L1S traces are dynamically disabled these primit ives are discarded during a osx_send_prim() com-
mand and the memory used for the primitive is freed.

To disabled L1S traces send a configuration primitive “CONFIG L1S_TRACE_DISABLE” to the L1

entity. To enable the traces send primitive “CONFIG L1S_TRACE_ENABLE” to L1.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 26

3.4.3 _osx_open()

Function definition:

short _osx_open (short caller, unsigned short queue_type, short queue_handle)

Parameters:

Type Name Meaning
short caller task handle of the caller IN
unsigned short queue_type index of a queue IN
short queue_handle handle of a queue IN

Return:

Type Meaning
int OSX_OK success
 OSX_ERROR error

Description:

The function _osx_open() assigns a queue_type to a queue_handle. As a consequence of this as-
signment the queue_type is converted to a queue_handle in the following queue accesses via
osx_send_prim() and osx_receive_prim().

The queue_handles are the handles returned by vsi_c_open() calls in the pei_init() function of the
xxx_pei.c module.

This function must only be called by processes that intend to access the queues via queue_types in-

stead of the handles retrieved in the pei_init () function.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 26

3.4.4 osx_alloc_prim()

Function definition:

xSignalHeaderRec* osx_alloc_prim (unsigned long len)

Parameters:

Type Name Meaning
unsigned long len size of partition to be allocated IN

Return:

Type Meaning
xSignalHeaderRec* pointer to allocated partition

Description:

The function osx_alloc_prim() retrieves the handle of the caller and calls the function
int_osx_alloc_prim() to allocate a partition of a size that is sufficient to hold len bytes.

If no free partition is available at calling time the calling task is suspended. If the request has been

satisfied but the underlying OS-layer function had to wait for a free partition a corresponding message

“SYSTEM WARNING: Waited for memory, task task, size size" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the r e-

quest can be satisfied. If no partition is available the message

“SYSTEM ERROR: No memory available, task task size size, opc opc ” is traced and the system is
stopped.

In both cases the complete partition pool of the requested size is dumped via the test interface.

This function must only be called by processes that have registered themselves to access the osx in
the pei_init() function. The caller that is needed internally for memory supervision functionality is set to

the caller of osx_open() when called with queue_type and queue_handle set to zero.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 26

3.4.5 osx_alloc_mem()

Function definition:

void* osx_alloc_mem (unsigned long len)

Parameters:

Type Name Meaning
unsigned long len size of memory buffer to be allocated IN

Return:

Type Meaning
void * pointer to allocated memory

Description:

The function osx_alloc_mem() retrieves the handle of the caller and calls the function
int_osx_alloc_mem() to allocate a memory buffer of a size that is sufficient to hold len bytes.

If no free partition is available at calling time the calling task is suspended. If the request has been

satisfied but the underlying OS-layer function had to wait for a free partition a corresponding message

“SYSTEM WARNING: Waited for memory, task task, size size" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the r e-

quest can be satisfied. If no partition is available the message

“SYSTEM ERROR: No memory available, task task size size ” is traced and the system is stopped.

In both cases the complete partition pool of the requested size is dumped via the test interface.

This function must only be called by processes that have registered themselves to access the osx in
the pei_init() function. The caller that is needed internally for memory supervision functionality is set to
the caller of osx_open() when called with queue_type and queue_handle set to zero.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 26

3.4.6 osx_free_prim()

Function definition:

void osx_free_prim (xSignalHeaderRec *prim_ptr)

Parameters:

Type Name Meaning
xSignalHeaderRec * prim_ptr pointer to partition to be freed IN

Return: ---

Description:

The function osx_free_prim()ret rieves the handle of the caller and calls the function
int_osx_free_mem() to deallocate the memory to which prim_ptr points.

This function must only be called by processes that have registered themselves to access the osx in

the pei_init() function. The caller that is needed internally for memory supervision functionality is set to
the caller of osx_open() when called with queue_type and queue_handle set to zero.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 26

3.4.7 osx_free_mem()

Function definition:

void osx_free_mem (void * mem_ptr)

Parameters:

Type Name Meaning
void * mem_ptr pointer to memory to be freed IN

Return: ---

Description:

The function _osx_free_mem() retrieves the handle of the caller and calls the function int_osx_free() to
deallocates the memory to which mem_ptr points.

This function must only be called by processes that have registered themselves to access the osx in

the pei_init() function. The caller that is needed internally for memory supervision functionality is set to
the caller of osx_open() when called with queue_type and queue_handle set to zero.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 26

3.4.8 osx_send_prim()

Function definition:

void osx_send_prim (xSignalHeaderRec *prim_ptr, T_ENUM_OS_QUEUE queue_type)

 Parameters:

Type Name Meaning
xSignalHeaderRec * prim_ptr pointer to message to be sent IN
T_ENUM_OS_QUEUE queue_type destination queue identifier IN

Return: ---

Description:

The function osx_send_prim() retrieves the handle of the caller and calls the function
int_osx_send_prim() to send the message to which prim_ptr points to the message queue identified by
queue_type.

The parameter queue_type is converted to a queue handle by evaluation of a registry were the as-
signment of queue identifiers (queue_type) to queue handles is stored during previous osx_open()
calls.

If there is no space available in the destination queue at calling time the calling task is suspended. If
the request has been satisfied but the underlying OS-layer function had to wait for a space in the des-
tination queue a corresponding message

"SYSTEM WARNING: task waited for space in task queue" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the r e-
quest can be satisfied. If no space in the destination queue is available the message

"SYSTEM ERROR: task write attempt to task queue failed" is traced.

is traced.

This function must only be called by processes that have registered themselves to access the osx in

the pei_init() function. The caller that is needed internally for memory supervision functionality is set to
the caller of osx_open() when the queue_handle is assigned to the queue_type.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 26

3.4.9 osx_receive_prim()

Function definition:

xSignalHeaderRec *osx_receive_prim (T_ENUM_OS_QUEUE queue_type)

Parameters:

Type Name Meaning
T_ENUM_OS_QUEUE queue_type queue identifier IN

Return:

Type Meaning
xSignalHeaderRec pointer to received message

Description:

The function osx_receive_prim() retrieves the handle of the caller and calls the function
int_osx_receive_prim() to supervise the message queue specified by the parameter queue_type.

The parameter queue_type is converted to a queue handle by evaluation of a registry were the as-

signment of queue identifiers (queue_type) to queue handles is stored during previous osx_open()
calls.

The calling task is suspended until a message is available in the queue.

This function must only be called by processes that have registered themselves to access the osx in
the pei_init() function. The caller that is needed internally for memory supervision functionality is set to
the caller of osx_open() when the queue_handle is assigned to the queue_type.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 25 of 26

3.4.10 osx_send_sig()

Function definition:

void osx_send_sig (unsigned long opc, void *signal_ptr, T_ENUM_OS_QUEUE queue_type)

 Parameters:

Type Name Meaning
unsigned long opc operation code of signal IN
void * signal_ptr pointer to signal to be sent IN
T_ENUM_OS_QUEUE queue_type destination queue identifier IN

Return: ---

Description:

The function osx_send_sig() retrieves the handle of the caller and calls the function
int_osx_send_sig() to send the message to which signal_ptr points as signal to the message queue
identified by queue_type. Messages sent as a signal have a higher priority than primitives when the

destination queue is read out.

The parameter queue_type is converted to a queue handle by evaluation of a registry were the as-
signment of queue identifiers (queue_type) to queue handles is stored during previous osx_open()

calls.

If there is no space available in the destination queue at calling time the calling task is suspended. If
the request has been satisfied but the underlying OS-layer function had to wait for a space in the des-

tination queue a corresponding message

"SYSTEM WARNING: task waited for space in task queue" is traced.

If the caller is a non-task thread, the function returns immediately regardless whether or not the re-

quest can be satisfied. If no space in the destination queue is available the message

"SYSTEM ERROR: task write attempt to task queue failed" is traced.

is traced.

This function must only be called by processes that have registered themselves to access the osx in
the pei_init() function. The caller that is needed internally for memory supervision functionality is set to
the caller of osx_open() when the queue_handle is assigned to the queue_type.

Technical Document

GSM Protocol Stack OSX – Customer Frame Interface Functional Interface Description (06-03-10-ISP-0004), v0.5 Draft

Texas Instruments Proprietary Information – Internal Data Page 26 of 26

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Tel-
ecommunication 2000
(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/ family of standards for 3G. This
initiative provides a global infrastructure through both satellite and terre-

strial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roa m-
ing. <URL: http://www.imt-2000.org/>

http://www.imt-2000.org/

