

G2 3

GSM Protocol Stack

GTPF – GPF Test Platform
User Guide

Date: 21-March-2002
ID: 8434.312.00.001

Author: Condat AG
Alt Moabit 91d
10559 Berlin
Germany

Condat Proprietary Information
NDA – Confidential

Do Not Copy

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 2/14

Table of Contents

0 Document Control ... 3
0.1 Document History.. 3
0.2 References... 3
0.3 Abbreviations.. 4
0.4 Terms .. 4

1 Introduction .. 5

2 Overview.. 6

3 Necessary Libraries... 8

4 Build steps ... 9
4.1 Ccddata_dll.dll .. 9
4.2 TAP2 ... 9
4.3 Test Cases ... 9

5 Test Tools .. 10
5.1 TST ... 10
5.2 TAP2 ... 10
5.3 PCO .. 10

5.3.1 Viewing flow of traces and primitives.. 11
5.3.2 Logging test data... 11
5.3.3 Viewing already logged test data .. 11

5.4 TAPCaller .. 12
5.4.1 TAPCaller behaviour while starting ... 12
5.4.2 Necessary steps to start a test case .. 12
5.4.3 Using PCO2 application scenarios within TAPCaller .. 12

5.5 Crash, malfunction, unexpected behaviour ... 13

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 3/14

0 Document Control
 Copyright Condat AG, 1999-2000.

All rights reserved.

Every effort has been made to ensure that the information contained in this document is accurate at the
time of printing. However, the software described in this document is subject to continuous development and
improvement. Condat AG reserves the right to change the specification of the software. Information in this
document is subject to change without notice and does not represent a commitment on the part of Condat
AG. Condat AG accepts no liability for any loss or damage arising from the use of any information
contained in this document.

The software described in this document is furnished under a license agreement and may be used or
copied only in accordance with the terms of the agreement. It is an offence to copy the software in any
way except as specifically set out in the agreement. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, in cluding photocopying and recording, for
any purpose without the express written permission of Condat AG.

Condat AG
Alt Moabit 91d
10559 Berlin
Germany

Telephone: +49.30.39094-0
Fax: +49.30.39094-300
Internet: www.condat.de
E-mail: gsm@condat.de

0.1 Document History

ID Author Date Status Remarks

8434.312.00.001 JG May 14, 02 Being Processed Initial

0.2 References
[GSM 2.30] ETS 300 511: July 1995 (GSM 02.30 version 4.13.0)

Man-Machine Interface (MMI) of the Mobile Station (MS), ETSI

[FUG] 8434.100.01.001; Sep 07, 2001; Frame - User Guide (frame_users_guide.doc)
[PCO2] 8415.090.00.002; May 15, 2000; PCO2 – Tracing Environment (pco_userguide.doc)
[TCAL] 8434.312.00.001; Jan 31; 2001; TCAL - TAPCaller User Guide

(tapcaller_userguide.doc)
[TCC] 8415.028.99.201; March 15, 2000; Test Case Control – User guide (8415_028.doc)
[XPAN] 8415.089.00.001, October, 2000, xPanel – MMI Test Application (PC)

(xpan_userguide.doc)

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 4/14

0.3 Abbreviations
CMS Condat Multitasking System

PCO Point of Control and Observation

PS Protocol Stack

TAP Test Application Process

VCMS Virtual CMS

0.4 Terms
GUI tools MSCView, PCOController with GUI, PCOServer, PCOViewer, TAPCaller
Doc2text Tool that converts MS Word documents into plain text files

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 5/14

1 Introduction

This documentation is meant for protocol stack testers that use the GPF test platform consisting of the new
FRAME, TAP, PCO2, TAPCaller and MSCView. It is assumed that the user is familiar with basics of
Condat's test tool chain. The authors tried to list all steps necessary for realising simple test sessions using
the platform. In order to keep this document simple it is refrained from listing all possible options of the
tools. For more detailed information on the usage of the tools the reader may have a look at the
documentation referenced in the text below and the context sensitive help of the GUI tools.

Test cases and suites are used in order to test the implementation of protocol stacks. The Test Application
Process (TAP) is the real test tool. The actions performed by TAP can be described in simple words as
follows: It sends primitives to an entity of the PS, waits for an reaction of the PS (i.e. waits for a
primitive from the entity under test) and compares the received primitive with the expe cted one.

TAPCaller is a graphical frontend for executing test cases. It should simplify the call of the TAP test tool.

PCO2 is a tool that finally provides an interface for tracking all kind of traces and primitives.

MSCVIEW is a tool used to display the expected structure of the flow of messages/primitives (from ~.tds
files) or the sequence of messages/primitives of an already executed test case (from ~.dbg files).

The expression 'FRAME' is the summary of the generic protocol stack framework components in a protocol
stack. This frame work consists of the components 'FRAME' for the real frame functionality and the test
interface functionality including the test interface drivers.

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 6/14

2 Overview

The following illustration shows the GPF software architecture used for testing protocol stacks.

W i n d o w s , Li n u x , . . .

N u cl e u s, PSOS , . . .

V CM S

FRAM EFRAM E

Di v.

En t i t i e s

(PS)
TST TST

Targ et Test sy st em

X

Pa n e l

PCO

se rve r

PCO

co n t ro l

PCO

vi e w

PCO

vi e w

TAP

PCO

vi e w

TAPCa l l e r M SCV i e w

Figure 1: GPF software architecture

On the left side of the illustration the target, i.e. the system to be tested, is shown. It consists of an
operating system (Nucleus, PSOS, …), the FRAME, the test interface TST and several protocol stack
entities. The FRAME, which abstracts from underlying operating systems and provides additional functionality,
consists of several libraries, which are linked to the entities and the test tools. Therefore, the user who is
only interested in testing does not have to care about the FRAME (see [FUG] for further information on
the FRAME).

The test interface entity is running inside an independent Windows process. It abstracts from the real
interface (simulated USART, USART or Socket interface), so that the user has a unique software interface
for testing regardless of implementation details of the underlying hardware interface. TST is started
automatically by the test tools whenever it is needed, but the user may change driver settings with an
additional call of TST.

The entities of the target system are tested using the TAP, which stimulates these entities via the test
interface TST. TAP sends primitives to an entity of the PS, waits for a reacti on of the PS (i.e. waits for
a primitive from the entity under test) and compares the received primitive with the expected one. Test
cases are produced from so-called test documents. These documents are written in MS Word. Normally,
each document contains the test cases for one PS entity. The user can build test cases using the scripts
mktc, mkalltc and mkallin1tc.

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 7/14

xPanel provides a mobile-like keypad and a screen for display response. It can be used for stimulating PS
entities, too (see [XPAN] for further information on xPanel).

The components of PCO2 (PCOServer, PCOController and PCOViewers) are used to track all traces and
primitives exchanged via the test interface. The PCO server is the fundamental part of PCO2. It receives
traces and redirected primitives from a testinterface-entity running on top of the FRAME. The main purpose
of the PCOController is to change the status of a running PCO server and to send CONFIG-primitives to
the stack via the server. There is a GUI (pco_ctrl.exe) and a command line based PCOController
(pcoc.exe). The PCOViewer is WIN32-Viewer, available in two versions: with CCDEdit-support
(pco_view.exe) and without (pco_miniview.exe). The first one needs the ccddata_dll.dll to run which has
to be built with the current cdg-files (if not delivered as well). PCOViewers are used for formatted output
of traces and primitives using several filters. Besides, it is also possible to export files in a format which
can be read by MSCView (~.dbg files). As can be seen from the picture there is only one server and
one controller concurrently running, but it is possible to execute several PCOViewers simultanously, e.g. with
different filter settings.

MSCView can be used to display the expected flow of messages/primitives of a test case. For this purpose
MSCView evaluates test definition scripts (~.tds files). For each test case a tds file is produced while
generating executable test case DLLs. In addition, MSCView is able to show the time structure of already
executed test cases from ~.dbg files exported by a PCOViewer.

TAPCaller is a graphical front-end to control all test tools. Its main purpose is to provide a user-friendly
interface for the TAP. Besides, it can be used for logging flows of primitives using PCOServer, viewing test
results with PCOViewers and it is possible to start MSCView.

VCMS is a version of the Condat Multitasking System (CMS) used for Windows NT 4.0. CMS is an
operating system layer that supports the split of applications into several, independent and communicating
processes and their quasi-parallel processing. VCMS is used to communicate between the frame and the
PCO stuff. Since VCMS is implemented as a Dynamic Link Library the user does not have to care about
it. The tools do all things necessary for the communication between them.

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 8/14

3 Necessary Libraries

For the subsequent build steps and test tool executions the following Dynamic Link Libraries are needed or
are useful:

ccd.dll functional part of CCD

cms.dll CMS (Condat Multitasking System)

frame_wn.dll the FRAME for Windows NT

ipc.dll extension of CMS (needed by PCO)

misc_wn.dll miscellaneous stuff (part of the FRAME)

moanbtn.dll enables moan button for GPF GUI tools in the system tray (for complaints about
these tools), not mandatory for well-functioning of the GUI tools

tif_wn.dll test interface drivers

The DLLs can be found in GPF's binary directory (currently "\gpf\BIN"), except ipc.dll (in
"\gpf\tools\bin"). For the debug versions of the frame libraries a "_db" is appended at the end of the
file name, e.g. "frame_wn_db.dll". The debug versions of the libraries are in a subdirectory of the binary
directory (currently "\gpf\BIN\debug", or "\gpf\tools\bin\debug" for "ipc.dll").

All other DLLs and executables that are needed for testing are mentioned in the text below.

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 9/14

4 Build steps

Requirements for all subsequent build steps: 4nt with a project specific Initvars.BAT already
started

4.1 SAP/MSG documents and ccddata_dll.dll

SAP documents describe the structure of primitives interchanged between the entities of one PS. MSG
catalogues specify the composition of messages that are sent from an entity to its peer via the air interface
as specified by standardisation organisations. In order to use these messages and primitives within a PS or
for the test tools, "makcdg.bat" has to be called. This batch file use doc2text, XGEN, CCDGen, make and
a C compiler to produce include files and libraries.

CCDDATA is a library that represents the cdg tables and constants generated by CCDGEN. It must always
be rebuilt if the interfaces defined in the SAP and MSG catalogues have changed. The CCDDATA library
can be used by tools as well as the PS.

4.2 TAP2

TAP2 uses Ccddata_dll.dll as source that describes how to build up a message or primitive. Therefore,
TAP2 does not need to be compiled and linked each time a MSG or SAP document is changed, only
"Ccddata_dll.dll" has to be rebuilt. That is why a TAP2 executable "tap2.exe" can be found in GPF's
binary directory.

4.3 Test Cases

Further documentation: [TCC]

When using TAP, test cases compiled as Dynamic Link Libraries are necessary. The description of the test
cases are stored in MS Word documents. GPF provides three batch files for generating executable test
cases. Two out of them are described here. In order to create one executable test case, the batch file
MKTC.BAT is used. The following line has to be executed from a 4NT box:

MKTC –gen <Entity> <TestCase>

Example: MKTC –gen CC CC001

The batch file MKALLTC.BAT is provided to perform the preparing of all test cases of a test document with
one command. The command is called from a 4NT box:

 MKALLTC <Entity>

Example: MKALLTC RR

The batch files MKALLTC and MKTC use doc2text, TDSGen, MAKE and a C compiler in order to build
test case DLLs.

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 10/14

5 Test Tools

5.1 TST

Required binaries for usage: TST executable

The test interface entity is running inside an independent Windows process. It is started by the test tools
automatically, but the user may change the test interface driver or its settings by calling TST from
command line. The following command line applies to TST:

 TST interface [interface options]

TST is the name of the test interface executable, i.e. "tst.exe". Supported interfaces are simulated USART
(interface="sim"), serial interface (USART, interface="com "+ comport number) and socket inter face
(interface="socket " + hostname).

Example: tst com 1

The option "-h" lists all other options for TST. This option can also be used for all command line tools
described below.

5.2 TAP2

Required binaries for usage: TAP2 executable

 PS executable

 Ccddata_dll.dll

 Compiled test cases

Further documentation: [TCC]

In its simplest form, the processes needed for a test are started from the command line of a 4nt Box. At
first start a PS. In order to start TAP2 the following command line is to be used :

Tap2.exe [options] testcase[s]

Tap options can be used to change default settings, e.g. the interface (default: simulated USART). The
parameter "testcases" consists of the directory where test case DLLs reside and a list of test cases that
should be executed. For a short description of other command line options call TAP with the parameter "-
h".

Example: tap2 z:\gsm\condat\ms\test\test_cc CC001

Unlike former versions, the TAP on new FRAME produces only one output file which contains the date and
time of test execution as well as the test verdict. All other tracking and tracing is done by PCO2
components.

5.3 PCO

Required binaries for usage: PCO executables (pco_srv.exe, pco_view.exe, pco_ctrl.exe/pcoc.exe)

 PS executable

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 11/14

 xPanel or TAP2 executable for stimulating the PS

 Ccddata_dll.dll

 Compiled test cases when used with TAP2

Further documentation: [PCO2]

PCO is an independent tool which can be used without TAP, e.g. with xPanel. As mentioned before, PCO
consists of three parts: PCOServer, PCOController and PCOViewer. The user needs to start a PCOServer,
if he or she wants to do anything with PCO. There are three main application scenarios, which are
described in this document.

5.3.1 Viewing flow of traces and primitives

Start the PCOServer and a PCOViewer. Start the protocol stack. Start TAP with the test case that should
be executed or xPanel to stimulate the protocol stack. You will see the flow of test data in your
PCOViewer.

5.3.2 Logging test data

 Using the command line PCOController: Start a PCOServer and a 4nt box. Call "pcoc.exe" (the
command line PCOController) from your 4nt box with the parameter "-start <testname>" to start a
test session named "testname". Then you can start TAP or stimulate the running protocol stack with
xPanel. Call "pcoc –stop" at the end of your test session.

You may change the test session path with the command line option "-spath <path>" before starting
the test session. The log files are written to the specified directory.

 Using the controller with a GUI: Start a PCOServer and "pco_ctrl.exe" (the PCOController with GUI).
Switch to "Online mode" with the uppermost button if necessary. Type a name for your test session in
the provided edit box. Use the "Start logging" button to trigger the logging of test data. Stimul ate the
protocol stack with TAP or xPanel. The button "Stop logging" is used to terminate the test session.

All test data logged during the test session can be found in a file named after the test session name with
the file extension ".pco". To view these results later follow the instructions in the next section.

Viewing flow of traces/primitives and logging test data can be done together.

5.3.3 Viewing already logged test data

 Using the command line controller: Start a PCOServer, a PCOViewer and a 4nt box. Call "pcoc.exe"
in your 4nt box with the parameter "-open <testname>" to load a test session. After executing "pcoc
–distrib" the primitives and traces from the log file are presented in the PCOViewer. Call "pcoc.exe"
with the parameter "-close" to quit viewing test data in the PCOViewer.

 Using the controller with a GUI: Start a PCOServer, a PCOViewer and the PCOController
("pco_ctrl.exe"). Switch to "Replay mode" with the uppermost button if necessary. Select a session
name and push “Replay”. Connected PCOViewers will show the logged traces/primitives.

It is possible to do all the things described in this chapter with the TAPCaller as well (see chapter "5.4.3
Using PCO2 application scenarios within TAPCaller").

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 12/14

Besides, with the GUI-PCOController the user is able to create test environments, i.e. a list of applications
specified in an ASCII-file will be started when starting the controller. This may simplify the call of the
different tools when used more than once (see [PCO2] for further information).

5.4 TAPCaller

Required binaries for usage: TAPCaller executable (tapcaller.exe)

TAP2 executable and compiled test cases

 PS executable

 Ccddata_dll.dll

 PCO executables if desired

Further documentation: [TCAL]

5.4.1 TAPCaller behaviour while starting

Since the PCO2 is not part of the TAP, these tools have to be handled independently by TAPCaller. While
starting TAPCaller it is therefore tested whether a PCOServer is already running. I f not, it is started from
GPF's binary directory of the current working drive. The user is able to avoid starting PCOServer with the
command line parameter "-nopco".

5.4.2 Necessary steps to start a test case

Start TAPCaller. Load test case DLLs using the dialog accessible with the menu item
<Configuration><Selection>. Using the menu option "<Configuration><Settings>" the dialog box "Settings"
is displayed.

There the user has to specify the location of the appropriate TAP executable and the interface which
stimulates the protocol stack (default: simulated USART) on the sheet "TAP Options" as well as the
location of the PS executable on the sheet "Test Tools". If the user wants start the PS himself/herself the
checkbox "Enabled" has to be left open.

Leave the dialog and start test cases using the menu items <Control><Start test> (starts all tests in the
main window) or <Control><Start selected tests> (starts only selected test cases).

5.4.3 Using PCO2 application scenarios within TAPCaller

In order to work correctly TAP and PCO have to be started from the same directory. Therefore, whenever
the path of TAP is changed the user is asked whether TAPCaller should change the directory for the PCO
executables, too. It is recommended to accept this automatic configuration. Then the old PCOServer is
stopped and a new one from the new TAP directory is started.

5.4.3.1 Viewing flow of traces and primitives

Configure TAPCaller as described in subsection "5.4.2 Necessary steps to start a test case".

In order to watch all traces/primitives while executing a test case, the user has to activate PCOViewer
configurations. This is possible with the sheet "Test Tools" of the menu item <Configuration><Settings>. In
the centre of this dialog the user can choose among a list of PCOViewer configurations which can be

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 13/14

found in the directory above this list. At least he or she is able to select the "Standard Viewer". With this
selection the PCOViewer is called without any parameters. Then, the last config uration used on this machine
is loaded by PCOViewer.

Leave the dialog and start test cases. For each test case PCOViewers with the selected configurations are
started. It terminates at the end of the test case. If the user wants to have a look at the trac es/primitives
longer he or she may use the "H"-button of TAPCaller's toolbar. This stops the sequence of test case
execution at the end of each case.

5.4.3.2 Logging test data

Configure TAPCaller as described in subsection "5.4.2 Necessary steps to start a test case".

In order to log all test data the sheet "Test Tools" of the menu item <Configuration><Settings> has to be
used. The check box "Log with PCO while testing" has to be activated. For each test case a lo g file is
created that is stored in the same directory as the file with the test verdict. The logging is started and
stopped automatically at the beginning and termination of each subsequent executed test case.

Viewing flow of traces/primitives and logging test data can be done together.

5.4.3.3 Viewing already logged test data

Beside test verdict files it is possible to access already created PCO log files with TAPCaller. The user
does not need a TAP and a PS executable for this purpose, but a list of test cases, a PCOServer and a
list of PCOViewer configurations.

Load test cases with the dialog of the menu item <Configuration><Selection>. A PCOServer is mostly
already started. In order to choose among a list of PCOViewer configurations, the user has to open the
sheet "Test Tools" of the menu item <Configuration><Settings>. In the centre of this dialog the list with at
least one entry "Standard Viewer" appears. With this selection the PCOViewer is called without any
parameters. Then, the last configuration used on this machine is loaded by PCOViewer.

Leave the dialog and click with the right mouse button on the test case for which the PCO log file should
be presented. A context menu appears. It contains an entry for the verdict file and one entry for each
selected PCOViewer configuration if the respective files are found (the verdict and the PCO log file). With
a click on an appropriate entry a PCOViewer with the chosen configuration is started and the PCO log file
is loaded.

5.5 Crash, malfunction, unexpected behaviour

Developers of the described tools tried to foresee possible error situations. Therefore each tool report errors
and their causes, if known. Generators produce error files, GUI programs use message boxes and so on.

Nonetheless, there are situations where no tool is able to determine the reason for failure. Listed below are
common errors and possible solutions.

 Since many tools use DLLs, the dependencies between them should be resolved. Besides, a missing
DLL could be a problem. Have a look at the list in chapter "3 Necessary Libraries" or view the
dependencies with an appropriate tool. This may give hints to a solution.

 Have a look at the documents referenced above. Maybe the strange behaviour of the tools i s intentional
:-)

GTPF - GPF Test Platform User Guide (8434.312.00.001) NDA - Confidential

 (Condat AG, 1999-2002) March 21, 02 14/14

 Close all tools and restart them.

 After crashes there are sometimes seemingly active processes in the task list. Use the task manager in
order to look for processes that are not working anymore.

 Sometimes Windows needs a reboot ;-)

 If nothing else helps, ask the developers of the tools.

