
technical_document_20030404.dot

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical Note

GPF SOFTWARE RELEASE APPROACH

Document Number: 89_03_09_00506

Version: 0.4

Status: Draft

Approval Authority:

Creation Date: 2001-Sep-05

Last changed: 2015-Mar-08 by KTH

File Name: gpf_memo_releases.doc

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 15

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, mod-

ifications, enhancements, improvements, and other changes to its products, software and se rvices at
any time and to discontinue any product, software or service without notice. Customers should obt ain
the latest relevant information during product design and before placing orders and should verify that

such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-

knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tec h-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated

by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-

sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be

used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third

party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI

patent right, copyright, mask work right, or other TI intellectual property right relating to any combin a-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may

require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronical-
ly or mechanically, including photocopying and recording, for any purpose without the express wri tten
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

2001-Sep-05 FR 0.1 1

2001-Nov-5 FR 0.2 2

2003-Jul-3 FR 0.3 3

2004-Apr-19 KTH 0.4 4

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 15

Notes:

1. Init ial version

2. Change of minor number handling

3. Added gpf_updates.csi; component list update

4. Conversion to TI document format, update of component list and f ile locations

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 15

Table of Contents

1 Introduction ..5

2 History ..5

3 Components ...5

4 Variants ..6

5 Labels ...6

6 Directories and Files ...7

7 Combined Releases ..8

8 GPF Internal Rules ..9

8.1 Development ..9

8.1.1 Branch and View Names ..9
8.1.2 Working as usual ...10
8.1.3 Bug Fixing ...11
8.1.4 Working with Variants...11

8.2 Integration ..12

8.2.1 From Development...12
8.2.2 From Bug fixes ..14

Appendices ..15

A. Acronyms ...15

B. Glossary ...15

List of Tables and Figures

Table 1 – List of GPF Components..5
Table 2 – ASSIST Component used for release management ...7

Figure 1 – Parallel new Features ...10
Figure 2 – Two Developers ...10
Figure 3 – Parallel Feature Development ...11
Figure 4 – Bug Fixing ...11
Figure 5 – Variants ...12
Figure 6 – Standard Integration...14
Figure 7 – Integration of a Variant ...14
Figure 8 – Bug fix Integration ..14

List of References

 [C_7010.801] 7010.801, References and Vocabulary, Condat AG

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 15

1 Introduction

This document describes the way GPF releases software to the other teams.
Furthermore the GPF internal development and integration process is represented.

2 History

The old rules gpf_memo_cclabels.doc and gpf_memo_cclabeling.doc are obsolete. See
gpf_memo_ccproblems.doc to understand the reasons to change these rules.

3 Components

GPF releases several software components. A component is a set of files (sources and/or binaries)
which is fairly "autonomous", i.e. it's binaries can be build without sources from other components

(except H files) and could be used independently from the other components (except DLLs).
For each component there exists a label "class" (see 4.), a readme file and a file-list batch file (see 6.).
The current components are:

component content home directory
GPF\...

Resp.

ASSIST pseudo component for files used for release man-

agement

assist FR

BUSYB Build System Berlin util\busyb CKR

CCD condat coder decoder CCD KTH

CCDDATA CCD coding tables CCD HSC

CCDGEN mdf + pdf compiler util\CCDGEN SIJ

FRAME frame + all supported OS layers + TST +

all supported test interface drivers

FRAME MP

GDI GDI documents DOC\gdi FR

GENTLE Generic Test and Logging Environment \util\gentle SPRK

MBTN moan button util\moanbtn SPRK

MSCVIEW graphical flow viewer util\mscview SPRK

NTUTILS small NT utilities (ps, pkill etc) util\nt_utils SPRK

PCO viewer for traces and primitives util\pco SPRK

PCON primitive converter TST\pcon HSC

SAPE SAP and message editor util\sape TVO

SHM Shared memory shm_nt RME

STACKSIZE Stack size calculator util\stacksize FR

STR2IND tool for binary tracing util\str2ind CKR

STRCHECK checking generated structures util\strcheck LG

TAP test application util\tap HSC

TAPCALLER GUI for TAP util\tapcaller SPRK

TCGEN Test case generator util\tcgen SPRK

TDC Test language util\tap\tdc JHO

TDSGEN test case compiler util\TDSGEN ES

TESTSTACK sample protocol stack for testing the tools util\teststack CKR

TOOLS 3
rd

 party tools tools CKR

VCMS virtual condat multitasking system for NT vcms-nt RME

XGEN word tables to mdf/pdf converter util\xgen ES

XM make GUI for GPF components util\xm SPRK

XPAN keyboard and display simulation util\xpanel SPRK

AUX the rest - SIJ

Table 1 – List of GPF Components

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 15

4 Variants

Sometimes it is necessary to maintain different versions of one component in parallel (see 8.1.3.).
These parallel versions of a component are called 'variants'. Normally there is only one single variant

for each component, this variant is called the 'main' variant. Other variants should have speaking
names, e.g. “UMTS” for a special variant of a component needed by the UMTS project.
The official version of a variant resides on a branch having the same name as the variant, in particular

the main variant resides on the main branch.
Furthermore the variant name is used to indicate a variant in the label name, in the names of devel-
opment and bug fix branches and in the csi-files (see 7) supporting this variant. Exception: The name

of the main variant ('main') is not part of the names mentioned in last sentence.

5 Labels

We distinguish between developer labels and integrator labels. The developer labels are set by the
developer of the respective component. The integrator labels are defined as result of a integration

process, which is described later in this document.
The names of the developer labels have the following structure:
XXX_M.N.K for the main variant, otherwise XXX_VVV_M.N.K with

XXX = component (e.g. FRAME),
M = major version (updated only when the component will be redesigned),
N = minor version (updated when new features are introduced),

K = step number (starting with 0, updated as needed),
VVV = name of the variant (i f not 'main', e.g. UMTS)

The integrator labels are build from developer labels by adding the prefix G_.

Examples: CCD_1.6.0, FRAME_2.4.7, TAP_UMTS_1.3.2, G_CCD_1.6.0, G_TAP_UMTS_1.3.2
All these labels are never moved.

Applying such a label to a component is always done by labeling all files belonging to that component.
That means, to select a specific version of a component one and only one element statement in the

config spec is required.

Remark: For internal use within the GPF team some more label types are allowed:

▫ floating labels: The names of such contain at least the string 'FLOAT'.
Floating labels are the only labels allowed to be moved !
It is not allowed to use these labels for tests outside GPF !

▫ labels for parallel development: XXX_VVV_M.N.K_YYY_S with YYY being an abbreviation for the
developed part and S being the sub version of this.
E.g. the multiplexer driver for the FRAME has been implemented parallel to the general FRAME

development (based on FRAME_2.3.6), was labeled with FRAME_2.3.6_MUX_1 and finally
merged into FRAME_2.4.x.
It should be avoided to use these labels for tests outside GPF.

All files belonging to one GPF release are labeled with a common label. To identify main releases the
label has the following structure:

 G_GPF_V ,
 with V = current version number.
Sometimes intermediate release versions are required to update a release. GPF marks these versions

with an alphabetic character following the major version indicator. These alphabetic characters in-
crease with the amount of intermediate releases. To identify intermediate releases the label has the
following structure:

 GPF_V_x ,
 with V = current version number and x = alphabetic character to indicate the interme-
diate version.

Example: G_GPF_16 (main release), GPF_16C (third intermediate release, descendant of

G_GPF_16).

All these labels are never moved.

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 15

6 Directories and Files

Unless a newer directory structure is introduced the following rules apply to the GPF VOB.
Every file in the GPF VOB belongs to one and only one GPF component. All source files contain a

comment near the beginning of the file indicating the component this file belongs to.
In the directory assist one can find all the files to understand the file/directory structure of GPF. It also
provides batch support for deliveries of GPF software. In particular it contains:

file name(s) Content

components.html Component list = up-to-date version of the list above (see 0.)

readme_xxx.txt readme file for component XXX, one per component,
contains short description and version history for this component

files_xxx.bat file lists of component XXX as batch file (see below), one per com-

ponent
labelcomp.bat batch for labeling all files of a component
labelall.bat batch for labeling all components (used by GPF integrator only)

gpf_mlatest.csi Config spec include file for selection of GPF /main/LATEST files
gpf.csi Config spec include file
gpf_VVV.csi Config spec include file for variant VVV, 0 or more such files

gpf_VVV_updates.csi Config spec include file for variant VVV, 0 or more such files

gpf_ir_template.txt Template for GPF internal integration requests

Table 2 – ASSIST Component used for release management

In the following part the most important assist-files are described in detail:
1. The relevant files for each component in a dedicated version are listed and described in the co r-

responding readme_xxx.txt file. gpf_mlatest.csi ensures that these are always selected in version
/main/LATEST.

2. The files_xxx.bat-files can be used universally, e.g. to easily deliver a GPF component to external

customers. They include at least three listings: The source file list, the binary file list and a list with
all directories used by xxx. The binary file list contains all files which are necessary to use the
component. It may also contain source files (e.g. H-files). The source file list contains all files,

which belong to the component, but are not contained in the binary file list.

Furthermore a list with files from other components needed by the binaries of xxx and a list with

files from other components expected by the sources of xxx may be included.

All these lists can be accessed in the way described below.

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 15

Specification of the files_xxx batch:
synopsis
 files_xxx {S|B|D|N|E} command [parameters]

description

 files_xxx applies a given command to every file of the selected list of component

xxx with

S … source list
B … binary list
D … directory list

N … list with files of other components needed by the binaries (optional)
E … list with files of other components expected by the sources (optional)

In particular: for every File F of the respective list command F [parameters] will be

called.
examples
 files_ccd B echo

 prints a list of all CCD binary files to stdout
 files_frame S "cleartool checkin -nc"

 checks in all Frame source files
 files_pco D "cleartool mklabel PCO_2.2.7"

 applies the label PCO_2.2.7 to all PCO directories
 files_tapcaller B copy d:\delivery\bin

 copies all binaries of TAPCaller to the directory d:\delivery\bin.
 files_yasc S cp -PR d:\delivery

 copies all source files of YASC including their directory structure.

3. labelcomp.bat can be used to label all files and directories of a component. The syntax is as fol-
lows:
 labelcomp <COMPONENT> <label>

labelall.bat is used by the GPF integrator only to set the G_-labels.

4. GPF maintains several config spec include files described in 7. The include files used by Clear-
Case cannot be version controlled objects itself. Instead a particular directory on a server is used
to hold these files (\\Dbgs12\csi But since it is not a good idea not to track the changes of such

central files, copies of these exist in the GPF VOB under version control (Actually the files on the
\\Dbgs12 server are copies of this version controlled files).

7 Combined Releases

GPF provides combined releases, i.e. releases of all GPF components which work well together. This
is done by means of config spec include files which contain valid label combinations.

For GPF release V the config spec include file is \\Dbgs12\csi\gpf_V.csi. (V is actually the version
number of \gpf\assist\gpf.csi).
These files are never changed, and the labels contained in these files are also never changed.

The official releases are updated if necessary (e.g. in case of bug fixes) in the following way: New
labels are assigned to the changed components. The complete set of these labels for a release V is
collected in a file \\Dbgs12\csi\gpf_V_updates.csi.

The labels are fix as always but this file will be changed if new fixes are available.
To build and test customer releases a numbered .csi file should be included. That means a con-
fig-spec of a member of the ITM team should contain a line like this:
include \\Dbgs12\csi\gpf_14.csi

The updates -files contains the updates only, i.e. you need both c.si files:
Include \\Dbgs12\csi\gpf_14_updates.csi

include \\Dbgs12\csi\gpf_14.csi

The gpf_V-updates.csi is for development only, never use it for building customer releases !

It might be necessary to release also software from parallel development branches, i.e. different va-
riants of particular components. This will be done by special named include files: gpf_LLL_V.csi,
where LLL is the name of the variant and V a version number (see 8.1.3).

file://Dbgs12/csi
file://Dbgs12

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 15

Furthermore a file gpf_mlatest.csi exists which should always be included at the beginning (right after
“mkbranch xxx”) of a developers config spec. It ensures that some dedicated GPF files (like
readme_xxx.txt) are always selected in version /main/LATEST. The version number is appended like

this: gpf_mlates_5.csi.

8 GPF Internal Rules

This chapter is mainly meant for the GPF developers and contains very specific information and rules.

8.1 Development

In the following paragraphs the general GPF development procedure is described.
At first the naming conventions are presented and afterwards solutions for a lot of typical situations are
given – emphasized by graphical examples. For each of them the following applies: The columns

represent branches (titles == names of them) and the development flow goes top down marked by
corresponding labels (i.e. FRAME_2.3.5). In addition dotted lines stand for development and straight
lines for a merge.

Of course these graphics simplify the real situation. Normally each component consists of a number of
files and directories with different version trees. For a new component release all the files and directo-
ries have to be labeled. Thus it is possible and will frequently occur that one version of a file/directory

carries more than one component label. (Even float labels on the main branch may exist !)

8.1.1 Branch and View Names

The general rule is: all tasks are done on different branches. To avoid confusion, view name and

branch name should be the same. At least the views shall have meaningful names.
That means also: all tasks should be done in different views since e.g. the management of different
branches in one view is somewhat difficult.

The name of the integration branch (integration destination) is always equal to the name of the
variant. It is therefore the main branch for the main variant (which is the only variant for most compo-
nents).

The names of the development branch/view follow the scheme: zy_xxx_dev with
zy = name (abbr.) of the developer
xxx = name of the component

Optionally and depending on the development state (e.g. many different branches) of the correspond-
ing component the major or even the minor version number may be included -> zy_xxx_M.N_dev with

M = major version

N = minor version
As explained in 5 sometimes parallel development of a special feature of a component is possible. To
mark this in the branch-name as well an extra abbreviation may be added -> zy_xxx_M.N_yyy_dev

with
 yyy = abbreviation for the parallel developed feature
Examples: sij_ccd_dev, rk_pco_2.3_dev, rk_frame_2.3_mux_dev, mp_frame_2.4_dev

If development of other variants then main is necessary (see 8.1.3.) the variant name has to be in-
cluded in the branch name, too ->zy_xxx_VVV_M.N_yyy_dev, with

zy = name (abbr.) of the developer
xxx = name of the component
VVV = variant name

M = major version (optional)
N = minor version (optional)
yyy = abbreviation for a parallel developed feature (optional)

These branch names correspond to the labels assigned to versions on these branches:
Examples: hsc_tap_UMTS_1.0_dev, rk_pco_LTS _2.3_dev

Bug fixes are done on branches distinct from the development branches.
The names of the bug fix branches/views must contain the version numbers: zy_xxx_M.N_fix with

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 15

zy = name (abbr.) of the developer
xxx = name of the component
M = major version

N = minor version

8.1.2 Working as usual

Development of a component should usually start on a general development branch like

mp_frame_dev. If new features must be developed in parallel, a dedicated branch may be created like
in Figure 1.
 mp_frame_dev mp_frame_2.4_dev

 FRAME_2.3.5
 FRAME_2.4.0

 FRAME_2.3.6
(Integration) FRAME_2.4.1

 FRAME_2.4.2
(Integration)

Figure 1 – Parallel new Features

Another reason for more than one development branch is obviously two or more developers working

on the same component. One of them is the maintainer of the component and on his/her branch eve-
rything should be merged together at last. (see Figure 2)
 mp_frame_dev rk_frame_2.3_dev

 FRAME_2.3.5

 FRAME_2.3.6 FRAME_2.3.6

(Integration)

 FRAME_2.4.0
(Integration)

 Figure 2 – Two Developers

As already mentioned in 6 sometimes a dedicated new feature will be developed parallel to the main
development of a component, maybe from another co-worker. In this case label and branch names will

contain the feature. Of course it’s always a good idea to merge the developed stuff a.s.a.p. back to the
main development. Moreover it should be avoided to announce such feature labels to other teams.

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 15

Figure 3 will give an overview of such a scenario.
 mp_frame_2.3_dev rk_frame_2.3_mux_dev

 FRAME_2.3.5
 FRAME_2.3.5_MUX_1

 FRAME_2.3.6

(Integration) FRAME_2.3.5_MUX_2

 (Delivery … to be avoided)

 FRAME_2.4.0

(Integration)

Figure 3 – Parallel Feature Development

8.1.3 Bug Fixing

Bug fixes are necessary whenever an error has been reported for a former version of a component

and the newest version cannot be delivered for a reason. Thus the older version has to be fixed “in
situ”.
Of course the bug fix should be merged into current development a.s.a.p.

Figure 4 shows a the way to do all this with ClearCase for a component XPAN:
 rk_xpan_dev rk_xpan_1.2_fix

 XPAN_1.2.4
 XPAN_1.2.5

 XPAN_1.3.0
 XPAN_1.2.6

 XPAN_1.3.1 (delivery to ITM)

 Figure 4 – Bug Fixing

See 8.2.2 for more details about the integration of bug fixes.

8.1.4 Working with Variants

Sometimes it is necessary to maintain two or more versions of a component – called variants - in pa-
rallel. What is meant here, is really development of different features in different versions, not bug
fixing in older versions. Anyway, this parallel development should not occur – unless it is absolutely

necessary.
Case I: A project team needs a new feature of a component. This feature is not needed by the other
teams. Solution: For this component a new feature version will be implemented, containing the r e-

quested feature, but in a backward compatible way. That means, the new feature has no effect if it is
not used.
In this case it is not necessary to do parallel development and therefore it is also not allowed !

Case II: A redesign of a component starts while feature development on the old version is going on. In
this case there is indeed parallel development, but not on the same code. The new design gets a new
major version number and development takes place as if the versions were different components

(which they in fact are).
Case III: Two teams need different new features, which cannot be developed sequentially due to
time constraints. In this case parallel development on different versions of the same code is neces-

sary. This case is regarded here.
What happens is that a new branch named like the name of the variant (e.g. UMTS) is created and all
component versions developed especially for this variant will be periodically integrated to this instead

of the main-branch (see 12 and Figure 7).

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 15

Furthermore all development branches and labels affected by/applied to objects changed for the va-
riant will contain the variant name, too (see 6 and 9).
Of course after some time the variant should be merged back to the main development of the compo-

nent.
The concrete development procedure is illustrated for component TAP in Figure 5.
 hsc_tap_dev hsc_tap_UMTS_1_dev

 TAP_1.0.3 last common version

 TAP_1.1.0 development before start of parallel work, not

completed
 TAP_UMTS_1.1.0 parallel version, branching from TAP_1.0.3, va-

riant UMTS

 TAP_UMTS_1.1.1

 TAP_1.1.1 TAP_UMTS_1.1.2 parallel development
(integration to /main and /UMTS,
two csi files exist: gpf.csi and gpf_UMTS.csi)

 TAP_1.2.0 TAP_UMTS_1.1.3

 TAP_1.3.0 first unified version

Figure 5 – Variants

Some more details concerning variants:
One of the parallel development branches is considered the 'main' variant. This variant is treated the
ordinary way as described above.

The other parallel branches (= variants) start at a certain feature level. The labels on these branches
carry the name of the variant. The minor version number starts with the increased feature level of the
version, from which the branch was taken.

Except for the additional name the parallel branches (=variants) are also treated the ordinary way. The
integrator maintains .csi files for all variants (see 7.).
The label of the unified version will be without the variant name, of course. This turns out to be the

new main variant. Its minor version number is by one greater than the greatest in all branches.
The following formalities apply for such parallel developments:
▫ Starting a parallel development, i.e. a new variant, needs the approval of both the respective

project manager and the CCL.
▫ Parallel variants have to be clearly marked within the integration requests (variant name).
▫ The history of the parallel development has to be documented within the readme file of the com-

ponent (in a pseudo graphical way similar to the figure above).
▫ A list with all variants and their descriptions has to be updated in GPF/assist.

8.2 Integration

In this context integration stands for the GPF internal integration process which includes merging all
new component files to the corresponding integration branch (usually /main), re-labeling them with
G_xxx-labels (see 5) and creating a new gpf.csi-file. Afterwards this file has to be integrated by the

other teams.

8.2.1 From Development

Integration normally takes place once a quarter, the current status report provided in the folder
\\dbgs2\deveng\cc\gpf\status_reports notifies about the detailed project planning. Exceptions are poss-
ible in urgent cases.

If there are new features to integrate the developer assigns a fixed label to the appropriate version of
her/his component and requests for integration to the GPF integrator.

file://dbgs2/deveng/cc/gpf/status_reports

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 15

Prerequisites:

▫ The readme_xxx.txt file is up-to-date (e.g. contains the description of the new features).
▫ The files_xxx.bat file is up-to-date.
▫ The new version of the component is tested and thoroughly labeled.

The integration request will be named like this: zy_ir_xxx_M.N.K.txt
zy = name (abbr.) of the developer
xxx = name of the component
M = major version

N = minor version
K = step number

It contains the following information:

Date:
Developer:
Component:

Label:
Variant:
Bug reporter: (customer number and ID or name, if internal)

*)

Bug report reference(s): (Conquest/gnats/Forum Ids)
*)

Cause and short description of change:
Usable for which projects/teams:

Readme changed ? (control question)
xxx_files.bat changed ? (control question)
List of changed files:

List of changed directories:
List of binaries to rebuild:
What and how was tested ? (Tests should be reproduceable by the integrator)

Known dependencies:

*)

in case of bug fix only (see next paragraph).
With this information the integrator merges the new releases of the components to the main branch or

to the variant branch respectively and does some basic tests. At least he/she tests if everything can be
compiled in all supported configurations. If everything works fine, the integrator assigns new
G_xxx-labels on the main/variant branch.

The merging of all GPF components has to be done at once. This is essential due to the common
directory problem (It might be a good idea to create a view containing the new versions first).
After integrating all GPF components the integrator creates a new gpf.csi file or gpf_L.csi file respec-

tively reflecting the new release and sends a compound integration request to the integrators of the
other teams.
The integrator provides the newest version of the .csi file as gpf.csi and all versions of this .csi file as

gpf_V.csi, where V is the version number of the .csi file (see 7.). For variants this applies accordingly.
The GPF developers, which had released new versions, increase the minor version of their
components.

This is necessary to be able to handle bug fixes. (There must be "room" for increasing step numbers.)

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 15

After all the standard integration for e.g. the component FRAME would look like this:
 <main> mp_frame_dev
 (or maybe: mp_frame_2_dev, hsc_frame_2.3_dev)

 FRAME_2.3.5

 FRAME_2.3.6

 G_FRAME_2.3.6 FRAME_2.4.0

 Figure 6 – Standard Integration

In case of the integration of a variant for component TAP the following picture would match:

 <main> UMTS hsc_tap_UMTS_dev

 (or maybe: hsc_tap_UMTS_1_dev)

 TAP_UMTS_1.0.1

 TAP_UMTS_1.0.2

 G_ TAP_UMTS_1.0.2 TAP_UMTS_1.1.0

 Figure 7 – Integration of a Variant

8.2.2 From Bug fixes

The integration of bug fixes is very similar to the normal process described in the previous paragraph.
The differences are:

1. For urgent customer related bug fixes it might be necessary to deliver them from the bug fix
branch directly, i.e. via integration request to the ITM integrator.

2. The bug fixing takes place in that version for which it was reported. All customers relying on that

version will get the fixed version from the bug fix branch. The developer responsible for that com-
ponent does the same fix also on the development branch (if not already done) and it will be int e-
grated the normal way next time.

3. Two additional entries in the integration request form have to be filled out (see above).
Figure 8 pictures the integration process for a component XPAN:
 <main> rk_xpan_dev rk_xpan_1.2_fix

 XPAN_1.2.4
 XPAN_1.2.5

 G_XPAN_1.2.4 XPAN_1.3.0
 XPAN_1.2.6

 XPAN_1.3.1 (bugfix-delivery to
ITM)

 G_XPAN_1.3.1
 XPAN_1.3.2
(final delivery to ITM)

 Figure 8 – Bug fix Integration

Technical Document

GPF software release approach (89_03_09_00506), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 15

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Tel-
ecommunication 2000
(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/ family of standards for 3G. This
initiative provides a global infrastructure through both satellite and terre-

strial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roam-
ing. <URL: http://www.imt-2000.org/>

http://www.imt-2000.org/

