
technical_document_20030404.dot

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical DocumentNote

G23-UMTS PROTOCOL STACK

SPECIF YING SERVICE ACCESS POINTS

Document Number: 06-03-22-DUO-0002

Version: 0.4

Status: Draft

Approval Authority:

Creation Date: 2001-Aug-08

Last changed: 2015-Mar-08 by SIJ

File Name: 8350_301_SAP_Syntax.doc

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 24

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, mod-

ifications, enhancements, improvements, and other changes to its products, software and se rvices at
any time and to discontinue any product, software or service without notice. Customers should obtain
the latest relevant information during product design and before placing orders a nd should verify that

such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-

knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tec h-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated

by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-

sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be

used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third

party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI

patent right, copyright, mask work right, or other TI intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may

require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronical-
ly or mechanically, including photocopying and recording, for any purpose without the express written
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

2001-Aug-08 LOE 0.1 Being

Processed

1

2001-Aug-31 LOE 0.2 Submitted

2001-Nov-20 CSH 0.3 Submitted

2003-May-07 XGUTTEFE 0.4 Draft

2003-Sept-16 SIJ 0.5 Being

Processed

2

Notes:

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 24

1. Init ial version

2. Content update to the status of CC label UMTS_tools_2003616 + new doc number 06-03-22-DUO-0002

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 24

Table of Contents

G23-UMTS Protocol Stack..1

Specifying Service Access Points ...1

1 Introduction ..6

2 Structure of the Specification ...6

2.1 Declarations ..7

2.1.1 Description ..8
2.1.2 Pragmas..8

2.1.2.1 PREFIX ...9
2.1.2.2 COMPATIBILITY_DEFINES ...9
2.1.2.3 ALWAYS_ENUM_IN_VAL_FILE ...9
2.1.2.4 ENABLE_GROUP ..9
2.1.2.5 CAPITALIZE_TYPENAMES..9

2.1.3 Definition ...9
2.1.3.1 Definition for Constants ..9
2.1.3.2 Definition for Primitives ...10
2.1.3.3 Definition for Functions ...11
2.1.3.4 Definition for Parameters ..12

2.1.4 Elements ...13
2.1.4.1 Elements in Structures..13
2.1.4.2 Elements in Unions ..15
2.1.4.3 Elements for Functions ...15
2.1.4.4 Values ...15
2.1.4.5 History ...16

2.1.5 Content Types ...16
2.1.5.1 Basic Types ...16
2.1.5.2 Enumerations...17
2.1.5.3 Structures ..17
2.1.5.4 Unions ...18

2.1.6 Element Modifiers ..18
2.1.6.1 Making Elements Arrays ...18
2.1.6.2 Making Elements Optional ..20
2.1.6.3 Making Elements Pointers ..20

2.1.7 User Defined Types ...20
2.1.8 Description of C-Name ...21
2.1.9 “Definition C-Name” versus “Element C-Name” ..21
2.1.10 Interactions ..22
2.1.11 Output consequences of using the Group column ..23

3 Typical Problems ..23

4 Examples ..23

Appendices ..24

A. Acronyms ...24

B. Glossary ...24

List of Figures and Tables

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 24

List of References

[ISO 9000:2000] International Organization for Standardization. Quality management sys-
tems - Fundamentals and vocabulary. December 2000

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 24

1 Introduction

This document contains a description of the way service access points are specified for entities in the TI protocol stacks. The
definition of a service access point is based on the layered protocol stack model. A service access point identifies the se r-

vices provided by an entity to other entities p laced at a higher level in the protocol stack, either in a h igher layer or with h ier-
archically higher rank w ithin the same layer.

A service access point completely defines the inter face to be used to gain access to a set of services provided by an entity.

The definition of the inter face can be based on a set of primitives, a set of function calls or both, depending on the nature of
the services provided by the entity.

In TI terms, a service access point is defined through a Microsoft Word document. The document contains a description of
the service access point in a specific format, which can be processed by the TI tool chain, resulting in output for the various

TI tools (test tools, tracing tools, programming tools etc.). This format is fairly simple and changes to primitives etc are easily
done. If the end-result is seen from the viewpoint of a programmer working on implementation of a protocol stack, the end -
result corresponds to a set of includable source files containing the definition of the SAP as C declarations. In addition to this

the orig inal SAP document also serves as documentation.

One of the great benefits of using the SAP concept is that the resulting code will be structured according to the code sta n-
dard. This way consistency is ensured in declarations as names of valid flags, coun ters etc. will have a consistent format

throughout the code. This way it will a lso be easier to read read code written by different developers, as the code standard
will be kept. Furthermore there will be no name clashes since newer SAP documents can use PREFIX on entity level or alias
name on element level. All in all this SAP concept is a single source concept, which allows for both code and documentation
in one. That is, it is possible to maintain the documentation and the code at the same time and at the same time ensure

consistency in the code.

The aim of this document is to explain how to define service access points. First this document w ill describe how the service
access point must be structured and how the different elements can be combined.

Finally th is document will describe the mapping from the SAP into the resulting C code and describe some of the features in
more detail. This will a lso include a total overview of all the legal and illegal combinations of elements, columns etc. This
document does in some cases illustrate some points by use of C examples. Such examples will, however, be subject to

changes in case of a lterations to the TI coding standard.

2 Structure of the Specification

As it must be possible for the TI tool chain to process docu ments containing SAP specifications, the structure of the docu-
ment is standardised. I f the structure of the document is incorrectly implemented, the tool chain will not recognise the docu-

ment as a SAP specification dur ing translation. The document structure must have front page, table of contents, document
control sections and introduction, which is provided in the TI SAP document template. In addition to this the SAP specifica-
tion has up to four "active" main sections:

Constants - declares all g lobal constants used in primitives, parameters or functions

Primitives - declares all primitives used in the SAP

Functions - declares all functions provided by the SAP

Parameters - declares all parameters included in pr imitives, functions or other parameters

The sections must be sequential in the document (e.g. [2,3,4,5] or [2.1, 2.2, 2.3, 2.4]). I t is not possible to use subsections in
the constants section. The primitives’ section, functions section and the parameters section can have subsections, one for
each primitive, function or parameter. A maximum of three sublevels are allowed, but it is not recommended to use more

than one additional level (e.g. 3.2 or 4.20). Header styles are used to indicate the headline for each section/subsection.

If no functions are declared for a SAP the functions section can be left out. All other sections must be present, but empty
sections are allowed if no declarations are to be made. An exception is the primitive section, which must contain at least one
primitive.

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 24

It is possible to insert multi-line comments in the document by use of the standard C syntax of "/*" and "*/" for begin and end
of the commented section. The "/*" and "*/" must be the first characters on a line. The tool chain simply skips the text b e-
tween them. This can also be used to inser t th ings, which is not directly a part of the SAP such as for instance a MSC.

2.1 Declarations

Each of the active sections described above corresponds to a declaration. The declaration specifies
either a set of constants, primitives, parameters or functions. As part of the syntax of a declaration, a

number of keywords must be used to separate the content into parts. The parts that make up a section
containing a declaration are:

 Description

 Pragma

 Definition

 Elements

 Values

 History.

Some of these par ts are mandatory while others are optional but if present they have to be in the order presented above. In
addition to this not all of the par ts above are allowed in all sections, as it would not make any sense. For a quick and co m-
plete overview of this see Table 1, which lists the possible combinations. However most of the par ts can be used in the ma-

jority of the sections.

 Mandatory
 Optional

 Illegal

Description

Pragma

Definition

Elements

Values

History

Constants      

Primitives      

Functions      

Parameters      

Table 1 - Allowed parts for sections of SAP specification.

For instance, as can be seen in Table 1, Pragma is only allowed in the Constants section while Values
can only be used for Parameters. Please notice that Description and History are mandatory in all sec-
tions as these make up the documentation part of the SAP. Therefore it is very important to make a

thorough description for each primitive, parameter etc. This also goes for the History part where it will
be possible to keep track of changes to the specific section.
In order to separate the parts from each other keywords for each part are put into the section cont ain-

ing the declaration. This is depicted in Figure 1.

X.X Section Headline

Description:

Pragma:

Definition:

Elements:

Values:

History:

Figure 1 - Use of keywords in section of SAP document.

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 24

Please keep in mind that F igure 1 is for demonstration purposes only as it would not be legal to make such a section accor d-
ing to Table 1.Each of the parts mentioned above have their own purpose, which will be described in detail in the follow ing.
For each of these par ts it will be described how it applies to for instance Constants, Primitives, Function and Parameters.

The actual declaration in the SAP syntax is based on tables. That is, a ll of the par ts described above are each constructe d

by the use of tables. These tables can consist of several d ifferent rows and columns depending on the nature of the section,
which they are a part of. Each column has a heading, which is a reserved word recognized by the tool chain and the rows
are used for user defined entries. An example of a heading used, could for instance be one used for the name of a primitive

(Short Name) or a column used for comments (Comment). As for the par ts described above the columns allowed in a sec-
tion depends on the contexts. For a complete overview of all the possibilities of co mbining these columns please see section
Error! Reference source not found..

When defining the section headers and tables in the SAP document it is impor tant to keep some simple rules. Naturally the
template designed for creating SAP documents (TI2000) should be used as well as the order and combination of the individ-
ual section must comply with the rules listed above. In addition to this there some practica l rules which must be followed: As
the headings of the columns are treated as reserved words in the tool chain, it is not legal to have for instance a cell in the

table containing only one of these reserved words (For instance it is not legal to have a Long Name cell containing only the
word name as it is considered a reserved word). Another thing wor th noticing is that it is not allowed to have spaces in fron t
of a declaration in a cell as the interpreter of the cell sometimes only uses the first letter and therefore would read a space

instead of the correct letter. In addition to this it is not legal to manually inser t line breaks in table cells. By keeping these
simple rules the output of the SAP compilation should be supported by the entire tool chain. F or an example of such an SAP
document see [TI 8434.405].

2.1.1 Description

The description is a textual explanation of the purpose and meaning of the content of the section. I t should contain enough

information to clearly outline why the content of the section is included in the SAP and how it is to be used (and if necessary,
how it is not to be used). This section is very important, as the quality of the descriptions for the sections will largely deter-
mine the overall quality of the documentation for the SAP. As this SAP concept is single source it is very impor tant to be
thorough when making these descriptions, as this w ill be the only documentation of the primitives etc. The description has

the same format for all declarations such as for instance primitives, parameters or functions. The description is purely infor-
mational and is directed at the readers of the SAP document. It is not used by the TI tool chain and does not appear in any
source output from the processed document.

2.1.2 Pragmas

This part is only legal in the Constants section and is used to modify the behaviour of the TI tool chain. Pragmas are co n-

tained in a table, and an example could look like this:

Pragma:

Name Value Comment

PREFIX ABC Prefix parameters/elements with "ABC"

COMPATIBILITY_DEFINES YES Generate compatibility defines

The name of the pragma is contained in the Name column. In addition there are two more columns. The fir st is a Value
column, which contains the value for the desired Pragma. The second is a Comment column, which can be used to explain
the consequences of the pragma for the SAP.

 Currently the following pragmas are supported:

PREFIX

COMPATIBILITY_DEFINES

ALWAYS_ENUM_IN_VAL_FILE

ENABLE_GROUP.

CAPITALIZE_TYPENAMES

Each of these will be explained in the following sections.

8434_405_01_EX_SAP.doc

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 24

2.1.2.1 PREFIX

The pragma PREFIX allows all constants, elements and types generated from the SAP document to be automatically pr e-
fixed with a letter combination contained in the Value column. The letter combination should follow the TI coding standard,
which currently states that SAP content should be prefixed by SAP identifier for the entity to which it belongs (e.g. "RRC"). A

special value (NONE) can be used to indicate that no prefixing is to be done for the content of the SA P. Prefixing never
applies to primitive names or function names.

2.1.2.2 COMPATIBILITY_DEFINES

The pragma COMPATIBILITY_DEFINES makes the tool chain generate C pre-processor directives, redefining legacy style
declarations to the current standard. The values can be YES and NO indicating whether to generate them or not.

The combination of PREFIX = NONE and COMPATIBILITY_DEFINES = YES is undefined and hence useless, as no prefix-

ing means that all names used in the SAP will remain as is.

2.1.2.3 ALWAYS_ENUM_IN_VAL_FILE

The pragma ALWAYS_ENUM_IN_VAL_FILE will make the tool generate an enum for each U8, S8, U16, S16, U32 and S32

type. Each enum containing the constant associated with the corresponding type. The values can be YES or NO.

If pragma ALWAYS_ENUM_IN_VAL_FILE have a value different from YES or is not present, then #define will be generated
for such constants.

2.1.2.4 ENABLE_GROUP

The pragma ENABLE_GROUP is used to enable groups. Groups are used for suppor ting more than one coding standard.
The values can be YES or NO.

If pragma ENABLE_GROUP has a value different from YES or is not present, then Group columns are ignored. I f pragma

ENABLE_GROUP have the value YES , then Group columns are mandatory when applicable (see individual table descrip-
tion), and the group cell must contain a value, which may be the special value none in which case no entry in the output file
is generated for that row. The special group “none” is not allowed for types or constants used by a type having another

group value than none.

When using Group columns the output h-files are named according to the group names. That is, the original SAP name
does not affect which output files a type is generated in. The group name is used for prefix generation as well (pragma
PREFIX is ignored if Group columns are present). Using Groups causes the output to be slightly altered. This is illustrated

in section 2.1.11.

2.1.2.5 CAPITALIZE_TYPENAMES

This pragma is used to indicate whether the generated type names w ill be capitalized or not. T hat is for instance whether the

generated type for an element called my_u8 would be T_my_u8 or T_MY_U8.

The values can be YES or NO

2.1.3 Definition

The Definition section contains a table defining some aspects of the part of the SAP described by the section. This section is

mandatory for a ll the different par ts The content of the definition depends on the kind of declaration contained in the section.
In the follow ing sections the content for respectively Constants, Primitives, Function and parameters will be explained.
Please remember that the names used for instance for the Short Name is case sensitive.

2.1.3.1 Definition for Constants

For constants the defin ition serves the purpose of naming the constants and associating them with constant integer values.
This corresponds to defin ing constants using the "#define" pre-processor directive in C. For constants the tabular definition

contains three columns (Name, Value and Comment). Each entry in the tabular definition defines a global constant, assigns
it a value and explains its purpose. An example could be:

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 24

Definition:

Name Value Comment

FIRST_CONSTANT 1 This is a constant assigned the value 1

SECOND_CONSTANT -2 This is a constant assigned the value -2

THIRD_CONSTANT 0x10 This is a constant assigned the value
16

In th is case three constants are declared. Name must follow the TI coding standard valid for the project to which the SAP
belongs. The Value can be a positive or negative number, and can be assigned in decimal, hexadecimal or octal format
using standard ANSI C-syntax. A binary format (e.g. 0b10101010) is also supported by the tool chain, with the binary value

seen as right a ligned (e.g. 0b1111 equals 0x0F). The Comment can be any tex t, which explains the purpose or usage of the
constant. A comment fie ld is not a llowed to hold more than 256 characters.

In order to impor t constants from another SAP document, a Link column can be added to the definition table. The Link

column links the parameter definition to a declaration in another document. The Short name from the definition in the ex ter-
nal declaration must be included in the link specification as seen in the table below. Hyperlinks should be used if th is is a t a ll
possible, and the path to the document linked to must be relative and not dependent on local mappings of Clearcase views,
drives or similar things. An example of such a linked constant could be:

Definition:

Name Value Link Comment

LOCAL_CONSTANT 1 Local constant

IMPORTED_CONST
ANT

 external.doc – name Local constant with imported value

For constants impor ted using the Link column it is not possible to assign a value in the Value column, since the value w ill be
taken from the external source. For a linked constant it is possible to have a empty Name column if no fur ther local copy of

the constant is to be used. The constant will then be exported to the file w ithout being renamed via PREFIX. To suppor t
generation of other code standard inter face header files a group column can be added. An example of such a column could
be:

Definition:

Name Value Comment Group

LOCAL_CONSTANT 1 Local constant Pub_L1

IMPORTED_CONSTANT Constant with imported value Pub_Std

For more general information on groups, see section 2.1.2.4.

2.1.3.2 Definition for Primitives

For primitives the defin ition associates a primitive tag with an integer primitive identifier (ID), which must be unique within the
system. This corresponds to defin ing a global constant using the "#define" pre-processor directive in C, linking the primitive

name to the value of the ID.

Additionally, a primitive is always seen as a user defined structural type, since it is created for the purpose of passing data
from one entity to another. The effect is the same as that of the definition of a parameter of content type STRUCT (see sec-

tion 2.1.3.4). Consequently, the defin ition also corresponds to a type declaration in C, where a new structural type is d e-
clared with a body as defined by the "elements" par t of the section (see section 2.1.4).

In order to establish the direction of the primitive on the SAP, and the entities involved in the use of it, the definition a lso
specifies the sending and receiving entities.

The name of the primitive is contained in the tabular definition under the heading Short Name, the global primitive identifier
numerical value is contained under the heading ID and the direction is specified under the heading Direction. An example
could be:

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 24

Definition:

Short Name ID Direction

ENTA_SOMETHING_REQ 0x08004001 ENTB -> ENTA

The Short Name must fo llow the TI coding standard. A primitive may for instance be a request (_REQ), a confirm (_CNF),
an indication (_IND) or a response (_RES).

The ID is a 32 bit unsigned integer 1 and should be specified using the hexadecimal format (although any ANSI C syntax

number format is valid). In older SAP documents, 16 bit primitive IDs may still be seen, but these are no longer to be used.
The value of the primitive ID must fo llow a set of guidel ines, currently as shown below:

0 x 8 0 XXY0 ZZ

SAP Identifier

Direction

Primitive Number

The SAP identifier is a unique ID for the SAP described by the SAP document. In order to keep track of these unique IDs it is

recommended to keep a document stating which SAP IDs are used and what they are used for. This way the same SAP ID
will never be used twice.

For an example of such a document see the UMTS document numbering scheme for UMTS (for an example see [TI

SAP_NUMBERING_SCHEME]).

For primitives of type request or response, the direction should have a value of 0. For primitives of type confirm or indicat ion
the direction should have a value of 4. The primitive number is the number of the primitive within the SAP and should star t at

00 for the first primitive in the document.

The Direction fie ld shows from which entity to which entity the primitive is sent. The direction is shown using an arrow in the
form "->" or "<-". The field is informational only, and the direction of the arrow is not impor tant. I f more than one entity

sends/receives the primitive on the SAP, additional d irection specifications can be present in the cell. For primitive defin i tions
the section headline should be the same as the Short Name, since it makes it considerably easier to locate elements in the
document by use of for instance the table of contents. Group columns are also suppor ted in th is par t. For more general
information on groups, see section 2.1.2.4.

2.1.3.3 Definition for Functions

The handling of functions is special since it relies on in line specification of the function prototypes using C syntactical nota-

tion. In contrast to the other sections in the SAP the actual content of the definition is not really checked by the TI tool chain.
An example of the definition for a function on the SAP could be:

Definition:

Short Name ID Direction

extern T_RETURN_TYPE *

ent1_function(T_ARGUMENT_TYPE * arg)

InlineC ENT2 ->

ENT1

What identifies this as a special definition to the tool chain is the use of the keyword InlineC in the ID
column of the table. The Direction column identifies the entities involved just as for primitives (see

section 2.1.3.2). The Short Name column is used to specify the C function prototype for the SAP func-
tion.
There is only a minimum check in the tool chain of the syntax for the prototype. The function prototype must have brackets

around the argument list, and there must be a space before the function name. Apar t from this, it is treated as an in line dec-

1 This is the case at the moment, but as the header format for primitives in the TI protocol stack framework is being revised, this

may change.

../../../../gpf/DOC/sap_numbering_scheme.doc
../../../../gpf/DOC/sap_numbering_scheme.doc

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 24

laration w ithout interpretation, and it is the responsibility of the designer of the SAP to find the correct type names. The type
names can be found from the elements contained in the declaration of the function (see sec tion 2.1.4.3), combined with
knowledge about the code generated by the tool chain based on elements and declarations (see section 2.1.5 and section
2.1.6) and knowledge abou t the TI coding standard. I f one is not familiar with the conversion from SAP to source files one

can simply have a look in the generated source files in order to find the desired types.

2.1.3.4 Definition for Parameters

The definition table for a parameter declaration associates a content type (see section 2.1.5) w ith the name of the parameter.
The tabular definition for a parameter contains the content type of the parameter declared, the Short Name associated with
the parameter and a Comment explaining the parameter contents. An example could be:

Definition:

Type Short Name Comment

U16 e_one Element one parameter declaration

Or (notice the additional C-Name column):

Definition:

Type Short Name Comment C-Name

U16 e_one Element one parameter declaration parameter_name

The Short Name of the parameter is also the name of a user-defined type (see section 2.1.7). Unless a non-empty C-Name
cell is present in which case that is used (see Table 2). For more information on C-Name, see section 2.1.8.

It is possible to have multiple entries in the table, each w ith the same content type but w ith a new short name a nd comment.
This allows the defin ition of several user defined types in one go, each unique declaration w ith identical content.

The Comment is outputted into the h- file and is used as a hint in some of the output formats from the TI tool chain.

The content type serves the purpose of identifying the content of the parameter as either a basic type (U8, S8, U16, S16,
U32 or S32), as an enumeration (ENUM) or as a complex type (STRUCT, UNION). Six legacy basic types are also sup-
ported (UBYTE , BYTE, USHORT, SHORT, ULONG and LONG). These are no longer to be used, but may still be found in

older SAP documents.

If a basic type is used, the definition only defines the reference point between the declaration and the elements in other
declarations using it. The content of the definition has no impact on the end product generated by the tool chain. If the con-
tent is a basic type the declaration can have no elements part and the elements part must not be present in the declaration.

If the content type is ENUM, the definition corresponds to a type declaration in C, where an enumeration type is declared
with enumerators as defined by the value part of the section. The declaration can have no elements in this case.

If the content type is STRUCT or UNION, the definition corresponds to a type declaration in C, where a new type is declared

with a body as defined by the "elements" par t of the section. The elements part of the declaration must be present.

Multip le entries in the definition table are allowed if the declaration is re ferenced from different declarations in the SAP under
different names. In that case an entry in the definition table must be present for each element Short Name used for the

declaration. The content type must be the same for each entry. An example of this could be two different primitives using the
same basic type with a different Short Name. This is illustrated in the following table:

Definition:

Type Short Name Comment C_Name

U16 e_one U16 element used by a primitive

U16 e_two U16 element used by another primi-

tive

Group columns are also suppor ted in this par t. For more general information on groups, see section 2.1.2.4.

When defining parameters it is also possible to import parameter declarations from other SAP documents. This can be done
by addition of a Link column to the defin ition table. An example could be:

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 24

Definition:

Type Short Name Link Comment

U16 E_one external.doc – first_name Import number one

STRUCT E_two external2.doc –
second_name

Import number two

The Link column links the parameter definition to a declaration in another document. The Short Name from the definition in
the external declaration must be included in the link specification. Hyperlinks should be used if th is is at a ll possible , and the
path to the document linked to must be relative and not dependent on local mappings of Clearcase views, drives or similar

th ings. As can be seen from the example the content type does not need to be the same for each entry in the definition table
when linking is used (both U16 and STRUCT used here). No further specification for the defined parameter can be given,
since all the properties will be inherited from the link-source.

For each entry in the definition table a new type will be created based on the impor ted one, without restating the contents of
the type (corresponding to a type declaration in C of the form “typedef T_IMPORTED T_LOCAL;”), in this case even for
parameters where the content type is a basic type. Linking is also possible to contents included in the MDF format used by

the tool chain, which makes it possible to use other sources than SAP documents when impor ting parameter declarations.
The nicest way to perform the linking in the SAP would be to make a section in the Parameter sect ion containing all the
imported parameters. Whenever a parameter is used in the SAP the reference will lead to the impor ted parameters section.
This way it is also easier to locate the linked parameters.

When a structure or type is to be used by several SA Ps the smar test approach would be to create an include SAP which
contains all the parameters/elements which are to be used by several SAPs. In this include SAP it is necessary to have a
section in the primitives section called “Exported Parameters”. In this section all the linked parameters should be listed An

example of of such a section could be:

Definition:

Short Name ID Direction

EXAMPLE_INCLUDE_EXPORT 0x0000 ENTA->ENTB

Elements:

Long Name Short Name Ref Type

Linked u8 for testing linked_u8 4.1 U8

Linked struct for testing links linked_struct 4.8 STRUCT

Here the references in the Ref column lead to he actual declarations of the types used, and therefore only needs to be de-
fined once. This way it is a lso easy to change a structure used in several SAPs w ithout having to change every single SAP.

2.1.4 Elements

The elements part contains a tabular representation of the elements contained within a complex type declared in the defin i-
tion par t of the section. Elements can only be used for primitives, function s and for parameters. An additional requirement for
parameters is that the defined content type is either STRUCT or UNION (see section 2.1.5.3 and 2.1.5.4). For parameters

the way elements are described depends on the complex type used in the definition, structure or union. For functions the
description of elements has a slightly different syntax. In the follow ing these different possibilities w ill be explained for re-
spectively Structures, Unions and Functions.

2.1.4.1 Elements in Structures

For primitives, and parameters of type STRUCT (see section 2.1.5.3), the element table gives the same set of possibilities.

An exception to this rule is that for primitives, the elements section must be present but can be empty except for the headline
row. This option must be used in case the primitive contains no elements. I t is not possible to define an empty element table
when declaring a parameter. An example of an Elements table could be:

Elements:

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 24

Long Name Short Name Ref Type

Unsigned 8 bit integer with local value set 8_bit_local U8

Unsigned 16 bit integer 16_bit 4.1 U16

Unsigned 32 bit external 32_bit_external U32

Enumeration with local value set enumeration_local ENUM

Enumeration enumeration 4.2 ENUM

Structure structure 4.3 STRUCT

Union Union 4.4 UNION

Or e.g. (notice the additional C-Name column)

Elements:

Long Name Short Name Ref Type C-Name

Unsigned 8 bit integer with local value set u_8_bit_local U8

Unsigned 16 bit integer u_16_bit 4.1 U16 u_16_bit_a

Unsigned 16 bit integer u_16_bit 4.1 U16 u_16_bit_b

Unsigned 32 bit external u_32_bit_external U32

The Long Name can be seen as a comment, where the element is given a free form name, which should make its pur pose
or content as clear as possible. This is also used as the defin ition comment if there is no explicit definition for th is Short

Name i.e. used as a hint in some of the output formats from the TI tool chain.

The Short Name is the actual C identifier used for the element in the output from the tool chain, unless a non-empty C-
Name cell is present in which case that is used. The Short Name (or C-Name if present) must be used when using the SAP

in the implemented protocol stack entities.

The Ref column refers to the section where the parameter declaration for the element can be found. I f the element does not
have a parameter declaration associated with it, the reference is left empty. If there is a reference, the shor t name used fo r
the element and the shor t name used in the definition par t of the parameter declaration must be exactly the same.

The Type column contains the content type specifiers for the elements (see section 2.1.5). Again the content type specifier
must match the one used in the defin ition of the parameter declaration.

In order to modify e lements to become pointers or arrays, an additional ctrl column must be added to the element table (see

section 2.1.6.1 and section 2.1.6.3). Array modification of elements of content type UNION is not allowed. An example could
be:

Elements:

Long Name Short Name Ctrl Ref Type

Pointer to 8 bit integer element_1 PTR 4.1 U8

Fixed array of 8 bit integers element_2 [5] 4.2 U8

Variable array of 8 bit integers element_3 [VAR_MIN..VAR_M
AX]

4.3 U8

Code non-transparent dynamic

array of 8 bit integers

element_4 PTR[3..VAR_MAX] 4.4 U8

Code transparent dynamic array
of 8 bit integers

element_5 DYN[1..VAR_MAX] 4.5 U8

It should be noted, that in most cases the use of pointers implies the use of shared stores between the entities using the
interface defined by the SAP. The description of a shared store is given through the parameter reference in the element
table, but th is does not cause allocation of such a store to occur. Any memory referenced by a pointer included in an element

table will have to be allocated and ha ndled independently of the SAP.

In order to modify the presence of elements to become optional, and addit ional Pres (short for presence) column must be
added to the element table (see section 2.1.6.2). An example could be:

Elements:

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 24

Long Name Short Name Pres Ref Type

Mandatory element element_1 Mandatory 4.40 U8

Optional element element_2 Optional 4.41 U8

The two modifications (addition of Ctrl and Pres columns) can be combined.

2.1.4.2 Elements in Unions

For parameters of content type UNION, the set of possibilities is a subset of the possibilities for structures (see section
2.1.4.1). An example could be:

Elements:

Tag ID Long Name Short Name Ref Type

IS_8_BIT_LOCAL Unsigned 8 bit integer 8_bit_local U8

IS_16_BITS Unsigned 16 bit integer 16_bit 4.1 U16

IS_ENUMERATION_LOCAL Enumeration with local value
set

enumeration_local ENUM

IS_ENUMERATION Enumeration enumeration 4.2 ENUM

IS_STRUCTURE Structure structure 4.3 STRUCT

This would correspond to a union, where the element chosen could be one of the elements contained in the elements table.
A Tag ID column is included in the element table for unions, which is used to name the instance of the union actually used,
and is included along with the union in a control parameter automatically added in the generated C output by the tool chain
(see section 2.1.5.4). The Tag ID can be either a string (e.g. “ABC”), a number (e.g. “12”) or a string equal to a number (e.g.

“ABC = 12”). The usual style is to name the instances using a string. As for structures, the elements can be local if th is is
legal for the content type or declared as a parameter.

The main difference is in what cannot be done when the elements of a union are declared. A union cannot contain elements

of UNION content type. If a union must be a part of another union, it must be contained in a structure declaration. Modifica-
tions of elements into variable size arrays are also not legal, although pointers can be used (see section 2.1.6.3). I t is not
possible to make elements in a union optional.

2.1.4.3 Elements for Functions

For functions the notation is similar to the one used for structures, although the use of arrays and optional parameters is n ot

allowed and would not make any sense. An example could be:

Elements:

Long name Short name Ctrl Ref Type

Input: Argument type for the call argument_type PTR 5.1 U8

Output: Return type for the call return_type PTR 5.2 STRUC
T

The elements part of the declaration of a function used on the SAP serves mainly the purpose of referring to the parameter

declarations used by the function prototype given in the definition (see section 2.1.3.3). The references in the Ref column are
necessary, since parameters declared but not referenced from another declaration of a primitive, function or parameter are
not included in the output from the TI tool chain. The elements table should specify all the parameters given in the function

prototype from the definition. I f a function has no input or output arguments, no entry should exist in the elements table for
the "empty" argument type. I f no arguments are used at all, the elements table should be left out.

2.1.4.4 Values

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 24

This par t can only be used with parameter declarations and contains values that must be associated wi th the parameter or its
elements. The values may define legal ranges or identified constant values that are specific to the parameter or to its ele-
ments (e.g. the values to be used w ith a cause parameter). The main purpose of the range specifications is to allow range
checking in the test tools used within TI.

A value par t can only be included in the declaration of a parameter, if the definition indicates a basic type or a content ty pe of
ENUM, or if the elements par t of the declaration contains elements of basic type or content type ENUM without references to
other parameter declarations. I f the values are to be associated with a basic type parameter or content type ENUM, where

the declaration contains no elements par t, an example could be:

Values:

Value C-macro Comment

0 E_ONE_VALUE_ZERO Element one value zero

4 E_ONE_VALUE_FOUR Element one value one

0..4 Element one range

The use of tags for the values in the c-macro column corresponds to the use of an enumeration associated with the parame-
ter or e lement in C. I f the values are to be associated with elements in a parameter of a user -defined type, it is necessary to

specify the element name in the value par t. An example could be:

Values:

Name Value Comment

e_two -5-5 The element has a range from –5 to 5

e_three 0-4096 The element has a range from 0 to 4096

The Name used is the Short Name of the element given in the element table. Please note if no range is defined in the “Va l-

ues” section the minimum and maximum for the given type is generated imp licitly.

Group columns are also suppor ted in this par t. For more general information on groups, see section 2.1.2.4. When using
groups in this part please note that if the Name cell contains a value then the Group cell must contain one too. Such a
Group value specifies the Group for the whole user defined type w ith the name in the Name cell. Thus not possible to spec-

ify a different Group for the individual values associated w ith a Name. I f the Name cell is empty the Group cell must be
empty too.

2.1.4.5 History

The history part contains the history of the individual section it is a par t of. The history is simply a list of entries, each consist-
ing of date, initials and a comment for each change to the section. As the description, the history is a mandatory part of all

sections, since it contributes to the documentation included in the SAP. Therefore it is very important to maintain the Histo ry
part as w ill make it possible to keep track of changes to the specific section.

2.1.5 Content Types

The TI tool chain allows for the use of several different predefined C content types when declaring the content of primitives,
parameters and functions. These types vary from simple integer to more complicated types such as enums, structs and
unions and will be described in the following section. The content type used when declaring the content of primitives, pa-

rameters and functions must be one of the sets described in the following sections. In addition to this the following section s
will a lso describe the mapping from SAP declarations into the generated C code. This will be done by some small C code
examples.

2.1.5.1 Basic Types

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 24

The basic types that can be used for parameters and elements are U8, U16, U32, S8, S16 and S32. The prefix letter indi-
cates whether the type is signed or unsigned, and the number the size of the type in bits. No floating-point basic types are
defined. The TI tool chain also supports sets of legacy basic types (UBYTE, BYTE, USHORT, SHORT, ULONG, LONG).
These are no longer to be used, but may still be found in o lder SAP documents.

A parameter of th is content type cannot have elements, but can have values associated with it. An element of th is content
type can refer to a declaration of the same content type, or can have values associated with it.

When used as the content type of an element in a structure (see section 2.1.5.3) or a union (see section 2.1.5.4), the result

in C will be:

 U8 short_name; /* Comment */

 S8 short_name; /* Comment */

 U16 short_name; /* Comment */

 S16 short_name; /* Comment */

 U32 short_name; /* Comment */

 S32 short_name; /* Comment */

where short name is the one given for the element.

2.1.5.2 Enumerations

In order to declare an enumeration the ENUM content type must be used in the definition of the parameter. In that case, the
content type must also be used for the element referring to the parameter declaration (in the declaration of a primitive or
another parameter).

A parameter of th is content type cannot have elements, but must have values associated with it. When used as content type
in the definition of a declaration the end result in C-code will be:

 typedef enum

 {

 C_MACRO_1 = 0x00, /* Comment */

 C_MACRO_2 = 0x01, /* Comment */

 . . .

 C_MACRO_N = 0xNN /* Comment */

 } T_SHORT_NAME; /* Comment */

Where the shor t name is used for the name of the type. The enumerators are taken from c-macro column of the value par t,
and therefore do not necessarily star t with the value 0x00 and may have gaps. An element of this type must refer to a decla-

ration of a parameter of the same content type, or have values associated with it. When used as a content type for an ele-
ment in a structure (see section 2.1.5.3) or a union (see section 2.1.5.4), the result in C w ill be:

 T_SHORT_NAME short_name; /* Comment */

where short name is valid for both the element itself and the parameter defin ition referred to.

2.1.5.3 Structures

In order to declare a parameter containing multiple elements, the STRUCT content type must be used in the definition of the
parameter. The type must then also be used for the element referring to the parameter declaration (in the declaration of a
primitive or another parameter).

A parameter of this content type must have elements, and can have values associated w ith these elements. When used as a
content type in the defin ition par t of a parameter declaration, the resulting structure in C will be:

 typedef struct

 {

 U8 element_1; /* Comment */

 T_element_2 element_2; /* Comment */

 T_element_3 element_3; /* Comment */

 } T_SHORT_NAME; /* Comment */

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 24

Where Short Name from the definition is used for the type name. For elements of basic type no user defined type is gener-
ated, irrespective of whether a reference to a declaration is given or not.

An element of this content type must refer to a declaration of the same content type. When used as a content type for an

element in another structure or in a union (see section 2.1.5.4), the result in C w ill be:

 T_SHORT_NAME short_name; /* Comment */

where short name is valid for both the element itself and the parameter defin ition referred to.

2.1.5.4 Unions

In order to declare a parameter containing one of a set of elements, the UNION type must be used in the definition of the

parameter. The type must also be used for the element referring to the declaration (in the declaration of a primitive or a n-
other parameter).

A parameter of th is content type must have elements, and can have values associated with these elements. When used as

the content type in the defin ition part of a parameter declaration, the result in C will be:

typedef enum

{

 TAG_ID_ELEMENT_1,

 TAG_ID_ELEMENT_2,

 TAG_ID_ELEMENT_3

} T_CTRL_SHORT_NAME;

typedef union

 {

 U8 element_1; /* Comment */

 T_ELEMENT_2 element_2; /* Comment */

 T_ELEMENT_3 element_3; /* Comment */

 } T_SHORT_NAME; /* Comment */

Where Short Name from the definition is used for the type na mes and as a qualifier for the enumeration. The enumeration
has one enumerator for each possible element choice in the union, the name of which is taken from the Tag ID column (see

section 2.1.4.2).

An element of this content type must refer to a declaration of the same content type. When used as a content type for an
element in another structure, the result in C will be:

 T_CTRL_SHORT_NAME ctrl_short_name; /* Comment */
 T_SHORT_NAME short_name; /* Comment */

Where Short Name is valid for both the element itself and the parameter definition referred. When used, the "controller"

named ctrl_short_name is used to indicate actual choice of element within the union, using the tag ids listed in the Tag ID
enumeration. This also explains why an element of content type UNION cannot be used in a parameter, which is also of
content type UNION. The tool chain would inser t a controller for the illegal union along with the illegal union itself inside the

generated legal union type, which means that the illegal controller and union would share the same memory.

2.1.6 Element Modifiers

The tool chain allows elements in declarations to be modified in order to achieve different constructions, such as arrays,

pointers and optional parameters.

2.1.6.1 Making Elements Arrays

Arrays can only be used in the elements par t of a declaration of a primitive or a parameter with the content type STRUCT.
Arrays are possible by addition of a column to the elements table w ith the heading ctrl. For each element in the table that is

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 24

to be an array, a length specifier is included in the ctrl column. All elements in the array will have the same content type as
declared for the element, and the same user defined type if a reference to another declaration exists for the element.

The length specifier always has the form:

[DYN|PTR][MINIMUM_ELEMENT_NUMBER[..MAXIMUM_ELEMENT_NUMBER]]

giving the possibility of specifying an array with either a fixed or a variable number of elements. The

MINIMUM_ELEMENT_NUMBER can be an integer or the name of g lobal constant. I t must have a value larger than zero and
must be smaller than the MAXIMUM_ELEMENT_NUMBER if a variable array is specified. The
MAXIMUM_ELEMENT_NUMBER can be an integer or the name of a global constant, and must be larger than the minimum

element number.

If the array is to have a fixed number of elements only a minimum element number is used. For fixed size arrays the array
specification for an element results in the C expression:

 T_SHORT_NAME short_name[MINIMUM_ELEMENT_NUMBER];

where short name is valid for both the element itself and the parameter defin ition referred to. For basic types, no user defined
type is used, and T_SHORT_NAME is replaced by the content type specified for the element.

If the number of elements is to be variable, both a minimum and a maximum number of elements is used. For dynamic size
arrays the use of the keyword DYN 2 or PTR is also possible, which allows the specification of an array where the amount of
memory allocated is dynamically dependent on the number of elements. For variable size arrays (without the use of the

keyword DYN or PTR) the array specification for an element results in a slightly different construction of the C generated:

 U8 c_short_name;

 T_SHORT_NAME short_name[MAXIMUM_ELEMENT_NUMBER];

For dynamic size arrays (where either the keyword DYN or PTR is used) the construction is similar. I f the keyword DYN is
used:

 U8 c_short_name;

 T_SHORT_NAME * short_name;

and if the keyword PTR is used:

 U8 c_short_name;

 T_SHORT_NAME * ptr_short_name;

In all cases the parameter c_shor t_name contains information about the number of elements in the variable size array. The
type of c_shor t_name depends on the value of MAXIMUM_ELEMENT_NUMBER. Due to this additional parameter, variable size

arrays cannot be used in declarations of parameters w ith content type UNION.

If the keywords DYN or PTR are not used, the array is actually declared of maximum size, and only the array elements [0;

c_shor t_name - 1] contain valid data.

As can be seen from the C examples, the behaviour of DYN and PTR when specifying dynamic size arrays is very similar. In
both cases the result is the generation of a pointer to the type specified, in which the elements can be accessed in the same

way as for a normal array, since the C syntax will be the same. Between DYN and PTR declarations only the naming of the
pointer is different. The main difference to the fixed or variable size array, is that for dynamic arrays the memory containing
the data is actually not allocated at the position of the element in the element table of the declaration. Instead the pointer

references the memory allocated for the array, which w ill have the size necessary to hold the number of entries indicated by

2 The DYN keyw ord is intended to be used for future memory optimizations.

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 24

c_shor t_name. The difference in the use of the elements between DYN and PTR declarations lies more in the behaviour
when elements are declared optional (see 2.1.6.2). Please note that it is not possible to make array of pointers.

2.1.6.2 Making Elements Optional

Elements contained in the declaration of primitives or parameters of content type STRUCT can be made optional by the
addition of a column w ith the heading Pres to the elements table. For each element, a presence specifier is then added in
the Pres column. The presence specifier is either OPTIONAL or MANDATORY. For mandatory elements, this has no con-

sequence for the C construction, but for optional elements the result is:

 U8 v_short_name;

 T_SHORT_NAME short_name;

A valid flag v_short_name is added to the construction. The value of the parameter v_shor t_name indicates whether the
content of the element is valid or not. The value can be 0 for not valid or 1 for valid. When the keyword PTR is used in a Ctrl
column for an optional element, e ither for a dynamic size array (see section 2.1.6.1) or for a pointer (see section 2.1.6.3), no

valid flag is added. Instead the element is not present if the value of the pointer is NULL.

2.1.6.3 Making Elements Pointers

Pointers can be used as elements in declarations of primitives, functions and parameters of content type STRUCT or
UNION. Pointers are made possible by addition of a column to the table in the elements par t of the declaration w ith the hea d-
ing Ctrl. For each element in the table that should be a pointer, the keyword PTR is added in the Ctrl column, causing the C
construction generated to become:

 T_SHORT_NAME * ptr_short_name;

Where short name is valid for both the element itself and the parameter defin ition referred. If the element is of content type

UNION (see section 2.1.5.4), the C construction becomes:

 T_CTRL_SHORT_NAME ctrl_short_name; /* Comment */
 T_SHORT_NAME * ptr_short_name; /* Comment */

Allow ing identification of the element chosen in the union pointed to. Pointers are primarily used in order to share stores
between the entities using a SAP, passing only the reference to the memory where the store is to be found between them.
The stores w ill however need to be allocated independently of the SAP. When using the PTR keyword it is very important to

be aware of the consequences. One ex tremely impor tant point is that the entire store pointed to is traced out. This may resul t
in insufficient bandwidth when testing and therefore should be used with care.

2.1.7 User Defined Types

A user-defined type in the contex t of a SAP specification corresponds to the declaration of a parameter of content type
STRUCT, UNION or ENUM (see section 2.1.5). Within the SAP specification, the name of the user-defined type is the shor t

name given in the defin ition par t of the declaration (see section 2.1.3.4).

Using an instance of the user defined type corresponds to adding an element in the declaration of a primitive or another
parameter. The element must refer to the section where the user -defined type is declared. This reference can also be to an
external declaration, e.g. in another SAP specification (see section 2.1.3.4).

Whenever a reference is made, the shor t name of the element must be the same as the shor t name used in the declaration
of the parameter (the user defined type). This means that in the contex t of the SAP specification, the name of an element
and the name of its type is the same, if the type is user defined (declared and referenced as a parameter).

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 24

As such a construction is illegal in C, the tool chain will generate a C-style user defined type based on the declara tion of the
parameter. The name of the user-defined type will be based on the short name used in the declaration, fo llowing the TI cod-
ing standard (currently "T_X", where X is the short name used in the declaration).

2.1.8 Description of C-Name

In SAP documents it is possible to determine the resulting code name of the defined types by the use of the column C-
Name. This feature is called C-Name because it a llows the developer to determine the type name used in the resulting C

code. This feature can for instance be used to generate another name for the parameter. That is, the defined type when the
C-Name is non-empty will not result in a type named after the Short Name but named after the C-Name in the resulting
code file. This way it is possible to use the same user defined type in more than one primitive without having identical names.

For more detailed information on whether the Short Name or C-Name is used, see section 2.1.8.

2.1.9 “Definition C-Name” versus “Element C-Name”

The approach should be as follows:

If 2 e lements are basically different, c-names should be used in definitions. This is the most common case.

If 2 elements are basically the same, c-names should be used in elements, the main effect is that the tools see only one

type i.e. the 2 elements will have the same comment in the trace.

SAP H-File (pseudocode)

Definition:
 typedef struct

{
…
} T_type_1;
typedef struct
{
 T_type_1 member_1; /* Sub
struct */
} T_s_two;

 Type Short
Name

Comment C-Name

 STRUCT s_one Sub struct type_1

Definition:

 Type Short
Name

Comment

 STRUCT s_two Container

Elements:
 Long

Name
Short
Name

Ref Type C-Name

 Mandatory
element

s_one 4.42 STRUCT member_1

Figure 2: Which C-Name is used where.

Note: if no C-Name is present then the Short Name is used for that generation.

Presence of C-Name Used for the type name of
the member

Used for member
name

C-Name present in both element table
and referenced definition table.

C-Name from referenced defi-
nition table

C-Name from element
table

C-Name only present in element table. Short Name C-name from element
table

C-Name only present in referenced defini-

tion table.

C-Name from referenced defi-

nition table

Short Name

C-Name not present in element table neither in
referenced definition table.

Short Name Short Name

Table 2: Which C-Name is used where. This schema is valid also when the referenced definition

Referencing name

Generating names

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 24

table is external (imported definition table).

2.1.10 Interactions

The following is an attempt at providing an overview of the interactions between the different sections, par ts, content types
and element modifiers used in the SAP document. The interactions are indicated in a table (see Table 3).

 Used/Supported
 Used/Supported
with limitations

 Not
Used/Supported

Active Section

Constants Primitives Functions Parameters
D

e
s
c
ri
p
ti
o

n

 P
ra

g
m

a

 D
e
fi
n
it
io

n

 H
is

to
ry

D
e
s
c
ri
p
ti
o

n

D
e
fi
n
it
io

n

E
le

m
e
n
ts

H
is

to
ry

D
e
s
c
ri
p
ti
o

n

D
e
fi
n
it
io

n

E
le

m
e
n
ts

H
is

to
ry

D
e
s
c
ri
p
ti
o

n

D
e
fi
n
it
io

n

E
le

m
e
n
ts

V
a
lu

e
s

H
is

to
ry

Free Text                 

Date, Initials, Comment                 

C-Macro                 

Type

 U8                 

 S8                 

 U16                 

 S16                 

 U32                 

 S32                 

 ENUM                 

 STRUCT                 

 UNION                 

Comment                 

Ctrl

 [MIN]                 

 [MIN..MAX]                 

 PTR[MIN..MAX
]

                

 PTR                 

Direction                 

ID Value                 

 InlineC                 

Link                 

Long Name                 

Name                 

Pres
3

 Mandatory                 

 Optional                 

Ref                 

Short Name                 

Value                 

Group                 

C-Name                 

Table 3 - Support for table columns, content types, keywords and element modifiers.

3 Only f irst letter of cell context is signif icant and case is ignored, i.e. M == Mandatory

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 24

2.1.11 Output consequences of using the Group column

When using Group columns the output h-files are named according to the group names. That is, the original SAP name
does not affect which output files a type is generated in. The group name is used for prefix generation as well (pragma

PREFIX is ignored if Group columns are present).

Apart from the names of the output files there are some small differences in the code output. The generated names are
modified e.g.: for struct member names underscores in the Short Name (or C-Name) is replaced w ith nex t character upper-
case. An example of th is could be:

test_set → testSet

The automatically generated “v_” prefix is replaced with a “Valid” suffix. An example of this could be:

 v_test_set → test_set_Valid

The automatically generated “c_” prefix is replaced with a “Counter” suffix. An example of th is could be:

 c_test_set → test_set_Valid

In addition to this arrays are also changed with an “Array” suffix . An example of this could be:

 test_set → test_set_Array

3 Typical Problems

The following is a list of typical problems encountered when working with SAP specifications:

 A declared parameter is syntactically correct but does not result in any output from the tool chain

Two things can cause this. The parameter is of a basic content type and does not have a values part. Alternatively the
parameter declaration is not referred to from any elements in other declarations of primitives, functions or paramete rs.

 When the SAP document is run through the tool chain an error file is generated, but the error is not specified

This problem is typically caused by a missing history part for one or more declarations. The history part must be present
for each section containing a declaration.

 Some of the content in the document does not appear in the output from the tool chain, and there are no errors
or warnings

This can be caused by document content which is not recognised by the tool chain in the context where it is used. In
general unrecognised content is ignored by the tool chain, and will not necessarily cause errors or warnings to be ge n-
erated.

 Problem in translation of a table in part of the SAP

The use of new-line inside table cells is not allowed. I f necessary, use CTRL-TAB instead. The first character in a cell is
not a llowed to be a space (blank character).

 Comment fields are causing problems

A comment field is not allowed to hold more than 256 characters.

4 Examples

An example SAP specification, using the various constructions descr ibed in this document, can be found in the document

document [TI 8434.404] and [TI 8434.405].

Technical DocumentNote

G23-UMTS Protocol Stack Specifying Service Access Points (8350.301.01.003), v0.4 Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 24

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Tel-
ecommunication 2000

(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/ family of standards for 3G. This

initiative provides a global infrastructure through both satellite and terre-
strial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roa m-

ing. <URL: http://www.imt-2000.org/>

http://www.imt-2000.org/

