
technical_document_20030404.dot

Copy right © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical Document

Generic Tool Chain

GTC USERGUIDE

Document Number: Document number to be assigned

Version: 0.6

Status: Draft

Approval Authority:

Creation Date: 2003-Dec-05

Last changed: 2015-Mar-08 by Texas Instruments

File Name: gtc_userguide.doc

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 183

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, modifi-

cations, enhancements, improvements, and other changes to its products, software and services at any
time and to discontinue any product, software or service without notice. Customers should obtain the
latest relevant information during product design and before placing orders and should verify that such

information is current and complete.

All products are sold subject to TI‟s terms and conditions of sale supplied at the time of order acknowl-

edgment. TI warrants performance of i ts hardware products to the specifications applicable at the time of
sale in accordance with TI‟s standard warranty. Testing and other quality control techniques are used to
the extent TI deems necessa ry to support this warranty. Except where mandated by government re-

quirements, testing of all parameters of each product is not necessari ly performed.

TI assumes no liabili ty for applications assi stance or customer product design. Customers are responsi-

ble for their products and applications using TI products, software and/or services. To minimize the risks
associated with customer products and applications, customers should provide adequate design, testing
and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering into
formal license agreements and payment of associated license fees. TI software may solely be used

and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights therein.
The supply of products and/or the licensing of software does not convey a license from TI to any third
party intellectual property rights and TI expressly disclaims liabili ty for infringement of third party intellec-
tual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI pa-
tent right, copyright, mask work right, or other TI intellectual property right relating to any combination,

machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a

license from TI to use such products, software or services or a warranty, endorsement thereof or state-
ment regarding their availabili ty. Use of such information, products, software or services may require a
license from a third party under the patents or other intellectual property of the third party, or a license

from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronically

or mechanically, including photocopying and recording, for any purpose without the express written
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

2003-Dec-05 Kerstin Thiemann 0.1 Draft 1

2003-Dec-05 Kerstin Thiemann Draft 2

2004-Jan-06 Kerstin Thiemann Draft 3

2004-Jan-23 Kerstin Thiemann Draft 4

2004-Sep-27 Kerstin Thiemann Draft 5

2004-Dec-14 Kerstin Thiemann Draft 6

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 183

Notes:

1. Init ial version

2. Rev ision of subchapter Feature Flags

3. Prov iding tables to facilitate top down access

4. Expanding description of coding types for standard information elements

5. Expanding description of coding types for non-standard information elements

6. Added description of coding types CSN1_CHOICE1 and CSN1_CHOICE2

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 183

Table of Contents

0 Scope.. 10

1 Introduction .. 10

1.1 Protocol Modeling Principles ..10

1.2 Peer-to-Peer Messages ...11

1.3 Layer-to-Layer Communication...12

1.4 GTC Generic Tool Chain..13

1.5 CCD in Overview ...15

2 Message and Primitive Editorial Description Catalogues - SAPE ... 16

2.1 Common Description Instruments ...23

2.1.1 Sharable Subsections .. 23
2.1.1.1 Description .. 23

2.1.1.1.1 Listing element... 24
2.1.1.1.2 Linked Description Elements - DocLink .. 24

2.1.1.2 History... 25
2.1.1.2.1 Document History... 26

2.1.2 Special Subsections ... 27
2.1.2.1 Document Information Section .. 28
2.1.2.2 Pragmas Section.. 30

2.1.2.2.1 Pragma ... 31
2.1.2.3 Constants Section .. 33

2.1.2.3.1 Constant .. 34
2.1.2.4 Substitutes Section... 36

2.1.2.4.1 Substitute .. 37
2.1.2.5 Values Section ... 38

2.1.2.5.1 Values ... 39
2.1.2.5.1.1 ValuesDef ... 41
2.1.2.5.1.2 ValuesItem .. 42
2.1.2.5.1.3 ValuesRange ... 43
2.1.2.5.1.4 ValuesDefault .. 44

2.1.2.6 Annotations Section ... 45
2.1.2.6.1 Annotation Element .. 46
2.1.2.6.2 Data Target.. 47

2.1.3 Nontrivial Sub-Elements ... 48
2.1.3.1 Alias .. 48
2.1.3.2 DocName .. 49
2.1.3.3 Group .. 49
2.1.3.4 Name .. 49
2.1.3.5 ItemLink... 49
2.1.3.6 Feature Flags... 50
2.1.3.7 UnionTag... 52
2.1.3.8 ValuesLink ... 53

2.1.4 Trivial Sub-Elements .. 54

2.2 Message Specific Part ...56

2.2.1 Messages Section.. 57
2.2.1.1 Message.. 58

2.2.1.1.1 Message Definitions ... 62
2.2.1.1.2 Message Items... 64

2.2.2 Structured Elements Section... 67
2.2.2.1 Structured Message Elements .. 68

2.2.2.1.1 Structured Element Definitions .. 70

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 183

2.2.2.1.2 Structured Element Items ... 72
2.2.3 Basic Elements Section .. 75

2.2.3.1 Basic Message Elements.. 76
2.2.3.1.1 Basic Element Definitions ... 77

2.2.4 Nontrivial AIM Specific Sub-Elements.. 79
2.2.4.1 Control .. 79

2.2.4.1.1 Type Modifier Element .. 79
2.2.4.1.2 Condition Element .. 83
2.2.4.1.3 Command Sequence Element... 84
2.2.4.1.4 BitGroupDefinition Element ... 90

2.2.4.2 Type.. 91
2.2.5 Trivial AIM Specific Sub-Elements... 91
2.2.6 AIM Specific Attribute Type Definitions .. 92

2.3 Primitive Specific Part ..94

2.3.1 Primitives Section .. 95
2.3.1.1 Primitive .. 97

2.3.1.1.1 Primitive Definitions .. 99
2.3.1.1.2 Primitive Items ..101

2.3.2 Structured Elements Section..103
2.3.2.1 Structured Primitive Elements ..104

2.3.2.1.1 Structured Primitive Element Definitions ...106
2.3.2.1.2 Structured Primitive Element Items ...107

2.3.3 Basic Elements Section ...110
2.3.3.1 Basic Primitive Elements ...111

2.3.3.1.1 Basic Element Definitions ..113
2.3.4 Functions Section ...114

2.3.4.1 Functions..116
2.3.4.1.1 Function Definitions ...117
2.3.4.1.2 Function Arguments ..118
2.3.4.1.3 Function Return Value ...120

2.3.5 Nontrivial SAP Specific Sub-Elements ..121
2.3.5.1 Primitive Identifier..121
2.3.5.2 Control ...122

2.3.5.2.1 Element Arrays ...123
2.3.5.2.2 Element Pointers...124
2.3.5.2.3 Dynamic Arrays...124

2.3.5.3 Extern Type ..125
2.3.5.4 Type...125

2.3.6 SAP Specific Attribute Type Definitions ..125

3 Message and Primitive Editorial Description Catalogues - Microsoft Word documents127

3.1 Message Specific Part ... 127

3.2 Primitive Specific Part .. 127

4 Coding Types...128

4.1 Coding Types for Standard Information Elements .. 129

4.2 Coding Types for Non-Standard Information Elements ... 132

4.2.1 BCD Coding Types ...132
4.2.2 CSN1 Coding ...134

4.2.2.1 CSN1_S1 ...135
4.2.2.2 CSN1_S0 ...135
4.2.2.3 CSN1_SHL ...136
4.2.2.4 HL_FLAG ...137
4.2.2.5 CSN1_CONCAT ...137
4.2.2.6 BREAK_COND ...139
4.2.2.7 CSN1_CHOICE1 and CSN1_CHOICE2..142
4.2.2.8 CSN1_S1_OPT...143

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 183

4.2.2.9 CSN1_S0_OPT...143
4.2.2.10 CSN1_SHL_OPT...144

4.2.3 Special Coding Types ...144
4.2.3.1 S_PADDING ...144
4.2.3.2 S_PADDING_0 ...145
4.2.3.3 Frequency List Information...145
4.2.3.4 NO_CODE..149

4.2.4 Some tricky descriptions for particular message elements ...150
4.2.4.1 Error Labels ..150

In the case of a complete message, the contents of the received syntactically incorrect
message can be ignored...153

4.2.4.2 How to express non-standard length information ...153

5 CCDDATA ..155

5.1 ccdmtab.cdg and ccdptab.cdg .. 155

5.2 mstr.cdg.. 155

5.3 mconst.cdg ... 155

5.4 mvar.cdg and pvar.cdg .. 156

5.5 mval.cdg ... 156

5.6 spare.cdg.. 157

5.7 melem.cdg .. 157

5.8 mcomp.cdg ... 160

5.9 mmtx.cdg .. 160

5.10 calc.cdg .. 161

5.11 Example ... 162

6 Generated C-Code Header Files...165

6.1 CSN1 Coding .. 165

6.1.1 CSN1_S1 ...165
6.1.2 CSN1_S0 ...166
6.1.3 CSN1_SHL...166
6.1.4 HL_FLAG ...166
6.1.5 CSN1_CONCAT ...167
6.1.6 BREAK_COND ...169
6.1.7 CSN1_CHOICE1 and CSN1_CHOICE2 ...170
6.1.8 CSN1_S1_OPT ..170
6.1.9 CSN1_S0_OPT ..171
6.1.10 CSN1_SHL_OPT ..172

6.2 Special Coding Types .. 172

6.2.1 S_PADDING...172
6.2.2 S_PADDING_0 ...172
6.2.3 FDD_CI, TDD_CI ..172

6.3 Some tricky descriptions for particular message elements .. 173

6.3.1 Error Labels..173

6.4 How to express non-standard length information ... 173

7 How to Call GTC Tools...173

Appendices ...175

A. Examples.. 175

B. Acronyms.. 175

C. Glossary ... 175

D. Syntactic metanotation... 175

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 183

E. Legend of Symbols Documenting the XML Format .. 176

F. Index .. 177

G. Table of Figures .. 180

H. Table of Tables ... 182

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 183

List of References

[1.] ccd_userguide.doc CCD Users ́Guide - TI Internal Technical Document

[2.] 8343_308_LLD_XML_Representation-
004.doc

SAP/MSG Editor, XML Representation – Low Level Design

[3.] 8350_300_MSG_Syntax.doc TI User Guide - Syntax description for air interface message documents

[4.] 8350_301_SAP_Syntax.doc TI User Guide - Specifying Serv ice Access Points

[5.] 6368_807.doc TI Memo Feature Flag Catalogue

[6.] sij_memo_ff_usg.doc TI Memo: Feature Flag and Their Support by GEN Tool Chain

[7.] Requirement_and_Specification_
FeatureFlags_fr2sbk1.doc

GPF Tools: Feature Flags - Requirements and Specif ication

[8.] ETSI TS 100 550 (GSM 04.01) Mobile Station - Base Station System (MS - BSS) interface;

General aspects and principles

[9.] 3GPP TR 21.905 Vocabulary for 3GPP Specif ications

[10.] 3GPP TR 23.101 General UMTS Architecture

[11.] 3GPP TS 24.007 Mobile radio interface signalling layer 3; General Aspects

[12.] 3GPP TS 24.008 Mobile radio interface layer 3 specif ication Core Network Protocols-Stage 3

[13.] 3GPP TS 24.011 Point-to-Point (PP) Short Message Serv ice (SMS)
support on mobile radio interface

[14.] 3GPP TS 44.018 Mobile radio interface layer 3 specif ication; Radio Resource Control Proto-
col

[15.] 3GPP TS 44.060 General Packet Radio Serv ice (GPRS); Mobile Station (MS) - Base Station

System (BSS) interface; Radio Link Control/Medium Access Control
(RLC/MAC) protocol

[16.] CCITT Recommendation X.200 Reference Model of Open Systems Interconnection for CCITT Applications"

[17.] CCITT Recommendation X.210 Open Systems Interconnection layer serv ice definit ion conventions"

[18.] XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001

[19.] XML Schema Part 1: Structures, W3C Recommendation, 2 May 2001

[20.] XML Schema Part 2: Datatypes, W3C Recommendation, 2 May 2001

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 183

Abbrev iations

MDF Message Description File

MSG Message

PDF Primitive Description File

IE Information Element

IEI Information Element Identifier

SAP Service Access Point

Other abbreviations used in the present document are listed in 3GPP TR 21.905 [9.].

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 183

0 Scope
This document shall assi st developers to write AIR Message and Service Access Point description
documents which can be processed by the TI tool chain. These description documents and the

intermediate results within the tool chain itself provide a basis for various other TI tools (test tools,
tracing tools, programming tools etc.).

The aim of this document is to explain how to define AIR messages and service access points (SAPs).

This document will describe how AIR messages and service access points‟ descriptions must be
st ructured and how the different elements can be combined. The TI tool chain demands these
descriptions to be of a specific format.

Finally this document will describe the mapping from the AIM/SAP into the resulting C code and
describe some of the features in more detail. This will also include an overview of combinations of
elements, columns etc., which are commonly used. This document does in some cases illustrate some

points by use of C examples. Such examples will , however, be subject to changes in case of al terations
to the TI coding standard.

1 Introduction

A GSM/GPRS PLMN supports a wide range of services, which a user accesses by a standard set of
interfaces at a mobile station (MS). A basic architectural split is between the user equipment (terminals)

and the infrastructure. This results in two domains: the User Equipment Domain and the
Infrastructure domain (PLMN).

User equipment is the equipment used by the user to access GSM/GPRS services. User equipment has

a radio interface to the infrastructure. The infrastructure consi sts of the physical nodes, which perform
the various functions required to terminate the radio interface and to support the telecomm unication
se rvices requirements of the users. The infrastructure is a shared resource that provides services to all

authorized end users within its coverage area.

The user equipment is also referred to as mobile station consi sting of the physical equipment used by a
PLMN subscriber. It is an entity composed of the Mobile Equipment Domain (ME) and the GSM

Subscriber Identity Module (SIM). User Equipment is a device allowing a user access to network
se rvices. For the purpose of GSM/GPRS specifications the interface between the UE and the network is
the radio interface. The Infrastructure domain comprises roughly the functions specific to the access

technique and the functions may potentially be used with information flows using any access technique.

The PLMN infrastructure is logically divided into a Core Network (CN) and an Access Network (AN)
infrastructures. The CN itself is constituted of a Circuit Switched (CS) domain and a Packet Switched

(PS). These two domains are overlapping, i .e. they contain some common entities. A PLMN can
implement only one domain or both domains. The CS domain refers to the set of all the CN entities
offering "CS type of connection" for user traffic as well as all the entities supporting the related

signalling. A "CS type of connection" is a connection for which dedicated network resources are
allocated at the connection establishment and released at the connection release. The PS domain refers
to the set of all the CN entities offering "PS type of connection" for user traffic as well as all the entities

supporting the related signalling. A "PS type of connection" transports the user information using
autonomous concatenation of bits called packets: Each packet can be routed independently from the
previous one.

1.1 Protocol Modeling Principles

The protocols used to exchange information between the User Equipment Domain and the
Infrastructure domain are specified using the concepts of the reference model of Open System

Interconnection (OSI) given in CCITT Recommendations X.200 and X.210.

The basic structuring technique in the OSI reference model is layering. According to this technique,
communication among application processes i s viewed as being logically partitioned into an ordered set

of layers represented in a vertical sequence as shown in Figure 1.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 183

(N+1) - Layer

(N) - Layer

(N-1) - Layer

Highest Layer

Lowest Layer

Figure 1: Layering

Entities exist in each layer. Entities in the same layer, but in different systems, which must exchange
information to achieve a common objective, are called "peer entities". Unidirectional radio link for the

transmission of signals from an Infrastructure domain access point to a UE (also in general the direc-
tion from Network to UE) is called Dow nlink. An Uplink indicates the contrary information flow: It is a
unidirectional radio link for the transmission of signals from a User Equipment Domain to an Infra-

structure domain access point (also in general the direction from UE to Network).
Entities in adjacent layers interact through their common boundary. The services provided by the
(N + 1) - layer are the combination of the services and functions provided by the (N) - layer and all layers

below the (N) - layer
1
. Layer-to-layer interactions are specified in terms of service primitives. The

primitives represent, in an abstract way, the logical exchange of information and control between
adjacent layers. They do not specify or constrain implementation. Primitives are also used to describe

information exchange between layers and the mobile management entity.

The primitives that are exchanged between the (N + 1) - layer and the (N) - layer are of the following
four types (see Figure 2).

Indication

+ (N)-Layer peer-to peer

protocol

layer-to-layer

information flow

(N+1) - Layer (N+1) - Layer

ResponseConfirm

(N-1) - Layer (N-1) - Layer

Request

Figure 2: Primit ive Action Sequence for Peer-to-Peer Communication

The REQUEST primitive type is used if a higher layer is requesting a service from the next lower layer.
A layer uses the INDICATION primitive type providing a service to notify the next higher layer of

activities related to the primitive type REQUEST. To acknowledge a primitive type INDICATION sent
from a lower to an upper layer the receiving layer uses the RESPONSE primitive type. The CONFIRM
primitive type is used by the layer providing the requested service to confirm that the activity has been

completed.

1.2 Peer-to-Peer Messages

In the world of GSM/GPRS/UMTS the peer-to-peer messages exchanged between the User Equipment
Domain and the Infrastructure domain are transmitted over the air-interface. For GSM/GPRS/UMTS

1 Management functions may also be required. They may include functions which are common for several layers and are not

supported by the serv ices prov ided by a specif ic layer. Examples of such functions are error reporting, status reporting and man-

agement of the operat ion of certain layers. Such management functions do not require that peer-to-peer messages are sent
across the network interfaces.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 183

protocols, these messages are bit strings of variable length, formally a succession of a finite, possibly
null, number of bits (i .e., elements of the set {"0", "1"}), with a beginning and an end. These messages
are standardized by ETSI/3GPP, and thus have well defined formats.

Data in GSM protocol stack entities are normally hold in C-structures. Currently TI Air Interface
Messages are documents written in XML as part of the high-level design phase. In the past TI Air
Interface Messages are defined through a Microsoft Word document. When air interface messages are

needed in actual code, the description documents run through the TI tool chain (cf. GTC Generic Tool
Chain), which produce header files and other data needed in program code.

The size of messages sent over the air interface is reduced to a minimum so as to enable rapid and

compact transfer. Messages are defined as a structure of information elements concatenated as a bit
st ream.

Microprocessors are capable of rapid memory access, which is not bit-orientated, but rather byte-, word-

or long -orientated. In addition, some processo r families allow access to even addresses only.

In general, air-interface messages do not start at byte boarders and are not multiples of eight bits in
length. Incoming message must be decoded, in other words, quickly transformed into a format that the

target system can read (e.g. C-structure). Outgoing messages must be encoded from a C-structure to a
bit stream.

1.3 Layer-to-Layer Communication

In the present document, the communication between adjacent layers and the services provided by the
layers are distributed by use of abstract service primitives. Primitives consi st of commands and their
respective responses associated with the services requested of another layer.

This document contains a description of the way service access points are specified for entities in the TI
protocol stacks. The definition of a service access point is based on the layered protocol stack model. A
se rvice access point identifies the services provided by an entity to other entities placed at a higher level

in the protocol stack, either in a higher layer or with hierarchically higher rank within the same layer.

A service access point completely defines the interface to be used to gain access to a set of services
provided by an entity. The definition of the interface can be based on a set of primitives and as

extension to OSI a set of function calls or both, depending on the nature of the services provided by the
entity.

In TI terms, a service access point is defined through a XML document, newly. Like TI AIR Messages

se rvice access point definitions are written as Microsoft Word document up to now. These documents
contain descriptions of the service access points in a specific format, which can be processed by the TI
tool chain, resulting in output for the various TI tools (test tools, tracing tools, programming tools etc.).

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 183

1.4 GTC Generic Tool Chain

The Generic TI Tool Chain (GTC) is a subset of the tool chain belonging to the protocol stack
development process (see Figure 3). There, a blue line surrounds the affected part.

Test

Log

Files

ETSI/3GPP

Recommendations

Specification Generation Run & Test

Message

Sequence

Charts

TDL

Files

Design

Pattern

Binary

Test

Files

CCD

Message &

Primitive

Definition

Files

Entity

Frame

CCD

msg

prim

FSM

PPF

FSM

PPF

TDL

Compiler

CCD

Generator

Target

PC Simulation

PC Test-

Application

Message

&

Primitive

Generator

Test

Generator

SDL

Specifications

Test

Specification

Message &

Primitive

Descriptions

GTC

Figure 3: Protocol Stack Development Methods

The ETSI / 3GPP specifications are the initial point of the protocol stack development process. These

specifications standardize the peer-to-peer messages between a MS and its network peer, which have
well defined formats. Inter layer communication is not subject of any similar strict regulation. The
interaction between two adjacent layers are described in terms of primitives where the primitives

represent the logical exchange of information and control between these layers. The primitives do not
specify or constrain implementations. The specifications provide a statement of requirements concerning
generic names and parameters; services provided to upper layers and services expected from lower

layers are specified as well.

The developer is assigned to write AIR Message and Service Access Point description documents which
can be processed by the TI tool chain, resulting in output for the various TI tools (test tools, tracing tools,

programming tools etc.). The GTC tool chain supports two description formats. Currently AIM/SAP
description documents (*.aim/*.sap) are written in XML as part of the high-level design phase. These
XML descriptions replace the old format (*.doc). In the past they are defined through a Microsoft Word

document.

SAPE is an environment for creating and editing of AIM and SAP documents based on XML and to
convert such documents into the pdf/mdf format. It consists of an Editor for the underlying XML

representation and a converter from xml (*.sap, *.aim) to pdf/mdf. *.mdf or *.pdf files are intermediate file
formats appropriate for the next tool ccdgen with the purpose of message and primitive definitions,
respectively. The SAPE editor is based on the Eclipse platform and is implemented as a plug-in for this

platform while the converter uses the Xalan Xslt implementation.

In case of descriptions using Microsoft Word document format xGen100 generates the intermediate
*.mdf or *.pdf files (See readme_xGen100.txt for further information about xGen100 that transforms

MSG and SAP documents to the intermediate files).

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 183

*.pr
*.cdg

M_<spec>.

val

<spec>.log
<spec>.err

3gpp / ETSI

Specification

<spec>.aim /

<spec>.sap

<spec>.mdf/

pdf

M_<spec>.h

xalan.bat

ccdgen

AIM/

SAP.xsd

Figure 4: Workflow of the Generic TI Tool Chain

CCDGEN (TI Coder Decoder Generator) is a compiler that transforms message description files (*.mdf)

or primitive description files (*.pdf) to tables (*.cdg). The message description tables are the essential
input for the TI Coder Decoder CCD to encode structured message to bit-streams and to decode bit-
st reams to structured message. The primitive description tables are needed by PCON. PCON is primi-

tive converter that has to be called in the test interface drivers to achieve platform independent message
format for the test interface communication. In addition CCDGEN generates C header files which con-
tain C structures. These structures describe messages or primitives.

Formal

Description of

Messages and Primitives

(WORD / XML Files)

CCDGEN

CCD Generator

Coding

Tables for

Messages

Message and

Primitive Element

Description

Include Files

p_xxx.h

p_xxx.val

m_xxx.h

m_xxx.val

(xxx=SAP/Entity)

PS Entities

CCD

(Target)

CCD

(Test)

CCD Kernel

CCD Interface

Encoding/Decoding

Types

Figure 5: CCDGEN Functionality

To encode bit stream-messages from data in C-structures and vice versa there is the TI Coder Decoder
CCD. Additionally there are some functions included to code and decode simple data types l ike byte and

long. The next part gives a more detailed overview of CCD functionality.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 183

1.5 CCD in Overview

CCD is an interpreter which uses an optimised database for high performance. The database contains
the rules for coding and decoding all GSM, GPRS or UMTS air-interface messages. It is also possible to

use CCD database to represent messages in readable form. Applications using CCD are test system s ,
tools for analysing signalling and the protocol stack running on a certain target.

A language for describing the messages to generate the CCD database has been defined, which rules

over the syntax of MDF and PDF files. The CCD compiler (ccdgen.exe) compiles these descriptions
outside the Protocol Stack at generation time. The compiler generates the database for CCD and the
st ructure definitions (C-header files) used by the Protocol -Stack components.

The interface to the applications, i .e. the Protocol -Stack components, is very simple, consisting of an
encoding and a decoding function. Thus, all encoding or decoding is carried out by a single function call
to CCD. The interface offers also functions to retrieve information on errors occurred while encoding or

decoding procedures.

Primitives are used for communication between Protocol-Stack components. They are defined as C-
structures, in the same way as messages. The CCD compiler generates the C-structures in the form of

header files used by the Protocol Stack components. All primitives are defined with a description
language. The CCD Compiler (CCDGEN) generates header files with C-Structures and constants which
are included in the source code of the Protocol -Stack entities.

The second types of information carriers are messages according to the GSM, GPRS or UMTS
standard. The messages are coded as bit streams and are outside the target system visible at the air-
interface. To handle messages efficiently they must be converted from a bit stream to a C-Structure and

vice versa. CCD carries this out on the target system. Encoding of a GSM message means the
transformation of a C-structure to a bit stream according to the protocol specifications. Decoding means
the transformation from a bit stream to a C-structure.

Convert bit-oriented air message to byte-oriented C structure and vice versa

Message PDU

CCD

TI Coder Decoder

C Structure

Figure 6: CCD Functionality

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 183

2 Message and Primitive Editorial Description Catalogues -
SAPE

As it must be possible for the TI tool chain to process documents containing AIM / SAP specifications,
the structure of the document is standardized. If the structure of the document is incorrectly
implemented, the tool chain will not recognize the document as an AIM respectively SAP specifi cation

during translation.

The Air Interface Message and the SAP description XML documents are created based on an XML
schema by using the SAPE tool and choosing the appropriate file type (either AIM for Air Interface

Message or SAP for Service Access Point description) when creating a new document. Writing AIM/SAP
specifications by SAPE does not require any knowledge about XML language and associated

members of the XML family in detail. The SAPE graphical user interface cares about the

transformation of table data to well-formed and valid XML data.

As well i t is possible to write an XML document by using a text editor, because XML (Extensible Markup
Language) is a simple, very flexible text format. But, the TI tool chain demands for special XML

constructs. The following section is not indented to explain the XML language and associated members
of the XML family in detail. It is assumed that the reader being interested in AIM/SAP XML
representations is familiar with Extensible Markup Language (XML), XML schema description language

and certain terms that will be used in conjunction with XML.

The XML description traces back to the concepts of well formedness and validity. It is very simple to
check a document for well formedness, while validation requires that a document follows the constraints

expressed in its XML schema definition. The XML schema definition provides the rough equivalent of a
context-free grammar for a document type. The AIM/SAP schemata define and describe a certain class
of XML documents by using special constructs to constrain document structure (order, occurrence of

elements, attributes). If the user writes an AIM or SAP XML document by a text editor i t is mandatory
that

 the document has to match the logical and physical structures which must be nested properly

(well-formed) and

 the document conforms to the particular schema *.xsd which determines the appearance of

certain elements, their content and the appropriate order in the instance document (valid).

In cases of using the SAPE editor this tool validates that the XML document conforms to the rules

described in the associated schema. The user needs not to care about the order and the form of any
st ructures. The SAPE editor offers a list of possible sub-elements and their associated and allowed
actions. In the XML representation there isn‟t any section numbering present.

Due to the fact that SAP and AIM documents contain a large amount of different elements with different
meanings, this section is broken into several subsections. There are common elements in both types of
documents and elements that are specific for the purposes of the different types of interfaces that they

describe (either SAP or AIM). One section deals with the common elements which could be part of SAP
and AIM documents, and there is one section each for specific elements which are present in one kind
of document only

These sections are further separated to associate a group of SAPE tables belonging to one main topic
with the appropriate XML structures. Each of these subsections explains the purpose of each provided
table and its columns in conjunction with the XML node element and its child elements. It might be

easier to understand this part of the document if you start reading the sections belonging to the root
elements SAP and AIM respectively. All sub-elements are linked with each other. This will help to
navigate through the element structure.

The following two tables provide an overview of all parts (common and specific) belonging to AIMs (Air
Message Specification) respectively to SAPs (Service Primitive Specification). Each table shows the
hierarchical order of nested elements. All elements are linked to the appropriate document parts. The

common elements, AIM specific elements and SAP specific elements are shaded in different manner to
facilitate orientation. These tables are intended to support an easy top down access to the information
overload.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 183

AIM - Air Interface Message
2.1.2.1 Document Information Section

2.1.3.2 DocName

(2.1.4) DocNum

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.1.2.1 Document History

2.1.1.1 DocVersion

(2.1.4) Date

(2.1.4) DocStatus

(2.1.4) DocRef

2.1.2.2 Pragmas Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.2.1 Pragma

2.1.3.4 Name

(2.1.4) Value

2.1.1.2 History

 (2.1.4) Date

2.1.2.3 Constants Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.3.1 Constant

2.1.3.1 Al ias

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

(2.1.4) Value

2.1.3.6 Feature Flags

2.1.3.3 Group

2.1.1.2 History

 (2.1.4) Date

2.2.1 Messages Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.2.1.1 Message

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.2.1.1.1 Message Defini tions

2.1.3.4 Name

(2.2.5) MsgID

(2.2.1.1.1) MsgLenMax

2.1.3.6 Feature Flags

2.1.3.3 Group

2.2.1.1.2 Message Items

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.3.1 Al ias

2.2.4.2 Type

(2.2.5) ItemTag

2.2.4.1 Control

2.2.4.1.1 Type Modi fier Element

2.2.4.1.2 Condi tion Element

2.2.4.1.3 Command Sequence Element

2.2.4.1.4 Bi tGroupDefinition Element

2.1.3.6 Feature Flags

2.1.1.2 History

 (2.1.4) Date

2.2.2 Structured Elements Section (see next page)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 183

2.2.2 Structured Elements Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.2.2.1 Structured Message Elements

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.2.2.1.1 Structured Element Defini tions

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.3.3 Group

2.2.2.1.2 Structured Element Items

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.3.1 Al ias

2.2.4.2 Type

(2.2.5) ItemTag

2.1.3.7 UnionTag

2.1.3.4 Name

(2.1.4) Value

2.2.4.1 Control

2.2.4.1.1 Type Modi fier Element

2.2.4.1.2 Condi tion Element

2.2.4.1.3 Command Sequence Element

2.2.4.1.4 Bi tGroupDefinition Element

2.1.3.6 Feature Flags

2.1.1.2 History

 (2.1.4) Date

2.2.3 Basic Elements Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.2.3.1 Basic Message Elements

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.2.3.1.1 Basic Element Defini tions

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.3.3 Group

2.1.3.8 ValuesLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.1.2 History

 (2.1.4) Date

2.1.2.4 Substi tutes Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.4.1 Substitute

2.1.3.1 Al ias

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.1.2 History

 (2.1.4) Date

2.1.2.5 Values Section (see next page)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 183

2.1.2.5 Values Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.5.1Values

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.5.1.1 ValuesDef

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.3.3 Group

2.1.2.5.1.2 ValuesItem

(2.1.4) Value

2.1.3.1 Al ias

2.1.3.6 Feature Flags

2.1.2.5.1.3 ValuesRange

 2.1.3.1 Al ias

2.1.2.5.1.4 ValuesDefaul t

 (2.1.4) Value

2.1.1.2 History

 (2.1.4) Date

2.1.2.6 Annotations Section

2.1.2.6.1 Annotation Element

 2.1.2.6.2 Data Target

Table 1: Air Interface Message Structure

 Common Elements

 AIM Specific Elements

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 183

SAP – Service Primitive Specification
2.1.2.1 Document Information Section

2.1.3.2 DocName

(2.1.4) DocNum

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.1.2.1 Document History

2.1.1.1 DocVersion

(2.1.4) Date

(2.1.4) DocStatus

(2.1.4) DocRef

2.1.2.2 Pragmas Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.2.1 Pragma

2.1.3.4 Name

(2.1.4) Value

2.1.1.2 History

 (2.1.4) Date

2.1.2.3 Constants Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.3.1 Constant

2.1.3.1 Al ias

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

(2.1.4) Value

2.1.3.6 Feature Flags

2.1.3.3 Group

2.1.1.2 History

 (2.1.4) Date

2.3.1 Primitives Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.1.1 Primi tive

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.1.1.1 Primi tive Defini tions

2.1.3.4 Name

2.3.5.1 Primi tive Identi fier

2.1.3.6 Feature Flags

2.1.3.3 Group

2.3.1.1.2 Primi tive Items

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.3.1 Al ias

2.3.5.2 Control

2.1.3.6 Feature Flags

2.1.1.2 History

 (2.1.4) Date

2.3.2 Structured Elements Section (see next page)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 183

2.3.2 Structured Elements Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.2.1 Structured Primi tive Elements

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.2.1.1 Structured Primitive Element Definitions

2.1.3.4 Name

2.1.3.1 Al ias

2.1.3.6 Feature Flags

2.1.3.3 Group

2.3.2.1.2 Structured Primitive Element Items

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.3.1 Al ias

2.1.3.7 UnionTag

2.1.3.4 Name

(2.1.4) Value

2.3.5.2 Control

2.1.3.6 Feature Flags

2.1.1.2 History

 (2.1.4) Date

2.3.3 Basic Elements Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.3.1 Basic Primitive Elements

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.3.1.1 Basic Element Defini tions

2.1.3.4 Name

2.3.5.4 Type

2.1.3.6 Feature Flags

2.1.3.3 Group

2.1.3.8 ValuesLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.1.2 History

 (2.1.4) Date

2.1.2.4 Substi tutes Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.4.1 Substitute

2.1.3.1 Al ias

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.1.2 History

 (2.1.4) Date

2.3.4 Functions Section (see next page)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 183

2.3.4 Functions Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.4.1 Functions

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.3.4.1.1 Function Defini tions

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.3.3 Group

2.3.4.1.3 Function Return Value

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.3.5.3 Extern Type

 2.3.5.4 Type

2.3.5.2 Control

2.3.4.1.2 Function Arguments

2.1.3.5 ItemLink

2.1.3.2 DocName

2.1.3.4 Name

2.3.5.3 Extern Type

 2.3.5.4 Type

2.1.3.1 Al ias

2.3.5.2 Control

2.1.1.2 History

 (2.1.4) Date

2.1.2.5 Values Section

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.5.1Values

2.1.1.1 Description

2.1.1.1.1 Listing element

2.1.1.1.2 Linked document

 2.1.3.4 Name

2.1.2.5.1.1 ValuesDef

2.1.3.4 Name

2.1.3.6 Feature Flags

2.1.3.3 Group

2.1.2.5.1.2 ValuesItem

(2.1.4) Value

2.1.3.1 Al ias

2.1.3.6 Feature Flags

2.1.2.5.1.3 ValuesRange

 2.1.3.1 Al ias

2.1.2.5.1.4 ValuesDefaul t

 (2.1.4) Value

2.1.1.2 History

 (2.1.4) Date

2.1.2.6 Annotations Section

2.1.2.6.1 Annotation Element

 2.1.2.6.2 Data Target

Table 2: Service Primit ive Structure

 Common Elements

 SAP Specific Elements

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 183

2.1 Common Description Instruments

This part deals with the common elements which will be used for both types of documents (either SAP
or AIM). As a consequence to this the similarities are grouped into the separate, shared schema

“sapaim.xsd” that could be used by both document types. The more specific schema files, which are
necessary for the different types of interfaces, include this common schema.

The list below shows the common elements belonging to the top level. Some sections may be left out;

these sections are marked [optional].

Document Information Container for all document relevant information

Pragmas [optional] Used to control and to modify the behaviour of the TI tool

chain

Constants [optional] Contains global constants and used to assign a value to a
variable

Substitutes [optional] Used to define a new name for an existing element

Values [optional] Used as aliases for user specific values

Annotations [optional] Container to keep annotations which may belong to any

element of the document

Each section above contains a number of subsections, which act as keywords, separating different

types of information.

2.1.1 Sharable Subsections

The usage of the items belonging to the sharable subsections is multifaceted. These items appear in

conjunction with common, message specific and primitive specific description elements. They are con-
catenated with different levels in the XML structure. Sharable subsection items may belong to node ele-
ment as well as to child elements.

2.1.1.1 Description

A Description holds informative data to provide additional facts about the object in the section. It is
entirely informational, i .e. the tool chain does not use this part. Therefore, i t is not mandatory in any

section, but i t is strongly recommended that a description is included in any section.

Figure 7: SAPE Description Element

The Description element consists of an indefinite choice of optional child elements:

 The Section element,
which is provided by the SAPE editor as a field labelled with Description, offers a plain text field
to hold any combination of text or digits.

 The Listing element
is intended for conversion of the old document format (MS Word) to the XML document format.
The SAPE editor does not provide this element. For every list that could be identified within

descriptive text a List element has to be created.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 183

 The DocLink element
can be found as Linked Description Element. Although SAPE provides a self-contained table the
DocLink element belongs to the superordinate Description element. It offers the possibili ty to link
arbitrary files.

This set of child elements have been created as a compromise to the old document format (MS Word) to
provide the possibili ty to format the Description content in a certain way. This is l imited to sections, lists
and references to other documents, which are mainly intended to be drawings. All of these elements

could be mixed in an arbitrary sequence. See the model for the Description element:

Figure 8: Model of a Description Element

Element Description

Children Section Listing DocLink

Used by Elements ConstantsSection DocInfoSection PragmasSection SubstitutesSection Values Values-
Section
Message MessagesSection MsgBasicElem MsgBasicElementsSection MsgStructElem

MsgStructElementsSection
FunctionsSection Function PrimitiveSection Primitive PrimStructElem PrimBasicEle-
mentsSection PrimBasicElem

ConstantsSection DocInfoSection PragmasSection SubstitutesSection Values Values-
Section

XML schema <xs:element name="Description">
 <xs:complexType>

 <xs:choice maxOccurs="unbounded">
 <xs:element name="Section" type="xs:string"/>
 <xs:element name="Listing">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="ListItem" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>
 </xs:element>
 <xs:element ref="DocLink"/>
 </xs:choice>

 </xs:complexType>
</xs:element>

XML example <Description>
 <Section>This message is used to test the coding or decoding of Information Elements

which use the CSN1_S1, CSN1_SHL and S_PADDING coding types.</Section>
 <Section>Reference :</Section>
</Description>

2.1.1.1.1 Listing element

The Listing element i tself consists of one to many child elements: ListItem. Each ListItem element can
holds any combination of text or digits. The ListItems are intended for conversion of the old document
format (MS Word) to the XML document format. For every list that could be identified within descriptive

text in the old document format (MS Word) a Listing element has to be created. The content of each list
i tem has then to be transferred to the corresponding child element. The SAPE editor does not provide
these elements.

2.1.1.1.2 Linked Description Elements - DocLink

This sub element provides a mechanism to link arbitrary files which are entirely informational, i .e. the
tool chain does not use it. Therefore, i t is not mandatory in any section. The “Linked Description

Elements are intended for additional information, documentation etc.

file:///D:/SAPAIM.doc%23Link01B5AE70
file:///D:/SAPAIM.doc%23Link01B532D8
file:///D:/SAPAIM.doc%23Link01B55820
file:///D:/SAPAIM.doc%23Link01B56668
file:///D:/SAPAIM.doc%23Link01B572C0
file:///D:/SAPAIM.doc%23Link01B632A8
file:///D:/SAPAIM.doc%23Link01B632A8

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 25 of 183

The SAPE editor offers a table for this sub element. There are two columns:

 The Linked document column,
that is intended to carry the file name.

 The Type column,

that provides a pull down list with several suggested file types. Currently SAPE 0.2.5 supports
the following standard types: BMP, DOC, GIF, HTML, JPEG, TIFF, TXT. If another file format is
desired then the type information should be set to OTHER. The Linked document column should

carry the whole file information: <name>.<type>

Element DocLink

Children Name Comment

Used by Element Description

Attributes Name Ty pe Use Default Fixed

DocType xs:string required

XML schema <xs:element name="DocLink">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name"/>

 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 <xs:attribute name="DocType" use="required">

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="BMP"/>
 <xs:enumeration value="DOC"/>

 <xs:enumeration value="GIF"/>
 <xs:enumeration value="HTML"/>
 <xs:enumeration value="JPEG"/>
 <xs:enumeration value="TIFF"/>

 <xs:enumeration value="TXT"/>
 <xs:enumeration value="OTHER"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:attribute>
 </xs:complexType>
</xs:element>

XML example <DocLink DocType="OTHER">

 <Name>gmm_service_states.vsd</Name>
 <Comment>GMM State diagram (VISIO 2000)</Comment>
</DocLink>

2.1.1.2 History

The History subsection offers a table containing a manually updated list of changes. It is entirely

informational, i.e. the tool chain does not use this section. Nevertheless it is mandatory to enable a
detailed change tracking.

Figure 9: SAPE History Table

The developer working on the document is responsible for updating the hi story list. The initial history
data set entry is concatenated with the action “Add new element” and should be accomplished by the
user.

The SAPE editor provides a table with three columns:

Comment [K1]: As well it should be possible

to choose any other type. In this case the user

has to select the type “OTHER” in this column
and in the Linked document column in the
same row should carry the whole f ile informa-
tion: <name>.<type>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 26 of 183

 The Date column,
that is intended to carry the date of the changes. The data set of format “yyyy-mm-dd” will be
automatically generated as soon as new history entry is added.

 The Author column,

that provides a plain text field. The developer should use his/her own well -known token.

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML

element is mandatory and therefore a preselection is suggested.

Figure 10: Model of a History Element

Element History

Children Date, Author, Comment

Used by Elements ConstantsSection PragmasSection SubstitutesSection Values
Message MsgBasicElem MsgStructElem
Function Primitive PrimStructElem PrimBasicElem

XML schema <xs:element name="History ">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Date"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name=“Comment” type=“xs:string”/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <History >
 <Date Day ="5" Month="12" Year="2001" />
 <Author>LG</Author>
 <Comment>Initial</Comment>

</History >

2.1.1.2.1 Document History

This subsection is a modified version of the common History subsection.

Figure 11: SAPE Document History

There are three additional columns in the provided table of information:

 The Year column

is related to the document version and should used to a two-digit number representing the year
of change. But any alphanumerical data are possible.

 The Number column
is related to the document version, too and should used to a three-digit counter number. But any

alphanumerical data are possible.

 The State column
is intended to handle the document status. This information is required and there are only three

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 27 of 183

values allowed: {BEING_PROCESSED, SUBMITTED, APPROVED}. In the XML schema de-
scription there exists a sub element called DocStatus with the mandatory attribute State which is
associated with the SAPE State column.

The columns Year and Number belong to the sub element DocVersion. The XML schema description
handles both information items as mandatory attributes from type string.

Figure 12: Model of a Document History Element

Element DocHistory

Children DocVersion Date Author DocStatus Comment

Used by Element DocInfoSection

XML schema <xs:element name="DocHistory ">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="DocVersion"/>
 <xs:element ref="Date"/>
 <xs:element name="Author" type="xs:string"/>

 <xs:element ref="DocStatus"/>
 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <DocHistory >
 <DocVersion Number="003" Year="00" />
 <Date Day ="1" Month="10" Year="2002" />

 <Author>CKR</Author>
 <DocStatus State="BEING_PROCESSED" />
 <Comment>HSCs changes integrated </Comment>
</DocHistory >

2.1.2 Special Subsections

The items belonging to the special subsection will be used for both types of documents (e ither SAP or
AIM). Unlike the sharable subsection items the usage of these common elements is restricted to the top

level in the XML structure. Some sections may be left out. Each section contains a number of subsec-
tions, which act as keywords, separating different types of information.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 28 of 183

2.1.2.1 Document Information Section

The Document Information Section is a mandatory part although it is entirely informational, i.e. the TI
tool chain does not use this section. This section contains global information about the document itself. It

se rves as a sort of container to group all document relevant information. There is only one
DocInfoSection element per document.

Figure 13: SAPE Document Information Section

The Document Information Section provided by SAPE contains five different parts:

 The Description part should serve as textual explanation of the purpose and meaning of the
document itself and corresponds to the child Sectionof the Description element. This Description

element should be a common introduction to the following document parts. It is strongly
recommended to elaborate these descriptions carefully because this will be the only
documentation of the primitives or messages specifications as the single source concept

agreed.

The specification engineer should provide enough information to clearly outline the documents
interrelations and the intention why this document has been written and how to use it. This

important section determines the quality of the documentation targeted at the readers of the
XML document or associated to the automatically generated HTML documentation. This part
does not appear in any source output from the processed document.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The third part is a table to take general, formal document information into account. This table

labelled with Documents carries one single row, only. The columns correspond to the mandatory
XML elements DocName and DocNum.

The DocName element allows alphanumerical data and should hold the name of a SAP or AIM

document without any file extension. This name should follow the rules for SAP and AIM
document names.

The SAPE tool provides in the Document table an additional column to set the Document type.

The XML schema definition handles this type information by the mandatory attribute DocType,
which belongs to the mandatory DocName element. This attribute may take one of the possible
values AIM or SAP. The DocType attribute indicates whether an Air Interface Message or a SAP

description XML documents is created. By creating a new minimal SAP/AIM document SAPE

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 29 of 183

extracts the DocType automatically and preselects the filename of the document itself as
DocName. The SAPE GUI doesn‟t allow any DocType changes.

The remaining two columns Project and Number are associated to the DocNum. element. Each

is handled by a mandatory attribute. Although these attributes can be chosen without restriction
of any kind it is recommended to use a four-digit project number and a three-digit document
number dedicated within the project documentation. This document number could be extracted

from an entry in the Document History section

 A number of optionally DocRef. elements could be present. These elements are used to define
a reference to an external document, which contents might be helpful for understanding. They
are handled in the Document References table. A DocRef element consists of the mandatory

child elements: RefId. and RefTitle. . The column labelled Ref: ID belongs to the element
RefId and holds an identifier to refer to the reference throughout the document. The second
column holds the full ti tle of the document that is referenced and is associated to the RefTitle

element.

Figure 14: Model of a Document Reference Element

 The History table is intended to track changes. Each row in this table corresponds to one History

element. One to many Document History elements (short: DocHistory) are allowed. The amount
of DocHistory elements will increase by each document change. At least one associated XML
element is mandatory and therefore a preselection is suggested.

Figure 15: Model of the Document Information Section

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 30 of 183

Element DocInfoSection

Children DocName DocNum Description DocHistory DocRef

Used by Elements AIM SAP

XML schema

<xs:element name="DocInfoSection">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="DocName"/>
 <xs:element ref="DocNum"/>
 <xs:element ref="Description"/>

 <xs:element ref="DocHistory " maxOccurs="unbounded"/>
 <xs:element ref="DocRef" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <DocInfoSection>
 <DocName DocType="AIM">gmm</DocName>
 <DocNum Number="603" Project="8441" />

 <Description> . . . </Description>
 <DocHistory > . . . </DocHistory >

 . . .
 <DocHistory > . . . </DocHistory >
 <DocRef> . . . </DocRef >

 . . .
 <DocRef> . . . </DocRef >

</DocInfoSection>

2.1.2.2 Pragmas Section

The Pragmas Section serves as a sort of container to group all Pragma declarations. This section is

optional. It is used to control and to modify the behaviour of the TI tool chain, e.g. to define a prefix for
identifiers (constants, values, etc). There are predefined Pragma keywords that can be assigned a
certain value.

Figure 16: SAPE Pragma Section

The Pragmas Section provided by SAPE contains four different parts:

 The Description part should serve as additional information about the Pragmas Section and
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. . This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 31 of 183

 The third part is a table to take one to many Pragma elements (mandatory) into account.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Figure 17: Model of the Pragma Section

Element PragmasSection

Children Description Pragma History

Used by Elements AIM SAP

XML schema

<xs:element name="PragmasSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="Pragma" maxOccurs="unbounded"/>

 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <PragmasSection>
 <Description> . . . </Description>
 <Pragma> . . . </Pragma>

 . . .
 <Pragma> . . . </Pragma>
 <History > . . . </History >

 . . .
 <History > . . . </History >
</PragmasSection>

2.1.2.2.1 Pragma

In the Pragma table one to many items may be present. Each row of the Pragma table represents a

separate Pragma declaration itself.

Figure 18: SAPE Pragmas Table

Currently the following pragmas are supported:

PREFIX

COMPATIBILITY_DEFINES

ALWAYS_ENUM_IN_VAL_FILE

ENABLE_GROUP.

CAPITALIZE_TYPENAMES

Each of these will be explained in the following sections.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 32 of 183

The SAPE editor provides three columns for mandatory entries in this table:

 The Name column
provides a plain text field, which is intended to identify an established action.

 The Value column

 supports values facet-valid with respect to enumeration [DEC, BIN, HEX, OCT, ALPHA].

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML

element is mandatory and therefore a preselection is suggested.

Each column relates to an XML element of the same name.

Figure 19: Model of a Pragma Element

Element Pragma

Children Name Value Comment

Used by Element PragmasSection

XML schema

<xs:element name="Pragma">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Name"/>
 <xs:element ref="Value"/>
 <xs:element name=“Comment” type=“xs:string”/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <Pragma>

 <Name>PREFIX</Name>
 <Value ValueType="ALPHA">DL</Value>
 <Comment>Prefix for this document</Comment>
</Pragma>

PREFIX

The pragma PREFIX allows all constants, elements and types generated from the SAP document to be
automatically prefixed with a letter combination contained in the Value column. The letter combination
should follow the TI coding standard, which currently states that SAP content should be prefixed by SAP

identi fier for the entity to which it belongs (e.g. "RRC"). A special value (NONE) can be used to indicate
that no prefixing is to be done for the content of the SAP. Prefixing never applies to primitive names

or function names.

COMPATIBILITY_DEFINES

The pragma COMPATIBILITY_DEFINES makes the tool chain generate C pre-processor directives,
redefining legacy style declarations to the current standard. The values can be YES and NO indicating

whether to generate them or not.

The combination of PREFIX = NONE and COMPATIBILITY_DEFINES = YES is undefined and hence
useless, as no prefixing means that all names used in the SAP will remain as is.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 33 of 183

ALLWAYS_ENUM_IN_VAL_FILE

The pragma ALLWAYS_ENUM_IN_VAL_FILE will make the tool generate an enum for each U8, S8,
U16, S16, U32 and S32 type. Each enum containing the constant associated with the corresponding

type. The values can be YES or NO.

If pragma ALLWAYS_ENUM_IN_VAL_FILE have a value different from YES or is not present, then
#define will be generated for such constants.

ENABLE_GROUP

The pragma ENABLE_GROUP is used to enable groups. Groups are used for supporting more than
one coding standard. The values can be YES or NO.

If pragma ENABLE_GROUP has a value different from YES or is not present, then Group columns are
ignored. If pragma ENABLE_GROUP have the value YES, then Group columns are mandatory when
applicable (see individual table description), and the group cell must contain a value, which may be the

special value none in which case no entry in the output file is generated for that row. The special group
“none” is not allowed for types or constants used by a type having another group value than none.

When using Group columns the output h-files are named according to the group names. That is, the

original SAP name does not affect which output files a type is generated in. The group name is used for
prefix generation as well (pragma PREFIX is ignored if Group columns are present). Using Groups
causes the output to be sl ightly altered..

CAPITALIZE_TYPENAMES

This pragma is used to indicate whether the generated type names will be capitalized or not. That is for
instance whether the generated type for an element called my_u8 would be T_my_u8 or T_MY_U8.

The values can be YES or NO

2.1.2.3 Constants Section

The Constants Section itself is an optional part and contains information about global constants used in

the document. It serves as a sort of container to group all Constant declarations.

Figure 20: SAPE Constants Section

This section provided by SAPE contains four different parts:

 The Description part should serve as additional information about the Constants Section and

corresponds to the child Section of the Description element.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 34 of 183

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The third part is a table to take one to many Constant elements (mandatory) into account.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Figure 21: Model of the Constants Section

Element ConstantsSection

Children Description Constant History

Used by Elements AIM SAP

XML schema

<xs:element name="ConstantsSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="Constant" maxOccurs="unbounded"/>

 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <ConstantsSection>
 <Description> . . . </Description>
 <Constant> . . . </Constant>

 . . .
 <Constant> . . . </Constant>
 <History > . . . </History >

 . . .
 <History > . . . </History >
</ConstantsSection>

2.1.2.3.1 Constant

Constants are used as an alias for a user specific value. Constants defined in a document could be used

within the document or during the implementation phase to assign a value to a variable. While passing
the TI tool chain each Constant element causes a #define directive in the C header file, which will be
used to give a meaningful name to a constant:

 #define identifier token-string

Figure 22: SAPE Constants Table

The Constant element consi sts of the following child elements:

 The Alias element (mandatory)
enables any combination of text or digits to identify a user specific value. The SAPE GUI offers

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 35 of 183

a separate column to support text input. The Alias element acts as identifier for the #define
directive in the generated C header file. The #define directive substitutes token-string for all
subsequent occurrences of an identifier in the source file.

 To define the user specific values (token-string) either the Name or the Value column should
used.

The ItemLink element in the XML description represents a reference to an item defined
elsewhere in the same or an external document. The SAPE Name column is associated to a

child of the ItemLink element and offers the possibili ty to join a linked item by reference from any
constant in the same or in an external document. The SAPE editor provides the possibili ty to
select a new linked element from the Select Repository Entry and to jump to the linked element.

The name of the referenced element should be substituted; Alias is the new name of this
element.

The Value element supports locally defined values facet-valid with respect to enumeration [DEC,

BIN, HEX, OCT, ALPHA].

 The optional XML Version element is associated to a column named FeatureFlags.
The SAPE editor accepts any combination of text or digits that represents the dependency from

feature flags for a specific item. The entries are optional but must comply with coding rules for
feature flags.

 The Group column relates to the optional XML element of the same identifier.

This element could be present to declare a group where the constant belongs. Groups can be
used to force the generators of the tool chain to separate the definitions of elements into
different output files. Any combinations of text or digits are allowed.

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory and therefore a preselection is suggested.

Figure 23: Model of a Constant Element

Comment [K2]: should be linked item!!!

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 36 of 183

Element Constant

Children Alias ItemLink Value Version Group Comment

Used by Element ConstantsSection

XML schema

<xs:element name="Constant">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Alias"/>
 <xs:choice>
 <xs:element ref="ItemLink"/>

 <xs:element ref="Value"/>
 </xs:choice>
 <xs:element name="Version" type="xs:string” minOccurs="0"/>
 <xs:element name="Group" type="xs:string" minOccurs="0"/>

 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <Constant>
 <Alias>L3MAX</Alias>
 <Value ValueType="DEC">251</Value>

 <Comment>maximum size of a L3 buffer</Comment>
</Constant>

2.1.2.4 Substitutes Section

The Substitutes Section itself is an optional part and serves as a sort of container to group all Substitute

declarations.

Figure 24: SAPE Substitutes Section

This section provided by SAPE contains four different parts:

 The Description part should serve as additional information about the Substitutes Section and
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink.. This table is associated with the sub element Linked Description Elements belonging

to the parent element Description.

 The third part is a table to take one to many Substitute elements (mandatory) into account.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 37 of 183

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Figure 25: Model of the Substitutes Section

Element SubstitutesSection

Children Description Substitute History

Used by Elements AIM SAP

XML schema

<xs:element name="SubstitutesSection">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="Substitute" maxOccurs="unbounded"/>
 <xs:element ref="History " maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <SubstitutesSection>
 <Description> . . . </Description>
 <Substitute > . . . </Substitute >

 . . .
 <Substitute > . . . </Substitute >
 <History > . . . </History >

 . . .
 <History > . . . </History >

</SubstitutesSection>

2.1.2.4.1 Substitute

A Substitute is used to define a new name for an existing element. Usually referenced elements could

be renamed with an alias name when they are used. Some applications exist, where elements should be
renamed without using them, but to define just a new name. This could be useful to support a certain
include hierarchy, with the output files generated by the tool chain.

Figure 26: SAPE Substitutes Table

A Substitute is a dedicated element for the case of a substitution and consists of the mandatory child
elements:

 The Alias element (mandatory)
enables any combination of text or digits to identify a user specific value. The SAPE GUI offers
a separate column to support text input.

 The ItemLink element in the XML description represents a reference to an item defined
elsewhere in the same or an external document. The SAPE Name column is associated to a
child of the ItemLink element and offers the possibili ty to join a linked item by reference from any

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 38 of 183

member in the same or in an external document. The SAPE editor provides the possibility to
select a new linked element from the Select Repository Entry and to jump to the linked element.
The name of the referenced element should be substituted; Alias is the new name of this

element.

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory and therefore a preselection is suggested.

Figure 27: Model of a Substitute Element

The SAPE GUI shows an additional column in the Substitutes table labelled Type. The fields of this
column can‟t be edited; they are filled automatically i f a substitute belongs to a Structured Message

Element.

Element Substitute

Children Alias ItemLink Comment

Used by Element SubstitutesSection

XML schema

<xs:element name="Substitute">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Alias"/>

 <xs:element ref="ItemLink"/>
 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <Substitute>
 <Alias>P-TMSI</Alias>
 <ItemLink>

 <DocName DocType="AIM">gmm</DocName>
 <Name>tmsi</Name>
 </ItemLink>
 <Comment>Substitute element</Comment>

</Substitute>

2.1.2.5 Values Section

Some specifications require values that must be associated with particular elements. These values may

define legal ranges, identified constant values or enumerations that are specific to this element. In AIM
descriptions the usage of Values is only allowed within the Basic Message Elements. Respectively, in
SAP descriptions the usage of Values is only allowed within Basic Primitive Elements. If a basic element

has values, they must be declared in the Values Section. A basic element description contains only a
ValuesLink table supporting one to many Values Link child elements which could be attached to the
basic element i tself. The Values Section serves as a sort of container to group all Value declarations.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 39 of 183

The Values Section serves as a sort of container to group all Value declarations.

Figure 28: SAPE Values Section

The Values Section provided by SAPE contains three different parts:

 The Description part should serve as additional information about the Values Section and
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The third part is a table to take one to many Values elements (mandatory) into account.

Figure 29: Model of the Values Section

Element ValuesSection

Children Description Values

Used by Elements AIM SAP

XML schema <xs:element name="ValuesSection">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>

 <xs:element ref="Values" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <ValuesSection>
 <Description> . . . </Description>
 <Values> . . . </Values>

 . . .
 <Values> . . . </Values>
</ ValuesSection >

2.1.2.5.1 Values

Values are constants that can be used as aliases for user specific values. The values are dedicated to
the item that they are referenced by and could be used during the implementation phase of a protocol
stack entity to assign this value. Besides other tools (e.g. for testing) could use these aliases to display

the contents of certain elements in a more readable manner.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 40 of 183

The SAPE editor provides a set of tables needed to describe a single value sufficiently. The XML Values
element serves as a sort of container to group a set of values, that belongs together. Each table relates
to an XML element. Table labels and element names can be implicated easily.

Figure 30: SAPE Values Table

The Values format should correspond to other key elements in the document. Therefore also Values
elements have the mandatory elements Description element and History element. The SAPE GUI offers

two parts to take these elements into account:

 The Description part should serve as additional information about the Values and corresponds
to the child Section of the Description element.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

The Values Definitions table belongs to another mandatory XML element: ValuesDef and acts as a

definition element. While passing the TI tool chain each Value element causes a #define directive in the
C header file. The ValuesDefinitions determine how these values are bound to C identifiers.

The other three tables provided by the SAPE GUI relate to optional XML elements.

 The Values Items table concerns the ValuesDef elements. If the value element identifies an
enumeration all possibili ties are contained in the Values Items table

 The Values Ranges table is associated with ValuesRange elements. The main purpose of the

range specifications is to allow range checking in the test tools used within the TI tool chain.

 The Default Values table involves ValuesDef elements. If the value element does not identify a
single value (case of range speci fication or enumerations) i t is possible to choose a default
value. This default value should be used if there are not any other assignments.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 41 of 183

Each of these child elements consi sts of nested elements itself.

Figure 31: Model of a Value Element

Element Values

Children Description ValuesDef ValuesItem ValuesRange ValuesDefault History

Used by Element ValuesSection

XML schema <xs:element name="Values">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>

 <xs:element ref="ValuesDef"/>
 <xs:element ref="ValuesItem" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="ValuesRange" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="ValuesDefault" minOccurs="0"/>

 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <Values>
 <Description> . . . </Description>
 <ValuesDef >

 <Name>VAL_cause_value</Name>
 <Comment>values for cause_value</Comment>
 </ValuesDef >
 <ValuesItem> . . . </ValuesItem>

 . . .
 <ValuesItem> . . . </ValuesItem>
 <ValuesRange> . . . </ValuesRange>

 . . .
 <ValuesRange> . . . </ValuesRange>
 <ValuesDefault> . . . </ValuesDefault>
 <History > . . . </History >

 . . .
 <History > . . . </History >
</Values>

2.1.2.5.1.1 ValuesDef

The Values Definitions table (short: ValuesDef element) provided by SAPE consi sts of four columns:

 The Name column,
which entries are mandatory, could be used to reference this value by other elements. This

element acts as identifier for the #define directive in the generated C header file
 #define identifier token-string

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 42 of 183

 The Feature Flags column
relates to the Version element which offers alphanumerical data fields and represents the
dependency from feature flags for a specific i tem. The entries are optional but must comply with
coding rules for feature flags.

 The Group column
offers alphanumerical data field, too. These optional entries can hold the name of a group.
Groups can be used to force the generators of the tool chain to separate the definitions of

elements into different output files.

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML

element is mandatory and therefore a preselection is suggested.

Each column relates to an XML element of the same name.

Figure 32: Model of a Values Definition Element

Element ValuesDef

Children Name Version Group Comment

Used by Element Values

XML schema <xs:element name="ValuesDef">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Name"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 <xs:element name="Group" type="xs:string" minOccurs="0"/>

 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <ValuesDef>

 <Name>VAL_cause_value</Name>
 <Comment>values for cause_value</Comment>
</ValuesDef >

2.1.2.5.1.2 ValuesItem

Each line in the Values Items table (short: ValuesItem element) declares one value and has the child
elements:

 The Value column (mandatory)
supports locally defined values facet-valid with respect to enumeration [DEC, BIN, HEX, OCT,
ALPHA].

 The Alias element (mandatory)
enables any combination of text or digits to identify a user specific value. The SAPE GUI offers
a separate column to support text input.

 The Feature Flags column
relates to the Version element which offers alphanumerical data fields and represents the
dependency from feature flags for a specific i tem. The entries are optional but must comply with
coding rules for feature flags.

Comment [K3]: Which is the corresponding

child elements of ValueItem to transfer the C-

macros ?

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 43 of 183

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory.

Each column relates to an XML element of the same name.

Figure 33: Model of a Values Item Element

Element ValuesItem

Children Value Alias Version Comment

Used by Element Values

XML schema <xs:element name="ValuesItem">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Value"/>

 <xs:element ref="Alias"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <ValuesItem>
 <Value ValueType="DEC">2</Value>

 <Alias>ERRCS_IMSI_UNKNOWN</Alias>
 <Comment>IMSI unknown in HLR</Comment>
</ValuesItem>

2.1.2.5.1.3 ValuesRange

In addition to single value definitions, it is possible to declare ranges of values. To display a more
meaningful output if no appropriate single values are defined for an element the test tools will use
ranges.

To declare a range of values, the Values Ranges table (short ValuesRange element) will be used. The
optional ValuesRange element consists of the elements:

 The MinValue element (mandatory),

which comes from the Minimum Value column, holds alphanumerical data depending on type of
value. This element defines the lower boundary value of a value range.

 The MaxValue element (mandatory),

which comes from the Maximum Value column, holds alphanumerical data depending on type of
value. This element defines the upper boundary value of a value range.

 The Alias element (optional)
enables any combination of text or digits to identify a user specific value. The SAPE GUI offers

a separate column to support text input.

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML

element is mandatory.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 44 of 183

Similar to the Value element of ValuesDef, the element ValuesRange has an attribute, which defines the
type of the values contained in MinValue and MaxValue. Only locally defined values facet-valid with
respect to enumeration [DEC, BIN, HEX, OCT, ALPHA] are supported.

Each column relates to an XML element. Column labels and element names can be implicated easily.

Figure 34: Model of a Values Range Element

Element ValuesRange

Children MinValue MaxValue Alias Comment

Used by Element Values

Attributes Name Ty pe Use Default Fixed
ValueType valTypeChoice required

XML schema <xs:element name="ValuesRange">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="MinValue"/>
 <xs:element ref="MaxValue"/>
 <xs:element ref="Alias" minOccurs="0"/>
 <xs:element name=“Comment” type=“xs:string”/>

 </xs:sequence>
 <xs:attribute name="ValueType" type="valTypeChoice" use="required"/>
 </xs:complexType>
</xs:element>

XML example <ValuesRange ValueType="DEC">
 <MinValue>48</MinValue>
 <MaxValue>63</MaxValue>

 <Comment>retry upon entry into a new cell</Comment>
</ValuesRange>

2.1.2.5.1.4 ValuesDefault

Another addition to single value definitions is possible: Besides range declarations defaults can be

assigned to values. Similar to the usage of ranges test tools use defaults to display a more meaningful
output as a notice if no matching value could be found. The content of the Comment column is displayed
if no other value is declared.

A default value for an element will be declared using the Default Values table providing the following
columns:

 The Value column,

which is only used within air message descriptions for ASN.1 PER encoding rules so far. In such
a case, the Value element directs CCD to present its content i f an optional element of the
message was omitted. The presence of these entries is optional

 The Comment column
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory.

Each column relates to an XML element of the same name.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 45 of 183

Figure 35: Model of a Default Values Element

Element ValuesDefault

Children Value Comment

Used by Element Values

XML schema <xs:element name="ValuesDefault">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Value" minOccurs="0"/>
 <xs:element name=“Comment” type=“xs:string”/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <ValuesDefault>

 <Value ValueType="DEC">255</Value>
 <Comment>Protocol error, unspecified</Comment>
</ValuesDefault>

2.1.2.6 Annotations Section

The Annotations Section is an optional part that serves as a sort of container. It is entirely informational,
i .e. the TI tool chain does not use this section. This section may contain a lot of additional i nformation,
which may belong to any element of the document. There is only one Annotations Section element per

document.

Primarily this section is intended to offer the SAPE user a convenient possibility to add any comments
during the description process. Annotations could be used similar to memos. They allow any kind of

hints concerning processing, special sections or elements etc. The concept of annotations supports an
easy way to jump from the top level to a certain marked element situated on any nested level.

Figure 36: Model of the Annotations Section

SAPE supports the Annotations Section by using the Eclipse standard Task List view. The Task List
view displays annotations on resources and enables opening an editor on the resource when the user
commands. The task objects are used to mark a location within the document. Adding an annotation

creates a task, which appears in the Task view. If the task is selected, the editor may be reopen at the
location defined in the Task.

Figure 37: SAPE Annotation Section

The following information is shown in the columns of the Tasks view:

 The left column displays an icon denoting the type of task. Annotations are of the type Task.

 The next column indicates whether the task i s completed or not. A task i s completed if a check
mark is indicated. This parameter is insignificant concerning annotations.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 46 of 183

 The Priority column indicates whether the task i s of high, normal, or low priority. This column
has no relevance although the user can determine the priority of a task.

 The Description column contains a description of the task and is intended to keep the annotation
text. The user may edit the description of user-defined tasks by cl icking in this column.

 The task view provides two columns to indicate the resource with which the task i s associated.
The Resource column contains the name of the resource and the In Folder column indicates the
folding information.

 The Location column specifies the element in the associated file where the task marker is
located.

Element AnnotationsSection

Children Annotation

Used by Elements AIM SAP

XML schema <xs:element name="AnnotationsSection">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Annotation" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <AnnotationsSection>

 <Annotation>
 </Annotation>

 . . .
 <Annotation>
 </Annotation>
</AnnotationsSection>

2.1.2.6.1 Annotation Element

The Annotation Element is used to keep additional information, which may belong to any element of the

document. SAPE provides a dialog box to specify a new annotation (see Figure 38). Once an annotation
is added to an arbitrary element a task will be created, which will appears in the Task view.

Figure 38: SAPE Dialog Box to Specify a New Annotation

The related XML Annotation Element consists of the following child elements:

 The Data Target refers to a single element within the XML description file which should be
associated with this annotation element itself. This child element is mandatory.

 The Comment element enables any combination of text or digits and is mandatory too. This
element relates to the Description field in the dialog box above and to the Description column in

the Task View respectively. The Comment element is intended to keep the annotation text

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 47 of 183

 The Priority element is associated with the Priority column, which indicates whether the task is
of high, normal, or low priority. This element has no relevance and therefore it is optional.

 The Done element is also optional because the Eclipse standard Task List view requires this
parameter although it is insignificant concerning annotations. This element allows indicating

whether the task is completed or not.

Figure 39: Model of an Annotation Element

Element Annotation

Children DataTarget Comment Priority Done

Used by Element AnnotationsSection

XML schema <xs:element name="Annotation">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="DataTarget"/>
 <xs:element name=“Comment” type=“xs:string”/>
 <xs:element name="Priority " type="xs:string" minOccurs="0"/>
 <xs:element name="Done" type="xs:string" minOccurs="0"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <Annotation>

 <DataTarget>
 <ElementOffset>. . .</ElementOffset>

 . . .
 <ElementOffset>. . .</ElementOffset>

 </DataTarget>
 <Comment>GPRS attach procedure</Comment>
 <Priority >1</Priority >

 <Done>false</Done>
</Annotation>

2.1.2.6.2 Data Target

The Data Target element relates to the Location column, which specifies the element in the associated

file where the task marker is located. This element is composed of a set of child elements called
ElementOffset. The ElementOffset elements enable any combination of text or digits, but it is
recommended to use positive integer values.

Each ElementOffset element characterises a certain level in the XML information tree. The element
value indicates the number of a particular node assuming a consecutive numbering beginning with zero
(see XML example and its explanation). SAPE uses these ElementOffset elements to determine the

element name of the location where the task marker is placed.

Figure 40: Model of a Data Target Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 48 of 183

Element DataTarget

Children ElementOffset

Used by Element Annotation

XML schema <xs:element name="DataTarget">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="ElementOffset" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <DataTarget>
 <ElementOffset>0</ElementOffset>
 <ElementOffset>2</ElementOffset>

 <ElementOffset>1</ElementOffset>
 <ElementOffset>1</ElementOffset>
</DataTarget>

Associated
element

<AIM xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance /* level 0, element 0 */
 xsi:noNamespaceSchemaLocation="aim.xsd">

+ <DocInfoSection>
+ <ConstantsSection>
- <MessagesSection> /* level 1, element 2 */

+ <Description>

- <Message> /* level 2, element 1 */
+ <Description>
- <MsgDef> /* level 2, element 1 */

 <Name>attach_request</Name>
 <MsgID Direction="UPLINK" IDType="DEC">1</MsgID>
 <Comment>attach request</Comment>

 </MsgDef>

+ <MsgItem Presentation="MANDATORY">

 . . .
+ <MsgItem Presentation="MANDATORY">
+ <History >

 </Message>

 . . .

 The data target element above concatenates an annotation to the MsgDef element.

2.1.3 Nontrivial Sub-Elements

Some sub elements, which may occur in different context, require more detailed explanation. These
elements are listed here to provide additional information about the data they may contain. This section
should serve primarily as a reference for these elements.

2.1.3.1 Alias

The Alias element supports alphanumerical data input. This element holds an alias name for a user
specific value or to change the name of an existing element. The alias name will typically result in a

#define expression, a type name or a variable name according to the C programming language.
Therefore the in-house coding rules for C names apply.

Element Alias

Ty pe xs:string

Used by Elements Constant Substitute ValuesItem ValuesRange
MsgItem MsgStructElemItem
FuncArg PrimItem PrimStructElemDef PrimStructElemItem

XML schema <xs:element name="Alias" type="xs:string"/>

XML example <Alias>NO_KEY</Alias>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 49 of 183

2.1.3.2 DocName

The DocName elements support any combination of text or digits. This alphanumerical data field is
intended to holds the name of a SAP or AIM document without any file extension and should follow the

rules for SAP and AIM document names. The file extension is determined by the required attribute
DocType. Attributes are used to associate name-value pairs with elements. The DocType attribute
determines how to interpret the DocName element‟s content. This attribute can be set either to AIM or to

SAP.

The SAPE tool recognizes the right DocType setting automatically while selecting a new element to link.
DocType must be set to SAP or AIM.

Element DocName

Ty pe extension of xs:string

Used by Elements DocInfoSection ItemLink ValuesLink

Attributes Name Ty pe Use Default Fixed
DocType docTypeChoice required

XML schema <xs:element name="DocName">
 <xs:complexType>

 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="DocType" type="docTypeChoice" use="required"/>

 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

XML example <DocName DocType="AIM">gmm</DocName>

2.1.3.3 Group

This alphanumerical data element holds the name of a group. Groups can be used to force the

generators of the tool chain to separate the definitions of elements into di fferent output files.

2.1.3.4 Name

This element enables any combination of text or digits and is intended to hold a name for an element.
The name will typically result in a type expression or a variable name according to the C programming

language. Therefore the in-house coding rules for C names apply

Element Name

Ty pe xs:string

Used by Elements DocLink ItemLink Pragma ValuesDef ValuesLink
MsgBasicElemDef MsgDef MsgStructElemDef UnionTag
FuncDef PrimDef PrimStructElemDef PrimBasicElemDef

XML schema <xs:element name="Name" type="xs:string"/>

XML example <Name>b_csn1_ies</Name>

2.1.3.5 ItemLink

The ItemLink element represents a reference to an item defined elsewhere locally in the same or
externally in another document. It was defined by the name of the document and the name of the item.

Note: Links work only in the sequence given by makcdg.mak
2
, but not inversely!

Example: grr.aim should be able to use items from rr.aim but not inversely.

2 makcdg.mak can be found by \g23m\condat\int\bin\makcdg.bat

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 50 of 183

Therefore this element consists of the mandatory child elements:

 The element DocName holds the name of the document defining the item to link. In case of a
local reference the DocName will be the same as the currently in use, otherwise the external
document name should be given.

 The Name
refers to the name of the item to link.

Figure 41: Model of an ItemLink Element

Element ItemLink

Children DocName Name

Used by Elements Constant Substitute
MsgItem MsgStructElemItem

FuncArg FuncRet PrimItem PrimStructElemItem

XML schema <xs:element name="ItemLink">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="DocName"/>

 <xs:element ref="Name"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <ItemLink>
 <DocName DocType="AIM">gmm</DocName>
 <Name>tmsi</Name>

</ItemLink>

2.1.3.6 Feature Flags

This element supports feature flags in message and primitive documents. The goal is to adjust the

protocol stack in a sensitive way by these feature flags and to allow that the supported messages and
primitives are dependent on the configuration used, e.g. in order to save memory for simple
configuration.

The existing build process i s only able to configure the protocol stack in a coarse way. It is possible to
build a pure GSM stack, a stack with GSM and GPRS and other major properties e.g. Fax&Data. But
within the major properties there are a lot of fine adjustments

SAPE provides a column named Feature Flags to enable binding feature flags to a constant, variable,
value, element, structure, message or primitive. This mechanism admits to switch the bound item on or
off depending on enabling/disabling a particular feature flag.

It is possible to use a single feature flag, only. But if more than one feature flag are needed, these
feature flags have to be combined to a Boolean expression (e.g. !FF_x AND (!FF_y or FF_z>99)). If an
element should be switched off in the whole document, use the feature flag column of the element itself.

If i t should be switched off only in a given item (e.g. structure), use the feature flag column of the
element within this i tem. See the example below:

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 51 of 183

Figure 42: Example 1 of SAPE Feature Flag Specification

The following table gives an overview of the valid Boolean expression and their meaning.

Expression Example Meaning

<name> FF_X Allowed characters in a f lag are given
by [A-Z0-9_].

! !FF_X
Invert the logical value of an

evaluated sub-expression or a given
feature f lag

() (FF_X) Grouping feature f lag items

AND, OR FF_X AND FF_Y OR FF_Z Logical Operators

>, >=, <, <=, !=, == FF_x > 99 Comparison with given constants

The arithmetical operators "+" , "-" and "=" are not supported.

For the evaluation of the Boolean expression there is a file containing the feature flags definition that

provides information which feature flags are defined with which value. The feature flag catalogue
(cf. [5.]) shall provide a reference to the use, meaning and correct spelling of the feature flags: i t defines
the name of a FF and its semantics.

The TI tool chain converts a message or primitive specification document to C header files and
generates for the TI Coder Decoder "CCD" the "cdg tables". In the C header files elements of a structure
bound with feature flags are wrapped with C pre-processor statements: Feature flags are to be defined

by #define and #undef expressions. #undef FF_xx corresponds to !F_xx in the Feature Flags column
of the SAP/AIM document

If there are defined values to a variable, which are going to symbolic constants

#define <const_name> 0x1234 in the "mconst.cdg" or "pconst.cdg"files, these #defines … remains as
they are. When the C pre-processor does not substitute a symbolic constant in the C source, then this
symbolic constant does not contribute to the object code.

In the generated header file there are no pre-processor statements around such structure elements
which are affected by feature flags. Instead, a structure element for which the feature flag expression is
logical FALSE, is given as comment line. And if the FF expression is logical FALSE, the element i tself

appears as comment too. See the type definition the C header file belonging to Figure 42 below:

typedef struct

{

/* #if FF_TI_DUAL_MODE

 U8 basic_elem_1; */ /*< 0: 0> basic element 1 */

 U16 basic_elem_2; /*< 0: 2> basic element 2 */

 U32 basic_elem_3; /*< 2: 4> basic element 3 */

} T_SAPE_EXAMPLE_struct_element_2;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 52 of 183

In this example it is not clear i f the basic_elem_1 is generally not available for all structures or i t is only
forbidden in the given structure. Both cases have the same print in the header file.

NOTE : It is not recommended but possible to include an external element into the current AIM/SAP

specification depending on a particular set feature flags:

typedef struct

{

 U8 ch_type; /*< 0: 1> T_VAL_L2_CHANNEL3
, Layer 2 channel-type */

/* ELEM-FF: FF_TI_DUAL_MODE

 U8 sapi; */ /*< 0: 0> T_VAL_SAPI, service access point identifier */

 U8 sapi; /*< 1: 1> T_VAL_SAPI, service access point identifier */

/* ELEM-FF: FF_TI_DUAL_MODE

 T_CAUSE_ps_cause ps_cause; */ /*< 0: 0> Cause element containing result of

 operation (type defined in "p_8010_153_cause_include.h") */

 U8 cs; /*< 2: 1> T_DL_VAL_cs, error cause */

 U8 _align0; /*< 3: 1> alignment */

} T_DL_RELEASE_IND;

Obviously the commented elements have no impact on the alignment. Here the elements sapi and
cause are not included from p_8010_153_cause_include.sap, since the flag FF_TI_DUAL_MODE is not

set. This corresponds to #undef FF_TI_DUAL_MODE in the feature-flags fi le and
!FF_TI_DUAL_MODE in the “Feature Flags” column of the PRIM description. This corresponds to the
following description in the SAP/AIM Editor:

Figure 43: Example 2 of SAPE Feature Flag Specification

Feature flags have an impact on the generation of the "cdg tables", too. The TI tool chain has always to
evaluate the feature flag and then to decide whether that element i s going to the "cdg tables" or not.
Therefore the feature flags affect the size of the "cdg tables" and valuable memory size on the target

can be saved. Any object in the intermediate files (*.mdf/pdf files) for which the feature flags expression
is logical FALSE will not appear in the tables of CCDDATA. Nor they will have any impact on the other
objects, e.g. offset in the C-structures, number of structure elements.

2.1.3.7 UnionTag

Basically the UnionTag element is an alias for a user specific value. It is used as a tag identifier of union
elements that indicates which union element of all possible elements is present. The alias name will

typically result in an item of an enum expression according to the C programming language. Therefore
the in-house coding rules for C names apply.

A UnionTag consists of two child elements:

 The mandatory Name element
can take any combination of text or digits and is intended to hold the tag name.

 The optional Value element
supports locally defined values facet-valid with respect to enumeration [DEC, BIN, HEX, OCT,

ALPHA].

3 T_VAL_L2_CHANNEL is an enumeration defined in the appropriate *.val f ile.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 53 of 183

Figure 44: Model of a Union Tag Element

element UnionTag

Children Name Value

Used by Elements MsgStructElemItem

PrimStructElemItem

XML schema <xs:element name="UnionTag">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name"/>

 <xs:element ref="Value" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

2.1.3.8 ValuesLink

The ValuesLink element represents a reference to a set of values defined elsewhere locally in the same
or externally in another document. The name of the values set in conjunction with the name of the

document defines a reference to a set of values in a sufficient way. Therefore this element consists of
the mandatory child elements:

 The element DocName holds the name of the document defining the item to link. In case of a

local reference the DocName will be the same as the currently in use, otherwise the external
document name should be given.

 The name of the Value element that is referred to will be put in the Name element of ValuesLink.

Figure 45: Model of a Value Link Element

Element ValuesLink

Children DocName Name

Used by Elements MsgBasicElem PrimBasicElem

XML schema <xs:element name="ValuesLink">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="DocName"/>
 <xs:element ref="Name"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example

[12.] part
10.5.1.4
(mobile iden-
tity)

<ValuesLink>

 <DocName DocType="AIM">gmm</DocName>
 <Name>VAL_type_of_identity</Name>
</ValuesLink>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 54 of 183

2.1.4 Trivial Sub-Elements

The intention of these trivial Sub-Elements, which may occur in different context, does not need any
further explanation because their names are self-explanatory. They are listed here because of their

correct appearance required by the XML schema. The SAPE tool supports the right formatting. But i f an
XML document shall be written or modified by using a text editor the user has to be informed how the
format must look like.

Element Date

Used by Elements DocHistory History

Attributes Name Ty pe Use Default Fixed
Day xs:string required

Month xs:string required
Year xs:string required

XML schema <xs:element name="Date">
 <xs:complexType>
 <xs:attribute name="Day " type="xs:string" use="required"/>

 <xs:attribute name="Month" type="xs:string" use="required"/>
 <xs:attribute name="Year" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

XML example <Date Day="29" Month="7" Year="1999"/>

Element DocNum

Used by Element DocInfoSection

Attributes Name Ty pe Use Default Fixed
Project xs:string required
Number xs:string required

XML schema <xs:element name="DocNum">
 <xs:complexType>

 <xs:attribute name="Project" type="xs:string" use="required"/>
 <xs:attribute name="Number" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

XML example <DocNum Number="603" Project="8441" />

Element DocRef

Children RefId RefTitle

Used by Element DocInfoSection

XML schema <xs:element name="DocRef">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="RefId" type="xs:string"/>
 <xs:element name="RefTitle" type="xs:string"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <DocRef>

 <RefId>[1]</RefId>
 <RefTitle>RFC 1661 IETF STD 51 July 1994The Point-to-Point Protocol (PPP)</Ref Title>
</DocRef>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 55 of 183

Element DocStatus

Used by Element DocHistory

Attributes Name Ty pe Use Default Fixed
State xs:string required

XML schema <xs:element name="DocStatus">

 <xs:complexType>
 <xs:attribute name="State" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">

 <xs:enumeration value="BEING_PROCESSED"/>
 <xs:enumeration value="SUBMITTED"/>
 <xs:enumeration value="APPROVED"/>
 </xs:restriction>

 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

XML example <DocStatus State="BEING_PROCESSED" />

Element DocVersion

Used by Element DocHistory

Attributes Name Ty pe Use Default Fixed
Year xs:string required
Number xs:string required

XML schema <xs:element name="DocVersion">
 <xs:complexType>

 <xs:attribute name="Year" type="xs:string" use="required"/>
 <xs:attribute name="Number" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

XML example <DocVersion Number="004" Year="99" />

Element Value

Ty pe extension of xs:string

Used by Elements Constant Pragma UnionTag ValuesDefault ValuesItem

Attributes Name Ty pe Use Default Fixed

ValueType valTypeChoice required

XML schema <xs:element name="Value">

 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">

 <xs:attribute name="ValueType" type="valTypeChoice" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

</xs:element>

XML example <Value ValueType="DEC">2</Value>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 56 of 183

2.2 Message Specific Part

This part describes how to write TI Air Interface Message documents. Air interface messages are peer-
to-peer messages between a MS and its network peer. These messages are standardized by

ETSI/3GPP, and thus have well defined formats. The TI Air Interface Message documents describe how
data in air interface messages are organized, and how they can be used in entities. They operate at bit-
level as opposed to Service Access Points (SAPs), which normally operate at byte level.

Air Interface Messages are documents written in XML as part of the high-level design phase. When the
air interface messages they describe are needed in actual code, the documents are run through the TI
tool chain (cf. GTC Generic Tool Chain), which produce header files and other data needed in program

code.

An Air Interface Message XML document is created from a XML schema by using the SAPE tool and
choosing AIM (air interface message) type when creating a new document. The list below shows the

elements belonging to the top level. Some sections may be left out; these sections are marked
[optional].

Document Information Container for all document relevant information

Pragma [optional] Used to control and to modify the behaviour of the TI tool chain

Constant [optional] Contains global constants and used to assign a value to a variable

Messages The actual air interface message descriptions (e.g. ATTACH

REQUEST)

Structured Elements
[optional]

Elements in air interface messages (e.g. MS class mark)

Basic Elements [optional] Basic types/values (e.g. MS type 2)

Substitute [optional] Used to define a new name for an existing element

Values [optional] Used as aliases for user specific values

Annotations [optional] Container for additional information belonging to any document‟s

Each section above contains a number of subsections, which act as keywords, separating different

types of information. Some of these subsections occur in both types of documents (either SAP or AIM)
and are already mentioned in part 2.1.

Figure 46: Model of an AIR Messages Description

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 57 of 183

Element AIM

Children DocInfoSection PragmasSection ConstantsSection MessagesSection MsgStructElementsSection
MsgBasicElementsSection SubstitutesSection ValuesSection AnnotationsSection

XML schema <xs:element name="AIM">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="DocInfoSection"/>
 <xs:element ref="PragmasSection" minOccurs="0"/>

 <xs:element ref="ConstantsSection" minOccurs="0"/>
 <xs:element ref="MessagesSection"/>
 <xs:element ref="MsgStructElementsSection" minOccurs="0"/>
 <xs:element ref="MsgBasicElementsSection" minOccurs="0"/>

 <xs:element ref="SubstitutesSection" minOccurs="0"/>
 <xs:element ref="ValuesSection" minOccurs="0"/>
 <xs:element ref="AnnotationsSection" minOccurs="0"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <AIM xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="aim.xsd">
 . . . PragmasSection . . . PragmasSection SubstitutesSection . . . Subs-
titutesSection . . . AnnotationsSection . . . AnnotationsSection

2.2.1 Messages Section

The Messages Section deals with the Message Elements supported by the SAPE editor in table format.
It handles the Messages Section element, which comprises all messages declared within an AIM
document.

Figure 47: SAPE Messages Section

The Messages Section serves as a container for all message elements. The SAPE GUI provides three

different parts:

 The Description part should serve as additional information and contains a textual description of
the information in the Messages table. The input corresponds to the child Section of the
Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 One to many child elements Message
which are described in a particular subsection of this document, deal with the internal structure
of the Message elements. At least one Message element has to be present. The SAPE editor

offers a table labelled Messages providing a separate row for each child element.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 58 of 183

Figure 48: Model of the Messages Section

Element MessagesSection

Children Description Message

Used by Element AIM

XML schema <xs:element name="MessagesSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="Message" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <MessagesSection>

 </MessagesSection>

2.2.1.1 Message

The SAPE GUI provides a table labelled Messages to hold the Message elements, which comprise all

instruments being necessary to define a message in an AIM document. The Message element serves as
a sort of container i tself to group a set of information defining its properties. Each row in the Message
table is associated with another set of tables.

Except the DocLinks table each table relates to an XML element. Table labels and element names can
be implicated easily.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 59 of 183

Figure 49: SAPE Message

The Message format should correspond to other key elements in the document. Therefore also

Message elements have the mandatory elements Description element and History element. The SAPE
GUI offers three parts to take these elements into account:

 The Description part should serve as additional information about each Message and

corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

The Message Definitions table belongs to another mandatory XML element: MsgDef. It acts as a
definition element. In case that the layout of the message should be assigned to more than only one
message definition, additional MsgDef elements could be present.

The other table provided by the SAPE GUI relate to an optional XML element.

 The Message Items table supports one to many MsgItem child elements. These elements are
optional and could be attached to each Message element i f values should be assigned to.

Each of the last two child elements consi sts of nested elements itself.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 60 of 183

Figure 50: Model of a Message Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 61 of 183

Element Message

Children Description MsgDef MsgItem History

Used by Element MessagesSection

XML schema <xs:element name="Message">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="MsgDef" maxOccurs="unbounded"/>
 <xs:element ref="MsgItem" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <Message>
 <Description>. . . </Description>
 <MsgDef> /* CSN1 IE msg */
 <Name>b_csn1_ies</Name>

 <MsgID Direction="BOTH" IDType="BIN">00001000</MsgID>
 <Comment>CSN1 IE msg</Comment>
 </MsgDef>

 <MsgItem Presentation="MANDATORY"> /* Message Type */
 <ItemLink>
 <DocName DocType="AIM">xx</DocName>
 <Name>msg_type</Name>

 </ItemLink>
 <Type>GSM3_V</Type>
 <SpecRef>-</SpecRef>
 <Comment>Message Type</Comment>

 </MsgItem>
 <MsgItem Presentation="OPTIONAL "> /* CSN1_S1 IE */
 <ItemLink>
 <DocName DocType="AIM">xx</DocName>

 <Name>csn1_s1</Name>
 </ItemLink>
 <Type>GSM4_TLV</Type>
 <ItemTag TagType="HEX">18</ItemTag>

 <SpecRef>-</SpecRef>
 <Comment>CSN1_S1 IE</Comment>
 </MsgItem>

 <MsgItem Presentation="OPTIONAL "> /* CSN1_SHL IE */
 <ItemLink>
 <DocName DocType="AIM">xx</DocName>
 <Name>csn1_shl</Name>

 </ItemLink>
 <Type>CSN1_SHL</Type>
 <SpecRef>-</SpecRef>
 <Comment>CSN1_SHL IE</Comment>

 </MsgItem>
 <MsgItem Presentation="OPTIONAL "> /* S_PADDING */
 <Spare>
 <Pattern>00101011</Pattern>

 <BitLen>8</BitLen>
 </Spare>
 <Type>S_PADDING</Type>

 <Control>
 <CmdSequence>MAX_PADD</CmdSequence>
 </Control>
 <SpecRef>-</SpecRef>

 <Comment>Padding</Comment>
 </MsgItem> <History >

. . .
 </History >

</Message>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 62 of 183

Associated
GSM

specif ication

Message type: CSN1 IE msg

Information
element

Presence

Message Type M

CSN1_S1 IE O

CSN1_SHL IE O

S_PADDING O

Table 3: Example of a Message (CSN1 IE msg)

2.2.1.1.1 Message Definitions

The Message Definitions table provided by the SAPE GUI holds the MsgDef element, which defines the
key parameters of a Message Definition element in an AIM document. Except for the columns labelled
AIM ID and Direction all other columns in the Message Definitions table correspond to a child element of

the MsgDef element. The column labels should be more self-explanatory than the child element names.

Figure 51: SAPE Message Definition Table

The MsgDef element consists of the following child elements:

 The Name element serves as unique identification.
This element is mandatory and could be used to reference this Message Element by other
elements.

 The AIM ID column provides the input mask for the mandatory MsgID
4
 element and

holds the numerical identifier for that message. The message ID has to be separated into
message identifier and identifier type. The message identifier will be the contents of MsgID
element, whereas the identifier type will set the IDType attribute accordingly. MsgID i s a li ttle bit

different because the content is spli tted into separate elements. The plain identifier number goes
into the MsgID element, whereas the type of message identifier, which values are facet-valid
with respect to enumeration [DEC, BIN, HEX, OCT, ALPHA], is stored in the IDType attribute.

 The Max.Msg Len column represents the optional MsgLenMax element.
With the MsgLenMax element the user can manually define the maximum message length in
bytes in the real world environment. It is helpful to separate this from the theoretical length of a

message, when designing buffers for messages. Although the XML schema description allows
any combination of text or digits i t is recommended to use values representing numbers only.

 The optional Version element

accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.
The entries are optional but must comply with coding rules for feature flags.

 The Group element (optional)
could be present to declare a group where the Message Element belongs. Groups can be used
to force the generators of the tool chain to separate the definitions of elements into different
output files. Any combination of text or digits is allowed.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory and therefore a preselection is suggested.

4 The message ID is an absolutely important entry for the coder/decoder.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 63 of 183

The SAPE tool provides in the Message Definitions table an additional column to set the direction
information for each Message Element. The XML schema definition handles this direction information by
the mandatory attribute Direction

5
, which belongs to the mandatory MsgID element. This attribute may

take one of the possible values UPLINK, DOWNLINK or BOTH. The Direction attribute indicates the
message flow direction according to the ETSI/3GPP specifications:

UPLINK - An "uplink" is a unidirectional radio link for the transmission of signals from a UE

towards a core network.

DOWNLINK - A “downlink” i s a unidirectional radio link for the transmission of signals from a
core network towards a UE.

BOTH - This direction applies identification to a bidirectional radio link for transmission of
signals as well signals from a UE towards core network as vice versa.

Figure 52: Model of a Message Definit ion Element

Element MsgDef

Children Name MsgID MsgLenMax Version Group Comment

Used by Element Message

XML schema <xs:element name="MsgDef">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Name"/>
 <xs:element ref="MsgID"/>
 <xs:element name="MsgLenMax" type="xs:string" minOccurs="0"/>

 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 <xs:element name="Group" type="xs:string" minOccurs="0"/>
 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <MsgDef>
 <Name>b_csn1_ies</Name>

 <MsgID Direction="BOTH" IDType="BIN">00001000</MsgID>
 <Comment>CSN1 IE msg</Comment>
</MsgDef>

5 Besides message ID the direction information is another important entry for the coder/decoder.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 64 of 183

2.2.1.1.2 Message Items

The Message Items table provided by the SAPE GUI holds the MsgItem elements (sub-elements that
will be contained in a message), which define the items of a message element.

Figure 53: SAPE Message Items Table

The MsgItem element comprises all components which are needed to declare a message item. Basically

a MsgItem could be the definition of a Spare element or a reference to an existing element. A complex
MsgItem element could be a composition of well -assorted references and spare elements.

Each row of the Message Items table provided by the SAPE GUI corresponds to a message item

(MsgItem). The columns of the Message Items table diverge a li ttle bit from the strict conversion to
support exactly one column for each child element.

The MsgItem element consi sts of the child elements:

 A message item is either the definition of a Spare element or a reference to an existing element.
All items, except the Spare items, will be declared using an ItemLink element. It is mandatory to
choice one of these alternatives.

To reference an existing item located in the same or an external document, the ItemLink
element will be used. It represents a reference to an item defined elsewhere in the same or an
external document. The SAPE column labelled with the keyword Name offers the possibility to

join a linked item by reference. The SAPE editor provides the possibility to select a new linked
element from the Repository Entry and to jump to the linked element. In this case the two
columns Pattern and BitLen are insignificant and therefore invalidated.

A Spare element consists of two child elements itself: A Pattern element and the BitLen of this
pattern are mandatory to define a Spare element. Although SAPE allows any combination of text
or digits without any restrictions for both child elements the TI tool chain demands a binary

coded value for the Pattern element. It is recommended to use a value facet-valid with respect
to DEC for the BitLen element only. The BitLen value must match the number of bits used for
the Pattern element. This condition is not proved by the XML schema validation tool and

therefore the user is responsible for correct settings. In this case the columns Name is
insignificant and therefore invalidated.

 The Alias element (optional)
enables any combination of text or digits to identify a user specific value. This element could be

used to define the new name in the case that the name of the item, under which it could be
addressed within the message, should be different from the name of the linked element. By
default the SAPE table doesn‟t provide this column, but i t can be switched on easily by selecting

the appropriate keyword in the Visible Optional Columns field.

 The Type element (optional)
holds information about the type of an item. The content must be a valid type definition for the

tool chain (e.g. C-types, CCDtypes). Part 2.2.4.2 and the corresponding file ccd_codingtypes.h
helps to know which encoding types are supported by which version of Coder/Decoder. Any
combination of text or digits is allowed. This element corresponds to a column with the same

name.

Comment [K4]: Suggestion: Modif ication of

the XML Schema so that only values facet -valid
with respect to BIN for Pattern and to DEC for
BitLen are possible.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 65 of 183

 The ItemTag element (optional)
holds the tag identifier for structured element item. This element supports locally defined values
facet-valid with respect to enumeration [DEC, BIN, HEX, OCT, ALPHA].

 With the Control element (optional)

the item could be modified (e.g. array, dependencies, conditionals). The Control element will be
separated into the different kinds of control elements. Namely they are TypeModifier, Condition,
BitGroupDef and CmdSequence. All of these elements are optional. The SAPE tool provides in

the Structured Element Items table separate column for each control sub element, which can be
switched to visible or turned off. The behaviour of each control mechanism is described in a
separate part below.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.

The entries are optional but must comply with coding rules for feature flags.

 The SpecRef element (mandatory)
in intended to provide a reference to the part of the specification, where the item is described.
Any combination of text or digits is allowed. These refer to the chapters in the

GSM/GPRS/UMTS specifications.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. Ideally it should not be

the repetition of the comment, where the element was defined; i t should describe the usage of
the element within the structured element. The associated XML element is mandatory and
therefore a preselection is suggested.

The SAPE tool provides in the Message Items table an additional column labelled with the keyword
Presence to declare the whole message item as optional, conditional or mandatory. The XML schema
definition handles this presence information by the mandatory attribute Presentation, which is

concatenated with each MsgItem. This attribute may take one of the values MANDATORY, OPTIONAL
or CONDITIONAL. If there exists a Message Item at least one component is needed to declare this i tem.
Therefore a preselection is suggested in the Presence column.

Figure 54: Model of a Message Item Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 66 of 183

Element MsgItem

Children ItemLink Spare Alias Type ItemTag Control Version SpecRef Comment

Used by Element Message

Attributes Name Ty pe Use Default Fixed
Presentation presChoice required

XML schema <xs:element name="MsgItem">
 <xs:complexType>

 <xs:sequence>
 <xs:choice>
 <xs:element ref="ItemLink"/>

 <xs:element name="Spare">
 <xs:complexType>
 <xs:sequence>
 <xs:element name ="Pattern" type="xs:string"/>

 <xs:element name ="BitLen" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:choice>
 <xs:element ref ="Alias" minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="ItemTag" minOccurs="0"/>

 <xs:element ref="Control" minOccurs="0"/>
 <xs:element name="Version" type="xs:string " minOccurs="0"/>
 <xs:element name="SpecRef" type="xs:string"/>

 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 <xs:attribute name="Presentation" type="presChoice" use="required"/>
 </xs:complexType>

</xs:element>

XML example
element with
an ItemLink

child

<MsgItem Presentation="MANDATORY">
 <ItemLink> /* Message Type */
 <DocName DocType="AIM">xx</DocName>

 <Name>msg_type</Name>
 </ItemLink>
 <Type>GSM3_V</Type>
 <SpecRef />

 <Comment>Message Type</Comment>
</MsgItem>

Associated
graphical
presentation

8 7 6 5 4 3 2 1

Message Type octet n

Figure 55: Example of an Information Element (Message Type)

XML example
element with

a Spare child

<MsgItem Presentation="OPTIONAL"> /* S_PADDING */
 <Spare>
 <Pattern>00101011</Pattern>

 <BitLen>8</BitLen>
 </Spare>
 <Type>S_PADDING</Type>
 <Control>

 <CmdSequence>MAX_PADD</CmdSequence>
 </Control>
 <SpecRef>-</SpecRef>

 <Comment>Padding</Comment>
</MsgItem>

Associated
graphical
presentation

8 7 6 5 4 3 2 1

octet n (MAX_PAD)

CSN.1 Padding element

0 0 1 0 1 0 1 1

Figure 56: Example of an Information Element (Padding)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 67 of 183

2.2.2 Structured Elements Section

The Structured Elements Section deals with the Structured Message Elements supported by the SAPE

editor in table format. It handles the MsgStructElementsSection element, which comprises all structured
elements declared within an AIM document.

Figure 57: SAPE Structured Elements Section

This section provided by SAPE contains three different parts:

 The Description part should serve as additional information about the Structured Elements
Section and should contain a textual description of the information in the Structured Message

Elements table below. This part corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging

to the parent element Description.

 The third part is a table to take one to many child elements MsgStructElem (Structured
Message Elements - mandatory) into account. They are described in a particular subsection of
this document that deals with the internal structure of the structured message elements. At least

one MsgStructElem element has to be present. The SAPE editor offers a table labelled
Structured Message Elements providing a separate row for each child element MsgStructElem.

Figure 58: Model of the Structured Element Section

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 68 of 183

Element MsgStructElementsSection

Children Description MsgStructElem

Used by Element AIM

XML schema <xs:element name="MsgStructElementsSection">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="MsgStructElem" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <MsgStructElementsSection >
 . . . MsgStructElem . . . MsgStructElem . . . MsgStructElem . . . MsgStructE-

lem</MsgStructElementsSection>

2.2.2.1 Structured Message Elements

Each row of the table labelled Structured Message Elements in the Structured Elements Section

represents a separate child element called MsgStructElem . By selecting any child element respectively
any row the SAPE GUI provides a set of tables needed to describe a single element sufficiently. These
tables comprise all instruments being necessary to define a structured element in an AIM document.

Each table relates to an XML element. Table labels and element names can be implicated easily.

Figure 59: SAPE Structured Message Elements Tables

The MsgStructElem element serves as a sort of container i tself to group a set of information defining its
properties. Each row in the Structured Message Elements table mentioned above is associated with

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 69 of 183

another set of tables. The MsgStructElem format corresponds to other key elements in the document.
Therefore also MsgStructElem elements have the mandatory elements Description element and History
element.

The SAPE GUI offers three parts to take these elements into account:

 The Description part should serve as additional information about the MsgStructElem and
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with

DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History

element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Additional tables are provided:

 The Structured Element Definitions table (short: MsgStructElemDef element),
which is mandatory, act as a definition element. In case that the layout of the structured element
should be assigned to more than only one element definition, additional MsgStructElemDef
elements could be present.

 The Structured Element Items table supports one to many MsgStructElemItem child elements.
These elements are optional. They could be attached to the MsgStructElem element if values
should be assigned to the structured element.

Each of these child elements consi sts of nested elements itself.

 .

Figure 60: Model of a Structured Message Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 70 of 183

Element MsgStructElem

Children Description MsgStructElemDef MsgStructElemItem History

Used by Element MsgStructElementsSection

XML schema <xs:element name="MsgStructElem">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="MsgStructElemDef" maxOccurs="unbounded"/>
 <xs:element ref="MsgStructElemItem" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example
(common)

<MsgStructElem>

XML example
([12.] part

10.5.5.15)

<MsgStructElem> /* Routing area identif ication*/

 . . .
 <MsgStructElemDef Type="STRUCT">
 <Name>routing_area_identification</Name>
 <Comment>Routing Area Identification</Comment>

 </MsgStructElemDef>
 <MsgStructElemItem Presentation="MANDATORY">
 /* Mobile Country Code */
 </MsgStructElemItem>

 <MsgStructElemItem Presentation="MANDATORY">
 /* Mobile Network Code */
 </MsgStructElemItem>
 <MsgStructElemItem Presentation="MANDATORY">

 /* Location Area Code</Comment>
 </MsgStructElemItem>
 <MsgStructElemItem Presentation="MANDATORY">
 /* Routing Area Code</Comment>

 </MsgStructElemItem>
 <History . . . History>
</MsgStructElem

Associated
GSM

specif ication

8 7 6 5 4 3 2 1

Mobile Country Code

octet 1

Mobile Network Code
octet 2

 octet 3

Location Area Code
octet 4

octet 5

Routing Area Code octet 6

Table 4: Example of a Structured Message Element
(Routing Area Identification Value Part)

2.2.2.1.1 Structured Element Definitions

The Structured Element Definitions table provided by the SAPE GUI holds the MsgStructElemDef
element, which defines the key parameters of a simple element in an AIM document.

Figure 61: SAPE Structured Element Definitions Table

Each column in the Structured Element Definitions table corresponds to an XML child element of the
MsgStructElemDef element. The column labels are equivalent to the child element names.

The MsgStructElemDef element consi sts of the child elements:

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 71 of 183

 The Name element serves as unique identification.
This element is mandatory and could be used to reference this Structured Element by other
elements.

 The optional Version element

accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.
The entries are optional but must comply with coding rules for feature flags.

 The Group element
could be present to declare a group where the Structured Element belongs. Groups can be used
to force the generators of the tool chain to separate the definitions of elements into different

output files. Any combination of text or digits is allowed.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory and therefore a preselection is suggested.

A link element is not foreseen in this format, because an element could be either defined or referenced.
Therefore a link is only possible where an element will be used. As well there is no explicit length
information given because it should be possible to calculate the length from the length information of the

st ructured element i tems.

The SAPE tool provides in the Structured Element Definitions table an additional column to set the type
of each Structured Element The XML schema definition handles this type information by the mandatory

attribute Type. This attribute may take either the value STRUCT or the value UNION and will typically
result in an item according to the C programming language.

Figure 62: Model of a Structured Element Definit ion

Element MsgStructElemDef

Children Name Version Group Comment

Used by Element MsgStructElem

Attributes Name Ty pe Use Default Fixed
Ty pe compType-

Choice

required

XML schema <xs:element name="MsgStructElemDef">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name"/>

 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 <xs:element name="Group" type="xs:string" minOccurs="0"/>
 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>

 <xs:attribute name="Type" type="compTypeChoice" use="required"/>
 </xs:complexType>
</xs:element>

XML example
([12.] part
10.5.5.15)

<MsgStructElemDef Type="STRUCT">
 <Name>routing_area_identification</Name>
 <Comment>Routing Area Identification</Comment>
 </MsgStructElemDef>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 72 of 183

2.2.2.1.2 Structured Element Items

The Structured Element Items table provided by the SAPE GUI holds the MsgStructElemItem elements,
which define the items of a structured or combined element. The MsgStructElemItem element comprises

all components which are needed to declare a structured message element i tem. Basically a
MsgStructElemItem could be the definition of a Spare element or a reference to an existing element. A
complex MsgStructElemItem element could be a composition of well -asso rted references and spare

elements.

Each row of the Structured Element Items table provided by the SAPE GUI corresponds to a single
st ructured element i tem (MsgStructElemItem). The columns of the Structured Element Items table

diverge a little bit from the strict conversion to support exactly one column for each child element.

Figure 63: SAPE Structured Element Items Table

The MsgStructElemItem element consi sts of the child elements:

 A structured message element item is either the definition of a Spare element or a reference to
an existing element. All i tems, except the Spare items, will be declared using an ItemLink
element. It is mandatory to choice one of these alternatives.

To reference an existing item located in the same or an external document, the ItemLink
element will be used. It represents a reference to an item defined elsewhere in the sam e or an
external document. The SAPE column labelled with the keyword Name offers the possibility to

join a linked item by reference. The SAPE editor provides the possibility to select a new linked
element from the Repository Entry and to jump to the linked element. In this case the two
columns Pattern and BitLen are insignificant and therefore invalidated.

A Spare element consists of two child elements itself: A Pattern element and the BitLen of this
pattern are mandatory to define a Spare element. Both child elements allow any combination of
text or digits without any restrictions. But i t is recommended to use values facet-valid with

respect to enumeration [DEC, BIN, HEX, OCT] only. In this case the columns Name is
insignificant and therefore invalidated.

 The Alias element (optional)

enables any combination of text or digits to identify a user specific value. This element could be
used to define the new name in the case that the name of the item, under which it could be
addressed within the message, should be different from the name of the linked element. By

default the SAPE table doesn‟t provide this column, but i t can be switched on easily by selecting
the appropriate keyword in the Visible Optional Columns field.

 The Type element (optional)

holds information about the type of an item. The content must be a valid type definition for the
tool chain (e.g. C-types, CCDtypes). Any combination of text or digits is allowed.

 The ItemTag element (optional)
holds the tag identifier for structured element item. This element supports locally defined values

facet-valid with respect to enumeration [DEC, BIN, HEX, OCT, ALPHA].

Comment [K5]: Suggestion: Modif ication of

the XML Schema so that only values facet -valid
with respect to enumeration [DEC, BIN, HEX,
OCT] are possible.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 73 of 183

 The UnionTag element (optional)
is a tag identifier of union elements that indicates which union element of all possible elements
is present.

 With the Control element (optional)

the item could be modified (e.g. array, dependencies, conditionals). The Control element will be
separated into the different kinds of control elements. Namely they are TypeModifier, Condition,
BitGroupDef and CmdSequence. All of these elements are optional. The SAPE tool provides in

the Structured Element Items table a separate column for each control sub element, which can
be switched to visible or turned off. The behaviour of each control mechanism is described in a
separate part below.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.

The entries are optional but must comply with coding rules for feature flags.

 The SpecRef element (mandatory)
in intended to provide a reference to the part of the specification, where the item is described.
Any combination of text or digits is allowed. These links refer to the chapters in the

GSM/GPRS/UMTS specifications.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. Ideally it should not be

the repetition of the comment, where the element was defined; i t should describe the usage of
the element within the structured element. The associated XML element is mandatory and
therefore a preselection is suggested.

The SAPE tool provides in the Structured Element Items table an additional column labelled with the
keyword Presence to declare the whole structured element item as optional, conditional or mandatory.
The XML schema definition handles this presence information by the mandatory attribute Presentation,

which is concatenated with each MsgStructElemItem. This attribute may take one of the values
MANDATORY, OPTIONAL or CONDITIONAL. If there exists a Structured Element Item at least one
component is needed to declare this i tem. Therefore a preselection is suggested in the Presence

column.

Figure 64: Model of a Structured Element Item

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 74 of 183

Element MsgStructElemItem

Children ItemLink Spare Alias Type ItemTag UnionTag Control Version SpecRef Comment

Used by Element MsgStructElem

Attributes Name Ty pe Use Default Fixed
Presentation presChoice required

XML schema <xs:element name="MsgStructElemItem">
 <xs:complexType>

 <xs:sequence>
 <xs:choice>
 <xs:element ref="ItemLink"/>

 <xs:element name="Spare">
 <xs:complexType>
 <xs:sequence>
 <xs:element name ="Pattern" type="xs:string"/>

 <xs:element name ="BitLen" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:choice>
 <xs:element ref="Alias" minOccurs="0"/>
 <xs:element ref="Type" minOccurs="0"/>
 <xs:element ref="ItemTag" minOccurs="0"/>

 <xs:element ref="UnionTag" minOccurs="0"/>
 <xs:element ref="Control" minOccurs="0"/>
 <xs:element name="Version" type="xs:string " minOccurs="0"/>

 <xs:element name="SpecRef" type="xs:string"/>
 <xs:element name=“Comment” type=“xs:string”/>
 </xs:sequence>
 <xs:attribute name="Presentation" type="presChoice" use="required"/>

 </xs:complexType>
</xs:element>

XML example
([12.] part

10.5.5.15)

<MsgStructElemItem Presentation="MANDATORY">
 <ItemLink>

 <DocName DocType="AIM">gmm</DocName>
 <Name>mcc</Name>
 </ItemLink>
 <Type>BCD_NOFILL</Type>

 <Control>
 <TypeModif ier>[3]</TypeModif ier>
 </Control>
 <SpecRef>-</SpecRef>

 <Comment>Mobile Country Code</Comment>
</MsgStructElemItem>

Associated
graphical
presentation

8 7 6 5 4 3 2 1

MCC digit 2 MCC digit 1 octet 1

 MCC digit 3 octet 2

Table 5: Example of a Structured Message Element Item
(Mobile Country Code)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 75 of 183

2.2.3 Basic Elements Section

The Basic Element Section deals with the Basic Message Elements table provided by the SAPE editor.
It handles the MsgBasicElementsSection element, which comprises all basic elements declared within

an AIM document.

Figure 65: SAPE Basic Elements Section

The MsgBasicElementsSection serves as a container for all basic elements. For these purpose the
SPAE GUI provides three different parts:

 The Description part should serve as additional information about the Basic Elements Section

and should contain a textual description of the information in the Basic Message Elements table
below. This part corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging

to the parent element Description.

 The third part is a table to take one to many child elements MsgBasicElem (Basic Message
Element - mandatory) into account. They are described in a particular subsection of this

document, which deals with the internal structure of the Basic Element Definitions. At least one
MsgStructElem element has to be present. The SAPE editor offers a table labelled Basic
Message Elements providing a separate row for each child element MsgBasicElem.

Figure 66: Model of the Basic Elements Section

Element MsgBasicElementsSection

Children Description MsgBasicElem

Used by Element AIM

Source <xs:element name="MsgBasicElementsSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="MsgBasicElem" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <MsgBasicElementsSection>
 . . . MsgBasicElem . . . MsgBasicElem . . . MsgBasicElem . . . MsgBasicE-
lem</MsgBasicElementsSection>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 76 of 183

2.2.3.1 Basic Message Elements

Each row of the table labelled Basic Message Elements in the Basic Elements Section represents a
separate child element called MsgBasicElem . By selecting any child element respectively any row the

SAPE GUI provides a set of tables needed to describe a single element sufficiently. These tables
comprise all instruments being necessary to define a structured element in an AIM document. Each
table relates to an XML element. Table labels and element names can be implicated easily.

Figure 67: SAPE Basic Message Elements Tables

The MsgBasicElem element serves as a sort of container i tself to group a set of information defining its

properties. Each row in the Basic Message Elements table mentioned above is associated with another
set of tables. The MsgBasicElem format corresponds to other key elements in the document. Therefore
also MsgBasicElem elements have the mandatory elements Description element and History element.

The SAPE GUI offers three parts to take these elements into account:

 The Description part should serve as additional information about the MsgBasicElem and
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History

element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Additional tables are provided:

 The Basic Element Definitions table (short: MsgBasicElemDef element),
which is mandatory, act as a definition element.

 The ValuesLink table supports one to many Values Link child elements. These elements are
optional. They could be attached to the MsgBasicElem element if values should be assigned to

the basic element. This element is optional.

Each of these child elements consi sts of nested elements itself.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 77 of 183

Figure 68: Model of a Basic Message Element

Element MsgBasicElem

Children Description MsgBasicElemDef ValuesLink History

Used by Element MsgBasicElementsSection

XML schema <xs:element name="MsgBasicElem">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="MsgBasicElemDef"/>

 <xs:element ref="ValuesLink" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example
(common)

< MsgBasicElem >
 . . . MsgBasicElemDef . . . MsgBasicElemDef ValuesLink . . . ValuesLink . . .
ValuesLink . . . ValuesLink MsgBasicElem

XML example
([12.] part
10.5.5.15)

<MsgBasicElem> /* Mobile Country Code Digit*/
 <Description . . . Description>
 <MsgBasicElemDef >

 <Name>mcc</Name>
 <BitLen>4</BitLen>
 <Comment>Mobile Country Code</Comment>
 </MsgBasicElemDef >

 . . . </MsgBasicElem>

2.2.3.1.1 Basic Element Definitions

The Basic Element Definitions table provided by the SAPE GUI holds the MsgBasicElemDef element,

which defines the key parameters of a simple element in an AIM document.

Each column in the Basic Element Definitions table corresponds to an XML child element of the
MsgBasicElemDef element. The column labels are equivalent to the child element names

Figure 69: SAPE Basic Element Definitions Table

The MsgBasicElemDef element consists of the following child elements:

 The Name element serves a s unique identification.

This element is mandatory and could be used to reference this Basic Element by other
elements.

 The length of the Basic Element is mandatory and could be given either in unit of bits or in units
of bytes. Therefore one of the two elements BitLen or ByteLen must be present. The XML

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 78 of 183

schema description allows any combination of text or digits without any restrictions. But it is
recommended to use values facet-valid with respect to enumeration [DEC, BIN, HEX, OCT]
only.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.
The entries are optional but must comply with coding rules for feature flags.

 The Group element
could be present to declare a group where the Basic Element belongs. Groups can be used to
force the generators of the tool chain to separate the definitions of elements into different output

files. Any combinations of text or digits are allowed.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. The associated XML

element is mandatory and therefore a preselection is suggested.

A link element is not foreseen in this format, because an element could be either defined or refe renced.
Therefore a link is only possible where an element will be used.

Figure 70: Model of a Basic Element Definit ion

Element MsgBasicElemDef

Children Name BitLen ByteLen Version Group Comment

Used by Element MsgBasicElem

XML schema <xs:element name="MsgBasicElemDef">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:choice>

 <xs:element name="BitLen" type="xs:string"/>
 <xs:element name="By teLen" type="xs:string"/>
 </xs:choice>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>

 <xs:element name="Group" type="xs:string" minOccurs="0"/>
 <xs:element name="Comment" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example
([12.] part

10.5.5.15)

<MsgBasicElemDef > /* Mobile Country Code Digit*/
 <Name>mcc</Name>

 <BitLen>4</BitLen>
 <Comment>Mobile Country Code</Comment>
</MsgBasicElemDef >

Comment [K6]: Suggestion: Modif ication of

the XML Schema so that only values facet -valid
with respect to enumeration [DEC, BIN, HEX,

OCT] are possible.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 79 of 183

2.2.4 Nontrivial AIM Specific Sub-Elements

Some AIM specific sub-elements, which may occur in different context, require more detailed
explanation. These elements are listed here to provide additional information about the data they may

contain. This section should serve primarily as a reference for these elements.

2.2.4.1 Control

The Control element is the most complex of all . It contains instructions used by the TI tool chain how to

define or interpret the associated object in question.

This optional element is intended to hold any kind of control information to classify an item. With the
information contained in the Control element an item could be modified in order to achieve different

constructions, such as arrays, pointers and optional parameters etc. The SAPE tool provides in the
Structured Element Items table as far as in the Message Items table a separate column for each control
sub element, which can be switched to visible or turned off.

Depending on the kind of control information classification is done. According to the different types of
control information a specific sub elements is used. Namely they are TypeModifier, Condition,
BitGroupDef and CmdSequence. These child elements take alphanumerical data and are optional, too

Figure 71: Model of a Control Element

Element Control

Children TypeModifier Condition BitGroupDef CmdSequence

Used by Elements MsgItem MsgStructElemItem

XML schema <xs:element name="Control">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TypeModif ier" type="xs:string" minOccurs="0"/>

 <xs:element name="Condit ion" type="xs:string" minOccurs="0"/>
 <xs:element name="BitGroupDef" type="xs:string" minOccurs="0"/>
 <xs:element name ="CmdSequence" type="xs:string" minOccurs="0"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <Control>

 <TypeModif ier>[2..3]</TypeModif ier>
</Control>

2.2.4.1.1 Type Modifier Element

The TypeModifier element associated with a corresponding SAPE column enables constructions of

element arrays. Arrays can only be found in declarations of messages or of structured message
elements of content type STRUCT.

Note: Arrays of unions are not supported.

Each item in a table being an array needs its own TypeModifier to define the number of elements in the
array. All elements of one array have the same type given by the item corresponding to the Type column
respectively to the content type specified for the element.

Syntax Definition:

Comment [K7]: Unions must be encapsulated

in a structure in order to create an array . The
structure requirement is due to the extra union

controller (“ctrl_”) element inserted by the TI tool
chain; this element is outside the union, and
thus needs a structure to contain it. ->Addit ional
investigation needed: SAPE handles this prob-

lem as if unions are structures. But how does
the TI toll chain work?

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 80 of 183

Ty peModif ier ::= [DYN | PTR] “[“MinimumElementNumber
[“..” MaximumElementNumber] “]” | “0..” MaximumElementNumber “]”

MinimumElementNumber ::= [.] Constant | BasisMessageElement [ArithmOp Number] | TakeCmdSeq

MaximumElementNumber ::= Constant | BasisMessageElement [ArithmOp Number] | TakeCmdSeq

Constant ::= Number | ConstantAlias

Number ::= (NonZeroNum {Num})

NonZeroNum ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Num ::= 0 | NonZeroNum

ConstantAlias ::= /* Reference to an Alias element of the Constants part */

BasisMessageElement ::= /* Reference to a MsgStructElemItem in case of array declaration in a structured element
items table or
Reference to a child of another MsgItem in case of array declaration in a message items table

Note: Only References to items of integral type are allowed. */

TakeCmdSeq ::= “(“ (TakeCmd | LengthTakeCmd) ”)” [ArithmOp Number]

TakeCmd6 ::= TAKE “,”RegNum

/* Reference to a value held in a register */

RegNum ::= [1] Num 7

ArithmOp ::= + | - | * | /

Different kinds of arrays can be distinguished: An array may have a fixed number of elements, a variable
number of elements or a number of elements depending on other items. Besides it is possible to specify
bit arrays.

Arrays with a fixed number of elements need the MinimunElementNumber only. This value can be a
positive number of integral types or the Alias of global constants with a value larger than zero.

Structured Element Items / Message Items

Name Type Type Modifier Comment

s1_fix_arr CSN1_S1 [3]
CSN1_S1 fixed array
with 3 elements

Table 6: Example of an Array with Fixed Length

Arrays with a variable number of elements need an upper limit named Maxi mumElementNumber and a

lower limit, which is either zero or a MinimumEle mentNumber and must be less than the Maximum-
ElementNumber. Each limit can be a positive number of integral types or the Alias of a global constant.

Structured Element Items / Message Items

Name Type Type Modifier Comment

s1_var_arr CSN1_S1 [0..3]
CSN1_S1 variable array
(0 up to 3 elements)

Table 7: Example of an Array with Variable Length

6 TakeCmdSeq specif ication: usage according to part Command Sequence Element.
7 The maximum register number depends on the internal constant MAX_UPN_STACK_SIZE (stack size for UPN calculator) de-

fined in ccd_globs.h; current value: MAX_UPN_STACK_SIZE = 20.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 81 of 183

If the number of elements depends on other i tems the appropriate limit needs to be replaced by a
reference. This reference may refer either to an MsgStructElemItemin case of an array declaration in a
structured element i tems table or to a child of another MsgItem in case of array declaration in a

message items table.

Structured Element Items / Message Items

Name Type Type Modifier Comment

s1_c CSN1_S1 CSN1_S1 repetition counter

s1_calc_arr CSN1_S1 [s1_c..5]
CSN1_S1 calculated array

(s1_c up to 5 elements)

Table 8: Example of an Array with Variable Length Depending on Another Item

To specify a bit array the beginning of the MinimunElementNumber is marked with a single dot. A bit
array may have either a fixed number or a variable number of elements. The rules to define the amount
of elements comply with conditions mentioned above. Note, that the length of a bit array is

determined by limits giving in bits. Make sure that the type given by the item corresponding to the
Type column respectively to the content type specified for the element allows an amount of bits specified
by the upper range value Maxi mumElementNumber.

Structured Element Items / Message Items

Name Type Type Modifier Comment

gsm5_v GSM5_V [.0..24]
GSM5_V IE; bit array

(length: 0 up to 24 bits)

Table 9: Example of an Array with Variable Length Depending on Another Item

Dynamic Arrays or Pointer Types

The control keywords DYN or PTR allow the specification of dynamic size arrays. The amount of
memory is dynamically allocated depending on the number of elements. Each keyword implicates a

certain C code generation. The dynamic array specifier DYN is code transparent, i .e. in the type
definition the element name is used without any prefix but a valid flag precedes this element. If an
element is associated with the keyword PTR the dynamic size array identifier is non-code transparent,

i .e. in the type definition the element name is concatenated with the prefix ptr_ but no valid flag
precedes this element. In case of missing this optional element the value of the pointer is set to NULL.
(cf. part 2.3.5.2.3).

Conclusion

The C expressions generated by the TI tool chain reveals the difference between the mentioned types of
arrays.

 Arrays with a fixed number of elements:
In the element description the Type Modifier Element consi sts of a minimum element number

only. The C expression is given by the example below. short_name corresponds to the Name

column; T_SHORT_NAME is replaced by an item corresponding to the Type column respectively
to the content type specified for the element. The amount of memory is statically allocated

depending on MINIMUM_ELEMENT_NUMBER

 T_SHORT_NAME short_name[MINIMUM_ELEMENT_NUMBER];

 Arrays with a variable number of elements:

In the element description a minimum and a maximum number of elements is used in the Type

Modifier Element. The C expression is given by the example below. short_name corresponds

to the Name column; T_SHORT_NAME is replaced by an item corresponding to the Type column

respectively to the content type specified for the element. The amount of memory is statically

allocated depending on MAXIMUM_ELEMENT_NUMBER. The type of c_short_name depends on the

value of MAXIMUM_ELEMENT_NUMBER. The parameter c_short_name contains information about

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 82 of 183

the number of elements currently present in the variable size array. Therefore only the array
elements [0; c_short_name - 1] contain valid data.

 U8 c_short_name;

 T_SHORT_NAME short_name[MAXIMUM_ELEMENT_NUMBER];

 Arrays with a dynamic size:

The number of elements is variable but the amount of memory for the C expression is
dynamically allocated depending on the number of elements currently used. The Type Modifier
Element should be one the keywords DYN or PTR followed by a range definition.

The keywords DYN and PTR affect the generated C expressions shown by the examples below.

short_name corresponds to the Name column; T_SHORT_NAME is replaced by an item
corresponding to the Type column respectively to the content type specified for the element. The

type of c_short_name depends on the upper range value (MAXIMUM_ELEMENT_NUMBER). The

parameter c_short_name contains information about the number of elements currently present

in the dynamic size array.

If the keyword DYN is used:

 U8 c_short_name;

 T_SHORT_NAME * short_name;

If the keyword PTR i s used:

 U8 c_short_name;

 T_SHORT_NAME * ptr_short_name;

In both cases the result is the generation of a pointer of the specified type, only the naming of

the pointer is different. The difference in the use of the elements between DYN and PTR
declarations l ies more in the behaviour when elements are declared optional (cf. part 6

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 83 of 183

Generated C-Code Header Files). When the keyword PTR is used for an optional element no
valid flag is added to the generated C expressions. Instead the element is not present i f the
value of the pointer is NULL.

Please note that i t is not possible to make array of pointers.

2.2.4.1.2 Condition Element

The Condition element is one child of the control element. It is associated with a column of the same

name provided by SAPE. This element helps to specify the conditions whether an item shall be included
in a message or not.

The inclusion of the item by the sender depends on conditions specified in the relevant protocol

specification. The receiver decides to expect by means of conditions that the item is present or absent.
These conditions depend only on the content of the message itself. Therefore it is necessary to provide
sufficient design features. The condition is checked at runtime.

Syntax Definition:

Condition ::= Expression { LogOp Expression }

Expression8 ::= DataObjRef RelOp Value

DataObjRef ::= /* Reference to a MsgStructElemItem in case of condit ion declaration in a structured element items

table or
Reference to a child of another MsgItem in case of condition declaration in a message items table
*/

Value ::= DataObjRef | Number | ConstantAlias |

Number ::= (NonZeroNum {Num}) | 0

NonZeroNum ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Num ::= 0 | NonZeroNum

RelOp ::= "=" | “#” | "<" | ">"

LogOp ::= AND | OR | XOR

ConstantAlias ::= /* Reference to an Alias element of the Constants part */

ArithmOp ::= + | - | * | /

Assigning a Boolean expression to the associated Condition element qualifies an item. This qualification
shall be taken to mean that the item is present only if the qualifier evaluates to TRUE. Note: The logical

expression w hich is situated rightmost w ill be processed first. Processing of additional logical

expressions will continue from right to left. It is not possible to

An example of this application is the information element PBCCH Description (RR protocol [14.]). The
following table shows how to specify this part:

8 The table below lists the operators and their precedence and associativ ity values. The highest precedence level is at the top of

the table.

Symbol Name or Meaning Associa-

tivity

* Mult iply Left to right

/ Div ide

+ Add Left to right

- Subtract

= # < > Equal, Not Equal, Less

than, Greater than

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 84 of 183

Structured Element Items

Name Type Condition Comment

pb Pb

tsc Training Sequence Code

tn Time Slot Number

f lag Flag

f lag2 {f lag=0} Flag2 – only present if Flag is set to FALSE

arfcn

{f lag=0 AND flag2=1} ARFCN - only present if Flag is set to FALSE
and f lag2 is set to TRUE

maio {f lag=1} Mobile Allocation Index Offset

Table 10: SAPE Table Belonging to RR PBCCH Description information element

2.2.4.1.3 Command Sequence Element

The CmdSequence element is another child of the Control element relating to Command Sequence

expressions. SAPE provides a column with the same name as this element. The CmdSequence element
allows starting specific predefined actions on of MsgStructElemItem or MsgItem elements. It tells the TI
tool chain how to deal with an item.

Syntax Definition:

CmdSequence ::= CmdSeq | PadCmdSeq

CmdSeq ::= PosCmdSeq | RegCmdSeq | StackManipulation { “,” (PosCmdSeq | RegCmdSeq |

StackManipulation) }

PosCmdSeq ::= GETPOS | SETPOS

RegCmdSeq ::= “(“ KeepCmdSeq | TakeCmdSeq | MaxCmdSeq “)”

KeepCmdSeq ::= KEEP “,” RegNum

TakeCmdSeq ::= “(“ (TakeCmd | LengthTakeCmd) ”)” [ArithmOp Number]

TakeCmd ::= TAKE “,”RegNum
/* Reference to a value held in a register */

LengthTakeCmd ::= LTAKE

MaxCmdSeq ::= MAX “,”RegNum

PadCmdSeq ::= Number | ConstantAlias

Number ::= (NonZeroNum {Num}) | 0

NonZeroNum ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Num ::= 0 | NonZeroNum

ConstantAlias ::= /* Reference to an Alias element of the Constants part */

RegNumError! Bookmark not defined. ::= [1] Num

StackManipulation ::= : | ̂| + | Number

This child elements associated with a corresponding SAPE column support a set of specific
mathematical operations. These operations are performed by a RPN calculator built into TI‟s runtime

tools. The RPN calculator uses a Data Stack (not unlike the venerable HP48) that leads to a notation in
which operands precede operators. This is a postfix notation often called RPN or Reverse Polish
Notation

9
.

This stack machine offers the support of quite complex expressions: It provides a set of commands to
perform arithmetic and logical functions. The functions are intended to integer arithmetic. Numbers or
addresses are placed onto the stack (32 bit processing) and the control elements contain operators

which act on them to produce a desired result. In general, the operands are removed (popped) from the
stack and the results are left on the stack. When numbers are pushed onto or popped off the stack, the
remaining numbers are not moved. Instead, a pointer is adjusted to indicate the next unused cell in a

static memory array.

9 This notation is based on the "Sentential Calculus" as developed by Professor Jan Lukasiewicz in the 1920s whilst working at

Warsaw University (Lukasiewicz, 1963).

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 85 of 183

For example the calculator allows movements of the bit-pointer in a message and comparisons. It is
recommended to use these stack pointer operations very carefully. Knowledge about the current

position of the stack pointer must go without saying as far as a correct initial value.

The KeepCmdSeq expression enables to store a value of a variable in a certain CCD register. This
feature is relevant if an item value shall outstay the li fetime of an MsgStructElemItem or MsgItem of
which the item belongs to. Only registers numbered from 0 to MAX_UPN_STACK_SIZE are allowed.

The length information of a TLV element will be written to Register no. 0. Therefore this register is
advised against other usage.

The TakeCmdSeq expression enables CCD to get a value of the specified CCD register.

The MaxCmdSeq statement provides a comparison between a variable and a value stored in a certain
CCD register. Then the maximum will be kept in the selected register.

The PadCmdSeq expression determines the maximum length of spare padding bits. This control

element is always associated with a definition of a Spare element. The used number n means if a
Structured Message Element or a Message consists of less than n bytes the remaining part shall be
filled up with the bit pattern given by the Pattern element. The usage of number n = 0 denotes a special

case: If the message doesn‟t end on octet boundary the remaining part up to the next octet boundary
shall be filled up with the rest of the bit pattern given by the Pattern element on the appropriate bit
positions. The following example should point up this feature.

Structured Element Items

Name Pattern
Bit
Len

Type Type Modifier CmdSequence Comment

freq_range CSN1_S1 [0..MAX_RANGE] Range Limits

arfcn CSN1_S1 [0..MAX_ARFCN] BA Frequency

 00101011 8 S_PADDING 0 Spare Padding

Table 11: SAPE Table Belonging to BA List Pref information element (RR protocol [14.])

Assumption: The last bits of item arfcn ends on octet m bit position 6, then bit 5 down to 1 will be filled

with s_padding bits:

 8 7 6 5 4 3 2 1
octet m x x x Rest of arfcn[]

. . . 0 1 0 1 1 Padding Bits

The processing order of items within a single octet often differs from the order of bit transmission. The

PosCmdSeq advices the TI tool chain where to find (in case of decoding) or where to place (in case of
encoding) an item in a bit string.

A message is a bit string which is very often described as a succession of octets. Octets in a message

or in a part are numbered from 1 onward, starting at the beginning of the bit string. Bits in octets are
numbered from 8 down to 1, starting at the beginning of the octet.

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

octet 1 octet 2 octet 3

Table 12: Order of Bit Transmission

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 86 of 183

The table representations orders message octets from the top of a table downwards. Bits in octets are
presented with the first bit on the left side.

8 7 6 5 4 3 2 1

octet 1

octet 2

octet 3

octet n

Table 13: Order of Message Octet – Table Representation

The PosCmdSeq enables to push and to pop information of bit stream pointer positions to the stack. So

it is possible to have an impact on certain stack data and therefore on the element where the bi stream
pointer refers to.

The following table gives a survey of the Control parameters to specify the calculation steps for the
RPN calculator and describes their operation. Rather the logical operations (AND, OR and XOR) belong
to part 2.2.4.1.2 , but they are mentioned here for the sake of completeness.

Control

parameters
Description of operation Example

<Number>

 Pushes the constant value <Number> onto the current stack position (stack

position n) and

 Increases the stack pointer (new stack position n+1)

(cf. PUSH operation)

(GETPOS,:,6,+,SETPOS)

<DataObjRef>

 Pushes the content of the C-structure variable <DataObjRef> onto the stack

starting with the current stack posit ion (stack position n) and

 Moves the stack pointer to the next available stack position

(cf. PUSH operation)

SETPOS

 Current stack position: n

 Reads the element from the last used stack position (stack position n-1),

 Sets the position of the bit stream pointer to this value and

 Decreases the stack pointer (new stack position n-1)

(cf. POP operation)

(GETPOS,:,6,+,SETPOS)

GETPOS

 Pushes the position of the bit stream pointer onto the current stack posit ion

(stack position n) and

 Increases the stack pointer (new stack position n+1)

(cf. PUSH operation)

(GETPOS,:,6,+,SETPOS)

:

 Current stack position: n

 Duplicates the element of the last used stack posit ion (stack position n-1)

 Pushes it onto the current stack position and

 Increases the stack pointer (new stack position n+1)

(cf. PUSH operation)

(GETPOS,:,6,+,SETPOS)

^

 Current stack position: n

 Swaps the two elements of the of the last used stack positions (stack

positions n-1 and n-2)

 New stack position: n

+ - * /

 Current stack position: n

 Reads the last two elements from the last used stack posit ions (stack

positions n-1 and n-2)

 Executes the appropriate arithmetic operation and pushes the result onto

the stack (stack position n-2):
 elem(n-1) + elem(n-2);

 elem(n-1) - elem(n-2);
 elem(n-1) * elem(n-2);

(GETPOS,:,6,+,SETPOS)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 87 of 183

 elem(n-1) / elem(n-2)

 Performs CCD error handling in cases of div ision by zero;

 Sets the stack pointer to stack position n-1

 Note: Division by 0 caused a CCD Error and stops the

encoding/decoding process!

& |

 Current stack position: n

 Reads the last two elements from the last used stack posit ions (stack

positions n-1 and n-2)

 Performs the appropriate bit operation (either binary AND or binary OR) and

pushes the result onto the stack (stack position n-2)

 Sets the stack pointer to stack position n-1

AND OR XOR

 Current stack position: n

 Reads the last two elements from the last used stack posit ions (stack

positions n-1 and n-2)

 Performs the appropriate logical operations: AND, OR and XOR and pushes

the result (1 in case of TRUE or 0 in case of FALSE) onto the stack (stack
position n-1)

 Sets the stack pointer to stack position n-1

{f lag=1 AND f lag2=1 OR
f lag=0}

= # < >

 Current stack position: n

 Reads the last two elements from the last used stack posit ions (stack

positions n-1 and n-2):
 elem(n-1) = elem(n-2);
 elem(n-1) # elem(n-2);

 elem(n-1) < elem(n-2);
 elem(n-1) > elem(n-2)

 Executes numerical comparison (# used for different) and pushes the result

(either TRUE or FALSE) onto the stack (stack posit ion n-2)

 Sets the stack pointer to stack position n-1

(KEEP,1) {n_r_cells # 0}

KEEP

 Current stack position: n

 Reads the element from the last used stack position (stack position n-1)

 Copies the value in the KEEP register and

 Sets the stack pointer to stack position n-1

(Opposite of TAKE; cf. POP operation)

KEEP,1

LTAKE

 Current stack position: n

 Copies the L part of a TLV element from the KEEP register, converts the

value to multiple of bits, pushes the result onto the current stack position,
and

 Increases the stack pointer (new stack position n+1)

(Specif ic case of TAKE, cf. PUSH operation)

[(LTAKE/12)..MAX_N_PDU_
NUMBER_LIST]

TAKE

 Current stack position: n

 Takes a value from the KEEP register and pushes the value onto the

current stack position

 Increases the stack pointer (new stack position n+1)

(Opposite of KEEP, cf. PUSH operation)

[.(TAKE,1)+1..8]

MAX

 Current stack position: n

 Reads the element from the last used stack position (stack position n-1) and
compares this value with the one stored in the KEEP register.

 Pushes the higher value to the KEEP register.

 Sets the stack pointer to stack position n-1

(cf. POP operation)

MAX,2

22  Determines the maximum length of spare padding bits S_PADDING .00101011
(22)

Table 14: Control parameters to specify the calculation steps for the
RPN calculator

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 88 of 183

Examples:

1) SMS - RP-User data

The RP-User data field contains the TPDU and is mandatory in a RP-DATA message. The element has

a variable length, up to 232 octets. The TP-Message-Type-Indicator is a 2-bit field, located within bits no
0 and 1 of the first octet of all PDUs.

8 7 6 5 4 3 2 1

 TP Message
Ty pe Indicator

octet 1

TP Data Unit
*

 Max octet 232

Table 15: RP-User data IE value part

The following table shows how to specify this part:

Structured Element Items

Name Pattern
Bit
Len Type CmdSequence Comment

tp_mti GETPOS,:,6,+,SETPOS TP Message Type Indicator

tpdu GSM5_V SETPOS TP Data Unit

Table 16: SAPE Table Belonging to the RP-User data IE value part

Explanation:

TP Message
Ty pe Indicator

GETPOS
Determines the current bit stream pointer posit ion (bpp: m) and writes this address information to

the RPN stack (rpn: n)

: Duplicates the address information (rpn: n+1)

6 Is pushed to the next stack posit ion (rpn: n+2)

+
Adds the constant value 6 to the bit stream pointer posit ion and saves the result (bpp: m+6)

instead of the duplicate of the old bit stream pointer position on the stack (rpn: n+1)

SETPOS
Reads the last element from the stack (rpn: n+1), sets the position of the bit stream pointer to this

value (bpp: m+6) and sets the stack pointer to stack posit ion (rpn: n+1)

TP Data Unit SETPOS
Reads the last element from the stack (rpn: n), sets the posit ion of the bit stream pointer to this
value (bpp: m) and sets the stack pointer to stack position (rpn: n)

2) GMM - Mobile Identity

The special information element Mobile Identity (GMM protocol [12.]) should dedicate the most
sophisticated rules of the CmdSequence element.

The Mobile Identity information element provides either the international mobile subscriber identity, IMSI,

the temporary mobile subscriber identity, TMSI, the international mobile equipment identity, IMEI or the
international mobile equipment identity together with the software version number, IEMISV.

The Mobile Identity is a type 4 information element with a minimum length of 3 octets and 11 octets

length maximal.

8 7 6 5 4 3 2 1

 Mobile Identity IEI octet 1
Length of mobile identity contents octet 2

Identity digit 1

odd/
ev en
indic

Ty pe of identity

octet 3

Identity digit 3 Identity digit 2 octet 4

*

Identity digit p+1 Identity digit p octet 11

Table 17: Mobile Identity information element

The Type of identity (octet 3) determines the kind of identity (IMSI, IMEI, IMEISV, TMSI/TMSI-P or
NoIdentity). In case of an even number of identity digits and also when the TMSI/P-TMSI is used the

  

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 89 of 183

Odd/even indication is set to 0; in case of an odd number of identity digits the Odd/even indication is set
to 1. For the IMSI, IMEI and IMEISV the Identity digits field are coded using BCD coding. If the number
of identity digits is even then bits 5 to 8 of the last octet shall be filled with an end mark coded as "1111".

If the mobile identity is the TMSI/P-TMSI then bits 5 to 8 of octet 3 are coded as "1111" and bit 8 of
octet 4 is the most significant bit and bit 1 of the last octet the least significant bit.

The following table shows how to specify this part:

Structured Element Items

Name Pattern
Bit
Len

Type Type
Modifier

Condition CmdSequence Comment

Type of
identity

 GETPOS,:,4,+,:,1,+,SETPOS Type of identity

Odd/
Even indic

 SETPOS
Odd/ Even
indicaction

Identity
digit

 BCDODD [0..16]

type_of_identity #
ID_TYPE_NO_IDENT AND
type_of_identity #
ID_TYPE_TMSI

SETPOS Identity digit

 1111 4
type_of_identity =
ID_TYPE_TMSI

:,SETPOS,8,+ spare

TMSI [.32]
type_of_identity =
ID_TYPE_TMSI

SETPOS TMSI or P-TMSI

Dmy [0..16]
type_of_identity =
ID_TYPE_NO_IDENT

SETPOS dummy

Table 18: SAPE Table Belonging to the Mobile Identity IE value part

Explanation:

Ty pe of Identity :

GETPOS
Determines the current bit stream pointer posit ion (bpp: m) and writes this address information to
the RPN stack (rpn: n)

: Duplicates the address information (rpn: n+1)

4 Is pushed to the next stack posit ion (rpn: n+2)

+
Adds the constant value 4 to the bit stream pointer posit ion and saves the result (bpp: m+4)
instead of the duplicate of the old bit stream pointer position on the stack (rpn: n+1)

: Duplicates the new bit stream pointer position information ((bpp: m+4 -> rpn: n+2)

1 Is pushed to the next stack posit ion (rpn: n+3)

+
Adds the constant value 1 to the new bit stream pointer position and saves the result (bpp: m+5)

instead of the duplicate of the new bit stream pointer position on the stack (rpn: n+2)

SETPOS
Reads the last element from the stack (rpn: n+2), sets the position of the bit stream pointer to this
value (bpp: m+5) and sets the stack pointer to stack posit ion (rpn: n+1)

Odd/ Even
indic

SETPOS
Reads the last element from the stack (rpn: n+1), sets the position of the bit stream pointer to this

value (bpp: m+4) and sets the stack pointer to stack posit ion (rpn: n)

In case of Type of Identity = TMSI

‘1111’ Spare : Duplicates the address information (bpp: m -> rpn: n+1)

 SETPOS
Reads the upper element from the stack (rpn: n+1), sets the posit ion of the bit stream pointer to
this value (bpp: m) and sets the stack pointer to stack position (rpn: n+1)

 8 Is pushed to the next stack posit ion (rpn: n+1)

 +
Adds the constant value 8 to the bit stream pointer posit ion and saves the result (bpp: m+8)

instead of the original bit stream pointer posit ion on the stack (rpn: n)

TMSI SETPOS
Reads the upper element from the stack (rpn: n), sets the position of the bit stream pointer to this

value (bpp: m+8)

In case of Type of Identity = TMSI

‘1111’ Spare : Duplicates the address information (bpp: m -> rpn: n+1)

 SETPOS
Reads the upper element from the stack (rpn: n+1), sets the posit ion of the bit stream pointer to
this value (bpp: m) and sets the stack pointer to stack position (rpn: n+1)

 8 Is pushed to the next stack posit ion (rpn: n+1)

 +
Adds the constant value 8 to the bit stream pointer posit ion and saves the result (bpp: m+8)

instead of the original bit stream pointer posit ion on the stack (rpn: n)

TMSI SETPOS
Reads the upper element from the stack (rpn: n), sets the position of the bit stream pointer to this

value (bpp: m+8)

In case of Type of Identity = ID_TYPE_NO_IDENT

Dmy SETPOS
Reads the upper element from the stack (rpn: n), sets the position of the bit stream pointer to this

value (bpp: m)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 90 of 183

In all other cases:

Identity digit SETPOS

Reads the upper element from the stack (rpn: n), sets the position of the bit stream pointer to this
value (bpp: m);

The value of the f irst binary coded decimal digit should be prov ided as the most signif icant bits
(bit posit ions 8, 7, 6, 5)

2.2.4.1.4 BitGroupDefinition Element

The BitGroupDef element supports another possibili ty to specify a certain kind of MsgStructElemItem
or MsgItem. SAPE provide a column with the same name as this element. This control element enables

a special kind of information elements called extended octet group.

At the beginning of each octet there is a flag bit which is set to 1 if the current octet should be followed
by a further octet. It is set to 0, i f the current octet is the last one in the extended group. These

information elements are referred as optional elements.

To specify information elements belonging to an extended octet group the first IE of the first octet is
associated with the symbol „+‟ assigned to a BitGroupDef element. The last IE of the last octet is

concatenated with the symbol „-‟ belonging to a BitGroupDef element. The middle IEs situated between
information elements marked with „+‟ and „-„ are not joined with any BitGroupDef elements. A single
octet of this type is marked with „*‟ in the BitGroupDef column.

An example of this application is the information element Cause (CC protocol [12.]). The following table
shows how to specify the value part:

8 7 6 5 4 3 2 1

 Cause IEI octet 1

Length of cause contents

octet 2

0/1
ext

coding
standard

0
spare

location

octet 3

1
ext

recommendation

octet 3a*

1
ext

cause v alue

octet 4

diagnostic(s) if any octet 5*

octet N*

Table 19: CC Cause information element

The purpose of the cause information element is to describe the reason for generating certain

messages, to provide diagnostic information in the event of procedural errors and to indicate the location
of the cause originator. The cause IE is a GSM4_TLV type information element with a minimum length
of 4 octets and a maximum length of 32 octets. If the default value applies to the recommendation field,

octet 3a shall be omitted.

The following table shows how to specify this part:

Structured Element Items

Name Pattern
Bit
Len

Type
Type
Modifier

Bit Group
Def

Comment

cs + Coding standard II

 0 1 Spare
loc - Location

rec * Recommendation
cause * Cause value

diag [0..27] Diagnostics

Table 20: SAPE Table Belonging to the CC Cause IE value part

Another notation used in the BitGroupDef column describes information elements of an extended group
or fields of repetitive elements. Any further octets relating to a protocol extension are marked with „!‟ or
„#‟. The last sign marks the end of such an extended group. The example below should point up the

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 91 of 183

following context: If a received message has less or more extended facsimile capabili ty receiver octets
than specified by this table, CCD will skip over the difference (octets or IE number) and will not produce
any error report.

Example:

This BCS Digital transmit command message is the response to the standard capabili ties identified by
the DIS signal (Fax Protocol Entity specified in the ITU-T.30)

8 7 6 5 4 3 2 1
Facsimile control field octet 1

basic f acsimile capabilities receiv er

octet 2

octet 3
octet 3a*

extended f acsimile capabilities 1 receiv er
(cap1_rcv, optional)

octet 4

extended f acsimile capabilities 7 receiv er
(cap7_rcv, optional)

octet 7*

Table 21: BCS Digital transmit command message

The following table shows how to specify this part:

Structured Element Items

Name Pattern
Bit
Len Type

Bit Group
Def

Presence Comment

fcf MANDATORY Facsimile control f ield

cap0_rcv MANDATORY basic facsimile capabilities receiv er

cap1_rcv ! OPTIONAL extended facsimile capabilities 1 receiver

cap2_rcv ! OPTIONAL extended facsimile capabilities 2 receiver

cap3_rcv ! OPTIONAL extended facsimile capabilities 3 receiver

cap4_rcv ! OPTIONAL extended facsimile capabilities 4 receiver

cap5_rcv ! OPTIONAL extended facsimile capabilities 5 receiver

cap6_rcv ! OPTIONAL extended facsimile capabilities 6 receiver
cap7_rcv # OPTIONAL extended facsimile capabilities 7 receiver

Table 22: SAPE Table Belonging to the CC Cause IE value part

2.2.4.2 Type

The optional Type element holds information about the type of coding rules needed for the IE. The
content must be a valid type definition for the tool chain (e.g. C-types, CCDtypes).

Optional Information Elements (IEs) require coding types either initiated by an identifier (T part) or which
must be of one of the following types CSN.1, S_PADDING and GSM5_V. The latter one has been
introduced for parts of a message, which can or must be passed without decoding. Optionality is not

only given by coding type. Also conditional IEs are defined as optional for the Coder/Decoder.

The type column defines the coding type for the element in question. The type column is allowed in air
interface message element tables and structured element tables only.

The corresponding file ccd_codingtypes.h helps to know which types are supported by which version of
Coder/Decoder. Chapter 4 provides some detailed information about supported coding types.

2.2.5 Trivial AIM Specific Sub-Elements

The TI tool chain supplies special coding types to specify arrays of binary coded decimal digits (short:
Trivial AIM Specific Sub-Elements).

The intention of these trivial AIM Specific Sub-Elements, which may occur in different context, does not

need any further explanation because their names are self-explanatory. They are listed here because of
their correct appearance required by the XML schema. The SAPE tool supports the right formatting. But

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 92 of 183

i f an XML document shall be written or modified by using a text editor the user has to be informed how
the format must look like.

Element MsgID

Ty pe extension of xs:string

Used by element MsgDef

Attributes Name Ty pe Use Default Fixed
IDType valTypeChoice required
Direction xs:string required

XML schema <xs:element name="MsgID">
 <xs:complexType>

 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="IDType" type="valTypeChoice" use="required"/>
 <xs:attribute name="Direction" use="required">

 <xs:simpleType>
 <xs:restrict ion base="xs:string">
 <xs:enumeration value="UPLINK"/>

 <xs:enumeration value="DOWNLINK"/>
 <xs:enumeration value="BOTH"/>
 </xs:restrict ion>
 </xs:simpleType>

 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

</xs:element>

XML example <MsgID Direction="UPLINK" IDType="DEC">1</MsgID>

Element ItemTag

Ty pe extension of xs:string

Used by Elements MsgItem MsgStructElemItem

Attributes Name Ty pe Use Default Fixed
TagTy pe valTypeChoice required

XML schema <xs:element name="ItemTag">
 <xs:complexType>
 <xs:simpleContent>

 <xs:extension base="xs:string">
 <xs:attribute name="TagType" type="valTypeChoice" use="required"/>
 </xs:extension>
 </xs:simpleContent>

 </xs:complexType>
</xs:element>

XML example <ItemTag TagTy pe="HEX">19</ItemTag>

2.2.6 AIM Specific Attribute Type Definitions

Attributes are used to associate name-value pairs with elements. Often attributes qualify the range of
values or determine how to interpret the element‟s content. The attribute type definitions in this part

belong to air interface message specific elements.

SimpleType compTypeChoice

Ty pe restriction of xs:string

Used by Attribute MsgStructElemDef/@Type

Facets Enumeration STRUCT

Enumeration UNION

XML schema <xs:simpleType name="compTypeChoice">
 <xs:restriction base="xs:string">
 <xs:enumeration value="STRUCT"/>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 93 of 183

 <xs:enumeration value="UNION"/>
 </xs:restriction>

</xs:simpleType>

SimpleType valTypeChoice

Ty pe restriction of xs:string

Used by Attributes MsgID/@IDType ItemTag/@TagType Value/@ValueType ValuesRange/@ValueType

Facets Enumeration DEC

Enumeration BIN
Enumeration HEX
Enumeration OCT

Enumeration ALPHA

XML schema <xs:simpleType name="valTypeChoice">

 <xs:restriction base="xs:string">
 <xs:enumeration value="DEC"/>
 <xs:enumeration value="BIN"/>

 <xs:enumeration value="HEX"/>
 <xs:enumeration value="OCT"/>
 <xs:enumeration value="ALPHA"/>
 </xs:restriction>

</xs:simpleType>

Presentation Attribute

The SAPE tool provides in the tables Structured Element Items and Message Items an additional

column labelled with the keyword Presence to declare the whole item as optional, conditional or
mandatory. The XML schema definition handles this presence information by the mandatory attribute
Presentation, which is concatenated with each item itself. This attribute may take one of the values

MANDATORY, OPTIONAL or CONDITIONAL.

The relevant protocol specification may define three different presence requirements (M, C, or O):

 M ("Mandatory") means that the sending side shall include the item, and that the receiver
diagnoses a missing mandatory item error when detecting that the item is not present.

 C ("Conditional") means:

o that inclusion of the item by the sender depends on conditions specified in the relevant
protocol specification;

o that there are conditions for the receiver to expect that the item is present and/or
conditions for the receiver to expect that the item is absent in a received message;
these conditions depend only on the content of the message itself, and not for instance

on the state in which the message was received, or on the receiver characteristics; they
are known as static conditions;

 O ("Optional") means that the receiver shall never diagnose a missing mandatory item error

because it detects that the item is present or absent.

SimpleType presChoice

Ty pe restriction of xs:string

Used by Attributes MsgItem/@Presentation MsgStructElemItem/@Presentation

Facets Enumeration OPTIONAL
Enumeration MANDATORY
Enumeration CONDITIONAL

XML schema <xs:simpleType name="presChoice">
 <xs:restriction base="xs:string">

 <xs:enumeration value="OPTIONAL"/>
 <xs:enumeration value="MANDATORY"/>
 <xs:enumeration value="CONDITIONAL"/>
 </xs:restriction>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 94 of 183

</xs:simpleType>

2.3 Primitive Specific Part

This part contains a description of the service access point in a specific format (XML), which can be
processed by the TI tool chain, resulting in output for the various TI tools (test tools, tracing tools,

programming tools etc.). This format is fairly simple and changes to primitives etc are easily done. If the
end-result is seen from the viewpoint of a programmer working on implementation of a protocol stack,
the end-result corresponds to a set of includable source files containing the definition of the SAP as C

declarations. In addition to this SAPE provides a tool for automatic creation of documentation in html
format from the original SAP definition document available in xml -format.

One of the great benefits of using the SAP concept is that the resulting code will be structured according

to the code standard. This way consistency is ensured in declarations as names of valid flags, counters
etc. will have a consistent format throughout the code. This way it will also be easier to read code written
by different developers, as the code standard will be kept. Furthermore there will be no name clashes

since newer SAP documents can use PREFIX on entity level or alias name on element level. All in all
this SAP concept is a single source concept, which allows for both code and documentation in one. That
is, i t is possible to maintain the documentation and the code at the same time and at the same time

ensure consistency in the code.

The aim of this part is to explain how to define service access points. It will describe how the service
access point must be structured and how the different elements can be combined.

A Service Access Point XML document is created from a XML schema by using the SAPE tool and
choosing SAP (Service Access Point) type when creating a new document. The list below shows the
elements belonging to the top level. Some sections may be left out; these sections are marked

[optional].

Document Information Container for all document relevant information

Pragma [optional] Used to control and to modify the behaviour of the TI tool chain

Constant [optional] Contains global constants and used to assign a value to a variable

Primitives [optional] The actual descriptions for all primitive elements belonging to the
se rvice access point

Functions [optional] Functions

Structured Elements
[optional]

Container for all Structured Primitive Elements

Basic Elements [optional] Basic types/values

Substitute [optional] Used to define a new name for an existing element

Values [optional] Used as aliases for user specific values

Annotations [optional] Container for additional information belonging to any document‟s

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 95 of 183

Each section above contains a number of subsections, which act as keywords, separating different
types of information. Some of these subsections occur in both types of documents (either SAP or AIM)

and are already mentioned in part 2.1.

Figure 72: Model of a Service Access Point Description

Element SAP

Children DocInfoSection PragmasSection ConstantsSection PrimitivesSection FunctionsSection PrimStructE-
lementsSection PrimBasicElementsSection SubstitutesSection ValuesSection AnnotationsSection

XML schema <xs:element name="SAP">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="DocInfoSection"/>
 <xs:element ref="PragmasSection" minOccurs="0"/>
 <xs:element ref="ConstantsSection" minOccurs="0"/>

 <xs:element ref="Primit ivesSection" minOccurs="0"/>
 <xs:element ref="FunctionsSection" minOccurs="0"/>
 <xs:element ref="PrimStructElementsSection" minOccurs="0"/>
 <xs:element ref="PrimBasicElementsSection" minOccurs="0"/>

 <xs:element ref="SubstitutesSection" minOccurs="0"/>
 <xs:element ref="ValuesSection" minOccurs="0"/>
 <xs:element ref="AnnotationsSection" minOccurs="0"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <SAP xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="sap.xsd">

 . . . PragmasSection . . . PragmasSection . . . PrimitivesSection . . . Primit ivesSec-
tionFunctionsSection . . . FunctionsSectionPrimStructElementsSection . . . PrimStructEle-
mentsSectionPrimBasicElementsSection . . . PrimBasicElementsSectionSubstitutesSection . . .

SubstitutesSection . . . AnnotationsSection . . . AnnotationsSection

2.3.1 Primitives Section

The Primitives Section deals with the Primitive Elements supported by the SAPE editor in table format. It
handles the Primitives Section element, which comprises all primitives declared within an SAP

document.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 96 of 183

Figure 73: SAPE Messages Section

The Primitives Section serves as a container for all primitive elements. The SAPE GUI provides four
different parts:

 The Description part should serve as additional information and contains a textual description of

the information in the Primitives table. The input corresponds to the child Section of the
Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with

DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The table with the name Common Primitive Data manages two PrimitivesSection’s attributes,
which are common to all primitives of a SAP document. One of them is the unique ID for the

SAP described by the SAP document (SAP ID). Another attribute is called PrimIDType. This
attribute defines the type of primitive identifier for all primitives of the SAP document. Both
attributes are used to associate a primitive tag with an integer primitive identifier (ID), which

must be unique within the system (cf. Primitive Identifier)

 The SAPE editor offers a table named Primitives providing a separate row for each child
element. One to many child elements Primitive, which are described in a particular subsection of

this document, deal with the internal structure of the Primitive elements. At least one Primitive
element has to be present.

Figure 74: Model of the Messages Section

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 97 of 183

Element PrimitivesSection

Children Description Primitive

Used by Element SAP

Attributes Name Ty pe Use Default Fixed
SAPid xs:string required

PrimIDType xs:string required

XML schema <xs:element name="PrimitivesSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>

 <xs:element ref="Primit ive" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="SAPid" type="xs:string" use="required"/>
 <xs:attribute name="PrimIDType" use="required">

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="BIT16"/>
 <xs:enumeration value="BIT32"/>

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

</xs:element>

XML example

gmmreg.sap

<PrimitivesSection PrimIDType="BIT16" SAPid="51">
 </PrimitivesSection>

2.3.1.1 Primitive

The SAPE GUI provides a table labelled Primitives to hold the Primitive elements, which comprise all
instruments being necessary to define a primitive in a SAP document. The Primitive element serves as a

so rt of container i tself to group a set of information defining its properties. Each row in the Primitives
table is associated with another set of tables.

Except the DocLinks table each table relates to an XML element. Table label s and element names can
be implicated easily.

Table 23: SAPE Primit ive

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 98 of 183

The Primitive format should correspond to other key elements in the document. Therefore also Primitive
elements have the mandatory elements Description element and History element. The SAPE GUI offers
three parts to take these elements into account:

 The Description part should serve as additional information about each Primitive and
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging

to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is

suggested.

The Primitive Definitions table belongs to another mandatory XML element: PrimDef. It acts as a
definition element. In case that the layout of the primitive should be assigned to more than only one

primitive definition, additional PrimDef elements could be present.

The other table provided by the SAPE GUI relate to an optional XML element.

 The Primitive Items table supports one to many PrimItem child elements. These elements are
optional and could be attached to each Primitive element i f values should be assigned to.

Each of the last two child elements consi sts of nested elements itself.

Figure 75: Model of a Primitive Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 99 of 183

Element Primitive

Children Description PrimDef PrimItem History

Used by Element PrimitivesSection

XML schema <xs:element name="Primitive">
 <xs:annotation>

 <xs:appinfo>
 <replaceName PrimDef.Name-=""/>
 </xs:appinfo>
 </xs:annotation>

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="PrimDef" maxOccurs="unbounded"/>

 <xs:element ref="PrimItem" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <Primitive>
 <Description> . . . </Description>

 <PrimDef>
 <Name>GMMREG_ATTACH_REQ</Name>
 <PrimID Direction="UPLINK" Number="0" />
 <PrimUsage>. . . </PrimUsage>

 </PrimDef>
 <PrimItem Presentation="MANDATORY">
 <ItemLink>
 <DocName DocType="SAP">gmmreg</DocName>

 <Name>mobile_class</Name>
 </ItemLink>
 <Comment>Mobile Class</Comment>
 </PrimItem>

 . . .
 <PrimItem Presentation="MANDATORY">. . . </PrimItem>
 <History >. . . </History >
</Primitive>

2.3.1.1.1 Primitive Definitions

The Primitive Definitions table provided by the SAPE GUI holds the PrimDef element, which defines the
key parameters of a Primitive Definition element in a SAP document.

Figure 76: SAPE Primitive Definition Table

The PrimDef element consi sts of the following child elements:

 The Name element serves as unique identification.
This element is mandatory and could be used to reference this Pri mitive Element by other
elements. It corresponds to a column in the Primitive Definitions table with the same name. The

Name should follow the TI coding standard. A primitive may for instance be a request (_REQ), a
confirmation (_CNF), an indication (_IND) or a response (_RES).

 The PrimID) element is associated with two attributes, which are used to generate an integer

primitive identifier (ID). This primitive identifier must be unique within the system (cf. Primitive
Identifier). In the Pri mitive Definitions table there are two columns (named Number and
Direction) to keep these attributes‟ values.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 100 of 183

the definition of a specific message element. This element relates to the Feature Flags column.
The entries are optional but must comply with coding rules for feature flags.

 The PrimUsage element i tself consists of the mandatory child elements Sender and Receiver in
order to specify the sending and receiving entities. If more than one entity sends/receives the

primitive on the SAP, additional direction specifications can be present. Therefore one to many
PrimUsage elements are allowed. For every sender/receiver pair, a PrimUsage element has to
be created. The SAPE editor provides a nested sub-table to handle the PrimUsage elements. A

double click to a name entry in the Pri mitive Definitions table will open this nested table.

Figure 77: SAPE Primitive Usage Table

 The Group element (optional)
could be present to declare a group where the Primitive Element belongs. Groups can be used

to force the generators of the tool chain to separate the definitions of elements into different
output files. Any combination of text or digits is allowed. A separate column in the Primitive
Definitions table with the same name corresponds to this child element.

Figure 78: Model of a Primitive Definition Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 101 of 183

Element PrimDef

Children Name PrimID PrimUsage Version Group Comment

Used by Element Primitive

XML schema <xs:element name="PrimDef">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:element ref="PrimID"/>
 <xs:element name="PrimUsage" maxOccurs="unbounded"/>

 <xs:complexType>
 <xs:sequence>
 <xs:element name ="Sender" type="xs:string"
 <xs:element name="Receiver" type="xs:string"

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name ="Version" type="xs:string" minOccurs="0"/>

 <xs:element name="Group" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <PrimDef>
 <Name>GMMREG_ATTACH_REQ</Name>
 <PrimID Direction="UPLINK" Number="0" />

 <PrimUsage>
 <Sender>MMI</Sender>
 <Receiver>GMM</Receiver>
 </PrimUsage>

</PrimDef>

2.3.1.1.2 Primitive Items

The Primitive Items table provided by the SAPE GUI holds the PrimItem elements (sub-elements that

will be transported by the primitive), which define the items of a primitive element. A primitive is always
seen as a user defined structural type, since it is created for the purpose of passing data from one entity
to another. The effect is the same as defining a parameter of content type STRUCT. Consequently, the

definition also corresponds to a type declaration in C: A new structural type is declared with a body
defined by the "elements" part of the section.

Figure 79: SAPE Primitive Items Table

The PrimItem element comprises all components which are needed to declare a primitive item. A

PrimItem is a reference to an existing SAP or AIM element. A complex PrimItem element could be a
composition of well -assorted references. All elements have to be defined explicitly. To reference an
existing item located in the same or an external document, the ItemLink element will be used.

Each row of the Primitive Items table provided by the SAPE GUI corresponds to a primitive item
(PrimItem). The columns of the Primitive Items table diverge a li ttle bit from the strict conversion to
support exactly one column for each child element.

The PrimItem element consi sts of the child elements:

 To reference an existing item located in the same or an external document, the ItemLink
element will be used. It represents a reference to an item defined elsewhere in the same or an

external document. The SAPE column labelled with the keyword Name offers the possibility to
join a linked item by reference. The SAPE editor provides the possibility to select a new linked
element from the Repository Entry and to jump to the linked element. The type column in the

Primitive Items table will be filled automatically: SAPE recognizes the type of the linked item

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 102 of 183

(e.g. U8 belonging to a certain Basic Primitive Element or STRUCT in case of an arbitrary
Structured Primitive Element). This column serves as user-friendly information part, but it does
not relate to an independent child element of the PrimItem element.

 The Alias element (optional)
enables any combination of text or digits to identify a user specific value. This element could be
used to define the new name in the case that the name of the item, under which it could be
addressed within the primitive, should be different from the name of the linked element. By

default the SAPE table doesn‟t provide this column, but i t can be switched on easily by selecting
the appropriate keyword in the Visible Optional Columns field.

 With the Control element (optional)

the item could be modified (e.g. array, dependencies, conditionals). The SAPE tool provides in
the Structured Element Items table separate column for the control sub element. The
behaviours of the different control mechanism s are described in a separate part below.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.

The entries are optional but must comply with coding rules for feature flags.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. Ideally it should not be
the repetition of the comment, where the element was defined; i t should describe the usage of

the element within the primitive element. The associated XML element is mandatory and
therefore a preselection is suggested.

The SAPE tool provides in the Primitive Items table an additional column labelled with the keyword

Presence to declare the whole primitive item as optional or mandatory. The XML schema definition
handles this presence information by the mandatory attribute Presentation, which is concatenated with
each PrimItem. This attribute may take one of the values MANDATORY or OPTIONAL. If there exists a

Primitive Item at least one component is needed to declare this i tem. Therefore a preselection is
suggested in the Presence column.

Figure 80: Model of a Message Item Element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 103 of 183

Element PrimItem

Children ItemLink Alias Control Version Comment

Used by Element Primitive

Attributes Name Ty pe Use Default Fixed
Presentation presChoice required

XML schema <xs:element name="PrimItem">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="ItemLink"/>
 <xs:element ref="Alias" minOccurs="0"/>

 <xs:element ref="Control" minOccurs="0"/>
 <xs:element ref="Version" minOccurs="0"/>
 <xs:element ref="Comment"/>
 </xs:sequence>

 <xs:attribute name="Presentation" type="presChoice" use="required"/>
 </xs:complexType>
</xs:element>

XML example <PrimItem Presentation="MANDATORY">

 <ItemLink>
 <DocName DocType="SAP">gmmreg</DocName>
 <Name>mobile_class</Name>
 </ItemLink>

 <Comment>Mobile Class</Comment>
</PrimItem>

2.3.2 Structured Elements Section

The Structured Elements Section deals with the Structured Primitive Elements supported by the SAPE
editor in table format. It handles the PrimStructElementsSection element, which comprises all structured
elements declared within an SAP document.

Figure 81: SAPE Structured Primitive Elements Section

This section provided by SAPE contains three different parts:

 The Description part should serve as additional information about the Structured Elements
Section and should contain a textual description of the information in the Structured Primitive

Elements table below. This part corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The third part is a table to take one to many child elements PrimStructElem (Structured
Primitive Elements - mandatory) into account. They are described in a particular subsection of
this document that deals with the internal structure of the structured primitive elements. At least

one PrimStructElem element has to be present. The SAPE editor offers a table labelled
Structured Primitive Elements providing a separate row for each child element PrimStructElem.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 104 of 183

Figure 82: Model of the Primitive Structured Element Section

Element PrimStructElementsSection

Children Description PrimStructElem

Used by Element SAP

XML schema <xs:element name="PrimStructElementsSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="PrimStructElem" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example <PrimStructElementsSection>

 <Description> . . . </Description>
 <PrimStructElem> . . . </PrimStructElem>

 . . .
 <PrimStructElem> . . . </PrimStructElem>

</PrimStructElementsSection>

2.3.2.1 Structured Primitive Elements

Each row of the table labelled Structured Primitive Elements in the Structured Elements Section

represents a separate child element called PrimStructElem . By selecting any child element respectively
any row the SAPE GUI provides a set of tables needed to describe a single element sufficiently. These
tables comprise all instruments being necessary to define a structured element in an SAP document.

Each table relates to an XML element. Table labels and element names can be implicated easily.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 105 of 183

Figure 83: SAPE Structured Primitive Elements Tables

The PrimStructElem element serves as a sort of container i tself to group a set of information defining its

properties. Each row in the Structured Primitive Elements table mentioned above is associated with
another set of tables. The PrimStructElem format corresponds to other key elements in the document.
Therefore also PrimStructElem elements have the mandatory elements Description element and History

element.

The SAPE GUI offers three parts to take these elements into account:

 The Description part should serve as additional information about the PrimStructElem element
and corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Additional tables are provided:

 The Structured Primitive Element Definitions table (short: PrimStructElemDef element),
which is mandatory, act as a definition element. In case that the layout of the structured element
should be assigned to more than only one element definition, additional PrimStructElemDef

elements could be present.

 The Structured Primitive Element Items table supports one to many PrimStructElemItem child
elements. These elements are optional. They could be attached to the PrimStructElem element

i f values should be assigned to the structured element.

Each of these child elements consi sts of nested elements itself.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 106 of 183

Figure 84: Model of a Structured Primit ive Element

Element PrimStructElem

Children Description PrimStructElemDef PrimStructElemItem History

Used by Element PrimStructElementsSection

XML schema <xs:element name="PrimStructElem">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>

 <xs:element ref="PrimStructElemDef" maxOccurs="unbounded"/>
 <xs:element ref="PrimStructElemItem" maxOccurs="unbounded"/>
 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <PrimStructElem>

 <Description> . . . </Description>
 <PrimStructElemDef Type="STRUCT">> . . . </PrimStructElemDef>
 <PrimStructElemItem Presentation="MANDATORY> . . . </</PrimStructElemItem>

 . . .
 <PrimStructElemItem Presentation="MANDATORY> . . . </</PrimStructElemItem>
 <History > . . . </History >
</PrimStructElem>

2.3.2.1.1 Structured Primitive Element Definitions

The Structured Element Definition table provided by the SAPE GUI holds the PrimStructElemDef
element, which defines the key parameters of a simple element in an SAP document.

Figure 85: SAPE Structured Element Definitions Table

Each column in the Structured Element Definition table corresponds to an XML child element of the

PrimStructElemDef element. The column labels are equivalent to the child element names.

The PrimStructElemDef element consi sts of the child elements:

 The Name element serves as unique identification.

This element is mandatory and could be used to reference this Structured Element by other
elements.

 The Alias element (optional)

enables any combination of text or digits to identify a user specific value. The SAPE GUI offers

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 107 of 183

a separate column to support text input. This element holds an alias name for a PrimStructElem
element.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for

the definition of a specific message element. This element relates to the Feature Flags column.
The entries are optional but must comply with coding rules for feature flags.

 The Group element

could be present to declare a group where the Structured Pri mitive Elements belong. Groups
can be used to force the generators of the tool chain to separate the definitions of elements into
different output files. Any combination of text or digits is allowed.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory and therefore a preselection is suggested.

The SAPE tool provides in the Structured Element Definitions table an additional column to set the type
of each PrimStructElem element. The XML schema definition handles this type information by the
mandatory attribute Type. This attribute may take either the value STRUCT or the value UNION and will

typically result in an item according to the C programming language.

Figure 86: Model of a Structured Primit ive Element Definit ion

Element PrimStructElemDef

Children Name Alias Version Group Comment

Used by Element PrimStructElem

Attributes Name Ty pe Use Default Fixed
Ty pe compType-

Choice
required

XML schema <xs:element name="PrimStructElemDef">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:element ref="Alias" minOccurs="0"/>
 <xs:element name ="Version" type="xs:string" minOccurs="0"/>

 <xs:element name="Group" type="xs:string" minOccurs="0"/>
 <xs:element name ="Comment type="xs:string""/>
 </xs:sequence>
 <xs:attribute name="Type" type="compTypeChoice" use="required"/>

 </xs:complexType>
</xs:element>

XML example <PrimStructElemDef Type="STRUCT">

 <Name>plnm</Name>
 <Comment>PLMN identification</Comment>
</PrimStructElemDef>

2.3.2.1.2 Structured Primitive Element Items

The Structured Element Items table provided by the SAPE GUI holds the PrimStructElemItem elements,
which define the items of a structured or combined element. The PrimStructElemItem element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 108 of 183

comprises all components which are needed to declare a structured message element i tem. Basically a
PrimStructElemItem could be a reference to an existing element. A complex PrimStructElemItem
element could be a composition of well -assorted references.

Each row of the Structured Element Items table provided by the SAPE GUI corresponds to a single
st ructured element i tem (PrimStructElemItem). The columns of the Structured Element Items table
diverge a little bit from the strict conversion to support exactly one column for each child element.

Figure 87: SAPE Structured Primitive Element Items Table

The child elements of the PrimStructElemItem element are declared below.

 A structured primitive element i tem is a reference to an existing element. All i tems will be

declared using an ItemLink element.

To reference an existing item located in the same or an external document, the ItemLink
element will be used. It represents a reference to an item defined elsewhere in the same or an
external document. The SAPE column labelled with the keyword Name offers the possibility to

join a linked item by reference. The SAPE editor provides the possibility to select a new linked
element from the Repository Entry and to jump to the linked element.

 The Alias element (optional)

enables any combination of text or digits to identify a user specific value. This element could be
used to define the new name in the case that the name of the item, under which it could be
addressed within the primitive, should be different from the name of the linked element. By

default the SAPE table doesn‟t provide this column, but i t can be switched on easily by selecting
the appropriate keyword in the Visible Optional Columns field.

 The Type element (optional)

holds information about the type of an item. The content must be a valid type definition for the
tool chain (e.g. C-types, CCDtypes). Any combination of text or digits is allowed.

 The UnionTag element (optional)

is a tag identifier of union elements that indicates which union element of all possible elements
is present.

 With the Control element (optional)
the item could be modified (e.g. array, dependencies, conditionals). The SAPE tool provides in

the Structured Element Items table a separate column for the control sub element, which can be
switched to visible or turned off. The behaviours of the different control mechanism s are
described in a separate part below.

 The optional Version element
accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific message element. This element relates to the Feature Flags column.

The entries are optional but must comply with coding rules for feature flags.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. Ideally it should not be

the repetition of the comment, where the element was defined; i t should describe the usage of
the element within the structured element. The associated XML element i s mandatory and
therefore a preselection is suggested.

The SAPE tool provides in the Structured Element Items table an additional column labelled with the
keyword Presence to declare the whole structured element item as optional or mandatory. The XML

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 109 of 183

schema definition handles this presence information by the mandatory attribute Presentation, which is
concatenated with each PrimStructElemItem. This attribute may take one of the values MANDATORY or
OPTIONAL. If there exists a Structured Element Item at least one component is needed to declare this

i tem. Therefore a preselection is suggested in the Presence column.

Figure 88: Model of a Structured Primit ive Element Item

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 110 of 183

Element PrimStructElemItem

Children ItemLink Alias UnionTag Control Version Comment

Used by Element PrimStructElem

Attributes Name Ty pe Use Default Fixed
Presentation presChoice required

XML schema <xs:element name="PrimStructElemItem">
 <xs:complexTy pe>

 <xs:sequence>
 <xs:element ref="ItemLink"/>
 <xs:element ref="Alias" minOccurs="0"/>

 <xs:element ref="UnionTag" minOccurs="0"/>
 <xs:element ref="Control" minOccurs="0"/>
 <xs:element name ="Version" type="xs:string" minOccurs="0"/>
 <xs:element name ="Comment" type="xs:string"/>

 </xs:sequence>
 <xs:attribute name="Presentation" type="presChoice" use="required"/>
 </xs:complexType>
</xs:element>

XML example <PrimStructElemItem Presentation="MANDATORY">
 <ItemLink>
 <DocName DocType="SAP">gmmreg</DocName>
 <Name>mcc</Name>

 </ItemLink>
 <Control>[SIZE_MCC]</Control>
 <Comment>mobile country code</Comment>

</PrimStructElemItem>

2.3.3 Basic Elements Section

The Basic Element Section deals with the Basic Primitive Elements table provided by the SAPE editor. It
handles the PrimBasicElementsSection element, which comprises all basic elements declared within an

SAP document.

Figure 89: SAPE Basic Elements Section

The PrimBasicElementsSection serves as a container for all basic elements. For these purpose the
SPAE GUI provides three different parts:

 The Description part should serve as additional information about the Basic Elements Section
and should contain a textual description of the information in the Basic Primitive Elements table
below. This part corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with

DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The third part is a table to take one to many child elements PrimBasicElem (Basic Primitive

Elements - mandatory) into account. They are described in a particular subsection of this
document, which deals with the internal structure of the Basic Element Definitions. At least one

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 111 of 183

PrimBasicElem element has to be present. The SAPE editor offers a table labelled Basic
Primitive Elements providing a separate row for each child element PrimBasicElem.

Figure 90: Model of the Basic Element Section

Element PrimBasicElementsSection

Children Description PrimBasicElem

Used by Element SAP

XML schema <xs:element name="PrimBasicElementsSection">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Description"/>
 <xs:element ref="PrimBasicElem" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <PrimBasicElementsSection>
 <Description> . . . </Description>

 <PrimBasicElem> . . . </PrimBasicElem>

 . . .
 <PrimBasicElem> . . . </PrimBasicElem>
</PrimBasicElementsSection>

2.3.3.1 Basic Primitive Elements

Each row of the table labelled Basic Primitive Elements in the Basic Elements Section represents a
separate child element called PrimBasicElem. By selecting any child element respectively any row the

SAPE GUI provides a set of tables needed to describe a single element sufficiently. These tables
comprise all instruments being necessary to define a structured element in an SAP document. Each
table relates to an XML element. Table labels and element names can be implicated easily.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 112 of 183

Figure 91: SAPE Basic Primitive Elements Tables

The PrimBasicElem element serves as a sort of container i tself to group a set of information defining its
properties. Each row in the Basic Primitive Elements table mentioned above is associated with another
set of tables. The PrimBasicElem format corresponds to other key elements in the document. Therefore

also PrimBasicElem elements have the mandatory elements Description element and History element.

The SAPE GUI offers three parts to take these elements into account:

 The Description part should serve as additional information about the PrimBasicElem element

and corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging

to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is
suggested.

Additional tables are provided:

 The Basic Element Definitions table (short: PrimBasicElemDef element),
which is mandatory, act as a definition element.

 The ValuesLink table supports one to many Values Link child elements. These elements are
optional. They could be attached to the PrimBasicElem element i f values should be assigned to
the basic element. This element is optional.

Each of these child elements consi sts of nested elements itself.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 113 of 183

Figure 92: Model of a Basic Primit ive Element

Element PrimBasicElem

Children Description PrimBasicElemDef ValuesLink History

Used by Element PrimBasicElementsSection

XML schema <xs:element name="PrimBasicElem">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="PrimBasicElemDef"/>

 <xs:element ref="ValuesLink" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example <PrimBasicElem>
 <Description> . . . </Description>
 <PrimBasicElemDef>

 <Name>attach_type</Name>
 <Type>U8</Type>
 <Comment>Attach type</Comment>

 </PrimBasicElemDef>
 <ValuesLink>
 <DocName DocType="SAP">gmmreg</DocName>
 <Name>VAL_attach_type</Name>

 </ValuesLink>
 <History > . . . </History >
</PrimBasicElem>

2.3.3.1.1 Basic Element Definitions

The Basic Element Definitions table provided by the SAPE GUI holds the PrimBasicElemDef element,
which defines the key parameters of a simple element in an SAP document.

Each column in Basic Element Definitions table corresponds to an XML child element of the

PrimBasicElemDef element. The column labels are equivalent to the child element names - except of
the Feature Flags column.

Figure 93: SAPE Basic Element Definitions Table

The PrimBasicElemDef element consi sts of the following child elements:

 The Name element serves as unique identification.
This element is mandatory and could be used to reference this Basic Element by other

elements.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 114 of 183

 The Type element holds information about the type of an item. The content must be a valid type
definition for the tool chain (e.g. C-types like U8, S8, U16, S16, U32 or S32 or BYTE, UBYTE,
WORD, UWORD, LONG and ULONG) indicates that the element is a basic one.

 The optional Version element

accepts any combination of text or digits that represents the dependency from feature flags for
the definition of a specific primitive element. This element relates to the Feature Flags column.
The entries are optional but must comply with coding rules for feature flags.

 The Group element
could be present to declare a group where the Basic Element belongs. Groups can be used to
force the generators of the tool chain to separate the definitions of elements into different output

files. Any combinations of text or digits are allowed.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. The associated XML
element is mandatory and therefore a preselection is suggested.

A link element is not foreseen in this format, because an element could be either defined or referenced.
Therefore a link is only possible where an element will be used.

Figure 94: Model of a Basic Element Definit ion

Element PrimBasicElemDef

Children Name Type Version Group Comment

Used by Element PrimBasicElem

XML schema <xs:element name="PrimBasicElemDef">
 <xs:complexType>

 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:element ref="Type"/>
 <xs:element name ="Version" type="xs:string" minOccurs="0"/>

 <xs:element name ="Group" type="xs:string" minOccurs="0"/>
 <xs:element name ="Comment" type="xs:string" type="xs:string"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example <PrimBasicElemDef>
 <Name>attach_type</Name>

 <Type>U8</Type>
 <Comment>Attach type</Comment>
</PrimBasicElemDef>

2.3.4 Functions Section

The Functions Section deals with the Function Elements supported by the SAPE editor in table format. It
handles the FunctionsSection element, which comprises all function elements declared within an SAP
document. At least one function has to be declared within the Functions Section, which may have one to

many child elements Function.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 115 of 183

The Functions Section enables the generation of function prototypes in the C-Header files during
processing SAP specification documents by the Generic Tool Chain. These function prototypes
establish the name of the function, i ts return type, as well as the type and number of i ts formal

parameters. For example this section enables the basics to define functional interfaces of protocol stack
entities.

Figure 95: SAPE Functions Section

This section provided by SAPE contains three different parts:

 The Description part should serve as additional information about the Functions Section and
should provide more information about the functions of that SAP in general. This part
corresponds to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with

DocLink. This table is associated with the sub element Linked Description Elements belonging
to the parent element Description.

 The third part (mandatory) is a table to take one to many child elements Function into account.

They are described in a particular subsection of this document that deals with the internal
st ructure of the function elements. At least one Function element has to be present. The SAPE
editor offers a table labelled Functions providing a separate row for each child element Function.

Figure 96: Model of the Functions Sections

Element FunctionsSection

Children Description Function

Used by Element SAP

XML schema <xs:element name="FunctionsSection">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description"/>
 <xs:element ref="Function" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example [TBD]

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 116 of 183

2.3.4.1 Functions

The Function element comprises all elements which are needed to declare a function in a SAP
document. Each row of the table labelled Functions in the FunctionsSection represents a separate child

element called Function. By selecting any child element respectively any row the SAPE GUI provides a
set of tables needed to describe a single element sufficiently. These tables comprise all instruments
being necessary to define an inline function in an SAP document. Each table relates to an XML element.

Table labels and element names can be implicated easily.

Figure 97: SAPE Function

The Function format corresponds to other key elements in the document. Therefore also Function
elements have the mandatory elements Description and History.

The SAPE GUI offers three parts to take these elements into account:

 The Description part should serve as additional information about the Function and corresponds
to the child Section of the Description element.

 To link arbitrary files, which are entirely informational, there exists a separate table labelled with
DocLink. This table is associated with the sub element Linked Description Elements belonging

to the parent element Description.

 The History table is intended to track changes. Each row in this table corresponds to one History
element. At least one associated XML element is mandatory and therefore a preselection is

suggested.

Additional tables are provided:

 The Usage table (short: FuncUsage element) belongs to mandatory child elements from the

FuncDef element. The caller/callee relationship of the function will be presented by the
FuncUsage element. If more than one usage relationship can be defined, additional FuncUsage

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 117 of 183

elements can be attached to the FuncDef element. Each row identifies the involved entities (e.g.
a certain caller/callee pair).

 The Function Definition table (short: FuncDef element) is mandatory and acts as an element
defining the key parameters of a function in a SAP document.

 The Arguments table comprises all function arguments. Each row belongs to a FuncArg

element, which defines an argument of a function. The presence of the FuncArg elements is
optional because functions do not need to be declared with arguments. One to many FuncArg

elements may be present.

 The Return Values table provides the possibili ty to define one return value of a function. As well
function declarations without a return value are allowed, therefore the dedicated FuncRet

element is optional.

Each of these child elements consi sts of nested elements itself.

Figure 98: Model of a Function Element

Element Function

Children Description FuncDef FuncRet FuncArg History

Used by Element FunctionsSection

XML schema <xs:element name="Function">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Description"/>
 <xs:element ref="FuncDef"/>
 <xs:element ref="FuncRet" minOccurs="0"/>

 <xs:element ref="FuncArg" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="History " maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>

XML example [TBD]

2.3.4.1.1 Function Definitions

The Function Definitions table (short: FuncDef element) provided by SAPE consists of three columns:

 The Name column,
which entries are mandatory, could be used to reference this function.

 The Feature Flags column

relates to the Version element which offers alphanumerical data fields and represents the
dependency from feature flags for a specific i tem. The entries are optional but must comply with
coding rules for feature flags.

 The Group column
offers alphanumerical data field, too. These optional entries can hold the name of a group.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 118 of 183

Groups can be used to force the generators of the tool chain to separate the definitions of
elements into different output files. This column relates to an XML element of the same name.

Figure 99: SAPE Function Definition Table

Figure 100: Model of a Function Definition Element

The FuncDef element has one to many child elements called FuncUsage. Each element specifies a
certain caller/callee relationship of the function. If more than one usage relationship can be defined,
additional FuncUsage elements can be attached to the FuncDef element. AT least one FuncUsage child

elements must be present.

Element FuncDef

Children Name FuncUsage Version Group

Used by Element Function

XML schema <xs:element name="FuncDef">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Name"/>
 <xs:element name ="FuncUsage" maxOccurs="unbounded"/>
 <xs:complexType>
 <xs:sequence>

 <xs:element name="Caller" type="xs:string"/>
 <xs:element name="Callee" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 </xs:element>
 <xs:element name ="Version" type="xs:string" minOccurs="0"/>
 <xs:element name="Group" type="xs:string" minOccurs="0"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example [TBD]

2.3.4.1.2 Function Arguments

The Arguments table provided by the SAPE GUI holds the FuncArg elements, which comprises all
components needed to declare a function argument.

Figure 101: SAPE Function Arguments Table

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 119 of 183

Each row of the Arguments table corresponds to a single function argument. The columns of this table
diverge a little bit from the strict conversion to support exactly one column for each child element.

The FuncArg element consi sts of the following child elements:

 It is only possible to declare a function argument by a reference to an existing SAP or AIM
element or to reference an externally defined type. All elements have to be defined explicitly. To
reference an existing item located in the same or an external document, the ItemLink element
will be used. It represents a reference to an item defined elsewhere in the same or an external

document. The SAPE column labelled with the keyword Name offers the possibility to join a
linked item by reference. The SAPE editor provides the possibili ty to select a new linked
element from the Repository Entry and to jump to the linked element.

The ExtType element will be used if a type is needed that is out of the scope of SAP and AIM
Documents. Therefore the Type information and optionally an ExtSource element have to be
defined as child elements. It is mandatory to choice one of these alternatives.

 The Alias element (optional)
enables any combination of text or digits to identify a user specific value. The SAPE GUI offers
a separate column to support text input. This element holds an alias name for a FuncArg

element in case the name of the item, under which it could be addressed within the argument
list, should be different from the name of the linked element

 With the Control element (optional)

the item could be modified (e.g. array, pointer). The behaviours of the different control
mechanism s are described in a separate part below.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. Ideally it should not be

the repetition of the comment, where the element was defined; i t should describe the usage of
the element as a function argument.

Figure 102: Model of a Function Argument Element

file:///D:/SAP.doc%23Link03ED3050

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 120 of 183

Element FuncArg

Children ItemLink ExtType Alias Control Comment

Used by Element Function

XML schema <xs:element name="FuncArg">
 <xs:complexType>

 <xs:sequence>
 <xs:choice>
 <xs:element ref="ItemLink"/>
 <xs:element ref="ExtType"/>

 </xs:choice>
 <xs:element ref="Alias" minOccurs="0"/>
 <xs:element ref="Control" minOccurs="0"/>
 <xs:element ref="Comment"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

XML example [TBD]

2.3.4.1.3 Function Return Value

The Return Value table provided by the SAPE GUI holds the FuncRet elements, which comprises all
components needed to declare a function return value.

Figure 103: SAPE Function Arguments Table

The Return Values table provides the possibili ty to define a single return value of a function. The

columns of this table diverge a li ttle bit from the strict conversion to support exactly one column for each
child element.

The FuncRet element consi sts of the following child elements:

 It is only possible to declare a function return value by a reference to an existing SAP or AIM
element or to reference an externally defined type. All elements have to be defined explicitly. To
reference an existing item located in the same or an external document, the ItemLink element
will be used. It represents a reference to an item defined elsewhere in the same or an external

document. The SAPE column labelled with the keyword Name offers the possibility to join a
linked item by reference. The SAPE editor provides the possibili ty to select a new linked
element from the Repository Entry and to jump to the linked element.

The ExtType element will be used if a type is needed that is out of the scope of SAP and AIM
Documents. Therefore the Type information and optionally an ExtSource element have to be
defined as child elements. It is mandatory to choice one of these alternatives.

 With the Control element (optional)
the item could be modified (e.g. array, pointer). The behaviours of the different control
mechanism s are described in a separate part below.

 The Comment element (mandatory)
enables any combination of text or digits that should make a comment. Ideally it should not be
the repetition of the comment, where the element was defined; i t should describe the usage of

the element as a function return value.

file:///D:/SAP.doc%23Link03ED3050

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 121 of 183

Figure 104: Model of a Function Return Value Element

Element FuncRet

Children ItemLink ExtType Control Comment

Used by Element Function

XML schema <xs:element name="FuncRet">

 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element ref="ItemLink"/>

 <xs:element ref="ExtType"/>
 </xs:choice>
 <xs:element ref="Control" minOccurs="0"/>
 <xs:element name="Comment" type="xs:string"/> </xs:sequence>

 </xs:complexType>
</xs:element>

XML example [TBD]

2.3.5 Nontrivial SAP Specific Sub-Elements

Some SAP specific sub-elements, which may occur in different context, require more detailed
explanation. These elements are listed here to provide additional information about the data they may

contain. This section should serve primarily as a reference for these elements.

2.3.5.1 Primitive Identifier

For primitives the definition associates a primitive tag with an integer primitive identifier (ID), which must

be unique within the system. This corresponds to defining a global constant using the "#define" pre-
processo r directive in C, linking the primitive name to the value of the ID.

The name of the primitive is contained in the tabular definition under the heading Name; the global

primitive identifier numerical value (ID) is assembled by

 the unique ID for the SAP (SAP ID),

 a numerical identifier for that primitive given by the Number attribute and

 the direction information given.

The SAPE tool provides in the Primitive Definitions table a particular column to set the direction
information for each Primitive Element. The XML schema definition handles this direction information by
the mandatory attribute Direction

10
, which belongs to the mandatory Primitive Identifier element. This

attribute may take one of the possible values UPLINK or DOWNLINK. The Direction attribute indicates
the information flow direction according to the ETSI/3GPP specifications:

UPLINK - An "uplink" is a unidirectional radio link for the transmission of signals from a UE

towards a core network.

DOWNLINK - A “downlink” i s a unidirectional radio link for the transmission of signals from a
core network towards a UE.

10 Besides the direction information is an important entry for the coder/decoder.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 122 of 183

The Number attribute enables any combination of text or digits, but i t is recommended to use positive
integer values. The primitive number is the number of the primitive within the SAP and should start at 00
for the first primitive in the document.

For primitives of type Request or Response, the direction should have a value of 0. For primitives of type
Confirm or Indication the direction should have a value of 4. The SAPE converter cares for the correct
number according to the given direction information.

The numerical value of the primitive identifier should be a 32 bit unsigned integer, but older SAP
descriptions use 16 bit primitive IDs. Therefore the SAPE converter must be advised which value
representation is appropriate. The attribute PrimIDType, which is common to all primitives of a SAP

document and belongs to the PrimitivesSection, performs that task.

The scheme below shows the guidelines to assemble a 32-bit ID using the hexadecimal format:

0 x 8 0 XXY0 ZZ

SAP Identifier

Direction

Primitive Number

Element PrimID

Used by Element PrimDef

Attributes Name Ty pe Use Default Fixed

Number xs:string required
Direction xs:string required

XML schema <xs:element name="PrimID">
 <xs:complexType>
 <xs:attribute name="Number" type="xs:string" use="required"/>

 <xs:attribute name="Direction" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="UPLINK"/>

 <xs:enumeration value="DOWNLINK"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

 </xs:complexType>
</xs:element>

XML example <PrimID Direction="UPLINK" Number="0" />

2.3.5.2 Control

The Control element belonging to SAP descriptions is not as complex as the AIM Control element. The
SAP Control possibilities are a subset of the AIM Control facili ties. It contains instructions used by the TI
tool chain how to define or interpret the associated object in question.

This optional element is intended to hold any kind of control information to classify an item. With the
information contained in the Control element an item could be modified in order to achieve different
constructions, such as arrays and pointers. The SAPE tool provides in the Structured Primitive Element

Items table and in the Primitive Items table as far as in the Function Arguments and Function Return
Value table a separate column for the control element, which can be switched to visible or turned off.

In contradiction to AIM Control elements no classification is done.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 123 of 183

Element Control

Ty pe xs:string

Used by elements FuncArg FuncRet PrimItem PrimStructElemItem

XML schema <xs:element name="Control" type="xs:string"/>

XML example <Control>[SIZE_MNC]</Control>

2.3.5.2.1 Element Arrays

Arrays can only be used in the elements part of a declaration of a primitive or a parameter with the
content type STRUCT.

Note: Arrays of unions are not supported.

Each item in a table being an array needs its own length specifier to define the number of elements in
the array. All elements of one array have the same content type. Different kinds of arrays can be

distinguished: An array may have a fixed number of elements or a variable number of elements. The
syntax definition of the length specifier is given below.

Syntax Definition:

Ty peModif ier ::= “[“MinimumElementNumber [“..” MaximumElementNumber] “]” | “0..” MaximumElementNumber “]”

MinimumElementNumber ::= Constant [ArithmOp Number]

MaximumElementNumber ::= Constant [ArithmOp Number]

Constant ::= Number | ConstantAlias

Number ::= (NonZeroNum {Num})

NonZeroNum ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Num ::= 0 | NonZeroNum

ConstantAlias ::= /* Reference to an Alias element of the Constants part */

ArithmOp ::= + | - | * | \

Arrays with a fixed number of elements need the MinimunElementNumber only. This value can be a

positive number of integral types or the Alias of global constants with a value larger than zero.

Structured Element Items / Primitive Items

Name Type Control Comment

mnc U8 [SIZE_MNC] mobile network code

Table 24: Example of an Array with Fixed Length

For fixed size arrays the array specification for an element results in the C expression:

 T_SHORT_NAME <name>[<MinimumElementNumber>];

For basic types, no user-defined type is used, and the content type specified for the

element replaces T_SHORT_NAME.

Arrays with a variable number of elements need an upper limit named Maxi mumElementNumber and a

lower limit, which is either zero or a MinimumElementNumber and must be less than the Maximum-
ElementNumber. Each limit can be a positive number of integral types or the Alias of a global constant.

Structured Element Items / Primitive Items

Name Type Control Comment

text U8 [0..MMR_MAX_TEXT_LEN] name

Table 25: Example of an Array with Variable Length

Comment [K8]: Unions must be encapsulated
in a structure in order to create an array . The

structure requirement is due to the extra union
controller (“ctrl_”) element inserted by the TI tool
chain; this element is outside the union, and

thus needs a structure to contain it. ->Addit ional
investigation needed: SAPE handles this prob-
lem as if unions are structures. But how does
the TI toll chain work?

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 124 of 183

A specification of an array with a variable number of elements results in a sl ightly different construction
of the C generated:

 U8 <c_short_name>;

 T_SHORT_NAME <short_name> [<MaximumElementNumber>];

The parameter c_short_name is a counter providing information about the number of elements in the

variable size array. The array is actually declared of maximum size, and only the array elements

[0 ; c_short_name - 1] contain valid data.

2.3.5.2.2 Element Pointers

Pointers can be used as elements in declarations of primitives, functions and parameters of content type
STRUCT or UNION. Pointers are made possible by addition of entries in the Control column belonging

to the table in the elements declaration part. For each element in the table that should be a pointer, the
keyword PTR is added in the Control column, causing generation of a C construction shown below:

T_SHORT_NAME * <ptr_short_name>;

short_name is valid for both the element itself and the parameter definition referred.

If the element is of content type UNION, the C construction will look like the example below:

T_CTRL_SHORT_NAME <ctrl_short_name>; /* Comment */

T_SHORT_NAME * <ptr_short_name>; /* Comment */

This construction allows the identification of the element chosen in the union pointed to.

Pointers are primarily used in order to share storage between the entities using a common SAP, passing
only the references to data. The memory will however need to be allocated independently of the SAP.
When using the PTR keyword it is very important to be aware of the consequences. One extremely

important point is that the entire store pointed to is traced out. This may result in insufficient bandwidth
when testing and therefore should be used with care.

2.3.5.2.3 Dynamic Arrays

Particular Control elements offer the possibility to create dynamic size arrays. The keywords DYN or
PTR allow the specification of these arrays. The amount of memory is dynamically allocated dependent
on the number of elements. Dynamic size arrays (where either the keyword DYN or PTR i s used) are

constructed similar to arrays with a variable number of elements.

The keyword DYN in the Control column will cause the dedicated C-code shown below (code transpa-
rent):

U8 c_short_name;

T_SHORT_NAME * short_name;

If the keyword PTR i s used the dedicated C-code will look like the example below (non code transpa-
rent):

U8 c_short_name;

T_SHORT_NAME * ptr_short_name;

In both cases the parameter c_short_name is a counter providing information about the number of
elements in the array. The C examples show that specifications of dynamic size arrays using either the

keyword DYN or the keyword PTR cause a similar behavior. In both cases the result is the generation of
a pointer to the specified type. The elements can be accessed in the same way as elements of fixed or
variable size arrays, since the C syntax will be the same. DYN and PTR declarations differ only in the

naming of the pointer.

The main difference between dynamic size arrays and fixed or variable size arrays is the way of memory
allocation. The pointer references the memory allocated for the array, which will have the size appropri-

ate to hold the number of entries indicated by c_short_name.

Declarations using either the keyword DYN or the keyword PTR differ in the behavior of optional ele-
ments. If the keyword PTR i s used relating to an optional element - either for a dynamic size array or for

a pointer – no valid flag is added. In case of missing this optional the element the value of the pointer is
set to NULL. If the keyword DYN is used relating to an optional element a valid flag is added.

Please note that i t is not possible to make array of pointers (cf. part 2.2.4.1.1)

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 125 of 183

2.3.5.3 Extern Type

The ExtType element will be used if a type is needed that is out of the scope of SAP and AIM
Documents. The mandatory child element Type is described in a separate part below The optional child

element ExtSource enables alphanumerical data and provides to hold the name of an external source
file, which must be included to resolve an external type.

Figure 105: Model of an External Type Element

Element ExtType

Children Type ExtSource

Used by Elements FuncArg FuncRet

XML schema <xs:element name="ExtType">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Type"/>
 <xs:element name="ExtSource" type="xs:string" minOccurs="0"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

XML example [TBD]

2.3.5.4 Type

This plain element provides information about the type of an item. Any combination of text or digits is
allowed, but the content must be a valid type definition for the tool chain (e.g. C-types, CCDtypes).

Element Type

Ty pe xs:string

Used by Elements ExtType PrimBasicElemDef

XML schema <xs:element name="Type" type="xs:string"/>

XML example <Ty pe>U8</Type>

2.3.6 SAP Specific Attribute Type Definitions

Presentation Attribute

The SAPE tool provides in the tables Structured Primitive Element Items and Primitive Items an
additional column labelled with the keyword Presence to declare the whole item as optional or

mandatory. The XML schema definition handles this presence information by the mandatory attribute
Presentation, which is concatenated with each item itself. This attribute may take one of the values
MANDATORY or OPTIONAL.

For each element, a presence specifier is to be added. . For mandatory elements, this has no
consequence for the C construction, but for optional elements the result is:

U8 v_short_name;

T_SHORT_NAME short_name;

A valid flag v_short_name is added to the construction. The value of the parameter v_short_name
indicates whether the content of the element is valid or not. The value can be 0 for not valid or 1 for
valid. If the keyword PTR i s used relating to an optional element - either for a dynamic size array or for a

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 126 of 183

pointer – no valid flag is added. In case of missing this optional the element the value of the pointer is
set to NULL. If the keyword DYN is used relating to an optional element a valid flag is added.

SimpleType presChoice

Ty pe restriction of xs:string

Used by Attributes PrimItem/@Presentation PrimStructElemItem/@Presentation

Facets Enumeration OPTIONAL
Enumeration MANDATORY
Enumeration CONDITIONAL

XML schema <xs:simpleType name="presChoice">

 <xs:restriction base="xs:string">
 <xs:enumeration value="OPTIONAL"/>
 <xs:enumeration value="MANDATORY"/>

 <xs:enumeration value="CONDITIONAL"/>
 </xs:restriction>
</xs:simpleType>

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 127 of 183

3 Message and Primitive Editorial Description Catalogues -
Microsoft Word documents

3.1 Message Specific Part

[Refer to [3.]: TI User Guide - Syntax description for air interface message documents,
8350_300_MSG_Syntax.doc]

3.2 Primitive Specific Part

[Refer to [4.]: TI User Guide - Specifying Service Access Points,

8350_301_SAP_Syntax.doc]

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 128 of 183

4 Coding Types
CCD uses particular functions to encode/decode the different types and formats of information elements.
The following part provides an overview of the most important coding types used for GSM/GPRS.

Coding type names used in CCD differ just a li ttle from those in message description. For example the
type GSM1_V will change into CCDTYPE_GSM1_V in CCD source code. Until now CCD has
considered the following coding types:

1. For standard information elements:
GSM1_V, GSM1_TV, GSM2_T, GSM3_T, GSM3_TV, GSM4_LV, GSM4_TLV, GSM5_V,
GSM5_TV, GSM5_TLV, GSM1_ASN and GSM1_ASN_NULL.

2. For non-standard information elements:
BCDODD, BCDEVEN, BCD_MNC, BCD_NOFILL, T30_IDENT, CSN1_S1, CSN1_S0,
CSN1_SHL, S_PADDING, S_PADDING_0, GSM6_TLV, GSM7_LV, NO_CODE,

CSN1_CONCAT, BREAK_COND, CSN1_CHOICE1 and CSN1_CHOICE2.

The corresponding file ccd_codingtypes.h helps to know which types are supported by which version of
Coder/Decoder. Chapter provides some detailed information about supported coding types.

It is possible to use several coding types within a mixed or nested Information element.

Type names
used in *.xml

and in *.mdf files

In

ccd_codingtypes.h

Source file

name

GSM1_V CCDTYPE_GSM1_V gsm_1v.c

Valid types for

GSM and GPRS

GSM1_TV CCDTYPE_GSM1_TV gsm1_tv.c

GSM2_T CCDTYPE_GSM2_T gsm2_t.c

GSM3_V CCDTYPE_GSM3_V gsm3_v.c

GSM3_TV CCDTYPE_GSM3_TV gsm3_tv.c

GSM4_LV CCDTYPE_GSM4_LV gsm4_lv.c

GSM4_TLV CCDTYPE_GSM4_TLV gsm4_tlv.c

GSM5_V CCDTYPE_GSM5_V gsm5_v.c

GSM5_TV CCDTYPE_GSM5_TV gsm5_tv.c

GSM5_TLV CCDTYPE_GSM5_TLV gsm5_tlv.c

GSM6_TLV CCDTYPE_GSM6_TLV gsm6_tlv.c

GSM7_LV CCDTYPE_GSM7_LV gsm7_lv.c

GSM1_ASN CCDTYPE_GSM1_ASN gsm1_asn.c

BCDODD CCDTYPE_BCDODD bcdodd.c

BCDEVEN CCDTYPE_BCDEVEN bcdeven.c

BCD_NOFILL CCDTYPE_BCD_NOFILL bcd_nofill.c

BCD_MNC CCDTYPE_BCD_MNC bcd_mnc.c

CSN1_S1 CCDTYPE_CSN1_S1 csn1_s1.c

CSN1_SHL CCDTYPE_CSN1_SHL csn1_sh.c

S_PADDING CCDTYPE_S_PADDING s_padding.c

T30_IDENT CCDTYPE_T30_IDENT t30_ident.c

BITSTRING CCDTYPE_BITSTRING asn1_bitstr.c
Valid types used
for elements of
UMTS messages

ASN1_OCTET CCDTYPE_ASN1_OCTET asn1_octet.c

ASN1_INTEGER CCDTYPE_ASN1_INTEGER asn1_integ.c

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 129 of 183

ASN1_SEQUENCE CCDTYPE_ASN1_SEQUENCE asn1_seq.c

ASN1_CHOICE CCDTYPE_ASN1_CHOICE asn1_choice.c

NO_CODE

ASN1_INTEGER_EXT
ENSIBLE

S_PADDING_0 CCDTYPE_S_PADDING_0

s_padding_0.c

CSN1_S0 CCDTYPE_CSN1_S0

csn1_s0.c

HL_FLAG CCDTYPE_HL_FLAG hl_flag.c

FDD_CI CCDTYPE_FDD_CI fdd_ci .c

TDD_CI CCDTYPE_TDD_CI tdd_ci .c

FREQ_LIST CCDTYPE_FREQ_LIST freq_list.c

CSN1_CONCAT CCDTYPE_CSN1_CONCAT csn1_concat.c

BREAK_COND CCDTYPE_BREAK_COND break_cond.c

CSN1_CHOICE1 CCDTYPE_CSN1_CHOICE1 csn1_choice_1.c

CSN1_CHOICE2 CCDTYPE_CSN1_CHOICE2 csn1_choice_2.c

Table 26: Currently valid types of coding rules

4.1 Coding Types for Standard Information Elements

A standard L3 message consists of an imperative part, itself composed of a header and the rest of

imperative part, followed by a non-imperative part. Both the non-header part of the imperative part and
the non-imperative part are composed of successi ve parts referred as standard information elements.

Imperative Part Non-Imperative Part

msg header first IE . . . last IE first IE . . . last IE

Table 27: Scheme of a Standard Information Element

CCD does not handle the message header since it is processed by the GSM protocol entities. Hence a
description of concepts like Protocol Discriminator, Skip Indicator and Transaction Identifier does not

needed here.

A standard IE may have the following parts, in that order:

 an information element identifier (IEI);

 a length indicator (LI);

 a value part.

A standard IE has one of the formats shown in the following table:

Format Meaning IEI present LI present Value part present
T Type only y es no no

V Value only no no y es

TV Type and Value y es no y es

LV Length and Value no y es y es

TLV Type, Length and Value y es y es y es

Table 28: Formats of Information Elements

The information element type describes the meaning of the value part. Standard IEs of the same
information element type (IEI) may appear with different formats. The format used for a given standard

IE in a given message is specified within the description of the message.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 130 of 183

When present, the IEI of a standard IE consists of a half octet or one octet. A standard IE with IEI
consi sting of a half octet has format TV, and its value part consists of a half octet. The value of the IEI
depends on the standard IE, not on its information element type. The IEI, i f any, of a given standard IE in

a given message is specified within the description of the message. In some protocol specifications,
default IEI values can be indicated. They are to be used if not indicated in the message specification.
Non mandatory standard IE in a given message, i .e., IE which may be not be present (formally, for

which the null string is acceptable in the message), must be formatted with an IEI, i.e., with format T, TV
or TLV.

When present, the LI of a standard IE consists of one octet. It contains the binary encoding of the

number of octets of the IE value part. The length indicator of a standard IE with empty value part
indicates 0 octets. Standard IE of an information element type such that the possible values may have
different values must be formatted with a length field, i .e., LV or TLV.

The value part of a standard IE either consi sts of a half octet or one or more octets; the value part of a
standard IE with format LV or TLV consists of an integral number of octets, between 0 and 255 inclusive;
i t then may be empty, i .e., consist of zero octets; i f it consi sts of a half octet and has format TV, its IEI

consi sts of a half octet, too. The value part of a standard IE may be further structured into parts, called
fields.

Categories of IEs; order of occurrence of IEI, LI, and value part

Totally four categories of standard information elements are defined:

1. Information elements of format V or TV with value part consisting of 1/2 octet (type 1)
They are known as GSM1_V and GSM1_TV in CCD tables.

Type 1 IE of Format V
providing the value in bit positions
8, 7, 6, 5 of an octet

8 4 1
- - - - value part

Type 1 IE of Format V
providing the value in bit positions
4, 3, 2, 1 of an octet

8 4 1
value part - - - -

Type 1 IE of Format TV

having an IEI of a half octet length;
they provide the IEI in bit positions
8, 7, 6, 5 of an octet and the value

part in bit positions 4, 3, 2, 1 of the
same octet

8 4 1
IEI value part

2. Information elements of format T with value part consisting of 0 octets (type 2)
They are known as GSM2_T in the CCD tables

Type 2 IE of Format T

Its IEI consi sts of one octet, its
value part is empty

8 4 1
IEI

3. Information elements of format V or TV with value part that has fixed length of at least one octet
(type 3)
They are known as GSM3_V and GSM3_TV in the CCD tables

Type 3 IE of Format V
The value part consi sts of at least
one octet

8 4 1

value part Octet n

value part Octet n + 1

value part Octet n + k

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 131 of 183

Type 3 IE of Format TV
It‟s IEI consi sts of one octet and
proceeds the value part in the IE.

The value part consi sts of at least
one octet

8 4 1

IEI Octet n

value part Octet n + 1

value part

value part Octet n + k

4. Information elements of format TLV or LV with value part consisting of zero, one or more octets

(type 4)
They are known as GSM4_TV, GSM4_TLV, GSM1_ASN and GSM1_ASN_NULL in the CCD
tables. If present, i ts IEI has one octet length.

Type 4 IE of Format LV
Its LI precedes the value part,
which consi sts of zero, one, or

more octets

8 4 1

LI Octet n

value part Octet n + 1

value part

value part Octet n + k

Type 4 IE of Format TLV or

ASN.1 BER
Its LI precedes the value part,
which consi sts of zero, one, or

more octets. If present, i ts IEI has
one octet length and precedes the
LI

8 4 1

IEI Octet n

LI Octet n + 1

value part

value part

value part Octet n + k

Type 4 IE of Format ASN.1 BER
with EOF (End Of Content octets)

8 4 1

IEI Octet n

LI = 0x0080 Octet n + 1

value part

value part

value part Octet n + k

In case of elements encoded with ASN.1 BER the LI can be used to signal an unknown length

for the value part. If so then the LI is 0x0080. The end of the value part is earmarked by two
octets filled with zeros. This is known as indefinite form.

Besides infinite form of length encoding there are also a short and a long form according to

BER.

Definite Short Form (L<128):

The length is given in one octet, representing a range of numbers from 0 to 127 since the first bit

must be 0. For example, a length field of 01010110 indicates that the content field has 86 octets.

Definite Long Form:

The first bit of the first byte is set to 1. The bottom seven bits (#6-#0) of the first byte indicate the

number of bytes of length data to follow. The first subsequent byte is the most significant byte. It
is also permitted to insert all -zero bytes between the first byte and the actual length data bytes.
Example: 0x81 0x80 means L=128 and is equivalent to 0x81 0x00 0x80.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 132 of 183

There are some extensions to support specific GSM/GPRS/UMTS protocol in an easy manner.

 CCD defines a fi fth type of Information elements of format TLV with value part consisting of
zero, one or more octets. It is an extension of GSM4_TLV and is called GSM5_TLV. This type
supports length identifiers (LI) up to two octets for non ASN.1 BER information elements. If the

length information exceeds 127 bytes the first byte of the LI field is dedicated to the constant
number 0x81. The second one then contains the length information. The T part (used as
information element identifier) consists of an octet.

 Another extended type is called GSM5_V. It is used to write raw or undecoded bits, which have
been read previously from a received message. The structure of this IE is very easy and the
coding is much simpler than for GSM3_V and GSM1_V. The usage of this type in conjunction

with the type modifer element bit array will increase more efficient definitions.

 The type GSM6_TLV is intended to specify elements consi sting of an 8 bit T component, a fixed
sized 16 Bit L component and a V component which length depends on the value of the L

component.

 The TI tool chain provides an additional coding type GSM7_LV to de-/encode elements
consi sting of a 7 bit length component followed by a value componet. The length component
determines the bit length of the value component.

4.2 Coding Types for Non-Standard Information Elements

4.2.1 BCD Coding Types

The TI tool chain supplies special coding types to specify arrays of binary coded decimal digits (short:
BCD). These coding types are in relationship with the internal order of the array elements, which affect
the position within an octet. If the value of the first binary coded decimal digit should be provided as the

most significant bits (bit positions 8, 7, 6, 5) the coding type BCDODD must be used. The coding type
BCDEVEN supports arrays of binary coded decimal digits i f the value of the first binary coded decimal
digit should be provided as the least significant bits (bit positions 4, 3, 2, 1).

The BCD coding must be associated with a Type Modifier Element. This Type Modifier Element
determines the total length of the bit field: Note: The Type Modifier Element must not be the instruction
to build a bit array.

An example of this application is the information element TP Validity Period (Absolute Format) (SMS
protocol [13.]) shown by the following table:

8 7 6 5 4 3 2 1

y ear digit 2 y ear digit 1 octet 1
month digit 2 month digit 1 octet 2

day digit 2 day digit 1 octet 3
hour digit 2 hour digit 1 octet 4

minute digit 2 minute digit 1 octet 5
second digit 2 second digit 1 octet 6

tz_sig
n

tz_msb tz_lsb octet 7

Table 29: Application of BCDEVEN - TP Validity Period (Absolute Format) information element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 133 of 183

Structured Element Items

Name Type Type Modifier Comment

year BCDEVEN [2] Year, two-digit

month BCDEVEN [2] Month, two-digit

day BCDEVEN [2] Day , two-digit

hour BCDEVEN [2] Hour, two-digit

minute BCDEVEN [2] Minute, two-digit

second BCDEVEN [2] Second, two-digit

tz_lsb Time Zone, LSB

tz_sign Time Zone, sign

tz_msb Time Zone, MSB

Table 30: SAPE Table Belonging to TP Validity Period (Absolute Format) information element

In the example above the bit field has a constant and known length. In some other cases the length can
vary between lower und upper limits. The sub element num of the information element Called party BCD
number (CC protocol [12.]) is an array with a variable number of elements. The first num element should

be coded as the least significant bits of the first octet. The following table shows how to specify this part:

Structured Element Items

Name Type Type Modifier Comment

num BCDEVEN [0..32] Number digit (0..32)

Table 31: SAPE Table Belonging to TP Validity Period (Absolute Format) information element

If the value part of a Mobile Identity information element belongs to the international mobile subscriber
identity, IMSI, the overall number of digits in IMSI shall not exceed 15 digits.

8 7 6 5 4 3 2 1

Identity digit 1

odd/
ev en
indic

Ty pe of identity

octet 1

Identity digit 3 Identity digit 2 octet 2

*

Identity digit p+1 Identity digit p octet 9

Table 32: IMSI value

In case of an even number of identity digits the odd/even indication is set to 0; in case of an odd number

of identity digits the odd/even indication is set to 1. The Identity digits field are coded using BCD coding.
If the number of identity digits is even then bits 5 to 8 of the last octet shall be filled with an end mark
coded as "1111". The coding type BCDODD fulfils these conditions.

The following table shows how to specify this part:

Structured Element Items

Name Pattern
Bit
Len

Type Type
Modifier

Condition CmdSequence Comment

Type of
identity

 GETPOS,:,4,+,:,1,+,SETPOS Type of identity

Odd/
Even indic

 SETPOS
Odd/ Even
indicaction

Identity
digit

 BCDODD [0..15] SETPOS Identity digit

Table 33: SAPE Table Belonging to the IMSI value

Special cases require byte arrays supporting a Mobile Country Code (MCC) element in conjunction with
a Mobile Network Code (MNC) element. In accordance with the ETSI / 3gpp specifications coding of the
Mobile Network Code field is the responsibility of each administration but BCD coding shall be used. The

MNC shall consist of 2 or 3 digits.

  

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 134 of 183

An example of this application is the value part of the information element Location Area Identification
(RR protocol [14.]) which length is 5 bytes. Table 34 shows the internal construction if MNC consi sts of 2
digits, only. Table 35 belongs to an example of a three-digit MNC.

8 7 6 5 4 3 2 1
MCC digit 2 MCC digit 1 octet n-2

1 1 1 1 MCC digit 3

MNC digit 2 MNC digit 1 octet n
LAC

LAC (continued) octet n+2

Table 34: Location Area Identif ication information element - two-digit MNC

8 7 6 5 4 3 2 1
MCC digit 2 MCC digit 1 octet n-2

MNC digit 3 MCC digit 3
MNC digit 2 MNC digit 1 octet n

LAC

LAC (continued) octet n+2

Table 35: Location Area Identif ication information element – three-digit MNC

In case of MCC the number of the digits is odd and the first element should be coded as the least
significant bits of the first octet. The last octet must be filled in the most significant nibble either with the
bit pattern 1111 or with binary coded MNC digit 3. The first element of MNC should be coded as the

least significant bits of the first octet. If MNC consi sts of 2 digits the number of the digits is even; in case
of a three-digit MNC the number of the digits is odd.

The XML specification needs to advise the TI tool chain how to deal with these arrays MCC (Mobil

Country Code) and MNC (Mobile Network Code). Therefore two special coding types are provided.
BCD_MNC supports the unusual position of the MNC digit 3 and BCD_NOFILL enables the appropriate
interpretation of the most significant nibble in octet (n-1).

The following table shows the completion of the SAPE table:

Structured Element Items

Name Type Type Modifier Comment

mcc BCD_NOFILL [3] Mobile Country Code

Mnc BCD_MNC [2..3] Mobile Network Code

Table 36: SAPE Table Belonging to Location Area Identif ication information element

Element Type

Ty pe xs:string

Used by elements MsgItem MsgStructElemItem

XML schema <xs:element name="Type" type="xs:string"/>

XML example <Ty pe>BCD_MNC</Type>

4.2.2 CSN1 Coding

Some technical specifications written by ETSI/3GPP define structure s of messages, which are non-

standard L3 messages as defined in [11.] 3GPP TS 24.007. E.g. [15.] 3GPP TS44.060 uses many
definitions using CSN.1 descriptions of the message information elements and fields (Description of
CSN.1 see 3GPP TS 24.007 and CSN.1 Specification ver. 2.0 Cell&Sys).

In these structures you will find a lot of optional or conditional elements. Notes have to specify the
conditions for information elements or fields with presence requirement C or O in the relevant message
which together with other conditions define when the information elements shall be included or not, what

non-presence of such information elements or fields means, and the static conditions for presence

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 135 of 183

and/or non-presence of the information elements or fields. Very often a flag represented by a single 1-bit
st ring indicates the presence of optional elements:

Example: <something> ::= 0 | 1 <element>;

Therefore the TI tool chain provides some special coding types to enhance performance. Without these
coding types message description would become very complex and the en-/decoding process would
require much more time. These coding types help to improve the efficiency of the TI tool chain.

4.2.2.1 CSN1_S1

The CSN1_S1 coding type is an appropriate solution if an optional information element is described by
the following example:

<something> ::= 0 | 1 <element>;

This example denotes a choice of either the set composed of a single 1-bit string – the bit string
composed of a single bit of value 0 – or the set composed of the concatenation of a single 1-bit string –

the bit string composed of a single bit of value 1 – and the bit string representing the element.

Message / Structured Element Items

Name Type Type Modifier Comment

element CSN1_S1 Example item

Table 37: SAPE Table connected to the current example

In dependency of internal structure of <element> you have to choose the appropriate sub table.
If the element is a structured element you need another structured element definition table defining the
internal element composition; see the table below:

<element> ::= <a> <c>;

Structured Element Definition

Name Type Feature Flag Group Comment

element STRUCT
Structured

Element

Structured Element Items

Name Type Type Modifier Comment

a Element a
b Element b

c Element c

Table 38: SAPE Table belonging to the internal structure of the current example

If the element is a basic element you need another basic element definitions table that looks l ike the
following example:

<element : bit(5)>

Basic Element Definitions

Name
Bit
Len

Byte
Len

Feature
Flags

Group Comment

element 5 Basis element consisting 5 bits

Table 39: SAPE Table belonging exemplify a basic element

4.2.2.2 CSN1_S0

The CSN1_S0 coding type is an appropriate solution if an optional information element is described by
the following example:

<something> ::= 1 | 0 <element>;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 136 of 183

This example denotes a choice of either the set composed of a single 1-bit string – the bit string
composed of a single bit of value 1 – or the set composed of the concatenation of a single 1-bit string –
the bit string composed of a single bit of value 0 – and the bit string representing the element.

Message / Structured Element Items

Name Type Type Modifier Comment

element CSN1_S0 Example item

Table 40: SAPE Table connected to the current example

In dependency of internal structure of <element> you have to choose the appropriate sub table (see the

examples above).

4.2.2.3 CSN1_SHL

The special notations L and H are used to denote respectively the bit value corresponding to the

padding spare bit for that position, and the other value.

The coding type CSN1_SHL supports elements comprising of a single bit valid flag and a value part.
Only if the valid bit is equal to H the value part follows. Otherwise (valid bit is equal to L) the value part is

absent.

Example:

<z> ::= { <a>

{ L | H <b : bit(3)> }
< spare padding > ;

Structured Element Definition

Name Type Feature Flag Group Comment

z STRUCT Structured Element

Structured Element Items

Name Pattern Bit Len Type CmdSequence Comment

a Element a

b CSN1_SHL Element b

 00101011 8 0 Padding bits

Table 41: SAPE Table belonging to the internal structure of the current example

The coded value of the single bit flag following element <a> depends on its bit position.

Assumption 1:
The last bits of i tem <a> ends on octet m bit position 6 and element is absent. Then bit 5 has to be

set to 0 and bit4down to 1 will be filled with s_padding bits:

 8 7 6 5 4 3 2 1
octet m x x x Rest of <a>

 0 Flag

. . . 1 0 1 1 Padding Bits

Assumption 2:
The last bits of i tem <a> ends on octet m bit position 5 and element is absent. Then bit 4 has to be
set to 1 and bit 3 down to 1 will be filled with s_padding bits:

 8 7 6 5 4 3 2 1
octet m x x x x. Rest of <a>

 1 Flag

. . . 0 1 1 Padding Bits

Assumption 3:
The last bits of i tem <a> ends on octet m bit position 6 and element is present. Then bit 5 has to be
set to 1 indicating presence of the element . Bit 1 will be filled with s_padding bit:

 8 7 6 5 4 3 2 1
octet m x x x Rest of <a>

 1 x x x Flag and

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 137 of 183

. . . 1 Padding Bits

Assumption 4:
The last bits of i tem <a> ends on octet m bit position 5 and element is present. Then bit 4 has to be

set to 1 indicating presence of the element . The octet is filled completely; therefore no spare
padding bits are necessa ry.

 8 7 6 5 4 3 2 1
octet m x x x x . . . Rest of <a>

 0 x x x Flag and

4.2.2.4 HL_FLAG

Like coding type CSN1_SHL this coding type is associated with the special notations L and H. They are
used to denote respectively the bit value corresponding to the padding spare bit for that position, and the
other value.

A HL_FLAG element consi sts of a single bit only. The decoded value will be 0 if the encoded value is L
respectively 1 if the encoded value is H. This element enables support of a choice according to the
following example:

<z> ::= { { L <a> } | { H };
The SAPE message description should look like this:

Structured Element Definition

Name Type Feature Flag Group Comment

z STRUCT Structured Element

Structured Element Items

Name Type Condition Comment

f lag HL_FLAG

a {f lag = 0} Element a

b {f lag = 1} Element b

Table 42: SAPE Table belonging to the structure using HL_FLAG coding type

Please keep in mind that the value 0 for flag is associated with the bit evaluation L. The value 1 refers to
H.

4.2.2.5 CSN1_CONCAT

Truncated concatenation is a special sequence of components. In the technical specifications written by
ETSI/3GPP you will find the following notation: The sequence of components encapsulated by the { }
brackets i s followed by the symbol '//'. This means that the concatenation is any of the concatenations

starting with null and up to any number of components arranged in a definite sequence.

 { < a > < b > < c > } //

The above set is equivalent to:

 { < a > < b > < c > } or
 { < a > < b > } or
 { < a > } or
 null

The TI tool chain provides the coding type CSN1_CONCAT to support truncated concatenation. The
sequence of components (truncated concatenation) must be handled as a structured information
element associated with the coding type CSN1_CONCAT. This structured element comprises all

components.

Structured Element Items

Name Type Type Modifier Comment

trnc_concat_comp CSN1_CONCAT Truncated Concatenation

Table 43: SAPE Table belonging to a truncated concatenation information element

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 138 of 183

Structured Element Definition

Name Type Feature Flag Group Comment

trnc_concat_comp STRUCT
Structured
Element

Structured Element Items

Name Type Type Modifier Comment

a Element a

b Element b

c Element c

Table 44: SAPE Table Belonging to the internal structure of a truncated concatenation information element

Any syntactically incorrect component shall truncate the sequence. The correctly received components

are accepted and the truncated components are ignored. The TI Coder Decoder CCD recognizes any
syntactical error and returns depending on the gravity of the situation either a warning or an error.

The truncated concatenation may include 'padding bits' at the end of a message. In that case, the

resulting concatenation shall fit exactly with the received message length. Otherwise, i t is a syntactical
error, which may cause rejection of the complete message or part thereof. The TI tool chain detects
syntactical errors, but the user has to decide how to deal with them.

The construction is useful, e.g. when a message ends with a sequence of optional components, where
the transmitter may need to truncate tailing bits '0', indicating optional components not included in the
message.

< Packet ZZZ message content > ::=
 ...
 { { 0 | 1 < Optional component 1 > }
 { 0 | 1 < Optional component 2 > }
 ...
 { 0 | 1 < Optional component N > }
 < padding bits > } // ;

If the optional components from k to N are not needed in the message, the transmitter may use the full
message length for the components up to optional component k – 1. The receiver accepts this message

and assumes that the choice bits for optional components from k to N are all set to zero (i.e. these
components are not present).

However, i f the receiver detects a syntactical error within one optional component which is indicated as

present in the message, that results in a truncated concatenation which does not fit with the received
message length. In this case, the receiver shall not accept the message as being syntactically correct.

Note:
A truncated concatenation is a sequence of optional components. But in this case the meaning of the
word <optional> differs from the traditional TI tool chain conventions.

So far some coding types (l ike tagged types, e.g. GSM3_TV) characterise optional elements inherently.
If you describe a component in the message description by one of these coding types CCDGEN
provides an appropriate element associated with a valid flag in the C structures while generating C

header files. The value of the valid flag indicates the presence or absence of such an element.

Components concatenated with a CSN1 coding type cause these valid flags in the C header structure
too. If you find a bit in the received message stream indicating optional values not included in the

message (e. g. a CSN1_S1 element is represented by „0‟), CCD will set the valid flag to zero. If this
component belongs to a truncated concatenation the absence of the value does not truncate the
sequence. The whole element represented by the flag is present; only the value is absent! The valid flag

in the C structure is not an indication of an element‟s absence.

A truncated concatenation may comprise components associated with the coding types which do not
characterise optional elements inherently. In this case CCDGEN provides appropriate elements without

associated valid flags in the C structures; although it should be possible to truncate the sequence. The
absence of an element associated with this kind of coding type truncates the sequence.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 139 of 183

In case of truncated concatenations neither the absence of a valid flag nor a valid flag set to zero is a
definite indication of an element‟s absence. Therefore you need an aid to recognize how many

components could be decoded out of a received message stream.

It is recommended to use a leading element of coding type NO_CODE in the message description which
is used to count the existing elements of the truncated concatenation. If this element is missing the

decoding process will proceed but the CCD user is forced to evaluate the presence of optional
components from k to N by himself. In case of decoding CCD writes the number of decoded elements
belonging to the truncated concatenation to the NO_CODE element.

In case of encoding CCD always encodes all elements belonging to the truncated concatenation. If more
bits are written than the component l_buf

11
 of the message buffer suggested CCD generates a warning

(error code ERR_BUFFER_OF). It is up to the user to analyse the consequences of this warning and to

choose adequate procedures.

If the truncated concatenation not finishing the message description is followed by any other elements
you will have another message element characterising the bit length of the truncated concatenation. In

this case the structured element item must be associated with a type modifier indicating a bit string.

Example:

< Packet xxx message content > ::=

<length : bit (6)>
< bit (val(length) + 1)
& { < trnc_concat_comp > ! { bit ** = <no string> }} >;

< trnc_concat_comp > ::=
{ < a > < b > < c > } // ;

Structured Element Definition

Name Type Feature Flag Group Comment

Packet xxx message
content

STRUCT
Structured
Element

Structured Element Items

Name Type Type Modifier Comment

length Length identif ier

trnc_concat_comp CSN1_CONCAT [.length..MAX_LEN]
Truncated concatenation
processed as bit string

Table 45: SAPE Table belonging to the information element Packet xxx message content

Structured Element Definition

Name Type Feature Flag Group Comment

trnc_concat_comp STRUCT
Structured
Element

Structured Element Items

Name Type Type Modifier Comment

count NO_CODE
only present in the C-structure to count the
number of encoded elements

a Element a

b Element b

c Element c

Table 46: SAPE Table belonging to the internal structure of the information element trnc_concat_comp

4.2.2.6 BREAK_COND

For decoding Neighbour Cell Parameter information elements belonging to GRR protocol the possibility

is needed to stop decoding of a repeated structure by evaluating a bit field inside any repetition of the

11 See ccd_api.doc : Data Type T_MSGBUF – Coded Message Data Type

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 140 of 183

structure and to continue decoding of following information elements. This feature is supported by the
coding type BREAK_COND.

This special structure of information element is specified in [15.] 3GPP TS 44.060 part 11.2.21.

Simplified example using CSN.1 Notation:
<z> ::= { 1 < Repeat struct >

< x : bit (2) > } ** 0 ;

< Repeat struct > ::= { 1 < a : bit(5)>
 { < number : { bit (4) – 0000 } >
 < b : bit (5) > * (val(number))

 < Repeat struct > -- Repeated recursively
 | 0000 } -- Break recursion (number == 0)
 | 0 } ; -- End recursion (no more <a>)

Some examples for possible bit streams:

Example A)

1
1
xxxxx a (5 bit)
0010
 xxxxx b (5 bit)
 xxxxx b (5 bit)
0

< Repeat struct >

number = 2

repeated Repeat struct

00 < x : bit (2) >
0 closing zero f or repetition of {< Repeat struct > < x >}

Example B)

1

1
xxxxx a (5 bit)
0000

< Repeat struct >

number = 0

00 < x : bit (2) >
1 f urther repetition of {< Repeat struct > < x >}
1

…

< Repeat struct >
etc. finished by one of the methods a) or b) (see below)

01 < x : bit (2) >
0 closing zero f or repetition of {< Repeat struct > < x >}

Example C)

1
1
xxxxx a (5 bit)
0010
 xxxxx b (5 bit)
 xxxxx b (5 bit)
1
xxxxx a (5 bit)
0011
 xxxxx b (5 bit)
 xxxxx b (5 bit)
 xxxxx b (5 bit)
0

< Repeat struct >

number = 2

repeated Repeat struct

number = 3

repeated Repeat struct

00 < x : bit (2) >
0 closing zero f or repetition of {< Repeat struct > < x >}

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 141 of 183

Example D)

1
1
xxxxx a (5 bit)
0010
 xxxxx b (5 bit)
 xxxxx b (5 bit)
1
xxxxx a (5 bit)
0001
 xxxxx b (5 bit)
1
xxxxx a (5 bit)
0000

< Repeat struct >

number = 2

repeated Repeat struct

number = 1

repeated Repeat struct

number = 0

00 < x : bit (2) >

0 closing zero f or repetition of {< Repeat struct > < x >}

There are tw o mechanisms to finish a < Repeat struct >:

a) a 0 indicating the absence of a further repetition (in case the value of the element „number‟ is
different from zero)

b) the value of the element „number‟ equal to zero (in this case the repetition isn't finished by a
trailing 0 and there are no IE to decode following normally).

For case a) there is normally used the combination of coding type CSN1_S1 with an array, but for case

b) this mechanism fails.

Usage of conditions to describe b) isn't sufficient because CCD expects the trailing 0 anyway.

The new coding type with the parameter n (in our example n=0) supports a behavior like "if a certain IE

has the special value n then break (de)coding process of the current composition and finish the array.

This coding type is applicable to basic elements and forces CCD to compare the resulting value with n
after decoding the requested number of bits.

SAPE representation:

Structured Element Definition

Name Type Feature Flag Group Comment

z STRUCT Structured Element

Structured Element Items

Name Type Type Modifier Comment

Repeat_struct CSN1_S1 [0..MAX_ REPS]
BREAK_COND has impact
to this CSN1_S1 type

x

Table 47: SAPE Table belonging to the information element z

Structured Element Definition

Name Type Feature Flag Group Comment

Repeat_struct STRUCT
Structured
Element

Structured Element Items

Name Type Type Modifier CmdSequence Comment

a

number BREAK_COND 0 Here: break = 0

b [number..MAX_NUM]

Table 48: SAPE Table belonging to the internal structure of the information element Repeat_struct

The corresponding type in the C-structure is available by chapter 6.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 142 of 183

4.2.2.7 CSN1_CHOICE1 and CSN1_CHOICE2

These coding types should improve the en-/decoding process of messages with information elements
which presence depends on leading flag values given by a single bit respectively two bits.

The coding type CSN1_CHOICE1 supports elements comprising of a single bit flag and two alternative
value parts depending on this flag value. Only if the flag bit is equal to “0” the first value part follows and
the second is absent. Otherwise (flag bit is equal to “1”) the first value part is missing instead the second

value part is present.

Example:

<msg_ex> ::= { <x>

 {{ 0 <a>} | { 1 }}
 <z>}

The coding type CSN1_CHOICE1 enables the choice construction

<y> ::= { 0 <a>} | {1 };

to be handled as union.

In the structured element definition the user should associated the element <y> with the type UNION
instead of the the type STRUCT. The SAPE message description should look l ike this:

Structured Element Definition

Name Type Feature Flag Group Comment

msg_ex STRUCT Structured Element

Structured Element Items

Name Type Condition Comment

x Element x
y CSN1_CHOICE1 Element y

z Element z

Table 49: SAPE Table belonging to the structure comprising an element of CSN1_CHOICE1 coding type

Structured Element Definition

Name Type Feature Flag Group Comment

y UNION Structured Element

Structured Element Items

Name Pattern Bit Len Type Union Tag Comment

a choiceA_1 Element a if f lag = 0

b choiceA_2 Element b if f lag = 1

Table 50: SAPE Table belonging to the internal structure of the CSN1_CHOICE1 element

The coding type CSN1_CHOICE2 is very similiar, but instead of one bit flag indicating the choice

element there are two bits:

Example:

<msgex> ::= { <x>

 {{ 00 <a>} | { 01 } | { 10 <c>} | { 11 <d>} }
 <z>}

The coding type CSN1_CHOICE2 enables the choice construction

<y> ::= { 00 <a>} | { 01 } | { 10 <c>} | { 11 <d>};

to be handled as union.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 143 of 183

In the structured element definition the user should associated the element <y> with the type UNION
instead of the the type STRUCT. The SAPE message description should look l ike this:

Structured Element Definition

Name Type Feature Flag Group Comment

msg_ex STRUCT Structured Element

Structured Element Items

Name Type Condition Comment

x Element x
y CSN1_CHOICE2 Element y

z Element z

Table 51: SAPE Table belonging to the structure comprising an element of CSN1_CHOICE2 coding type

Structured Element Definition

Name Type Feature Flag Group Comment

y UNION Structured Element

Structured Element Items

Name Pattern Bit Len Type Union Tag Comment

a choiceB_1 Element a if f lag = 00

b choiceB_2 Element b if f lag = 01

c choiceB_3 Element a if f lag = 10

d choiceB_4 Element b if f lag = 11

Table 52: SAPE Table belonging to the internal structure of the CSN1_CHOICE2 element

If there are not all alternatives given in the specification the user is expected to list the unused flag

combinations concatenated with NO_CODE element anyway! Otherwise CCDGEN will complain.

4.2.2.8 CSN1_S1_OPT

The CSN1_S1_OPT coding type is an appropriate solution if an optional information element is de-

scribed by the following example:
<something> ::= null | 0 | 1 <element>;

This coding type is very similar to the coding type CSN1_S1, which doesn‟t support the possibility of

element lack. CSN1_S1_OPT is the appropriate solution if the specification demands a construction with
a composition of coding type CSN1_CONCAT and an encapsulated CSN1_S1 element. This type
increases the recursions level and therefor the runtime performance would be decreased.

This example denotes a choice of either the set composed of a single 1-bit string – the bit string
composed of a single bit of value 0 – or the set composed of the concatenation of a single 1-bit string –
the bit string composed of a single bit of value 1 – and the bit string representing the element. Besides

the absence of the whole element is allowed.

Message / Structured Element Items

Name Type Type Modifier Comment

element CSN1_S1_OPT Example item

Table 53: SAPE Table belonging to an element of coding type CSN1_S1_OPT

In dependency of internal structure of <element> you have to choose the appropriate sub table (see the
examples for CSN1_S1).

4.2.2.9 CSN1_S0_OPT

The CSN1_S0_OPT coding type is an appropriate solution if an optional information element is
described by the following example:

<something> ::= null | 1 | 0 <element>;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 144 of 183

This coding type is very similar to the coding type CSN1_S0, which doesn‟t support the possibility of
element lack. CSN1_S0_OPT is the appropriate solution if the specification demands a construction with
a composition of coding type CSN1_CONCAT and an encapsulated CSN1_S0 element. This type

increases the recursions level and therefor the runtime performance would be decreased.

This example denotes a choice of either the set composed of a single 1-bit string – the bit string
composed of a single bit of value 1 – or the set composed of the concatenation of a single 1-bit string –

the bit string composed of a single bit of value 0 – and the bit string representing the element. Besides
the absence of the whole element is allowed.

Message / Structured Element Items

Name Type Type Modifier Comment

element CSN1_S0_OPT Example item

Table 54: SAPE Table belonging to an element of coding type CSN1_S0_OPT

In dependency of internal structure of <element> you have to choose the appropriate sub table (see the
examples for CSN1_S1).

4.2.2.10 CSN1_SHL_OPT

The special notations L and H are used to denote respectively the bit value corresponding to the
padding spare bit for that position, and the other value.

The coding type CSN1_SHL_OPT supports elements comprising of a single bit valid flag and a value
part. Only if the valid bit is equal to H the value part follows. Otherwise (valid bit is equal to L) the value
part is absent. Besides the absence of the whole element is allowed.

This coding type is very similar to the coding type CSN1_SHL, which doesn‟t support the possibili ty of
element lack. CSN1_SHL_OPT is the appropriate solution if the specification demands a construction
with a composition of coding type CSN1_CONCAT and an encapsulated CSN1_SHL element. This type

increases the recursions level and therefor the runtime performance would be decreased.

Other details fi t to coding type CSN1_SHL (see part 4.2.2.3).

4.2.3 Special Coding Types

4.2.3.1 S_PADDING

An issue appearing in some protocols, for instance the GSM radio interface protocols, is that in some

cases the useful part of a message is smaller than some fixed length imposed by underlying layers.
Padding bits are then necessary to fill the message up to the desired length. The padding bits may be
the 'null' string.

An issue specific to [12.] 3GPP TS 24.008 is that the padding uses a particular sequence of bit, of fixed
position, i .e., the value of a padding bit depends on its position relative to the start of the message. The
padding sequence must then be considered as protocol specific. In the case of 3GPP TS 24.008 the

padding sequence used for 'spare padding' is a repetition of octet '00101011', starting on an octet
boundary.

The TI tool chain offers the coding type S_PADDING to support different spare padding patterns and to

enable the appropriate handling of the insignificant but necessary fill bits. When CCDGEN generates the
C header files comprising C structures this coding type advises CCDGEN to disregard the associated
message/structured element i tem. But during the transformation of message description files (*.mdf) to

ccddata tables (*.cdg) CCDGEN creates the required table entries for these elements and their patterns.

Example for the usage in SAPE:

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 145 of 183

Structured Element Items

Name Pattern
Bit
Len

Type Type
Modifier

CmdSequence Comment

00101011 8 S_PADDING 22

Spare padding according

to 3GPP TS 24.008

Table 55: SAPE Table representing an Spare Padding IE according to [12.] 3GPP TS 24.008

The definition of a Spare element must be associated with an appropriate Command Sequence
Element. This PadCmdSeq expression determines the maximum length of spare padding bits. The used
number n means if a Structured Message Element or a Message consists of less than n bytes the

remaining part shall be filled up with the bit pattern given by the Pattern element. Padding bytes exclude
the presence of message extension. The usage of number n = 0 denotes a special case: If the message
doesn‟t end on octet boundary the remaining part up to the next octet boundary shall be filled up with the

rest of the bit pattern given by the Pattern element on the appropriate bit positions.

In case of decoding CCD does not evaluate the encoded bits, since their content is irrelevant.

In case of encoding of an element associated with the coding type S_PADDING until now CCD supports

only two padding values: 0x00 and 0x2B. If the Command Sequence Element is n = 0 CCD fi lls the
current octet up to its boundary with padding bits according to the given pattern. If the Command
Sequence Element is n > 0 padding is done as far as the message bit stream pointer reaches the

position n*8. Using unsupported padding pattern causes a CCD error indication and breaks the
encoding process.

4.2.3.2 S_PADDING_0

Very often the padding bits starts with bit '0', followed by 'spare padding' to enable support of future
message extensions.

< padding bits > ::= { null | 0 < spare padding > ! < Ignore : 1 bit** = < no string > > } ;

The bit '0' in the first bit position of the 'padding bits' may be altered into a bit '1' in future versions of the

present document, in order to indicate an extension of the message content. When a message is
received with bit '1' in this position, a receiver implemented according to the current version of the
present document shall ignore the remaining part of the message.

The presence of the extension of the message content is indicated by bit '1'. The transmitter shall send a
bit '1' in this position if any content is defined for the remaining part of the message. If a bit '0' is received
in this position by a receiver in the new version, i t shall ignore the remaining part of the message.

Besides the features described above (see part S_PADDING) persi st.

4.2.3.3 Frequency List Information

The purpose of the Frequency List information element is to provide the list of the absolute radio fre-

quency channel numbers used in a frequency hopping sequence.
There are several formats for the Frequency List information element, distinguished by the "format
indicator" subfield. Some formats are frequency bit maps; the others use a special encoding scheme.

The Generic Tool Chain provides one coding types (FREQ_LIST) which support all different formats.
There are two other coding types (FDD_CI and TDD_CI) each supporting only a special subset of
formats. All three types are closely related.

These coding types support decoding of RR Frequency List, fdd_cell_information and
tdd_cell_information by CCD. You will find a detailed description of the algorithm to encode/decode
frequency list information elements Annex J of the specification [14.] 3GPP TS 44.018.

Some information elements encode frequency lists with a special method. The main specification
specifies the meaning of the fields and hence the way to decode them, but the corresponding encoding
algorithm is difficult to infer from the decoding algorithm. The specification [14.] 3GPP TS 44.018 is

intended as an aid for implementers of the encoding algorithm.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 146 of 183

So far encoding functions are not supported, because messages using this information are sent from
core network to mobile stations.

FREQ_LIST – RR Frequency List

General description

Frequency List information element, general format

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

FORMAT-ID spare If need be FORMAT-ID octet 1

 octet n

The different formats are distinguished by the FORMAT-ID field. The possible values are the following:

Bit Bit Bit Bit Bit f ormat notation
8 7 4 3 2

0 0 X X X bit map 0
1 0 0 X X 1024 range
1 0 1 0 0 512 range
1 0 1 0 1 256 range
1 0 1 1 0 128 range
1 0 1 1 1 v ariable bit map

All other combinations are reserved for future use.

The significance of the remaining bits depends on the FORMAT-ID.

Example for the usage in SAPE:

Message Items

Name Pattern
Bit
Len

Type Type Modifier CmdSequence Comment

arfcn_list FREQ_LIST arfcn_list

Table 56: SAPE Table representing an information element of coding type FREQ_LIST

The element arfcn_list should be a basic element according to the following basic element definitions

table

Basic Element Definitions

Name
Bit
Len

Byte
Len

Feature
Flags

Group Comment

arfcn_list 1024
This list contains absolout radio frequency channel
numbers to be decoded as FREQ_LIST type.

Table 57: SAPE Table belonging exemplify the associated basic element

CCDGEN accepts elements of coding type FREQ_LIST and generates appropriate ccddata table entries

and header file structures. This coding type is not optional and does not require additional bits (addbits =
0). The corresponding type definition in the C-structure will be an array of unsigned char (see chapter 6).

CCD provides an appropriate function for decoding. This tool recognizes the FORMAT-ID field and

chooses the necessa ry algorithm to convert a frequency bit map to an array of unsigned short variables.
Present frequency values are transferred to the array. So the array will contain a sorted list of frequency
values marked as present in the bit map. CCD creates a sorted frequency hopping list for one of the

following information elements according to [12.] 3GPP TS 24.008:

cell channel description
frequency list

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 147 of 183

frequency short list
neighbour cell description

FDD_CI - fdd_cell_information

For decoding of the structure <Repeated UTRAN FDD Neighbour Cells> belonging to RRC protocol a
convenient possibili ty is needed to allow computation of a set of 10-bit-long
FDD_CELL_INFORMATION parameters.

This feature is supported by the coding type FDD_CI re-using the Range 1024 format compression
algorithm, see [14.] 3GPP TS 44.018 Annex J: 'Algorithm to encode frequency list information'.

This special structure of information element is specified in [14.] 3GPP TS 44.018 part 9.1.54.

CSN.1 Notation:

< Repeated UTRAN FDD Neighbour Cells struct > ::=
0 < FDD-ARFCN : bit (14) >

 < FDD_Indic0 : bit >
 < NR_OF_FDD_CELLS : bit (5) >
 < FDD_CELL_INFORMATION Field : bit(p(NR_OF_FDD_CELLS)) > ;

 -- p(x) defined in table below.

The total number of bits p of this field depends on the value of the parameter NR_OF_FDD_CELLS = n,
as follows:

n p n p n p n p

0 0 5 44 10 81 15 116

1 10 6 52 11 88 16 122

2 19 7 60 12 95 17-31 0

3 28 8 67 13 102

4 36 9 74 14 109

If n=0 and FDD_Indic0=0, this indicates the 3G Neighbour Cell list index for report on RSSI, see
3GPP TS 45.008.

If n is equal or greater than 17, this shall not be considered as an error; the corresponding index in the
3G Neighbour Cell list shall be incremented by one.

For each (10-bit-long) decoded Parameter, bits 1-9 are the Scrambling Code and bit 10 is the

corresponding Diversity Parameter.

Example for the usage in SAPE:

Structured Element Definition

Name Type Feature Flag Group Comment

fdd_ci_cmp STRUCT
Structured Element containing
fdd_ci arrays

Structured Element Items

Name Type Type Modifier Comment

fdd_arfcn UARFCN

fdd_indic_0 information 0 indicator

fdd_cell_information FDD_CI [0 ..17]

Table 58: SAPE Table representing with an information element of coding type FDD_CI

Basic Message Elements

Name
Bit
Len

Byte
Len

Feature
Flags

Group Comment

fdd_arfcn 14 UARFCN

fdd_indic_0 1 information 0 indicator

fdd_cell_information 10 scrambling code and diversity information

Table 59: SAPE Table belonging exemplify the associated basic elements

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 148 of 183

The IE FDD_CELL_PARAMETERS is associated with the coding type FDD_CI. CCDGEN accepts
elements of coding type FDD_CI and generates appropriate ccddata table entries and header file
st ructures. The coding type is not optional and does not require additional bits (addbits = 0). The

corresponding type in the C-structure will be an array of unsigned short values. The array size is given
by the MAX value in message description document. The user has to define this maximum value for the
TypeModifier controlling the array length according to his knowledge of specification or test experience.

CCD provides an appropriate function for decoding. First CCD reads 5 bits from the received data
st ream defining the number of FDD_CELL_INFORMATION parameters (n). This number enables CCD
to decide how many values of different word length are present in the encoded message.

FDD_CELL_PARAMETERS or "Scrambling Codes and Diversity Field" is a bit filed of length p
(Number_of_Scrambling_Codes_and_Diversity), whereas the function p(x) is defined by the table above
with n = FDD_CELL_INFORMATION parameters.

Decoding of the FDD_CELL_PARAMETERS Field reuses the RANGE 1024 format of frequency list
information. The IE FDD_CELL_PARAMETERS is preceded by FDD_Indec0 (1 bit) indicating if the
parameter value '0000000000' is a member of the set. This bit FDD_Indic0 is equivalent to the bit F0 bit

in the frequency list information element (see [14.] 3GPP TS 44.018 part 10.5.2.13.3). The set of
possible values is almost the same for frequency list and fdd_cell_information.

The corresponding type in the C-structure will be an array of unsigned short values (see chapter 6).

The message is sent from core network to mobile stations. These mobiles supporting enhanced
measurements have to understand it. The space this IE takes in the C-structure depends on a counter
for the number of decoded parameters and the array of them.

TDD_CI - tdd_cell_information

This coding type is very similar to FDD_CI. For decoding of the structure < Repeated UTRAN TDD
Neighbour Cells > belonging to RRC protocol a convenient possibili ty is needed to allow computation of

a set of 9-bit-long TDD_CELL_INFORMATION parameters.

This feature is supported by the coding type TDD_CI re-using the Range 512 format compression
algorithm, see [14.] 3GPP TS 44.018 Annex J: 'Algorithm to encode frequency list information'.

This special structure of information element is specified in [14.] 3GPP TS 44.018 part 9.1.54.

CSN.1 Notation:

< Repeated UTRAN TDD Neighbour Cells struct > ::=
0 < TDD-ARFCN : bit (14) >

 < TDD_Indic0 : bit >
 < NR_OF_TDD_CELLS : bit (5) >
 < TDD_CELL_INFORMATION Field : bit(q(NR_OF_TDD_CELLS)) > ;

 -- q(x) defined in table below.

The total number of bits p of this field depends on the value of the parameter NR_OF_TDD_CELLS = m,
as follows:

m q m q m q m q m q

0 0 5 39 10 71 15 101 20 126

1 9 6 46 11 77 16 106 21-31 0

2 17 7 53 12 83 17 111

3 25 8 59 13 89 18 116
4 32 9 65 14 95 19 121

If m=0 and TDD_Indic0=0 or m is equal or greater than 21, this shall not be considered as an error; the

corresponding index in the 3G Neighbour Cell list shall be incremented by one.

For each (9-bit-long) decoded Parameter, bits 1-7 are the Cell Parameter, bit 8 is the Sync Case and bit
9 is the Diversity bit.

Example for the usage in SAPE:

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 149 of 183

Structured Element Definition

Name Type Feature Flag Group Comment

tdd_ci_cmp STRUCT
Structured Element containing
tdd_ci arrays

Structured Element Items

Name Type Type Modifier Comment

tdd_arfcn UARFCN

tdd_indic_0 information 0 indicator

tdd_cell_information TDD_CI [0 ..21]

Table 60: SAPE Table representing with an information element of coding type FREQ_LIST

Basic Message Elements

Name
Bit
Len

Byte
Len

Feature
Flags

Group Comment

tdd_arfcn 14 UARFCN

fdd_indic_0 1 information 0 indicator

tdd_cell_information 10 scrambling code and diversity information

Table 61: SAPE Table belonging exemplify the associated basic elements

The IE TDD_CELL_PARAMETERS is associated with the coding type TDD_CI. CCDGEN accepts
elements of coding type TDD_CI and generates appropriate ccddata table entries and header file

st ructures. The coding type is not optional and does not require additional bits (addbits = 0). The
corresponding type in the C-structure will be an array of unsigned short values. The array size is given
by the MAX value in message description document. The user has to define this maximum value for the

TypeModifier controlling the array length according to his knowledge of specification or test experience.

CCD provides an appropriate function for decoding. First CCD reads 5 bits from the received data
st ream defining the number of TDD_CELL_INFORMATION parameters (m). This number enables CCD

to decide how many values of different word length are present in the encoded message.
TDD_CELL_PARAMETERS or "Scrambling Codes and Diversity Field" is a bit filed of length q
(Number_of_Scrambling_Codes_and_Diversity), whereas the function q(x) is defined by the table above

with m = TDD_CELL_INFORMATION parameters.

Decoding of the TDD_CELL_PARAMETERS Field reuses the RANGE 512 format of frequency list
information. The IE TDD_CELL_PARAMETERS is preceded by TDD_Indec0 (1 bit) indicating if the

parameter value '0000000000' is a member of the set. This bit TDD_Indic0 is equivalent to the bit F0 bit
in the frequency list information element (see [14.] 3GPP TS 44.018 part 10.5.2.13.3). The set of
possible values is almost the same for frequency list and tdd_cell_information.

The corresponding type in the C-structure will be an array of unsigned short values (see chapter 6).

The message is sent from core network to mobile stations. These mobiles supporting enhanced
measurements have to understand it. The space this IE takes in the C-structure depends on a counter

for the number of decoded parameters and the array of them.

4.2.3.4 NO_CODE

An IE of this coding type supports two functionalities: either reading of a value from the stack and writing

it into the C structure or processing the error branch in case of a message escape error label. An IE of
this type does not occur in the air message. Nevertheless in case of encoding the variable in the C
structure must be written by the caller entity, because encoding of some other message elements could

need this information.

EXAMPLE (reading stack value):
The first usage of this type is the IE "tlv_len" in a Multi Rate Configuration. In this case "tlv_len" is to be

used for evaluating conditions which decide on the content of Multi Rate Configuration IE.

EXMAPLE (message escape):
A part of a message, which depends on a certain protocol status, is marked by the 'Message escape'

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 150 of 183

error label. It is preceded by an amount of bits given by the specification. Some of these bit
combinations are concatenated with a well -defined message structure. All the rest of combinations are
expected to provide an escape.

4.2.4 Some tricky descriptions for particular message elements

4.2.4.1 Error Labels

This part describes the implementation of the following rules which are extracted from section 11.1 in

[15.] TS 44.060.

 Unknown message type

 Syntactically incorrect message with different Error Labels

 Syntactic error in truncated concatenation

Generic Error Labels

Unknow n Message Type

If a message with an unknown message type is recognized during decoding process CCD returns an

error indication and breaks decoding.

 Therefore no handling is required.

Certain Message Part Errors

'Distribution part error', 'Address information part error' and 'Non-distribution part error' are other generic
error labels defined for syntactical errors. These error labels allow ignoring a part of the message that is
syntactically incorrect. Once an error is detected, the error branch is called. The error branch is followed

by an unspecified bit string that expands to the end of the message. The corresponding data is ignored
(i.e. CCD breaks decoding process).

As yet CCD provides information on which IE an error is reported. With Error Labels CCD i s be able to

recognize the message part (Distribution, Address Information or NonDistribution Part) a reported error
belongs to; besides CCD provides information about this erroneous part.

How to use this feature?

 In SAPE we use the TypeModifier Column to mark the beginning of a certain part be-
longing to a message which is classified either as distribution or non-distribution mes-

sage.

 We concatenate the first element of each part with one of the following keywords:
EL_AIP Address Information Part

EL_DP Distribution Part
EL_NDP Non-Distribution Part

 The converter „xml2mdf‟ tunnels this information to mdf-File.

 CCDGEN processes this information and writes for each first IE of a special part a well -
defined entry to the table cald.cdg.
‟Z‟ -> EL_AIP Address Information Part

‟D‟ -> EL_DP Distribution Part
‟N‟ -> EL_NDP Non-Distribution Part

 CCD reads the information from the calc-table. If CCD detects an error during the decod-
ing process the Error Code will be changed to the appropriate error label and the decod-

ing process will be broken.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 151 of 183

Example

The general format of a non-distribution message, including these error labels is:

< Non-distribution message > ::=
 < MESSAGE_TYPE : 0 bit (5) >
 { < Distribution contents >
 { < Address information >
 { < Non-distribution contents >
 < padding bits >
 ! < Non-distribution part error : bit (*) = < no string > > }
 ! < Address information part error : bit (*) = < no string > > }
 ! < Distribution part error : bit (*) = < no string > > }
 ! < Unknown message type : bit (6) = < no string > < Default downlink message content > > ;

SAPE representation:

Message Items

Name Pattern BitLen TypeModifier Comment
MESSAGE_TYPE 6

distribution_contents ~EL_DP
address_information ~EL_AIP

non_distribution_contents ~EL_NDP

 00101101 8 S_PADDING

Table 62: SAPE Table with Different Error Labels

Additional Error Labels

Besides the generic error labels there are the error labels „Ignore‟ and „Message Escape‟ which are
allowed to be present in all message parts (Di stribution part, Address information part and Non-

distribution part). These kinds of error labels require a special error detection mechanism.

Message Escape Error Label

The 'Message escape' error label is used to provide an escape for, e.g., a future modification of the

message syntax. Therefore the part of a message, which depends on a certain protocol status, is
preceded by an amount of bits given by the specification. Some of these bit combinations are
concatenated with a well -defined message structure. All the rest of combinations are expected to
provide an escape.

How to use this feature?

 In SAPE we insert a flag element, which is used to keep the bits determining the kind
of following message structure. Depending on the value of this flag element one of the
following different message items is chosen. The unreserved flag values are asso-

ciated with a message item of coding type NO_CODE. The concatenation of a certain
flag value with a special message item is done by a condition written in the Condition
Column (choice by flag value).

We use the TypeModifier Column to mark the NO_CODE element with the Message
Escape Error Label (EL_MSG_ESC).

 The converter „xml2mdf‟ tunnels this information to mdf-File.

 CCDGEN processes this information and writes a well -defined entry to the table
cald.cdg.
‟M ‟ -> EL_MSG_ESC

If CCD detects the presence of a NO_CODE element, CCD reads the information
from the calc-table. The value in the calc-table determines whether the decoding
process performs an error handling function or not. In case of a present Error Label

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 152 of 183

„Message Escape‟ the Error Code will be ERR_EL_MSG_ESC and the decoding

process will be broken.

Example

< Packet YYY message content > ::= -- Protocol version 1
 < FIELD_1 : bit (3) >

 { 0 < FIELD_2 : bit (16) >
 < FIELD_3 : bit (16) >
 < padding bits >

 ! < Message escape : 1 bit (*) = <no string> > } ;

SAPE representation:

Structures Element Definitions

Name Type FeatureFlags Group Comment
PACKET_YYY STRUCT Structured Element

Structures Elements Items

Name Pattern BitLen Type TypeModifier Condition Comment
FIELD_1 3

f lag 1

COMP1 {f lag = 0}

dummy NO_CODE EL_MSG_ESC {f lag # 0}

Structures Element Definitions
Name Type FeatureFlags Group Comment
COMP_1 STRUCT Structured Element

Structures Element Items

Name Pattern BitLen Type TypeModifier CmdSequence Comment
FIELD_2 16
FIELD_3 16

 00101101 8 S_PADDING MAX_PADD

Table 63: SAPE Table - Error Label Message Escape

Ignore Error Label

This error label allows ignoring a part of the message that is syntactically incorrect. Once the error is
detected, the error branch 'Ignore' is called followed by an unspecified bit string. When this error label is

used with an indefinite length (bit (*) = < no string >), the unspecified bit string expands to the end of the
message and the corresponding data is ignored.

When this error label is used with a definite length (bit (n) = < no string >), the unspecified bit string

contains a defined number of bits. The corresponding data is ignored. This feature will be an
enhancement which isn‟t supported in the first implementation of error labels.

How to use this feature?

 In SAPE we use the TypeModifier Column to mark the beginning of a certain structure,
which should be ignored in case of error detection.

 We concatenate the first element of this structure with the following keyword:
EL_IGNORE. Later implementations will support this keyword in conjunction with the pa-

rameter numBits: EL_IGNORE(numBits). This parameter will advise CCDGEN to add
an additional row in the calc-table. CCD will process this constant value to skip a defined
number of bits in case of error detection in conjunction with error labels.

 The converter „xml2mdf‟ tunnels this information to mdf-File.

 CCDGEN processes this information and writes for first IE of marked structure a well -
defined entry to the table cald.cdg. In future versions the parameter numBits will advise
CCDGEN to add an additional row in the calc-table. CCD will process this constant value

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 153 of 183

to skip a defined number of bits in case of error detection in conjunction with error labels.

‟I‟ -> EL_IGNORE

CCD reads the information from the calc-table. If CCD detects an error during the de-
coding process the Error Code will be changed to the appropriate error label and the

decoding process will be broken.

Example

< Packet XXX message content > ::=
 < FIELD_1 : bit (3) >

 < FIELD_2 : bit (16) >
 < FIELD_3 : bit (5) >
 < padding bits >

 ! < Ignore : bit (*) = < no string > >

In the case of a complete message, the contents of the received syntactically incorrect message can be
ignored.

SAPE representation:

Structures Element Definitions

Name Type FeatureFlags Group Comment
PACKET_YYY STRUCT Structured Element

Structures Elements Items

Name Pattern BitLen Type TypeModifier CmdSequence Comment
FIELD_1 3 ~EL_IGNORE
FIELD_2 16

FIELD_3 5

 00101101 8 S_PADDING MAX_PADD

Table 64: SAPE Table - Error Label Ignore

Conclusion

 Different types of error label shall be inserted in the TypeModifier-Column. The following error
labels are supported by CCD and CCDGEN:

EL_DPE < Distribution part error : bit (*) = < no string > >

EL_AIPE < Address information part error : bit (*) = < no string > >

EL_MSG_ESC < Message escape : 1 bit (*) = < no string > >

EL_NDPE < Non-distribution part error : bit (*) = < no string > >

EL_IGNORE < Ignore : bit (*) = < no string > >

EL_I_TO_IE_END < Ignore : bit (n) = < no string > >

 Except EL_MSG_ESC the statement about error label must start with the character “~”.

 The assumption of CCD i s to “ignore” the remaining part of the message for most of the error
labels and ignore the rest of the IE in case of EL_IGNORE.

 The entity calling CCD shall invalidate the IE at which error occurred.

4.2.4.2 How to express non-standard length information

Some protocols specify elements with variable length which can not be described standard LV-coding
types – either the length information is not coded as 7 respectively 8 bit value or the length information

and value are not submultiples of one unit. The length information and the value do not appear back-to-
back.

Example using CSN.1 Notation:

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 154 of 183

<z> ::= { <length : bit(5)>
<b : bit(val(length))> };

An alternative notation is:

<z> ::= { <length : bit(5)>
<bit(val(length))>
& { ! {bit** = <no string>}} > };

The last notation rewords that both parts together - bit(val(length)) and - must comprise so many
bits as given by the value of the length element.

The SAPE message description should look like the following table:

Structured Element Definition

Name Type Feature Flag Group Comment

z STRUCT Structured Element

Structured Element Items

Name Pattern Bit Len Type TypeModifier Comment

length Length (Basic Element)

b [.length .. MAX_LEN] Element b

Table 65: SAPE Table belonging to an element of variable length

In this case CCD handles the information element as a bit string independent of the internal
st ructure of . The element may be a basic or a structured element. The length of this bit string

must always depend on another basic IE declared before, just as in the example above.

A structured IE given as bit string will not be handled as an array type. In the header file generated by
CCDGEN you will not find any counter for i t. The bit size of the structure can only be calculated during

the decoding real time processing. The calculation depends on the expressions either in the Control
column of AIMs in MS-Word format or in the TypeModifier column of AIMs in SAPE format ([.length] in
example above).

So far in case of encoding of such a bit string it is not possible to determine the length value depending
on its nested encoded elements. The value of the corresponding length variable must be calculated and
set by the CCD user.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 155 of 183

5 CCDDATA
CCDDATA is a library that represents the CCD tables and concerning constants generated by
CCDGEN. It must always be rebuilt i f the interfaces defined in the SAP and MSG catalogues have

changed.

The following sections give a detailed description of the CCDGEN output files with the name extension
*.cdg. Most of the files will contribute to the CCD coding/decoding tables. The entries in the files are C-

expressions. Each line is actually a member of a structure field.

 Table-oriented description of structures and values

 independent of h-files

 Table information

 Messages, Primitives, Structures

 name, size (bit and byte oriented), number of elements

 Elements

 type, coding type, repetition, offset in structure, optional, id, …

 name, size (bit and byte oriented), values

 Names are usually omitted on targets

 Library Ccdedit provides a more readable interface to tables

 useful for test- and trace-tools

5.1 ccdmtab.cdg and ccdptab.cdg

These files contain C-expressions which include the relevant *.cdg files in order to define and initializes
the so-called CCD tables. The tables used by CCD only are mvar, spare, calc, mcomp, melem and

mmtx. They contain the rules needed by CCD for coding and decoding the specified messages. The
CCD files used by CCDTAP (CCDEDIT) are pvar, pcomp, pelem and pmtx. A typical entry of
ccdmtab.cdg is shown below:

const T_CCD_VarTabEntry mvar [] =

{

#include "mvar.cdg"

};

5.2 mstr.cdg

Although CCD does not use this table at the moment we do give a short description about i t because of
i ts simple structure. This is a simple formatted file containing either comments or long names related to
the IEs. The entries can be used for example by the test systems while tracing the activities or errors.

Some entries occur repeatedly, e.g. the words „Message Type“ and „reserved“. There are no entries for
message names.

Generally the entries have the same order as they have in the word documents. In the example below,

the long name of the first IE "Access identity" is followed by the two value entries, according to the
chapter „basic elements“ of CC.doc.

/* 0*/ "",

/* 1*/ "Access identity",

/* 2*/ "octet identifier",

/* 3*/ "reserved",

5.3 mconst.cdg

A big part of these files contains definitions of C-macros for IDs, bit lengths etc for all entities (or SAPs).
The other part is dedicated to either the C-macros for coding type or the constant values calculated by

CCDGEN. The constants defined in mconst.cdg are important for coding/decoding and are included by
CCD. However the constants in pconst.cdg relate to the SAPs and are only included by the tool
CCDEDIT, which includes also the mconst.cdg. Below a few examples from mconst.cdg are given:

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 156 of 183

#define DATA_REQ 0x1

#define BSIZE_DATA_REQ 0x830 /* max bitlength of coded msg */

. . .
#define CCDTYPE_GSM1_V 0x1

#define CCDTYPE_GSM1_TV 0x2

...

#define NUM_OF_ENTITIES 0x6 /* number of entitys that uses CCD */

#define MAX_MESSAGE_ID 0x7e /* maximum of all message types */

...

5.4 mvar.cdg and pvar.cdg

The table mvar contains specifying parameters for variables. CCD needs these parameters to decide for
the bit or byte size and value of the variables. The format of the entries is given on the top of the list.

/* idx name lnameRef bSize cSize cType numValDefs valDefRef */

/* 0*/ { "msg_type" , 1, 8, 1, 'B', 0, 65535 },

/* 1*/ { "msg_id" , 2, 8, 1, 'B', 0, 65535 },

/* 2*/ { "rel_mode" , 3, 8, 1, 'B', 2, 0 },

The parameter name has been called short name in the previous chapters. The parameter lnameRef
gives the index referring to the entry in mstr.cdg. Bit lenght or bSize must be defined by the GSM
protocol while cSize gives the byte size for the variable used in the CCD implementation. The possible

entries for the member cType are B (boolean), S (Short) and X. The member numValDefs is the
number of possible values for the variable. valDefRef is an index referring to the first entry for this IE in
the table mval. We say the first entry because there must be numValDefs entries for an IE in mval. If

there is no value supposed for an IE numValDefs will be 0 and valDefRef will be 65535.

Again pvar is only used by CCDEDIT but mvar is needed by CCDEDIT and CCD.

5.5 mval.cdg

Although CCD does not use this table at the moment we do give a short description about i t because of
i ts simple structure. The table mval contains specifying parameters for variable values. CCD needs
these parameters to read a single value, a value range. The format of the entries is given on the top of

the list.

/* idx valStrRef isDef startVal endVal */

/* 0*/ { 2, 0, 0x00000000, 0x00000000},

/* 1*/ { 3, 1, 0x00000000, 0x00000000},

The member valStrRef is the index referring to the comment in mstr.cdg about the specific value. The
member isDef is a flag set to 1 whenever the given value is a default one for the corresponding variable.

The first (startVal) and last (endVal) value numbers determine the Value ranges. For single values the
startVal is equal to endVal.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 157 of 183

5.6 spare.cdg

This table contains value and bit length information for spare bits. Spare bits are often a series of zeros,
which help to fill up an octet. The format of the entries is given on the top of the list.

/* idx spareValue bSize */

/* 0*/ { 0x00000000, 3},

/* 1*/ { 0x00000000, 7},

/* 2*/ { 0x00000000, 3},

For referring to an entry from this table CCD often uses the member elemRef of the table melem. An
example reference is:
 spare[melem[eRef].elemRef].bSize.

The last line of the table:
 /*65535*/ { 0x00000000, 0},
can help to find the error source whenever a programmer uses an invalid index for referring to a spare

IE.

5.7 melem.cdg

This table contains specific parameters needed for composing an IE. The format of the entries is given
on the top of the list.

/* idx codingType optional extGroup repType calcIdxRef maxRep structOffs ident elemType ref */

Coding types:
The parameter codingType is necessary to choose the appropriate CCD encoding/decoding functions.
Valid types (e.g. ASN1) are listed in the files mconst.cdg of each project or in ccd_codingtypes.h of

the CCD software distribution.

Optional IE:
If the flag optional is set to 1, the presence of the IEs depends on some parameters or conditions. This

makes CCD check the conditions while encoding/decoding such an IE. CCD uses the expressions
printed in the table calc by CCDGEN. The member optional is 1 in the following cases:

1. The IE belongs to an extended octet group. In this case the parameter extGroup can be one of the

characters: '+', '-', '*', '!', '#' and ' '. The characters '+', '-' and '*' signify respectively the first, last and
the single octet of an extended group. For the middle IEs shorter than 7 bits extGroup is set to ' '.
Note that this character is also used for IEs that do not belong to an extended octet group. The

example IEs are given in the following lines.

/* idx extGroup maxRep elemType */

/* codingType repType structOffs ref */

/* optional calcIdxRef ident */

/* 146*/ { 0, 1, '+', ' ', 0, 0, 0, 0xFFFF, 'S', 15 },

/* 147*/ { 0, 1, ' ', ' ', 0, 0, 0, 0xFFFF, 'V', 82 },

/* 148*/ { 0, 1, '*', ' ', 0, 0, 2, 0xFFFF, 'V', 93 },

2. The IE is specified by its tag value (IEI). In this case, the parameter ident is set to a value other than

0xFFFF.

/* 281*/ { 2, 1, ' ', ' ', 0, 0, 1, 0xD , 'V', 111 },

/* 282*/ { 7, 1, ' ', ' ', 0, 0, 3, 0x4 , 'C', 21 },

3. The IE is specified to be an optional ASN.1 element to be encoded with Packed Encoding Rules.

This can be for example a SEQUENCE, a CHOICE or an INTEGER element.

4. The presence of the IE depends on the fulfilling of some conditions. In this case the parameter
calcIdxRef is not 0xFFFF any more. As a result the parameters numCondCalcs and condCalcRef

in the calcidx table are set to other values than 0 and 65535, respectively. The parameter
numCondCalcs i s the number of calculation steps for a UPN calculator. The index condCalcRef
refers to the entry for the first calculation step in the table calc. See also “online calculations” below.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 158 of 183

Online calculations:
In the runtime CCD may need to check presence conditions, carry out prologue expressions or calculate
length of an array. The required instructions are printed by CCDGEN in the file calc.cdg. The reference

values and flags are printed to calcidx.cdg. For each IE with a calcIdxRef equal to 0xFF no instructions
are given in the calc table. Otherwise cacIdxRef refers to the appropriate entry in the calcidx and from
there to the appropriate instructions in the calc table.

In calcIdx information appears in pairs (reference and number of step): conCalRef together with
numConCal, prolStepRef with numProlStep and repCalRef with numRepCal.

There is a complicated type of optional IEs to which “mob_ident” belongs. They need a few additional

calculations compared with the usual optional IEs. For mob_ident not only numCondCalcs i s different
from 0 but also numPrologSteps (in the calcidx table).

Long name short
name

ref bit len Ctrl

Ty pe of identity ident_type 3 (GETPOS,:,4,+,:,1,+,SETPOS)
Odd/ Even indicac-

tion

odd_even 1 (SETPOS)

Identity digit ident_dig 4 (SETPOS) {ident_type # ID_TYPE_NO_IDENT AND
ident_type # ID_TYPE_TMSI} BCDODD [0..16]

Spare .1111 4 (:,SETPOS,8,+){ident_type = ID_TYPE_TMSI}

TMSI tmsi 32 (SETPOS) { ident_type = ID_TYPE_TMSI} [.32]
Dummy dmy 4 (SETPOS) {ident_type = ID_TYPE_NO_IDENT }

[0..16]

/* 453*/ { 0, 0, ' ', ' ', 25, 0, 0, 0xFFFF, 'V', 163 },

/* 454*/ { 0, 0, ' ', ' ', 26, 0, 1, 0xFFFF, 'V', 160 },

/* 455*/ { 13, 1, ' ', 'i', 27, 16, 2, 0xFFFF, 'V', 153 }, -> ident_dig

/* 456*/ { 0, 1, ' ', ' ', 28, 0, 0, 0xFFFF, 'S', 38 }, -> 1111

/* 457*/ { 0, 1, ' ', 'b', 29, 32, 23, 0xFFFF, 'V', 164 }, -> tmsi

/* 458*/ { 0, 1, ' ', 'i', 30, 16, 36, 0xFFFF, 'V', 165 }, -> dmy

The numbers 25 to 30 refer to entries for conditions, prologues and size calculations in calcidx:

 C
o
n
C
a
l
R
e
f
,

n
u
m
C
o
n
C
a
l
,

p
r
o
l
S
t
e
p
R
e
f
,

n
u
m
P
r
o
l
S
t
e
p
,

r
e
p
C
a
l
R
e
f
,

n
u
m
R
e
p
C
a
l

/* 25*/ { 0, 65535, 8, 25, 0, 65535 }, <- prologue

/* 26*/ { 0, 65535, 1, 33, 0, 65535 }, <- prologue

/* 27*/ { 7, 34, 1, 41, 0, 0 }, <- condition, prologue, repetition

/* 28*/ { 3, 42, 4, 45, 0, 65535 }, <- condition and prologue

/* 29*/ { 3, 49, 1, 52, 0, 32 }, <- condition, prologue and repetition

/* 30*/ { 3, 53, 1, 56, 0, 0 }, <- condition, prologue and repetition

Since the last four elements are conditional, the field “optional” is set to 1 for them.

Bit, byte and element arrays:
There are IEs built of a series of values for a repeated variable. For theses IEs the parameter repType
is no more set to ' '. The possible characters for a GSM standard IE are then 'i', 'c ', 'v ' and 'b,' which

abbreviate respectively interval, constant, variable and bit field.

For elements encoded by PER „C‟, „j ‟ and „J‟ have been added to this l ist. A repType of „C‟ specifies an
array of an IE with the ASN.1 type BITSTRING. This is a bit string of constant size. Bit strings of variable

size are given by repType = ‘J’. Variable sized arrays of other ASN.1 PER types have repType = ’j ’.
Fixed sized arrays of other ASN.1 PER types have repType = ’c’.

If the number of repeats needs to be calculated the parameter calcIdxRef is different from 0. If the

message description gives a maximum number for the repeats the structure member maxRepeat is
different from 0. The four mentioned categories of repeated variables are discussed below. The
corresponding parameters are underlined in each example.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 159 of 183

For repType = 'i' the number of repeats belongs to a known interval. The upper limit of the interval is
given by maxRepeat. It is 32 for the example IE “num” from CC.doc.

/* 206*/ { 14, 0, ' ', 'i', 7, 32, 4, 0xFFFF, 'V', 99 },

long name short

name

Ref bit len Ctrl

Number digit num 4 BCDEVEN[0..32]

For repType = 'c' the number of repeats are known and constant. So maxRepeat is set to this value

and numRepCalcs is 0. The example IE “mcc” from MM.doc is made of three BCD numbers so the
maxRepeat is set to 3 for i t.

/* 447*/ { 15, 0, ' ', 'c', 23, 3, 0, 0xFFFF, 'V', 158 },

Long name short

name

ref bit len ctrl

Mobile Country
Code

mcc 4 BCDEVEN[3]

For repType = 'v ' the number of the repeats depends on the value of a variable. Thus in the calcidx
table numRepCalcs is no more set to 0. And the index repCalcRef refers to the entry for the first

calculation step in the table calc. The example IE is “allo_bmp7” from RR.doc. It is a variable field the
lenght of which depends on the variable allo_len7.

/* 788*/ { 0, 0, ' ', 'v', 110, 127, 2, 0xFFFF, 'V', 189 },

long name short name ref bit len type ctrl

Blocks Or Block Periods blp 6.21 1
Allocation Bitmap Length allo_len7 6.10 7
Allocation Bitmap allo_bmp7 6.9 1 [allo_len7..127]

The function ccd_calculatorep() of CCD will need only a read operation on the variable allo_len7.
Therefore cacIdxRef is not 0xFF and numRepCalcs = 1. Using repCalcRef CCD looks at the
appropriate entry of the table calc and finds there a read operation on the element of index 787 (=

0x313). And this element is nothing but the variable allo_len7.

For repType = 'b' the IE is a bit array of variable length. The maximum length (maxRepeat) is either
given by a constant or by a number. An example for this case is the IE “non standard facili ties” which is

a bit field from 1 bit up to N bits, where N should be read from the constant value MAX_NSF_LEN.

/* 1589*/ { 0, 0, ' ', 'b', 254, 720, 4, 0xFFFF, 'V', 480 },

, short name ref Ref Pres len ctrl

Facsimile control f ield fcf M 1

Non standard facilit ies non_std_fac M 1-N [.MAX_NSF_LEN]

An instructive example is the bit field ussdString, which is the value part of an ASN.1 element encoded

with Basic Encoding Rules:

ID long name short name type ref ctrl Len

0x04 Unstructured SS data coding
scheme

ussdDataCodingScheme ASN1 6.42 3

0x04 Unstructured SS data string ussdString ASN1 6.43 [.0..MAX_USSD_STRING] 2-162

Here the upper limit of the bit field should be given as the number of bits and not octets. And the value

given for the constant MAX_USSD_STRING should be the same as the bitlen given in the section 6.43
for the basic element ussdString, currenlty 1280.

Location of an IE in the C-structure:

If the IE belongs to a structured IE, the variable structOffs will be different from 0 and refers to its place
within the whole composition.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 160 of 183

Tag or IE identifier:
If the IE has an information element identifier, the parameter ident will be different from 0 and containing
the IE identifying number.

Spare, basic or structured element:
The member elemType can be one of the characters V, S, C and U, which abbreviate respectively
variable, spare, composition and union. Depending on the element type the parameter ref must be

interpreted as an index referring to the entry in mvar, spare or mcomp table.

5.8 mcomp.cdg

This table contains a few elementary parameters to specify an IE. The format of the entries is given on

the top of the list.

/* idx name lnameRef cSize bSize numElems elemRef */

/* 0*/ { "aux_states" , 374, 4, 7, 3, 0 },

/* 1*/ { "bearer_cap" , 375, 74, 98, 37, 3 },

/* 2*/ { "bearer_cap_2" , 376, 74, 98, 37, 40 },

The variable name is the short name as given in the corresponding message description catalogue. The

variable lnameRef longNameRef is an index referring to the entry for this IE in the table mstr. For
messages lnameRef is set t0 0 because there is no entry for messages in mstr.

The number of bits used for an IE is stored to bSize. The space (in bytes) needed in form of a C-

structure is given by cSize. For optional variables an additional byte is dedicated to valid flag. For
example the IE "aux_states" from CC.doc has two optional variables: hold and mpty. The
corresponding C-structure in m_cc.h looks like this:

typedef struct

{

 UBYTE v_hold; /*< 0> valid-flag */

 UBYTE hold; /*< 1> Hold auxiliary state */

 UBYTE v_mpty; /*< 2> valid-flag */

 UBYTE mpty; /*< 3> Multi party auxiliary state */

} T_aux_states;

Thus the cSize is 4 for this IE.

The parameter numElems gives the maximum number of sub IEs that the structured IE can contain.
The variable elemRef is an index referring to the entry in the table melem.

5.9 mmtx.cdg

This table contains valid (and invalid) reference numbers for all possible (and impossible) IEs of a GSM
application. The reference numbers are indexes referring to an entry in the table mcomp. In order to
signify the invalid reference numbers for invalid IEs the entry here will be 65535. The format of the

entries is given on the top of the list.

/* entity msg_type up down */

/*[0000]*/

 /*[0000]*/ 65535,65535,

 /*[0001]*/ 28, 27,

 /*[0002]*/ 65535, 30,

At the first look the table seems to be a simple byte field. In fact the table is built to be 3 dimensional.

The 3 dimensions are:

1) the number of entities using CCD,

2) the number of message IDs and

3) the number 2 (uplink, downlink).

Therefore CCD will refer to an element of the table in this way:
mmtx[entity][message_type][direction].

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 161 of 183

Once we have the index from this table we can find more about the message through the mcomp table.
From there we can find the details for composing its sub IEs via the table melem. That is why for coding
a structured IE the function is called with only one parameter:

ccd_encodeComposition (mmtx[entity][theMsgId][direction]);

5.10 calc.cdg

This table contains parameters to specify the calculation steps for the UPN calculator. Each entry of the
table represents one step. The format of the entries are given on the top of the list:

/* idx operation operand */

/* 0*/ { 'G', 0x00000000 },

/* 1*/ { ':', 0x00000000 },

/* 2*/ { 'P', 0x00000004 },

The meaning of the parameter operand depends on the character shown by the parameter operation.
Possible characters for the member operation are:

operation Meaning of operation Role of operand

P Push a constant on the stack Constant number to read

R Push the content of a C-structure variable on the stack Index for the table melem

S Get the upper element from the stack an set the position of the bit

stream pointer to this value

Nothing

G Push the position of the bit stream pointer on the stack Nothing

: Duplicate the upper element on the stack Nothing

^ Swap the upper two elements of the stack Nothing

+ - * / Arithmetic operations Nothing

& | Bit operations: AND and OR Nothing

A O X Logical operations: AND, OR and XOR Nothing

= # < > Numerical comparisons Nothing

K Keep a value in the KEEP register Index for keep register

L Intended to copy the L part of a TLV element from the KEEP

register[0]

Nothing

T Take a value from the KEEP register and push it on the UPN
stack

Index for keep register

C Compare the value on the U PN stack with the one stored in the
KEEP register and push the higher value in the KEEP register.

Index for keep register

Z Used to mark presence of an address information part error label Nothing

D Used to mark presence of a distribution part error label Nothing

N Used to mark presence of a non distribution part error label

M Used to mark presence of a message escape error label

I Used to mark presence of an ignore error label

l Take a value from the CCD STO register and push it on the UPN
stack

Index for STO register

s Store a value in the CCD STO register Index for STO register

CCD uses the UPN calculator when it checks a condition or when it reads the value of a variable or

constant.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 162 of 183

5.11 Example

In the previous sections we learned two kinds of formatted information:

1) Tables in the air message description files which are WINWORD documents

2) CCD tables currently in the output files of CCDGEN which are plain text files *.cdg

Now let us follow the information pieces of an example message from RR.doc into the CCD tables. The
example message is the first message in that file: “additional assignment”.

Definition:

long name short name ID direction

Addit ional assignment d_add_assign 0b00111011 downlink

Elements:

ID long name short name ref ref [1] pres type len

 Message Type msg_type 6.60 10.4. M V3 1
 Channel Description chan_desc 5.6 10.5.2.5 M V 3

0x72 Mobile Allocation mob_alloc 5.17 10.5.2.21 C TLV 3-10
0x7C Starting Time start_time 5.27 10.5.2.38 O TV 3

The entry for “additional assignment” in the table mcomp is
/* 266*/ { "D_ADD_ASSIGN", 0, 40, 148, 4, 969 },

This refers to the 969
th

 entry in melem table. That entry is in turn:
/* 969*/ { 4, 0, ' ', ' ', 0, 0, 0, 0xFFFF, 'V', 302 },

This refres to the 302
th

 entry in mvar table:
/* 302*/ { "msg_type", 1094, 8, 1, 'B', 0, 65535 },

This does not refer to an entry in the mval table since valDefRef = 0, 65535. The reason is that the
values for msg_type (message Ids) are given in mconst. All other variable values are given in mval.
Obviously while coding/decoding 0x3b (= 0b00111011) must be written/read for message type. Note

that CCD needs no more information about this variable than its bit size. It also needs not to look for this
value in any table. It reads the value from the buffer given by the entity.

At this point we have followed the trace of the first line (msg_type) in the table above.

Now let us look at the second line about chan_desc. This information element is not so simple as
msg_type. The tabular description of this IE in the chapter „structured elements“ of the message
description catalogues looks l ike this:

Elements:
long name short

name
ref bit len ctrl

Channel type and TDMA offset chan_type 6.32 5

Time Slot tn 6.101 3
Training Sequence Code tsc 6.104 3
Hopping hop 6.51 1

spare .00 2 {hop=0}
Absolute RF Channel Number arfcn 6.11 10 {hop=0}
Mobile Allocation Index Offset maio 6.62 6 {hop=1}
Hopping Sequence Number hsn 6.52 6 {hop=1}

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 163 of 183

The following describing entry:

/* 139*/ { "chan_desc_2", 1397, 12, 36, 8, 561 },

in mcomp refers to an entry in melem for the first variable of this group, namely chan_type.

/* 561*/ { 0, 0, ' ', ' ', 0, 0, 0, 0xFFFF, 'V', 220 },

The other variables follow this entry:

/* 562*/ { 0, 0, ' ', ' ', 0, 0, 1, 0xFFFF, 'V', 399 }, -> tn

/* 563*/ { 0, 0, ' ', ' ', 0, 0, 2, 0xFFFF, 'V', 412 }, -> tsc

/* 564*/ { 0, 0, ' ', ' ', 0, 0, 3, 0xFFFF, 'V', 275 }, -> hop

/* 565*/ { 0, 1, ' ', ' ', 42, 0, 0, 0xFFFF, 'S', 46 }, -> .00

/* 566*/ { 0, 1, ' ', ' ', 43, 0, 5, 0xFFFF, 'V', 179 }, -> arfcn

/* 567*/ { 0, 1, ' ', ' ', 44, 0, 8, 0xFFFF, 'V', 304 }, -> maio

/* 568*/ { 0, 1, ' ', ' ', 45, 0, 10, 0xFFFF, 'V', 276 }, -> hsn

We see that for all elements codingType = 0 because they are simple values. For the last four variables

Optional = 1. They are conditional variables. The UPN calculator will check the condition.
Following the four values 42-45 for calcIdxRef we find entries in calcIdx, which lead to entries in calc
for online calculations.

/* 42*/ { 3, 57, 0, 65535, 0, 65535 },

/* 43*/ { 3, 60, 0, 65535, 0, 65535 },

/* 44*/ { 3, 63, 0, 65535, 0, 65535 },

/* 45*/ { 3, 66, 0, 65535, 0, 65535 },

In the run time CCD will read three lines (numCondCalcs = 3) beginning with the 57
th

 line
(condCalcRef = 57) from the table calc in order to check the condition for the element arfcn. And so

on.

Now back to the first element. More about chan_type is to find in mvar, e.g. its bit size.

/* 220*/ { "chan_type", 873, 5, 1, 'B', 28, 571 },

Thus chan_type is 5 bits long and needs one byte in the C structures. This entry also refers to the (at

least) 28 different valid values for chan_type listed in mval. The values are between 1 and 28 plus the
default of „undefined“. They are to find in the 571

th
 line of mval.

/* 571*/ { 0, 0, 0x00000001, 0x00000001}, <- 1

/* 572*/ { 0, 0, 0x00000002, 0x00000002}, <- 2

...

/* 595*/ { 0, 0, 0x00000019, 0x00000019}, <- 25

/* 596*/ { 0, 0, 0x0000001A, 0x0000001A}, <- 26 (27, 28 and 29 are no valid values)

/* 597*/ { 0, 0, 0x0000001E, 0x0000001E}, <- 30

/* 598*/ { 0, 1, 0x00000000, 0x00000000}, <- default

We see that these entries correspond to the value tables of the chapter basic elements in the air
message catalogue RR.doc.

Values:
value c-macro comment

1 TCH_F TCH/F + ACCHs
2 TCH_H_S0 TCH/H + ACCHs, subchannel 0

3 TCH_H_S1 TCH/H + ACCHs, subchannel 1

...

24 TCH_F_ADD_UNI1 TCH/F+ACCHs, addit ional unidirectional TCH/FD/SACCH/MD on t imeslot n-1

25 TCH_F_ADD_UNI2 TCH/F+ACCHs, addit ional unidirectional TCH/FD/SACCH/MD on t imeslot n+1, n-1
26 TCH_F_ADD_UNI3 TCH/F+ACCHs, addit ional unidirectional TCH/FD/SACCH/MD on t imeslot n+1, n-1 ,

n-2
30 TCH_F_ADD_BI_UNI TCH/F+ACCHs, addit ional bidirectional TCH/F/SACCH/M and unidirectional

TCH/FD/SACCH/MD on timeslot n+1, n-1
DEF channel not defined

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 164 of 183

On the PC version of CCDDATA entries in mval refer also to the long names of the values, all collected
in mstr.cdg. This name is important for example for any test application with good comments. The
name of the first vlaue is given by:

/* 874*/ "TCH/F + ACCHs",

Similar considerations can be made for the IEs mob_alloc and start_time. Note that there is no
additional entry in the mcomp or melem tables for T and L elements of a TLV type IE. The T part is
embedded in the entry in melem:

/* 971*/ { 7, 1, ' ', ' ', 0, 0, 19, 0x72 , 'C', 173 },

and L part is a dynamic value which is calculated and written in the message according to each
message structure.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 165 of 183

6 Generated C-Code Header Files

6.1 CSN1 Coding

6.1.1 CSN1_S1

The CSN1_S1 coding type is an appropriate solution if an optional information element is described by
the following example:

<something> ::= 0 | 1 <element>;

CCDGEN generates the following C-structure:

typedef struct

{

 U8 v_element; /* Valid-Flag */

 T_element element; /* Structured Element */

} T_something;

If <element> is a structured element you need another structured element definition table defining the
internal element composition. With the assumption that <a>, and <c> are structured elements too,
CCDGEN generates the following C-structures:

<element> ::= <a> <c>;

typedef struct

{

 T_a a; /* Structured Element a */

 T_b b; /* Structured Element b */

 T_c c; /* Structured Element c */

} T_something;

If <element> is a basic element you need another basic element definitions table. In this case the
generated C-structure will be very simple; see the following example:

<element : bit(5)>

typedef struct

{

 U8 v_element; /* Valid-Flag */

 U8 element; /* Basic Element */

} T_something;

Required actions for encoding:

If the structured element <element> is supposed to be present in an emitted message stream the
associated valid flag has to be set to “1” and the user has to assign an appropriate value to the C-
structure of the struct element <element>. Calling ccd_codeMsg(..) / ccd_codeMsgPtr(..) performs the

encoding process according to the generated ccddata tables.

Required actions for decoding:

Calling ccd_decodeMsg(..) / ccd_decodeMsgPtr(..) performs the decoding process of a received

message stream according to the generated ccddata tables. The user has to analyse the valid flag to
determine if element <element> is present. The further processing should depend on the information
given by the valid flag.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 166 of 183

6.1.2 CSN1_S0

The CSN1_S0 coding type is an appropriate solution if an optional information element is described by
the following example:

<something> ::= 1 | 0 <element>;

CCDGEN generates the same C-structures like shown above (please, see C-structures belonging to
coding type CSN1_S1).

6.1.3 CSN1_SHL

The coding type CSN1_SHL supports elements comprising of a single bit valid flag and a value part.
Only if the valid bit is equal to H the value part follows. Otherwise (valid bit is equal to L) the value part is

absent.

Example:

<something> ::= L | H <element>;

CCDGEN generates the same C-structures like shown above (please, see C-structures belonging to
coding type CSN1_S1).

6.1.4 HL_FLAG

A HL_FLAG element consi sts of a single bit only. The decoded value will be 0 if the encoded value is L
respectively 1 if the encoded value is H. This element enables support of a choice according to the
following example:

<z> ::= { { L <a> } | { H };

With the assumption that <a> and are structured elements too, you will get by CCDGEN the
following type definition:

typedef struct

{

 U8 flag; /* Basic Element */

 U8 v_a; /* Valid-Flag */

 T_a a; /* Structured Element a */

 U8 v_b; /* Valid-Flag */

 T_b b; /* Structured Element b */

} T_something;

Required actions for encoding:

If the structured element <a> is supposed to be present in an emitted message stream the struct
element <flag> has to be set to “0”. The user must set <v_a> to “1” and <v_b> to “0”; besides the user

has to assign an appropriate value to the C-structure of the struct element <a>. Calling
ccd_codeMsg(..) / ccd_codeMsgPtr(..) performs the encoding process according to the generated
ccddata tables.

Required actions for decoding:

Calling ccd_decodeMsg(..) / ccd_decodeMsgPtr(..) performs the decoding process of a received
message stream according to the generated ccddata tables. The user has to analyse at least one of the

valid flags to recognize which element (<a> or) is present. In this case alternatively the element
<flag> can be used to distinguish between both cases. The further processing of the entries in the C-
structure should depend on the information either given by the element <flag> or one of the valid flags.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 167 of 183

6.1.5 CSN1_CONCAT

Truncated concatenation is a special sequence of components, which allows any of the concatenations
starting with null and up to any number of components arranged in a definite sequence.

Example:

<z> ::= { < a > < b > < c > } //;

The sequence of components (truncated concatenation) must be handled as a st ructured information

element associated with the coding type CSN1_CONCAT, which comprises all subcomponents.

With the assumption that <a>, and <c> are structured elements too, you will get by CCDGEN the
following type definitions:

typedef struct

{

 T_a a; /* Structured Element a */

 T_b b; /* Structured Element b */

 T_c c; /* Structured Element c */

} T_x;

typedef struct

{

 T_x x; /* Structured Element of coding type CSN1_CONCAT*/

} T_z;

As shown above a truncated concatenation may comprise components associated with the coding types
which do not characterise optional elements inherently. In this case CCDGEN provides appropriate
elements without associated valid flags in the C structures; although it should be possible to truncate the

sequence. The absence of an element associated with this kind of coding type truncates the sequence.

So far some coding types (l ike tagged types, e.g. GSM3_TV) characterise optional elements inherently.
If you describe a component in the message description by one of these coding types CCDGEN

provides an appropriate element associated with a valid flag in the C structures while generating C
header files. The value of the valid flag indicates the presence or absence of such an element.

Components concatenated with a CSN1 coding type cause these valid flags in the C header structure

too. If you find a bit in the received message stream indicating optional values not included in the
message (e. g. a CSN1_S1 element is represented by „0‟), CCD will set the valid flag to zero. If this
component belongs to a truncated concatenation the absence of the value does not truncate the

sequence. See the example below:

<z> ::= { < a > - TLV coded element

 0 | 1 < b >

 < c > } //;

With the assumption that <a>, and <c> are structured elements too, you will get by CCDGEN the

following type definitions:

typedef struct

{

 U8 v_a; /* Valid-Flag */

 T_a a; /* Structured Element a */

 U8 v_a; /* Valid-Flag */

 T_b b; /* Structured Element b */

 T_c c; /* Structured Element c */

} T_x;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 168 of 183

typedef struct

{

 T_x x; /* Structured Element of coding type CSN1_CONCAT*/

} T_z;

In case of truncated concatenations neither the absence of a valid flag nor a valid flag set to zero is a
definite indication of an element‟s absence. Therefore you need an aid to recognize how many

components could be decoded out of a received message stream.

It is recommended to write a leading element of coding type NO_CODE in the message description
which is used to count the existing elements of the truncated concatenation. In case of decoding CCD

writes the number of decoded elements belonging to the truncated concatenation to the NO_CODE
element. Example of the associated C-structure:

typedef struct

{

 U8 element_no; /* Basic Element of coding type NO_CODE */

 U8 v_a; /* Valid-Flag */

 T_a a; /* Structured Element a */

 U8 v_a; /* Valid-Flag */

 T_b b; /* Structured Element b */

 T_c c; /* Structured Element c */

} T_x;

typedef struct

{

 T_x x; /* Structured Element of coding type CSN1_CONCAT*/

} T_z;

In case of encoding CCD always encodes all elements belonging to the truncated concatenation.

If the truncated concatenation not finishing the message description is followed by any other elements
you will have another message element characterising the bit length of the truncated concatenation. In

this case the structured element item must be associated with a type modifier indicating a bit string.

Example:

< z > ::= <length : bit (6)>

< bit (val(length) + 1)
& { { < a > < b > < c > } // ! { bit ** = <no string> }

Generated C-Structure:

typedef struct

{

 U8 element_no; /* Basic Element of coding type NO_CODE */

 U8 v_a; /* Valid-Flag */

 T_a a; /* Structured Element a */

 U8 v_a; /* Valid-Flag */

 T_b b; /* Structured Element b */

 T_c c; /* Structured Element c */

} T_x;

typedef struct

{

 U8 length; /* Length Information (Basic Element) */

 T_x x; /* Structured Element of coding type CSN1_CONCAT*/

} T_z;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 169 of 183

Required actions for encoding:

In case of encoding CCD steps though the C-structure according to the instructions given by the ccddata
tables and always encodes all elements belonging to the truncated concatenation.

If optional structured elements are supposed to be present in an emitted message stream their
associated valid flag has to be set to “1” and the user has to assign an appropriate value to the C-
structure of the particular element. All other struct elements of the C-structure must be filled with correct

values. Calling ccd_codeMsg(..) / ccd_codeMsgPtr(..) performs the encoding process according to the
generated ccddata tables.

Note:

If the truncated concatenation is associated with a length information the user is expected to determine
the value of this length information without CCD support. So far CCD does not evaluate this length
information according to length of encoded elements l ike it is done for TLV compositions. This feature

will be a future enhancement.

Required actions for decoding:

Calling ccd_decodeMsg(..) / ccd_decodeMsgPtr(..) performs the decoding process of a received

message stream according to the generated ccddata tables. If the message description provides a
leading NO_CODE element the user can analyse this element to detect easily the number of received
elements belonging to the truncated concatenation. Otherwise the user has to take appropriate actions

to recognize which elements have been received. In case of existing valid flags it is very easy.

6.1.6 BREAK_COND

Decoding/encoding of the element Repeat_struct:

This element consists of a V component with a variable bit length and must be connected with a special
condition. This condition has to be a simple value, which matches to the value range of BREAK_COND
element i tself.

This function performs a standard decoding for a given elem table entry. This means for non structured
elements that 1 - n bits are read from the bitstream and write to a C-Variable in a machine dependent
format. After decoding of the requested number of bits the resulting value will be compared with the

constant given by the condition. In case of equality the global variable globs->continue_array is set to
FALSE. This breaks decoding of the current superior composition and finishes the array.

typedef struct

{

 T_a a; /* Structured Element */

 U8 number; /* Basic Element */

 U8 v_b; /* valid-flag */

 U8 c_b; /* counter */

 T_b b[MAX_NUM]; /* Structured Element */

} T_rep_struct;

typedef struct

{

 U8 v_rep_struct; /* valid-flag */

 U8 c_rep_struct; /* counter */

 T_rep_struct ncp2_rep_struct[MAX_REPS]; /* Structured Element */

 U8 x; /* Basic Element */

} T_z;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 170 of 183

6.1.7 CSN1_CHOICE1 and CSN1_CHOICE2

The coding types CSN1_CHOICE1 and CSN1_CHOICE2 support elements comprising of a flag and
alternative value parts depending on this flag value. In case of CSN1_CHOICE1 only one bit is used as

flag adressing two alternative value parts. If the flag bit is equal to “0” the first value part follows and the
second is absent. Otherwise (flag bit is equal to “1”) the first value part is missing instead the second
value part is present. In case of CSN1_CHOICE2 the flag is two bit long and it allows adressing of four

alternative avlue parts.

Example (CSN1_CHOICE1):

<msg_ex> ::= { <x>

 {{ 0 <a>} | { 1 }}
 <z>}

The coding type CSN1_CHOICE1 enables the choice construction

<y> ::= { 0 <a>} | {1 };

With the assumption that <x>, <z>, <a> and are structured elements too, you will get by CCDGEN

the following type definitions (alignment has met with no response):

typedef struct

{

 T_x x; /* Structured Element x */

 T_ctrl_y ctrl_y; /* (enum=32bit) controller for union /

 T_y y; /* Element will be a union type with controller */

 T_z z; /* Structured Element z */

} T_msg_ex;

typedef union

{

 T_a a; /* Structured Element a */

 T_b b; /* Structured Element b */

} T_y;

typedef enum

{

 choiceA_1 = 0x0,

 choiceA_2 = 0x1

}T_ctrl_y;

In case of coding type CSN1_CHOICE1 CCD reads one bit (in case of CSN1_CHOICE2 two bits) and
writes the result to structure item ctrl_y. CCD determes "elemRef" depending on the value of ctrl_y and
processes the union element according to table entry of "elemRef".

6.1.8 CSN1_S1_OPT

The CSN1_S1_OPT coding type is an appropriate solution if an optional information element is de-
scribed by the following example:

<something> ::= null | 0 | 1 <element>;

The element value can be present, then it is preceded by the flag value 0. If the element is represented
by the flag 1 only the value is absent! Besides the absence of the whole element is allowed.

This coding type is very similar to the coding type CSN1_S1, which doesn‟t support the possibility of
element lack. CSN1_S1_OPT is the appropriate solution if the specification demands a construction with
a composition of coding type CSN1_CONCAT and an encapsulated CSN1_S1 element. This type

increases the recursions level and therefor the runtime performance would be decreased.

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 171 of 183

CCDGEN generates the following C-structure:

typedef struct

{

 U8 v_element; /* Valid-Flag */

 T_element element; /* Structured Element */

} T_something;

If <element> is a structured element you need another structured element definition table defining the

internal element composition. With the assumption that <a>, and <c> are structured elements too,
CCDGEN generates the following C-structures:

<element> ::= <a> <c>;

typedef struct

{

 T_a a; /* Structured Element a */

 T_b b; /* Structured Element b */

 T_c c; /* Structured Element c */

} T_something;

If <element> is a basic element you need another basic element definitions table. In this case the

generated C-structure will be very simple; see the following example:

<element : bit(5)>

typedef struct

{

 U8 v_element; /* Valid-Flag */

 U8 element; /* Basic Element */

} T_something;

Required actions for encoding:

If the structured element <element> is supposed to be present in an emitted message stream the

associated valid flag has to be set to “1” and the user has to assign an appropriate value to the C-
structure of the struct element <element>. Otherwise the associated valid flag has to be set to “0”.
Calling ccd_codeMsg(..) / ccd_codeMsgPtr(..) performs the encoding process according to the

generated ccddata tables.

Required actions for decoding:

Calling ccd_decodeMsg(..) / ccd_decodeMsgPtr(..) performs the decoding process of a received

message stream according to the generated ccddata tables. The user has to analyse the valid flag to
determine if element <element> is present. The valid flag may be left out (either the encoded stream fills
the specified message buffer or a superordinate length information indicates the structure‟s end). The

further processing should depend on the information given by the valid flag.

6.1.9 CSN1_S0_OPT

The CSN1_S0_OPT coding type is an appropriate solution if an optional information element is

described by the following example:

<something> ::= null | 1 | 0 <element>;

CCDGEN generates the same C-structures like shown above (please, see C-structures belonging to

coding type CSN1_S1_OPT respectively CSN1_S1_OPT).

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 172 of 183

6.1.10 CSN1_SHL_OPT

The coding type CSN1_SHL_OPT supports elements comprising of a single bit valid flag and a value
part. Only if the valid bit is equal to H the value part follows. Otherwise (valid bit is equal to L) the value

part is absent. Besides the absence of the whole element is allowed.

Example:

<something> ::= null | L | H <element>;

CCDGEN generates the same C-structures like shown above (please, see C-structures belonging to
coding type CSN1_S1_OPT respectively CSN1_S1_OPT).

6.2 Special Coding Types

6.2.1 S_PADDING

Padding bits does not appear in the generated C-structure!

6.2.2 S_PADDING_0

Padding bits does not appear in the generated C-structure!

6.2.3 FDD_CI, TDD_CI

The decoder function for the type FDD_CI (TDD_CI) decodes two information elements. First i t decodes
five bits as NR_OF_FDD_CELLS (NR_OF_TDD_CELLS). Then it decodes the list of fdd_ci_parameters.

For NR_OF_FDD_CELLS=0 or i f NR_OF_FDD_CELLS is equal to or greater than 17 (21 for TDD_CI),
the function returns immediately. CCD then continues decoding the next IEs.

If the number is small enough, i t calculates the bit size of the parameter list and decodes them.

If the calculated bit size exceeds the left space in the message buffer, CCD will report an error on
ERR_ELEM_LEN. Because of the risk of buffer overwriting and since the reason could be a truncated
message, CCD will break its decoding activities right after reporting ERR_ELEM_LEN.

NOTE: Decoded parameters are written in an array of U16 words. It is the task of the entity to extract
the subelements from each parameter by using bit manipulation operators. Subelements of
fdd_ci_parameters are Scrambling Code (bits 1-9) and Diversity bit (bit 10). Subelements of

tdd_ci_parameters are Cell Parameter (bits 1-7), Sync Case (bit 8) and Diversity bit (bit 9).

typedef struct {

 U16 tdd_arfcn

 U8 tdd_indic_0; /* information 0 indicator*/

 U8 c_tdd_cell_information; /* counter */

 U16 tdd_cell_information[21]; /* cell parameter, */

} T_tdd_ci_cmp;

typedef struct {

 U16 fdd_arfcn

 U8 fdd_indic_0; /* information 0 indicator*/

 U8 c_fdd_cell_information; /* counter */

 U16 fdd_cell_information[17]; /* cell parameter, */

} T_fdd_ci_cmp;

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 173 of 183

6.3 Some tricky descriptions for particular message elements

6.3.1 Error Labels

Except of the error label MESSAGE ESCAPE all other error labels have not any impact on the

generated C-structure. The error label Message Escape should be concatenated with an element of
coding type NO_CODE. Therefore this construction causes the following two lines in the type definition:

 U8 v_no_code; /* valid-flag */

 U8 no_code; /* intended to use with coding type NO_CODE */

6.4 How to express non-standard length information

CCD handles elements of variable length which can not be described standard LV-coding types as a bit
st ring independent of the internal structure of . The element may be a basic or a structured

element. The length of this bit string must depend on another basic IE declared before.

CCDGen does not process a structured IE given as bit string as an array type. In the generated header
file you will not find any counter for i t. The comment in the C-declaration is preceded by “BIT STRING:”

to underline the special character of this structure.

typedef struct

{

 U8 length; /* Length Information (Basic Element) */

 T_b b; /* BIT STRING: Structured Element of type T_b */

} T_z;

Required actions for encoding:

The length of the structured element must be calculated and assigned to the C-structure by the
CCD user in an appropriate manner. So far i t is not possible to determine this length value depending on

its nested encoded elements. Calling ccd_codeMsg(..) / ccd_codeMsgPtr(..) performs the encoding
process according to the generated ccddata tables. Before CCD implies any encode actions on an
st ructured IE given as bit string, it calculates the bit position at the end of the bit string. After encoding of

known sub elements CCD jumps to the calculated position and continues its work on the next
information element.

Required actions for decoding:

Calling ccd_decodeMsg(..) / ccd_decodeMsgPtr(..) performs the decoding process of a received
message stream according to the generated ccddata tables. Before CCD implies any decode actions on
an structured IE given as bit string, i t calculates the bit position at the end of the bit string. This means

the bit position after the last bit of the bit string structure. After decoding of known sub elements CCD
jumps to the calculated position and continues its work on the next information element.

If the calculated bit position exceeds the message length or the wrapping structured IE, CCD generates

a warning with the error code ERR_MAX_REPEAT. The error code ERR_BITSTR_COMP is reported as
warning if decoding or encoding actions results to a higher value for bit position than the expected value.
If the calculated_bit_position exceeds its theoretical maximum (upper limit of the range) its value will be

cut to work within the allowed limits. CCD reports a warning.

The limit on bit size is temporarily set to a value based on the bit string length. After decoding of the
whole bit string CCD checks if any mandatory IE is left not decoded. If this is true CCD reports an error

(error code: ERR_MAND_ELEM_MISS) followed by an abortion of decoding action.

7 How to Call GTC Tools
[TBD]

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 174 of 183

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 175 of 183

Appendices

A. Examples

B. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

C. Glossary

International Mobile Tel-
ecommunication 2000

(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/family of standards for 3G. This

initiative provides a global infrastructure through both satellite and terre-
st rial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roam-

ing. <URL: http://www.imt-2000.org/>

D. Syntactic metanotation

Table Appendix D 1 defines the metanotation used to specify the form of grammar similar to BNF used
in this document:

::= is defined to be

abc xy z abc f ollowed by xy z

| alternativ e

[abc] 0 or 1 instances of abc

{abc} 0 or more instances of abc

{abc}+ 1 or more instances of abc

(...) textual grouping

abc the non-terminal sy mbol abc

abc a terminal sy mbol abc

"abc" a terminal sy mbol abc

Table Appendix D 1: Syntactic Metanotation

http://www.imt-2000.org/

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 176 of 183

E. Legend of Symbols Documenting the XML Format

Some symbols are used within the XML format description for SAP and AIM, which may not be familiar
for all readers. The following should give an overview about these symbols and what their meaning is.

To clarify this, these are only symbols used throughout this document and do not represent the
presentation in an editor for the new format.

 Represents a simple element which could contain alphanumerical data. The name of the

element (refers to the XML tag name) is shown in the centre of the box. This kind of element does not
have child elements. They are more or less child elements itself. The simple box indicates that this

element occurs only once.

 Represents a simple element which does not contain any data. Nevertheless this

element could have attributes which can carry information. Without attributes, the existence of the
element is the information itself. The name of the element (refers to the XML tag name) is shown in the

centre of the box. This kind of element does not have child elements. They are more or less child
elements itself. The simple box indicates that this element occurs only once.

 Represents a parent element which does not contain any data but has

one or more child elements. The name of the element (refers to the XML tag name) is shown in the
centre of the box. The plus/minus sign in the small box indicates whether the child elements are

unfolded or hidden (similar to the graphical representation of a directory structure). The small arrow
does not have a meaning. The simple box indicates that this element occurs only once.

 If a child or parent element is optional in its use then the border

of the element box is drawn with a dashed line. This means that this element could occur once or never.

 If a child or parent element could appear more than once a multiple box
will be displayed. A small indication at the bottom of the box shows if the minimum occurrence of the

element is zero (optional) or i f at least one element has to be present.

 If child elements of a specific parent element have to be in a certain

order, then this is indicated by a diamond-shaped symbol showing a string of dots in i ts centre. The
order of appearance for the child elements is from top to bottom (e.g. first RefId and second RefTitle).

The plus/minus sign in the small box indicates whether the child elements are unfolded or hidden
(similar to the graphical representation of a directory structure).

 If only one child element out of a selection of several elements could

occur for a parent element, then this is indicated by a diamond-shaped symbol showing a small switch in
i ts centre (e.g. either BitLen or ByteLen could be the child element). The plus/minus sign in the small

box indicates whether the child elements are unfolded or hidden (similar to the graphical representation
of a directory st ructure).

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 177 of 183

F. Index

A

AIM ID ... 62, 92

Alias 34, 37, 42, 43, 48, 64, 72, 80, 102, 106, 108,

119

Annotation .. 46

Completed ... 47

Priority .. 46, 47

Annotations Section......................... 23, 45, 56, 94

Argument

Function 117, 118, 119, 122

Author ... 26

B

Basic Element

Message ... 75, 76

Primitive .. 110, 111

Basic Element Definition

Message ... 76, 77

Primitive .. 112, 113

BCD Coding Types 132

BCD_MNC ... 134

BCD_NOFILL .. 134

BCDEVEN ... 132

BCDODD ... 132

Bit Group Def

Control, Message .. 90

Bit Length... 64, 72, 77

BREAK_COND .. 140

BREAK_CONDITION 169

Byte Length .. 77

C

Callee ... 116, 118

Caller.. 116, 118

CCD ... 14, 15, 129, 155

CCDGEN ... 14, 15, 155

Cmd Sequence

Control, Message .. 84

Coding Type ... 128

Coding Types .. 129

Comment ... 26, 32, 35, 38, 42, 43, 44, 46, 62, 65, 71,

73, 78, 102, 107, 108, 114, 119, 120

Completed

Annotation... 47

Condition

Control, Message .. 83

Conditional ... 65, 73, 93

Constant .. 33, 34

Constants Section 23, 33, 56, 94

Control

Dynamic Arrays ... 81

Pointer .. 81

Control, Message 65, 73, 79–91

Bit Group Def .. 90

Cmd Sequence.. 84

Condition .. 83

Type Modifier .. 79

Control, Primitive......... 102, 108, 119, 120, 122–24

CSN1 Coding Types 134

CSN1_CHOICE1 142, 170

CSN1_CHOICE2 142, 170

CSN1_CONCAT 137, 167

CSN1_S0................................ 135, 143, 166, 171

CSN1_S1....................................... 135, 165, 170

CSN1_SHL 136, 144, 166, 172

D

Data Target .. 46, 47

Date.. 26, 54

Default

Values ... 40, 44

Definition

Function .. 117

Message ... 59, 62

Primitive .. 98, 99

Values ... 40, 41

Description 23, 28, 30, 33, 36, 39, 40, 46, 57, 59, 67,

69, 75, 76, 96, 98, 103, 105, 110, 112, 115, 116

Direction .. 63, 99, 121

Document

History... 26, 29

Link . 24, 28, 30, 34, 36, 39, 57, 59, 67, 69, 75, 76,

96, 98, 103, 105, 110, 112, 115, 116

Name... 28, 49, 50, 53

Number... 28, 29, 54

Reference ... 29, 54

Reference ID .. 29

Reference Title ... 29

State ... 26

Status .. 27, 55

Type ... 28

Version .. 27, 55

Document Information Section 23, 28, 56, 94

Downlink.. 11, 63, 121

Dynamic Arrays............................... 81, 124, 126

E

Error Labels ... 150, 173

Extended Type................................ 119, 120, 125

ExtSources..................................... 119, 120, 125

F

FDD_CI ... 147

Feature Flags42, 50, 62, 65, 71, 73, 78, 100, 102,

107, 108, 114, 117

FREQ_LIST.. 146

Frequency List Information 145

Function .. 114, 115, 116

Argument 117, 118, 119, 122

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 178 of 183

Definition .. 117

Return Value 117, 120, 122

Usage .. 116, 118

Functions Section 94, 114

G

Generic Tool Chain .. 13

Group . 33, 35, 42, 49, 62, 71, 78, 100, 107, 114, 117

GSM1_ASN.. 131

GSM1_TV .. 130

GSM1_V .. 130

GSM2_T .. 130

GSM3_TV .. 130

GSM3_V .. 130

GSM4_TLV .. 131

GSM4_TV .. 131

GSM5_TLV .. 132

GSM5_V .. 132

GSM6_TLV .. 132

GSM7_TLV .. 132

H

History ...25, 31, 34, 37, 40, 59, 69, 76, 98, 105, 112,

116

Document .. 26

HL_FLAG ... 137, 166

I

Identi fier

Message ... 62, 92

Primitive .. 99, 121

Ignore .. 152

Item

Message 64, 79, 81, 84, 85, 90, 93

Primitive 98, 101, 122

Values ... 40, 42

Item Link....... 35, 37, 49, 64, 72, 101, 108, 119, 120

Item Tag... 65, 72, 92

L

Link

Document 24, 28, 30, 34, 36, 39

Values .. 53

Listing element .. 24

M

Mandatory 65, 73, 93, 102, 109, 125

MaxMsgLen

Message .. 62

Message 11–15, 16, 19, 28, 50, 57, 58

Basic Element 75, 76

Basic Element Definition......................... 76, 77

Definition ... 59, 62

Identi fier .. 62, 92

Item....................... 59, 64, 79, 81, 84, 85, 90, 93

MaxMsgLen .. 62

Structured Element 67, 68, 75

Structured Element Definitions 69, 70

Structured Element Items.... 69, 72, 79, 81, 84, 85,

90, 93

Message Basic Elements Section 56, 75

Message Escape ... 151

Message Structured Elements Section 56, 67

Messages Section 56, 57

N

Name ... 32, 35, 37, 41, 49, 50, 52, 62, 64, 71, 72, 77,

83, 99, 101, 106, 108, 113, 117, 119, 120, 121

Document .. 28, 50, 53

NO_CODE ... 149

Number 26, 99, 121, 122

Document .. 28, 29, 54

O

Optional 65, 73, 93, 102, 109, 125

P

Pattern ... 64, 72, 85

Pointer Types 81, 124, 125

Pragma.. 30, 31

Pragmas Section.............................. 23, 30, 56, 94

Presence 65, 73, 93, 102, 109, 125

Primitive 11–14, 16, 22, 28, 50, 51, 95, 97

Basic Element 110, 111

Basic Element Definition..................... 112, 113

Definition 98, 99, 100

Identi fier .. 99, 121

Item.. 98, 101, 122

Structured Element 103, 104

Structured Element Definitions 105, 106

Structured Element Items............... 105, 107, 122

Usage ... 100

Primitive Basic Elements Section 94, 110

Primitive Structured Elements Section......... 94, 103

Primitives Section 94, 95

Priority

Annotation.. 46, 47

R

Range

Values ... 40, 43

Receiver ... 100

Reference

Document ... 29, 54

Reference ID, Document 29

Reference Title, Document 29

Return Value

Function 117, 120, 122

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 179 of 183

S

S_PADDING 144, 172

S_PADDING_0 145, 172

Section ... 23

Sender.. 100

Spare ... 64, 72, 85

Spec Ref.. 65, 73

State

Document .. 26

Status

Document ... 27, 55

Structured Element

Message .. 67, 68, 75

Primitive .. 103, 104

Structured Element Definitions

Message ... 69, 70

Primitive .. 105, 106

Structured Element Items

Message 69, 72, 79, 81, 84, 85, 90, 93

Primitive 105, 107, 122

Substitute... 36, 37

Substitutes Section 23, 36, 56, 94

T

TDD_CI ... 148

Type .. 25

Type Modifier

Control, Message .. 79

Type, Document .. 28

Type, Message................................ 64, 71, 72, 91

Type, Primitive 107, 108, 114, 119, 120, 125

U

Union Tag... 52, 73, 108

Uplink.. 11, 63, 121

Usage

Function ... 116, 118

Primitive ... 100

V

Value 32, 35, 42, 44, 52, 53, 55

Values... 38, 39

Default... 40, 44

Definition ... 40, 41

Item... 40, 42

Link .. 38, 53, 76, 112

Range .. 40, 43

Maximum .. 43

Minimum ... 43

Values Section 23, 38, 56, 94

Variable Bit Field 153, 173

Version 35, 42, 62, 65, 71, 73, 78, 99, 102, 107, 108,

114, 117

Document ... 27, 55

X

XML ... 16

Schema ... 16

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 180 of 183

G. Table of Figures

Figure 1: Layering .. 11
Figure 2: Primitive Action Sequence for Peer-to-Peer Communication ... 11
Figure 3: Protocol Stack Development Methods ... 13
Figure 4: Workflow of the Generic TI Tool Chain .. 14
Figure 5: CCDGEN Functionality... 14
Figure 6: CCD Functionality .. 15
Figure 7: SAPE Description Element ... 23
Figure 8: Model of a Description Element .. 24
Figure 9: SAPE History Table ... 25
Figure 10: Model of a History Element ... 26
Figure 11: SAPE Document History... 26
Figure 12: Model of a Document History Element ... 27
Figure 13: SAPE Document Information Section .. 28
Figure 14: Model of a Document Reference Element .. 29
Figure 15: Model of the Document Information Section ... 29
Figure 16: SAPE Pragma Section ... 30
Figure 17: Model of the Pragma Section .. 31
Figure 18: SAPE Pragmas Table .. 31
Figure 19: Model of a Pragma Element.. 32
Figure 20: SAPE Constants Section .. 33
Figure 21: Model of the Constants Section... 34
Figure 22: SAPE Constants Table ... 34
Figure 23: Model of a Constant Element .. 35
Figure 24: SAPE Substitutes Section... 36
Figure 25: Model of the Substitutes Section ... 37
Figure 26: SAPE Substitutes Table ... 37
Figure 27: Model of a Substitute Element .. 38
Figure 28: SAPE Values Section ... 39
Figure 29: Model of the Values Section ... 39
Figure 30: SAPE Values Table.. 40
Figure 31: Model of a Value Element... 41
Figure 32: Model of a Values Definition Element .. 42
Figure 33: Model of a Values Item Element.. 43
Figure 34: Model of a Values Range Element .. 44
Figure 35: Model of a Default Values Element.. 45
Figure 36: Model of the Annotations Section .. 45
Figure 37: SAPE Annotation Section ... 45
Figure 38: SAPE Dialog Box to Specify a New Annotation .. 46
Figure 39: Model of an Annotation Element ... 47
Figure 40: Model of a Data Target Element.. 47
Figure 41: Model of an ItemLink Element ... 50
Figure 42: Example 1 of SAPE Feature Flag Specification .. 51
Figure 43: Example 2 of SAPE Feature Flag Specification .. 52
Figure 44: Model of a Union Tag Element .. 53
Figure 45: Model of a Value Link Element.. 53
Figure 46: Model of an AIR Messages Description ... 56
Figure 47: SAPE Messages Section .. 57
Figure 48: Model of the Messages Section .. 58
Figure 49: SAPE Message.. 59
Figure 50: Model of a Message Element.. 60
Figure 51: SAPE Message Definition Table ... 62
Figure 52: Model of a Message Definition Element ... 63
Figure 53: SAPE Message Items Table ... 64
Figure 54: Model of a Message Item Element .. 65
Figure 55: Example of an Information Element (Message Type) .. 66
Figure 56: Example of an Information Element (Padding) ... 66

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 181 of 183

Figure 57: SAPE Structured Elements Section ... 67
Figure 58: Model of the Structured Element Section ... 67
Figure 59: SAPE Structured Message Elements Tables.. 68
Figure 60: Model of a Structured Message Element ... 69
Figure 61: SAPE Structured Element Definitions Table ... 70
Figure 62: Model of a Structured Element Definition ... 71
Figure 63: SAPE Structured Element Items Table .. 72
Figure 64: Model of a Structured Element Item .. 73
Figure 65: SAPE Basic Elements Section .. 75
Figure 66: Model of the Basic Elements Section... 75
Figure 67: SAPE Basic Message Elements Tables... 76
Figure 68: Model of a Basic Message Element... 77
Figure 69: SAPE Basic Element Definitions Table .. 77
Figure 70: Model of a Basic Element Definition .. 78
Figure 71: Model of a Control Element... 79
Figure 72: Model of a Service Access Point Description.. 95
Figure 73: SAPE Messages Section .. 96
Figure 74: Model of the Messages Section .. 96
Figure 75: Model of a Primitive Element .. 98
Figure 76: SAPE Primitive Definition Table .. 99
Figure 77: SAPE Primitive Usage Table ...100
Figure 78: Model of a Primitive Definition Element...100
Figure 79: SAPE Primitive Items Table ...101
Figure 80: Model of a Message Item Element ...102
Figure 81: SAPE Structured Primitive Elements Section ..103
Figure 82: Model of the Primitive Structured Element Section ..104
Figure 83: SAPE Structured Primitive Elements Tables ...105
Figure 84: Model of a Structured Primitive Element ...106
Figure 85: SAPE Structured Element Definitions Table ..106
Figure 86: Model of a Structured Primitive Element Definition ..107
Figure 87: SAPE Structured Primitive Element Items Table..108
Figure 88: Model of a Structured Primitive Element Item ..109
Figure 89: SAPE Basic Elements Section ...110
Figure 90: Model of the Basic Element Section ...111
Figure 91: SAPE Basic Primitive Elements Tables ..112
Figure 92: Model of a Basic Primitive Element ..113
Figure 93: SAPE Basic Element Definitions Table ...113
Figure 94: Model of a Basic Element Definition ...114
Figure 95: SAPE Functions Section..115
Figure 96: Model of the Functions Sections ..115
Figure 97: SAPE Function ...116
Figure 98: Model of a Function Element ...117
Figure 99: SAPE Function Definition Table ...118
Figure 100: Model of a Function Definition Element ...118
Figure 101: SAPE Function Arguments Table ...118
Figure 102: Model of a Function Argument Element ..119
Figure 103: SAPE Function Arguments Table ...120
Figure 104: Model of a Function Return Value Element ...121
Figure 105: Model of an External Type Element ..125

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 182 of 183

H. Table of Tables

Table 1: Air Interface Message Structure ... 19
Table 2: Service Primitive Structure... 22
Table 3: Example of a Message (CSN1 IE msg)... 62
Table 4: Example of a Structured Message Element (Routing Area Identification Value Part) 70
Table 5: Example of a Structured Message Element Item (Mobile Country Code)............................... 74
Table 6: Example of an Array with Fixed Length... 80
Table 7: Example of an Array with Variable Length... 80
Table 8: Example of an Array with Variable Length Depending on Another Item 81
Table 9: Example of an Array with Variable Length Depending on Another Item 81
Table 10: SAPE Table Belonging to RR PBCCH Description information element 84
Table 11: SAPE Table Belonging to BA List Pref information element (RR protocol [14.]) 85
Table 12: Order of Bit Transmission .. 85
Table 13: Order of Message Octet – Table Representation ... 86
Table 14: Control parameters to specify the calculation steps for the RPN calculator 87
Table 15: RP-User data IE value part .. 88
Table 16: SAPE Table Belonging to the RP-User data IE value part .. 88
Table 17: Mobile Identity information element .. 88
Table 18: SAPE Table Belonging to the Mobile Identity IE value part ... 89
Table 19: CC Cause information element .. 90
Table 20: SAPE Table Belonging to the CC Cause IE value part ... 90
Table 21: BCS Digital transmit command message .. 91
Table 22: SAPE Table Belonging to the CC Cause IE value part ... 91
Table 23: SAPE Primitive ... 97
Table 24: Example of an Array with Fixed Length ..123
Table 25: Example of an Array with Variable Length..123
Table 26: Currently valid types of coding rules ..129
Table 27: Scheme of a Standard Information Element ...129
Table 28: Formats of Information Elements...129
Table 29: Application of BCDEVEN - TP Validity Period (Absolute Format) information element.........132
Table 30: SAPE Table Belonging to TP Validity Period (Absolute Format) information element133
Table 31: SAPE Table Belonging to TP Validity Period (Absolute Format) information element133
Table 32: IMSI value ...133
Table 33: SAPE Table Belonging to the IMSI value ...133
Table 34: Location Area Identification information element - two-digit MNC.......................................134
Table 35: Location Area Identification information element – three-digit MNC....................................134
Table 36: SAPE Table Belonging to Location Area Identification information element134
Table 37: SAPE Table connected to the current example ..135
Table 38: SAPE Table belonging to the internal structure of the current example135
Table 39: SAPE Table belonging exemplify a basic element ..135
Table 40: SAPE Table connected to the current example ..136
Table 41: SAPE Table belonging to the internal structure of the current example136
Table 42: SAPE Table belonging to the structure using HL_FLAG coding type..................................137
Table 43: SAPE Table belonging to a truncated concatenation information element137
Table 44: SAPE Table Belonging to the internal structure of a truncated concatenation information

element ...138
Table 45: SAPE Table belonging to the information element Packet xxx message content.................139
Table 46: SAPE Table belonging to the internal structure of the information element trnc_concat_comp

 ...139
Table 47: SAPE Table belonging to the information element z ...141
Table 48: SAPE Table belonging to the internal structure of the information element Repeat_struct ...141
Table 49: SAPE Table belonging to the structure comprising an element of CSN1_CHOICE1 coding

type ...142
Table 50: SAPE Table belonging to the internal structure of the CSN1_CHOICE1 element142
Table 51: SAPE Table belonging to the structure comprising an element of CSN1_CHOICE2 coding

type ...143

Technical Document

GTC Userguide (Document number to be assigned), v 0.6 Draft

Texas Instruments Proprietary Information – Internal Data Page 183 of 183

Table 52: SAPE Table belonging to the internal structure of the CSN1_CHOICE2 element143
Table 53: SAPE Table belonging to an element of coding type CSN1_S1_OPT143
Table 54: SAPE Table belonging to an element of coding type CSN1_S0_OPT144
Table 55: SAPE Table representing an Spare Padding IE according to [12.] 3GPP TS 24.008145
Table 56: SAPE Table representing an information element of coding type FREQ_LIST146
Table 57: SAPE Table belonging exemplify the associated basic element...146
Table 58: SAPE Table representing with an information element of coding type FDD_CI147
Table 59: SAPE Table belonging exemplify the associated basic elements147
Table 60: SAPE Table representing with an information element of coding type FREQ_LIST149
Table 61: SAPE Table belonging exemplify the associated basic elements149
Table 62: SAPE Table with Different Error Labels ...151
Table 63: SAPE Table - Error Label Message Escape ...152
Table 64: SAPE Table - Error Label Ignore ...153
Table 65: SAPE Table belonging to an element of variable length ..154

