‘9 TEXAS
INSTRUMENTS

User Guide

Test coverage

Department:

Aalborg Wireless Center

Creation Date:

18 December, 2002

Last Modified: 18 June, 2003 by Carina Graversen
ID and Version: 8434.521.03.005
Status: Accepted

Copyright © 2003 Texas Instruments, Inc. All rights reserved.
Texas Instruments Proprietary Information

Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

0 Document Control

Copyright © 2003 Texas Instruments, Inc.
All rights reserved.

Every effort has been made to ensure that the information contained in this document is accurate at the time
of printing. However, the software described in this document is subject to continuous deve lopment and
improvement. Texas Instruments reserves the right to change the specification of the software. Information
in this document is subject to change without notice and does not represent a commitment on the part of
Texas Instruments. Texas Instruments accepts no liability for any loss or damage arising from the use of any
information contained in this document.

The software described in this document is furnished under a license agreement and may be used or copied
only in accordance with the terms of the agreement. It is an offence to copy the software in any way except
as specifically set out in the agreement. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording, for any purpose
without the express written permission of Texas Instruments.

0.1 Document History

ID Author Date Status
8434.521.03.001 KSP 18 December, 2002 Being Processed
8434.521.03.002 KSP 5 February, 2003 Being Processed
8434.521.03.003 KSP 6 February, 2003 Accepted
8434.521.03.004 CGR 17 June, 2003 Accepted
8434.521.03.005 CGR 18 June, 2003 Accepted

0.2 References, Abbreviations, Terms
[T18010.801] 8010.801, References and VVocabulary, Texas Instruments

{i’ Texas Instruments Proprietary Information Page: 2/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

Table of Contents

R | 018 oo [8 o1 o] o FO T O PO TP PP PP PP PP PPPPPPRPPPN 4

2 Setting up environments for both GPRSand UMTS..........ccoiiiiiiiiiiii e 5

3 PIOTIHING e 8

4 Profiling @XamPIeoveiiiiiee e 10

41 VIBWING the TESUIS ..o 11

I 4101 a1 o 0o PRSPPSO 14
{i’ Texas Texas Instruments Proprietary Information Page: 3/14

INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

1 Introduction

If you are already familiar with profiling you can jump to chapter 3 for a quick guide on how to perform the
measurements and skip the rest of the document.

Otherwise you might want to start reading about how to set up the environment to perform the profiling,
which is described in chapter 2. This includes both setting up Visual Studio, the TAPCALLER and defining
which source files are to be profiled.

This user guide will concentrate on performing the following profiling methods:
e Function profiling
o Function timing
o Function coverage
e Line profiling
o Line coverage

This small user guide will briefly explain how to perform the different measurements mentioned above and
give an example of how to measure test coverage on an existing entity. Executing some different batch files
will carry out this profiling. The principal line of the measurement process consists of a setup batch file, a
runtime batch file and a post processing batch file.

{i’ Texas Instruments Proprietary Information Page: 4/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement— Do Not Copy

User Guide
Test coverage

8434.521.03.005

Accepted

2 Setting up environments for both GPRS and UMTS

This chapter contains a small guide to set up the environment correctly.

The following lines must be inserted in the ConfigSpec':
element /gpf/DOC/..TEST COVERAGE
element /gpf/BIN/..TEST COVERAGE

Below the line
element * CHECKEDOUT

For GPRS, you must set up your system as described in x:\sw\2g\stability\G23M build env setup.doc

It should be noted, that the path C:\Program Files\Microsoft Visual Studio\\VVC98\bin should be listed

first in the environment path. This can be done by executing the following command:
C:\Program Files\Microsoft Visual Studio\VC98\vcvars32.bat

Start a 4NT prompt and run the following command (z is the test view in this example):

GPRS: [z:\gpflinitvars gprs MS z: \g23m\Condat
UMTS:

[z:\gpf]initumts

Compile the test cases from either Visual Studio or from a 4NT prompt this way (SNDCP used as an
example)

[z:\gpf\bin]mkalltc -f sndcp

Enable profiling in Visual Studio 6. This is done by selecting the project properties: “Project” |
“Settings” | ”link tab”. Make sure that “Enable profiling” and “Generate .map file” both are checked.
This is illustrated below. Please note that it is necessary to rebuild the stack after changing these
options for the profiling to work. Note that these settings can be leaved in for normal use as well.

Project Settings ﬂil
Settings Far: [\w/in32 Debug Diebug I C/C++ Link | Resources I Browi EE
=8EE 523 SMI_GPRS
s Caepoy |
EHEE g23_smi_gprs_bt BRCEL N Cicnerl Resel

FHEE G2 SMI_GRRS_WaAP

g GMM Output file narme:
= 9 Sowcs Files [mshbin/G23_SMI_GPRS. exe
=3 EEHN Ohjectlibran modules:
- % gm—tg:;s [iemel 2 i user32.lb 32l winspool ib comdig32 ib ad

E gmm_kermp.c

¥ Gererate debuginfo I Ignore all default libraries
E arnm_kerms.c
T

=23 I~ | Link incrementally v Generate mapfile
(2] gmm_tef.c [w Enable profiling
3 arnmn_tkp. o
3 amm_tss.c Project Options:
=23 RH kernel32 lib uzer3z lib gdi32. lib winspool ib comdlg3z. lib
3 gmm_raf.c advapi32 lib shell32.lib ole32.lib oleaut32.lib uuid. ib
-] gmm_rep.c j wirmm lib fnalogo Asubspsterconsals Aprofile ;I
akK I Caticel |

! This is only necessary until the Test Coverage functionality has been released as a part of the TOOL release. As the
current version is not part of a tool release it can be subject to changes.

{'P TExAS
INSTRUMENTS

Texas Instruments Proprietary Information
Under Non-Disclosure Agreement— Do Not Copy

Page: 5/14

User Guide 8434.521.03.005
Test coverage Accepted

6. Start TAPCALLER from directory z:\gpf\bin, and set up the TAPCALLER as shown below (z is
testview in this example, and SNDCP is the test entity)®:

settings NN x| settings x|

General Optians I Test Toals I More Viewing Tools | General Options Test Tools | tdore Wiewing Tools I
— TAP Executable — PCO Options
J — Directory of PCO Executables
- Commurication |2 GPFABINY -
& Simulated USART ¢ USART ¢ Socket)
et neke — PCO Yiewers
CarmPart Flaws Cantral Baudrate Configs-Dir Iz:\l.": FFhcfdh |
Ilo':e'lhCIS IN I38400 Start wiewers with thiz configurations while testing:
[ayst
— Repeats Timeout— - PCOM 5 — Other Dptions - Cmain
[0 —H7|1 oaoa ms| -HVI
r~ Test Selection i~ Tools on old FRAME? — = =
. I ‘Add config |
r Select all available r Use old TAP, do
when sart not start FCO, ...
— Result Delete Warning— — Tools execute flag rPs
'w/arn me befare [~ RunTAP and PS IZ:\gpf\BIN\coverage.bat |
overvriting results hiddet
¥ Enabled WaitIBDDD ms after start
¥ PRestart after each testcase

0K I Cancel | Lppl | Help | Ok I Cancel | Eppl | Help |

settings x| selection X
General Dptions| Test Tools More Yiewing Tools I Test Cases |
—Debug Text Viewer Fath: IZ:\g23m\condat\ms'\test\test_sndc:p |

Motepad. exe | Test Cases:

SHDCE100 A=
SHDCP1021 test case dll

v
—TD5 Flow Viewer WISHDCFL1022 test case dll
W SHDCPLO023 test case dll
W|SHDCF1024 test case dll
_I WSHDCP1110 test case dll
WISHDCF1111 test caze dll
WISHDCF11144 test case dll
— TDS File Directony [w|SHDCF1114E test case dll
WISHDCP1114C test case dll
3 (WISHDCF1114D test case dll
IZ.\923m\condat\ms\test\test_sndcp\ _l ISHDCEI114E toot cooo dll
[W|SHDCF1114F test case dll
[~ Load Test titles from TDS when start [W]SHDCP1114G test case dll
(WISHDCF1114H test caze dll LI
Clear all | Details |
] | Cancel | ASpply | Help |

aK I Cancel Apply Help

7. Inorder to perform the profiling it is necessary to specify the desired source files and the executable
to be profiled. This information could be passed on as arguments when executing the profiling job.
However this is not very feasible, as it would result in a very long and complicated argument list.

2 In case of test coverage for UMTS, the PCON field should be checked in the settings ->General options, as well as
“other options” should contain the string »—v«. Run TAP and PS hidden might also be checked.

@ Texas Instruments Proprietary Information Page: 6/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

Instead specifying the source code to be measured in a specific list file does this. Such a list file
should exist for each entity so it can be used from time to time. In addition to this there can be
several different list files for each entity for different measurements.

The list files should be saved in a simple text file with suffix .rsp such as for instance sndcp.rsp. This
way it will be fairly simple to edit the arguments as it can be done in any text editor and it will be
possible to reuse the information and hence it will be easy to run several profiling measurement under
the same conditions. Following the result can be compared directly.

The source files should be included one by one with one source file per line. In front of the file name an
/INC or /EXC should be included indicating whether the file shall be included or not. This way it is
possible to add future files to the list without including them in the current measurement. In addition to
this it is also possible to use comments by use of an #.

This will e.g. result in a file like the following:

/INC sndcp_mgf.c(0-0) # this is a comment
/INC sndcp_mgp.c(0-0)
/EXC sndcp_mgs.c(0-0) #This shall not be included for now.

The (0-0) indicates that all lines in the file will be profiled. Other combinations such as (10-20) can also
be used and would result in line 10 to 20 will be profiled. When performing function coverage or
function timing measurements it is necessary to specify the object file for the source files in question..
Therefore it might be a good idea to have a list of source files for line coverage measurements and one
for function measurements. An example of an rsp file for function measurements could be:

/INC sndcp_mgf.obj # this is a comment
/INC sndcp_mgp.obj
JEXC sndcp_mgs.obj #This shall not be included for now.

The created rsp list files should be placed together with the source files for the test cases. This means that
for an UMTS entity, the list files should be placed under \g23m\Condat\ms\src\sm\test _usm\. For a
GPRS entity, the list files should be placed under \g23m\Condat\ms\doc\test. This is also where the
result files will be placed.

The system has now been set correctly to perform the measurements, which are described in chapter 3.

{i’ Texas Instruments Proprietary Information Page: 7/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

3 Profiling

When the system has been set up properly, it is possible to begin the actual profiling.

1. Setup the test environment (PCO).

2. Setup the desired profiling method by starting the appropriate batch file plus the name of the entity
list file in question (This list file can either be an existing file or a new one can be created). In
addition to this it is necessary to provide the directory path to the entity test files starting from the
\g23m\condat\ms\src\ directory for UMTS and \g23m\condat\ms\ for GPRS. That is, for the UMTS
SNDCP entity this parameter would be sndcp\test_usm\ while for the GPRS SNDCP entity it would
be doc\test\. The last required parameter is either UMTS or GPRS. The parameters have to be used
in the order given.

It is possible to perform 3 different kinds of measurements. With sndcp.rsp file as argument these
three options are available:

GPRS: [z:\gpf\bin]setup line coverage.bat sndcp.rsp doc\test\ gprs

GPRS: [z:\gpf\bin]setup function coverage.bat sndcp. rsp doc\test\ gprs
GPRS: [z:\gpf\bin]setup function timing.bat sndcp. rsp doc\test\ gprs

UMTS: [z:\gpf\bin]setup line coverage.bat sndcp. rsp sndcp\test usm\ umts
UMTS: [z:\gpf\bin]setup function coverage.bat sndcp. rsp sndcp\test usm\ umts
UMTS: [z:\gpf\bin]setup function timing.bat sndcp. rsp sndcp\test usm\ umts

3. Decide whether the PS should be restarted for each test case.

a. |If it should be restarted for each case: set up the TAPCALLER accordingly (“Configuration”
| “Settings” | “Test Tools”, check “Restart after each test case”).

b. If it should be started only once: Use TAPCALLER with “Restart after each test case”
disabled or start the coverage by executing the batch job coverage.bat from the 4NT prompt.

When choosing whether the protocol stack should be restarted after each test case or not, it must be
considered if several testcases can be passed without restarting the stack. If this is the case, it is
recommended not to restart the protocol stack, since this will eliminate the overall test time.

4, Execute the desired test cases from the TAPCALLER.

It should be noted, that if a test case results in the protocol stack to be hanging, it is very important to
close the protocol stack and not the other window! Preferably the post_processing.bat should be used
for this.

5. When all testcases have been run, finish the profiling process by executing the post processing batch
file post_processing.bat from the 4nt prompt.

[z:\gpf\bin]post processing

6. The profiling has now finished and the results can be found in the same directory as the .rsp file. The
results for e.g. line coverage are saved in the following files: “exe-name”-LV.lIst, “exe-name”-
LV2.Ist, “exe-name”-LV3.Ist and in a file called “exe-name”-LV.out. For respectively function
coverage and function timing the suffix would be FV or FT instead of LV. The first file contains the

{i’ Texas Instruments Proprietary Information Page: 8/14
TEXAS)
INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

statistics such as lines of code and percentage run while the second only is used for generating the
last output file for the Visual Studio debugger (this is currently only applicable for the line coverage
method). The LV3-file however contains all lines of the sourcecode, where a “*” in front of the line
indicates that this line has been touched, which is not the case if a “.” is put in front of the line. Se
example below:

* dti channel->erase channel = FALSE; Line touched
used dti channels &= ~tst id; Line not touched

7. Incase the test results should be used in a report, the result from the TAPCALLER can be written to
a text-file, which will be easy to paste into a Word-document. The text-file is created this way:

In the menu “Files” | “Save as” in the TAPCALLER the result of the test is saved.

Go to the 4ANT prompt, and go to the directory where the file was saved, and write (without the -
characters):

“ClearCaseDirectoryLetter”:\UMTS\Tool Documents\Utils\tapcaller prettyprint.exe “Name of the
file you saved” > report.txt

The result can now be found in the same directory as the file from the TAPCALLER was saved.
Please note that the ClearCaseDirectoryLetter must be an UMTS view.

{i’ Texas Instruments Proprietary Information Page: 9/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide 8434.521.03.005
Test coverage Accepted

4 Profiling example

This section will demonstrate a short example of how to perform profiling on some specific code for UMTS.
In this example the entity SM is chosen. As described earlier, before performing profiling for the first time it
is necessary to setup Visual Studio to generate profiling info. This is done by selecting the project properties:
“Project” | “Settings™ | ”link tab”. Make sure that “Enable profiling” and “Generate .map file” both are
checked. This is illustrated in Figure 1. Please note that it is necessary to rebuild the stack after changing
these options for the profiling to work. (These settings can be leaved in for normal usage as well.)

Settings For: ['win32 Debug j General | Debug | C/C++ Link | Hesourca EE
-8 COMLIB «
. — Cat F |
.. ConfigfndStubs et Heset
" E:t Cutput file name:
w28 g :
__ E'.-'_-"E:_Eir'-'1|_|_”'-'1T5 I..\...\...‘\I‘I‘lS\\bln‘\.G23_SM|_UMTS.EHE
-- makcdg_detect_rebuild_dfile Object/libran modules:
= B8 5M — T — . .
Ela S ource Files | Ikemel32.|lb uzer32 lib gdid2 lib winzpool lib comdlg32.lib ad
B3 oo ¥ Generate debuginfo [lgnore all default libraries
(] sm_cof.c
o [#] sm_cope I™ | Link incrementally v Generate mapfile
- [#] sm_cosc ¥ Enable profii
L Ei prafiling
[—]a ke
E sm_kef.c Project Options:
kemel32.lib uzer32.lib gdi32 lib winzpool lib comdig3Z.lib =
advapid2.lib shell32.lib ole32. lib olzaut32. b uuid lib
j winmm. lib /nologo Azubsyztem: conzole Apraofile LI
Ok, I Cancel |

Figure 1: Enabling profiling in Visual Studio

After enabling the profiling make sure to rebuild the project. Otherwise the profiling will not work. Naturally
the test cases also have to be generated if not already present (not necessary to rebuild).

In order to specify which source code is to be measured upon it is necessary to provide this as a file argument
to the setup. The list file used in this example is called sm.rsp and it looks as follows:

/INC sm_cof.c(0-0)
/INC sm_cop.c(0-0)
/INC sm_cos.c(0-0)
/INC sm_kef.c(0-0)
/INC sm_kep.c(0-0)
/INC sm_kes.c(0-0)
/INC sm_tmf.c(0-0)
/INC sm_tmp.c(0-0)
/INC sm_tms.c(0-0)
/INC sm_f.c(0-0)
/INC sm_pei.c(0-0)
/INC sm_qos.c(0-0)
/INC sm _tft.c(0-0)

This example will use the method where the stack is restarted for each test case as this is the most
complicated of the two. The TAPCALLER is setup with this option checked. The delay used in this example
has been set to 8000 ms. This is illustrated in Figure 2

@ Texas Instruments Proprietary Information Page: 10/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement — Do Not Copy

User Guide
Test coverage

8434.521.03.005
Accepted

In order to start the actual measurements the setup_line_coverage.bat is executed as follows:

General Options Test Tools | b ore Yiewing Tu:u:ulsl

—PCO Dptiohz
¥ Log with Peo while testing

— Directony of PCO Executables

[H:AGPFYBINY,

L

— PCO Yiewers

Configs-Dir: |h\apficfg

L

Start wigwers with thiz configurations while testing:

[apst

[Imnain

| “#dd config” |
—P5

Iu:u:uverage.l:uat |

v Enabled WaitIBEIEIEI mz after stark

o |

Cancel | Apply

Help

Figure 2: The setting used for this example.

setup_line_coverage.bat sm.rsp sm\test_usm\

Following all the desired test cases should be executed from the TAPCALLER. After the test case execution
has finished the post_processing.bat is executed.

4.1 Viewing the results

The results can now be found in 2 output files: G23_SMI_UMTS-LV.Ist and G23_SMI_UMTS-LV.out. In
the first file the percentage of covered code can be found. This is illustrated in the following figure.

{'? TExAS
INSTRUMENTS

Texas Instruments Proprietary Information
Under Non-Disclosure Agreement— Do Not Copy

Page: 11/14

User Guide
Test coverage

8434.521.03.005
Accepted

Command line at 2003 Jan 24 09:59:

Conmand line at 2003 Jan 24
Conmand line at 2003 Jan 24
Command line at 2003 Jan 24
Conmand line at 2003 Jan 24
Command line at 2003 Jan 24
Command line at 2003 Jan 24
Command line at 2003 Jan 24
Command line at 2003 Jan 24
Conmand line at 2003 Jan 24
Command line at 2003 Jan 24
Conmand line at 2003 Jan 24
Conmand line at 2003 Jan 24
Command line at 2003 Jan 24
Conmand linse at 2003 Jan 24
Conmand line at 2003 Jan 24
Command line at 2003 Jan 24
Command line at 2003 Jan 24
Conmand line at 2003 Jan 24
Conmand line at 2003 Jan 24
Command line at 2003 Jan 24
Conmand line at 2003 Jan 24
Conmand line at 2003 Jan 24
Total lines: 2678

Line coverage: 64,7%

GZ3_CHI_UNMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS
. G23_SMI_UMTS

B

=)

i

Figure 3: The output from the line coverage.

The latter can be added to the Visual Studio project. By changing the properties as depicted in Figure 4.

Project Setktings

Settings For: |\/in32 D ebug

cod_np.lib
cod_npc_tr_dblib
- |E] tf_npc_db_pz_pc.lib
- |&] frame_npc_db_psz.lib
mizc_npc_db.lib
cod_npo_tr_db_pelib
% poon_tpe_db_pz lib
-- makcdo_detect_rebuild_dfile
=28 5M

[:l Source Files

[:l Header Files
: I ShI_UTS-LW out
: gprsh

macdef.h
=28 UART
El-- Lizartfan

[:l Source Files

||§||I ||§||I |_J|_J|_J|_J

j General Custom Euild |

[nput file:

b Ameherchembtest_usmiG23 SMI_URT

i

Dezcription;

Commandsz

Ifu:urming Custom Build Step on $[lnputPath]

tppe $[InputP ath)

Dutputs

3

- Directary = Filez = |

Dependencies... |

o |

Cancel |

Figure 4: Adding the .out file to the project and changing its properties

Following the file can be compiled and will be typed in the debug window. This is illustrated in Figure 5.

{'P TExAS
INSTRUMENTS

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement— Do Not Copy

Page: 12/14

User Guide
Test coverage

8434.521.03.005
Accepted

1 Eile Edit View Insert Project Build Tools ‘Window Help

=1=1x
=181

EHE | BB |D- -

DR G5

Swfte@simartgrxi@adcswy

[Globals]

(=] &0 gobal members)

|ZI| & Application_Initialize

BRI Ll

alxl

- ConfigandStubs
[# umtscomp.c
umtzinitc
nucleus.lib
cod_npc_dblib
--[E] ceddatalib
-] cod_npelib
-] eodd_npe_tr_dhb lib
-[E tif_npc_db_ps_pclib
frame_npc_db_ps lib
misc_npc_db.lib
cod_npe_tr_db_ps.lib
[peon_npc_db_ps.lin
-] External Dependencies
makcdg_detect_rebuild_dfile files
-8 SM files
-] Source Files
B-[_] Header Files
garsh
~[E] macdeth
-] External Dependencies
A UART files
usartfax files
B-77 Srures Filae

=

=l

sw==== PUBLIC FUNCTIONS ==

o

| Function sm_set_ti_pd

Description : Sets TI and PD in an outgoing air interface message

Parameters :© ti, pd

*/
GLOBAL void sm_set_ti pd(T& ti. U8 pd, T _MSGEUF *n=g)

~#% Check for extended ti #/
if { (ti & SEND TI_MAX) »= SM_TI_111) {
% Yalue assigned to wariable to shut up Visual © *~
=] U8 ti_msb = 0=f0 | (pd & 15):
U8 ti_lsb = ti & 127;

ccd_codeByte{msg—rybuf, (Ul6)(msg—yo buf-16), 8.

ced_codeByte(msg-sbuf, (U16) insg—sc_buf-#). &,

msg->1_buf += 16:

msg—ro_buf —-= 16;

else {

7% Yalue assigned to wariable to shut up Visual C =~

U8 ti_wal = {(ti & SM TI DIR FL&G) |= 0 7 SH_TI DIR FLAG (B]
| (({ti & SM_TI_111) << 4) [(pd & 15}

ti_mshb):
ti_Lsb):

-

TRACE_EVENT_P2{"sm_set_ti_pd: flag=¥d, ti=%d", ((ti & SM_TI_DIR FLiG)

% Insert non-sxtended ti wvalus in nsg =~
ti_wal):

cod_codeByte(msg—:buf. (USHORT) (msg—»o_buf-8)., 8.
m=g—>1_buf += &

B8 Classyiew | | =] FileView

nsg->0 buf -= 8

141

Ml|Performing Custom Build Sten an

h
h:“g23m~condat ns\srcismisn_kes
h:~g2im~condat ns srchsnhsn_kes
h:“g23m“condatns srchsnsn_kes
h:“gZ3m~condat ns srochsnisn_kes
h:~g2im~condat ns srchsnsn_kes
h:“g23m~condatns srchsnsn_kes
h:“gZ3im-condat ns srochsnisn_kes
h:~g23mvcondatsnshsrchentsn_kes
h:~g23m~condat ns srochsntsn_kes
h:“g23m~condat ns srohsnssn_kes
b g23nscondat smshsrohenisn_kes
h:~g23m~condat ns srochsntsn_kes
h:“g23m~condat ns srohsnssn_kes
h:~g23mvcondat nsssrcheantsn_kes
h:~g2im~condat ns srchsnhsn_kes
h:~g23im~condat ns“srchsn sn_kes
h:\g23m~condat ns\srcismisn_kes
h:~g2im~condat ns srchsnhsn_kes
h:“g23m“condatns srchsnsn_kes
h:“gZ3m~condat ns srochsnisn_kes
h:~g2im~condat ns srchsnsn_kes
h:“g23m~condatns srchsnsn_kes
h:“gZ3im-condat ns srochsnisn_kes
h:~g23mvcondatsnshsrchentsn_kes
h

- | | —— Configuration

TH - Wind2 Debig————————————————————
“nshsrosnstest uswsG23 SHI UMTS-LY. out
ot

Line not reached
Line not reached
Line not reached
Line not reached
Lins not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Line not reached
Lins not reached
Line not reached
Line not reached
Line not reached
Line not reached

Y

«% Inzert extended ti flag + FD in first octet. and ti walue in octet 2 %7

I= 0 ? SH_TI_DIR_FLAG :

Figure 5: The out file can now be used for easy access to the lines in question.

This concludes the example of a line coverage measurement. The procedure for performing function
coverage and function timing are like for line coverage but merely requires that another setup batch file is
run. The only real difference is that it is necessary to specify the .obj files instead of the .c files.

Currently the feature to double click on a line in Visual Studio for easy access is only supported for line

coverage.

{'P TExAS
INSTRUMENTS

Texas Instruments Proprietary Information
Under Non-Disclosure Agreement— Do Not Copy

Page: 13/14

User Guide 8434.521.03.005
Test coverage Accepted

5 Known bugs

The test coverage functionality contains a few known bugs, which will be corrected in the
future.

The known bugs are:

e Inoldversions of the 4ANT prompt, the command line might get too long in case of
many sourcefiles. Solution is to use version 4 or higher of the ANT prompt.

{i’ Texas Instruments Proprietary Information Page: 14/14
TEXAS :
INSTRUMENTS Under Non-Disclosure Agreement— Do Not Copy

