{'f TEXAS
INSTRUMENTS

LLD Extension Mechanism

Project TCS 3.x

Document Type Technical Documentation
Title LLD Extension Mechanism
Author Liyi Yu

Creation Date 06.05.2004

Last Modified

ID and Version

Status

Being Processed

Copyright © 2002-2003 Texas Instruments, Inc. All rights reserved.

Texas Instruments Proprietary Information — Strictly Private

Texas Ins'gruments, Inc.
Being Processed

0 Document Control

© Copyright Texas Instruments, Inc. 2002-2003
All rights reserved.

Every effort has been made to ensure that the information contained in this document is accurate at the time of printing.
However, the software described in this document is subject to continuous development and improvement. Texas
Instruments reserves the right to change the specification of the software. Information in this document is subject to
change without notice and does not represent a commitment on the part of Texas Instruments. Texas Instruments
accepts no liability for any loss or damage arising from the use of any information contained in this document.

The software described in this document is furnished under a license agreement and may be used or copied only in
accordance with the terms of the agreement. It is an offence to copy the software in any way except as specifically set
out in the agreement. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the express written permission
of Texas Instruments.

0.1 Document History

ID Author Date Status

Liyi Yu 06.05.2004 Being processed

0.2 References, Abbreviations, Terms

Texas Instruments Proprietary Information — Private ii

Texas Instruments, Inc.
Being Processed

0.3 Table of Contents

1 L 0o [0k oY o T 3
2 (@ T Y, 1N 4
2.1 (TS =] - | I 4
2.2 [T DT (=TN T} 4
2.3 YN (o] 11 =03 (U= 4
3 TMPIEMENTALION ..o bbb 6
3.1 BASIC PIINCIPIE ..o 6
3.2 AT Command EXIENSION MECHANISIM......c.ciiiiiiiccicieee ettt sbs st 6
3.21 Datatypes......ccoienenecenreeens

3211 T_ATI_EXT_RETURN
3.21.2 T_ATI_EXT_FORMAT
322 ATIHINErTACE oo
3.22.1 sEXT_Output () — send output string
3.2.2.2 sEXT_Indication() - send unsolicited output
3.2.2.3 sEXT_Confirm () — execution command is finished
3.2.2.4 sEXT_Error () - error occurred during the command eXeCUtionccccveeevvieennserceeseeens 8
3.2.2.5 sEXT_Init () — initialize the execution command list
3.23 ATI_EXT INErface ..o
3.2.3.1 rEXT_Init () - Initialize extension AT command list
3.2.3.2 rEXT_Execute () —execute an AT COMIMANGccoeuriieceeiiicee et eees
3.2.3.3 rEXT_Abort () — Abort a command execution
3.3 ACI Signal EXENSION MECNANISIMcucuiiieieirisisierire et sss e st ssssssses s s nses
T R I -1 - 8 Y 1= TP
3.311 T_ACI_EXT_IND
3.3:2 PrimItIVE INTEITACE ... bbb
3.3.2.1 aci_aci_ext_ind () — Interface for ACI_EXT_IND ..ot
3.3.3 ATI_EXT Interface
3.3.3.1 rEXT_Signal () — extension mechanismsignal reCeIVEcoivineinieriineereeseeeeenns 10

4 LY ST 0= 1Y -
4.1 QNI R T Y 72 L 1o
4.2 Command Execution
4.3 SIGNAT HANATING ..o bbb

5 MESSAJE SEOUENCE CRAITS ..ot 13
5.1 AT EXENSION IMECHANISIM. ..ottt sa bbb s et s et s s nree 13
5.1.1 Initialization
5.1.2 COMMEANG EXECULION ..ottt ettt se bbbttt 13
5121 Completed WItNOUL QULPUL........cverieiiierircrre e 13
5.1.2.2 Completed with output
5.1.2.3 RUNS [0NQEr WItNOUL OUEPUL.......cucvevicictceiceee ettt 13
5.1.3 RUNS [ONGEI WIth QULPUL......cocviiiecictccce sttt bbbt 14
5.1.4 Unsolicited response
5,15 EMTON CASES .uuuiuiiiiieieiit ittt R bR b r b
TR0 1o] 110 (-1 (- PSR
5.1.5.2 Runs longer

516 ADOI EXBCULION ... bbb bbb
5.2 ACI signal eXension MECHANIS M ..ot ses s senes 15
521 Receive an EXIENAEU SINal.......ccccociiieiriicees sttt 15

6 B ICCT o d = U T 16
6.1 WiINAOWS SIMUIATION TESTS....ovivieiieeicecieeeeeeeete ettt ettt s et se st be e bt be st st ese e sesbese s seebenssnnas 16
6.1.1 GACIL030 () @Nd GACILO3L () covevrrrrrrrrerrrsersrnessesssssssssssssessssssssssssssssssssssssssssssssssessssessssessssesssssssssesssesnens 16

B.1.2 GACILO3B2 () reerrreeererrereerereesssserssesssseesssessssssssssssssssssessssasssssssssessssassasassesassesassssessesassessssesnsessnsessssesnsesnssnsns 17

Version 1 Texas Instruments Proprietary Information — Private 1

Texas Instruments, Inc.
Being Processed

6.1.3 GACI1033 ()
6.1.4 GACI1034 ()
6.2 Target TSt ..

0.4 Table of Figures

Figure 1 Systemarchitecture overview
Figure 2 ACTDUTIAING DIOCKc. o
Figure 3 Initialization of the ATl extention mechanism
Figure 4 COMMANGT EXECULIONvuivieirieericer ettt
Figure 5 ACI signal eXtention MECNANISITcuiiirierieiitr e

Version 1 Texas Instruments Proprietary Information — Private 2

Texas Instruments, Inc.
Being Processed

1 Introduction

G23 is a software package implementing Layers 2 and 3 of the ET SI-defined GSM air interface signalling
protocol, and as such represents that part of a GSM mobile station’s protocol software which is both, platform
and manufacturer independent. Therefore, G23 can be viewed as a building block providing standardised
functionality through generic interfaces for easy integration.

The G23 suite of products consists of the following items:

e Layers 2 and 3 for speech & short message services,
e Layers 2 and 3 for fax & data services,

o Application Control Interface,

e Slim MMI[02.30] and

e Testand integration support tools.

Version 1 Texas Instruments Proprietary Information — Private

2.1

2.2

2.3

Texas Instruments, Inc.
Being Processed

Overview

General

This document is a Low Level Design (LLD) document. It describes the implementation and the use
cases of the extension mechanis m.

The extension mechanism includes two parts: AT command extension mechanism and ACI extension
signal mechanism. AT command extension mechanism gives the customers opportunities to extend the
standard AT commands with their own AT commands (customer specific AT-commands) or to handle
the standard AT commands in their own way. ACI extension signal mechanism gives customers
opportunities to send an extension signal and to handle the signal in their own way. Customers can use
this mechanism to implement their own code without accessing the Tl source code.

The AT command extension module is not empty when shipping the G23 protocol stack software.
Simp le examples will be implemented and described in this document.

Feature List

e Customers can extend the standard AT commands with their own AT commands easily;
e Customers can provide their own handling of standard AT commands;

e Customers can provide their own handling of extension signals.

Architecture

Remote
Target MMI DTE —

Command Interpreter
ACI

ACI Functional
Intlerface

Command Handler

Protocol Stack Adapter

ss | cc | MM SS'V' SIM | L2R | T30
Driver Functional Interface 423 Pllm'twi
| | | |Inter|face | |
LCD KBD G23 USTAR

Figure 1 System architecture overview

Version 1 Texas Instruments Proprietary Information — Private 4

Texas Instruments, Inc.
Being Processed

The picture above is the system architecture of the Tl G23 protocol stack software. The extension
module (ATI_EXT) is a new module to be implemented for the extension mechanism.

ATI_EXT will run in the same task as ACI. ACI and ATI_EXT have functional interface as shown in
the following diagram. Customers can use the ACI functional interface for their implementation.

_ S
g o R
gl 8| =
S| s =
SMI / MFW) w ATI
v v
ACI
— g
- pQ Xt NP A
GSM stack GPRS stack

Income AT ACI Functiongll ATI Functional >
commang or S|gna' Interface Interface

Figure 2 ACI building block

Version 1 Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.
Being Processed

3 Implementation

3.1 BasicPrinciple

ACI extension mechanism includes two parts: AT command extension mechanism and ACI signal
extension mechanism. Customers have access to the module ATI_EXT. They can implement their own
handling of extension AT commands in function rEXT_Execute() and implement their own handling of
the extension primitive in function rEXT_Signal ().

3.2 AT Command Extension Mechanism

3.2.1 Data types

3211 T_ATI_EXT_RETURN

Prototype:
typedef enum
ATI_EXT_FAIL =-1, /* execution failed, error occurred V4
ATI_EXT_CMPL, /* execution completed Y
ATI_EXT_EXCT, /* execution is in progress Vi
ATI_EXT_BUSY /* execution is rejected due to a busy extension mechanism®/
} T_ATI_EXT_RETURN;
Description:
Itis used to define the return value of the ATI_EXT functions. Functions in the EXT module should always have this
return type.

3212 T_ATI_EXT_FORMAT

Prototype:
typedef enum
{
ATI EXT PART UNKNOWN = -1,
ATI_EXT_PART_BEGIN, /* beginning part of a complete line ¥
ATI_EXT_PART_LINE, /* a part from a complete line W
ATI_EXT_PART_LAST, /* the last part from a complete line 7/
ATI_EXT_CMPL_LINE /* a complete line Y
} T_ATI_EXT_FORMAT;
Description:

Itis used to define the formatof the outputstring. Depending on the differentoutput format, ATl outputs the string
differently. This format indication is used by the sEXT_output to define which format the output should be.

3.2.2 ATl Interface

3.2.2.1 sEXT_Output () —send output string

Prototype:

Version 1 Texas Instruments Proprietary Information — Private 6

Texas Instruments, Inc.
Being Processed

GLOBAL T_ATI_RSLT sEXT_Output ~ (UBYTE src_id,
T_ATI_EXT_FORMAT output_format,
CHAR “output)

Parameter:
src_id source ID of the AT command which has sent the output
output_format formatof the output (see T_ATI_EXT_FORMAT)
output output string
Return:
ATI_FAIL invalid output formator invalid source ID
ATI_CMPL the outputwas successfully sent
Description:

This function can be called from ATI_EXT to send a string oufput to the AT interpreter. By using the different output
format, strings can be outputted differently. E.g. the user wants to outputa string in parts to compose a big string he
can oufput the parts saperately with output formats ATI_EXT_PART_LINE and then ATI_EXT_PART_LAST. Please
note that the max length to outputis: for GSM is (400-4) bytes and for GPRS is (600-4) bytes.

3.2.2.2 sEXT_Indication() - send unsolicited output

Prototype:
T_ATI_RSLT sEXT_Indication (UBYTE src_id,
CHAR “indication _string);
Parameter:
src_id source ID of the source for the indication
0 means, send indication to all available sources
indication_string indication string ('C'-Formaf)
Return:
ATI_FAIL no extended AT command is running
Invalid source ID
No indication string
ATI_CMPL Indication was successfully sent
Description:

This function is used to send an indication unsolicited oufput

3.2.2.3 sEXT_Confirm () — execution command is finished

Prototype:

T_ATI_RSLT sEXT_Confirm (UBYTE src_id);
Parameter:

src_id source ID of the AT command which is finished
Return:

Version 1 Texas Instruments Proprietary Information — Private 7

Texas Instruments, Inc.
Being Processed

ATI_FAIL no extension AT command is running
Invalid source ID
ATI_CMPL confirmation was successfully signalled
Description:

If the execution is finished, with this function the successful result“OK” will be signalled. This function should be
called to signal the final positive resultif there is no final resultreturned (e.g. only ATI_EXT_EXCT has been
returned).

3.2.24 SEXT_Error () - error occurred during the command execution

Prototype:
T_ATI_RSLT SEXT_Error (UBYTE src_id,
T_ACI_CME_ERR err);
Parameter:
src_id source ID of the AT command which is finished
err error code
Return:
ATI_FAIL no extension AT command is running
Invalid source ID
ATI_CMPL Error message was successfully signalled
Description:

Iferror happens during the execution of the command, with tis function the error information will be outputted. This
function should be called to signal the final negative resultif there is no final resultreturned (e.g. only
ATI_EXT_EXCT has been returned).

3.2.25 SEXT_Init () —initialize the execution command list

Prototype:
T_ATI_RSLT sEXT_Init (CHAR *cmd_list)
Parameter:
Cmd_list The extension command list passed in from the extension module
Return:
ATI_CMPL inifialization was successfully done
Description:

This is the initialization funcfion interface for the extension module in ATI.

3.23 ATI_EXT Interface

3.2.3.1 rEXT_Init () - Initialize extension AT command list

Prototype:
T_ATI_EXT_RETURN rEXT_Init ()
Return:
ATI_EXT_FAIL inifialization can not be performed
ATI_EXT_CMPL command list is successfully initialized
Parameter:

Version 1 Texas Instruments Proprietary Information — Private 8

Texas Instruments, Inc.
Being Processed

command_list list of AT command strings

Description:

This function initialize the extension AT command listin ATI.

3.2.3.2 rEXT_Execute () —execute an AT command

Prototype:
T_ATI_EXT_RETURN rEXT_Execute (UBYTE sre_id,
UBYTE *emd_string,);
Parameter:
src_id ID of the source wich has the command received
cmd_string string with command and parameter ('C'-Formaf)
Return:
ATI_EXT_FAIL invalid command string
Error in execution
ATI_EXT_BUSY another ATl extension command is running
ATI_EXT_CMPL execution is finished
ATI_EXT_EXCT command runs
Description:

This function starts the execution ofa command. The ATI_EXT_FAIL return value indicates only a general error; the
extension mechanismis responsible for the specific error indication.

3.2.3.3 rEXT_Abort () — Abort acommand execution

Prototype:
T_ATI_EXT_RETURN rEXT_Abort (UBYTE src_id);
Parameter:
src_id ID of the source which has initiated the abort
Return:
T_ATI_EXT_FAIL no command is running
T_ATI_EXT_BUSY abortalready running
T_ATI_EXT_CMPL success
Description:

The function stops the execufion ofan ATI extension command.

3.3 ACI Signal Extension Mechanism

3.3.1 Data types

33.1.1 T_ACI_EXT_IND

Prototype:

Version 1 Texas Instruments Proprietary Information — Private 9

Texas Instruments, Inc.
Being Processed

typedef struct
USHORT signal_id; /*ID to sign the signal Vi
ULONG *data; /* data for the signal V4
} T_ACI_EXT_IND;
Description:

The parameter <data>is used to ransmitdata with the signal. <signal_id> can be used as an internal ID. The ACI
does notuse this. The data buffer has length of 200 by tes.

3.3.2 Primitive Interface

3.3.2.1 aci_aci_ext_ind () — Interface for ACI_EXT_IND

Prototype:
void aci_aci_ext_ind (T_ACI_EXT_IND *aci_ext_ind)

Parameter:
aci_ext ind SDU Data element

Return: Void

Description:
This function is the primitive interface for the extended primitive ACI_EXT_IND. This funcfion passes the received
data fransparenty to function rEXT_Signal() in ATI_EXT.

3.3.3 ATI_EXT Interface

3.3.3.1 rEXT_Signal () — extension mechanism signal received

Prototype:
T_ATI_EXT_RETURN rEXT_Signal (T_ACI_EXT_SIGNAL “ext_signal);
Return:
T_ATI_EXT_FAIL signal notsupported
T_ATI_EXT_CMPL The processing was OK.
Parameter:
ext_signal signal data
Description:

This function will be called by ACI when itreceives the extension signal ACI_EXT_SIGNAL. Input data in the primitive
will be passed to extension mechanism transparently.

Version 1 Texas Instruments Proprietary Information — Private 10

Texas Instruments, Inc.
Being Processed

4 Use Cases

4.1 Initialization

The extension AT command list will be initialized when ATI is initialized. The functional interface in ATI_EXT
for the initialization is rEXT_Init(). The customer can initialize the extension command list in ACI by the input
parameter < command_list >,

Example: The customer wants to implement his own AT commands AT$A and AT$B and to override the
standard AT command ATD, he should implement the function rEXT _Init() in a way that the input parameter is
pointing to a hard coded string: “$A;$B;D;”. The extension mechanism can recognize and parse all ACII
characters in the AT command name.

The following diagramdescribes the initialization of the ATI_EXT module.

ATI_EXT

»

Init Customer
AT Commands

ATI Functional Interface

Figure 3 Initialization of the ATl extention mechanism

4.2 Command Execution

When ATI receives the AT command, it first checks the extension command list. If the command is in the
extension list ACI calls the extension mechanism. The handling of the extension commands should be
implemented in function rEXT_Execute (). When the user implements his own handling, he can make use of the
ACI functions. An example of how ATA, ATB and ATD is handled is provided. Please note that if the
customer specific AT commands are not basic commands (basic commands include: AT+, AT%, AT&, ATA to
ATZ), the format of the AT commands passed to the extension mechanism is as following:

Set command: “=" between command name and command parameter. E.g. AT$A=1;
Query command: “?”after the command name. E.g. AT$A? or AT$A?2 if there is a parameter;
Test command: “=?"after the command name. E.g. AT$A=? or AT$A=?2 if there is a parameter.

Other command: nothing after the command name. E.g. AT$A.
The following diagramdescribes the handling of an extension AT command in the following steps:
1. Extension AT command is received,;

2. The AT command string is passed to rEXT_Execute () in the ATI_EXT module;
3. rEXT_Execute () handles the command and uses the ACl and ATI interface if necessary.

Version 1 Texas Instruments Proprietary Information — Private 11

Texas Instruments, Inc.
Being Processed

ATI_EXT

Output Functions

A 4
ATI Functional Interface

v
ACI Functional Interface

Figure 4 Commandexecution

4.3 Signal Handling

ACI can receive extension signals from hardware invoked by customer entities. This signal data will be passed to
the extension module transparently and will be handled in function rEXT_Signal().

The following diagram describes the handling of an extension signal in the following steps:
1. Anextension primitive ACI_EXT_IND is received in the ACI primitive interface;

2. The primitive is passed to rEXT_Signal() transparently;
3. rEXT_Signal() handles the signal.

ATI_EXT

Signal Function
Output Functions

A 4
ACI primitive interface ATI Functional Interface

\4
ACI Functional Interface

N
szr
g\q
<
&
g
<&

Figure 5 ACI signal extention mechanism

Version 1 Texas Instruments Proprietary Information — Private 12

5 Message Sequence Charts

5.1 ATI Extension Mechanism

5.1.1 Initialization
ATl initializes the customer specific AT command list when ATI is initialized.

ACI
| rEXT Init ()

| [Init Customer AT commands]

5.1.2 Command Execution

5.1.2.1 Completed without output

| rEXT Execute ()

ACI
|
| rEXT Execute ()
(1) F=mmmmmm e
|
| SEXT Output ()
<

[RETURN (1): ATI_EXT CMPL]
|

5.1.2.3 Runs longer without output

(L) | rEXT Execute ()

[RETURN (1): ATI_EXT EXCT]

| SEXT Confirm()

Version 1 Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.

EXT

EXT

Being Processed

13

5.1.3 Runs longer with output

(1) | rEXT Execute ()

5.14 Unsolicited response

| sEXT Indication ()

515 Error cases

5.1.5.1 Completed

ACI
|
| rEXT Execute ()
(1) Fmmmmmm e e
|
| SEXT Error ()
*< __

(1) | rEXT Execute ()

Version 1 Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.
Being Processed

14

516 Abortexecution
ACT
|
| rEXT Abort ()
K o e
|
5.2 ACIsignal extension mechanism
521 Receiwe an Extended Signal
EXT ACT EXT
| | |
| ACI_EXT IND | |
| *=================>* |
| | |
\ \ rEXT Signal |
| X L > %
| | |
Version 1

Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.
Being Processed

15

Texas Instruments, Inc.
Being Processed

6 Test Plan

6.1 Windows Simulation Tests

The windows simulation test includes the following new test cases:

611 GACIL030 () and GACIL031 ()

This two test cases test the handling of new implemented AT commands AT$A and AT$B.

Version 1 Texas Instruments Proprietary Information — Private 16

Texas Instruments, Inc.
Being Processed

TST ATI EXT
| ATSA | |
| == >* | ATS$A
| [—=—m e >* |
| | |
| [F<mm e |
| “Hello World!” | |
[F<mmmm e | |
| “OK” | |
[F<mmmm e | |
| | |
| ATS$SA=0 | |
| ——— - >* | AT$A=0
| [==—mmmmm e >* |
| | |
| [Ao |
| “ATSA is set to off.” | |
[F<mm e e | |
“OK”	
F<mm	
ATSA=1	
mmmm >*	ATSA=1
=== >*	
[F<mmmm e e e	
“ATSA is set to on.”	
[F<mmmmm e e	
“OK”	
[F<mm e	
ATSA=?	
—m e >*	AT$A=?
	—==—mmmmmm e >*
[F <o mm e	
“ATSA is set to on.”	
[F<mmm e	
“OK”	
[F<mmmm e e	

6.1.2 GACIL1032 ()
This test case tests the handling of an overriding test case ATD.

TST ATI EXT
| ATD12345 | |
| == ——mm - >* | ATD12345
| === >* |
| | |
| [F<mmmmm e |
| “OK"” | |
[F<mmm e | |
| “EXT: O” | |
[F<mm e e | |

Version 1 Texas Instruments Proprietary Information — Private 17

Texas Instruments, Inc.
Being Processed

6.1.3 GACIL1033 ()

This test case tests the handling of a list if AT commands. The format of the extension command list

should be separated by a “;”.
e.g. AT$A=0;$B;+CGREG=1
TST ATI EXT

| ATSA=0; $B; +CGREG=1 | |
R > | ATS$A=0

| | === >*
	ATSB
	———m e e >*
[F<mmmmmm e	
“AT$A is set to on.”	
F<mmmmm e	
“This is ”	
F <	
“a complete ”	
[F <	
“line. ”	
[¥ <	
“OR”	
[¥ <—mmmmm e | |

6.14 GACIL034 ()

This test case tests the handling of the extension signal.

6.2 Target Test

Target test has been done for the same test cases as windows test except the test for the extension signal.

Trace:

ATSA

Hello World!

OK

AT$A=0

ATS$A is set to off.
OK

AT$B

This is a complete line.

OK
ATS$A;$B

Version 1 Texas Instruments Proprietary Information — Private 18

Hello World!

This is a complete line.

OK

AT$A=0;$A=1;$B
ATS$A is set to off.
ATS$A is set to on.

This is a complete line.

OK

Version 1

Texas Instruments Proprietary Information — Private

Texas Instruments, Inc.
Being Processed

19

