
 

Copyright  2003 Texas Instruments, Inc. All rights reserved. 

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

 

 

 

 

 

 

 

 

 

 

               
 

User Guide 

TDC 

 
 

 

 

 

 

 

 

 

 

 

Department: Aalborg Wireless Center 

Creation Date: 12 January, 2002 

Last Modified: 22 April, 2003 by Carsten Schmidt 

ID and Version: 8434.510.02.014 

Status: Submitted 

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 2/48 

 

0 Document Control 

Copyright  2003 Texas Instruments, Inc.  

All rights reserved. 

 

Every effort has been made to ensure that the information contained in this document is accurate at the time 
of printing. However, the software described in this document is subject to continuous development and 
improvement. Texas Instruments reserves the right to change the specification of the software. Information 
in this document is subject to change without notice and does not represent a commitment on the part of 
Texas Instruments. Texas Instruments accepts no liability for any loss or damage arising from the use of any 
information contained in this document. 

The software described in this document is furnished under a license agreement and may be used or copied 
only in accordance with the terms of the agreement. It is an offence to copy the software in any way except 
as specifically set out in the agreement. No part of this document may be reproduced or transmitted in any 
form or by any means, electronic or mechanical, including photocopying and recording, for any purpose 
without the express written permission of Texas Instruments. 

0.1 Document History

ID Author Date Status 

8434.510.02.001 CSH 12 January, 2002 Being Processed 

8434.510.02.002 CSH 27 January, 2002 Submitted 

8434.510.02.003 CSH 21 March, 2002 Submitted 

8434.510.02.004 CSH 10 April, 2002 Submitted 

8434.510.02.005 CSH 17 May, 2002 Submitted 

8434.510.02.006 KSP 9 September, 2002 Being Processed 

8434.510.02.007 CSH 29 October, 2002 Being Processed 

8434.510.02.008 CSH 30 October, 2002 Being Processed 

8434.510.02.009 CSH 18 November, 2002 Being Processed 

8434.510.02.010 CSH 12 December, 2002 Being Processed 

8434.510.02.011 CSH 14 January, 2003 Being Processed 

8434.510.02.012 JHO 5 March, 2003 Being Processed 

8434.510.02.013 CSH 25 March, 2003 Submitted 

8434.510.02.014 CSH 22 April, 2003 Submitted 

0.2 References, Abbreviations, Terms

 [TI 7010.801] 7010.801, References and Vocabulary, Texas Instruments 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 3/48 

 

Table of Contents 

0 Document Control................................................................................................................ 2 

0.1 Document History.......................................................................................................... 2 
0.2 References, Abbreviations, Terms ................................................................................... 2 

1 Introduction ......................................................................................................................... 5 

1.1 TDC version .................................................................................................................. 5 
1.2 Used terms .................................................................................................................... 5 
1.3 TDC test tool chain ........................................................................................................ 6 

2 TDC file structure. ............................................................................................................... 8 

2.1 TDC Files ..................................................................................................................... 8 
2.2 Documentation files ....................................................................................................... 8 
2.3 TDC interface and include files....................................................................................... 9 
2.4 TDC Libraries ............................................................................................................... 9 
2.5 Generated output file ...................................................................................................... 9 

3 TDC Syntax ....................................................................................................................... 11 

3.1 TDC structure .............................................................................................................. 11 
3.2 Test verdict operations ................................................................................................. 12 

3.2.1 FAIL() .................................................................................................................... 12 
3.2.2 PASS().................................................................................................................... 12 

3.3 Test cases .................................................................................................................... 12 
3.3.1 Test case variant ...................................................................................................... 12 

3.4 Test steps .................................................................................................................... 13 
3.5 Events ......................................................................................................................... 13 

3.5.1 SEND (T_PRIMITIVE_UNION).............................................................................. 14 
3.5.2 AWAIT (T_PRIMITIVE_UNION) ........................................................................... 14 
3.5.3 COMMAND (char*) ................................................................................................ 15 
3.5.4 TIMEOUT (time) .................................................................................................... 16 
3.5.5 MUTE (time)........................................................................................................... 16 
3.5.6 START_TIMEOUT (time) ....................................................................................... 16 
3.5.7 WAIT_TIMEOUT ()................................................................................................ 16 

3.6 Advanced features ....................................................................................................... 16 
3.6.1 Source and destination of primitives: T_PORT .......................................................... 16 
3.6.2 Primitive parking ..................................................................................................... 17 
3.6.3 ALT { … } (Alternative mail sequence) .................................................................... 19 
3.6.4 TRAP {…} and ONFAIL {…}................................................................................. 20 
3.6.5 Common Timer Base (CTB) ..................................................................................... 21 

3.7 Basic C statements ....................................................................................................... 24 
3.8 Constraints .................................................................................................................. 24 

3.8.1 Instance navigation .................................................................................................. 25 
3.8.2 Standard member functions ...................................................................................... 25 
3.8.3 Primitive constraints  ................................................................................................ 26 
3.8.4 AIM constraints ....................................................................................................... 27 
3.8.5 Struct and union constraints ...................................................................................... 29 
3.8.6 Array constraints...................................................................................................... 30 
3.8.7 Integer and enum constraints .................................................................................... 30 
3.8.8 Bit and basic type array constraints  ........................................................................... 31 

3.9 Specifying MUT .......................................................................................................... 32 

4 TDC and Visual Studio 6.................................................................................................... 33 

4.1 Loading TDC Visual Studio 6 macros ........................................................................... 33 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 4/48 

 

4.1.1 Known problems with TDC Visual Studio 6 macros................................................... 34 
4.2 Macro to touch .h files.................................................................................................. 34 
4.3 TdcMemberList ........................................................................................................... 35 
4.4 Typename example ...................................................................................................... 35 
4.5 Debug test cases .......................................................................................................... 36 

4.5.1 Setup....................................................................................................................... 36 
4.5.2 Run ......................................................................................................................... 37 

4.6 Advanced Debugging ................................................................................................... 37 
4.6.1 Meaning of TAP2.exe arguments .............................................................................. 37 
4.6.2 Tracing Stack Side Errors ......................................................................................... 37 
4.6.3 Tracing Tool Side Errors - Additional DLLs .............................................................. 38 
4.6.4 Debugging TDC and TAP ........................................................................................ 40 
Alternatively:....................................................................................................................... 40 

5 TDC Code standard ........................................................................................................... 41 

5.1 Test case layout ........................................................................................................... 41 
5.2 Test step layout............................................................................................................ 42 

6 Appendix............................................................................................................................ 44 

6.1 Test case example  ........................................................................................................ 44 
6.2 BNF for TDC syntax .................................................................................................... 44 
6.3 List of member functions.............................................................................................. 45 
6.4 Trouble shouting.......................................................................................................... 46 

6.4.1 No dot completion ................................................................................................... 46 
6.4.2 Linkage fails with error like “… unresolved external symbol "char BadLibVersionCheck_ …”47 
6.4.3 All test-cases fails initial........................................................................................... 47 

6.5 Know errors ................................................................................................................ 47 
6.5.1 Insufficient text in ~TDC traces ................................................................................ 47 
6.5.2 Value strings ........................................................................................................... 47 
6.5.3 TDC lib handling ..................................................................................................... 47 
6.5.4 In deep copy ............................................................................................................ 48 
6.5.5 Array handling......................................................................................................... 48 

A Finding exact location of an error .............................................. Error! Bookmark not defined. 

 

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 5/48 

 

1 Introduction 

This document contains the user guide for the TDC test front end. The TDC test front end consists basically 
of a language syntax called TDC (Test Description Code). This TDC language can be written/edited in 
Visual Studio 6, because it is normal c-code, and you will gain help from the features this editor provide (dot 
completion etc.). From this user guide you will learn about this language and how to develop new test cases 
and edit existing ones.  

 

The TDC test description language provides modularity to the test descriptions. Therefore this document also 
states some rules, regarding development of new test cases and how to split these into cases, steps and 
constraints that should be obeyed. One major reason for this is, that we plan to convert to TTCN-3, when a 
solution is ready. 

 

What you will not learn from this document is complex and technical details on the new front end or design 
details – after all it is only a user guide.  

 

In this document several examples are needed. However to ease the overview they have all been kept very 
simple.  In the appendix section (6.1), a complete test case is defined in TDC, so if you need to see 
something specific in the complete context have a look there.  

1.1 TDC version 

According to the text you will read in the next sections you will see a set of TDC tools. The table below lists 
versions of the different tools so that you can see exactly which version this document is written for: 

 

Tool Applicable version 

TDC C-libraries Version 1.1.2 

TDS_TO_TDC Version 1.1.2 

Table 1 TDC tool versions 

 

This document will be updated according to future releases of TDC tools and so will the table above. If you 
cannot find the information for a feature in the document, please check the version of the tool according to 
this. Please note that TDS_TO_TDC has it own user guide (8434_513_02_tds_to_tdc_user_guide.doc), so if 
your look for information on how to convert your existing test cases please look there. 

1.2 Used terms 

Before we get into the interesting part, you should be familiar with the terms listed in the table below. The 
terms conform closely to TTCN-3. 

 

Term Explanation 

Instance An occurrence of data for a type. 

Dynamic part Test code i.e. test cases and test steps. 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 6/48 

 

Static part Test data of those types inherited from SAP, MSG 
and ASN.1 documents. 

MUT Module Under Test. 

PCO Point of Control and Observation. 

TDS Test Description Script 

TDC Test Description Code 

MSC Message Sequence Chart 

ETS Entity Test Specification 

ETR Entity Test Report 

SDU Service Data Unit 

GUMLE A message sequence chart tool used in UMTS 
development at Condat Dk. 

Constraints This is another used term for the static part of a test 
case or test event. 

Test events SEND, AWAIT, COMMAND, TIMEOUT, 
TIMEOUT_WAIT, MUTE, START_TIMEOUT, 
WAIT_TIMEOUT.  

Test step A series of events or other test steps.  

Test case A series of test steps and/or events
1
.  

Test suite A series of test cases.  

Table 2 Used terms 

1.3 TDC test tool chain 

TDC cases can be edited in a normal C/C++ editor. The TDC file is a normal cpp-file (source code file), 
which uses a set of generated header files from the SAP tool chain. The tool chain can be seen in Figure 1.  

 

 

                                                 
1 In the new language it is not possible to have a test case as preamble like in the old system. I t must then be defined as a step. This 
is compliant with TTCN-3.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 7/48 

 

TDC

Compiler

* .dll files

Binary

Test  Files

Test

Specification

Visual C editor

ASN1

AIM

SAP

TDC header-files

Visual C compiler

* .TDC files (C-files)

Message &

Primitve

Descriptions

* .mdf, * .pdf files

Message &

Primitive

Generator

CCDgen

 

Figure 1 The TDC tool chain 

When CCDgen is called (running makcdg) with the option "-gtdc" it also generates the tdc header files. 
Besides using the TDC-header files for generating the dll-file, they also provide type awareness so that dot 
completion will be available in Visual Studio 6, when specifying test cases. This dependency is indicated 
with the dotted arrow.  

Besides the tdc header files a special C-library will provide additional member functions to the types in the 
header files. These member functions are used when assigning values to the constraints. This is done by 
adding a little C++ functionality to the generated TDC files. This results in advantages like use of templates, 
operator overloading, scope and modularisation. This library also called tdcinc.lib is generated when calling 
makcdg with a special parameter: 

 

makcdg alr gprs tdclib  

or 

macdg alr gprs umts tdclib 

 

Besides the tdcinc.lib an additional lib (tdc.lib, with and without debug information) is added to the tdc 
project. This lib contains stuff for interfacing to TAP and CCD.  

 
 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 8/48 

 

2 TDC file structure. 

This section explains how we recommend that you structure you test case – e.g. where you should put the 
different parts of a test case. It also list‟s a short list of rules, which should be obeyed. Please refer to Table 2 
for an explanation of used terms.  

2.1 TDC Files  

It is recommend that the following files will be created as minimum for an entity.  

File name Contents 

ENTITY_test.dsp     Visual studio project file. 

ENTITY_cases.cpp   Contains only leaf
2
 test cases. 

ENTITY_steps.cpp   Contains only test steps. 

ENTITY_steps.h   Contains only test step prototypes. 

ENTITY_constraints.cpp  Contains only constraints.  

ENTITY_constraints.h Contains only constraints prototypes. 

ENTITY_ENTITY2_constraints.cpp Contains only interface constraints – e.g. constraints used by both 
entities. 

ENTITY_ENTITY2_constraints.h Contains only interface constraints prototypes. 

Table 3 TDC Files 

The interface constraints files might be a number of different files according to the number of entities the 
MUT share constraints with. If you are a little confused for what belongs in each file, an example has been 
made in the appendix in section 6.1 at page 44. 

 

All the TDC files should be placed under: 

UMTS\Condat\ms\src\ENTITY\ENTITY_test\*.* 

or 

g23m\Condat\ms\src\ENTITY\ENTITY_test\*.* 

 

For integration test cases we suggest that additional directories are created – e.g. AS, NAS and UMTS. It is 
off course possible to have more folders and files for each entity – for example it is possible to have 
RRCMEAS and RRCCOMP files and folders for the RRC entity. E.g. this will give following directory: 

UMTS\Condat\ms\src\rrc\rrcmeas_test\*.* 

2.2 Documentation files 

With TDC is not possible to have functional MSCs, e.g. MSCs that result in a number of events, in the c-
files. However if you convert TDS files (existing test cases from word documents) the textual MSCs are 
inserted as comments for each test case and test step. These MSCs can be maintained. When you create a 
new test case you can also add a MSC as comment, if you feel that this makes the test case a bit more 
explaining. 

                                                 
2 Leaf test cases are final test cases – e.g. non “preamble” test cases.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 9/48 

 

The MS-Word document is serving as documentation. The document shall contain the purpose of the test 
cases and what to be tested with the test cases.  

2.3 TDC interface and include files. 

The TDC header files are included from the tdcinc directory. This directory contains a set of converted 
header files from cdginc. Using these h-files gives you the interface to TDC. It is from these files you obtain 
the types, you use in your test specifications. This means that you will have to include the interface files you 
need in the specification of your constraints. An example of the files to be included in ENTITY_constraints.h 
is listed here: 

 

/*Interface files from AIMs */ 

#include “m_cc.h” 
#include “m_umts_as_asn1.h” 

/*Interface files from SAPs */ 

#include “p_rr.h” 
#include “p_mm.h” 
…… 
#include “tdc.h” 

 

The “#include tdc.h” should be below all the interface files. It is also important that you first include the 
AIM interface files and the SAP interface files. 

2.4 TDC Libraries  

The section only applies for umts developers.  

As mentioned before you need some libraries - tdcinc.lib and m_umts_as_asn1_inc.lib in your visual studio 
project before you can generate the test cases to be executed. Please note that the m_umts_as_asn1_inc.lib 
only is for umts testcases. These libraries are interface and tool dependent. It is possible to generate them via 
a makcdg.mak. However the build process is very slow (only for the umts project, because of the ASN1 
message description file), so every time an interface release occurs these libraries are generated for you and 
placed at: 

\\dags11\precompiled\”IF_release”\tdc_libs\ 

 

You can copy these libraries to  

\g23m\condat\ms\tdclib\ 

If you change a SAP you need to build the tdcinc.lib again. This can be done with another visual studio 
project, which can be loaded into your tdc workspace. The project you should load is: 

\g23m\condat\int\msdev\makcdg\makcdg_force_rebuild_cdginc_tdclib.dsp 

If you build this project the tdcinc.lib is build. 

2.5 Generated output file 

When you want to generate test case you open you Visual Studio dsp file (assuming that your test case all 
have been converted to TDC). When you choose build, Visual studio generates a dll-file with all your 
executable test cases. A makefile can also be created, so that building of the executable test cases can be 

file://dags11/precompiled/”IF_release”/tdc_libs/


User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 10/48 

 

done without starting Visual Studio. This user guide will not inform about these makefile topics. The 
generated test case file (only one dll is generated for each test case file) can be found at: 

 

\g23m\condat\ms\test\test_ENTITY\ENTITY.dll 

 

This file can be loaded into the tapcaller (for regression tests) or you can execute your test cases from the 
4NT prompt with the already known batch jobs. 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 11/48 

 

3 TDC Syntax 

This section will provide a detailed description of the TDC syntax. It will guide you through a description 
and specification of all available types in the TDC format. For a complete BNF

3
 for the TDC language please 

look in appendix section 6.2 

When you specify a static part in TDC, the code will be nearly identical to the stack code, except that valid-
flags (v_…), array-counters (c_…), union-controllers (ctrl_…) and all kinds of memory 
allocation/deallocation are handled implicit – e.g. you don‟t need to worry about that. 

In TDC it is also possible to do normal visual studio debugging a single step trough a test case, but the result 
cannot be guaranteed, since the frame and the TAP application work asynchronously.  

3.1 TDC structure 

The TDC description language has the following file content layout: 

TDC files

Case_1 Case_2

Step_3

Step_2

(shared_step)

Step_1

SEND (X) WAIT(Y) TIMEOUT

COMMAND()

SEND X)

WAIT(Z)

ENTITY_cases.tdc

ENTITY_steps.tdc

ENTITY_steps.h

ENTITY_constraints.tdc

ENTITY_constraints.h
ZYX

 

Figure 2 TDC file layout 

 

                                                 
3 BNF is an acronym for "Backus Naur Form". This is a form that describes the syntax of a language.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 12/48 

 

From the figure it should be clear what is allowed on test case level and test step level. The above is 
compliant with TTCN-3, so we recommend that these rules be obeyed. The old TAP Test suites cannot be 
handled by TDC, but what you can do with suites is actual possible with TDC test cases. 

As you can see the test cases can only contains steps and events not other test cases. This means that all test 
cases in TDC are leaf test cases – e.g. final test cases, and not preamble test case. 

3.2 Test verdict operations 

A verdict is what you expect as outcome of a test case. When you specify a test case or test step you have the 
possibility to assign the verdicts contained in this section. Please note that the default verdict is always 
PASS() for the different operations – unless otherwise specified. This means that you don‟t need to apply the 
PASS() verdict – it is default.  

3.2.1 FAIL() 

The fail verdict exits with failure from a test step or a test case.  

3.2.2 PASS() 

The pass verdict returns a pass from a test step or test case.  

3.3 Test cases 

Only test cases can be executed to a result (“passed” or “failed”). A test case is created with the type 
T_CASE. This should be followed by inclosing "{}". Inside the T_CASE inclosing "{}" a macro shall be 
used called BEGIN_CASE(“…”) also followed by inclosing "{}". BEGIN_CASE take a string as parameter. 
This string is the title used for each test case.  

An example of a test case creation is shown here: 

T_CASE UMTS200() 

{  

 BEGIN_CASE ("MO_CS_Emergency_Call") /*The title inside this macro is used in the 

tapcaller.*/ 

 { 

/* Steps and/or events should go here*/  

    setup_routing(); 

…… 

} 

} 

3.3.1 Test case variant 

You are probably familiar with test case variants. In TDC test cases variants are done as steps or constraints 
with arguments. Then create multiple test cases, which use this step with one or more arguments or you 
might simply use a “for-loop”. It is recommended that you create an enum for the different variation 
possibilities – this will ease the understanding, when you read the test case. A simple example (no enum is 
created here) is stated below. 

T_CASE UMTS200A() 

{  

 BEGIN_CASE ("MO_CS_Emergency_Call_A")  

{  

/* Steps and/or events*/  

    setup_routing(„A‟); /*Calling step with an argument*/ 

} 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 13/48 

 

} 

 

T_CASE UMTS200B() 

{  

 BEGIN_CASE ("MO_CS_Emergency_Call_B")  

{                

…… 

/* Steps and/or events */  

    setup_routing(„B‟); /*Calling step with an argument*/ 

} 

} 

3.4 Test steps 

A test step is created with the type T_STEP. This should be followed by inclosing "{}" and inside a macro 
shall be used called BEGIN_STEP(“…”) also followed by inclosing "{}". BEGIN_STEP takes a string as 
parameter, just like BEGIN_CASE, and the string is traced out at the beginning of a test step. An example of 
a test step is shown below: 

T_STEP setup_routing()  

{ 

BEGIN_STEP(“Setup_routing”); /*Provides tracing*/ 

{ 

/*Events with specified constraints or other steps goes here*/  

 SEND(any_primitive()); 

 AWAIT(any_other_primitive()); 

   

  ………… 

} 

} 

 

It is not possible to execute a test step – it has to be a part of a test case. Below you will find a test step, 
which takes an argument – e.g. it is a variant: 

T_STEP setup_routing(char variant)  

{ 

BEGIN_STEP(“Setup_routing”); /*Provides tracing*/ 

{ 

 /*Events with specified constraints or other steps goes here*/ 

SEND(any_primitive(variant)); 

if (variant == „A‟) AWAIT(any_other_primitive_1()); 

if (variant == „B‟) AWAIT(any_other_primitive_2()); 

   

………… 

} 

} 

3.5 Events 

This section explains all possible events, which can be used in a test case or test step.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 14/48 

 

3.5.1 SEND (T_PRIMITIVE_UNION) 

This event (macro) is used to send a primitive constraint. SEND() takes the type T_PRIMITVE_UNION as 
argument. An example of a send is listed below: 

T_PRIMITIVE_UNION rrc_prim1() 
{  

 T_PRIMITIVE_UNION rrc_prim1; 

rrc_prim1->RRC->RRC_SOMETHING_REQ.my_integer = 10; 

……… 

 
return rrc_prim1; 

} 

SEND(rrc_prim1()); 

In SEND events all constraints should be functions – e.g. they should return a T_PRIMITIVE_UNION type 
or a primitive type from a SAP. 

SEND events can be prefixed with a port specification, which determine the destination entity, see 3.6.1 for 
more info on ports. 

3.5.2 AWAIT (T_PRIMITIVE_UNION) 

This event (macro) is used to await a primitive constraint and compare the received primitive with the 
specified values. It takes the type T_PRIMITIVE as argument. AWAIT is used just like SEND() 

 

T_PRIMITIVE_UNION rrc_prim2() 

{ 

T_PRIMITIVE_UNION rrc_prim2; 

rrc_prim2->RRC->RRC_SOMETHING_IND.my_integer = 10; 

……… 

return rrc_prim2; 

} 

AWAIT(rrc_prim2()); 

In await events all constraints should be functions – e.g. they should return a T_PRIMITIVE_UNION type 
or a primitive type from a SAP. 

 

The order of await events are significant unless otherwise specified. The following example illustrates the 
behaviour:  

AWAIT(rrc_prim2());  
AWAIT(rrc_prim3()); 

Is different from 

AWAIT(rrc_prim3());  
AWAIT(rrc_prim2()); 

AWAIT events can be prefixed with a port specification that specifies which entity(s) is allowed as source(s) 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 15/48 

 

and/or which entities is allowed as original destination(s), see 3.6.1 for more info on ports. 

3.5.3 COMMAND (char*) 

This command is used to redirect, duplicate and set configuration parameters for the MUT. The possible 
commands are reset, redirect and duplicate. Below you will se a command example: 

 

COMMAND (“RESET RRC”);  /*Reset all previous redirect and duplicate settings 
for the RRC entity */ 

COMMAND (“RRC DUPLICATE RCM PCO);  /*Duplicates all primitives send from RRC to RCM 
to the PCO – this enables binary tracing of 
primitives in the pco_viewer*/ 

COMMAND (“RRC REDIRECT RCM TAP”);  /*Redirects all primitives sent from RRC to RCM to 
the TAP */  

COMMAND (“TAP REDIRECT TAP <MUT>”); /*This command must be the last one in a series of 
commands. This redirects all the stuff sent from the 
TAP to MUT*/ 

 

All the duplicate commands must be before the redirect commands. It is also possible to use “ALL” as 
parameter – e.g.  

 

COMMAND (“RRC DUPLICATE ALL PCO”);  /*Duplicates all primitives send from RRC to the 
PCO this enables tracing of primitives in the 
pco_viewer*/ 

COMMAND (“TAP DUPLICATE ALL PCO”);   /*Duplicates all primitives send from TAP to the 
PCO – this enables tracing of primitives in the 
pco_viewer*/ 
 

If the test case use several stack entities as MUT –  e.g. you are doing integration test, then the last 
command  

COMMAND (“TAP REDIRECT TAP <MUT>”),  must be replaced by several commands of the format 

COMMAND (“TAP REDIRECT TAP **bbbbbb******** <MUT>”) 
 

In th is line, bbbbbb is the binary coding of the Service Access Point identifier (each b is one binary digit 0 or 1) and <MUT> is the  

entity providing the Service Access Point. The tested entities use a line for every Service Access Point. For more information 
regarding the Service Access Point identifier see [C 8434.XXX.01] gpf\ doc\sap_numbering_scheme.doc. Here you will a lso find a 
description of the meaning of the bits in an operation code, so that you can search out the right b its.  

 

In the example below, it is assumed that RR has the Service Access Point 11 (0x0B). 

 

COMMAND (“TAP REDIRECT TAP **001011******** RR”)  
 

For all UMTS entities we use 32 bit operation codes. Therefore the binary coding of an UMTS SAP is a bit different than the case of 
16 bit. Below you find an example of 32-bit operation code, for the RLC entity which has the CRLC sap and the RLC sap:  
 

COMMAND (“TAP REDIRECT TAP ************************10000100 RLC”) 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 16/48 

 

COMMAND (“TAP REDIRECT TAP ************************10000101 RLC”) 

3.5.3.1 COMMAND (“TAP EXCLUDE”) 

COMMAND (“TAP EXCLUDE”) is used to temporary exclude a test-case from the set of active test cases, 
this is typical done for test cases that do not currently pass due to postponed features. 

3.5.4 TIMEOUT (time) 

TIMEOUT is used before, between or after a SEND or AWAIT event. TIMEOUT is used to suspend the 
TAP for the given time. Time is a non-negative integer measured in milliseconds. If placed before the 
expected receiving of a primitive, the instruction adds time to the default waiting time (10 s) for a primitive. 
A test will fail if MUT doesn‟t send a primitive during the default waiting time plus time. 

3.5.5 MUTE (time) 

MUTE is used before, between or after a SEND or AWAIT event. A test will fail if the MUT sends a 
primitive during the given time. The instruction may be used to check whether a timer is stopped or if there 
are unexpected primitives sent from MUT. Time is a non-negative integer. The time is measured in 
milliseconds.  

3.5.6 START_TIMEOUT (time) 

START_TIMEOUT starts a timer. Time is a non-negative integer and it is measured in milliseconds.  

3.5.7 WAIT_TIMEOUT () 

Wait time_out suspends the TAP until the timer started with START_TIMEOUT is expired. If 
WAIT_TIMEOUT is called and the timer already has expired the testcase will fail.  

3.6 Advanced features 

This section covers some advanced features provide by the TDC language.  

3.6.1 Source and destination of primitives: T_PORT 

A port can be used to specify source and destination of SEND and AWAIT events. 

T_PORT cc_mm(“CC<->MM”,”MNCC”); 

DEFAULT_ PORT = cc_mm; 

T_CASE CC001(){ 

 setup_routing(); //4
 

   cc_mm.SEND(prim1); // explicit port 

AWAIT(prim2); // implicit port 

} 

The T_PORT constructor takes 1 or 2 string arguments: src_and_dst_list and optional a sap_list if the 
sap_list is present then the port only apply to primitives belonging to the SAPs in the sap_list.  

 T_PORT::T_PORT(char * src_and_dst_list); // can be applied to any primitive. 

                                                 
4 Ports do not affect duplicate and redirect commands ( they are still needed).  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 17/48 

 

T_PORT::T_PORT(char * src_and_dst_list, char* sap_list); //can be applied to primitives from a 
SAP in sap_list. 

If no PORT is specified then the global variable DEFAULT_PORT is used. DEFAULT_PORT have the 
initial value T_PORT(“<->”) which give the same behaviour to events as before ports was introduced. It is 
not possible to define a new global DEFAULT_PORT. Instead the default port should be declared locally. 
An appropriate place to do this could be in the function that set up the routing used in the test cases. 

A T_PORT variable can also hold a list of ports, when such a variable is applied to an event the list is 
searched for an src_and_dst_list for which the sap_list contain the SAP that the primitive belongs to. In such 
lists ports with no sap_list acts as defaults. T_PORT list are created with the “+” operator e.g.  

 T_PORT cc_xx = T_PORT(“CC<->MM”,”MNCC”) +  T_PORT(“CC<->SS”,”MNSS”) 

If a SEND port has no source or destination then TAP is used. 

If an AWAIT port have no source or destination then any source or destination is valid.  

3.6.1.1 T_PORT constructor parameters 

The 1
st
 parameter src_and_dst_list is a string consisting of 3 parts: 

Part For SEND For AWAIT Comment 

MUT entity list Destination entity (only 
the first is used if more 
than one is specified) 

Source entity(s) Semicolon (;) separated 
list of entity names 

Default TAP Not checked  

Send or await spec “<-” or “<->” “->” or “<->”  

Context entity list Source entity (unused by 
stack) 

Destination entity(s) Semicolon (;) separated 
list of entity names 

Default TAP Not checked  

 

The 2
nd

 parameter is a semicolon (;) separated list of sap names. 

 

3.6.2 Primitive parking 

Parking of primitives can be used if the AWAIT order of primitives is unknown. Parking means that the test 
case will not fail if another primitive is received than the one awaited – e.g. await order is ignored. Parking is 
per default disabled in TDC. 

There are two kinds of parking available, namely a short-term parking and a long-term parking. The short-
term parking allows different orders of primitives to be received until the next SEND event. If primitives are 
parked executing the SEND event, the primitives will be discarded. A trace warning will be send. The long-
term parking accepts parking of primitives until "the end" of the test case.    

Parking can be turned on and off while the execution takes place. However it is only allowed in test steps or 
test cases – not in constraints. To switch the parking state use this function: 

 

PARKING (SHORT_TERM);    /*Enables short term parking – returns the old state */ 

PARKING (LONG_TERM);    /*Enables parking – returns the old state */ 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 18/48 

 

PARKING (DISABLED);  /*Disable parking – e.g. back to normal behaviour (back to default 
behaviour) – returns the old state */ 

For handling of the return values use the enum: 

T_TDC_PARKING_ENUM.  

This enum contains the defined values DISABLED, SHORT_TERM and LONG_TERM. 

 

Please be careful with the use of parking. In general you should always have the same parking “state” when 
you return from a scope as when you enter the scope – see the example below: 

Any_scope 
{ 

 T_TDC_PARKING_ENUM old_parking_state; 

  old_parking_state = PARKING (DISABLED); 

AWAIT(A); 
AWAIT(B); 

…. 

PARKING (old_parking_state); 

} 

Please note that if you turn parking off while primitives are parked your test will fail.  

3.6.2.1 How parking work 

When parking are on AWAIT will first check the already parked primitives if none match it will wait for a 
new primitive, if the new primitive do not mach it will be parked, and AWAIT will wait for the next 
primitive, this sequence continues until a matching primitive is received or no new primitive is received 
within the AWAIT timeout period

5
 

When AWAIT checks a primitive for parking it do so based on the opcode of the primitive, it is not possible 
to park a primitive base on the data in the body of the primitive. But if the AWAIT is prefixed with a PORT 
then the source and destination is checked as well as the opcode. 

                                                 
5 The AWAIT timout period can be specified as e.g. a command line option to TAP2  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 19/48 

 

STORE

TAP MUT

A
SEND (A)

AWAIT(C)

B

C

    B

D

AWAIT(B)

E
SEND(E)

SHORT_TERM parking

example

Discard all store primitives

(in this case D is discarded)

 

Figure 3: Example of how parking works. Note that stored primitives are discarded when the parking 

period is over. 

3.6.3 ALT { … } (Alternative mail sequence) 

These features will first be supported in TDC version 2.  

If you want to have an alternative mail sequence you can use the alt {…} operation. With the ALT 
operations you have additional operations (ON() and OTHERWISE()) that can be used. Together they work 
like a switch/case with comparison on case parts. An ALT{…} operation is specified like this: 

ALT { 

  ON (AWAIT(…)) ….; 

  ON (AWAIT(…)) {…}; 

  OTHERWISE () …; 

} 

In the table below you see an example with pseudo code (A, B and C are defined primitive constraints): 

TDC code Pseudo code 

ALT 

{ 

  ON( AWAIT(A())) 

  { 

    /*A code*/ 

  } 

  ON( AWAIT(B())) 

  { 

Switch (incoming_message()) 
{ 
  case A: 
  { 
    /*A code*/ 
  break; } 
  case B: 
  { 
    /*B code*/ 
  break;} 
  default: 
  { 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 20/48 

 

    /*B code*/; 

  } 

  OTHERWISE() 

  { 

    SEND(C())); 

  } 

} 

    send C 
  break;} 
} 

Table 4 ALT example 

 

If the OTHERWISE is missing and parking is disabled, the ALT {} operation returns FAIL if something is 
received, that wasn‟t specified with the ON () operation. If parking is enabled execution will remain in the 
ALT operation until you receive something specified with the ON () operation or a timeout occurs. Using 
OTHERWISE is simply like a ON(AWAIT(any_primitive)). 

Inside an ALT operation, only the "if" statement is allowed in front of an ON statement, not an “if” “else” 
statement. All other basic statements (see section 3.7) should be avoided inside ALT {} operations.   

Please note that if PASS is used in an ALT {…} feature it returns to the surrounding of ALT {…} or 
STEP("blah") {…}. 

3.6.3.1 ON (AWAIT(…)) {…}  

This operation is to be used in an ALT () operation. The ON() operation returns PASS as the default verdict 
– e.g. you don‟t need to specify it.  

3.6.3.2 OTHERWISE () {…}; 

OTHERWISE can be used as a function similar to the default in a switch sentence in your c-code. Having no 
OTHERWISE is the same as having OTHERWISE() FAIL();. 

3.6.4 TRAP {…} and ONFAIL {…} 

TRAP and ONFAIL works in a similar way like “try” and “catch” in C++. If fail occurs inside a TRAP 
statement – e.g. a parameter in a primitive is wrong or a wrong primitive is received

6
, execution will proceed 

with the ONFAIL events and continues after the end of the TRAP/ONFAIL combination, as if no fail 
occurred. Having no ONFAIL is the same as having an empty ONFAIL{};.  

An example is shown here (A, B and C are defined primitive constraints): 

TDC code Pseudo code 

TRAP  
{ 
  AWAIT(A()); 
  AWAIT(B()); 
} 
ONFAIL  
{ 
  SEND(C()); 

try 
{ 
  receive (A); 
  receive (B); 
} 
catch 
{ 
  send (C); 

                                                 
6 Parking is d isabled.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 21/48 

 

} } 

Table 5 TRAP example 

3.6.5 Common Timer Base (CTB) 

From TAP version TAP_2.6.X and FRAME_2.10.X the feature Common Timer Base (CTB) is 
implemented. CTB only works for host testing. It cannot be used for target testing.  

3.6.5.1 What is CTB? 

CTB is, as the name says, a way to have a common timer base, between the test tools and the protocol stack.  
Enabling CTB causes the PS time to be controlled from the test application (TAP). The time resolution on 
host is 50ms. This means that timers only can be tested on host with an accuracy of 50ms. The consequence 
is that specifying a START_TIMEOUT(4001) would result in a timer value of 4000 ms. The value 3999 
results in a timer value of 3950 ms. The timer values will always be rounded down in case of non multiple of 
50ms.  

3.6.5.2 How does CTB work? 

In short CTB disables the Nucleus simulation of hardware interrupts for timer ticks. This means that if CTB 
is enabled the time will stand still inside the stack, unless the stack is asked to “spent” some time. When 
running entity tests with the TAP, the TAP tells the stack to “start” spending time for a well-defined amount 
of time. This happens automatically, each time the TAP is in idle mode (e.g. when the TAP awaits a 
primitive, on TIMEOUTs, on MUTEs or on WAIT_TIMEOUTs). The spending of time only occurs when all 
entities in the stack are in idle mode – e.g. no entities are scheduled. The time spent inside the stack will 
happen much faster than real-time. When debugging test cases or the protocol stack, it can be an advantage 
to use CTB, because timeouts of the tap will be avoided.  

Figure 4 depicts a simple TAP2 test scenario with CTB enabled. All necessary CTB system primitives are 
not displayed. The default timeout in the TAP2 is assumed to be 10000ms (normal behaviour). It is assumed 
that SOME_PRIMTIVE_REQ starts a task timer inside the entity. The value of the timer is 5000ms. When 
the timer expires, the primitive awaited by the TAP2, is sent (SOME_PRIMITIVE_IND). 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 22/48 

 

SOME_PRIMITIVE_REQ1

start 5000 ms2

T/O 5000 ms has passed3

SOME_PRIMITIVE_IND4

PS-TASK PS-TST TAP

It is assumed that CTB has been enabled prior to this sequence

Now the TAP2 AWAIT event is called. 

The stack is then told to start "ticking".

The time is now ticking inside the stack (only in idle), until the time is passed, or 

something is sent back to TAP2.

This means that the time is "happening" really fast in the stack. 

After passing of 5000 ms the previously started timer expires and the entity sends a primitive.

 

Figure 4 Example of TAP2 test with CTB – pass example 

In Figure 5 the same scenario is shown, except that timer value is 12000ms. The default timeout in TAP2 is 
still 10000 ms.  

SOME_PRIMITIVE_REQ1

start 12000 ms2

PS-TASK PS-TST TAP

It is assumed that CTB has been enabled prior to this sequence

Now the TAP2 AWAIT event is called. 

The stack is then told to start "ticking".

The time is now ticking inside the stack (only in idle), until the time is passed, or 

something is sent back to TAP2.

This means the time is "happening" really fast in the stack. 

After passing of 10000 ms the TST (STACK) tells TAP2, that the requested time has passed. 

The TAP2 will the fail, because it expects a primitive within the default timeout.

 

Figure 5 Example of TAP2 test with CTB - fail example 

This time the TAP2 will report an error, because nothing was received within the default TIMEOUT. In 
order to get passed out of the test scenario, a TIMEOUT () with 11950 ms could be used before awaiting the 
SOME_PRIMTIVE_IND.  The scenario is depicted in Figure 6: 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 23/48 

 

SOME_PRIMITIVE_REQ1

start 12000 ms2

T/O 12000 ms has passed3

SOME_PRIMITIVE_IND4

PS-TASK PS-TST TAP

It is assumed that CTB has been enabled prior to this sequence

The TAP2 TIMEOUT event is called with a time of 2000 ms

The time is now ticking inside the stack (only in idle), until the time (2000) is passed.

Now the TAP2 AWAIT event is called.

The stack starts "ticking" again.

After passing of 12000 ms the previously started timer fires and the entity sends a primitive.

 

Figure 6 Example of TAP2 testing with CTB – using a TIMEOUT 

The behaviour would be the same if MUTE or START_TIMEOUT/WAIT_TIMEOUT were used. 

3.6.5.3 How to use CTB? 

CTB can be enabled in two ways.  The TAP can be added an option: 

-ctb 

This can be done from the 4NT prompt using “runtc.bat” or from the tapcaller in the “other options” under 
“configuration-> settings -> general options”. The TAP automatically disables CTB on exit, no matter if the 
test case fails or passes.  

Another way to enable / disable CTB is from test cases. This can done like this: 

COMMAND("TST EXT_TICK_MODE_REQ"); //Enables CTB 

COMMAND("TST INT_TICK_MODE_REQ"); //Disables CTB 

The COMMANDs should always be sent to TST. If CTB is enabled inside a test case, TAP automatically 
disables CTB on exit.  

A combination of the two “starting” ways can be used. For instance, if you know that one test case cannot 
work with CTB, you can just start the case with disabling of CTB, like shown above.  

NB: In case of enabling/disabling CTB from test cases this duplicate command will cause a warning in the 
TAP/SYST if this duplicate command is used inside the test case: 

COMMAND ("TAP DUPLICATE ALL PCO"); 

Instead the primitives sent from TAP should be duplicated, like this (in this example the TAP sends 
primitives to the entities RRC and RCM): 

COMMAND ("TAP DUPLICATE RRC PCO"); 
COMMAND ("TAP DUPLICATE RCM PCO"); 

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 24/48 

 

When running with CTB, the timestamps of the traces sent from the tools (traces with “~” in front), can be 
misleading, because the time on the tool side is running, although it only runs for a well defined periods  (the 
amount of depending on the test case) on the stack side. Therefore use the trace number in the pco_viewer 
instead.  

3.7 Basic C statements 

The table below contains all basic control statements that can be used in test cases and test steps in TDC. 

 

Statement Explanation 

if-else Can be used to get test case variants – e.g. 
conditional mail sequences.  

For Can be used to have repeated mail sequences. 

While Can be used to have a conditional repeated mail 
sequence. 

Do-while Can be used to have a conditional repeated mail 
sequence. 

Table 6 Basic statements for steps and cases. 

 

3.8 Constraints 

In this section you will learn how to handle and specify the different constraint types.  

Additional code is possible when you specify the constraints - e.g. filling of arrays or arithmetic statements. 
However doing this might result in problems when converting to TTCN-3. This means that you should 
expect some work, when converting to TTCN-3. 

To help you specifying the constraints for your test case several additional types are offered. They are listed 
in the table below. They are all accessible from Visual Studio via the drop down list.  

 

Type name Explanation 

T_PRIMITIVE_UNION This type contains a list of all existing primitives listed on SAP level.  

T_SDU This type is used when specifying SDUs in primitives. It is a union like 
type, which consists of two types – a T_MESSAGE_UNION (aim) and a 
“normal” sdu (raw) with an o_buf (buffer offset), a l_buf (buffer length) 
and a buf (buffer with the bitstream).  

The “normal” sdu are used when you want to specify a bitstream 
manually. T_MESSAGE_UNION are used when you want CCD to coding 
/ decoding of the specified AIM into / from a bitstream.  

T_MESSAGE_UNION This type contains a list of all air interface messages listed AIM document 
level. ASN1 is considered one document. Besides this it also contains a TI 
(transaction identifier) and a TIE (extended transaction identifier). These 
are used when specifying AIM for GSM and NAS. For ASN1 they should 
be ignored. Please note that there‟s no PD (protocol discriminator) or 
message type. They are implicit when you specify the constraint.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 25/48 

 

T_ARRAY<array_type> This type can be used to declare arrays – e.g. array of structs. This is also 
to be used when having arrays as parameters in functions. 

Table 7 Additional constraint types 

 

T_PRIMITIVE_UNION can be type casted to any SAP primitive and T_MESSAGE_UNION can be type 
casted to any AIM from either ASN1 or an AIM document. Examples with the different types are found in 
the next sections.  

Please note that all types, no matter if they come from your SAP or MSG files or if it‟s one of them 
mentioned in Table 7, can be return types of functions. This means that you for instance can specify a SDU 
(T_SDU) in a function, and when you want to use this in a primitive that has a sdu, you just call this 
function.  

3.8.1 Instance navigation 

When you navigate through the instances, you need to know how to access the drop down list (or dot 
completion list). In TDC it will nearly be compliant with what you are used to in Visual Studio. The 
difference is that all user defined instances are treaded as pseudo pointers. This means that you have to 
access the drop down list with the “->” operator at the main level instead of the “.” operator. The rest is like 
you are used to. The examples below show the details: 

 

T_CC_CALL_SETUP call_setup; 

call_setup->struct_1.struct_member = 10; 

 

As you can see you must use -> at the main level otherwise is should be like you used to. The additional 
types, mentioned in the previous section, also require special handling.  In the example below you also see 
that after selecting the AIM (in this case “CC”) you have to use the -> operator.  

 

T_PRIMITIVE_UNION mmcc_data_req() 

{ 

   T_MMCC_DATA_REQ prim; 

   prim->sdu.aim.entity.CC->U_CALL_CONF.call_ctrl_cap = call_ctrl_cap_1(); 

   return prim; 

} 

You don‟t have to remember this – when you edit your test case and you can‟t get the drop down list to 
appear, it is properly because you‟re using the wrong operator. The dropdown list will have "operator ->" if 
you use "." where you are supposed to use "->". If you see this just use the other operator. 

3.8.2 Standard member functions 

The constraint types are provided with member functions, so that for example the skip action easily can be 
assigned to a struct.  These member functions appear in the drop down list for each element. The standard 
member functions that are available for all types are: 

 

Member function Explanation 

_skip Element can be present. If it‟s a SEND() event it is only applicable on optional 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 26/48 

 

elements, otherwise a runtime error occurs. On AWAIT() events _skip is also allowed 
on mandatory elements.  

_show Element can be present. On a SEND() event it is the same as skip and therefore it is 
only applicable at optional elements. On AWAIT() events the element and it‟s values 
will be traced if present. 

_forbid Element must NOT be present. _forbid is only a applicable on optional elements in 
AWAIT contexts. Please note that it is not possible to assign _forbid directly to 
primitive or root elements of the primitive.  

_require Element must be present, but the value is not checked. Applicable in AWAIT contexts 
and SEND context, but for SEND only for elements that only have v_… flags. Please 
note that it is not possible to assign _require directly to primitives 
(T_PRIMITIVE_UNION) or root elements of the primitive. In TDC version 1 _require 
is not supported on messages elements (T_MESSAGE_UNION). It can only be used 
to await empty messages (see section 3.8.4.2). 

Table 8 Standard member functions 

 

Besides the standard member functions, the types might have additional member functions (depending on the 
type). These will be mentioned as we go through the types in the following sections. Most of the member 
functions have names beginning with “_”. This is done because of the drop down list in Visual Studio. Here 
the members are sorted alphabetically, so we force our member functions to be the first ones in the list.  

The reason for all assignments are functions, are that the only way code can be executed easily, is trough a 
function. No one of the member functions take arguments.  

3.8.3 Primitive constraints 

When you want to specify a primitive constraint you might find the type T_PRIMITIVE_UNION very 
handy. Starting with this gives you the possibility to choose the SAP from where you want primitive. Figure 
7 shows a drop down list with possible SAPs  

 

 

Figure 7 SAP dropdown list 

 

After choosing the sap is you can get a drop down list with all primitives – like in Figure 8. 

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 27/48 

 

 

Figure 8 Primitive dropdown list 

 

After this you should just specify the contents of the primitive, and end the specification with a return of the 
specified primitive. Don‟t worry about the return type T_PRIMITIVE_UNION, as stated earlier this is 
automatic converted if it is needed. When you want to use your constraint in a step or case your just do like 
this: 

 
SEND(rrc_primitive_1()); 

3.8.4 AIM constraints 

When you want to send or await an AIM it is done by specifying primitives that contains a SDU. You can 
choose to let CCD code/decode the message or specify the bit stream manually according to previous 
statements. If your primitive contains the type T_SDU you will get following options in the drop down list: 

 

Figure 9 sdu/aim constraint 

 

Select “aim” if you want an air interface message from an AIM document. Select “raw” if you want to 
specify it manually. Below you find examples for each type. 

3.8.4.1 Manual specification of bitstream 

When you want to specify the bitstream you should select the “buf” in the dropdown list for sdu‟s. You 
should specify the offset (o_buf), the buffer length (l_buf) and the content of the buffer (buf). Figure 10 
shows an example of the drop down list when you specify a SDU manually.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 28/48 

 

 

Figure 10 Manual specification of a bitstream in a SDU 

 

3.8.4.2 GSM, GPRS and UMTS NAS (non ASN1) 

When you want to specify a GSM, GPRS or a UMTS NAS message, which should be coded (on SEND) or 
decoded (on AWAIT) in CCD, the type “aim” should be used. The “aim” contains the TI and TIE. 

 

Figure 11 Selecting the type “aim” 

As minimum you have to specify the TI – the TIE is optional (See figure Figure 11). 

 

Figure 12 Specification of an entity 

 There‟s no need to specify the protocol discriminator
7
, direction and message type

8
. This is implicit in the 

                                                 
7 e.g. CC or MM. In TDS the Protocol discriminator was implicit as well, but the message type was abbreviated as PD. 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 29/48 

 

specification of an aim.  

However if the air interface message is empty you need to use the “_require() member function. Figure 13 
shows an example, where the “msg” has been chosen. After this you select the AIM document, where the 
AIM you want to send is defined.  

 

Figure 13 UMTS NAS specification of an SDU 

 

After you have chosen the AIM you want to send, you specify the content of this like all other constraints.  

3.8.4.3 ASN1 air interface messages 

For UMTS AS AIMs the procedure is pretty much the same as UMTS NAS, but the TI and TIE is not 
specified. As AIM document ASN1 should be selected, so that you get a dropdown list with all the possible 
ASN1 AIMs. However for UMTS memhandles are used. This is not supported in the current tool chain, so 
unless the type “SDU” are used in the primitives it is not possible to specify AIMs in TDC testcases. 

Handling of SIB‟s and MIB‟s is not yet supported, because they require special handling – e.g. they have to 
be coded / decoded twice. In one of the next releases of TDC it will be possible to encode single SIB‟s or 
MIBS, but without fully segmentation support.  

3.8.5 Struct and union constraints 

When specifying a struct or a union constraint and you use the drop down list you will get a list with member 
functions. Besides all the default member function all structs and unions will have those members specified 
in the SAP or MSG files.  

As you might have discovered there are an additional choice in the dropdown list “_type_name”. The 
_type_name is used to get information of the type of the member.  

 

 

                                                                                                                                                                  
8 E.g. CALL_SETUP_REQ or CALL_SETUP_IND  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 30/48 

 

Figure 14 _type_name example 

 

3.8.6 Array constraints 

This section covers all types of arrays e.g. array of structs, array of numbers etc. The possible member 
functions for an array can also be selected from the drop down list. The member function [] operator applies 
a value to any given element in the array. Please note that it is not possible to assign, _require, _skip, _forbid 
or _show to array elements in TDC version 1.  

3.8.6.1 Skipping of elements in an array 

If you want to assign only the first elements in an array and skip the rest use the feature called 
SKIP_TO_END. Following example explains the use. 

Let‟s imagine that we have an U8 array with 100 elements, but we only want to check the first 3 elements 
with values 0,1 and 2 and the skip the rest. First you should declare a normal array: 

U8 array_3_elements[3] = { 0x00, 0x01, 0x02 }; 

After this use T_ARRAY: 

T_ARRAY<U8> array_3(array_3_elements, SKIP_TO_END); 

Assign array_3 to an array with more elements than 3 results in skipping of the rest of the elements.  

3.8.6.2 Creating empty arrays 

In C and C++ it is not possible to create arrays with zero elements. For some reason this feature has been 
introduced in TDS, so that it is possible to receive and send empty arrays. This is therefore also made 
possible in TDC. This example shows how this can be achieved: 

First declare the array like this  

T_ARRAY<U8> empty_array; 

Then this instance can be used for assignment of empty arrays to a U8 array constraint.  

3.8.6.3 Advanced array features 

Following will first be available in TDC version 2.  

When defining arrays the count will automatically be set to the number of defined elements in the array – e.g. 
according to the number for elements assigned to _skip(), _forbid() etc.  

If an element in the array is set to forbid, you have implicitly set all the elements after this to forbid – e.g. it 
is enough to “forbid” one element.  

If an element is set to _require all previous forbidden elements with lower index are changed to _require.  

If an element is set to _skip all previous forbidden elements with lower index are changed to _skip.  

3.8.7 Integer and enum constraints 

In addition to the mentioned member functions, integer and enum classes also have a member function for 
each named constant. Invoking one of these named constant member functions has the same affect as 
assigning the value of the named constant. They are only added to have a convenient entry in the dot-
complete dropdown list. See Figure 15 for an example. 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 31/48 

 

 

Figure 15 VC6 dot completion example on an enumeration 

 

3.8.7.1 Bit constants for integers 

A special set of constants exists for assigning a bit pattern to an integer: 

B0, B1 

B00, B01, B10, B11 

B000, B001, …, B111 

… 

 

The maximum pattern length is 16 bit.  

3.8.8 Bit and basic type array constraints 

For bit array constraints a sequence of values can be assigned, using special value strings (see section 
3.8.8.1). Accessing a single bit in a bit string can be achieved using the [] operator. This operator is 
overloaded in this case.  

When initialising arrays of other basic types with a bit sequence, the number of bits must be a multiply of the 
number of bits in the basic type. 

Please note that TDC release 1.0 does not support arithmetic operations on bit arrays. 

3.8.8.1 Value strings 

Value strings are on one of the forms: 

 

BIN("…") where … are a sequence of one of '0', '1', or '?', optional ending with '*'.  

HEX("…") where … are a sequence of hex digits or '?', optional ending with '*'. HEX"?" == BIN"????" 

CHR("…") where … are a standard c-character sequence 

 

The „?‟ acts in the same way as _required(). „*‟ is the same as _skip() till the end of the array. Please note 
that in TDC release 1.0 „?‟ and „*‟ can‟t be used. Value strings can be concatenated using the concat() 
function (2 to 10 arguments). The concat() function returns the concatenated string. Examples for using the 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 32/48 

 

different value strings are listed below: 

 

T_x x; 

x->y.my_U8_array1 = HEX (“EF FE 09”);  /*The three first elements in the array set. The 
counter is set Implicit.*/ 

x->y.my_U8_array2 = BIN (“01010101 10101010”)  /*The two first bytes are set */  

 

T_ARRAY<U8> string1; 
T_ARRAY<U8> string2; 
T_ARRAY<U8> string3; 

string1 = CHR(”This is a string”); 
string2 = CHR(“ This is another string”); 
string3 = concat(string1, string2);    /*Result is: “This is a string This is another string”*/  

As you see from the examples the values are separated by spaces. This is not necessary, but it provides a 
better readability. However you should be consequent in each use of value strings – e.g. don‟t mix spaces 
with non spaces.  

3.9 Specifying MUT 

Please note that until version 2 is released this has to been with COMMAND (XXX).  

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 33/48 

 

4 TDC and Visual Studio 6 

There are several Visual Studio macros available to easy the use of TDC. The first macro, 
StartTouchExternalDependencyfiles, is to easy the use of dot completion by touching the .h files in the 
external dependencies. Furthermore there are two tdc visual studio macros available for expanding the to a 
set of lines for each member and they can create a local name of a type to simplify long lines. 

4.1 Loading TDC Visual Studio 6 macros 

Before you can use these macros you need to have service pack 5 or higher, further more you need to load 
the “tdc_macros.dsm” and “kbdmac.dll” files under “tools->customize->add-ins and Macro files”. The file 
can be found at: 

\gpf\template\vc6 

after this you should have the add-ins listed in Figure 16 Add-ins. 

 

Figure 16 Add-ins 

After loading the macro file you should run a macro called “tdckeybindings”. This is done from “tools-
>macros” – see Figure 17 TDC macros. 

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 34/48 

 

 

Figure 17 TDC macros 

 

After this you now have access to the 4 other macros listed in Figure 17 with short cuts. The short cuts are: 

 

“CTRL & Q” = TdcMemberList 

“CTRL & SHIFT & Q” = TdcTypeName 

"CTRL+ALT+E" = “StartTouchExternalDependencyfiles” 

("CTRL+ALT+Q" = “TouchExternalDependencyfiles”)
9
 

 

Please note that dot-completion should work before the macros will work, since the macros uses the dot-
completion facility.  

4.1.1 Known problems with TDC Visual Studio 6 macros 

The first execution of the Visual Studio 6 macros can goes wrong for a number of reasons, usual it will work 
if one tries to execute them again. But to avoid the need for repeating the action of adding the add-ins to the 
load list it is recommended that you exit and re-run Visual Studio 6 after adding the add-ins to the load list. If 
you have any problems executing the macros. 

Alternatively you can “touch” a .h file manually. You can do that by disabling the “Check out source file(s) 
when edited” in Tools->options->Source Control and afterwards open the .h files with the given type 
definitions. Make a space in the end of the .h file and press ctrl-z for undo afterwards. Close the file again 
without saving. Now the .h file has been touched and the “.”completion will work for the types defined in 
that particular .h file. When no more .h files should be touched, you should enable the “Check out ...” option 
again. 

4.2 Macro to touch .h files 

This macro exports the make file and uses the <project-name>.dep file to get a list of all the .h files. The h 
files are opened sequentially and "touched". The opened files are not saved upon closing. 

                                                 
9 Used internal by StartTouchExternalDependencyfiles  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 35/48 

 

1. Compile/build in order to get the dependency list in the file view. 

2. Run macro, and all the .h files should now be touched one by one. 

The original macro has been expanded in order to work properly in conjunction with Clearcase. Running 
StartTouchExternalDependencyFiles starts this new macro. This will automatically start the 
TouchExternalDependencyFiles macro. The expansion consist of unchecking/checking an option in the 
"tools|option|"Source Control" tab at the start and end of the original macro. This way the message box 
popping up asking to check out files should be eliminated. 

 

In order to use the new macro it is necessary to install the keyboard add-in KbdMac.dll. This is done in MS 
Visual C++ by selecting the tools|customize|"Add-ins and Macro files" tab. Use the browse function to find 
the file. The KbdMac.dll is located at \gpf\template\vc6. Furthermore it is necessary to install the latest 
service pack for Visual Studio 6 (service pack 5). 

4.3 TdcMemberList 

This macro is used to expand the struct to a set of lines one for each of the struct members sub members. 
Before running the macro: 

 

Figure 18 Before macro execution 

 

As you can see from the figure you should enter a “.” after the type you want to expand (scpich_info). Then 
press CTRL and Q and you will get the result: 

 

Figure 19 Memberlist example 

4.4 Typename example 

The type name makes a variable of the type to avoid long lines.  

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 36/48 

 

 

Figure 20 typename example 

 

As you can see in Figure 20 a local variable “scpich_info” has been made and assigned to pstruct-
>scpich_info. Especially if you have very long lines this macro can be useful. 

4.5 Debug test cases 

It is possible to debug test cases in TDC format. This can be done directly from the Visual Studio project. To 
do so you need to add some settings to your project file.  

4.5.1 Setup 

Right-click on your project file and select “settings”. Select the fan “debug” and set the category to general.  

 

Figure 21 Project file settings 

Fill in the fields (1) and (2) like depicted in Figure 21, except that Z should be replaced with the drive letter 
of your view. 

The field (3) contains the arguments for tap2.exe. The whole line is not visible in the figure, but it is given as 

“-pcon -l Z:\gpf\util\teststack\bin\ccddata_dll -tm ffff -v -t 500000 -tb xx_tdc 
Z:\gpf\util\teststack\bin\test_xx_tdc XX_TESTCASE482B” 

1 

2 

3 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 37/48 

 

where Z:\gpf\util\teststack\bin\test_xx_tdc is the test directory and XX_TESTCASE482B is the name of the 
test case. The other flags are more explicit described under 4.6.1. Press the OK button. 

4.5.2 Run 

To make sure, that parts of PCO is not “hanging” run “pco_kill” from a cmd-prompt. Optionally you can 
start the “pco_view.exe” from your cmd-prompt in the directory “\gpf\bin\debug\”. You will now be asked if 
you wish to start the pco_server, which you of cause do.  

Start the stack either from the cmd-prompt or from another Visual C++ project. Then just put in your break 
points and start debugging.

10
  

4.6 Advanced Debugging 

This part describes how to make more advanced debugging. It should give an overview of necessary settings 
in different situations, while it does not cover debugging in general.  

4.6.1 Meaning of TAP2.exe arguments 

In Figure 21 on the previous page the field (3) contains the arguments for TAP2.exe.  

“-pcon -l Z:\gpf\util\teststack\bin\ccddata_dll -tm ffff -v -t 500000 -tb xx_tdc 
Z:\gpf\util\teststack\bin\test_xx_tdc XX_TESTCASE482B” 

You can see a list of these arguments from your cmd-prompt by typing “tap2.exe” in the directory “gpf\bin\”. 
But to summarize, the ones used in the example above are explained here 

 -v : Writes more details to the screen. 

 -pcon : This flag causes the primitives to be converted into a more compact type before they are 
sent to the stack. 

 -tm <mask>: This sets the trace mask for the TAP. 

  -l <filename>: This allow you to specify the ccddata_dll.dll file. 

 -tb <filename>: Normally the a test case has the name structure 
“<dll_name><testcase_number><variant_letter>”. If this is not the case the name of the .dll file can 
explicitly be stated with this flag, as seen in the example. 

 -t <time (ms)>: This flag specifies the time to wait for a primitive. When debugging – remember to 
set this relatively high. Otherwise it will time out during single stepping. On the other hand one do 
not wish to wait for ages if an expected primitive is not send.     

4.6.2 Tracing Stack Side Errors 

When an error or warning appears while running a test case, the “Snd” column in the PCO_view shows 
where it has occurred e.g. SYST, ~SYST

11
, ~TAP, XX...etc.  

 

example: 

Nr Time Snd Name Rcv Content 

                                                 
10 If you press F10 from Visual Studio tap_main.c will open. Now if you put a breakpoint at the last bracket of this main function, you 
will be able to read messages/errors in the dos-prompt windows before they are closed.  
11 “SYST” is the Stack side while “~SYST” is tool side (TAP/TDC/PCO_VIEW etc).  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 38/48 

 

350 00005800 ms SYST <TRACE> PCO SYSTEM ERROR: No Partition available, entity XX, size 100004, 

xx_tdc_2.c(353) 

 

If you want to trace where in the stack code the error occurred in preparation for putting in a breakpoint, the 
table below shows in which directory the files are located depending on the error type. 

  

Snd Directory 

SYST \gpf\frame 

XX Your stack code 

 

To find out where the error exactly appeared, you can use the tool “grep” in the cmd-prompt to search 
through files for the error message you‟ve seen. This is done in Figure 22. 

 

 

Figure 22 Finding the file and line where the error appeared using "grep" 

 

The used flags for  “grep” are seen in the table below. 

 

Flag Name Description 

-r recursive Read  all  files under each directory, 
recursively.  

-H With filename (Human) Print the filename for each match. 

-n Line number Prefix each line of output  with  the  line  
number within its input file. 

 

You can now open your stack project in Visual Studio and additionally open the file including the error 
message. In this case we open the file “vsi_com.c” and put the break point near line 959. Start the stack in 
debug mode by pressing F5.  

4.6.3 Tracing Tool Side Errors - Additional DLLs 

When a tool side error or warning appears while running a test case, the column Snd in the PCO_view shows 
where it has occurred e.g. ~SYST, ~TAP, ...etc.  

example: 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 39/48 

 

Nr Time Snd Name Rcv Content 

350 00005800 ms ~SYST <TRACE> PCO ----- 

 

       

If you want to trace where in the tool code the error exactly occurred, you should use the tool “grep” as 
described in 4.6.2. The only difference is the directories to search in. These are showed in the table below. 
When the file and line with the error message is found you open your test project. Since the tool side is not 
static linked you have to add some additional .dll files to your project, to achieve the debug information. 
These files are also pointed out in the table below.  

 

Snd Directory DLL 

~SYST \gpf\frame frame.d ll 

~TAP \gpf\util\tap\ tap_base.dll + 

tap_tdl.dll 

~TDC Your test case code  

 

Figure 23 shows how to add the additional .dll files. Right-click your project file and choose settings. Mark 
the Project file in the left side (1), choose the fan “debug”(2) and change the category (3) to “additional 
DLLs”. Now you can specify the files you need. To debug the SYST error, like in the example above, you 
need frame.dll. Press the OK button.  

 

Figure 23 Adding additional DLL files 

After you‟ve started the debugger you can choose “exceptions” under the menu “debug”, choose all the 
elements in the list, mark “stop always” and click “Change”. With these settings you will be able to get 
information about where an error occurs even though it is encapsulated in a TRY/CATCH expression. If the 

1 

2 

3 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 40/48 

 

function “testentry()” in the code below assigns a NULL-pointer (This will result in an error!), you will stop 
by the assignment and not just end up in the exception code. 

     __try 
     { 
          (void) testentry (); 

     } 
     __except (EXCEPTION_EXECUTE_HANDLER) 
     { 
      tap_trace ("Test case crashed"); 

      tap_set_exitcode (TAP_TC_CRASH); 
     } 

4.6.4 Debugging TDC and TAP 

To debug TDC and TAP you need to do the following: Choose FileView in the left side window in Visual 
Studio. You need to have a “tdc-lib” file including debug information. If the icon of the file only has two 
dashed lines, you need to replace it. This is done by deleting the one you‟ve got and right-clicking your 
project file and choose “Add Files to Project...” in the list. The location of the file is 
\gpf\LIB\WIN32\debug\tdc.lib.

12
 

Alternatively: 

Alternatively you can have both the file with and without debug information. But then you have to exclude 
the one you don‟t want to use from the build. This is done by right-clicking file and choose “settings”. Now 
in the fan “Generel” you can mark “Exclude file from build”. See Figure 24. Press the OK button and rebuild 
the project.  

 

Figure 24 Choosing whether TDC and TAP are to be debugged. 

 

 

                                                 
12 The locations of the file without debug information is \gpf\LIB\WIN32\tdc.lib  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 41/48 

 

5 TDC Code standard 

To ensure that the test cases written in TDC are compliant with TTCN-3 (for conversion later on) following 
rules must be followed.  

 

If OOP (Object oriented programming) is used it is for further study how to convert that into TTCN-3 (only 
the use of the type T_ARRAY<> has been investigated). Whereas how to handle class, union and struct is 
unclear.  

You should use TI standard types like U8, S8 etc. 

Use of pointers (*) and the address of (&) operators are not allowed in connection with TDC types generated 
by CCDGEN. 

Use of memcpy() on TDC types is not allowed either.  

All user-defined functions should be done with lower cases.  

Avoid the use of overloaded functions (function declarations that only differs in number of parameters or 
types of parameters). 

Avoid assignments with implicit type conversion. – e.g. assignment of an char to U8 (U8 i = „a‟), but use 
char to CHAR (CHAR c=‟a‟;). This will cause complications when converting to TTCN-3. 

 

5.1 Test case layout 

When you convert your existing test cases, they will be given this layout from the TDS_TO_TDC converter. 
We recommend that you try to maintain a header layout similar to the test case listed below.  

 

/*--------------------Following is for test case USM204------------------------------- 

 

Description: 

Pre-R98 test case only!  SM is in state PDP_INACTIVE. All available tis are already in use. 

SM sends an SMREG_PDP_ACTIVATE_REJ to GMM with cause SMREG_RC_INSUF_RES. 

Note: This test case will fail if extended TIs are in use, i.e. R99. 

Preamble: 

USM203 

     

    ACI                         SM                          GMM 

     |                           |                           | 

(1)  | SMREG_PDP_ACTIVATE_REQ    |                           | 

     *==========================>*                           | 

(2)  |                           | GMMSM_ESTABLISH_REQ       | 

     |                           *==========================>* 

(3)  | SMREG_PDP_ACTIVATE_REJ    |                           | 

     *<==========================*                           | 

     |                           |                           | 

 

---------------------------------------------------------------------------------*/ 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 42/48 

 

 

T_CASE (USM204, "Mobile_originated_PDP_context_activation_no_more_transaction_identifiers_available") 

{ 

BEGIN_CASE ("Mobile_originated_PDP_context_activation_no_more_transaction_identifiers_available") 

 { 

   /*TEST STEPS*/ 

   Mobile_originated_PDP_context_activation_allocate_all_7_possible_nonext_tis_UMTS203(); 

     /*Events*/ 

          ……… 

 } 

} 

5.2 Test step layout 

When you convert your existing test case all that are preambles will be converted to steps and they will have 
this layout. We recommend that you try to keep a header layout similar to the test step listed below. All calls 
to these steps will be inserted in test case and other steps.  

 

/*------------------------Following is for test step USM203------------------------------------ 

 

Description:  

SM is in state PDP_INACTIVE. The user tries to activate all possible 7 MS initiated contexts. 

SM sends a GMMSM_ESTABLISH_REQ for each attempt. 

Preamble:  

USM100 

     

 SNDCP/GACI                     SM                          GMM 

     |                           |                           | 

(1)  | SMREG_PDP_ACTIVATE_REQ    |                           | 

     *==========================>*                           | 

(2)  |                           | GMMSM_ESTABLISH_REQ       | 

     |                           *==========================>* 

(3)  | SMREG_PDP_ACTIVATE_REQ    |                           | 

     *==========================>*                           | 

(4)  |                           | GMMSM_ESTABLISH_REQ       | 

     |                           *==========================>* 

(5)  | SMREG_PDP_ACTIVATE_REQ    |                           | 

     *==========================>*                           | 

(6)  |                           | GMMSM_ESTABLISH_REQ       | 

     |                           *==========================>* 

(7)  | SMREG_PDP_ACTIVATE_REQ    |                           | 

     *==========================>*                           | 

..... 

---------------------------------------------------------------------------------*/ 

 

T_STEP Mobile_originated_PDP_context_activation_allocate_all_7_possible_nonext_tis() 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 43/48 

 

{ 

   BEGIN_STEP(“Mobile_originated_PDP_context_activation_allocate_all_7_possible_nonext_tis”) 

   { 

    /*Include other steps*/ 

    Setup_Routing_and_PCO_View_for_SM_Tests(); 

    /*Events*/ 

   ………. 

   } 

} 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 44/48 

 

6 Appendix 

6.1 Test case example 

For examples on tdc testcases please look at \gpf\util\teststack\spec\test\xx_tdc\*.* 

6.2 BNF for TDC syntax 

The table below contains a BNF for the TDC syntax. 

 

BNF Comment 

TestcaseBody  ::= StatementListoptional 

TeststepBody  ::= StatementListoptional 

StatementList  ::= Statement StatementListoptional 

Statement  ::= SendStatement | 
      AwaitStatement | 
      CommandStatement | 
      TimeoutStatement | 
       FailStatement | 
      PassStatement | 
      AlternativeStatement | 
      TrapStatement | 
      CcodeStatement | 
      "{" StatementListoptional "}" 

SendStatement  ::= "SEND" "(" SendArgumentList ")" ";" 
AwaitStatement  ::= "AWAIT" "(" AwaitArgumentList ")" ";" 
CommandStatement  ::= "COMMAND" "(" CommandString ")" ";"
 //char* 

TimeoutStatement  ::= "TIMEOUT" "(" Milliseconds ")" ";" |  
       "TIMEOUT_WAIT" "(" Milliseconds ")" ";" |  
                          "MUTE" "(" Milliseconds ")" ";" | 

FailStatement  ::= "FAIL" "(" ")" ";" 

PassStatement  ::= "PASS" "(" ")" ";" 

AlternativeStatement ::= "ALT" "{" OnStatementListoptional 
OtherwiseStatement "}" 

OnStatementList  ::= OnStatement OnStatementListoptional 

OnStatement  ::= "ON" "(" AwaitStatement ")" Statement | 

       "if" "(" AwaitStatement ")" Statement 

OtherwiseStatement  ::=  OTHERWISE" "(" ")" Statement | 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

SendArgumentList from _send 
function prototypes 13 

AwaitArgumentList from _await 
function prototypes 14 

CommandString is a char* 

 
Milliseconds is an int 
Milliseconds is an int 
Milliseconds is an int 

Goto end of BodyStatement15 

Goto end of BodyStatement16 

 

 

Statement default to pass17 

                                                 
13 The _send function is an overloaded function thus there is more than one prototype.  
14 The _await function is an overloaded function thus there is more than one prototype.  
15 "fail();"jumps directly to the end of the end of "on(…)…;" if called inside "(…)", else it jumps directly to the end of the nearest 
enclosed " trap{…}" and executes the "onfail…"; par t if it’s present.  
16 "pass();" jumps directly to the end of the nearest enclosesing "alt{…}" or "trap{…}" an "onfail…" will  be ignored.  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 45/48 

 

                       /*fail by default*/ 

TrapStatement         ::= "TRAP" Statement OnFailStatement 

CcodeStatement       ::= “if” “(” “)” “{” “}” “else”  “{” “}” | 
       “for” “(” “)” “{” “}”  | 
       “while” “(” “)” “{” “}” “;”  | 
       “do” “{” “}” “while” “(” “)” “;”  | 
       “switch” “(” “)” “{ “ “case” “:” “}” “;” | 
       variable declaration 

OnFailStatement      ::= "ONFAIL" Statement 

CommandString  ::= FromEntity “REDIRECT” 
Original_Dest_Entity New_Dest_Entity |  
       “RESET” Entity | 
       “FromEntity” “DUPLICATE” “Dest_Entity” 
“Dest_Entity” | 
        “Entity” “CONFIG” “string”  

 

 
Statement default to pass 
 

 

 
ENTITY could be the name of any 
entity, the ALL parameter or the 
TAP. The Dest_Entity is normally 
TAP, PCO or NULL. 
“string” is a char string.  

 

 

Table 9 BNF for TDC keywords 

6.3 List of member functions 

The table below contains a complete list of available member functions for each generated type in the TDC 
header files.  

name Explanation 
S

tu
c
t-

li
k

e 

U
n

io
n

-l
ik

e 

A
r
ra

y
-l

ik
e 

P
o

in
te

r
-l

ik
e 

In
t-

li
k

e 

E
n

u
m

-l
ik

e 

P
se

u
d

o
 p

o
in

te
r1

8
 

L
o

ca
l 
v
a

r
ia

b
le

s1
9
 

_forbid() Element must not be present.  Y Y Y Y Y Y Y Y 

_require() Element must be present.  Values are traced from tap. Y Y Y Y Y Y Y Y 

_skip() Element can be present. Y Y Y Y Y Y Y Y 

_show() Element can be present. Values and or elements are 
traced from TAP. 

Y Y Y Y Y Y Y Y 

count Set‟s the count value of a variable array. N N Y N N N N N 

[] operator Get element of array.  N N Y N N N N N 

-> operator De-reference a pointer N N N
! 

Y N N Y Y 

_typename Expands a struct and assign a local operator to the 
parent structure.  

Y Y Y Y Y Y Y Y 

                                                                                                                                                                  
17 If the statement do not contain a pass() or fail() the default behavior is as if it  ended with a pass();  
18 This type is generated for special array[1] generated by the ASN1_TO_MDF compiler.  
19 Local declared variables in your test code are types from SAP, MSG and normal Condat types like U8. (Including function 
arguments and return values).  



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 46/48 

 

CONST_NAM
E() 

Same as _set(PREFIX_CONST_NAME). There will be 
a one for each CONST_NAME . 

N N N N N Y N N 

Table 10 Member functions 

 

6.4 Trouble shouting 

This section contains fixes / workarounds 

6.4.1 No dot completion 

(For a solution to this problem see section 4.1.1) 

If you don‟t have dot completion (e.g. it doesn‟t work) in your TDC project you should “touch” all relevant 
header files. The dot completion compiler works in another way than the normal compiler. You can “tell” the 
dot completion compiler to include a header file by opening the file in visual studio, insert a space 
somewhere in the file – and undo it afterwards. The dot completion compiler then knows that this file is to be 
included as well. The files you should touch are: 

All interfaces files 

tdc.h 

tdc_base.h 

tdc_msg.h 

tdc_prim.h 

If 2 e lements are basically the different stuff c-names should be used in definitions.  

SAP H-File (pseudocode) 

 

Definition:  

Type Short 
Name 

Comment C-Name 

STRUCT s_one Sub struct type1 

  

typedef struct  

{ 

… 

} T_type1; 

typedef struct  

{ 

  T_type1  member1;  /* Sub struct */  

} T_s_two;  

 

 

 

 

 

 

 

 

 
Definition:  

Type Short 

Name 

Comment 

STRUCT s_two Container  

Elements:  

Long 
Name 

Short 
Name 

Ref Type C-Name 

Mandatory 
element 

s_one 4.42 STRUCT member1 

  

 

Refercing 
name 

 

Generatin
g 

names 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 47/48 

 

6.4.2 Linkage fails with error like “… unresolved external symbol "char BadLibVersionCheck_ …” 

If you get something like the following error when trying to link your TDC test cases: 

Linking... 

Creating library rcm.lib and object rcm.exp 

LINK : warning LNK4098: defaultlib "MSVCRT" conflicts with use of other libs; use /NODEFAULTLIB:library 

interfaces.obj : error LNK2001: unresolved external symbol "char 
BadLibVersionCheck____P_8010_115_RCM_SAP_VAL_H____Thu_Mar_06_11_31_22_2003" 
(?BadLibVersionCheck____P_8010_115_RCM_SAP_VAL_H____Thu_Mar_06_11_31_22_2003@@3DA) 

interfaces.obj : error LNK2001: unresolved external symbol "char 
BadLibVersionCheck____P_8010_115_RCM_SAP_H____Thu_Mar_06_11_31_22_2003" 
(?BadLibVersionCheck____P_8010_115_RCM_SAP_H____Thu_Mar_06_11_31_22_2003@@3DA) 

\g23m\condat\ms\test\test_rcm\rcm.dll : fatal error LNK1120: 2 unresolved externals 

Error executing link.exe. 

This is coursed by using different versions of the SAP documents for compiling the TDC library and the 
TDC test cases. 

Most likely you are looking on a different version of the SAP compared to when you compiled the TDC lib, 
or you are using a binary release version of TDC lib but looking on your private branch for the SAP 

6.4.2.1 How lib version check works 

A unik variable name are created for each SAP document in a common c-file, the names of these variables 
contain the file time stamp of the SAP word documents. 

All SAP h-files references these variable, so if you use a different version of SAP file for compiling a the 
linker will be unable to solve this special variable since it have different names. 

The variable is composed as follows: 

 BadLibVersionCheck____filename____dayname_monthname_date_hour_minute_second_year 

6.4.3 All test-cases fails initial 

Ensure you have a proper version of GPF (including any patches if you were told to include such in your 
config-spech) 

Do NOT use the old tap (tap2_gprs.exe) 

6.5 Know errors 

For tdc version 1.2 following know errors / missing features exist: 

6.5.1 Insufficient text in ~TDC traces 

Some of the TDC traces are insufficient.  

6.5.2 Value strings 

The use of value strings, HEX, CHR and BIN is not implemented.  

6.5.3 TDC lib handling 

The TDC library generation is very time consuming. Therefore we recommend that the libraries are copied 
manually from the specified location (see section 2.4 TDC Libraries). 

Refercing 
name 

 



User Guide 8434.510.02.014 
TDC Submitted 

 

 

  

Texas Instruments Proprietary Information 

Under Non-Disclosure Agreement – Do Not Copy 

 

Page: 48/48 

 

6.5.4 In deep copy  

In deep copy is not implemented. Following example shows the problematic: 

T_Y y; 

y->a = 1; 

y->b = 1; 

x[0].y = y; 

x[1].y = y; 

x[1].y->a = 2; //Doing so will also change x[0].y->a to 2 as well.  

6.5.5 Array handling 

Please note that it is not possible to assign, _require, _skip, _forbid or _show to array members (bytes, shorts, 
longs or structs) in TDC version 1. 


