
technical_document_20030404.dot

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical Document

GSM PROTOCOL STACK

GPF

TCC – TEST CASE CONTROL

USER GUIDE

Document Number: 06-03-30-UDO-0001

Version: 0.10

Status: Draft

Approval Authority:

Creation Date: 1999-Mar-29

Last changed: 2015-Mar-08 by

File Name: 8415_028.doc

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 38

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, mod-

ifications, enhancements, improvements, and other changes to its products, software and services at
any time and to discontinue any product, software or service without notice. Customers should obtain
the latest relevant information during product design and before placing orders and should verify that

such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-

knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tech-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated

by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-

sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may s olely be

used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third

party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI

patent right, copyright, mask work right, or other TI intellectual property right relating to any combin a-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may

require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronical-
ly or mechanically, including photocopying and recording, for any purpose without the express wri tten
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

1999-Mar-29 VK et al. 0.1 1

1999-Mar-31 MS et al. 0.2 2

1999-Aug-31 VK et al. 0.3 3

1999-Nov-01 HJS et al. 0.4

1999-Dec-15 MS et al. 0.5 4

2000-Jan-21 HJS et al. 0.6 5

2000-Mar-15 HSC et al. 0.7 6

2000-Jul-10 HJS et al. 0.8 7

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 38

2002-Jan-15 HSC et al. 0.9 8

2003-May-20 XINTEGRA 0.10 Draft

2003-Sep-08 HSC 0.11 9

Notes:

1. Init ial version

2. English check/Format check

3. Add to section “Prerequisites

4. New features added/existing features amended

5. New Template (MS)

6. Updated

7. Format/English Check (MS)

8. Updated

9. New document number

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 38

Table of Contents

1.1 References ...4

1.2 Abbreviations ..5

4.1 Creating and editing test case documents ...7

4.2 Structure of test case documents ...9

4.3 Module Test Cases ...9

4.3.1 Purpose ..9
4.3.2 Parameters Section..10
4.3.3 Test Cases Section ..15
4.3.4 Suites Section..21

4.4 Multi Layer Test Cases ..23

4.4.1 Purpose ..23
4.4.2 Parameter Section ...24
4.4.3 Test Case Section..24

5.1 Test case generator TdsGen..25

5.1.1 TdsGen (WinWord) ..26
5.1.2 TdsGen (Command Line) ...26
5.1.3 Generating suite file ...26

5.2 Generating executable test cases: MKTC ...27

5.3 Generating all executable test cases for a test case document: MKALLTC27

5.4 TDSCheck ..28

5.4.1 The initialization file ..28

6.1 Manual start of PS and TAP ...32

6.1.1 Runalltc ...33

6.2 Tapcaller ..34

A. Acronyms ...38

B. Glossary ...38

List of Figures and Tables

List of References

[ISO 9000:2000] International Organization for Standardization. Quality management sys-

tems - Fundamentals and vocabulary. December 2000

1.1 References

[C_6147.302] 6147.302.99.111; March 30, 1999
Test Case Script Language User Guide; Condat

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 38

1.2 Abbreviations

G23 In the test environment: the implementation of G23 on a PC

EUT Entity Under Test

ISS Infrastructure Simulation

IUT Implementation Under Test

MFW MMI Framework

MMI Man Machine Inter face

MSC Message Sequence Chart

NT Windows NT

PCO Point of Control and Observation

PS Protocol Stack

TAP Test Application Process

TCSL Test Case Script Language

TDL Test Definition Language

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 38

2 Introduction

G23 is a software package implementing Layers 2 and 3 of the ETSI-defined GSM air interface signal-
ing protocol, and as such represents the part of a GSM mobile station's protocol software which is

both, plat form and manufacturer independent. There fore, G23 can be viewed as a building block pro-
viding standardized functionality through generic interfaces for easy integration.

The G23 suite of products consists of the following items:

 Layers 2 and 3 for speech & short message services,

 Layers 2 and 3 for fax & data services,

 Application Control Interface,

 Slim MMI [02.30] and

 Test and integration support tools.

This document describes how to define, create, run and evaluate test cases for the Condat GSM Pro-
tocol Stack G23. Test cases come in two forms:

 Module Test Cases

 Multi Layer Test Cases

Both of these types of test cases are covered in this document. The following table presents an ove r-
view of these two kinds of tests:

 Module Test Multi Layer Test

Base Specification and
Implementation

(SAP, MSC, SDL, C-Code)

GSM 11.10

Attribute single entity,
white box test,
primitive - oriented

variants a llowed

multip le entities,
black box test,
message - oriented,

variants a llowed

Definition TDL, WinWord document TCSL, WinWord document

Creation TdsGen/C-Compiler TdsGen/C-Compiler

Executable Test DLL Test DLL

Environment PC implementation of G23,
Nucleus MNT, TAP

PC implementation of G23,
 Nucleus MNT, TAP, ISS

Execution Tools TapCaller TapCaller

Both kinds of tests are defined in WinWord documents. Executable Test DLLs are generated from

these documents by applying the TdsGen generator and a C-Compiler. A Test DLL is created for each
test case.

Test cases are one type of deliverable created in the Condat software process. The following list con-
tains further deliverables described elsewhere:

 Message Sequence Chart Definitions

 SDL Specification

 Service Access Point (SAP) Specification

 Air Interface Messages Definition

 Implementation

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 38

3 Prerequisites

Certain assumptions are made related to the test environment:

 The IUT (implementation under test) has been installed

 Microsoft Developer Studio 97 or higher has been installed

 Microsoft WinWord 97 or higher has been installed

 4NT Version 2.50 or 3.01 or higher has been installed

 Environment variables have been set (call INITVARS)

The following tools and files are used (directly or indirectly) within the test case process:

 TUCT_TECH.DOT (create test case)
Á WinWord Document Template file used for test documents contain-
ing several useful macros..

 initvars.bat (create and execute test case)
A simple batch file to set up environment variables.

 tap2_%PROST%.exe (execute test case)

Command line application. The Test Application Process takes the
test case as a parameter and executes it. The environment variable
%PROST% (protocol stack) is set by initvars.bat (see section 4.1)

 tapcaller.exe (execute test case)
MS Windows application used for regression testing. TapCaller will
activate TAP and the IUT (implementation under test).

 testdll.mk (create test case)

Makefile needed to create test case DLLs from the TDS files which
contain the test case in an intermediate description.

 DOC2TXT.EXE (create test case)

This tool is applied on the WinWord file containing the test case de-
scription. A conversion to a raw text representation is carried out.

 tdsGen.exe (create test case)
Test Case Generator. This generator is applied on the raw text repre-

sentation of the test cases. An intermediate description, TDS files, are
created.

 gnumake.exe (create test case)

This Make-Program is called by MKTC.bat resp. mkalltc.bat and is
controlled by TestDll.mk.

 MKTC.bat (create test case)

Batchfile that generates a dedicated test case DLL.

 mkalltc.bat (create test case)
Batchfile that generates all test case DLLs belonging to a test case
document.

4 Test Case Definition

As stated previously, two types of test cases exist: Module Tests and Multi Layer Tests. The difference

between these is expressed in some aspects of the test case definition. Module Tests are defined in
terms of the Test Definition Language (TDL), whereas Multi Layer Tests are defined in terms of the
Test Case Script Language (TCSL).

There are some common properties of both Module Tests and Multi Layer Tests. The creation and top
level structuring of test case documents are equal for both types of test cases.

4.1 Creating and editing test case documents

Test cases are defined in documents created and edited by Microsoft WinWord 97. It is recommended
to chose the following options in the Microsoft WinWord 97 program:

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 38

Tools|Options |Edit Use smart cut and paste Not marked

 Tabs and backspace set left indent Not marked

Tools|AutoCorrect|AutoCorrect Capitalize first letter of sentences Not marked

Tools|AutoCorrect|AutoFormat as you

type

"straight quotes" with "smart quotes" Not marked

 Bold and _underline_ with real formatting Not marked

Tools|AutoCorrect|AutoCorrect In the list delete the entries for '<==' and
'==>'

For the test case generator to work properly, it is necessary to place test case documents in the direc-
tory %TSTDOCDIR%.

It is recommended to place all test cases related to one entity of the Condat Protocol Stack G23 into
one test case document.

Test case documents must use the template file TUCT_TECH.DOT. This DOT file contains the Win-
Word macros used to process test case documents.

A new test case document may be created in one of two ways:

 by copying and modifying an existing document

 by using the DOT template file TUCT_TECH to add test cases

It is recommended to use the first method (copy/modify).

Microsoft WinWord 97 is used to edit test case documents. In order to execute the test case gener a-
tor, the environment variables defined in the batch file INITVARS (e.g. TESTROOT, SIDE) must be
defined when WinWord 97 is used to edit test case documents. This can be ensured in one of the

following ways:

 by calling initvars from within an 4NT box, %WINWORD% can be called subsequently

(see 5.1.2)

 by placing CALL initvars in autoexec.bat

 by adding the environment variables to the NT environment

It is recommended to use the first method to set up the environment variables. The batch file ini t-
vars.bat needs four parameters:

1. The name of the protocol stack to be tested (e.g. "gprs"). The environment variable

%PROST% is set with this name.
2. The string "ms" or "bs" depending on if it is a mobile station or a base station stack to be

tested.

3. The drive of the local test development (e.g. "C:").
4. The base directory of the local test development (e.g. " \GSM\Condat").

For example:
 initvars gprs ms z: \GSM\Condat

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 38

4.2 Structure of test case documents

The structure of test case documents is given by the top level headings of the test case document:

Cover page
0 Table of Contents
1 Document Control

2 Parameters
3 Test Cases
3.1 Heading of the first test case group

3.1.1 <DocName>000: Heading of the first test case
 History
3.1.2 <DocName>001: Heading of the second test case

 History
...
3.2 Heading of the second test case group

3.2.1 <DocName>nnn: Heading of the nnn
th

 test case
 History
...

where <DocName> is the name of the test case document (e.g. MCC).

This structure must be followed in order to allow the test case generator to perform an evaluation of

the test case document. The test case generator is sensitive to text which is underlined in the previous
example. The first generator sensitive text of a test case document is the heading "2 Parameters"
(note the plural form). This section contains the test data of the test case document. The structure of

this test data is described in the subsequent sections of this document.

The next section of a test case document contains test cases. This section is introduced by the head-

ing "3 Test Cases" (also plural). The test cases are grouped. A test group is introduced by a heading
at level 2 (e.g. "3.1 Heading of the first test case group "). However, this heading is not evaluated by
the test case generator.

The beginning of a test case definition is identified by a heading at level 3 (e.g. "3.1.1 MCC000: Initia-
lization"). The end of a test case definition is identified by the string "History". The structure of the test

case contents is described in the subsequent sections of this document.

4.3 Module Test Cases

4.3.1 Purpose

Module Test Cases are used to test GSM entities (e.g. RR). The Test Definition Language (TDL) is
used to define Module Test Cases. The structure of test case documents containing Module Test

Cases is dominated by the two top level sections "Parameters" and "Test Cases".

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 38

4.3.2 Parameters Section

The Parameters Section defines test data which is used in the section "Test Cases". TDL provides the
following constructs to define named test data:

 BYTE define an 8 bit data item

 SHORT define a 16 bit data item

 LONG define a 32 bit data item

 DECLARATION define a handle

 FIELD/ENDFIELD define an array of bytes (OBSOLETE!)

 BEGINARRAY/ENDARRAY define an array of bytes (instead of FIELD)

 BEGINARRAY_PART/ENDARRAY define a partial array of bytes

 BEGIN_SHORT_ARRAY/ENDARRAY define an array of 16 bit data items

 BEGIN_SHORT_ARRAY_PART/ENDARRAY define a partial array of 16 bit data items

 BEGIN_LONG_ARRAY/ENDARRAY define an array of 32 bit data items

 BEGIN_LONG_ARRAY_PART/ENDARRAY define a partial array of 32 bit data items

 SET_BITBUF/ENDBITBUF define a buffer for a bit field longer than 24 bits

 SET_SDU/ENDSDU define a buffer for an sdu

 BEGIN_MSTRUCT/ENDSTRUCT define a structured Information Element

 BEGIN_PSTRUCT/ENDSTRUCT define a structure in a Primitive

 SET_COMP initialize a component of a structure

 SKIP_COMP ignore a component of a structure

 SHOW_COMP like SKIP_COMP but display the content on arrival

 FORBID_COMP signal an error i f the structure component is received

 BEGIN_PSTRUCT_ARRAY/ENDARRAY define an array of structures (OBSOLETE!)

 BEGIN_STRUCT_ARRAY/ENDARRAY define an array of structures (instead of
BEGIN_PSTRUCT_ARRAY)

 BEGIN_STRUCT_ARRAY_PART/ENDARRAY define a partial array of structures

 STRING define a string

 NEED includes the following file

 NUM_ELEMENTS delivers the number of elements in data declared be-
fore

These language elements are referred to as macros and are described in the subsequent sections.

4.3.2.1 BYTE, SHORT, LONG

Description: The macro BYTE/SHORT/LONG is used to define a named 8/16/32 bit test data item.

Syntax: BYTE <TDS_NAME> <VALUE>

<TDS_NAME>: The name of the test data item. The name may be used in the section "Test Ca s-
es" or within the section "Parameters" to define more complex structured test data.
The name must be unique within the <TDS_HANDLE> of all DECLARATION and

STRING macros and the <TDS_NAME> of a ll BYTE, SHORT, and LONG macros
respectively.

<VALUE>: An 8/16/32 bit data item, either in decimal or hexadecimal notation. A hexadecimal

is prefixed by "0x".

Example: BYTE ARFCN 0x52

 SHORT ACC_CTRL_CLASS_0000 0x0000
 LONG TMSI_BIN 0x00234534

4.3.2.2 DECLARATION

Description: The macro DECLARATION is used to define a handle which may be used in subsequent defin itions of test
data (e.g. BEGIN_PSTRUCT).

Syntax: DECLARATION (<TDS_HANDLE>)

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 38

<TDS_HANDLE>: The name of the handle. The name must be unique within the <TDS_HANDLE> of

all DECLARATION and STRING macros and the <TDS_NAME> of all BYTE,
SHORT, and LONG macros respectively. All DECLARATION macros must appear

before the first macro SET_BITBUF or a macro with a name beginning with
'BEGIN' respectively.

Example: DECLARATION (MS_CLASS)

4.3.2.3 FIELD/ENDFIELD

Description: The macro FIELD is used to define an array of bytes (8 bit data items) .

Warning: Do not use FIELD/ENDFIELD. I t won’t be suppor ted in future versions. Use BEGINARRAY/ENDARRAY
instead.

4.3.2.4 [BEGINARRAY[_PART]|BEGIN_SHORT_ARRAY[_PART]|BEGIN_LONG_ARRAY[_PAR

T]]/ENDARRAY

Description: The macro BEGINARRAY is used to define an array of by tes (8 bit data item).
 The macro BEGIN_SHORT_ARRAY is used to define an array of shor ts (16 bit data item).
 The macro BEGIN_LONG_ARRAY is used to define an array of longs (32 bit data item).

The variants of those three arrays with the suffix _PART are used to define par tia l arrays. During test case
execution the TAP checks the supplied data against its definition in the corresponding SAP or MSG cata-
logue. For arrays of fixed length this means that the length is checked and the test w ill fail if it is not correct.

With par tia l arrays it is possible to explicitly avoid this check and to define fewer array element than required.

Syntax: BEGINARRAY (<TDS_HANDLE>, <NUM_ITEMS>) … ENDARRAY

 BEGIN_SHORT_ARRAY (<TDS_HANDLE>, <NUM_ITEMS>) … ENDARRAY
 BEGIN_LONG_ARRAY (<TDS_HANDLE>, <NUM_ITEMS>) … ENDARRAY

<TDS_HANDLE>: the name of the array. The name must be unique w ithin the <TDS_HANDLE> of all

DECLARATION and STRING macros and the <TDS_NAME> of all BYTE, SHORT,
and LONG macros respectively.

<NUM_ITEMS>: The number of by tes/shor ts/ longs between BEGIN… and ENDARRAY.

The macro ENDARRAY does not take any parameters. Between BEGIN… and ENDARRAY, the
bytes/shor ts/longs must be specified, separated by commas, in decimal or in hexadecimal notation. A hex-

adecimal is pre fixed by "0x".

Example: BEGINARRAY (IDENT_DIGITS_IMSI, 12)

 2, 6, 2, 1, 3, 4, 3, 2, 1, 0, 9, 7
ENDARRAY

 BEGIN_SHORT_ARRAY_PART (COUNTS, 3)
 900, 300, 1200

ENDARRAY
 BEGIN_LONG_ARRAY (TIMERS, 3)

 90000L, 3000L, 12000L

ENDARRAY

4.3.2.5 SET_BITBUF/ENDBITBUF

Description: The macros SET_BITBUF/ENDBITBUF are used to define a named buffer for a b it fie ld longer than 24 bits.

Such bit fie lds occur in Air Inter face Messages only.

Syntax: SET_BITBUF (<NAME>, <TDS_HANDLE>, <NUM_BITS>) … ENDBITBUF

<NAME>: the name if the bit field within a Information Element. The name must be specified
in quotation marks.

<TDS_HANDLE>: the name of the test data item. The name must be unique within the

<TDS_HANDLE> of a ll DECLARATION and STRING macros and the
<TDS_NAME> of all BYTE, SHORT, and LONG macros respectively. The name

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 38

may be used within the section "Parameters" to define more complex structured
test data.

<NUM_BITS>: the length of the bit field. This number must not be greater than the maximal size of
the bit fie ld in decimal or in hexadecimal notation.

A hexadecimal is prefixed by "0x".

The macro ENDBITBUF does not take any parameters. Between the macros SET_BITBUF and

ENDBITBUF, the data for the bit field is specified as by tes in decimal or in hexadecimal notation. A hexade-
cimal is prefixed by "0x". The bytes are separated by commas. The number of by tes needed is
(<NUM_BITS>+7)/8.

Example: SET_BITBUF ("tmsi", TMSI_BIN_1, 32)
 0,0x23, 0x45, 0x34

ENDBITBUF

4.3.2.6 SET_SDU/ENDSDU

Description: The macros SET_SDU/ENDSDU are used to define a buffer for an sdu.

Syntax: SET_SDU (<TDS_HANDLE>, <NUM_BITS>,<OFFSET>) … ENDSDU

<TDS_HANDLE>: the name of the test data item. The name must be unique within the

<TDS_HANDLE> of a ll DECLARATION and STRING macros and the
<TDS_NAME> of all BYTE, SHORT, and LONG macros respectively. The name
may be used within the section "Parameters" to define more complex structured
test data.

<NUM_BITS>: the length of the bit field. This number must not be greater than the maximal size of
the bit fie ld in decimal or in hexadecimal notation.
A hexadecimal is prefixed by "0x".

<OFFSET>: an offset (in b its) with that the sdu shall be written into the buffer.

The macro ENDSDU does not take any parameters. Between the macros SET_SDU and ENDSDU, the data

for the bit fie ld is specified as bytes in decimal or in hexadecimal notation. A hexadecimal is prefixed by "0x".
The bytes are separated by commas.

Example: SET_SDU (SDU_U_START_CC, 32, 0)

 0,0x23, 0x45, 0x34
ENDSDU

4.3.2.7 BEGIN_MSTRUCT/ENDSTRUCT

Description: The BEGIN_MSTRUCT macro identifies the star t of an Information Element (IE) defin ition. An IE is part of
an Air Inter face Message defin ition. In TDS, Air Inter face Messages or ABIS messages are denoted by using
the "sdu" language element (ref. section "Test Cases"). I f a message contains a high layer message (e. g an

ABIS message contains an RR message), the high layer messages is denoted by using the "hl_sdu" lan-
guage element.

Syntax: BEGIN_MSTRUCT ("<INFO ELEMENT>", <TDS_HANDLE>) … ENDSTRUCT
<INFO ELEMENT>: the name of the information element as given in the Air Inter face Message defini-

tion document.
<TDS_HANDLE>: a name which denotes the test data for the information element.

This name is used in the section "Test Cases" to refer to the test data. The handle
<TDS_NAME > must have been defined w ith the DECLARATION macro.

The macro ENDSTRUCT does not take any parameters.
Between the macros BEGIN_MSTRUCT and ENDSTRUCT, the test data for the Information Elements are
defined by using the macros SET_COMP and SKIP_COMP. All parameters of the information element

INFO_ELEMENT mentioned in the message catalogue must appear in the same order as (first) parameter of
an SET_COMP or SKIP_COMP macro respectively.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 38

Example: BEGIN_MSTRUCT ("chan_desc", CHANNEL_DESC_XYZ)
 SET_COMP ("chan_type", SDCCH_4_S1)
 SET_COMP (" tn", TN_4)
 SET_COMP (" tsc", TSC_2)

 SET_COMP ("hop", HOP_NO)
 SET_COMP ("ar fcn", ARFCN_800)
 SKIP_COMP ("maio")

 SKIP_COMP ("hsn")
ENDSTRUCT

4.3.2.8 BEGIN_PSTRUCT/ENDSTRUCT

Description: The BEGIN_PSTRUCT macro identifies the star t of a Primitive Component definition. A Primitive Compo-
nent is par t of a Primitive.

Syntax: BEGIN_PSTRUCT ("<PRIM COMPONENT>", <TDS_HANDLE >) … ENDSTRUCT

<PRIM COMPONENT>: the name of the Primitive Component as given in the Service Access Point defini-
tion document.

<TDS_HANDLE>: a handle which denotes the test data for the Primitive Component.

This name is used in the section "Test Cases" to refer to the test data or it is used
within definition of other Primitive Componen ts. The handle <TDS_HANDLE> must
have been defined with the DECLARATION macro.

The macro ENDSTRUCT does not take any parameters.
Between the macros BEGIN_PSTRUCT and ENDSTRUCT, the test data for the Primitive Components are
defined by using the macros SET_COMP and SKIP_COMP. All parameters of information element

INFO_ELEMENT mentioned in the Service Access Point description document must appear in the same o r-
der as (first) parameter of an SET_COMP or SKIP_COMP macro respectively.

Example: BEGIN_PSTRUCT ("class", CLASS_MS)
 SET_COMP ("pclass", CLASS_2)
 SKIP_COMP ("pclass2")

ENDSTRUCT

4.3.2.9 SET_COMP

Description: SET_COMP is used to initialize an Information Element or a Primitive Component.

Syntax: SET_COMP (< NAME>, <VALUE>)

<NAME>: the name of a bit fie ld within an Information Element or a Component of a Primitive.
The name must be specified in quotation marks.

<VALUE>: the value of the test data item I f <NAME> denotes an atomic element, then
<VALUE> may be the <TDS_NAME> of a BYTE, SHORT or LONG macro. I f for

th is name a value table is defined in the Service Access Point document or Air
Message document, then the symbols of these c-macros may used also as
<VALUE>.

If <NAME> denotes an array, then <VALUE> must be <TDS_HANDLE> of a
BEGINARRAY, BEGIN_SHORT_ARRAY, BEGIN_LONG_ARRAY,
BEGIN_MSTRUCT or BEGIN_PSTRUCT macro respectively.

IF <NAME> denotes a bit fie ld with a length greater than 24 bits, then <VALUE>
should be the <TDS_HANDLE> of a SET_BITBUF macro.

Example: SET_COMP ("tsc",TSC_2)

4.3.2.10 SKIP_COMP, SHOW_COMP

Description: SKIP_COMP and SHOW_COMP are used to indicate that an Information Element or a
Primitive Component should not be included in the test data. Nevertheless in the case of

SHOW_COMP the corresponding item received by the protocol stack will be displayed. In
sent structures SHOW_COMP will act like SKIP_COMP.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 38

Syntax: SKIP_COMP (< NAME>)

<NAME>: the name of a bit fie ld within an Information Element or a Component of a Primitive.
The name must be specified in quotation marks.

Example: SKIP_COMP ("hsn")

 SHOW_COMP (“tp_oa”)

4.3.2.11 FORBID_COMP

Description: FORBID_COMP is used to indicate that an Information Element or a Primitive Compo-

nent must not be included in the received test data. In sent structures FORBID_COMP
will act like SKIP_COMP.

Syntax: FORBID_COMP (< NAME>)

<NAME>: the name of a bit fie ld within an Information Element or a Component of a Primitive.

The name must be specified in quotation marks.

Example: FORBID_COMP ("hsn")

4.3.2.12 BEGIN_PSTRUCT_ARRAY/ENDARRAY

Description: The BEGIN_PSTRUCT_ARRAY defines a primitive component which is described as an

array of structures in
the Service Access Point document.

Warning: Do not use BEGIN_PSTRUCT_ARRAY. It won't be supported in future versions. Use

BEGIN_STRUCT_ARRAY instead.

4.3.2.13 BEGIN_STRUCT_ARRAY[_PART]/ENDARRAY

Description: The BEGIN_STRUCT_ARRAY defines an array of structures.

The variant with the suffix _PART defines a par tia l array (see section 4.3.2.4) of structures.

Syntax: BEGIN_STRUCT_ARRAY(<TDS_HANDLE>,<NUM_STRUCTS>)

ENDSTRUCT

<TDS_HANDLE>: the name of the array of structures to be defined. The handle <TDS_HANDLE>
must have been defined with the DECLARATION macro.

BEGIN_PSTRUCT_ARRAY and ENDSTRUCT enclose the elements of the array.
Each element must be of the type PSTRUCT (BEGIN_PSTRUCT .. ENDSTRUCT).

<NUM_STRUCTS>: the count of structures belonging to the array. In the case of an ar-

ray of variable length, only the valid entries are needed.
The macro ENDARRAY does not take any parameters.

Example: BEGIN_PSTRUCT_ARRAY (CH_NUM_ARR_1,3)
 CH_NUM_1,
 CH_NUM_2,

 CH_NUM_3
ENDARRAY

4.3.2.14 STRING

Description: The STRING macro can be used to define a string. A string is internally stored as an array of bytes, but in co n-

trast to BEGINARRAY it is defined as human readable character str ing and not by te by byte. A second di f-
ference is that the TDS_HANDLE of the string is declared implicitly by the STRING construct and not by a
DECLARATION. Therefore each STRING must appear before any SET_BITBUF and before any macro b e-

ginning w ith 'BEGIN'.

Syntax: STRING (<TDS_HANDLE>,<CHAR_STRING>)

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 38

<TDS_HANDLE>: the name of the string to be defined. The name must be unique w ithin the

<TDS_HANDLE> of a ll DECLARATION and STRING macros and the
<TDS_NAME> of all BYTE, SHORT, and LONG macros respectively.

<CHAR_STRING>: the string itself

Example: STRING (C_PLUS_CPAS, "AT+CPAS ")

4.3.2.15 NEED

Description: The NEED statement provides a simple mechanism to include (header) files, which may contain constants used
in the test cases.

Syntax: NEED <FILE>

<FILE>: the name of the file to be included. Note that the file name is not wrapped in quota-
tion marks.

Example: NEED foo.def

4.3.2.16 NUM_ELEMENTS

Description: The NUM_ELEMENTS delivers the number of e lements in data declared before.

Syntax: NUM_ELEMENTS (<TDS_HANDLE>)

<TDS_HANDLE>: identifies the data of what the number of elements is delivered.

Example: STRING(STRING_1, "Hello")

 BEGIN_PSTRUCT (…, STRING_STRUCT)

 SET_COMP ("s_len", NUM_ELEMENTS(STRING_1))

 SET_COMP ("string", STRING_1)

 ENDSTRUCT

4.3.3 Test Cases Section

The section headed "Test Cases" contains groups of test case definitions. A test case group contains

any number of test cases. Each test case is defined in a separate section with the following structure:

 Heading (Level 3)

 Description

 Preamble

 Variants

 Primitive Sequence Chart

 Parametrization

 History

An exception is the first test case that is used for initialization purposes. It contains redirection com-

mands. These redirection commands are placed into the block of the Message Sequence Chart (ref
following).

4.3.3.1 Heading

The Heading of a Module Test Case must have the following structure:

n1.n2.n3 <test case name >: <one line text of the heading>

In this structure n1, n2 and n3 are decimal numbers. The test case name consists of the name of the
test document and a three or four digits (e.g. l2r001). If the test document is divided into several parts

(e.g. the test cases for GRR are in the documents GRR1.doc and GRR2.doc) the number at the end

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 38

of the file name can be left out (e.g. GRR1 can contain the test case GRR001). The test case name
has to be unique among the documents belonging together. It is suggested to leave gaps in the num-
bering of test cases to make it easier to fill in further test cases later without renumbering the existing

cases. Here is a valid example of a test case heading:

3.2.10 RR027: BCCH carrier not suitable (cell barred, with SIM)

4.3.3.2 Description

Each Module Test case contains a description of the actions performed. This description is specified in
prose after the keyword "Description:". For example:

Description: The SYS INFO messages have reported that the BCCH carrier is

not suitable as the cell is barred. ...

4.3.3.3 Preamble

Each Test Case may have a predecessor - a test case which is executed before the execution of the
test containing the predecessor starts. The predecessor is specified by the keyword "Preamble:". If the

test case has no predecessor then the line of text "Preamble: None" must be issued. Here is an
example for using the keyword Preamble:

Preamble: RR012A

Note that a test case has at most one Preamble.

4.3.3.4 Variants

Similar test cases differing slightly in their parametrization and/or preamble may be specified as "va-
riants". The keyword "Variants:" announces the fact that a test case has variants. In the example

Variants: <A>....<E>

The currently defined test case has 5 variants. The last character of the test case name will take on

the letters "A" through "E". The usage of Variants is optional. Variants may be specified before the
preamble(s).
If a test uses different preambles, the variants are noted for each variant as in the following example

Preamble: <A>RR022
RR027A

4.3.3.5 Primitive Sequence Chart

Immediately following the keyword "Preamble" or "Variants" a Primitive Sequence Chart of the Module
Test Case test case is specified. Here is an example of such a chart which is part of a Module Test for

the GSM entity RR:

 MM RR PL/DL

 | | |

(1) | RR_ACTIVATE_REQ | |

 ==============================> |

(2) | | MPH_POWER_REQ |

 | *==============================>*

 | | |

The Entity Under Test (EUT) is RR. The other entities affected in this test case are MM and PL/DL.

Two Primitives are sent in this test case: RR_ACTIVATE_REQ and MPH_POWER_REQ. The direc-
tion of the primitive flow is indicated by the arrows (=====>). In this example, the Test Application
Process (TAP) first sends a RR_ACTIVATE_REQ to the EUT and then waits for a

MPH_POWER_REQ, which must be sent by the EUT.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 38

The strings indicating the entities are informative only and have no significance for later processing of the test document.
There must be always three columns. The first and the last line of the char t must be empty.

Each primitive is to describe by a mandatory primitive name and the number of primitive (first l ine), an optional comment in

the nex t line (e. g. the name of the message the primitive carries) and the mandatory arrow (next line). In every line there
must not be par ts of the description of d ifferent primitives. The name of primitives must be identical to names of primitives in
the parametrization section of the test case (see section 3.3.3.6)

Before, between or after the primitives (or instead of them) there may be inserted lines

 COMMAND
(description see later in th is section)

 TIMEOUT (time)
where time is a non negative integer. The time is measured in msec. The TAP is suspended for the given time. I f
placed before the expected receiving of a primitive (i.e. in the example above the MPH_POWER_REQ – the arrow is

directed from the EUT), the instruction adds time to the default waiting time (10 s) for a primitive. A test w ill fail if EUT
sends no primitive during the default waiting time plus time.

 MUTE (time)
where time is a non-negative integer. The time is measured in msec. A test w ill fail if the entity under test sends a pri-

mitive during the given time. The instruction may be used to check whether a timer is stopped or if there are unex-
pected primitives sent from EUT.

 START_TIMEOUT (time)
where time is a non negative integer. The time is measured in msec. The TAP start internally a timer with for the given

time. I t is not waited for the expiration of the timer. Subsequently all usual actions i.e. sending and receiving of primi-
tives can be performed. With WAIT_TIMEOUT it is possible to wait for expiratio n of the started timer.

 WAIT_TIMEOUT

waiting for the expiration of the timer star ted by START_TIMEOUT. This command now acts like MUTE for the remain-
ing time of the timer. I f the timer was expired before WAIT_TIMEOUT was called, the test will fa il.

 REPEAT (var,cnt)
define a repeat loop. The parameter var is the C name of the loop index. I t must differ from all TDS_HANDLE values

used inside of the loop. With cnt the number of times the loop is to be executed is given.

 ENDREPEAT
closes the repeat loop defined with REPEAT before.

All instructions must begin in the first character of a line and require one blank space between the

command name and "(".
It is possible to replace the timer values by symbolic constants (e.g. "TIMEOUT (TIMERVALUE1)").
These constants have to be defined in the Parameters Section of the test case document or are

known through an included header file. Additionally, the user can specify different timer values for
variants of test cases (see section 4.3.3.6 for further details).

Typically a Module Test has at least one primitive sent to the EUT (stimulus) and at least one primitive
sent from the EUT to another entity (response).

Primitive sequence charts may contain commands for dynamic configuration purposes. The following
chart contains commands to set up the EUT (entity RR). All communication paths are reset. The data
flow from and to RR is redirected to the Test Application Process (TAP) (indicated in bold font below).

Typically this initialization is part of the first test case, whereas some of the commands are omitted for
the reason of clarity.

 MM RR PL/DL

 | | |

COMMAND (TAP RESET)

[several RESET COMMANDs omitted]

COMMAND (SIM RESET)

COMMAND (PL RESET)

 | | |

COMMAND (TAP REDIRECT CLEAR)

[several REDIRECT COMMANDs omitted]

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 38

COMMAND (PL REDIRECT CLEAR)

 | | |

COMMAND (MMI REDIRECT MM NULL)

[several REDIRECT COMMANDs omitted]

COMMAND (MMI REDIRECT PL NULL)

 | | |

COMMAND (CC REDIRECT MMI NULL)

COMMAND (CC REDIRECT MM NULL)

 | | |

COMMAND (SS REDIRECT MMI NULL)

COMMAND (SS REDIRECT MM NULL)

 | | |

COMMAND (SMS REDIRECT MMI NULL)

COMMAND (SMS REDIRECT MM NULL)

 | | |

COMMAND (MM REDIRECT MMI NULL)

[several REDIRECT COMMANDs omitted]

COMMAND (MM REDIRECT DL NULL)

 | | |

COMMAND (RR REDIRECT PL TAP)

COMMAND (RR REDIRECT DL TAP)

COMMAND (RR REDIRECT MM TAP)

COMMAND (RR CONFIG NO_SYS_TIME)

 | | |

COMMAND (DL REDIRECT RR NULL)

COMMAND (DL REDIRECT MM NULL)

COMMAND (DL REDIRECT PL NULL)

 | | |

COMMAND (PL REDIRECT RR NULL)

COMMAND (PL REDIRECT DL NULL)

COMMAND (PL REDIRECT MMI NULL)

 | | |

COMMAND (SIM REDIRECT MM NULL)

 | | |

COMMAND (TAP REDIRECT TAP RR)

 | | |

If the test document contains test cases with several stack entities as EUT, then the last command

 COMMAND (TAP REDIRECT TAP <EUT>)
must be replaced by several commands of the format
 COMMAND (TAP REDIRECT TAP **bbbbbb******** <ENT>)

In this line, bbbbbb is the binary coding of the Service Access Point identifier (each b is one binary
digit 0 or 1) and <ENT> is the entity providing the Service Access Point. The tested entities use a line
for every Service Access Point.

Example:
COMMAND (TAP REDIRECT TAP **001011******** RR)

In the example, it is assumed that RR has the Service Access Point 11/0x0B.

With a COMMAND it can also be controlled how long the Tap waits for the arrival of a primitive. The
default value is 10 sec. With

 COMMAND (TAP TIMEOUT 6000)
it can e.g. set to 6 sec. The value following the keyword TIMEOUT is interpreted to be the timeout
measured in milliseconds.

Another application for Tap internal COMMANDs is the possibility to switch the parking
1
 behavior off

and on (COMMAND (TAP PARKING OFF) resp. COMMAND (TAP PARKING ON)).

1 If a primitive is received that is not expected, the usual behavior of the Tap is to "park" that primitive. I.e. it is stored. Later if it

is expected it will be considered. It is an error if at the end of a test case there are still parked primitives. If a strict sequence of
primitives is required it is useful to sw itch the parking behavior off.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 38

4.3.3.6 Parametrization

The Message Sequence Chart is followed by a section describing the values of timer statements and
of the Primitives sent to and received from the Entity Under Test. This section starts at the keyword

"Parametrization". Here is an example for a Parametrization section:

Parametrization

 Timer Parameter Value

TIMERVALUE1 <A> 500

 1000

TIMERVALUE2 1500

 Primitive Parameter Value

(1) RR_ACTIVATE_REQ
 plmn PLMN_ID_123
 op OP_MODE_TEST_SIM
 cksn CKSN_NOT_PRES

 kcv KCV_12345678
 accc ACC_CTRL_CLASS_0008
 imsi MOBILE_ID_IMSI_HPLMN

 tmsi MOBILE_ID_TMSI
 thplmn TIME_HPLMN_VALID
 bcch_info BCCH_INFO_EMPTY

(2) MPH_POWER_REQ
 pch_interrupt PCH_INTERRUPT
 freq_bands NOT_USED

In the Primitive Sequence Chart timer values can be specify directly (e.g. "TIMEOUT (500)") or by
symbolic constants (e.g. "TIMEOUT (TIMERVALUE1)"). It is possible to define these constants in
included (header) files, in the Parameters Section of the test document or in the Parametrization of a

test case. For each timer constant, which is not defined elsewhere there has to be a definition in the
Parametrization. The symbolic constants should be unique within a test document. After the keywords
"Timer Parameter" and "Value" the definition of the timer parameters starts: The timer parameters (in

the example TIMERVALUE1 and TIMERVALUE2) in the first column are followed by non -negative
integer values (timer values are measured in msec). If it is necessary to have different timer values in
variants of a test case the value must be prefixed with the letter of the variant (as it is shown for

TIMERVALUE1).
If all timer parameters have been specified the parametrization of the primitives follows.

For each primitive in the Primitive Sequence Chart there must be one description of the primitive p a-
rameter in the Parametrization section. Every primitive parameter (e.g. "plmn") occurring in the prim i-
tive description of the Service Access Point document must occur in the same order in a line of the

parameter section after the appropriate primitive name. This is a list of acceptable values (e. g.
PLMN_ID_123):

 If the description of the parameter in the Service Access Point document contains a value table,
any symbol in the c-macro column may be used.

 If the primitive parameter is of type UBYTE, USHORT or ULONG, then an appropriate
<TDS_NAME> of a BYTE, SHORT or LONG macro from the parameter section of test document
may be used.

 If the primitive parameter is of type array of UBYTE, then an appropriate <TDS_HANDLE> of a
BEGINARRAY[_PART] macro from the parameter section of test document is to be used.

 If the primitive parameter is of type STRUCT, then an appropriate <TDS_HANDLE> of a
BEGIN_PSTRUCT macro from the parameter section of test document is to be used.

 If the primitive parameter is of type array of USHORT, then an appropriate <TDS_HANDLE> of a
BEGIN_SHORT_ARRAY[_PART] macro from the parameter section of test document is to be
used.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 38

 If the primitive parameter is of type array of ULONG, then an appropriate <TDS_HANDLE> of a
BEGIN_LONG_ARRAY[_PART] macro from the parameter section of test document is to be used.

 If the primitive parameter is of type array of STRUCT, then an appropriate <TDS_HANDLE> of a
BEGIN_STRUCT_ARRAY[_PART] macro from the parameter section of test document is to be

used.

 If the primitive parameter is a bit field longer than 24 bits then an appropriate <TDS_HANDLE> of
a SET_BITBUF macro from the parameter section of test document is to be used.

If the value of a parameter differs for variants of the test case, then for each variant a l ine must be
coded which is prefixed with the letter of the variant, e. g.

<A> accc ACC_CTRL_CLASS_0008
 accc ACC_CTRL_CLASS_0004

Constant values (magic numbers) are not allowed in the "Values" column of the parameter description.

If the primitive parameter contains a message, the keyword SDU is used to start the definition of the

message. The information elements of the message are surrounded by braces (SDU {...}). If the
message contains a high layer message, the keyword hl_sdu is used to start the definition of the
nested message. The information elements are again surrounded by braces (hl_sdu{...}).

 The first line inside the braces describes with the parameter name component, the entity to which
the message belongs.

 The second line notes after the parameters name the direction of the message by the keywords

UPLINK or DOWNLINK respectively. For messages defined for both directions the keyword BOTH
is available here.

 The third line notes with the parameter name pd, the message type of the messag e. The value is

the short name of the appropriate messages from the message catalog in upper letters.

 The fourth line uses as parameter name md for ABIS messages and ti for all other messages. The
value refers to a BYTE macro with the coding of the message discriminator for ABIS messages or
the coding of skip indicator or transaction identifier for other messages. If the feature of an ex-

tended transaction identifier shall be used, it is possible to a further parameter tie on the fi fth line
following the ti.

The following lines contain the parameters of the message catalog after the msg_type (in the same

order). There is no line with the parameter name msg_type in the test document.

For the lines inside the braces (the information elements) of the message, the previous paragraph is

valid (by replacing "Service Access Point" by "Air Message" document and "primitive parameter" by
"information element. Here is an example of a primitive containing a system information message:

(1) MPH_UNITDATA_IND
 arfcn ARFCN_43
 sdu
 {

 component RR
 direction DOWNLINK
 pd D_SYS_INFO_1

 ti TI_0
 cell_chan_desc CELL_CHAN_DESC_1
 rach_ctrl RACH_CTRL_1

 }

To build erroneous messages, use the name of a SET_BITFIELD macro in the same line instead of
the information elements surrounded by braces in the following lines. In the referenced byte array, the

entire erroneous message is to be coded. BEGIN_ARRAY or FIELD macro are also possible, but plat-
form dependent and therefore obsolete.

There exist the special parameter values NOT_USED, DISPLAY_ONLY and FORBID. The value
NOT_USED for a sent parameter has the meaning that the parameter is ignored, i.e. nothing is filled
into the primitive/message. NOT_USED for a received parameter means that the received data is not

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 38

checked. A value of DISPLAY_ONLY means that the received data is shown in the traces but not
checked against any given data. With FORBID it is checked that the (probably optional) parameter is
not included. If it is included, the test case fails. Both, DISPLAY_ONLY and FORBID, are only valid on

receiving.

4.3.3.7 History

The end of a test case definition is indicated by the "History:" section, introduced by the keyword "Hi s-

tory":

History: 04.07.97 DL Initial

 05.05.98 VK Revised (one prim removed)

An entry in the history section contains three items: a date, the initials of the author who changed the

test case and a comment describing the changes.

4.3.4 Suites Section

The section headed "Suites" is supported for component tests in TDL language only. It contains an
additional way to order or to reorder test cases with suites. The main intention of suites is the possibi li-

ty to define repeated loops on the base of test cases. In addition to loops it is possible to select a test
case randomly. During the execution of test suites, Preambles are not performed to avoid e.g. unne-
cessary initialization actions inside of loops.

Each suite is a list of

 test cases and/or

 other suites and/or

 commands for the selection of a certain suite or the repetition of suites.

Preambles inside the test cases are not needed. If they occur, they are ignored.

4.3.4.1 Syntax

The suite section has the following syntax:

<comment> ::= /*<any sequence of characters containing neither /* nor */>*/

<white space> ::= <any sequence of blank, tab and/or new line characters>
note: Comments and white spaces are ignored

<test case name> ::= <name of a test case from the section "test cases">
remember: Such a name consists of the name of the test document, three digits and optionally
a letter for a variant as described in section 3.3.3

<suite identifier> ::= <any sequence of letters, digits and underline character>

note: The sequence must have at least one character. Suite identifiers are case sensitive.

<integer> ::= <any sequence of digits>

note: The value of an integer has its normal meaning and it must fit into an integer of the C

language.

<suite type> :: <internal> | <able to run>

<internal> ::= INT_
<able to run> ::= SUI_
<full suite name> ::= <suite type><suite identifier>

Note: "able to run" means that the suite may be processed. Its first test case must contain the
redirection commands as described in section 3.3.3. "Internal" means that the suite is used to
construct other suites in an easily understandable manner for humans.

<member> ::= <test case name> | <full suite name>| <select command> | <repeat command>
<evaluated member> ::= <member> , <integer>

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 38

<name list > ::= <member> | <name list> , <member>
<evaluated name list> ::= <evaluated member> | < evaluated name list>, <evaluated member>

<select command> ::= SELECT(< evaluated name list>)
<count> ::= <integer> | EVERY | FOREVER
<repeat command> ::= REPEAT(<count>,<name list >)

<suite definition> ::= <full suite name> : <name list> ;

note: The full suite names in suite definitions must be unique in the suite sec tion.

<suite section> ::= <suite definition> | <suite section><suite definition>
<suite chapter> ::= <suite section> ENDSUITES

4.3.4.2 Processing of suites

All suites of type "able to run" may be processed by interpreting its compound list of members:

 If the member is a test case name, the appropriate test case is performed (without its preamble if
the test case contains one). This requires that the test case is compiled to a dll file. After

processing all primitives of the test case, this member is complete.

 If the member is a full suite name, the definition of it is processed in the same way as the "calling"
suite.

 If the member is a select command (and if this select command is not processed during the
processing of a repeat command with the count EVERY),the integers of its evaluated name list are
interpreted as probabilities. The integers should be between 1 and 99. The sum should be 100. By

a random number scaled to 100, a member of the evaluated list is selected. This member is
processed in the same way. After the processing of this member, the processing of the select
command is complete.

 If the member is a repeat command and the count is an integer, its name list is processed. If the
processing is complete, a counter is incremented. If it has not reached the integer value, the name
list is processed again and so on. If the counter reaches the count value, the processing of the re-
peat command is complete.

 If the member is a repeat command and the count is the value FOREVER, an infinite number of
repetitions is started. Note: such a suite may never pass.

 If the member is a repeat command and the count is the value EVERY, the number of repetitions

is defined implicitly by the select commands processed during the processing of the name list of
the repeat command. An other member of a called select command (if there is one select com-
mand called) or an other combination of members of different select commands is selected on

every repetition. Such a repeat command is complete if its name list is processed so often that
every combination of members of called select commands is processed.

 If a member of a list is complete, the next member of the list is processed if present. Otherwise,
the processing of the list is complete.

4.3.4.3 Example

An example of a suite section follows.

/* Routing */
SUI_Init: MCOMP000, MCOMP009;

/* minimal recources */
INT_Res1: MCOMP020, MCOMP021, MCOMP025;
/* middle resources */

INT_Res2: MCOMP300, MCOMP302, MCOMP304;

/* preparing the BTS */

SUI_SYS_INFO1: SUI_Init, INT_Res1, MCOMP040A;
SUI_SYS_INFO2: SUI_Init, INT_Res2, MCOMP040A;

/* Immediate Assign */
INT_ImmAss_LUT: MCOMP060A, MCOMP061A;

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 38

INT_ImmAss_MOC: MCOMP060B, MCOMP061A, MCOMP080;
INT_ImmAss_MTC: MCOMP060C, MCOMP061A, MCOMP062A;

/* Location UPDATE without and with TMSI reallocation */
INT_LU_WO_Realloc: MCOMP062A, MCOMP066;
INT_LU_With_Realloc: MCOMP062A, MCOMP068, MCOMP070A;

INT_LU_TMSI_delete: MCOMP062A, MCOMP069A, MCOMP070A;

/* Location update variants */

INT_LU: SELECT(INT_LU_WO_Realloc, 30, INT_LU_With_Realloc,60,
INT_LU_TMSI_delete, 10);

/* Release of SDCCH */
INT_Rel_SDCCH_OK: MCOMP130A, MCOMP131A;
INT_Rel_SDCCH_ERR: MCOMP130A, MCOMP137;

INT_Rel_SDCCH: SELECT(INT_Rel_SDCCH_OK,98, INT_Rel_SDCCH_ERR,2);

/* Complete Location update */

INT_LU_EVERY: REPEAT(EVERY,INT_ImmAss_LUT, INT_LU, INT_Rel_SDCCH);
INT_Comp_LU: INT_ImmAss_LUT, INT_LU, INT_Rel_SDCCH;

/* Suites for Location Update */
SUI_LU_0: SUI_SYS_INFO1, INT_Comp_LU;
SUI_LU_1: SUI_SYS_INFO1, INT_LU_EVERY;

SUI_LU_2: SUI_SYS_INFO2, INT_LU_EVERY;
SUI_LU_3: SUI_SYS_INFO1, REPEAT(10, INT_Comp_LU)

ENDSUITES

The end of the suite section is indicated by the keyword ENDSUITES.
In this example, the processing of the suite SUI_LU_0 calls the test cases

SUI_SYS_INFO1 SUI_Init MCOMP000, MCOMP009

 INT_Res1 MCOMP020, MCOMP021, MCOMP025

 MCOMP040A

INT_Comp_LU INT_ImmAss_LU

T

, MCOMP061A

 INT_LU SELECT(INT_LU_WO_Realloc, 30,
INT_LU_With_Realloc, 60,
INT_LU_TMSI_delete, 10)

assume a generated random value between 30 and 89

MCOMP062
A,
MCOMP068,

MCOMP070
A

 INT_Rel_SDCCH SELECT(INT_Rel_SDCCH_OK,98,
INT_Rel_SDCCH_ERR,2)

assume a generated random value between 0
and 98

MCOMP130
A,

MCOMP131
A

The processing of SUI_LU_1 processes SUI_SYS_INFO1 and 6 repetitions of the sequence of

 INT_ImmAssLUT,

 one of three variants from INT_LU and

 one of two variants of INT_Rel_SDCCH:

4.4 Multi Layer Test Cases

4.4.1 Purpose

Multi Layer Test Cases are implementations of the GSM conformance tests according to the GSM
11.10 specification. The Test Case Script Language (TCSL) is used to define Multi Layer Test Cases.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 38

This language is described in a separate document (ref. [C_6147.302]). The structure of test case
documents containing Multi Layer Test Cases is similar to the structure of a document containing
Module Test Cases. At top level there is a section "Parameter" and a section "Test Cases". However

the contents are different.

4.4.2 Parameter Section

The Parameter Section of a test case document containing Multi Layer Tests defines test data which

is used in the section "Test Cases". TCSL provides the following constructs to define test data:

 IE_BEGIN start of the definition of an Information Element

 BF definition of a Bit Field

 IE_END end of the definition of an Information Element

 MSG3_BEGIN start of the definition of a Layer 3 Message

 IE reference to an Information Element

 MSG3_END end of the definition of a Layer 3 Message

These language elements are described in a separate document (ref. [C_6147.302]).

The definition of test data in a Multi Layer Test Case is done in two steps:

 definition of Information Elements (using IE_BEGIN, BF, and IE_END)

 definition of messages (using MSG3_BEGIN, IE, and MSG3_END)

This two step way of defining test data items reflects the way the air interface messages are defined in
the GSM specification.

4.4.3 Test Case Section

The section headed "Test Cases" contains groups of test case definitions. A test case group contains

any number of test cases. Each test case is defined in a separate section which has the following
structure:

 Heading (Level 3) ref 4.3.3.1 Heading

 Description ref 4.3.3.2 Description

 Preamble ref 4.3.3.3 Preamble

 Variants ref 4.3.3.4 Variants

 Script

 History ref 4.3.3.7 History

The sections Heading, Description, Preamble, Variants and History are the same for both Module

Tests and Multi Layer Tests. Refer to the referenced section of the Module Test Cases. There is no
"Primitive Sequence Charts" or "Parametrization" section in Multi Layer Test specifications. Instead, a
section named "Script" is included in the Multi Layer Test. This section contains the specification of the

exchange of Layer 3 Air Interface Messages. Here is an example from a Multi Layer Test case:

Script:

ISS_INIT (4);

BS_SET_SYS_INFO (0 , system_information_type_1);

BS_SET_SYS_INFO (0 , system_information_type_2);

BS_SET_SYS_INFO (0 , system_information_type_3);

BS_SET_SYS_INFO (0 , system_information_type_4);

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 25 of 38

BS_SET_SYS_INFO_SACCH (0 , system_information_type_5);

BS_SET_SYS_INFO_SACCH (0 , system_information_type_6);

BS_SET_SCH (0 , BSIC , RFN);

BS_SET_ARFCN (0 , ARFCN_BCCH);

BS_SET_POWER (0 , -50);

BS_ON_OFF (0 , TRUE);

COMMAND ("MMI CONFIG KEY_SEQUENCE=<#*91*1#>"); /* Power On */

ISS_DELAY (20000);

COMMAND ("MMI CONFIG KEY_SEQUENCE=<03039094117>");/* Dial */

BS_RACH_AWAIT(0,channel_request_moc,SILENT);

BS_CONFIG_CHANNEL (0, AGCH, UNACK, SAPI_0);

BS_STORE_RACH_PARAMS (0, 0);

BS_MSG3_SEND (0,immediate_assignment,SILENT);

BS_CONFIG_CHANNEL (0, SDCCH, 1, SAPI_0);

BS_MSG3_AWAIT(0,cm_service_request,SILENT);

The following steps are performed in this example:

 initialization of the system

 Power On sequence

 Delay for network and cell selection

 MOC up to the cm_service_request message

The language elements that may be used to specify the Script part of a Multi Layer Test case are de-

scribed in a separate document (ref. [C_6147.302]). However, this is a brief list of the most important
TCSL language elements used in the Script part:

ISS_INIT (NUM_BS) initialize ISS
ISS_DELAY (MILLI_SEC) delay in milliseconds

BS_SET_SYS_INFO(BS_IDX,SI) define system information messages
BS_ON_OFF (BS_IDX,ON_OFF) switch on a base station

BS_MSG3_SEND (BS_IDX,MSG3,COM) send a Layer 3 message
BS_MSG3_AWAIT (BS_IDX,MSG3,COM) receive and compare a Layer 3 message

5 Test Case Creation

The following steps must be carried out to create an executable test case:

 apply the Test Case generator TdsGen

 use the tool MkTc to compile and link the test case

5.1 Test case generator TdsGen

The test case generator processes the Test Case definition document (ref [3 Test Case Definition])

and produces a data definition script (*.def), a test definition script (*.tds) for each test case definition.
All files are stored in %TDSDIR%\<Entity Name>. The environment variable TDSDIR must be active
when the test case generator processes the test case definition document. The Entity Name is actually

the name of the test case definition document. An example for a test definition script is
%TDSDIR%\RR\RR027.TDS. If RR027 had variants (ref [4.3.3.4 Variants]) A..E, then five files
RR027A.TDS through RR027E.TDS would have been created. As an example here is the output of

the test definition script related to variant A of the test case RR001.

#include "MACROS.H"

#include "RR.DEF"

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 26 of 38

TESTCASE (RR001A)

#include "RR000.TDS"

/*
 TITLE: Start cell selection

 DESCRIPTION: A cell selection without BCCH information is started. Variant A: no SIM is inserted. Variant B: SIM

is inserted, test SIM card, IMSI in the HPLMN, TMSI Variant C: SIM is inserted, normal SIM card, IMSI in the HPLMN,
no TMSI Variant D: SIM is inserted, test SIM card, IMSI in the HPLMN, no TMSI Variant E: SIM is inserted, normal
SIM card, IMSI in the HPLMN, TMSI
*/

SEND (RR_ACTIVATE_REQ)
SET_PARAM ("plmn", PLMN_ID_EMPTY)

SET_PARAM ("op", OP_MODE_EMPTY)
SET_PARAM ("cksn", CKSN_NOT_PRES)
SET_PARAM ("kcv", KCV_EMPTY)
SET_PARAM ("accc", ACC_CTRL_CLASS_0000)

SET_PARAM ("imsi", MOBILE_ID_NOT_SET)
SET_PARAM ("tmsi", MOBILE_ID_NOT_SET)
SET_PARAM ("thplmn", TIME_HPLMN_EMPTY)
SET_PARAM ("bcch_info", BCCH_INFO_EMPTY)

ENDSEND

AWAIT (MPH_POWER_REQ)
COMP_PARAM ("pch_interrupt", PCH_INTERRUPT)

SKIP_PARAM ("freq_bands")
ENDWAIT

ENDCASE

Each test definition script includes the file MACROS.H. This file contains the definitions of the macros
used to define test data (e.g. BEGINARRAY) and macros generated by the test case generator (e.g.

SEND and AWAIT). The test data defined in the test case definition document is output to the file
<Entity Name>.DEF, for example RR.DEF. The test case file which is used as a Preamble (ref [4.3.3.3
Preamble]) is included at the top of the test case (#include "RR000.TDS" in the example).

In the case of an error, the user is briefly informed by a dialog box. A detailed description of the error
is placed into the files <Entity Name>.err and <Entity Name>.log (e.g. RR.ERR and RR.LOG). Be-

sides, a file named <Entity Name>.war is created to store warnings which TdsGen detects.

There are two ways to start the test case generator, either from within WinWord or from the command

line.

5.1.1 TdsGen (WinWord)

The test case generator may be called at any time for the currently edited test case definition doc u-

ment. The WinWord menu options <WCS_MACROS> <Generate tds> must be used. If the menu
option <WCS_MACROS> is missing, then most likely the DOT file (TUCT_TECH) is missing (ref [4.1
Creating and editing test case documents]).

5.1.2 TdsGen (Command Line)

To call the test case generator without using WinWord, the scripts documented in the sections 5.2 and

5.3 must be used.

5.1.3 Generating suite file

The suite section of a component test document is used to offer a n additional way to control the order

of test cases. To use this option, the suite section must extracted from test document and stored as a
plain file. The name of this file is <Entity>.sui. There are two directories where the file is stored: first, in
the directory where TdsGen has produced the tds-files (controlled by the environment variable

(%TDSDIR%). This location is used for tdscheck (see Error! Reference source not found.)
processing. The second location of the suite file is the same directory where the test case DLLs are
generated. The location of this directory is dependent on the project for that the test cases are com-

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 27 of 38

piled. The name of this directory is printed by the test case generation scripts explained in the foll ow-
ing sections. Those scripts also perform the extraction of the suite file.

5.2 Generating executable test cases: MKTC

After the test case generator has created the test definition scripts the Microsoft C-Compiler and Link-
er is used to compile and link the scripts and to generate executable test cases. These executable test
cases are Dynamic Link Libraries. The tool MkTc is provided to make this process easy. In order to

create an executable test case, the following line has to be executed from a 4NT box:

MKTC [-gen] [-chk] [-i <idir>] [-td <tdir>] [-eut <eutname>] <Entity> <TestCase> [<TestCon-

fig>]
where <Entity> is the name of the EUT (e.g. RR) resp. the name of the test
document

 <TestCase> denotes the Testcase (e.g. 012A – in the form
RR012A it will also be accepted)

<TestConfig> may be used optionally if the name of the test configu-

ration differs from the name of the EUT (e.g. in the case of the MMI
Framework, TestConfig is MFW). It is also possible to submit directly
the name of the EUT in the form EUT=<eutname>.

Examples: in order to create an executable test case for the test case RR012A, the test definition
script RR012A.TDS has to be compiled and linked. For BMISS200 the script BMISS200 is used and

the test configuration MFW has to be submitted.

MKTC RR RR012A

Or: MKTC BMIT 200 MFW
Or: MKTC BMIT 200 EUT=ACI

The output files are RR012A.DLL and BMIT200.DLL respectively. The output directory depends on
protocol stack to be tested. MKTC reports, where the file is placed. If an error occurs, a detailed error
description of the compiler and linker is output to the file <Test case Name>.err (e.g. RR012A.ERR,

BMIT200).

Options: -gen: call tdsGen before generating the DLL

 -chk: call tdsGen and afterwards the test case checker td-
scheck (see section 5.4) before generating the DLL
 -i <idir>: set <idir> as additional include directory for test case

compilation
 -td <tdir>: set <tdir> as directory for the test cases
 -eut: same as EUT=<eutname> as last parameter

5.3 Generating all executable test cases for a test case document:
MKALLTC

The batch file MKALLTC.BAT is provided to perform the preparing of all test cases of a test document
with one command. It first calls TdsGen.exe via the WinWord macro macGen and then generates for

each existing .tds file the corresponding DLL containing the executable test case. Corresponding to
MKTC.BAT it is also possible to submit a different test configuration. The command is called from a
4NT box:

 MKALLTC [-chk] [-co] [-to] [-f] [-r [<first>]-[<last>]] [-k] [-i <idir>] [-td <tdir>] [-eut <eut-
name>]

 <Entity> [<TestConfig>]

Examples:
 MKALLTC RR

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 28 of 38

Or: MKALLTC BMIT MFW
Or: MKALLTC BMIT EUT=ACI

All generated executable test cases are placed in a directory whose name is reported by
MKALLTC.BAT.

Options: -chk: call the test case checker tdscheck (see section 5.4Error! Reference
source not found.) before generating the DLLs.
 -co: compile only - generate TDS files only; don't compile test cas-

es
 -to: generate TDS files only; don't compile test cases
 -f: generate final test only (test, that are not preambles)

 -r: generate ranges of the available test cases from
<first> to <last>
 -k: keep (don't delete) older testcases (useful when using

-r)
 -i: set <idir> as additional include directory for test case
compilation

 -td: set <tdir> as directory for the test cases
 -eut: same as EUT=<eutname> as last parameter

5.4 TDSCheck

Test documents may contain errors which are not detected by TDSGen and the C compiler. The result
is a failure of test cases which could be detected before compiling time. Examples are misspelled pa-

rameter names, wrong order of parameters in primitives/messages and references to parameter val-
ues, which are not or incorrectly defined.

TDSCheck parses all files produced by TDSGen (*.def, *.tds and *.sui, if present) to detect all pro b-
lems in a test document which may be found without running the test cases, e.g. formal and logical
errors or variations in the structure of types defined in SAP or Message Documents and used in the

test document. The program produces a common list of warnings and error messages for all those
files. After detecting an error parsing is continued as soon as possible to detect further problems. The
diagnostics of TDSCheck are written to a file named <Entity Name>.chk which is placed in the same

directory as the parsed files. Before terminating TDSCheck calculates some statistics (number of e r-
rors, …) for the current test document and writes the results to the file specified above.

The user may call TDSCheck directly or from test generation scripts (MKTC, MKALLTC, …) with the
parameter "-chk".
In the former case the program is called with zero, one or two parameters from a 4NT box:

tdscheck [<path> [<test document>]]
where <path> is the path to the files to parse

 <test document> is the name of the test document which defines the
test cases

Example:
tdscheck \GSM\Condat\MS\TDS\mm MM

It is also possible to specify these parameters in the initialization file but i f given at command line the
parameters in the ini file are ignored.

5.4.1 The initialization file

After the call of TDSCheck the program tries to read the file tdscheck.ini located in the same directory
as the program. This file contains options for the program. A default initialization file with the latest

options is provided by the developers each time they release a new version of TDSCheck. It is

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 29 of 38

checked in as tdscheck_orig.ini in the GPF binary directory. The user has to save this file as td-
scheck.ini (DO NOT FORGET THAT YOU OVERWRITE YOUR OLD tdscheck.ini WITH THIS) and
may change this file for his purposes.

Within the initialization file it is possible to use comments like in standard C. The options can appear in
any order (except the "IDENTICAL"s, see below). Currently the following options are defined.

Name Explanation and example

PATH path to files to parse, ignored if first parameter is given at command
line
 Example: PATH = \GSM\Condat\MS\TDS\ACISAT

ENTITY name of the test document which defines the test cases, first
part of the *.def file,

ignored if second parameter is given at command line
 Example: ENTITY = ACISAT

CDGINC path to files *.val, mconst.cdg and pconst.cdg, which define constants,
primitives, messages, …

ignored if environment variable CDGINC or CDGINCDIR can be found

Example: CDGINC = \GSM\Condat\MS\CDGINC

VAL_FILES Path and file name containing the list of *.val files included in the test cases, if the file

is not found or the file does not contain the format this file is expected to have,
e.g. #ifdef TEST_ENTITY_<XX>

#include "yyy.val"
....

#endif ,
TDSCheck reads all *.val files from CDGINC
if this happens TDSCheck is not able to find errors which arise from more than one

definition
Example: VAL_FILES = \GSM\Condat\MS\TDS\entity_ccd.h

The following examples contain the recommended values for the options (as given in the default in itia-
lization file).

ONLY_TO_FILE The errors and warnings detected by TDSCheck are written only to the * ~.chk
file (no display output)

 Possible Values: "YES" or "NO"

ONLY_TO_FILE = YES

MAXERRORS maximum number of errors to be displayed
possible values: number or "NO" for no limit

 Example: MAXERRORS = NO

WARNINGS Warnings shall or shall not be displayed.
 Possible values: "YES" or "NO"

Example: WARNINGS = YES

MAXWARN The maximal number of warnings to be displayed,

 only valid i f WARNINGS = YES
Possible values: number or "NO" for no limit
Example: MAXWARN = NO

OBSOLETE Warnings about obsolete constructions (e.g. FIELD) shall or shall not
be displayed,

only valid if WARNINGS = YES

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 30 of 38

 Possible values: "YES" or "NO"
Example: OBSOLETE = NO

IDENT_REDEF Warnings about identical redefinitions shall or shall not be displayed,
only valid if WARNINGS = YES

 Possible values: "YES" or "NO"

Example: IDENT_REDEF = NO

REPEAT_MSG Repeated messages for handle names which are not properly defined

Possible Values: "YES" or "NO"
Example: REPEAT_MSG = YES

OPT_ERR A warning about a skipped parameter which is not optional shall or
shall not be displayed,

only valid if WARNINGS = YES

Possible values: "YES" or "NO"
Example: OPT_ERR = NO

OLD_TAP The program shall not or shall accept forward references of handles of
structure definitions,

forward reference means using a handle X inside another BEGIN_xSTRUCT or inside

an BEGIN_(P)STRUCT_ARRAY before defining BEGIN_xSTRUCT("...", X) itself
select YES if you don't use tap2_xxx.exe
Possible values: "YES" or "NO"

Example: OLD_TAP = NO

WARN_OLD The program shall or shall not display a warning if it finds *.tds file which is older than

the respective *.def file, independent of the option such a file isn't parsed,

only valid if WARNINGS = YES
Possible Values: "YES" or "NO"
Example: WARN_OLD = YES

MISSING_PAR The program shall or shall not display a warning if it doesn't find instructions concer n-

ing optional parameters before the end of sdu or hl_sdu, select YES if you want to pe r-

form tests and check their results for parameters ommitted in test document, but set
by tested entity
Note: Missing MANDATORY parameters before the end of sdu or hl_sdu and ALL

missing parameters before the end of a primitive or the end of a structure definition
always cause an error message
only valid if WARNINGS = YES

Possible values: "YES" or "NO"
Example: MISSING_PAR = YES

ACCEPT_VAL The program shall or shall not accept numerical values. It shall not or shall display a
warning if it finds a decimal or hexadecimal value as value of a SET_COMP instruc-
tion or of a parameter inside a primitive instead a name of the the value,

only valid if WARNINGS = YES
Possible values: "YES" or "NO"
Example: ACCEPT_VAL = YES

FIX_LEN The program shall or shall not display a warning if it detects an array of fixed

length which is defined with less entries than the fixed length,

select "YES" if you want to be sure, that all array data sent by tested entity are com-
pared,

only valid if WARNINGS = YES

Possible values: "YES" or "NO"
Example: FIX_LEN = NO

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 31 of 38

ACCEPT_RES The program shall or shall not accept skipped mandatory components named "re-
served" (shall not display or shall display a warning),
only valid if WARNINGS = YES

Possible values: "YES" or "NO"
Example: ACCEPT_RES = YES

ACCEPT_ANY The program shall or shall not accept a usage of macro BEGIN_ARRAY or FIELD if
the parameter requires BEGIN_SHORT_ARRAY, BEGIN_LONG_ARRAY,
SET_BITBUF or BEGIN_ARRAY instead (shall generate a warning only or shall gen-

erate an error.
Note: Independent of your choice the program will not check the proper length of gen-
erated data in such a case.

only valid if WARNINGS = YES
Possible values: "YES" or "NO"
Example: ACCEPT_ANY = NO

ACCEPT_2COMP The program shall or shall not accept skipped mandatory components with

<name> which are preceded by a instruction SET_COMP(c_<name>,...) or

SET_COMP(v_<name>,...) and setting the value 0.
Note: If such constructions occur in a test document then this results from a mal-
formed SAP or message catalogue document in almost all cases

only valid if WARNINGS = YES
Possible values: "YES" or "NO"
Example: ACCEPT_2COMP = NO

WRAP The program shall or shall not insert new line characters to try to limit error messages

and warnings to line length, select "NO" if you prefer a listing with only 2 lines per e r-
ror.

Possible values: "YES" or "NO"
Example: WRAP = YES

PRESS_KEY The program shall be finished only after pressing a key or finish without pressing a
key, select "YES" if you like to start TDSCheck by double click
Possible values: "YES" or "NO"

Example: PRESS_KEY = NO

END_CHAINS The program shall or shall not display a list of test cases, which have a preamble but

are not used as preamble (final tests). If a test case isn't contained in this list it is per-
formed by another test case (contained in the list) or it may be used in suites only.
Possible Values: "YES" or "NO"

Example: END_CHAINS = YES

UNUSED_NAMES Names, which are not used, shall or shall not be displayed

Possible values:"YES" or "NO"
Example: UNUSED_NAMES = YES

SECTION The Developers of TDSCheck have implemented a list of synonyms for each project.
These terms with identical meanings are stored after the instruction "IDENTICAL".
Each project has its own section starting with " IDENT_FOR". The instruction

"SECTION" defines which section shall be evaluated, i.e. which project is the owner of
the test document that is currently processed.
Possible values: GPRS, WARP, (UMTS)

Example: SECTION = GPRS

IDENT_FOR Start of the "IDENTICAL"s for each project. If the name given in the "SECTION" in-

struction and the "IDENT_FOR" instruction are the same the following "IDENTICAL"s
will be considered as synonyms for the named project up to the next "IDENT_FOR"
instruction (or end of file).

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 32 of 38

Possible values: GPRS, WARP, (UMTS)
Example: IDENT_FOR = GPRS

IDENTICAL This instruction defines names which have the same meanings in the PS or in the test
environment, e.g. structures will be assumed as identical. The developers try to keep
the list given in the default initialization file up-to-date.

Possible values: names with the same meaning used in PS development or in the test
environment
Example: IDENTICAL = mob_id, mob_id_2

The following example shows how to use the options "SECTION", "IDENT_FOR" and " IDENTICAL".

Apart from other options these instructions have to appear in the same order as they are mentioned
here.

SECTION = GPRS
IDENT_FOR = WARP
 IDENTICAL = e1_id, e1_id_new, e1_id_old

 IDENTICAL = mob_id, mob_id_2
 IDENTICAL = bearer_cap, bearer_cap_2, bearer_cap1, bearer_cap2
IDENT_FOR = GPRS
 IDENTICAL = mob_id, mob_id_2

 IDENTICAL = tmsi, imsi
 IDENTICAL = chan_desc, chan_desc_2, chan_desc_before, chan_desc_before_2, chan_desc_after,
chan_desc_after_2

Here the section following after "IDENT_FOR = GPRS" will be evaluated. The structures "mob_id" and
"mob_id_2" are regarded as identical.

6 Test Case Execution

A Test DLL is executed in an environment comprised of the following subsystems:

 TAP (Test Application Process) and the Test DLL

 PC implementation of a Condat protocol stack implementation (PS)
The Test DLL contains the executable Test Case and serves as a stimulus for the IUT.

There are two ways to execute test cases:

 start the processes PS and TAP from the command line

 use the tapcaller tool

6.1 Manual start of PS and TAP

In the simplest form, the processes needed for a test are started from the command line of an MS-
DOS box within Windows 95 or Windows NT.

To start the PS, type: MS_TI
The name MS_TI may be different depending on the implementation that is to be tested.

To start the TAP, type: TAP2 <windowname> <interface> <entity> <testdir> <testcase>...
[T] [H]
The parameter <windowname> denotes the name of the window that TAP2 will open.

The parameter <interface> denotes the interface to be used when stimulating the PS. In the case of a
socket interface <interface> is the name of the computer the PS is running on. In the case of a serial
interface <interface> consist of the three parts, describing the line: external com port, baud rate, and

flow control. Very useful parameters are 1 2 N, which means com port 1, baud rate 38400 bps (yes,
really) and no flow control. If a simulated serial interface is used, 0 may be chosen as com port. In this
case baud rate and flow control parameter must be omitted.

The parameter <entity> is the name of the entity under test.
The parameter <testdir> is the name of the subdirectory containing the test case.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 33 of 38

The parameter <testcase> is the name of the test case. It may be followed by further names of test

cases which have to be separated by blanks.

If the optional flag H is set the test runs within hidden windows. It doesn't disturb other work of user.
The same effect arrives if the <windowname> NULL is submitted.
If the optional flag T is set the TAP program automatically closes all window of test after termination of

last test case. If windows are hidden automatic termination is implied.

For example, in order to execute the test case RLP099 in the directory C: \TMP for a PS communicat-

ing via the serial interface, the following command must be issued:
 TAP2 View 1 2 N RLP C:\TMP RLP099
If the serial interface is simulated the following command will deliver the same result:

 TAP2 View 0 RLP C:\TMP RLP099
The trace files will be stored in the current directory where the TAP is started.
To execute the test case RR022 in the directory D:\DEV\BIN\TEST_RR for a PS running on the com-

puter VK and communicating via the socket interface, the following command must be issued:
 TAP2 View VK RR D:\DEV\BIN\TEST_RR RR022

If a certain test case is started this requires that the appropriate executable (dll) is compiled and linked
successfully. If this test case contains a preamble (which may again contain a preamble and so on)
then there is no need (for the test of the case under observation) that the executables for these

preambles are up to date or exists. All information about all needed preambles is contained in the
executable tested.

After a successful start of a Test DLL the PC monitor screen may look like:

The PC implementation of G23 is running in a window named "G23". The TAP started a window
named “View” containing further sub-windows, one window for each entity which has transmitted trace

data.

6.1.1 Runalltc

With the batch file runalltc.bat it is possible to start more than one test case with one command. The
test cases are executed successively without any necessary user interaction.

runalltc [-sp] [-st] [-sum] [-p <ps_exe>] [-t <tap_exe] [-r [<first>]-[<last>]] [-d <delay_time>] test-
name

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 34 of 38

All previously from testname.doc generated test cases are executed.

Options: -sp: show window of protocol stack (default: don't show)
 -st: show trace windows (default: don't show)
 -sum: write summary for each test case in <testname>.txt

 -p: take <ps_exe> as protocol stack
 -t: take <tap_exe> as tap
 -r: run range from <first> to <last>

 -d: set <delay_time> (in seconds) after protocal stack starting

6.2 Tapcaller

The tapcaller tool is a graphical front-end for executing test cases. After the execution of some test
cases, the tapcaller tool may display the following window:

Some setup is necessary to configure the Tapcaller tool. The menu option <Configuration> <Settings>
displays the following dialog box. The path to TAP, PS (and PCO if desired) must be entered:

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 35 of 38

The path of the test cases must be entered and a set of test cases which should be executed may be

defined by clicking on the checkboxes:

The start of the test case execution is triggered by clicking on the blue up arrow icon or by selecting
the menu option <Control> <Start Test>.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 36 of 38

If a PS is tested containing the MMI Framework, an additional window called “Dialog” is seen. This
window shows the notifications of the MMI:

7 Test Case Result Evaluation

Depending on how the test case has been executed, the test case result is obtained in different ways:

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 37 of 38

If the processes TAP2 and PS have been started manually from the command line, then the test case
result is displayed in the child window "_TAP" of the window "Test" (second parameter of TAP2):

The line “>>>>> END OF TESTCASE <<<<<” indicates that the test case has been executed succes s-

fully. In some environments also the two lines of text "End of test (ISS)" and "Ready" appear. Addi-
tionally, the file TEST_<entity>.PRT contains the test case results. For example, after the exec ution of
the test case CC012A, TEST_CC.PRT may contain the following:

+--+

| PROTOCOL OF TEST |

| Generated by TAP on Wed Mar 24 21:58:42 1999 |

+--+

Running CC012A build Mar 24 1999 at 21:58:34 ... Passed

The word "Passed" indicates a successful outcome of the test case execution. Otherwise the word
“Failed” is seen.

When using the Tapcaller tool for executing test cases, the test result is output in t he "state" column of
the graphical front end.

Technical Document

GSM Protocol Stack GPF TCC-Test Case Control User Guide (8415.028.99.301), v0.10 Draft

Texas Instruments Proprietary Information – Internal Data Page 38 of 38

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Tel-
ecommunication 2000
(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/ family of standards for 3G. This
initiative provides a global infrastructure through both satellite and terre-

strial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roa m-
ing. <URL: http://www.imt-2000.org/>

http://www.imt-2000.org/

