
technical_document_20030404.dot

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical Documentation

GPF

COMPRESSED/BINARY TRACING

Document Number: 89_03_16_00512

Version: 0.5

Status: Final

Approval Authority:

Creation Date: 2001-Oct-15

Last changed: 2015-Mar-08 by CKR

File Name: 89_03_16_00512_str2ind_userguide.doc

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 2 of 9

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, mod-

ifications, enhancements, improvements, and other changes to its products, software and services at
any time and to discontinue any product, software or service without notice. Customers should obtain
the latest relevant information during product design and before placing orders and should verify that

such information is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order ac-

knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control tech-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated

by government requirements, testing of all parameters of each product is not necessaril y performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-

sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be

used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims l iability for infringement of third

party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI

patent right, copyright, mask work right, or other TI intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may

require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronical-
ly or mechanically, including photocopying and recording, for any purpose without the express written
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

2001-Oct-15 CKR 0.1

2001-Oct-29 C 0.2

2002-Feb-25 CKR 0.3

2003-Sep-11 CKR 0.4

2015-Mar-08 CKR 0.5

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 3 of 9

Table of Contents

GPF ..1

Compressed/Binary Tracing ..1

1 Introduction ..4

2 Compressed/Binary Tracing ...4

2.1 Current Implementation ...4

2.2 New Concept ..5

3 The Tools ..5

3.1 str2ind ..5

3.2 The mapping table ..6

3.3 vsi_o_[func|error|event|state]_itrace() ...6

3.4 ind2str ..7

4 Usage and Integration...7

4.1 Usage ..7

4.2 Integration into the build process ..7

4.3 Displaying the traces - PCO...8

5 HowTo...8

6 Limitations ..9

List of Figures and Tables

List of References

[ISO 9000:2000] International Organization for Standardization. Quality management sys-

tems - Fundamentals and vocabulary. December 2000

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 4 of 9

1 Introduction

This document describes concepts and tools used for the implementation of compressed/binary trac-
ing.

Tracing is the process of assembling, transmitting and display of information on the current state of the
protocol stack. Tracing is essential to the development and test of a protocol stack. Currently all traces

are assembled, transmitted and displayed as character strings.

Especially on embedded targets, tracing raises a number of problems:

- The trace strings consume a considerable (possibly too large) amount of memory – ROM.
- The load on the (serial) interface of the target is too high, due to the large number of characters to

be transmitted across this interface. This leads to either loss of some traces and/or effects on the
real time behaviour of the protocol stack.

Tracing of the PC simulation on the other hand is not at all critical – no changes are needed.

The following chapters will address the problems above. First the current implementation of tracing will

be analysed. Then a concept for the reduction of memory and interface load - compressed/binary
tracing - will be introduced. After this a number of tools that help implementing compressed/binary
tracing will be presented. Finally the integration of these tools into the build process and the interwork-

ing with the PCO will be explained.

2 Compressed/Binary Tracing

2.1 Current Implementation

For tracing a number of C Macros exist. In accordance to some of #define directives (NTRACE, TRACE_EVENT,…) these

macros are translated into (trace) function calls. Among specialised functions e.g. for tracing operation codes (OPC), some
general purpose functions exist. Most traces are realised with these fun ctions. These trace functions, whose definitions are
given below, are capable of tracing both static str ings and run time formatted strings (vsprintf like).

int vsi_o_func_ttrace(char *format, ...);

int vsi_o_event_ttrace(char *format, ...);

int vsi_o_error_ttrace(char *format, ...);

int vsi_o_state_ttrace(char *format, ...);

int vsi_o_class_ttrace(ULONG trace_class, char *format, ...);

Due to their general nature and wide use within the protocol stack optimisation is concentrated on these functions. Let‟s have

a look at two typical traces:

TRACE_FUNCTION(“myFunction()”);

TRACE_EVENT_P2(“VarA %d VarB %d”, a, b);

The C preprocessor would transform these traces into the follow ing function calls:

vsi_o_func_ttrace(“myFunction()”);

vsi_o_event_ttrace(“VarA %d VarB %d”, a, b);

These functions w ill then transmit the strings via the (serial) interface.

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 5 of 9

2.2 New Concept

All strings solely used for tracing will be indexed. Instead of the storage and transmission of the complete string only the
index is stored/transmitted. For run time formatted strings all additional parameters are transmitted too. The formatting

(vsprintf) will be done at the PC side.

The index and additional parameters transmitted binary encoded i.e. four bytes for the index, and four/eighth bytes for each
additional argument.

During the replacement of the strings a mapping table is maintained that will later be used for the retransformation from the

index to the original str ing.

The two traces above would be transformed into the following function calls. These functions are special index trace fun c-
tions solely implemented for this purpose:

vsi_o_func_itrace(17, “”);

vsi_o_func_itrace(18, “ii”, a, b);

The related entries in the mapping table would look as follows:

17,, myfunction()

18,ii, VarA %d VarB %d

To adopt th is concept the orig inal function call must be modified. Modification takes place between the phases of the pre -
processor and the compiler. A tool will be run on the intermediate output of the pre-processor. I t will do all the necessary

modifications. The result is then fed to the compiler. This allows the source files to stay unmodified and thus normal tracin g
or no tracing is still possible.

The transmitted trace is marked with a special character as compressed/ indexed. On the reception side for every marked
trace the mapping table is used to reproduce the original string.

3 The Tools

3.1 str2ind

The tool str2ind transforms each call to any of trace functions mentioned above into a call to a corresponding index trace
function. This index trace function differs in its name as well as in the number and kind of prototypes from the original trace
function.

The tool expects the source file to be already pre-processed i.e. comments must have been removed, line continuation must
have been resolved, trigraphs must have been expanded.

The tool does not only replace the function calls but it also maintains a mapping table that maps an index to the original

string. For each replaced function call one entry is added to end of the mapping table. The index is incremented by one.
Thus the mapping table growth incrementally.

str2ind works on up to 4 files:

- the source file (already pre-processed)

- the file that contains the mapping table

- the file that contains the version of the mapping table, th is file w ill be compiled and linked to the protocol stack, so a
runtime check whether the matching table is present at the displaying side is possible

- the log file

- the output file, which contains the modified function calls and serves as the input for the rest of the compilation, the
name of the output file

The following is a description of the command line of the tool:

str2ind.exe [-a] [-d] -f file -t table [-l logfile] [-v versionfile] [-i 8|16|32|tms470]

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 6 of 9

file: the name of the preprocessed source file

table: the name of string mapping table

logfile: the name of the logfile

versionfile: the name of the version file

indexsize: the max. size of the index. 8, 16 or 32 bit (default 32 bit).

-i tms470 generates numbers suitable for compiler optimisation.

-a append to an existing table - instead of writing a new one

-d verbose information on screen

The tool str2ind produces an output file that has the same name as the orig inal file w ith the character „_‟ added e.g. from

myFile.pp the file myFile.pp_ would be generated.

Changes to the mapping table and to the version file only occur when a trace has been replaced. Otherwise these files stay
untouched.

3.2 The mapping table

The mapping table is an ASCII text file. The first line contains the version of the table – the build date
in seconds since UTC 1/1/70. The second line contains the largest index number used in this file. All

other lines contain entries of the following form:

<index> <COMMA> < parameters> <COMMA> <string> <EOL>

The index increases continuously i.e. new entries are appended to the end of the table. Thus modified function calls get an
index of the next unused index in the table. The field “parameters” of the entry contains the format string, that is transferred

to index trace function. From it it‟s deducible how many additional parameters are transmitted and of what kind they are. The
string is the orig inal string.

A pseudo syntax of the file follows:

<version> <EOL>
<largest index used> <EOL>
<index> <COMMA> <parameters> <COMMA> <string> <EOL>

<index> <COMMA> <parameters> <COMMA> <string> <EOL>
<index> <COMMA> <parameters> <COMMA> <string> <EOL>
…

<largest index used> <COMMA> <parameters> <COMMA> <string> <EOL>
<EOF>

3.3 vsi_o_[func|error|event|state|class]_itrace()

These functions are implemented by the FRAME. They are responsible for the transmission of the trace:

SHORT vsi_o__func_ttrace(ULONG Index, char *format, …);

They expect the following arguments:

- Index: the index of the string

- format: a format string consisting of the characters: *,i,d,p,s

- … additional arguments of any type

-

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 7 of 9

These functions analyse the format string. For each character in the string they expect one parameter on the call stack. The
individual characters stand for certain argument types and are expected to be on the call stack and thus transmitted as fo l-
lows:

- i: (Integer) 4 bytes

- d: (Double) 8 bytes

- p: (Pointer) 4 bytes

- *: (Integer) 4 bytes – vspr intf formatting information (width/precision)

- s: (String) n bytes – at string w ith a length that can‟t be calculated at compile time

All arguments are always transmitted binary coded in little endian by te order.

The real trace i.e. if you look at the bytes on the inter face - is preceded by the character „% ‟, which w ill then be used for the
distinction of ordinary traces and compressed/ indexed traces.

3.4 ind2str

This is a library that can be linked with any tool that wants to display compressed/binary traces. This library mainly consis ts
of a function that retransforms an indexed string – marked by the character „% ‟ – into the original string according to the
mapping table.

This library also contains functions to query the version of a mapping table. This may be useful if more than one such table is

present.

4 Usage and Integration

4.1 Usage

For developers of protocol stack entities changes become apparent. Still C macros are used to implement the traces. The
syntax of these macros did not change.

One will notice the two more kinds of output files in the directory where the source files reside. These are the results of the
transformations done by the pre-processor and the str2ind tool.

4.2 Integration into the build process

The integration into the build process can be quite simple. I t only requires a C compiler that can be run as a pre-processor
only e.g. TMS470.

The tool str2ind must be run between the pre-processor and the compiler. This requires a change in the Entity makefile.

The following command in a makefile:

$(CC) $^ $(CC_FLAGS)

should be replaced similar ly:

$(CC) -po -p? $^ $(CC_FLAGS)

str2ind –a –l $(DIR)/str2ind.log -t $(DIR)/str2ind.tab -f $(addsuffix .pp,$(basename $^)) –v $(
DIR)/str2ind_v.c

$(CC) -c $(addsuffix .pp_,$(basename $^)) $(CC_FLAGS)

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 8 of 9

In the first step the preprocessor (TMS470) replaces the macros and produces an output file (myFile.pp). The preprocessor
(-po) also removes comments and line continuation (\). In the preprocessor (TMS470) also replaces trigraphs (-p?). These
transformations to the source file expected by str2ind. The call of the preproce ssor may be different for a different compiler
but should work as well.

In a second step the str2ind tool replaces all function calls and produces a new file (myFile.pp_). The mapping table
(str2ind.tab) as well as the version file (str2ind_v.c) are updated if any trace are replaced. The run of the tool is recorded in a
logfile (str2ind. log).

Finally the compiler is run on the former result producing an object file (myFile.obj).

In the top level makefile, the one that “makes” the protocol stack, a few changes are necessary too. The target clean should

be extended by a command that removes the mapping table, the version file and the log file, e.g.

clean:

...

$(RM) $(DIR)/str2ind.log $(DIR)/str2ind.tab

The target all must be extended by a number of commands. One that builds an object from the version file (str2ind_v.c) and
another one that links the resulting object to the stack. This needs to be done, whenever a trace has been replaced.

Integrating the tool str2ind this way into the build process assures minimal rebuilds i.e. only from files that have been
changed will be rebuild. The mapping table growths continuously, with entries for the replaced traces. At the same time its
possible to star t from the beginning w ith a “make clean”.

For the PC simulation tracing stays as is i.e. all traces are transmitted as strings. When using makefiles it would be easily
possible to similarly integrate str2ind.

4.3 Displaying the traces - PCO

The PCO is currently responsible for the display of the traces. To be capable of the display of indexed/compressed traces it
must to be linked with the ind2str library.

It is crucial that the PCO uses the right version of the mapping table i.e. the one that corresponds to the build of the protocol

stack.

At star t up time, the protocol stack issues a string, which contains the version of the table it was build with.

The PCO loads the mapping table, formerly produced when building the stack. I t can query the protocol stack for the version
of the table with the SYSTEM primitive STR2INDVERSION. According to the answer it can check (possibly more than one

table file) whether it uses the right table. This check can be per formed automatically or manually.

When the PCO has located the right table it can reproduce the original traces. Otherwise indexed traces are displayed as an
error message.

5 HowTo

Meanwhile integration of the tools took place for the project GPRS. This is described in the following chapter.

To use compressed tracing, only one flag in the g23. inf file must be set - TRC = 4. This flags conducts the whole build proc-
ess to implement compressed tracing.

The created object directory and the library names, reflect the implementation of compressed tracing in their names. e.g. the
generated libraries may be found in lib_gp_nf_ct instead of lib_gp_nf_ct and for example the ACI library may be named

ac_sm_fd_tk_gp_pu_nf_ct.lib instead of ac_sm_fd_tk_gp_pu_nf_tr.lib. Also the name of the image reflects the use of co m-
pressed tracing in its name e.g. gsm_sm_gp_fd_ed_tk_pu_nf_ct_cs_cal_om_pa00_33_amd4_lj3.out.

At the toplevel d irectory (g23m) a new directory trace will be created during the build. Within this d irectory a subdirectory will

be created for each distinct build configuration, i.e. whenever the build configuration is changed (via a change to g23.inf) a
new directory will be created. This directory contains the trace mapping table (str2ind.tab), the log file (str2ind. log), the ver-
sion file (str2ind.c) and a makefile(str2ind.mak). The name of this d irectory corresponds to the name of the image that w ill be

Technical Documentation

GPF Compressed/Binary Tracing Technical Documentation (8434.406.01.003), v0.4 Final

Texas Instruments Proprietary Information – Internal Data Page 9 of 9

build e.g. for the image gsm_sm_gp_fd_ed_tk_pu_nf_ct_cs_cal_om_pa00_33_amd4_lj3.out the trace directory will be
trace\str2ind_sm_gp_fd_ed_tk_pu_nf_ct_cs_cal_om_pa00_33_amd4_lj3.

To enable PCO to decode the compressed traces. The mapping table(str2ind.tab) must be copied to the directory where
PCO expects it. I t‟s name must not be changed. In the future both the directory and the name of the file may be configurable.

Within the in itia lisation phase of the protocol stack, the stack repor ts the version of the mapping table that was created by the
build of th is stack within a special trace to the PCO. Upon reception of th is version trace the PCO will check it against the
version of the table it is currently using. Whenever these versions mismatch – an error trace is shown.

When connecting the PCO to an already running protocol stack, it is possible to query the stack of its version. This is done
via the system primitive STR2INDVERSION. This primitive can be send from the PCO. Upon reception of the answer the will
check the to version as described before.

Protocol stacks build using conventional tracing (TRC = 0/3) will repor t version 0. Traces are transmitted and displayed
transparently.

6 Limitations

Currently escape sequences in trace strings e.g. \n \ t \0x77, are not transformed into their binary encoding. They will be
displayed as they a appear in the original string e.g. “Two \n lines “ will not be a trace containing two lines, but a trace con-
taining the two characters „\ ‟ and „n ‟.

