

CELL SELECTION IMPROVEMENTS

LOW LEVEL DESIGN

(Edit via File/Properties/Summary!)

Rev 004

Important Notice

Texas Instruments Incorporated and its subsidiaries (TI) reserve

the right to make corrections, modifications, enhancements,

improvements, and other changes to its products and services at

any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before

placing orders and should verify that such information is current

and complete. All products are sold subject to TI's terms and

conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the

specifications applicable at the time of sale in accordance with

TI's standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support

this warranty. Except where mandated by government requirements,

testing of all parameters of each product is not necessarily

performed.

TI assumes no liability for applications assistance or customer

product design. Customers are responsible for their products and

applications using TI components. To minimize the risks associated

with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express

or implied, is granted under any TI patent right, copyright, mask

work right, or other TI intellectual property right relating to

any combination, machine, or process in which TI products or

services are used. Information published by TI regarding third-

party products or services does not constitute a license from TI

to use such products or services or a warranty or endorsement

thereof. Use of such information may require a license from a

third party under the patents or other intellectual property of

the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is

permissible only if reproduction is without alteration and is

accompanied by all associated warranties, conditions, limitations,

and notices. Reproduction of this information with alteration is

an unfair and deceptive business practice. TI is not responsible

or liable for such altered documentation.

Resale of TI products or services with statements different from

or beyond the parameters stated by TI for that product or service

voids all express and any implied warranties for the associated TI

product or service and is an unfair and deceptive business

practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas

Instruments products and application solutions:

Products

Applications

Amplifiers

amplifier.ti.com

Audio

www.ti.com/audio

Data Converters

dataconverter.ti.com

Automotive

www.ti.com/automotive

DSP

dsp.ti.com

Broadband

www.ti.com/broadband

Interface

interface.ti.com

Digital Control

www.ti.com/digitalcontrol

Logic

logic.ti.com

Military

www.ti.com/military

Power Mgmt

power.ti.com

Optical Networking

www.ti.com/opticalnetwork

Microcontrollers

microcontroller.ti.com

Security

www.ti.com/security

Telephony

www.ti.com/telephony

Video & Imaging

www.ti.com/video

Wireless

www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright (c) 2004, Texas Instruments Incorporated

Revision History

Date

Revision

Reason for Change

Changed By

Approval

Authority

Dec 06, 2004

000

Initial version of Document

K.Gopinath

001

Review by Sasken

DEC 21, 2004

002

after review of TIB

January 11,

2005

003_TIB

After reply of Sasken and review of TIB

Feb 01, 2005

003

Final version for Phase 1 of Cell Selection improvements feature

Apr 04, 2005

004

Final version of Phase 2 of cell selection improvements feature

NOTE: In the table shown above, the name of the person who made

the changes as well as the approval authority is displayed in

hidden text and does not print as part of the final document.

Click on the paragraph symbol icon in the toolbar to show or hide

this information.

Table of Contents

Cell Selection Improvements 1

Low Level Design 1

1 Purpose 6

2 Scope 6

2.1 Terms and Definitions 6

2.2 References 6

3 Data Structures 7

3.1 Stuck in "Limited Service" 7

3.2 CDMA Carriers 7

3.2.1 Black List 7

3.2.2 White List 9

3.2.3 New Search Modes 10

3.3 Multiple Frequency Bands in a Region 10

3.4 Region Selection Problem 10

3.5 BA list and Last Used Serving Cell storage and usage 11

3.6 Multiple requests from MM during Cell selection 11

3.7 Frequent searching of carriers during 2 Scans 11

3.8 Configurable Parameters 11

4 Design Description 12

4.1 CDMA Carriers 12

4.1.1 Black List 12

4.1.2 White List 26

4.1.3 New search Modes 32

4.2 Multiple Frequency Bands in a Region 50

4.2.1 Increasing the size of carrier list in MPH_POWER_CNF 50

4.2.2 Global Variables 50

4.2.3 Macros 51

4.2.4 Functional changes 51

4.3 Region Selection 58

4.4 Searching of carriers during 2 Scans 59

4.4.1 FIRST SCAN and FIRST ATTEMPT 59

4.4.2 FIRST SCAN and SECOND ATTEMPT 59

4.4.3 SECOND SCAN 59

4.4.4 Global Variables 60

4.4.5 Functional changes 60

5 Interface Changes 61

5.1 Introduction of new constants 61

5.2 Primitive changes 62

5.2.1 MPH_POWER_REQ 62

5.2.2 MPH_POWER_CNF 63

6 Configurable Parameters 64

6.1 Configuration Commands 64

6.2 Global Variables 65

6.3 Funtional changes 65

6.3.1 cs_init_process 65

7 Common Library for List Processing Functions 66

7.1 Functions 66

7.1.1 srv_unmask_list 66

7.1.2 srv_count_list 67

7.1.3 srv_is_list_set 67

7.1.4 srv_trace_freq_in_list 68

7.1.5 srv_get_region_from_std 68

8 Approach to reduce the number of search 69

9 Deviations from HLD 71

Appendix A. Open Questions 71

1

Purpose

This document describes the Low Level design for Cell Selection

improvements feature according to the requirements specified in

the corresponding High Level Design document

cell_selection_005.doc. The High Level Design document for Cell

Selection Improvements feature is attached to the Conquest issue

RR_ENH_26751.

2 Scope

This document describes all the code changes required to implement

Cell Selection Improvements feature. Changes to Data Structures,

Global Variables, Macros, constants and Functions are identified

and described. Pseudo-code is used wherever possible.

The document is divided into the following sections

Data Structures : Describes all new data

structures introduced

Design Description : Describes the functional changes

Interface changes : Describes changes to MPH sap

between RR AND ALR

Configurable Parameters : Describes all Dynamic Configuration

Commands introduced for this feature

Deviations : Describes any deviations

taken from HLD.

2.1 Terms and Definitions

Abbreviation/Term

Expansion/Definition

API

Application Programming Interface

ARFCN

Absolute Radio Frequency Channel Number

CQ

Conquest

DCS

Digital Communication System

FFS

Flash File System

PCM

Permanent Configuration Memory

PCS

Personal Communication System

RxLev

Signal Level of a carrier

2.2 References

[1] Cell_selection_005.doc - High Level Design document for Cell

Selection Improvements feature

3

Data Structures

This section describes all the new data structures

introduced/modified to implement Cell Selection Improvements

feature.

3.1 Stuck in "Limited Service"

A fix has been proposed under CQ 24416.

3.2 CDMA Carriers

3.2.1 Black List

The "Black List" is intended to contain carriers that cannot be

synchronized (like CDMA carriers), and will be maintained

dynamically. The "Black List" can contain the following carriers

1. CDMA carriers

2. Non-BCCH GSM carriers

3.2.1.1 Chosen Data Structure

 Carriers belonging to either European or American bands can be

part of "Black List" at any given time in a given place. As a

result two separate lists are used to represent the "Black List".

The data structure used to represent the "Black List" is given

below

 {

 T_LIST list [2]; /* Separate lists for Euro &

American region */

 U8 sfc [2] [512]; /* Separate sync fail counters for

Euro & American region */

} T_CS_BLACK_LIST

Structure Members

Type

Size

Description

list

T_LIST

2 * T_LIST

Each bit represents one carrier in the range 0 - 1024 (1024/8 =

128).

Bit value

1 - Carrier is part of "Black List"

0 - Carrier is not part of "Black List"

sfc

U8

2 * 512 bytes

4 bits are used to represent synchronization failure counter for

each carrier. This accommodates two carriers in one byte and

limits the max value of sync fail counter to 15.

3.2.1.2 Other Data Structures considered for Black List

The following two data structures were also considered for Black

List before finally selecting the one described in section

3.2.1.1.

3.2.1.2.1 Fixed Length Array

{

 U16 arfcn;

 U8 sfc;

 U8 black_or_grey;

} T_CS_BLACK_LIST

{

 T_CS_BLACK_LIST black_list [200];

} T_CS_DATA

Disadvantages of this approach

* Restricts the number of Black List Carriers

* 4 bytes are required for each carrier

* Operations like addition and removal of carriers from Black List

requires search through the entire list making this approach very

inefficient in terms of run time. Using this data structure will

defeat any improvement in cell selection time that we hope to

achieve by this feature.

* Checking the presence of a carrier in Black List also requires

search through the entire list.

* Totally new functions have to be implemented to support the

above operations. This means more testing effort.

* The existing functions implemented in "rr_srv.c" file for

manipulating GSM carriers represented in the form of T_LIST

structure cannot be used. Totally new functions have to be

implemented to support the above operations. This means more

testing effort. The image size will also increase considerably.

3.2.1.2.2 Single Bitmap

{

 T_LIST arfcn;

 U8 sfc[512];

} T_CS_BLACK_LIST

{

 T_CS_BLACK_LIST black_list;

} T_CS_DATA

Disadvantages of this approach

* All the GSM channels (Both European and American) have to be

accommodated in the same T_LIST array.

* Since DCS 1800 and PCS 1900 bands use the same channel numbers,

this would require re-ordering of channel numbers in RR for Black

List that is different from standard GSM format. This would

require another round of conversion of channel numbers between

Black List format and standard GSM format.

* The existing functions implemented in "rr_srv.c" file for

manipulating GSM carriers represented in the form of T_LIST

structure cannot be used.

* Totally new functions have to be implemented to manipulate the

new representation of carriers. This increases the image size as

well as the testing effort.

3.2.1.3 Rationale for the chosen structure

* Separate list for European and American regions. This makes the

implementation flexible and simple.

* Operations such as addition, removal and checking the presence

of carriers in "Black List" take constant time. Run time

efficient.

* All the existing functions implemented in "rr_srv.c" file for

manipulating GSM carriers represented in the form of T_LIST

structure can be used. This minimizes the testing effort as well

as the image size.

3.2.2 White List

The "White List" contains carriers that are good candidates for

"Full Service". Carriers belonging to only one region (European

or American) will be part of "White List" at any given time in a

given place. The following data structure will be used to

represent "White List" and related information.

During the CR or CS process the MS reads the SI2, SI2bis and

SI2ter for each synchronized carrier and stores this temporarily

only in the arrays si2 to si2ter. But not each 'CR' cell becomes

the serving cell afterwards (It can be a not suitable cell; wrong

PLMN or access class, barred or insufficient path loss).

The SI2x information, collected during the CR/CS process, shall be

copied from the temporary storage (arrays si2 to si2ter) only in

case of successful cell (re-) selection.

For temporary use during BCCH reading process:

{

 U8 si2 [BA_BITMAP_SIZE];

 U8 si2bis [BA_BITMAP_SIZE];

 U8 si2ter [BA_BITMAP_SIZE];

 } T_CR_WHITE_LIST

Structure Members

Type

Size

Description

si2

U8

BA_BITMAP_SIZE

Stores the BA list received in System Information Type 2 message

si2bis

U8

BA_BITMAP_SIZE

Stores the BA list received in System Information Type 2BIS

message.

si2ter

U8

BA_BITMAP_SIZE

Stores the BA list received in System Information Type 2TER

message

 After successful cell selection:

{

 U8 region;

 U16 last_sc_arfcn;

 T_Loc_area_ident last_sc_lac;

 T_LIST list;

 } T_CS_WHITE_LIST

Structure Members

Type

Size

Description

region

U8

1

Indicates the region, "White List" belongs to. Takes two values

0 - European region

1 - American region

last_sc_arfcn

U16

1

Used to store the last serving cell ARFCN in Full Service

last_sc_lac

T_Loc_area_ident

1

Used to store the Location area code of the last serving cell in

Full Service. This will be used during initial cell selection to

check whether MS finds "Full Service" in the same location area,

where it was switched off.

list

T_LIST

1

Contains all carriers which are set in the si2, si2bis and si2ter

3.2.3 New Search Modes

Four new search modes are introduced to improve the Cell Selection

Process.

1. FAST SEARCH

This Search mode is started after a Downlink Failure on a carrier

with "Full Service" or a BCCH Read Failure on a carrier with "Full

Service". The objective of "FAST SEARCH" is to camp on cell as

fast as possible. Black List shall be used during FAST SEARCH.

2. NORMAL SEARCH

NORMAL SEARCH is carried out normally when a Cell Selection is

required, for example, after expiry of TFAST_CS timer, MS has

stayed in dedicated mode for more than 30 seconds, etc. Black List

shall be used during NORMAL SEARCH

3. FULL SEARCH

Full search is used during initial cell selection, for example

after power ON. It is also carried out after expiry of TNORMAL_CS

timer. Only one attempt of FULL SEARCH is done and NORMAL SEARCH

is restarted. Black list shall not be used during FULL SEARCH

4. BLACK LIST SEARCH

BLACK LIST SEARCH is used to identify all inactive carriers in

current region and remove all such carriers from "Black List".

BLACK LIST SEARCH is carried out after cell reselection to a

different Location or Routing area.

No new data structures are required to implement the search modes.

Realization of new search modes requires changes to MPH SAP

interface between RR and ALR. Two new timers TFAST_CS and

TNORMAL_CS are also introduced in RR to manage the search modes.

3.3 Multiple Frequency Bands in a Region

None

3.4 Region Selection Problem

None

3.5 BA list and Last Used Serving Cell storage and usage

See Implementation in Section 3.2.2 "White List".

3.6 Multiple requests from MM during Cell selection

None

3.7 Frequent searching of carriers during 2 Scans

None

3.8 Configurable Parameters

A new Data Structure shall be introduced in RR to hold all Dynamic

Configuration commands related variables. This has the advantage

of better identification and can be better enclosed by

!defined(NCONFIG).

{

 U32 tfast_cs_val;

 U32 tnormal_cs_val;

 U8 upper_rxlev_thr;

 U8 medium_rxlev_thr;

 U8 lower_rxlev_thr;

 U8 bl_cs_en;

 U8 fcr ;

 U8 scr ;

 U8 fca ;

 U8 fho ;

 U8 iho ;

 U8 set_band ;

 U8 no_sys_time ;

 U8 dcs_offset ;

 U8 gsm_offset ;

 U8 nkc ;

 T_TIME lim_ser_nps_delay ;

} T_DYNAMIC_CONFIG

Structure Members

Type

Description

Dynamic Command

bl_cs_en

U8

Controls Black List Search

0 - Black List Search is disabled

1 - Black List Search is enabled

Default Value : 1

BL_CS

tfast_cs_val

U32

Value of TFAST_CS_timer in seconds

Default Value :

 TFAST_CS_VALUE (4min)

TFAST_CS

tnormal_cs_val

U32

Value of TNORMAL_CS timer in seconds

Default Value : TNORMAL_CS_VALUE(4min)

TNORMAL_CS

upper_rxlev_thr

U8

Upper RxLev threshold for GSM channels.

Default Value : UPPER_RXLEV_THRESHOLD

U_RXT

medium_rxlev_thr

U8

Medium RxLev threshold for GSM channels

Default Value : MEDIUM_RXLEV_THRESHOLD

M_RXT

Lower_rxlev_thr

U8

Lower RcLev threshold for GSM channels

Default Value

LOWER_RXLEV_THRESHOLD

L_RXT

lim_ser_nps_delay

T_TIME

Time delay between two consecutive Non-Prallel searches in Limited

service. This delay is used to provide enough time for Emergency

Calls

SET_NPS_DELAY

4 Design Description

This section describes all the Global variables, Macros and

Functions introduced or modified to implement the Cell Selection

Improvements feature. Pseudo-code is used to describe the

functionality wherever possible.

4.1 CDMA Carriers

4.1.1 Black List

This section describes all the Global variables, Macros and

Functions introduced or modified to implement "Black List".

4.1.1.1 Global Variables

The following global variables will be introduced in T_CS_DATA

structure in RR to manage "Black List".

{

 U8 initial_plmn_search;

 T_CS_BLACK_LIST black_list;

 U8 region;

} T_CS_DATA

Structure Members

Variable

Type

Size

Description

Initial_plmn_search

U8

1

Identifies the first "FUNC_PLMN_SEARCH" request from MM after

power on. Takes three values as described below

INITIAL_PLMN_SEARCH_NOT_ACTIVE

 First "FUNC_PLMN_SEARCH" not received yet

INITIAL_PLMN_SEARCH_ACTIVE

 First "FUNC_PLMN_SEARCH" received

INITIAL_PLMN_SEARCH_DONE

 First "FUNC_PLMN_SEARCH" already proc

 essed

black_list

T_CS_BLACK_LIST

1

Stores the "Black List" information

region

U8

1

Stores the current region. This is derived from global "STD"

variable and shall be updated whenever global "STD" changes. This

is passed later as a parameter to "Black List" management

functions.

Ex : cs_remove_BA_MA_from_black_list

0 - European region

1 - American region

It is very important to test the usage of "Black List" across

power cycles in windows simulation environ-ment also. This can be

achieved by the following sequence of primitives

RR_DEACTIVATE_REQ

This is sent whenever MS is switched off. All the RR data

structures are initialized again in the function handling

RR_DEACIVATE_REQ primitive. The "Black List" information is

written to FFS and read back again from FFS.

RR_ACTIVATE_REQ

Activate the MS again. The "Black List" stored and read back

during last RR_DEACTIVATE_REQ will be used from now on.

Since FFS is not available during Windows simulation testing, RAM

shall be used to simulate the same. The following global variable

shall be defined to simulate FFS for "Black List"

#if defined(_SIMULATION_)

T_LIST win_black_list[2];

#endif

4.1.1.2 Macros

The following macros will be introduced in rr.h file to manage

"Black List"

4.1.1.2.1 CS_GET_REGION_FROM_FREQ

Prototype:

 CS_GET_REGION_FROM_FREQ (arfcn)

Description:

Returns the region (European or American) the requested carrier

belongs to. This macro shall be used only from places where the

ARFCN field contains Region and STD information

Input:

Absolute Radio Frequency Channel Number of a carrier containing

"Band" and "Region" information

Definition:

#define CS_GET_REGION_FROM_FREQ

((arfcn&US_BIT)?AMERICAN_REGION:EUROPEAN_REGION)

4.1.1.2.2 CS_SET_BLACK_LIST_FLAG

Prototype:

CS_SET_BLACK_LIST_FLAG (index)

Description:

This macro sets Bit : 2 of attributes [] field n T_CS_DATA

structure for the carrier identified by the index. This bit

indicates whether a carrier is a candidate for "Black List" or

not. The BLACK_LIST_FLAG in the attribute filed shall be set

during initial PLMN search(as indicated by the flag

initial_plmn_search_active) whenever MS fails to synchronize to a

carrier. After the completion of initial PLMN search, Black list

flag shall be used to update the Black List database based on the

outcome of initial PLMN search.

Input:

Index to the attributes [] field of channel in T_CS_DATA

structure.

Definition:

#define CS_SET_BLACK_LIST_FLAG (index)

 (rr_data-

>cs_data.attributes[index] | =CS_BLACK_LIST_FLAG)

4.1.1.2.3 CS_GET_BLACK_LIST_FLAG

Prototype:

CS_GET_BLACK_LIST_FLAG (index)

Description:

Returns the value of Bit : 2 of attributes [] field n T_CS_DATA

structure for the carrier identified by the index. This bit

indicates whether a carrier is a candidate for "Black List" or

not. This macro will be called while updating Black list database

following the completion of initial PLMN search.

Input:

Index to the attributes [] field of channel in T_CS_DATA

structure.

Definition:

#define CS_GET_BLACK_LIST_FLAG (index)

 (rr_data-

>cs_data.attributes[index] & CS_BLACK_LIST_FLAG)

4.1.1.3 Constants

The following constants will also be introduced in rr.h file to

manage "Black List"

Macro

Value

Description

MAX_SYNC_FAILURES

5

Maximum number of sync failures after which a Reasonably strong

carrier will be moved to "Black List".

CS_BLACK_LIST_FLAG

0x04

Mask bit for "Black List" flag in attributes[] field of

T_CS_DATA

This bit will be used to identify carriers to which MS failed to

synchronize during initial PLMN search. This information will be

used later to update Black list database following the completion

of initial PLMN search

MAX_SFC_PER_REGION

512

Array size of sync fail counter per region

4.1.1.4 enums

The following enums will also be introduced in rr.h file to manage

"Black List"

enum

members

Value

Description

clear_black_list_e

CLR_BLACK_LIST_RAM

0

Clear "Black List" from RAM

Black list database shall be cleared from RAM

CLR_BLACK_LIST_FFS

1

Clear "Black List" from FFS

Black List database shall be cleared from FFS

initial_plm_search_e

INITIAL_PLMN_SEARCH_NOT_ACTIVE

0

Indicates that the initial PLMN search request from MM for Full

service has not yet been received from FFS

Black List database shall be cleared from FFS

INITIAL_PLMN_SEARCH_ACTIVE

1

Indicates that initial PLMN search request from MM for Full

service has been received and the PLMN search is currently active

INITIAL_PLMN_SEARCH_DONE

2

Indicates that the initial PLMN search request from MM for Full

service has been processed

4.1.1.5 Function API for Managing "Black List"

The following functions will be implemented in RR to manage "Black

List".

The following functions modify the entire "Black List".

Function API

Description

Reference

cs_clear_black_list

Clears the "Black List" from FFS

Clears the "Black List" from RAM

4.1.1.5.1

cs_store_black_list

Stores the "Black List" f to FFS during switch off.

Calls Function rr_csf_write_black_list () to write the black list

to FFS.

4.1.1.5.2

rr_csf_write_black_list

Writes the "Black List" to Flash File System

In windows simulation environment, "Black List" will be written to

simulated FFS.

Synchronization failure counter information shall not be written

to FFS.

4.1.1.5.3

rr_csf_read_black_list

Reads the "Black List" from Flash File System

In windows simulation environment, "Black List" will be read from

simulated FFS.

4.1.1.5.4

The following functions are used to control the addition/deletion

of carriers from "Black List".

Function API

Description

Reference

cs_add_to_black_list

Adds a carrier to "Black List"

4.1.1.5.5

cs_del_from_black_list

Removes a carrier from "Black List"

4.1.1.5.6

cs_remove_BA_MA_from_black_list

Updates the "Black List" by removing cells from BA/MA lists

4.1.1.5.7

cs_update_black_list

Updates the "Black List" following the outcome of first

"FUNC_PLMN_SEARCH" after power on. Adds some cells according to

the current attributes array values of the last selection process.

4.1.1.5.8

cs_inc_sync_fail_counter

Increments the synchronization failures counter of the requested

carrier by one.

4.1.1.5.9

cs_reset_sync_fail_counter

Resets the synchronization failures counter of the requested

carrier

4.1.1.5.10

cs_get_sync_fail_counter

Returns the synchronization failures counter of the requested

carrier

4.1.1.5.11

cs_is_in_black_list

Checks whether a carrier is already part of "Black List" or not

4.1.1.5.12

cs_check_black_list_criteria

Evaluates the "Black List" criteria for a carrier

4.1.1.5.13

4.1.1.5.1 cs_clear_black_list

Prototype:

void cs_clear_black_list (U8 which)

Description:

This function is used to clear "Black List" database. The function

clears the "Black List" database from RAM or FFS or both RAM and

FFS. This function is called in the following cases

1) In response to "ERASE_BL" dynamic configuration command

2) After Initial PLMN search based on its outcome

Input Parameters:

which : RAM or FFS or both RAM and FFS

Returns:

None

Pseudo-code :

void cs_clear_black_list(U8 which)

{

 Reset the black list database including the sync fail

counter in RAM/ FFS

}

4.1.1.5.2 cs_store_black_list

Prototype:

void cs_store_black_list ()

Description:

This is a wrapper function for storing "Black List" information

to FFS . This in turn calls rr_csf_write_black_list() to store

"Black List" to FFS. This function is called during power off.

Input Parameters:

None

Return Value:

None

Pseudo-code :

void cs_store_black_list ()

{

 Store the "Black List" from RAM to Flash File System during

switch off

}

4.1.1.5.3 rr_csf_write_black_list

Prototype:

void rr_csf_write_black_list (T_LIST *black_list)

Description:

This function writes "Black List" information to FFS. In case of

windows simulation environment, "Black List" is stored to

simulated FFS area. This function is called during switch off.

Input Parameters:

lack_list : Pointer to "Black List" information

Return Value:

None

Pseudo-code :

void rr_csf_write_black_list(T_LIST *black_list))

{ if (Windows SIMULATION)

 Write the "Black List to simulated FFS for "Black List".

else

 {

 Check if the directory is created/ create one if not

 Write the Black List to Flash File System

 Handle the error

}

}

4.1.1.5.4 rr_csf_read_black_list

Prototype:

void rr_csf_read_black_list ()

Description:

This function copies "Black List" information from FFS to RR

internal "Black List" data structures. In case of windows

simulation environment, "Black List" is read from simulated FFS

area. This function is called after power on.

Input Parameters:

None

Return Value:

None

Pseudo-code :

void rr_csf_read_black_list ()

{

 if (Windows SIMULATION)

 Read the "Black List from simulated FFS for "Black List".

else

 { Check if the directory is created/ create one if not

 Read the Black List from Flash File System

 Handle the error

 }

}

4.1.1.5.5 cs_add_to_black_list

Prototype:

void cs_add_to_black_list (U8 region, U16 arfcn, U8 rxlev)

Description:

This function is used to add GSM channels to "Black List". The

function checks the "Black List" criteria before adding it to the

list. This function is called whenever MS fails to synchronize to

a GSM channel.

Input Parameters:

region : European or American region of the carrier

arfcn : Absolute Radio Frequency Channel Number of a

GSM carrier

rxlev : signal level of the channel

Returns:

None

Pseudo-code :

void cs_add_to_black_list(U8 region, U16 arfcn, U8 rxlev)

{

 Validate region

 Validate ARFCN

 if (criteria for adding arfcn to "Black List" is satisfied)

 {

 add arfcn to Black list of the corresponding region

 }

}

4.1.1.5.6 cs_del_from_black_list

Prototype:

void cs_del_from_black_list (U8 region, U16 arfcn)

Description:

This function is used to delete a GSM channel from "Black List".

The function deletes the channel from the "Black List" and also

resets its SFC counter to zero. This function is called whenever

MS successfully synchronizes to a GSM channel.

Input Parameters:

Region : European or American region of the carrier

arfcn : Absolute Radio Frequency Channel Number of a

GSM carrier

Returns:

None

Pseudo-code :

void cs_del_from_black_list(U8 region, U16 arfcn)

{

 remove the carrier from the black list

 reset the sync fail counter for this carrier

 }

4.1.1.5.7 cs_remove_BA_MA_from_black_list

Prototype:

void cs_remove_BA_MA_from_black_list (U8 region, T_LIST

*source_list)

Description:

This function is used to remove the GSM channels present in MA

and BA lists from the "Black List" because such channels are valid

carriers for this local environment. The function deletes these

channels from the "Black List" and also resets their SFC counter

to zero. This function is called whenever MS receives BA and MA

list information in any RR message.

Input Parameters:

region : Indicates European / American region

0 - European region

 1 - American region

source_list : Input BA / MA list

Returns:

None

Pseudo-code :

void cs_remove_BA_MA_from_black_list(U8 region, T_LIST

*source_list)

{

 remove the argument list from the black list corresponding

to the region

}

4.1.1.5.8 cs_update_black_list

Prototype:

void cs_update_black_list ()

Description:

This function is used to update "Black List" database after

initial PLMN search. It first clears the current "Black list"

database from RAM and then adds some cells to "Black List"

according to the current attributes array values(BLACK_LIST_FLAG)

of the Initial PLMN selection process. This function is called

under the following cases

1. MS enters Limited or No service after Initial PLMN search

2. MS enters Full service in a different Location area from where

it is switched off after initial PLMN search

Input Parameters:

None

Return Value:

None

Pseudo-code :

void cs_update_black_list ()

{

 if(RR enters Full Service following first FUNC_PLMN_SEARCH

and the Location area is not the same

 as the one before switch off) OR

 (RR enters Limited or No service following first

FUNC_PLMN_SEARCH) {

 clear the "Black List" in RAM read from FFS after Power on

 Update the "Black List" based on the current search

information. Use Black List flag information in

 attributes [] field to identify "Black List" candidates.

 }

 }

4.1.1.5.9 cs_inc_sync_fail_counter

Prototype:

void cs_inc_sync_fail_counter (U8 region, U16 arfcn)

Description:

This function increments the SFC counter for "Reasonably strong"

GSM carriers. The size of SFC counter is 4 bits. As a result two

carriers are accommodated in one byte. This function first

converts the ARFCN range from 1-1023 to 0-511 format and

increments the SFC accordingly. The SFC format is shown below

Index

MSB 4 bits

LSB 4 bits

0

ARFCN : 2

 ARFCN : 1

1

ARFCN : 4

 ARFCN 3

.

.

510

ARFCN : 1022

 ARFCN: 1021

511

ARFCN:0

ARFCN:1023

 ARFCN: 0 = CHANNEL_0_INTERNAL

Input Parameters:

region : European or American region

arfcn : Absolute Radio Frequency Channel Number of a

GSM carrier

Returns:

None

Pseudo-code :

void cs_inc_sync_fail_counter(U8 region, U16 arfcn)

{

 Validate the channel ARFCN 0-1023, 1024 (CHANNEL_0_INTERNAL)

 Convert ARFCN range from 1-1023 to 0-511

 Increment the 4 bit SFC counter for this ARFCN to a maximal

value of 15

}

4.1.1.5.10 cs_reset_sync_fail_counter

Prototype:

void cs_reset_sync_fail_counter (U8 region, U16 arfcn)

Description:

This function resets the SFC counter of GSM carriers to zero. The

size of SFC counter is 4 bits. As a result two carriers are

accommodated in one byte. This function first converts the ARFCN

range from 1-1023 to 0-511 format and resets the SFC accordingly.

The SFC format is shown below

Index

MSB 4 bits

LSB 4 bits

0

ARFCN : 2

 ARFCN : 1

1

ARFCN : 4

 ARFCN 3

.

.

510

ARFCN : 1022

 ARFCN: 1021

511

ARFCN:0

ARFCN: 1023

ARFCN: 0 = CHANNEL_0_INTERNAL

Input Parameters:

Region : European or American region

arfcn : Absolute Radio Frequency Channel Number of a

GSM carrier

Returns:

None

Pseudo-code :

void cs_reset_sync_fail_counter(U8 region, U16 arfcn)

{

 Validate the channel ARFCN 0-1023, 1024 (CHANNEL_0_INTERNAL)

 Convert ARFCN range from 1-1023 to 0-511

 Reset the 4 bit SFC counter for this arfcn

}

4.1.1.5.11 cs_get_sync_fail_counter

Prototype:

U8 cs_get_sync_fail_counter (U8 region, U16 arfcn)

Description:

This function returns the SFC counter of GSM carriers. The size

of SFC counter is 4 bits. As a result two carriers are

accommodated in one byte. This function first converts the ARFCN

range from 1-1023 to 0-511 format and returns the SFC accordingly.

The SFC format is shown below

Index

MSB 4 bits

LSB 4 bits

0

ARFCN : 2

 ARFCN : 1

1

ARFCN : 4

 ARFCN 3

.

.

510

ARFCN : 1022

 ARFCN: 1021

511

ARFCN:0

ARFCN:1023

 ARFCN: 0 = CHANNEL_0_INTERNAL

Input Parameters:

Region : European or American region

arfcn : Absolute Radio Frequency Channel Number of a

channel along with "Band" and "Region"

 information

Returns:

Sync failure counter

Pseudo-code :

U8 cs_get_sync_fail_counter(U8 region, U16 arfcn)

{

 Validate the channel ARFCN 0-1023, 1024 (CHANNEL_0_INTERNAL)

 Convert ARFCN range from 1-1023 to 0-511

 Return the 4 bit counter value for this arfcn

}

4.1.1.5.12 cs_is_in_black_list

Prototype:

BOOL cs_in_black_list (U8 region, U16 arfcn)

Description:

This function is used to check whether a GSM channel is already

black listed or not.. This check is necessary in order to avoid

setting the same flag again.

Input Parameters:

Region : European or American region of the carrier

arfcn : Absolute Radio Frequency Channel Number of a

GSM carrier

Return Value:

TRUE - If the channel is present in the "Black List"

 FALSE - If the channel is not present in the "Black List"

Pseudo-code :

BOOL cs_is_in_black_list(U8 region, U16 arfcn)

{

 Check its presence in the corresponding black list

 Return the presence status

}

4.1.1.5.13 cs_check_black_list_criteria

Prototype:

BOOL cs_check_black_list_criteria (U8 region, U16 arfcn, U8 rxlev

)

Description:

This function checks the criteria for adding a GSM channel to

"Black List". GSM channels are added to "Black List" only after

they satisfy this criteria. This function is called from

cs_add_to_black_list() function.

Input Parameters:

region : European or American region of the carrier

arfcn : Absolute Radio Frequency Channel Number of a

channel along with "Band" and "Region"

 information

rxlev : signal level of the channel

Return Value:

 TRUE - If the channel satisfies "Black List" criteria

 FALSE - If the channel doesn't satisfy "Black List" criteria

Pseudo-code :

BOOL cs_check_black_list_criteria (U8 region, U16 arfcn, U8 rxlev

)

{

 if(channel is present in White List)

 return FALSE;

 if(channel signal level is above upper_level_threshold)

 return TRUE;

 if(channel signal level is between upper_level_threshold and

medium_level_threshold)

 {

 Increment synchronization failure count for this carrier

 if(synchronization failure count is equal to or more than

max sync failures)

 return TRUE;

 else

 return FALSE;

 }

 return FALSE;

}

4.1.1.6 Addition of carriers to Black List

* cs_add_black_list (U16 arfcn, U8 rxlev) function shall be

called to add a channel to "Black List".

* cs_add_black_list (U16 arfcn, U8 rxlev) shall be called from

function cs_mph_bsic_cnf() following failure to decode

Frequency / synchronization bursts for this channel. The function

cs_check_black_list_crieria() decides if the carrier satisfies the

criterion for entering the Black List.

4.1.1.7 Storing of Black List carriers on the FFS

* cs_store_black_list () function shall be called to store

"Black List" on FFS.

* cs_store_black_list () function shall be called from

function att_rr_deactivate_req() during switch off.

* cs_store_black_list () function always stores "Black List"

on FFS irrespective of RR service.

4.1.1.8 Reading of Black List carriers from FFS

* rr_csf_read_black_list_from_ffs () function shall be used to

copy "Black List" from FFS to RAM after power on.

* rr_csf_read_black_list_from_ffs () function shall be called

from function cs_init_process()) after power on..

4.1.1.9 Erasing the Black List

* "Black List" read from FFS after power on shall be used

provided the MS finds "Full Service" in the same Location Area

where it was switched off. The "Black List" read from FFS shall

be erased in all other cases. This functionality is implemented in

the function cs_clear_black_list ().

4.1.1.10 Updating the Black List

* cs_update_black_list () shall be called after first

"FUNC_PLMN_SEARCH".

* Global variable initial_plmn_search is used to identify the

first "FUNC_PLMN_SEARCH" .

* initial_plmn_search is initialized to

INITIAL_PLMN_SEARCH_NOT_ACTIVEin function pei_init() after power

on. It is set to INITIAL_PLMN_SEARCH_ACTIVE in function

att_handle_rr_activate_req() when processing the first

RR_ACTIVATE_REQ primitive from MM with "FUNC_PLMN_SERCH". The

variable is set to INITIAL_PLMN_SEARCH_DONE after the completion

of first "FUNC_PLMN_SEARCH" and will remain so till another power

cycle.

* initial_plmn_search shall be set to

INITIAL_PLMN_SEARCH_NOT_ACTIVE in rr_deactivate_req() primitive.

4.1.1.11 Removal of individual carriers from the Black List

While in NORMAL or FAST SEARCH, it is impossible to camp on a

carrier on the Black List, no matter how its accessibility has

changed since the carrier entered the Black List. Therefore, it is

important to be able to modify the Black List when network

conditions change.

* All carriers found in BA list are removed from "Black List".

Function cs_remove_BA_MA_from_black_list() shall be used for

this purpose. BA list is received in System Information Messages

2, 2bis, 2ter, 5, 5bis and 5ter. Hence function

cs_remove_MA_BA_from_black_list() is called from the following

functions to update the "Black List" with BA list.

 att_copy_sys_info_2_par(), att_copy_sys_info_2bis_par(

), att_copy_sys_info_2ter_par()

 att_copy_sys_info_5_par(), att_copy_sys_info_5bis_par(

), att_copy_sys_info_5ter_par()

* All carriers found in MA list are removed from "Black List".

Function cs_remove_MA_BA_from_black_list() shall be used for

this purpose. MA list is received in Assignment Command, Channel

Mode Modify, Frequency Redefinition, Handover Command, Immediate

Assignment , Immediate Assignment Extended and system information

type 4 messages. Function cs_remove_MA_BA_from_black_list()

shall be called from all the functions that process these

messages.

* All inactive carriers as reported as inactive carriers in

MPH_POWER_CNF primitive are also removed from Black List.

* Any carrier that is successfully synchronized during the

Synchronization Phase shall be removed from "Black List".

Function cs_del_black_list() shall be used for this purpose.

cs_del_black_list() function shall be called from function

cs_mph_bsic_cnf() following synchronization success on a carrier.

4.1.2 White List

This section describes all the Global variables, Macros and

Functions introduced or modified to implement "White List".

Currently, BCCH information uses PCM API for storage. FFS API

shall replace this. The "White List" shall now be written directly

to FFS.

4.1.2.1 Global variables

The following global variables will be introduced in T_CS_DATA

structure in RR to manage "White List".

{

 T_CS_WHITE_LIST white_list; // structure defined in

section 3.2.2

} T_CS_DATA

Structure Members

Variable

Type

Size

Description

white_list

T_CS_WHITE_LIST

1

Stores the "White List" information

It is very important to test the usage of "white List" across

power cycles. In windows simulation environ-ment this can be

achieved by the following sequence of primitives

RR_DEACTIVATE_REQ

This is sent whenever MS is switched off. All the RR data

structures are initialized again in the function handling

RR_DEACIVATE_REQ primitive. The "White List" information is

written to FFS and read back again from FFS.

RR_ACTIVATE_REQ

Activate the MS again. The "White List" stored and read back

during last RR_DEACTIVATE_REQ will be used from now on.

Since FFS is not available during Windows simulation testing, RAM

shall be used to simulate the same. The following global variable

shall be defined to simulate FFS for "White List" .

#if defined(_SIMULATION)

T_CS_WHITE_LIST win_white_list;

#endif

The following variables shall be removed from T_RR_DATA and

T_CS_DATA structures as they are now accommodated in

T_CS_WHITE_LIST/T_CR_WHITE_LIST structures.

last_used_sc_arfcn

white_list_si2

white_list_si2bis

white_list_si2ter

4.1.2.2 Function API for managing "White List"

The following functions will be implemented/modified in RR to

manage "White List".

Function API

Description

Reference

cs_set_bcch_info

This function already exists, but will be replaced by a function

that copies the SIM BCCH info to T_CS_WHITE_LIST structure.

4.1.2.2.1

dat_convert_white_list

This function is already existing, but will be modified to store

region and serving cell info as well

4.1.2.2.2

cs_store_white_list

Stores White List to FFS. This function replaces the function

cs_store_bcch_info()

4.1.2.2.3

rr_csf_write_white_list

Writes the "White List" to FFS

4.1.2.2.4

rr_csf_read_white_list

Reads the "White List" from FFS to RAM

4.1.2.2.5

cs_clear_white_list

This replaces the function cs_clear_bcch_info().

4.1.2.2.6

cs_is_in_white_list()

Returns if a channel is present in white list

4.1.2.2.7

cs_use_white_list_info

Increases the priority of white list carriers in MPH_POWER_CNF

array to high priority. This replaces the existing function

cs_use_bcch_information()

4.1.2.2.8

dat_store_neigh_cell_desc

Modified to update white List following any change in system

information on serving cell

4.1.2.2.9

The following functions will be removed from RR, following the

changes to "White List" information storage/usage in cell

selection improvements feature.

1. void cs_use_bcch_information(void) - replaced by

cs_use_white_list_info()

2. void cs_use_last_used_sc (void) - removed

3. cs_collect_stored_bcch_info() -- removed

4. void cs_clear_bcch_info() - replaced by

cs_clear_white_list ()

5. void cs_store_bcch_info() - replaced by

cs_store_white_list()

4.1.2.2.1 cs_set_bcch_info

Prototype:

void cs_set_bcch_info (T_bcch_info * sim_bcch_info)

Description:

This function converts the SIM BCCH information to T_LIST format

and merges it with the White List database.

Input Parameters:

sim_bcch_info - SI2 BA List information stored in SIM

Return Value:

None

Pseudo-code :

void cs_set_bcch_info (T_bcch_info * sim_bcch_info)

{

 Merge the SIM BCCH info with the "White List" database

}

4.1.2.2.2 dat_convert_white_list

Prototype:

void dat_convert_white_list ()

Description:

This function converts the BCCH information to T_LIST format and

stores it in the White List database. This function is called

whenever Full service is reached following Cell Selection or

reselection

Input Parameters:

None

Return Value:

None

Pseudo-code :

void dat_convert_white_list ()

{

 if (RR is in Full Service)

 {

 Reset the current White List info

 Save the current region in " White List" database

 Save the current serving cell arfcn in "White List" database

 Save the current the Location Area in "White List" database

 Convert the BA list received in SI2, SI2bis and SI2ter

messages into "White List" database

 }

}

4.1.2.2.3 cs_store_white_list

Prototype:

void cs_store_white_list ()

Description:

This function is called during power off only when the mobile in

Full service. It stores the white list information to FFS.

Input Parameters:

None

Return Value:

None

Pseudo-code :

void cs_store_white_list ()

 {

 Store the "White List" from RAM to Flash File System

}

4.1.2.2.4 rr_csf_write_white_list

Prototype:

void rr_csf_write_white_list (T_CS_WHITE_LIST *white_list)

Description:

This function writes "White List" information to FFS. In case of

windows simulation environment, "White List" is stored to

simulated FFS area. This function is called during switch off.

Input Parameters:

white list : pointer to T_CS_WHITE_LIST structure

Return Value:

None

Pseudo-code :

void rr_csf_write_white_list (T_CS_WHITE_LIST *white_list)

{

 If (Windows simulation)

 Write "White List" information to simulated FFS for "White

list".

else

{

 Check if the directory is created/ create one if not

 Write the White List to Flash File System

 Handle the error

}

}

4.1.2.2.5 rr_csf_read_white_list

Prototype:

void rr_csf_read_white_list ()

Description:

This function copies "White List" information from FFS to RR

internal "White List" data structures. In case of windows

simulation environment, "White List" is read from simulated FFS

area. This function is called after power on.

Input Parameters:

None

Return Value:

None

Pseudo-code :

void rr_csf_read_white_list ()

{

 If (Windows simulation)

 Read "White List" information from simulated FFS for "White

list".

 else

 {

 Check if the directory is created/ create one if not

 Read the White List from Flash File System

 Handle the error

 }

}

4.1.2.2.6 cs_clear_white_list

Prototype:

void cs_clear_white_list (U8 which)

Description:

This function is used to clear "White List" database. The function

clears the "White List" database from RAM or FFS or SIM . This

function is called in the following cases

1) In response to "ERASE_WL" dynamic configuration command

Input Parameters:

Which : RAM, SIM or FFS

Return Value:

None

Pseudo-code :

Void cs_clear_white_list (U8 which)

{

 Clear the "White List" database from RAM/SIM/FFS

}

4.1.2.2.7 cs_is_in_white_list

Prototype:

BOOL cs_is_in_white_list (U8 region, U16 arfcn)

Description:

This function is used to check whether a GSM channel is in White

List or not.. A white listed carrier is never added to Black List

Input Parameters:

Region : European or American region of the carrier

arfcn : Absolute Radio Frequency Channel Number of a

GSM carrier

Return Value:

TRUE - If the channel is present in the "White List"

 FALSE - If the channel is not present in the "White List"

Pseudo-code :

BOOL cs_is_in_white_list(U8 region, U16 arfcn)

{

 Check its presence in the white list

 Return the presence status

}

4.1.2.2.8 cs_use_white_list_info

Prototype:

void cs_use_white_list_info (U8 num_of_chan)

Description:

This function is used to increase the priority of White List

carriers present in MPH_POWER_CNF primitive to CS_HIGH_PRIORITY.

Input Parameters:

num_of_chan : Number of white list carriers

Return Value:

void

Pseudo-code :

void cs_use_white_list_info(U8 num_of_chan)

{

 Increase the priority of "White List" carriers to High priority

}

4.1.2.2.9 dat_store_neigh_cell_desc

Prototype:

void dat_store_neigh_cell_desc (UBYTE si, UBYTE index,

BUF_neigh_cell_desc *cd,

 T_LIST

*new_neigh_list)

Description:

This function is used to store the neighbor cell information

Input Parameters:

si : si2/si2bis or si2ter

index : cell index (CR_INDEX or SC_INDEX)

cd : neighbour cell information

new_neigh_list : neighbor cell information in T_LIST format

Return Value:

void

Pseudo-code :

Only the modificationa are described here

void cs_use_white_list_info(U8 num_of_chan)

{

 In case of change in system information on Serving cell, copy

the new neighbor cell

 information to White List database.

}

4.1.2.3 Storing of White List information on the FFS

* The "White List" is stored to FFS during switch off, if the MS

is in "Full Service" state.

* cs_store_white_list() function shall be used for this

purpose. Function cs_store_white_list() shall be called from

function att_rr_deactivate_req() during switch off.

4.1.2.4 Reading of White List information from FFS

* After power ON the "White List" is read from the FFS and used

as a White List.

* rr_csf_read_white_list () function shall be used for this

purpose.

* rr_csf_read_white_list () function shall be called from

function cs_init_process() after power on.

4.1.2.5 Usage of White List information during Cell Selection

* White List will be used in Non-Parallel cell selection. The BCCH

information stored in "White List" database shall be passed to

MPH_POWER_REQ primitive.

4.1.3 New search Modes

This section describes all the Global variables, Macros and

Functions introduced or modified to implement the "New Search

Modes".

4.1.3.1 Global Variables

New global variables are introduced both in RR and ALR entities as

described below.

4.1.3.1.1 RR entity

{

 U8 previous_search_mode;

 U8 current_search_mode;

}T_CS_DATA

Structure Members

Variable

Type

Size

Description

previous_search_mode

U8

1

Identifies the previous search mode used

Current_search_mode

U8

1

Indentifies the current search mode

4.1.3.1.2 ALR entity

{

 T_MPH_POWER_REQ *p_power_req;

} T_CS_DATA

Structure Members

Variable

Type

Size

Description

p_power_req

T_MPH_POWER_REQ *

1

Stores the pointer to MPH_POWER_REQ primitive received from RR

power_scan_attempts

U8

4

This is a constant array indexed by the search mode. It contains

the number of scan attempts for each search mode.

tim_powermeas_value

U16

4

This is a constant array indexed by the search mode. It contains

the value for POWER_MEAS timer for each search mode.

4.1.3.2 Constants

4.1.3.2.1 RR Entity

The following constants are introduced in RR to handle New Search

Modes.

Constant

Value

Description

TFAST_CS_VALUE

240000 ms

Default value for TFAST_CS timer

TNORMAL_CS_VALUE

240000 ms

Default value for TNORMAL_CS timer

UPPER_RXLEV_THRESHOLD

20

Identifies the upper threshold for the signal level of a channel.

All carriers stronger than this threshold will be directly added

to "Black List" following synchronization failure

MEDIUM_RXLEV_THRESHOLD

10

Identifies the medium threshold for the signal level of a channel.

All carriers stronger than this threshold but weaker than upper

threshold are considered as "Reasonably strong" carriers.

4.1.3.2.2 ALR entity

The following constants are introduced in ALR to handle New Search

Modes.

Constant

Value

Description

FAST_SEARCH_MODE_ATTEMPTS

1

Number of search mode attempts for Fast search mode

BLACK_LIST_SEARCH_MODE_ATTEMPTS

1

Number of search mode attempts for Black List search mode

TIM_FAST_SEARCH_POWERMEAS_VAL

800ms

Value of POWERMEAS timer for Fast search mode

TIM_BLACK_LIST_SEARCH_POWERMEAS_VAL

800ms

Value of POWERMEAS timer for Black List search mode

4.1.3.3 Timers

Two new timers shall be introduced in RR to manage the New Search

Modes.

Timer

Value

Description

Expiry Handler

T_FAST_CS

tfast_cs_val

Default : 4min

Controls Fast Search

tim_tfast_cs

The function traces the

white and black lists

T_NORMAL_CS

tnormal_cs_val

Default : 4min

Controls Normal Search

tim_tnormal_cs

The function traces white and Black lists

4.1.3.4 Function changes for New Search modes

New functions are introduced and some existing functions are

modified both in RR and ALR entities to

implement "New Search Modes" functionality.

4.1.3.4.1 RR Entity

The following functions are added/modified in RR to support "New

Search Modes" functionality.

Function API

Description

Reference

cs_get_new_search_mode

Returns the new search mode

4.1.3.4.1.1

cs_handle_search_mode_timer

Handles the timers for the new Search Modes

4.1.3.4.1.2

att_start_cell_selection

This function is already existing, but will be modified to

accommodate New Search Modes

4.1.3.4.1.3

cs_start_scan

This is an existing function. This will be modified to accommodate

New Search Modes functionality

4.1.3.4.1.4

tim_treg

This is an existing function. This will be modified to accommodate

New Search Modes functionality

4.1.3.4.1.5

att_start_cell_selection_gprs

This function is already existing, but will be modified to

accommodate New Search Modes

4.1.3.4.1.6

att_full_service_found

New function. This function is called whenever FULL SERVICE is

reached.

4.1.3.4.1.7

att_check_dynamic_search_mode_config

Updates the new search mode based on the current dynamic

configuration of search modes

4.1.3.4.1.8

tim_tfast_cs

Expiry handler function for T_FAST_CS timer

4.1.3.4.1.9

tim_tnormal_cs

Expiry handler function for T_NORMAL_CS timer

4.1.3.4.1.10

cs_mph_power_cnf

This function is already existing, but will be modified to

accommodate New Search Modes

4.1.3.4.1.11

4.1.3.4.1.1 cs_get_new_search_mode

Prototype:

U8 cs_get_new_seach_mode ()

Description:

This function is used to obtain the new search mode based on the

current search mode and the current state of search mode timers

Input Parameters:

None

Return Value:

Search Mode : FAST_SEARCH_MODE

 NORMAL_SEARCH_MODE

 FULL_SEARCH_MODE

 BLACK_LIST_SEARCH

Pseudo-code :

U8 cs_get_new_search_mode ()

{

 if (Timer TFAST_CS is active)

 search type = FAST_SEARCH;

 else if (Timer TNORMAL_CS is active)

 search type = NORMAL_SEARCH;

 else if (previous search type is FULL_SEARCH or FAST_SEARCH)

 search type = NORMAL_SEARCH;

 else if (previous search type is NORMAL_SEARCH)

 search type = FULL_SEARCH;

 return search_type;

}

4.1.3.4.1.2 cs_handle_search_mode_timer

Prototype:

void cs_handle_search_mode_timer (U8 search_mode)

Description:

This function handles the search mode timers based on the new

search mode. This function is called from cs_start_scan() function

before sending MPH_POWER_REQ primitive to ALR

Input Parameters:

search Mode : FAST_SEARCH_MODE

 NORMAL_SEARCH_MODE

 FULL_SEARCH_MODE

 BLACK_LIST_SEARCH

Return Value:

None

Pseudo-code :

void cs_handle_search_mode_timer U8 search_mode)

{

 if (search mode is Fast Search)

 {

 Start TFAST_CS timer if not running already.

 }

 if (Search mode is Normal Search)

 {

 Start TNORMAL_CS timer if not running already

 }

 if (Search mode is Full Search)

 {

 if (cell selection is originated by MM and the requested

service is not equal to Net Search)

 {

 Stop TFAST_CS timer

 Stop TNORMAL_CS timer

 }

 }

}

4.1.3.4.1.3 att_start_cell_selection

Prototype:

void att_start_cell_selection (BOOL originator, BOOL parallel, U8

search_mode)

Input Parameters:

originator : MM originated

 RR originated

parallel : Parallel search

 Non-Parallel search

search Mode : FAST_SEARCH_MODE

 NORMAL_SEARCH_MODE

 FULL_SEARCH_MODE

 BLACK_LIST_SEARCH_MODE

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

void att_start_cell_selection (BOOL originator, BOOL parallel, U8

search_mode)

{

 Update search mode based on the dynamic search mode config

}

4.1.3.4.1.4 cs_start_scan

Prototype:

void cs_start_scan ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

void cs_start_scan (BOOL originator, BOOL parallel, U8

search_mode)

{

 Set the new search mode in MPH_POWER_REQ primitive

 Copy Black List information to MPH_POWER_REQ primitive

 if (search_mode EQ BLACK_LIST_SEARCH)

 Copy "grey" carriers to the black list of the MPH_POWER_REQ

primitive

 else

 Copy White List information to MPH_POWER_REQ primitive

 Handle the Search Mode timers

}

4.1.3.4.1.5 tim_treg

Prototype:

void tim_treg ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

void tim_treg ()

{

 Obtain the new search mode

 Pass the new search mode to att_start_cell_selection

}

4.1.3.4.1.6 att_start_cell_selection_gprs

Prototype:

void att_start_cell_selection (BOOL originator, U8 search_mode)

Input Parameters:

originator : MM originated

 RR originated

search Mode : FAST_SEARCH_MODE

 NORMAL_SEARCH_MODE

 FULL_SEARCH_MODE

 BLACK_LIST_SEARCH_MODE

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

void att_start_cell_selection (BOOL originator, U8 search_mode)

{

 Update current search mode

 }

4.1.3.4.1.7 att_full_service_found

Prototype:

U8 att_full_service_found ()

Description:

This function is called whenever RR reaches Full service following

cell selection or reselection. All tasks that need to be performed

after RR reaches full service are done here

Input Parameters:

None

Return Value:

None

Pseudo-code :

U8 att_full_service_found ())

{

 if (RR service is full service)

 {

 Call dat_copy_white_list() function to update white list.

 Send SI2 information to SIM through MM

 Stop TFAST_CS and TNORMAL_CS timers

 }

}

4.1.3.4.1.8 att_check_dynamic_search_mode_config

Prototype:

U8 att_check_dynamic_search_mode_config ()

Description:

This function checks the current dynamic configuration of search

modes and updates the new search mode accordingly. This function

is called from att_start_cell_selection() before sending

MPH_POWER_REQ primitive to ALR

Input Parameters:

None

Return Value:

Search_mode - new search mode to be used

Pseudo-code :

U8 att_check_dynamic_search_mode_config ())

{

 if(current search mode is Fast search and Fast search is

disabled)

 new search mode = Normal search;

 if(current search is normal search and Normal search is

disabled)

 new search mode = Full search

 return new search mode

 }

4.1.3.4.1.9 tim_tfast_cs

Prototype:

void tim_tfast_cs ()

Description:

This is an expiry routine for T_FAST_CS timer. This function is

currently used to trace all active Black List and White List

carriers

Input Parameters:

None

Return Value:

None

Pseudo-code :

void tim_tfast_cs ()

{

 Trace the white and Black list carriers

}

4.1.3.4.1.10 tim_tnormal_cs

Prototype:

void tim_tnormal_cs ()

Description:

This is an expiry routine for T_NORMAL_CS timer. This function is

currently used to trace all active Black List and White List

carriers

Input Parameters:

None

Return Value:

None

Pseudo-code :

void tim_tnormal_cs ()

{

 Trace the white and Black list carriers

}

4.1.3.4.1.11 cs_mph_power_cnf

Prototype:

void cs_mph_power_cnf ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

Only the modifications are described here

void cs_mph_power_cnf ()

{

 In case of Fast search mode, copy only "White List" and

"Reasonably strong" carriers from

 MPH_POWER_CNF primitive.

}

4.1.3.4.2 ALR Entity

The following functions will be added/modified in ALR to support

New Search Modes functionality

Function API

Description

Reference

cs_is_in_black_list

Check if the carrier is in Black List or not

4.1.3.4.2.1

ma_mph_power_req

Function is already existing, but will be modified to store the

pointer to MPH_POWER_REQ primitive and doesn't free it anymore.

4.1.3.4.2.2

cs_power_req

This function is already existing, but will be modified to store

region and serving cell info as well

4.1.3.4.2.3

cs_prepare_power_req

This function is already exists, but will be modified to fill the

power array with black and grey carriers only in case of Black

List Search.

4.1.3.4.2.4

cs_add_and_sort_channels

This function already exists, but will be modified to copy SIM

BCCH info to T_CS_WHITE_LIST structure.

4.1.3.4.2.5

cs_rxlev_ind

This function already exists, but will be modified to incorporate

New search modes

4.1.3.4.2.6

cs_add_white_list_carriers

This is a new function. This function will add all carriers that

are present in the white list and whose rxlev is greater than

LOWER_RXLEV_THRESHOLD at the top of the MPH_POWER_CNF array in the

descending order of their strength

4.1.3.4.2.7

4.1.3.4.2.1 cs_is_in_black_list

Prototype:

U8 cs_is_in_black_list (U8 region, U16 arfcn)

Input Parameters:

region : European or American region of the carrier

arfcn : Absolute Radio Frequency Channel Number of a

channel along with "Band" and "Region"

 information

Return Value:

FALSE - Not present in Black List

TRUE - Present in Black List

Pseudo-code :

U8 cs_is_in_black_list(U8 region, U16 arfcn)

{

 if (search Mode is Full Search)

 return FALSE;

 Check its presence in the corresponding black list

 Return the presence status

}

4.1.3.4.2.2 ma_mph_power_req

Prototype:

U8 ma_mph_power_req (T_MPH_POWER_REQ * mph_power_req)

Input Parameters:

mph_power_req : Pointer to T_MPH_POWER_REQ primitive

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

U8 ma_mph_power_req(T_MPH_POWER_REQ * mph_power_req)

{

 Store the pointer to MPH_POWER_REQ primitive in the global

variable p_power_req

 Do not FREE the MPH_POWER_REQ buffer (the primitive will be

freed short before the CNF will be

 sent)

}

4.1.3.4.2.3 cs_power_req

Prototype:

U8 cs_power_req (U8 pch_interrupt)

Input Parameters:

pch_interrupt : with or without PCH interruption

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

U8 cs_power_req (U8 pch_interrupt)

{

 Set the number of RF scan attempts and TIM_POWER_MEAS timer

value based on the search mode

}

4.1.3.4.2.4 cs_prepare_power_req

Prototype:

T_POWER_MEAS* cs_prepare_power_req (void)

Input Parameters:

None

Return Value:

Pointer to a MPHC_RXLEV_REQ structure

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

T_POWER_MEAS* cs_prepare_power_req (void)

{

 if (search_mode EQ BLACK_LIST_SEARCH)

Fills the power_array with grey and black list carriers only

depend on the actual region

(derived from the black list of MPH_POWER_REQ)

 else

 Fills the power_array with all possible carriers depend on

the actual region

}

4.1.3.4.2.5 cs_add_and_sort_channels

Prototype:

U8 cs_add_and_sort_channels ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

Only the changes with reference to New Search Modes are described

here

U8 cs_add_and_sort_channels ()

{

 if(EXT measurements are not running)

 {

 Fill all inactive carriers in the "inactive_carrier_list"

of MPH_POWER_CNF array

 If(search mode is Black List search)

 Return;

 Fill all carriers from the White List whose Rxlev is more

than the LOWER_RXLEV_THRESHOLD in

 the MPH_POWER_CNF array first. Sort them based on their

strength.

 }

 If (search mode is not Full list search)

 Do not include Black list carriers in the MPH_POWER_CNF

primitive

Fill all remaining carriers. Only those carriers are added whose

Rxlev is greater than LOWER_RXLEV_THRESHOLD. Carriers are added in

descending order of field strengths, irrespective of which

frequency bands (and region) it belongs to.

A minimum of 40 carriers are added for each supported frequency

band provided they are available

If space is still available in MPH_POWER_CNF list more carriers

will be added. The maximum limit of carriers per individual band

that can be added to MPH_POWER_CNF list is 60.

Fill all remaining carriers (which are not Black List carriers)

whose RxLev is more than LOWER_RXLEV_THRESHOLD in the

MPH_POWER_CNF array until the maximal number is reachedThe order

of this remaing carriers is following the rules:

- from strongest to weakest carrier

- strive for even distribution between low and high frequencies

(GSM <----> DCS/PCS)

- strive for even distribution of carrier from both regions if

available

Due to the partly contradictory of this rules MS has to fulfill

first the requirement/recommendation of the spec 3GPP TS 03.22,

section 3.2.1: "The number of channels to be searched are 15 for

GSM 450, 15 for GSM 480, 30 for GSM 850 Band, 30 for GSM 900 and

40 for DCS 1800 and PCS 1900.".

Always in cases when no more carriers of one band or region are

available the sorting algorithm should fill up the place according

to the rules mentioned before.

 }

4.1.3.4.2.6 cs_rxlev_ind

Prototype:

U8 cs_rxlev_ind (T_MPHC_RXLEV_IND *rxlev_ind))

Input Parameters:

rxlev_ind - pointer to T_MPHC_RXLEV_IND structure

Return Value:

None

Pseudo-code :

Only the changes w.r.t New Search Modes are described here

U8 cs_rxlev_ind (T_MPHC_RXLEV_IND *rxlev_ind)

{

 if (maximal attempts reached)

 {

 Allocate the MPH_POWER_CNF primitive

Call cs_add_and_sort_channels()

 Free MPH_POWER_REQ primitive

 Send MPH_POWER_CNF primitive to RR

 }

}

4.1.3.4.2.7 cs_add_white_list_carriers

Prototype:

U8 cs_add_white_list_carriers (U16 max, U8 std, U8 attemps, SHORT

min_rxlev,

T_POWER_MEAS* presults)

Description:

This functions all White list carriers at the top MPH_POWER_CNF

primitive array. The White List are also sorted based on their

strength.

Input Parameters:

max - maximum number of carriers measured per region

std - Number of bands supported in this region

attempts - Number of RF measurements done

min_rxlev - Minimum rxlev of the carrier

presults - pointer to RxLev measurement results done by Layer 1

Return Value:

No of white list carriers added to the MPH_POWER_CNF array

Pseudo-code :

U8 cs_power_req (T_MPHC_RXLEV_IND *rxlev_ind)

{

 Add all carriers that are present in White List and whose

RxLev is greter than

 LOWER_RXLEV_THRESHOLD to the top of the MPH_POWER_CNF array.

 Sort the added carriers in the descending order of their

strength

}

4.1.3.5 Fast Search

a) FAST SEARCH is only used if requested service is "Full

Service".

b) A new timer, TFAST_CS, will be started when FAST SEARCH is

activated. This will be done by the function

cs_handle_search_timers() in RR called from cs_start_scan().

c) The Black List, the White List and the search mode are passed

as parameters in MPH_POWER_REQ to ALR. This is done in function

cs_start_scan() in RR.

d) ALR will make only one Power Measurement across all supported

Frequency bands. This is handled in function cs_power_req() in

ALR.

e) The MPH_POWER_CNF returned by the ALR must not contain any

carriers from the Black List. This is handled in function

cs_add_and_sort_channels() in ALR.

f) All White List carriers shall be filled at the top of

MPH_POWER_CNF array. This is handled in function

cs_add_and_sort_channels() in ALR.

g) The rest of the MPH_POWER_CNF array will hold carriers (not

from the Black List) whose Rxlev is more than

LOWER_RXLEV_THRESHOLD and which fulfills the order rules. This is

handled in function cs_add_and_sort_channels() in ALR.

h) First Scan is made on White List Carriers and "Reasonably

Strong Carriers" for "Full Service". This is handled in function

cs_sync_next_bsic() function in RR.

i) If no suitable carrier was found, the Second Scan is made on

all with EMERGENCY_CELL marked carriers in MPH_POWER_CNF for

"Limited Service". This is handled in function cs_sync_next_bsic (

) which have to adapt to this new restriction.

j) CQ 27675 is not applicable here as we are searching "Reasonably

strong" carriers also in addition to "White List" carriers. If

the MS crosses borders, "White list" becomes useless, but the

"reasonably strong carriers" would still contain carriers from the

new roaming environment.

k) During the Second Scan, if a carrier is found where "Full

Service" is possible, it is selected. However the scan should stop

at the first available carrier where either "Limited Service" or

"Full Service" is possible. This is already implemented as part of

CQ 24416

l) FAST SEARCH timer is stopped after a carrier is found where

"Full Service" is possible. This can be done in

dat_convert_white_list() function.

m) If no suitable carrier is found where "Full Service" is

available, FAST SEARCH will be used as long as the timer TFAST_CS

is active. Handled by the function cs_get_new_search_mode ().

n) FAST SEARCH has also to be stopped in case of a new

RR_ACTIVATE_REQ (both "limited" or "full plmn" or "net search").

4.1.3.6 Normal Search

a) A new timer, TNORMAL_CS, will be started when NORMAL SEARCH is

started.. This will be done by the function

cs_handle_search_timers() in RR called from cs_start_scan().

b) The Black List, the White List and the search mode are passed

as parameters in MPH_POWER_REQ to ALR. This is done in function

cs_start_scan() in RR.

c) 5 power measurements are made across each carrier in all

supported bands spread over 3-5 seconds. This is handled in

function cs_power_req() in ALR.

d) steps e) to g) of Fast Search

e) First Scan is made on White List Carriers and "Reasonably

Strong Carriers" for "Full Service". This is handled in function

cs_sync_next_bsic() function in RR.

f) NORMAL SEARCH is stopped after a carrier is found where "Full

Service" is possible. This can be done in dat_copy_white_list()

function.

g) If no suitable carrier is found where "Full Service" is

available, NORMAL SEARCH will be used as long as the timer

TNORMAL_CS is active. Handled by the function

cs_get_new_search_mode().

h) After the expiry of TNORMAL_CS, the next Cell Selection would

be a FULL SEARCH, if the MS has still not reached "Full Service".

Handled by the function cs_get_new_search_mode().

4.1.3.7 Full Search

a) The Black List, the White List and the search mode are passed

as parameters in MPH_POWER_REQ to ALR. This is done in function

cs_start_scan() in RR.

b) 5 power measurements are made across each carrier in all

supported bands spread over 3-5 seconds. This is handled in

function cs_power_req() in ALR.

c) steps e) to j) of Normal Search

4.1.3.8 Black List Search

MS uses "Black List Search" to look for inactive Black list

carriers after a cell reselection to a different Location Area or

a Routing Area. In phase 1 Blacklist search will be initiated

only when Location Area changes. Blacklist search following change

in Routing area will be implemented in Phase 2, as this requires

some more study.

4.1.3.8.1 Global Variables

The following global variables will be added in RR entity to

support Black list search.

{

 U8 blacklist_search_pending;

 } T_CS_DATA;

Structure Members

Variable

Type

Size

Description

blacklist_search_pending

U8

1

Indicates that there was a change in location area and black list

search is pending.

Black list search cannot be started immediately after change in

Location area. It should be started after going back from

dedicated state to idle state following the completion of

Location area update procedure by MM. The establishment cause in

received RR_ESTABLISH_REQ primitive can be used to check whether

black list search should be started or not. However, we cannot

rely completely on the establishment cause, as the establishment

cause can be used for Detach also.

Hence this flag has been added. This flag will be set in function

att_code_rr_act_ind() whenever a change in location area is

detected.

4.1.3.8.2 Function API for Managing Black List Search

4.1.3.8.2.1 RR entity

The following functions will be implemented/modified in RR to

manage Black List Search

Function API

Description

Reference

att_code_rr_act_ind

This function already exists. The Black List search pending flag

will be set inside this function

4.1.4.2.1.2

4.1.3.8.2.1.1 att_code_rr_act_ind

Prototype:

void att_code_rr_act_ind ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

void att_code_rr_act_ind ()

{

 Set the black list search pending flag whenever the location

area changes

}

4.1.3.8.2.2 ALR Entity

The following Functions are modified in ALR to implement Black

List Search

Function

Description

Reference

cs_find_inactive_carriers

.Find all inactive carriers from the current search results and

move them to "inactive carrier" list. This function is called by

cs_add_and_sort_channels() for all search modes.

4.1.4.2.2.2

4.1.3.8.2.2.1 cs_find_inactive_carriers

Prototype:

void cs_find_inactive_carriers (T_POWER_MEAS **p_results, U16

*p_results_size

 U8 *std, U8

no_of_attempts, SHORT min_rxlev)

Description:

This functions detects all inactive carriers and adds them to

MPH_POWER_CNF primitive. It also sets the RxLev of all Black List

carriers to less than MIN RxLev , so that these carriers further

in sorting

Input Parameters:

p_results - pointer to a pointer pointing to

T_POWER_MEAS structure

p_results_size - pointer to size for European and American

regions

std - pointer to std value for European and

American regions

no_of_attempts - number of attempts for the current search mode

min_rxlev - minimum RxLev

Return Value:

None

Pseudo-code :

void cs_find_inactive_carriers (T_POWER_MEAS **p_results, U16

*p_results_size

 U8 *std, U8

no_of_attempts, SHORT min_rxlev)

{

 Add all the carriers who's RXLEV is less than

LOWER_RXLEV_THRESHOLD to "inactive carrier list"

 of MPH_POWER_CNF primitive

 Set the Rxlev of all blacklisted carriers to MIN_RX_LEV -1

}

4.1.3.8.3 RR in "Full Service", after Location Area Update /

Routing Area Update

* After a Location Area Update (or Routing Area Update), and RR

reaches idle state (or Packet Idle), RR shall initiate a parallel

BLACK LIST SEARCH to look for inactive carriers in the Black List.

4.1.3.8.4 RR in ""Limited Service"", requested service is ""Full

Service"" and it has done a cell reselection to a carrier to

another Location Area

* When RR is in ""Limited Service"" and a cell reselection has

been done to a carrier to another Location Area (or Routing Area),

then in theory, this is a good point to do a BLACK LIST SEARCH.

However, the expiry of TREG timer could be used to look at Rxlev

values of Black List carriers. After the cell reselection

completes, the TREG timer shall be restarted with duration of one

second (the reg_counter value that decides the duration of TREG

timer is preserved). At its expiry RR would do a NORMAL SEARCH or

FAST SEARCH or FULL SEARCH". This gives the MS a chance to look

for inactive Black List carriers.

4.1.3.8.5 RR in ""Limited Service"", requested service is

""Limited Service"" and it has done a cell reselection to a

carrier to another Location Area

* After the cell reselection completes, RR shall initiate a

parallel BLACK LIST SEARCH.

4.1.3.8.6 MM sends RR_ESTABLISH_REQ when BLACK List Search is

active

* Black List Search is stopped and the call establishment is

carried on

* Functions att_dat_con_est() and att_notify_stop_plmn_search()

will be modified to handle this requirement

4.1.3.9 Management of New Search Modes

The following table lists different scenarios and details which

type of Cell Selection that should be used.

Sr No.

Scenario

Search Type

Search Mode

Function called

Called from

1

Power ON

Non Parallel

Full Search

att_start_cell_selection

att_handle_rr_act_req

2

After Dedicated Mode for more than 30 seconds, Cell Reselection

started, and fails.

Non Parallel

Normal Search

att_start_cell_selection

att_select_cell_dedicated

3

After Dedicated Mode less than 30 seconds but not for a Location

Area Update or Routing area update.

MS continues to camp on the same cell

None

None

None

4

After Dedicated Mode less than 30 seconds for a Location Area

Update or Routing area update.

For phase 1, only LU is being be used a trigger for Black List

search. However for the future, we need to combine LU/RU as a

trigger to start Black list search.

Parallel

Black List Search

att_start_cell_selection()

att_leave_dedicated

5

In "Full Service", cell reselecttion started and fails.

Cell Reselection was started for any of the following reasons

- "Downlink Failure"

- "BCCH Read Failure"

- C1 / C2 criterion

Non-Parallel

Fast Search is started if Full Service is requested by MM.

Otherwise Normal Search is used

att_start_cell_selection

att_try_old_cell

6

In Dedicated Mode and "Radio Link Failure" or "Data Link Failure".

A Cell Reselection is started and fails.

Non-Parallel

Fast Search is started if Full Service is requested by MM.

Otherwise Normal Search is used

att_start_cell_selection

att_select_cell_dedicated

7,8,9,10

In "Limited Service", cell reselection started and fails.

Cell Reselection was started for any of the following reasons

- "Downlink Failure"

- "BCCH Read Failure"

- C1 / C2 criterion

Non-Parallel

Function

cs_get_new_search_mode is called to obtain the new search mode

att_start_cell_selection

att_try_old_cell

11,

12,

13,

14

"Limited Service / No Service" and TREG timer expiry.

Parallel

Function

cs_get_new_search_mode is called to obtain the new search mode

att_start_cell_selection

tim_treg

15,

16,

17,

18,

18a

Net Search by MM

Non-Parallel or Parallel based on ATT state

Full Search

att_start_cell_selection

att_handle_rr_act_req

19

MM originated "Limited Service" search.

Non-Parallel

Full Search

att_start_cell_selection

att_handle_rr_act_req

20

Request from GRR, after a failure of Cell Change Order.

Non-Parallel

Normal Search

att_start_cell_selection

att_rrgrr_cr_req

21,

22

MM originated FUNC_PLMN_SEARCH.

Non-Parallel

Full Search

att_start_cell_selection

att_handle_rr_act_req

23

Cell reselection on GPRS activation fails due to TRESELECT timer

expiry

Non-Parallel

Fast Search

att_start_cell_selection_gprs

tim_treselect

4.2 Multiple Frequency Bands in a Region

4.2.1 Increasing the size of carrier list in MPH_POWER_CNF

According to 3GPP TS 03.22, section 3.2.1 MS should scan a certain

minimum number of carriers on each frequency band. The numbers of

carriers to be searched are 30 for GSM 850 Band, 30 for GSM 900

and 40 for DCS 1800 and PCS 1900.

The size of the carrier list in MPH_POWER_CNF will be increased to

160. This is realized by changing the constant MAX_CHANNELS in MPH

SAP file. This makes it possible to include a minimum of 40

carriers for each band mentioned above.

Current Value

New Value

MAX_CHANNELS

80

160

4.2.2 Strategy in filling the carrier list

4.2.2.1 Rules

The following rules will be observed in filling the carrier list

in MPH_POWER_CNF.

* Only those carriers are added whose Rxlev is greater than

LOWER_RXLEV_THRESHOLD. Carriers are added in descending order of

field strengths, irrespective of which frequency bands (and

region) it belongs to.

* Carriers from the White List are added first. (The maximum

number of carriers in a White List is 32.)

* Carriers listed as "Black" are not included except for "Full

search mode".

* There should be a minimum of 40 carriers for each supported

frequency band. If there are not enough carriers available in a

particular band to fill 40 elements, then an exception to 40

carriers per band rule is made for that band.

* If space is still available in MPH_POWER_CNF list more carriers

can be added. The maximum limit of carriers per individual band

that can be added to MPH_POWER_CNF list is 60. This is done to

keep the carrier list in MPH_POWER_CNF small.

4.2.2.2 Design Approach

The algorithm for filling carrier list in MPH_POWER_CNF shall be

changed to improve its run time efficiency. Currently, addition of

each carrier to the list, requires MAX_CARRIERS_DUAL_EGSM +

MAX_CARRIERS_DUAL_US iterations through the power array list

reported by Layer 1 for a quad band MS. The information collected

while adding the first carrier to the list is not used in the

subsequent additions. For example, all carriers whose RxLev is

less than LOWER_RXLEV_THRESHOLD, can be excluded from power array

list after the first addition. The new cell selection algorithm

incorporates all such changes to improve the run time efficiency.

The same is described below.

The following strategy shall be used in filling/sorting the

carrier list in MPH_POWER_CNF.

* All the inactive carriers (Carriers whose RxLev is less than

LOWER_RXLEV_THRESHOLD) and "Black List" carriers (except for Full

search mode) shall be excluded from power array list for that

region. All such carriers shall be moved to the end of power array

list. The active carriers at the end of power array list shall

occupy the place of inactive carriers. The size of the power array

list shall be decremented by the number of inactive carriers. This

exclusion of Inactive carriers right at the beginning, greatly

improves the run time efficiency.

* The first 40 carriers belonging to each band shall be added from

the top of MPH_POWER_CNF array in descending order of their

strength.

* Carriers beyond 40 (41st to 60th) for each band, whose RxLev

is greater than LOWER_RXLEV_THRESHOLD shall be added to the

MPH_POWER_CNF list from the bottom. When the number of carriers

placed in the MPH_POWER_CNF list for any band reaches 60, all the

remaining carriers for that band shall be set as Inactive

carriers, so that they are excluded from further sorting.

* First 40 carriers for each band added from top, can overwrite

the 41st to 60th carriers added from the bottom. The other way

around is not allowed. Addition of 41st to 60th carriers from

bottom is stopped once the crossover occurs.

MPH_POWER_CNF

* After the completion of carrier inclusion in MPH_POWER_CNF list,

the 41st to 60th carriers for all bands present at the bottom of

the list, shall be rearranged in the descending order of strength

based on their RxLev and moved up the MPH_POWER_CNF list , if

required.

4.2.3 Constants

The following constants a MIN_CHANNELS_PER_BAND,

MAX_CHANNELS_PER_BAND are used to represent the minimum and

maximum number of channels can be accommodated for each band

(GSM_900, DCS_1800, PCS_1900, GSM_850).

Value

Description

MIN_CHANNELS_PER_BAND

40

Minimum number of carriers per individual band that can be added

to MPH_POWER_CNF list

MAX_CHANNELS_PER_BAND

60

Maximum number of carriers per individual band that can be added

to MPH_POWER_CNF list

4.2.3.1.1 Removal of existing global variables

The following existing global variables shall be removed from the

T_CS_DATA structure in alr.h file. Local variables shall be used

instead.

{

 UBYTE c_channels_gsm;

 UBYTE c_channels_dpcs;

} T_CS_DATA

4.2.4 Functional changes

The following functions in ALR shall be modified/added to

implement this requirement

Function API

Description

Reference

cs_restrict_max_carriers_per_band

This is a new function. This function shall restrict the maximum

number of channels per band.

4.2.4.1

cs_add_and_sort_channels

This function already exists. The existing function

cs_increment_c_channels will be replaced by the new function

cs_restrict_max_carriers_per_band.

4.2.4.2

4.2.4.1 cs_restrict_max_carriers_per_band

Prototype:

BOOL cs_restrict_max_carriers_per_band (U16 arfcn, U8 std, U16

no_of_carriers_per_band[4])

Input Parameters:

Arfcn : L3 ARFCN number as per GSM spec.

Std : Std value of the ARFCN.

no_of_carriers_per_band : Pointer to array of counters for the

four bands(P_GSM and EGSM,

 DCS1800,PCS1900,850).

Return Value:

BOOL - Tells where to add this carrier to MPH_POWER_CNF list.

ADD_AT_THE_TOP - From the top (first 40 carrier)

ADD_AT_THE_BOTTOM - From the bottom (41st to 60th carrier)

REACHED_THE_MAXIMUM - All 60 carriers for a band have been added

DO_NOT_ADD - Do not add this carrier

Pseudo-code:

U8 cs_restrict_max_carriers_per_band (U16 arfcn, U8 std, U16

no_of_carriers_per_band [4])

{

 Obtain the band index based on the ARFCN and std value.

 Increment the counter for the corresponding band.

 If (minimum number of channels(40) for that band are added

to MPH_POWER_CNF list)

 {

 if (maximum number of carriers (60) for that band are

added to MPH_POWER_CNF list)

 {

 Set all the remaining carriers from this band as

Inactive carriers

 }

 return 1 i.e add from bottom to MPH_POWER_CNF list

 }

 else

 {

 return 0 i.e add from top to MPH_POWER_CNF list

 }

}

4.2.4.2 cs_add_and_sort_channels

Prototype:

void cs_add_and_sort_channels (void)

Input Parameters:

None

Return Value:

None

Pseudo-code:

void cs_add_and_sort_channels (void)

{

 U16 extra_cnf = MAX_CHANNELS;

 U8 no_of_carriers_per_band [4] = {0, /* P-GSM and E-GSM band

*/

 0, /*

DCS 1800 band */

 0, /*

PCS 1900 band */

 0 /*

850 band */

 };

 While (total number of channels added to MPH_POWER_CNF list <

MAX_CHANNELS)

 {

 Obtain the strongest carrier from the power array list

 where_to_add = cs_restrict_max_carriers_per_band(arfcn, std,

no_of_carriers_per_band)

 if(where_to_add EQ AT_THE_TOP)

 {

 This is first 40 carrier. Add the carrier in the I_cnf

position of MPH_POWER_CNF primitive

 from the top

 Increment the I_cnf counter to move down from top

 }

 else

 {

 This is 41st to 60th carrier. This has to be added from the

bottom of MPH_POWER_CNF list.

 if(cross over has not occurred)

 {

 Add the carrier/rxlevel in the extra_cnf position of

MPH_POWER_CNF primitive from the bottom

 Decrement the extra_cnf counter to move up from bottom

 }

 }

 } // end while

 sort the extra carriers(41st to 60th carriers) and move them up

if required

}

4.3 Region Selection

Searching for Full Service, when MS is camped on in Limited

Service (in an area where multiple frequency bands are present)

In the current implementation of Cell Selection Algorithm, if the

MS has found "Limited Service" in an area where multiple regions

are present and the TREG timer expires, MS would search for "Full

Service" only in the region where it has found "Limited Service".

Consider the following scenario; requested PLMN is on the PCS 1900

Band, in an area where there is strong coverage of DCS 1800 Band

carriers. If the MS cannot find the requested PLMN (on PCS 1900

Band), it enters "Limited Service" on a DCS 1800 Band carrier.

Thereafter MS will look for "Full Service" on DCS 1800 Band and

GSM 900 Band carriers only. In such a case, MS will never find

"Full Service" until it is able to scan across all supported

Frequency Bands.

One way to solve the above problem is MS could do a non-parallel

search (FAST SEARCH or NORMAL SEARCH or FULL SEARCH as described

in scenarios 11, 12, 13 and 14 in Section 4.1.3.9 "Management of

New Search Modes") across all supported frequency bands after a

TREG timer expires. Any assumption made of the Selected Region

(according to the first found suitable cell; see above), can also

be cleared at the expiry of TREG timer, and the MS can start

looking for "Full Service" across carriers from all regions. (Non-

parallel search shall be used only if the MS is operating in an

area which contains multiple frequency bands belonging to

different regions.)

The disadvantage of the above solution is that MS cannot make

emergency calls while searching for "Full Service".

4.3.1.1 Global Variables

The following global variables will be introduced to support this

requirement.

{

 U8 all_freq_area;

} T_CS_DATA

Structure Members

Variable

Type

Size

Description

all_freq_area

U8

1

Indicates whether both American and European bands are detected in

the current region.

{

 U8 reg_time_gap;

} T_MS_DATA

Structure Members

Variable

Type

Size

Description

reg_time_gap

U8

1

Indicates the time gap between Non-Parallel searches in Limited

Service

Default Value : DELAY_NON_PAR_SEARCH_LIM_SER

(2 minutes)

4.3.1.2 Functionality

* The variable all_freq_area in T_CS_DATA will be set only if RR

can sync to carriers from 2 different regions.

* Following TREG timer expiry in Limited Service state, non-

parallel search will be issued, in case the variable all_freq_area

is set to one and the MM requested service is Full Service.

4.4 Searching of carriers during 2 Scans

4.4.1 FIRST SCAN and FIRST ATTEMPT

* When requested service is ""Full Service"", RR searches all

carriers from MPH_POWER_CNF for ""Full Service"". During this

search RR will mark carriers as ""Emergency cell"" and ""Low

Priority cell"" as it finds one. The scanning stops when RR finds

a ""Full Service"" on a carrier with Normal Priority, or if the

entire list is scanned.

* When the requested service is ""Limited Service"", RR searches

all carriers from MPH_POWER_CNF for ""Limited Service"".

4.4.2 FIRST SCAN and SECOND ATTEMPT

* This is only applicable if requested service is ""Full

Service"". RR shall search only those carriers that are marked as

Low Priority.

* Function cs_def_list() and cs_start_sync() shall be modified

to cater to this requirement

4.4.3 SECOND SCAN

* This is only applicable if requested service is ""Full

Service"". RR shall try to reach ""Full Service"" or ""Limited

Service"", but will stop searching if it finds a carrier where

either service mode is possible. This is already implemented as

part of CQ 24416

* RR shall first search carriers that are marked as ""Emergency

cell"", and then all other carriers from the MPH_POWER_CNF list.

Searching carriers that are not marked as "Emergency cell" may

seem unnecessary, but on the field, it works well in areas of weak

coverage.

* Function cs_def_list () and cs_start_sync() shall be

modified to meet the above requirement.

4.4.4 Global Variables

The following new global variables will be introduced to support

this requirement.

{

 U8 scan_mode;

} T_CS_DATA

Structure Members

Variable

Type

Size

Description

scan_mode

U8 enum

1

Identifies the current scan mode. Can take four enum values

CS_NO_SCAN

CS_FIRST_SCAN_FIRST_ATTEMPT

CS_FIRST_SCAN_SECOND_ATTEMPT

CS_SECOND_SCAN

This variable shall be set to CS_NO_SCAN during initialization and

following completion of cell selection.

4.4.5 Functional changes

The following functions in RR shall be modified to implement this

requirement

Function

Description

Reference

cs_start_sync

This function currently resets the CHECK BIT for all the channels.

This shall be modified as described below.

Cs_def_list

This function currently checks whether cells belonging to a

particular Attribute are present or not.

4.4.5.1 cs_start_sync

Prototype:

void cs_start_sync ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

Only the modifications are described here

void cs_start_sync()

{

 Resets the CHECK BIT for all the channels reported in

mph_power_cnf only for Second Scan and if the search mode is not

Fast search mode

 }

4.4.5.2 cs_def_list

Prototype:

void cs_def_list (U8 attribute

Input Parameters:

Attribute - Indicates the Attribute flag

Return Value:

TRUE - Cells with the passed Attribute are present

FALSE - Cells with the passed attribute are not present

Pseudo-code :

Only the modifications are described here

void cs_def_list(U8 attribute)

{

 Reset the CHECK BIT for all Channels found with the given

Attribute set

 }

5 Interface Changes

This section describes the changes required to the MPH SAP between

RR and ALR for Cell Selection Improvements feature

implementation.

5.1 Introduction of new constants

The following new constants are introduced in MPH SAP between RR

and ALR to support Cell Selection Improvements feature.

Constants

Value

Description

LOWER_RXLEV_THRESHOLD

4

Identifies the Lower Threshold for the signal level of a carrier.

All carriers weaker than this are not included in the

mph_power_cnf list

FAST_SEARCH_MODE

0x01

Identifies "Fast Search"

NORMAL_SEARCH_MODE

0x02

Identifies "Normal Search"

FULL_SEARCH_MODE

0x03

Identifies "Full Search"

BLACKLIST_SEARCH_MODE

0x04

Identifies "Black List Search"

FULL_SEARCH_MODE_ATTEMPTS

5

The number of search mode attempts for Full Search. This is

defined by the standard

NORMAL_SEARCH_MODE_ATTEMPTS

5

The number of search mode attempts for Normal search. This is

defined by the standard

TIM_FULL_SEARCH_POWERMEAS_VAL

4000ms

Power measurements spreading time for Full Search mode. This value

is defined by the standard

TIM_NORMAL_SEARCH_POWERMEAS_VAL

4000ms

Power measurements spreading time for Normal search mode. This

value is defined by the standard

5.2 Primitive changes

The interface between RR and ALR requires changes to support new

requirements for Cell Selection Improvements feature. The

following primitives are modified/added in MPH SAP between RR and

ALR.

Primitive

Direction

Type

Reference

MPH_POWER_REQ

RR --> ALR

T_MPH_POWER_REQ

5.2.1

MPH_POWER_CNF

ALR --> RR

T_MPH_POWER_CNF

5.2.2

5.2.1 MPH_POWER_REQ

RR uses this primitive to request ALR for "Parallel" or "Not-

Parallel" search for GSM channels.

{

 U8 pch_interrupt;

 U8 freq_bands;

 U8 search_mode;

 U8 lower_rxlev_threshold;

 T_BLACK_LIST black_list;

 T_WHITE_LIST white_list;

} T_MPH_POWER_REQ

Where :

{

 T_LIST list[2];

} T_BLACK_LIST

{

 U8 white_list_valid;

 U8 region;

 T_LIST list;

} T_WHITE_LIST

T_MPH_POWER_REQ members

Type

Size

Description

pch_interrupt

U8

1

Takes two values.

0x00 - Power measurements with PCH listening

0x01 - Power measurements without PCH listening

freq_bands

U8

1

Identifies the list of GSM frequency bands over which search for

channel is requested

search_mode

U8

1

Identifies the search mode. Can take four values

0x01 - FAST_SEARCH_MODE

0x02 - NORMAL_SEARCH_MODE

0x03 - FULL_SEARCH_MODE

0x04 - BLACKLIST_SEARCH_MODE

Lower_rxlev_threshold

U8

1

Contains the lower threshold of RxLev

black_list

T_BLACK_LIST

1

Contains a separate bit map of Black Listed carries for Euro /

American regions. In case of "Black List search, it contains

"Grey" carriers also

white_list

T_WHITE_LIST

1

Contains the bitmap of carriers present in the "White List". This

list is empty in case of "Black List search".

T_BLACK_LIST members

Type

Size

Description

list

T_LIST

2 * T_LIST

Each bit represents one carrier in the range 0 - 1024 (1024/8 =

128).

Bit value

2 - Carrier is part of "Black List"

0 - Carrier is not part of "Black List"

T_WHITE_LIST members

Type

Size

Description

white_list_valid

U8

1

Indicates whether "White List" is valid or not

0x00 - Not valid

0x01 - Valid

region

U8

1

Indicates whether "White List" belongs to European or American

region

0x00 - European region

0x01 - American region

list

T_LIST

1

Bitmap for "White List" carriers

5.2.2 MPH_POWER_CNF

ALR uses this primitive to provide the list of carriers scanned by

Layer 1. The list contains the ARFCN and RXLEV values. It also

contains the list of inactive carriers.

{

 U8 num_of_chan;

 U8 num_of_white_list_chan;

 U16 arfcn[MAX_CHANNELS] ;

 U8 rxlev [MAX_CHANNELS] ;

 T_BLACK_LIST inactive_carrier_list;

} T_MPH_POWER_CNF

T_MPH_POWER_CNF members

Type

Size

Description

num_of_chan

U8

1

Total number of detected channels

num_of_white_list_chan

U8

1

The number of "White List" carriers included in the list. These

carriers are put at the top of the list.

Arfcn

U16

MAX_CHANNELS

channel number

rxlev

U8

MAX_CHANNELS

received field strength

inactive_carrier_list

T_BLACK_LIST

1

Contains a separate bit map of carriers which are not grey or

black anymore for Euro / American regions

6 Configurable Parameters

This section describes all the configuration commands that are

added as part of this feature.

6.1 Configuration Commands

The following Dynamic configuration commands will be introduced in

RR to support Cell Selection Improvements feature.

Command

Format

Range

Description

TIM_FAST

TIM_FAST <val>

0

Value in minutes

Configures the value of TFAST_CS timer used during Fast Search.

Fast Search is disabled when the value = 0.

TIM_NORMAL

TIM_NORMAL <val>

1

Value in minutes

Configures the value of TNORMAL_CS timer used during Normal

Search. Normal Search is disabled when the value = 0.

ERASE_BL

ERASE_BL

N.A.

Erases the Black List both in RAM as well as FFS

ERASE_WL

ERASE_WL

N.A

Erases the White List both in RAM as well as FFS

SET_BL

SET_BL < region, upto 5 arfcns >

This command is used to add GSM channels to "Black List".

This can be of immense use during windows simulation testing

SET_WL

SET_WL < region, upto 5 arfcns >

This command is used to add GSM channels to "White List"

This can be of immense use during windows simulation testing

SET_WL_REG

SET_WL_REG <region>

0,1

This command is used to set region information in white list.

This can be of immense use during windows simulation testing

SET_WL_PLMN

Set_WL_PLMN <mcc, mnc)

This command is used to set the PLMN ID of the white list stored

on Flash.

White list shall be used only when its PLMN ID matches with the

requested PLMN

BL_CS

BL_CS <val>

0, 1

Controls Black List Search

0 - Black List Search is disabled

1 - Black List Search is enabled

U_RXT

U_RXT <val>

0 to 63

Configures the Upper rxlev threshold

M_RXT

M_RXT <val>

0 to 63

Configures the Medium rxlev threshold

L_RXT

L_RXT <val>

0 to 63

Configures the Lower RxLev threshold

FBLS

FBLS

Forces Black List search. Can be used during testing.

SET_NPS_DELAY

SET_NPS_DELAY <delay in seconds>

>= 0

Used to set the time delay between Non-Parallel searches in

Limited service when reg_counter is less than 20

The following configuration commands will be removed.

1. ID_CLEAR_BCCH_INFO - This is now replaced by ERASE_WL command

2. ID_PCM - PCM is no longer used for storing BCCH(White List)

information.

6.2 Global Variables

A new variable will be introduced in T_RR_DATA structure in rr.h

file as shown below for Dynamic Configuration Commands.

{

 T_DYNAMIC_CONFIG dyn_config;

} T_RR_DATA

Structure Members

Type

Size

Description

dyn_config

T_DYNAMIC_CONFIG

1

Used to store all the dynamic configuration Command variables

6.3 Funtional changes

The following functions in RR will be modified to support the new

dynamic configuration commands.

Function

Description

Reference

cs_init_process

This is an existing function. This will be modified to initialize

the dynamic configuration variables to default values

4.2.3.1

6.3.1 cs_init_process

Prototype:

void cs_init_process ()

Input Parameters:

None

Return Value:

None

Pseudo-code :

Only the modifications are described here

void cs_init_process ()

{

 Enable Black list search mode

 Set TFAST_CS and TNORMAL_CS timer values to 4 min

 Set upper and medium level threshold to default values

}

7 Common Library for List Processing Functions

The Channel List processing functionality is currently used only

by RR module and hence is implemented in the RR file rr_srv.c.

Since a part of this functionality is now required in ALR also for

Cell Selection Improvements feature, these functions shall be

moved to a common library to avoid duplication of code.

The following two new files shall be added to the common library.

File Name

Location

Functionality

cl_list.h

/g23m/condat/com/include

Contains declarations of List processing functions. Any source

file using List processing functionality shall include this header

file.

cl_list.c

/g23m/condat/com/src/comlib

Contains definitions for all List processing functions.

7.1 Functions

The following new functions have been added to List processing

library

The following functions in RR shall be modified to implement this

requirement

Function

Description

Reference

srv_unmask_list

Resets all the bits in the "target" that are set in the "source"

7.1.1

Srv_count_list

Returns the count of the number of channels set in the list

7.1.2

Srv_is_list_set

Checks whether at least one channel is set in the list or not

7.1.3

srv_trace_freq_in_list

Traces all the channels that are set in the list

7.1.4

srv_get_region_from_std

Derives the "region" from "std"

7.1.5

7.1.1 srv_unmask_list

Prototype:

void srv_unmask_list (T_LIST *target, T_LIST *source)

Description:

This function resets all the bits in the "target" that are set in

the "source". This function is used to update "Black List" with BA

and MA lists.

Input Parameters:

target : destination list

source : source list

Return Value:

None

Pseudo-code :

void srv_unmask_list ()

{

 Reset all those bits in target list, which are also set in

source list (INVERT and AND)

}

7.1.2 srv_count_list

Prototype:

void U16 srv_count_list (T_LIST *list)

Description:

This function returns the number of GSM channels set in the list.

Input Parameters:

List : pointer to T_LIST structure

Return Value:

Returns the number of channels set in the list

Pseudo-code :

void U16 srv_count_list ()

{

 Return the number of channels set in the list

}

7.1.3 srv_is_list_set

Prototype:

void BOOL srv_is_list_set (T_LIST *list)

Description:

This function checks whether any GSM channel is set in the list or

not.

Input Parameters:

List : pointer to T_LIST structure

Return Value:

TRUE : channel is set

FALSE : list is empty

Pseudo-code :

void BOOL srv_is_list_set ()

{

 Return whether any GSM channel is set in the list or not

}

7.1.4 srv_trace_freq_in_list

Prototype:

void srv_trace_freq_in_list (T_LIST *list)

Description:

This function traces all the GSM channels set in the list

Input Parameters:

list : pointer to T_LIST structure

Return Value:

None

Pseudo-code :

void srv_trace_freq_in_list ()

{

 Trace all the GSM channels set in the list

}

7.1.5 srv_get_region_from_std

Prototype:

U8 srv_get_region_from_std (U8 std)

Description:

This function derives the "Region" information from "Band"

information.

Input Parameters:

std : band information

Return Value:

region : European / American region

Pseudo-code :

U8 srv_get_region_from_std (U8 std)

{

 Return the region information derived from the std

}

The following List processing functions have been moved to

cl_list.c file from rr_srv.c file.

* srv_set_channel

* srv_unset_channel

* srv_get_channel

* scr_channel_bit

* srv_create_list

* srv_clear_list

* srv_copy_list

* srv_compare_list

* srv_merge_list

* setBit

* getBit

* resetBit

8 Approach to reduce the number of search

 The existing sorting implementation in function

cs_add_and_sort_channels does the following number of searches,

 (MAX_CHANNELS) * max1 * max2 times.

MAX_CHANNELS = Maximum carriers can be added in to the

MPH_POWER_CNF

Max1 = Number of carriers measured by L1 in European Region

Max2 = Number of carriers measured by L1 in American Region

Note: In Cell Selection Improvement Feature the size of

MAX_CHANNELS has been increased from 80 to 160 carriers.

In existing code we are going through the entire lists (European /

American) of power_result array to find a carrier, which has the

maximum rxlevel. After finding the biggest carrier the carrier

will be added in to the MPH_POWER_CNF and the rxlevel will be set

to min_rxlevel -1. The rxlevel will be set to low because we want

to exclude the carrier during the next search. By doing this we

could make the next highest rxlevel carrier to become first during

the next search.

 Here we are just excluding the carrier by setting the

rxlevel to low. But actually the carrier will be searched every

time during sorting. This searching on the Low rxlevel carriers

can be avoided by following the below approach.

Code Snippet:

===

 if (max1)

 {

 parray = p_results1->power_array;

 for (i1=0; i1 < max1; i1++, parray++) <== Searching

is always on all the carriers (including inactive)

 {

 if (parray->accum_power_result > rxlev) <== Always

comparing the carriers (including inactive[x1])

 {

 pbig = parray;

 rxlev = parray->accum_power_result;

 radio_band_config = std1;

 }

 }

 }

 if (max2)

 {

 parray = p_results2->power_array;

 for (i2=0; i2 < max2; i2++, parray++) <== Searching is

always on all the carriers (including inactive)

 {

 if (parray->accum_power_result > rxlev) <== Always

comparing the carriers (including inactive[x2])

 {

 pbig = parray;

 rxlev = parray->accum_power_result;

 radio_band_config = std2;

 }

 }

 }

====================================

When the carrier will be set to less than LOWER_RXLEVEL_THRESHOLD:

1. Carriers reported by L1 may have LOWER_RXLEVEL_THRESHOLD

2. Every time after adding the biggest rxlevel carrier to

MPH_POWER_CNF we set the rxlevel to less than min rxlevel.

How can we avoid searches on the inactive (low rxlevel) carriers?

1. Carriers reported by L1 has LOWER_RXLEVEL_THRESHOLD

During the first search we can find the inactive carriers reported

by L1. After identifying those carriers it can be swapped with the

last carrier of the p_results array. The maximum number of

channels in the p_results array can be decremented by 1.

2. After adding the carrier to MPH_POWER_CNF

After adding the carrier to POWER_CNF instead of setting to

min_rxlevel -1. We can swap the particular carrier with the last

carrier of the p_results array. The maximum number of channels in

the p_result array can be decremented by 1.

Example:

Original List:

1, 2, 3, 4, 5 count (max) = 5

Just consider that the 2nd carrier is inactive we can swap that

carrier with the last carrier 5 and reduce the count to 4.

After removing the inactive carrier:

 1, 5, 3, 4 count (max) = 4

Example - how this approach would reduces the number of searches

Just consider L1 measured 124 carriers (European/American), on

that there were around 50 carriers (on each region) are less than

Rxlevel threshold.

During the first search the power_result will be searched 124

times (on both region), but from the next search onwards the array

will be searched only 104 times (if we use this approach).

In the above scenario we could save the following number of

searches

 ((MAX_CHANNELS - 1) * 50 * 50)

Overhead:

1) But here the overhead will be the swapping. After finding the

inactive carrier the particular carrier needs to be swapped with

the last carrier in the p_results array.

2) In function cs_increment_c_channels (as part of CSImp feature

the function name changed to cs_restrict_max_carriers_per_band)

after reaching the maximum channel for a band the rxlevel for the

remaining carriers will be set to less than the min rxlevel. Here

we assume that the order of the carriers was not changed

(sequential order used in L1). This may not be possible if we use

this approach. We may have to search through the whole p_results

array to find a particular carrier. Because the order of the

carriers were changed by swapping the inactive carrier with the

last carrier in p_results array.

Assumption

 There is an assumption that nowhere we are going to use the

p_results array other than the Initial power request. Because here

we are changing the order of the p_results array which was sent by

L1.

9 Deviations from HLD

* Black List shall be stored in FFS during switch off irrespective

of the current RR service state. Unlike White List, the validity

of "Black List" has no dependency on the RR service state. It

contains up to date information about the Black List carriers in a

given area at a given time and must always be stored during switch

off.

* White list shall be used only when its PLMN ID matches with the

requested PLMN

Appendix A. Open Questions

1. Can the black list be stored independent of the service at

switch off? This is useful in cases where the device does not have

a SIM inserted, and after power on the device has to find limited

service as soon as possible?

Maybe it makes sense to store the Black List during switch OFF if

the TFAST_CS timer is active. This might be useful when a user in

bad signal conditions try to "reset" the mobile.

2. What are the other possible candidates for the White List?

o Cells contained in the IE BA List Pref from the message Channel

Release

o a cell, which is used very often as a serving cell in the past.

3. Is the FAST SEARCH also useful if requested service is "Limited

Service"? In these scenarios a quick re-finding of at least

limited service is also important.

4. MS cannot do a BLACK LIST SEARCH during Dedicated mode (voice

call or GPRS Packet Transfer). If the MS has moved several

Location Areas (or Routing Areas) during Dedicated mode, then the

Black List may become inconsistent.

How do we handle this?

Can the Black list be erased if the MS has moved several location

areas in PTM or dedicated mode?

[x1]

Here we know most of the carriers are inactive (By L1 or added to

POWER_CNF) even though we are doing searching on the whole list

reported by L1 always.

[x2]

Here we know most of the carriers are inactive (By L1 or added to

POWER_CNF) even though we are doing searching on the whole list

reported by L1 always.

 Deviations from HLD

