
Condat AG, Berlin 2002 Slide No. 1www.condat.de

Enhancing Windows

Shared Memory for VCMS

(The SHM-NT Gadget)

“… „cause windows memory-mapped file solution is a lame

duck!”

Condat AG, Berlin 2002 Slide No. 2www.condat.de

Conf identi

al

Introduction

 Problems in VCMS with using Memory-Mapped Files

 Fundamentals of the new implementation

 New problems to resolve

 Source glimpses

 Interface

 Discussion

Condat AG, Berlin 2002 Slide No. 3www.condat.de

Conf identi

al

Problems with using Memory-Mapped Files (1)

 Linking on fixed Address required for some DLL‟s

 pointer issues on different address-ranges requires static linkage

cms.dll: /base:0x20000000 /fixed

frame.dll: /base:0x60100000 /fixed

 Performance Issues

 some G23Net test cases failed with time out

 stunning result after foolish fiddling with parameters:

 The bigger the queue

 the slower the transfer?!?

Condat AG, Berlin 2002 Slide No. 4www.condat.de

Conf identi

al

Problems with using Memory-Mapped Files (2)

VCMS: Increasing the queue size

1000

22

26

40

24

1 3000 50002000 4000

Queue Elements

Time in seconds

including silent (10s?)

7000/48s

Condat AG, Berlin 2002 Slide No. 5www.condat.de

Conf identi

al

Problems with using Memory-Mapped Files (3)

 Why?

 Assumption:

 the bigger size of the queue seems to provoke a higher system

utilization

 Quick guesses:

 caused by an additional abstraction layer of file mapped shared

memory

 which “covers” the shared memory system

 a bad scheduling provokes dispatching of idle processes

 Target solution
 elimination of the additional abstraction layer

Condat AG, Berlin 2002 Slide No. 6www.condat.de

Conf identi

al

Problems with using Memory-Mapped Files (4)

 Additional Abstraction-Layer of Memory-Mapped Files

 CreateFile()

 CreateFileMapping()

MapViewOfFile()

 uses undocumented shared memory internal functions

 ZwCreateSection()

 ZwMapViewOfSection()

Condat AG, Berlin 2002 Slide No. 7www.condat.de

Conf identi

al

Fundamentals of the new implementation

 Frank Reglin‟s sample application:

 focuses the internal management of shared memory

 named sections

 linked list of sections

 managing section contents via alloc/free

 base usage of Zw*() functions

 Some undocumented Windows NT/2000 Zw*()

functions:

 ZwCreateSection()

 ZwOpenSection()

 ZwMapViewOfSection(), ZwUnmapViewOfSection()

missing:

 ZwDeleteSection()

 ZwCloseSection()

Condat AG, Berlin 2002 Slide No. 8www.condat.de

Conf identi

al

New problems to resolve (1)

 ZwMapViewOfSection() doesn‟t guarantee a unique

mapped location for all views of the same memory

section

 a main goal of our implementation, enhancing the Windows shared

mem

 but how to achieve?

 ZwMapViewOfSection(hdl, …, &addr, ...) with addr == 0 means

automatic view map placement

 addr returns the resulting location of this premier placement

 which mustn’t change for all further ZwMapViewOfSection() calls

with the same handle

 and as to be propagated to all clients, hence

 Win 2000 rejects automatic view map placement

 an incremental, aligned placement has to be applied instead

 till mapping of a premier view placement succeeds

Condat AG, Berlin 2002 Slide No. 9www.condat.de

Conf identi

al

New problems to resolve (2)

 OK, an initial map view placement of a given section

may succeed

 How to propagate the location to all clients of interest?

Message Passing?

 temporary File?

 other IPC mechanism?

 Why not use the new shared memory gadget?

 constituting a pool list containing section addresses inside a

specific, qualified shared memory section?

Condat AG, Berlin 2002 Slide No. 10www.condat.de

Conf identi

al

New problems to resolve (3)

 There is more implementation-specific shared

knowledge

 uncritical global scalar data types

 and pointers referencing unshared data

 which can be grouped and shared in a DLL by use of a link

command

 and critical: pointers referencing a shared object

 e.g. fr’s region list constituting a shared memory list

 cause DLL’s also suffers the windows map view location

weakness

 again: Why not use the new shared memory implementation?

 constituting the region list inside a specific, qualified shared

memory section?

 And local knowledge reflecting parts of global

knowledge

 a client needs to know which sections are already mapped

Condat AG, Berlin 2002 Slide No. 11www.condat.de

Conf identi

al

New problems to resolve (4)

 But: How to use the new shared memory gadget

 to implement itself?

 isn’t that a hen/egg problem?

 No, it‟s just a matter of proper initializing and

embedding

 both special sections (pool list, region list) are known to the

system

 those internal sections receive a special treatment whilst system

start-up

 the pool list is just an array

 containing section names, addresses and sizes

 the region list is a double linked list

 but its anchor is located outside of it’s shared memory section

 constituted by a DLL global variable

Condat AG, Berlin 2002 Slide No. 12www.condat.de

Conf identi

al

The Big Picture

Pool List (0)

Region List (1)

Mem Section (2)

Mem Section (3)

unmapped

unmapped

Mem Section (2)

Mem Section (3)

Pool List (0)

Region List (1)

Pool List (0)

Region List (1)

&0

&1

&2

/

/

/

/

/

/

&0

&1

&2

&3

/

/

/

/

/

&0

&1

/

&3

/

/

/

/

/

context map

client client

context mapcontext map

pool list region list

Condat AG, Berlin 2002 Slide No. 13www.condat.de

Conf identi

al

Source glimpses (create & map a

Section)
create_attrib_object(name, &obj);

ZwCreateSection(&hdl, ..., &obj, ...);

ZwOpenSection(&hdl, ..., &obj);

Case 1) get_from_pool(name, &tmpaddr) ==

FALSE:

if (osvi.dwMajorVersion == WIN2000) {

mappedAddr = shm_offset();

/* already stored sections */

} else if (osvi.dwMajorVersion == WINNT) {

mappedAddr = 0L; /* use the first free area. */

}

rc = ZwMapViewOfSection(hdl, (HANDLE)-1,
&mappedAddr, ...);

if (rc != STATUS_SUCCESS) {

if (mappedAddr == 0) {

mappedAddr = SHAREDEND;

}

/* incremental, aligned placement */

for(; mappedAddr != SHAREDBEGIN;

mappedAddr -= SHAREDSTEP) {

rc = ZwMapViewOfSection(hdl, (HANDLE)-1,
mappedAddr, ...);

if(rc == STATUS_SUCCESS)

break;

}

}

put_to_pool(name, mappedAddr, rsize)

Case 2) get_from_pool(name, &tmpaddr) ==

TRUE:

mappedAddr = (char*) tmpaddr;

ZwMapViewOfSection(hdl, (HANDLE)-1,

&mappedAddr, ...);

Both cases:

notice_mapping_in_context(mappedAddr);

Condat AG, Berlin 2002 Slide No. 14www.condat.de

Conf identi

al

Source glimpses (creation of a Shared

Heap)
if (poolAddr == 0) {

init_shared_address_pool(); /* give access to
the 2 internal regions */

}

shm_map_all();

reg = regionlist;

while(reg) {

pr = reg->pregion;

if(strcmp(pr->name, name) == 0) {

*phdl = (unsigned long)pr;

return SHM_EXISTS;

}

reg = reg->next;

}

shm_section(name, size, &addr);

... init internal heap managment data ...

reg = shm_alloc(poolListAddr,
sizeof(USEDREGION));

reg->pregion = addr;

reg->next = regionlist;

regionlist = reg;

Condat AG, Berlin 2002 Slide No. 15www.condat.de

Conf identi

al

Source glimpses (init of internal

sections)

Case 1) regionlist == 0;

ret0 = shm_section((char*)REGIONPOOLNAME,

poolSize0, &poolAddr);

/* local var poolAdr is != NULL from now on,

will trigger action of the other pool funcs ...
*/

if ((ret0 == SHM_OK) || (ret0 == SHM_EXISTS)) {

region0 = poolAddr;

}

ret1 = shm_heap((char*)REGIONLISTNAME,

poolSize1, &poolListAddr, TRUE);

if ((ret1 == SHM_OK) || (ret1 == SHM_EXISTS)) {

if (ret0 == SHM_OK)

{

region1 = poolListAddr;

put_to_pool(REGIONPOOLNAME, poolAddr,
poolSize0);

while((spe++) <= lastSpe) {

spe->name[0] = 0;

spe->addr = 0;

spe->size = 0;

}

reg = shm_alloc(poolListAddr,
sizeof(USEDREGION));

reg->next = regionlist;

reg->pregion =
(REGIONGLOBALS*)poolListAddr;

regionlist = reg;

}

}

Case 2) regionlist != 0;

shm_map((char*)REGIONPOOLNAME,

poolSize0, ®ion0);

poolAddr = region0;

shm_map((char*)REGIONLISTNAME, poolSize1,

®ion1);

poolListAddr = region1;

Condat AG, Berlin 2002 Slide No. 16www.condat.de

Conf identi

al

Interface (1)

 int shm_section(char * name, unsigned long int rsize,

unsigned long int * phdl);

 creates a “raw” (to be managed by user) shared memory section

 no malloc/free available

 int shm_heap(char * name, unsigned long int rsize,

unsigned long int * phdl, BOOL forceInit);

 creates a shared memory heap

 providing classic malloc/free

 based on shm_section()

 int shm_delete_section(unsigned long int hdl);

 deletes a shared memory section

 or a shared heap

Condat AG, Berlin 2002 Slide No. 17www.condat.de

Conf identi

al

 void * shm_alloc(unsigned long int hdl, unsigned long

int size);

 allocates a chunk in the denoted shared heap

 int shm_free(void * addr);

 releases a chunk in the denoted shared heap

 int shm_exit();

 unmaps all sections from a client

 does not delete any section

 irrespective the internal sections

 which are deleted, if they are the solely remainder

Interface (2)

Condat AG, Berlin 2002 Slide No. 18www.condat.de

Conf identi

al

Interface (3)

 int shm_map(char * name, unsigned long int rsize,

unsigned long int * paddr);

map a single, specific shared memory section/heap.

 void shm_map_all();

map ALL remote created shared memory sections

 into current address space

 long int

shm_map_by_exeption(EXCEPTION_POINTERS* EP);

map ALL remote created shared memory sections by “trap on use”
int q_read(

__try{

[...main q_read code...]

}

__except (shm_map_by_exeption(GetExceptionInformation())) {

}

)

Condat AG, Berlin 2002 Slide No. 19www.condat.de

Conf identi

al

Interface (4)

 void shm_list_pools();

 print information about all shared memory address pools (pool list):

 name

 address

 size

 range

 void shm_list_heap(FILE * outf, char * name);

 service/debug. List internal management data of a shared memory

heap.

 used in Program shmList.exe, not really necessary for

implementation.

Condat AG, Berlin 2002 Slide No. 20www.condat.de

Conf identi

al

Why dynamic-link-libraries for sharing?

 We‟ve handled shared dynamic data. What‟s about

linking?

 can we get rid of that clumsy /base:0x60100000 /fixed linkage

now?

 YES! But hasn’t SHM_NT have to handle the shared static data,

too? By moving it all into shared memory sections?

 NO! We can safely ignore this type of FRAME data:

 if it is located and referenced in the stack only (single

process)

 if it is non-win32 code, like all partition-memory related
data (by now! Partitions may come to win32 later on)

 if the data (or any sub-data, if structured) isn’t remembered

by it’s location (& address operator and resulting pointer)

 Why providing a DLL-solution only (no shm_nt.lib)?

 SHM_NT uses VCMS semaphores, based on shared data. Easily
achieved by constituting a dll. Suggestion for a coming VCMS-
Release: dynamic semaphore creation, based on a SHM_NT

Condat AG, Berlin 2002 Slide No. 21www.condat.de

Conf identi

al

Results

 We earn a better performance now

 which is at least, say, 30 % faster than the best of previous

 rather independent from queue buffer element size

 Why isn‟t performance gain higher on larger queues?

 good question!

 but why should it?

 de-coupling is properly done

 by eliminating the Windows 2nd abstraction level

 No further scheduling/dispatching problems

 we have only one Processor

 Discussion, anybody?

Condat AG, Berlin 2002 Slide No. 22www.condat.de

Conf identi

al

How to access and use the SHM-NT

Gadget

 Sources:

 \gpf\shm_nt\…

 \gpf\vcms-nt\… (example of usage)

 Includes:

 \gpf\shm_nt\inc\shm_nt.h

 DLL:

 \gpf\shm_nt\lib\shm_nt.dll

 Lables (preliminary):

 SHM_NT_FLOAT

 VCMS_FLOAT

Condat AG, Berlin 2002 Slide No. 23www.condat.de

Conf identi

al

Further reading

 Jeffrey Richter, MS-Windows für Experten

 An introduction into Windows System Programming

 Gary Nebbett, WINDOWS NT/2000 Native API Reference

Win NT/2K undocumented system calls

 Randy Kath, Managing Virtual Memory in Win32

 http://msdn.microsoft.com/library/en-us/dngenlib/html/msdn_virtmm.asp

 Randy Kath, Managing Memory-Mapped Files in Win32
 http://msdn.microsoft.com/library/en-

us/dngenlib/html/msdn_manamemo.asp

Condat AG, Berlin 2002 Slide No. 24www.condat.de

End

(Enough for today)

