

Copyright  2003 Texas Instruments, Inc. All rights reserved.

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Detailed Specification

Common Timer Base

Department: Aalborg Wireless Center

Creation Date: 7 February, 2003

Last Modified: 24 March, 2003 by Carsten Schmidt

ID and Version: 8434.516.02.005

Status: Accepted

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 2/21

0 Document Control

Copyright  2003 Texas Instruments, Inc.

All rights reserved.

Every effort has been made to ensure that the information contained in this document is accurate at the time
of printing. However, the software described in this document is subject to continuous development and
improvement. Texas Instruments reserves the right to change the specification of the software. Information
in this document is subject to change without notice and does not represent a commitment on the part of
Texas Instruments. Texas Instruments accepts no liability for any loss or damage arising from the use of any
information contained in this document.

The software described in this document is furnished under a license agreement and may be used or copied
only in accordance with the terms of the agreement. It is an offence to copy the software in any way except
as specifically set out in the agreement. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording, for any purpose
without the express written permission of Texas Instruments.

0.1 Document History

ID Author Date Status

8434.516.02.001 CSH 27 May, 2002 Being Processed

8434.516.02.002 CSH 25 June, 2002 Being Processed

8434.516.02.003 CSH 19 February, 2003 Being Processed

8434.516.02.004 CSH 7 March, 2003 Being Processed

8434.516.02.005 CSH 24 March, 2003 Accepted

0.2 References, Abbreviations, Terms

 [TI 8010.801] 8010.801, References and Vocabulary, Texas Instruments

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 3/21

Table of Contents

1 Introduction ... 4

1.1 Different test scenarios ... 4
1.2 Identifying the problem .. 5

1.2.1 Testing with TAP2 ... 5
1.2.2 Testing with Anritsu VST... 5
1.2.3 The problem .. 5

1.3 Frame, timers and nucleus information .. 6

2 CTB Concept ... 7

2.1 CTB examples ... 7
2.2 Assumptions/solved issues ... 9

3 Interface for CTB... 10

3.1 EXT_TICK_MODE_REQ.. 10
3.2 EXT_TICK_MODE_CNF.. 10
3.3 INT_TICK_MODE_REQ... 10
3.4 INT_TICK_MODE_CNF ... 11
3.5 TIMER_TICK_REQ .. 11
3.6 TIMER_TICK_CNF .. 11
3.7 IDLE_REQ ... 12
3.8 IDLE_CNF.. 12

4 Message Sequence charts ... 13

4.1 Initialisation / closing of CTB ... 13
4.2 Testing with TAP2 ... 14
4.3 Testing with PAL2 ... 15

5 Changes in the involved parts. ... 16

5.1 Nucleus ... 16
5.2 PS-Frame .. 16

5.2.1 Nucleus interface ... 16
5.2.2 os_stop_ticking() ... 17
5.2.3 os_start_ticking() ... 17
5.2.4 os_tick() .. 17
5.2.5 os_get_process_id() ... 17

5.3 TST (protocol stack) .. 17
5.3.1 EXT_TICK_MODE_REQ.. 17
5.3.2 INT_TICK_MODE_REQ... 17
5.3.3 TIMER_TICK_REQ .. 18
5.3.4 IDLE_CNF.. 18

5.4 IDLE task.. 18
5.5 TAP2 .. 18

5.5.1 Enabling/disabling of CTB ... 18
5.5.1.1 tap_ctb_enable() ... 19
5.5.1.2 tap_ctb_disable ().. 19

5.5.2 Handling of “IDLE” states in tap .. 19
5.5.3 TAP2 timer functions ... 21

5.6 PAL2 .. 21
5.7 PHY.. 21

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 4/21

1 Introduction

This document resumes the discussion/analysis for a common timer base solution made in “GPF timer
control” [TI 8434.514] and the analysis “timer control” [TI 7010_975]. Besides the analysis the document
also contains a high level part, identifying needed primitives. The document also describes the necessary
changes in the tools that need changes for supporting CTB. Finally the document also contains a little design
specification for the TAP and FRAME, because of missing DTS documents for these GPF components.

Common for all described scenarios and the presented solution are that it is only meant for a host testing
solution.

1.1 Different test scenarios

This subsection will shortly describe the different test scenarios, for which CTB is needed. Common for all
scenarios are that they are not “real time” test cases. Figure 1 shows a testing session with the tap2
application. The tap2 runs on the Condat Multitasking System (CMS) with a frame. It communicates with
the stack through a simulated USART (tst.exe). The TST.exe contains the test interface (TIF) to the protocol
stack. On the stack side there’s a task called TST and RCV which sends and receives information.

Protocol Stack

FRAME A

NUCLEUS

TIF TIF

FRAME B

CMS

TST.exe TAP2.exe

Figure 1 Testing with tap2

When testing the protocol stack, tap2 can be closed and restarted without closing the stack.

When running system integration test with the Anritsu system tester the scenario are as in Figure 2. PAL2 is
a glue layer between the TI PHY/CPHY SAPs and the Anritsu layer 1 interface. Communication between
PHY Stub and PAL2 is via the TIF interface, and communication between PAL2 and Anritsu Layer 1 is via a
TCP/IP socket interface.

Anritsu

layer 1
Protocol Stack

FRAME A

NUCLEUS

TIF TIF

FRAME B

CMS

TST.exe XPANEL PAL.exe

Figure 2 Testing with Anritsu

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 5/21

The pal application can be closed and started again without closing the protocol stack.

Besides these two scenarios there is a possible third scenario that must be taken into account although it is
not seen today. The scenario is depicted in Figure 3. The scenario describes testing with Anritsu as well as
with tap2 and it is actually a combined testing from the previous two scenarios.

Anritsu

layer 1
Protocol Stack

FRAME A

NUCLEUS

TIF TIF

FRAME B

CMS

TST.exe XPANEL TAP2.exe PAL.exe

Figure 3 Testing with Anritsu and TAP2

This scenario is relevant – if for example some Anritsu Test case will bring the protocol stack into a special
state and then we stimulate the stack with some module or UMTS integration test case from the tap
application. Nothing special should be done here, since the PAL2 should be enabling CTB and the TAP2
should be started as normal.

1.2 Identifying the problem

This section shortly identifies the problem when testing in the previous mentioned test scenarios. For more
detailed information please read [TI 7010.975].

1.2.1 Testing with TAP2

When running module or integration test cases with the tap2 application most often the Protocol Stack are
stopped because of debugging. This results in a timeout in the tap2 causing the test case to fail.

With TDC (test description code) it is possible to setting breakpoints in test cases from Visual Studio (more
easily than in TDS). This means that the tap2 application can be stopped and cause unexpected behaviour in
the protocol stack, because of timeouts of previously started timers.

Another issue is when the both frames are in idle mode (nothing to do) for an amount of time. Naturally it is
not preferable to wait that time – instead it should be skipped and the testing should continue.

1.2.2 Testing with Anritsu VST

Testing with Anritsu is not real-time. The Anritsu can be slow meaning that time “progresses” faster in the
PS than on the Anritsu. This can cause time outs of previously started timers in the PS.

When the PAL2 is being debugged the same problem can occur. When testing today some timers for the
entity CC are even disabled in the protocol Stack to secure the behaviour of the protocol stack so that the test
cases passes.

1.2.3 The problem

After listing the problems we can now identify the cause of the problem. Basically it is because the two
frames aren’t aware of each other. In case of testing of with PAL2 the problem is also that the Anritsu is

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 6/21

asynchronous to both frames.

They frames run asynchronous. This means that for instance FRAME A can be stopped and FRAME B will
continue because it has no knowledge about FRAME A. We therefore need to have implemented something
into the two frames – so that they can be aware of each other. This requires changes in the tools (PAL2 and
TAP2) and the frame, so that it can be configured to run in a mode, that avoids the mentioned problems.

1.3 Frame, timers and nucleus information

This subsection contains some relevant information found during the development of this document.

During start up of the stack, when initialising all the tasks, the frame call os_SuspendTask several times for
most of the entities. This function depends on timer ticks, so that suspend time can expire and the processing
can continue. We need to have a timer tick on start up of the frame – e.g. use the Windows timer tick. Later
it should then switch to another configuration – initiated by the test environment. Inside Nucleus the timer
tick interrupt is simulated by starting a normal Windows timer. This timer runs in it’s own thread. The
started Windows timer expires after 50ms. This means every time the callback function in nucleus is called
50ms of time has passed.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 7/21

2 CTB Concept

This section contains a short description of the CTB concept. CTB is only required for host testing, together
with the TAP2 or together with PAL2

1
.

To ease understanding of the following concept we distinguish between, an “internal” frame tick
configuration (normal mode), with timer ticks generated from Windows, and an “external” frame tick
configuration, where the ticks only occur on requests from an external entity (CTB). The basic features of
this concept have been implemented and tested successfully.

The basic idea is to control the time passed inside the stack from the test tools (PAL2 / TAP2). This means
that the interrupt simulation of the nucleus timer ticks should be disabled, so that the entire protocol stack
environment only “passes” time, when the test environment tells it to do so. In the Nucleus (host version) the
timer interrupts are simulated through a Windows timer that fires every 50ms. The timer process calls a
“timer expire” function, that increments the time in Nucleus. This Windows controlled timer should be
disabled, when CTB is enabled. The function called, when the timer expires, should be called from the PS
FRAME/TST on requests. This way the complete timing behaviour in the stack would be the same, as if the
ticks were occurring periodically.

The ticking should only happen when the stack is in idle mode. This requires an idle task, which can tell the
stack, when there’s nothing to do.

On the tool side the frame should run normally – e.g. the timer ticking is not disabled here. This way changes
are avoided in the tool frame (CMS).

When testing with the Anritsu VST, the stack should be controlled from the ticks generated from the tester.
Every tick generated from Anritsu corresponds to 10ms. Since the stack timer “resolution” is 50ms, PHY has
to receive 5 tick requests, before telling the stack to tick.

When testing with TAP2, the stack should be asked to “spend” time, every time the TAP2 is in “idle” mode.
The TAP2 is considered to be in idle in following states:

 AWAIT events (Idle time is the default timeout specified when starting the TAP2)

 MUTE events (Idle for the time given as parameter)

 WAIT_TIMEOUT events (Idle for the remaining time given as parameter to START_TIMEOUT)

 TIMEOUT (Idle for the time given as parameter + the default timeout parameter)

Every time the TAP2 is coming into one of these states the TAP2 request the stack to “execute” the idle
TAP2 time. The stack executes time until something is sent back to TAP2 or until the requested time has
been executed (what ever comes first).

Doing this will make it possible to test expiring of “big” timers from test cases, since a TIMEOUT for
several hours can be made. In such a case the stack is told to “tick” the amount of time until something is
sent back to the TAP2 or the time has passed.

2.1 CTB examples

In order to explain the concept, some examples are depicted in following.

Figure 4 depicts a simple TAP2 test scenario with CTB enabled. All necessary CTB system primitives are
not displayed. In the following two scenarios, the default timeout in the TAP2 is assumed to be 10000ms. It

1 At a kick off meeting, it was identified, that CTB should just cover a host solution. Testing w ith Anritsu VST on target is v ery

unlikely, since we have acquired the Anritsu PST. Module testing on target with TAP2 could be relevant, but this would make the
CTB solution more complex. I t also not clear what would happen to other involved parts on target (ESF and Riviera), if the nu cleus
timer tick is disabled. Therefore this is out of scope for this solution.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 8/21

is assumed that SOME_PRIMTIVE_REQ starts a task timer inside the entity. The time is 5000ms. When the
timer expires, the primitive awaited by TAP2, is sent (SOME_PRIMITIVE_IND).

SOME_PRIMITIVE_REQ1

start 5000 ms2

T/O 5000 ms has passed3

SOME_PRIMITIVE_IND4

PS-TASK PS-TST TAP

It is assumed that CTB has been enabled prior to this sequence

Now the TAP2 AWAIT event is called.

The stack is then told to start "ticking".

The time is now ticking inside the stack (only in idle), until the time is passed, or

something is sent back to TAP2.

This means that the time is "happening" really fast in the stack.

After passing of 5000 ms the previously started timer expires and the entity sends a primitive.

Figure 4 Example of TAP2 test with CTB – pass example

In Figure 5 the same scenario is shown, except that timer value is 12000ms. The default timeout in TAP is
still 10000 ms.

SOME_PRIMITIVE_REQ1

start 12000 ms2

PS-TASK PS-TST TAP

It is assumed that CTB has been enabled prior to this sequence

Now the TAP2 AWAIT event is called.

The stack is then told to start "ticking".

The time is now ticking inside the stack (only in idle), until the time is passed, or

something is sent back to TAP2.

This means the time is "happening" really fast in the stack.

After passing of 10000 ms the TST (STACK) tells TAP2, that the requested time has passed.

The TAP2 will the fail, because it expects a primitive within the default timeout.

Figure 5 Example of TAP2 test with CTB - fail example

This time the TAP2 will report an error, because nothing was received within the default TIMEOUT. In
order to get passed as verdict for the test scenario, a TIMEOUT () with 11950 ms could be used before
awaiting the SOME_PRIMTIVE_IND. The scenario is depicted in Figure 6:

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 9/21

SOME_PRIMITIVE_REQ1

start 12000 ms2

T/O 12000 ms has passed3

SOME_PRIMITIVE_IND4

PS-TASK PS-TST TAP

It is assumed that CTB has been enabled prior to this sequence

The TAP2 TIMEOUT event is called with a time of 11950 ms

The time is now ticking inside the stack (only in idle), until the time (11950) is passed.

Now the TAP2 AWAIT event is called.

The stack starts "ticking" again.

After passing of 12000 ms the previously started timer fires and the entity sends a primitive.

Figure 6 Example of TAP2 testing with CTB – using a TIMEOUT

The behaviour would be the same if MUTE or START_TIMEOUT/WAIT_TIMEOUT were used.

2.2 Assumptions/solved issues

In case of having test cases (TAP2 testing), which cause heavy load of the PS, can result in “no” scheduling
of the IDLE entity. Such cases should not use CTB.

This new concept avoids high loading of the test interface. Timer tick requests are only send in case of TAP2
“idle” or when the PAL2 wants the frame to trig (for PAL it was always like this).

On the host configuration it is assumed that no drivers / entities are depending on real time timers. Any way
this was never real-time on the host, so it should still be able to work with this CTB concept.

A common test scenario, where PAL2 and TAP2 are used together, does not require special handling. PAL2
is acting a master and completely determines when ticking should happen.

The option to link tap into the PS is not possible, since the solution also should work for Anritsu testing as
well.

No changes are needed on TOOL frame/TST. The time is “ticking” as normal here, only the stack ticks are
disabled in the CTB configuration.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 10/21

3 Interface for CTB

Because of missing Service Access Points in the frame configuration we need to define the interface
“manually”. This section contains the interface specification between the involved parts. In addition to these
primitives a header file with external type declarations for nucleus will be made.

Therefore all these definitions including the types below will be added into one common header file
(ctb_interface.h).

3.1 EXT_TICK_MODE_REQ

Description:

This system primitive should be sent to PS frame to configure CTB.

Definition:

Short name ID Direction

EXT_TICK_MODE_REQ - TAP2 / PAL2 -> PS TST

3.2 EXT_TICK_MODE_CNF

Description:

This system primitive should be send from TST to TAP2, when CTB is enabled. The time_stamp of this
primitive is used as base time stamp inside the tap. Beside this the process id of the protocol stack executable
is included in this primitive, so the tap can if the stack is still running.

Definition:

Short name ID Direction

EXT_TICK_MODE_CNF - PS TST -> TAP2

Elements:

Long name Short name Ref Type Description

Windows process id
of the protocol stack

process_id - U32

3.3 INT_TICK_MODE_REQ

Description:

This system primitive should be sent to PS-TST to switch of CTB. The sending can either be done
from the tool (in case of errors) or from a test case.

Definition:

Short name ID Direction

INT_TICK_MODE_REQ - TAP2 / PAL2 -> PS TST

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 11/21

3.4 INT_TICK_MODE_CNF

Description:

This system primitive should be sent to the TAP2 from TST when CTB is disabled.

Definition:

Short name ID Direction

INT_TICK_MODE_CNF - PS TST -> TAP2

3.5 TIMER_TICK_REQ

Description:

This system primitive should be sent to the PS-TST requiring spending of time. The time parameter
is the amount of time, the TOOL request the frame to tick in. The time parameter is in milliseconds.
Since the resolution in Nucleus is 50ms, the time parameter is converted into a multiple of 50 ms,
before sending from the TAP2.

In principle the time stamp in the TST header will be used for carrying the time.

Definition:

Short name ID Direction

TIMER_TICK_REQ - TAP2 / PHY -> PS-TST

Elements:

Long name Short name Ref Type Description

Maximum time Time - U32

3.6 TIMER_TICK_CNF

Description:

This system primitive should be sent to the initiator of the TIMER_TICK_REQ as a confirm of

passed time.

In principle the time stamp in the TST header will be used for carrying the “done_time”.

Definition:

Short name ID Direction

TIMER_TICK_CNF - PS-TST -> TAP2 / PHY

Elements:

Long name Short name Ref Type Description

Done time done_time - U32 -

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 12/21

3.7 IDLE_REQ

Description:

When the TST should skip time in the PS stack an IDLE-REQ is sent to the idle entity. This
primitive is only sent as a signal. Since this primitive is sent as a signal it requires an ID.

Definition:

Short name ID Direction

IDLE_REQ 0x 00000010 TST -> IDLE

3.8 IDLE_CNF

Description:

When the idle entity is scheduled and it previously has received an IDLE_REQ it sends an
IDLE_CNF to TST. This primitive is only sent as a signal. Since this primitive is sent as a signal it
requires an ID.

Definition:

Short name ID Direction

IDLE_CNF 0x 00010010 IDLE -> TST

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 13/21

4 Message Sequence charts

This section explains the message flow for the different scenarios:

4.1 Initialisation / closing of CTB

Following figure indicates the initialisation procedure.

EXT_TICK_MODE_REQ1

EXT_TICK_MODE_CNF2

Only in case of TAP.

The process id is of the ps executable is added.

INT_TICK_MODE_REQ3

INT_TICK_MODE_CNF4

Only in case of TAP.

IDLE PS FRAME (TST) TAP2 / PHY

Initialisation of common timer base (External tick mode)

Trace from TST is done

After the CNF the stack is running in external tick mode - CTB is enabled.

Before the testcase is ended (failing etc.) the stack is configured to run in normal mode again -

 CTB is disabled.

Trace from TST is done

Stack is running in internal tick mode again.

Figure 7 Initialisation of CTB

In case of errors (test case failure) the TAP2 sends INT_TICK_MODE_REQ, to request the stack to run
normal again. Upon exit the TAP2 and PAL2 should also set the PS back in internally software ticks.

If the stack crashes during tests, no reinitialising is done. The test case has to be restarted from the beginning.

In case of killing a tool – the stack will not be reconfigured to run in normal mode again. However if the test
case is restarted again the stack is reconfigured to run in CTB mode and therefore an
EXT_TICK_MODE_CNF will still be sent back.

In case of testing with Anritsu VST, no confirms on enabling/disabling CTB are necessary. When doing
TAP2 test, they are used to enable/disable CTB internally in the TAP2, when CTB is invoked by sending a
COMMAND to TST on the stack side. When starting CTB from the TAP2 an EXT_TICK_MODE_CNF is
sent back. Through this system primitive, the timestamp and process id from the stack is transferred to the
TAP2. The process id should be used to see if the stack executable still is running. Otherwise the TAP2
should fail.

It should be possible to enable/disable CTB from test cases.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 14/21

4.2 Testing with TAP2

The figure below shows the mail flow for TAP2 testing.

SOME_PRIMITIVE_REQ1

TIMER_TICK_REQ2

Time

IDLE_REQ3

Signal

IDLE_CNF4

Signal

IDLE_REQ5

Signal

SOME_PRIMITVE_IND6

Not nescessary at this point in the sequence

IDLE_CNF7

Signal

TIMER_TICK_CNF8

time_done

SOME_PRIMITIVE_REQ9

TIMER_TICK_REQ10

Time

IDLE_REQ11

Signal

IDLE_CNF12

Signal

TIMER_TICK_CNF13

time_done

IDLE PS-TASK PS-TST TAP

Testing with tap2. It is assumed that CTB has been enabled prior to this sequence

When an AWAIT, TIMEOUT, WAIT_TIMEOUT or MUTE is called, the TAP awaits a TIMER_TICK_CNF.

Nothing is happening (failing) until a TIMER_TICK_CNF is received.

During the awating TAP checks if the stack is still running (through the process id of the stack)

One shot timer is started (1ms),

so the nuclues call back function can be called from

a windows timer process.

TST now generates the first tick. The sequence with IDLE_REQs to IDLE is now

repeated until "time" received in TIMER_TICK_REQ is reached or until TST sends

something to the TAP. When something is sent to the TAP the TIMER_TICK_CNF is sent on

the next idle cnf. When this occurs TST sends a TIMER_TICK_CNF with the time passed

Here the time is passed, without any primitives send back to the TAP

The TAP would then fail, because the time that was requested has passed,

without sending of primitives to the TAP.

Figure 8 TAP2 testing

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 15/21

Since the TIMER_TICK_REQ can occur later than SOME_PRIMITIVE_IND, due to higher prioritised tasks
inside the stack, a check has to be performed before TIMER_TICK_REQ is sent in the TAP2. The queue in
the TAP2 should be checked before sending it, because SOME_PRIMITIVE_IND could already have been
sent.

Someone could say that if the TAP2 sends more primitives before an idle state, the behaviour inside the stack
would be non deterministic. This is not true, because TST and RCV are the entities with lowest priority
except the IDLE and EXTR. Therefore the first primitive will always be processed first, when sent from TST
to the queue of another task, so the behaviour will always be deterministic.

4.3 Testing with PAL2

The mail flow for testing against the Anritsu system tester is shown in Figure 9.

L1_UP_TICK1

PHYSTUB_FRAME_TRIG_REQ2

TIMER_TICK_REQ3

time (50ms)

IDLE_REQ4

IDLE_CNF5

TIMER_TICK_CNF6

time_done (50ms)

PHYSTUB_DATA_REQ_PARMS_IND7

L3_DOWN_TICK8

PHY IDLE PS-TST PAL Anritsu VST

Testing with Anritsu. It is assumed that CTB has been enabled prior to this sequence.

PHY should get 4 PHYSTUB_FRAME_TRIG_REQ and on the fifth is sends a TIMER_TICK_REQ to TST.

This is because that the PHYSTUB_FRAME_TRIG_REQ is sent every 10 ms.

Here the TST ticks the time corresponding to whats specified in TICK_TIMER_REQ.

In case of testing with PAL the time is 50 ms

And so it goes......

Figure 9 PAL2 testing

The stack will perform a tick, when TST receives a TIMER_TICK_REQ with 50ms and the stack is IDLE.
This TIMER_TICK_REQ, should be sent from PHY. TST answers back to PHY with a CNF. As mentioned
earlier the L1_UP_TICK indicates a frame trig of 10 ms. to ensure the same time frame in the stack. Pal2 has
to await 5 of these before sending the PHYSTUB_FRAME_TRIG_REQ.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 16/21

5 Changes in the involved parts.

5.1 Nucleus

Nothing has to be changed here, since all the needed variables/functions from Nucleus are global.

5.2 PS-Frame

Changing of priorities of TST and RCV, so an idle entity can be added with the lowest priority. EXTR has
lower priority than IDLE task – it seems as if the priority is changed for EXTR, the stack cannot start. It is
assumed that this has no influence on the stack behaviour.

The idle task has to be added to the start list of entities inside CONFIG and STUBS (for UMTS).

The time_sliced tasks on host testing should be disabled. Otherwise we will not have task switching in case
of running with CTB (when the time isn’t ticking). This can cause deadlocks. This is done by replacing
following code with 0:

#ifndef _TARGET_

 10,

#else

 0,

#endif

in os_CreateTask (gpf\frame\nuc\os_proc.c). The value should be 0, even though the frame and Nucleus are
running on PC.

In vsi.h a new macro for P_TIME() should be created to access the time_stamp in the TST header.

5.2.1 Nucleus interface

In order to be able to start/stop the Windows timer, that maintains the ticking in Nucleus, an interface file
with extern declarations of the Nucleus timer types is required. This file will be added to the os_abstraction
layer. The types needed are as follows:

#define TARGET_RESOLUTION 1 //Used when calling timeSetEvent.

extern DWORD tm_tick // The timer value (50 milliseconds)

extern UINT mntim_id //The timer id returned by timeSetEvent()

extern DWORD tm_hdl //Timer handle in Nucleus

extern void __stdcall tm_exp(UINT,UINT,DWORD,DWORD,DWORD); //Callback function when timer
expires.

These extern declarations will be located in os_ctb.h under gpf/frame/nuc/.

Besides the declarations a corresponding c file (os_ctb.c), containing functions for starting and stopping the
timer and for doing one tick, is required. There should also be a function for getting the process id to the
executable.

These functions will get following names:

os_stop_ticking() //Stop the Windows timer

os_start_ticking() //Restarts/starts the Windows timer

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 17/21

os_tick() //Do one tick, by starting a Windows one shot timer and use the nucleus callback function.

os_get_process_id() //Returns the Windows process id of the executable.

Prototypes will also be added to gpf\inc\os.h, which is included by tst_pei.c

Because of starting / stopping of Windows timers, the Windows frame library needs to be linked with the
winmm.lib (Multimedia library).

All functionality will be wrapped into a compiler flag (CTB).

5.2.2 os_stop_ticking()

This function will stop the timer (mntim_id) started by Nucleus, by calling the Windows function
timeKillEvent(mntim_id). After the stopping a Sleep will be made in order to ensure that the ticking has
been stopped.

5.2.3 os_start_ticking()

This function should restarts the Windows timer (mntim_id), by calling timeSetEvent(), with the exact same
parameters as in Nucleus. Before this a short Sleep() should be made, in order to ensure that the ticking has
been performed.

5.2.4 os_tick()

This function will perform one tick. This should be done from a Windows timer process, like in Nuclues. To
ensure the right behaviour, when calling the callback function in Nucleus, a Windows timer is started. This
timer should immediately expire (1ms), so that the callback function is called from the timer process scope.
Before continuing a sleep of 1ms, should be performed, to ensure that the tick has occurred.

5.2.5 os_get_process_id()

The process id can be fetched with a call to this function getCurrentProcessId(). The os_get_process_id
should act as a “wrapper” function.

5.3 TST (protocol stack)

There are no changes required in TST on the tool side. The definition of theses primitives including the rest
of the CTB system primitives will be added in a common header file, that will be used by IDLE and TST.
The header file will be called “tst_primitives.h”.

Following subsections will describe the behaviour of TST, when receiving the primitives.

All functionality will be implemented in tst_pei.c, wrapped in #ifndef _WIN32_ .

5.3.1 EXT_TICK_MODE_REQ

When receiving this system primitive CTB will be enabled, by calling the os_stop_ticking(). A trace will be
made, stating that CTB is being enabled. If CTB already is enabled another trace is done. In case of TAP as
sender an EXT_TICK_MODE_CNF is sent back, with the process_id fetched from os_get_process_id.

5.3.2 INT_TICK_MODE_REQ

When this system primitive is received CTB will be disabled. The function os_start_ticking() will be called.
If the sender is TAP, an INT_TICK_MODE_CNF is sent back.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 18/21

5.3.3 TIMER_TICK_REQ

When a TIMER_TICK_REQ is received, the time_stamp is read and stored as remaining ctb_time. The
sender of TIMER_TICK_REQ is stored. An IDLE_REQ is now sent to IDLE.

5.3.4 IDLE_CNF

When an IDLE cnf is received the os_tick() function is called. The remaining ctb_time is decremented with
the resolution (50ms).

If the CTB has been disabled, the remaining time is zero or if something has been sent to the TAP a
TIMER_TICK_CNF is sent back to sender of TIMER_TICK_REQ. Otherwise an IDLE_REQ is sent to
IDLE.

5.4 IDLE task

This task will have the lowest priority (except EXTR). The task should have a signalling interface through
TST. After receiving an IDLE_REQ the task should answer back to TST with IDLE_CNF. The idle entity
consists of two files, idle_pei.c and idle.h. Only basic functionality should be implemented – e.g. IDLE
should only support the IDLE_REQ signals.

5.5 TAP2

This section covers TAP2 changes for the CTB solution.

In order to support CTB in TAP2 two new files will be created for tap2_base. These files will be named
tap_ctb.h and tap_ctb.c. These files will contain all functions that are related to CTB.

CTB requires special handling of the internal TAP2 timer that can be started from the test case (probably
timers in the future). Besides this a special function should be called every time the TAP waits something
(vsi_c_await) in order to handle the reception of TIMER_TICK_CNF.

5.5.1 Enabling/disabling of CTB

In order to determine whether the TAP2 is running in CTB mode or not a “ctb” type is added to
T_TAP_OPT. Two functions will be added two support reading / setting this:

tap_get_ctb(), for returning the state (TRUE if CTB is enabled, FALSE if CTB is disabled)

tap_set_ctb(int mode), for enabling / disabling CTB.

These two functions will be added tap_opt.c.

Giving the tap an extra parameter on the command line should enable the extern timer configuration. The
command should be “-ctb”. If the TAP2 is started with –ctb, a function for enabling CTB is called. The
handling of this extra option will be placed together will all other options – e.g. tap_opt.c. In case of no
reception of an EXT_TICK_MODE_CNF the TAP2 will fail.

When CTB is enabled from a test case, which is done by sending the EXT_TICK_MODE_REQ command to
TST on the stack side, the TAP2 does not know about it. Therefore it cannot fail in case of no
EXT_TICK_MODE_CNF.

In general it should therefore always be checked if the system primitives received in the TAP is an
EXT_TICK_MODE_CNF or an INT_TICK_MODE_CNF. If so, CTB should be enabled or disabled
internally in the TAP2, by calling the corresponding functions below.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 19/21

5.5.1.1 tap_ctb_enable()

This function clears the special timer simulation parameters (ctb_timer[timer_index]) needed for simulating
the internal TAP2 timer(s) in case of running with CTB. Besides this the function should take the remaining
timer values of TAP2 timers (only if started) and store them in ctb_timer array. The started timers should
also be stopped. The function also calls tap_set_ctb(TRUE);

5.5.1.2 tap_ctb_disable ()

This function restarts the TAP2 timers if there is any values > 0 in ctb_timer[timer_index] and it calls
tap_set_ctb(FALSE).

5.5.2 Handling of “IDLE” states in tap

When the TAP2 gets into an idle state (see section 2) and CTB is enabled some special handling is required.
This functionality is covered in this section.

Common for all idle states are that the vsi_c_await is called. Instead of calling this function a special
tap_ctb_await_prim function should be called, which ensures the right behaviour in all cases. If CTB is
disabled the tap_ctb_await_prim, just acts as a wrapper function for vsi_c_await. This means that in all
TAP2 files, vsi_c_await should be replaced by tap_ctb_await_prim. The places are in tap_com.c at
tap_rcvprim() and in tap_tdl.c at tcd_wait_timeout().

Someone might say that this function belongs to the frame instead of the TAP2. This is more or less correct,
but since the only tool, where this function should be used (for now) is the TAP2, it will be placed inside the
TAP2.

In case of CTB the diagram below depicts the functionality for tap_ctb_await_prim.

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 20/21

Store received MSG

Request ticking of time in

STACK -> send

TIMER_TICK_REQ.

The requested time should be

equal to the IDLE time in

TAP2.

Is it a

TIMER_TICK_CNF?

yes

Now we have received a

TIMER_TICK_CNF. No

need to wait for this

anymore.

tap_ctb_await_prim()

no

Have we already

received a

TIMER_TICK_CNF?

yes

no

return MSG

(vsi_ok);

Are there already a

MSG in the queue?

(vsi_c_await is called)

return MSG

(VSI_OK);
yes

no

Is STACK still running?
return

VSI_TIMEOUT;

yes

no

Is the passed stack

time equal to

requested time?

return

VSI_TIMEOUT;
yes

no

Are there any stored

MSGs?

return first

stored_msg;

(VSI_OK)

yes

no

This will only occur, if

something has been

sent to the TAP2.

Let's wait a little longer.

Will this ever occur?

Are there any stored

MSGs

return first

stored_msg;

(VSI_OK)

yes

no

Check for receiving of

MSG (every 50ms -

(vsi_c_await is called):

MSG received?

no

yes

Figure 10 tap_ctb_await_prim()

Detailed Specification 8434.516.02.005
Common Timer Base Accepted

Texas Instruments Proprietary Information

Strictly Private – Do Not Copy

Page: 21/21

Upon exit the TAP2 should always reconfigure the stack to run in internal tick mode, by sending the
INT_TICK_MODE_REQ.

In order to keep track of the time passed in the stack the timestamp can be used from the primitives.

When waiting for a primitive the TAP2 should check if the stack is running, by checking if the process is still
alive. This is done trough the process id, received during initialisation of CTB. The function to be called is
GetExitCodeProcess. The exit code should be STILL_ACTIVE (0x103), else the TAP2 should exit with test
case failed.

TBD – what it’s the return code in case of debug mode of executable when calling GetExitCodeProcess?

It should be possible to store more than one message in the tap_ctb_await_prim routine. It is not possible to
know how many primitives that could be received before a TIMER_TICK_CNF. Therefore a MSG store is
needed inside the function.

Before sending a TIMER_TICK_REQ the timer values are rounded down to multiple of 50ms, since the
resolution on the stack is 50ms.

5.5.3 TAP2 timer functions

All internally timers in TAP2 has to be treated manually in case of running with CTB. This requires wrapper
functions for following timer functions. The functions are tap_timer_int(), tap_timer_start(), and
tap_timer_stop().

5.6 PAL2

No changes are necessary.

5.7 PHY

The required changes in PHY are not handled in this document (The changes are very simple and does not
take much time).

