

Automated Generation of Software
Test Cases for Mobile Business
Based on Tracing Mechanisms

Diploma Thesis by

Ronny Kießling

Author: Ronny Kießling – 129086, University of Potsdam

Responsible University Teacher: Prof. Dr. Helmut Jürgensen, University of Potsdam

Mentor: Dr. Henning Schmidt, Texas Instruments Berlin AG

Processing Period: 2003/10/23 – 2004/02/23

 I

Abstract

Topic: Automated Generation of Software Test Cases for Mobile
Business Based on Tracing Mechanisms

Author: Ronny Kießling

Course of studies: general computer science

Key words: mobile business; test case generation; tracing; C++; XML

In this document a test case generator is presented which, unlike commonly

known generator tools, does not use software specifications or implementations

as input but rather data recorded during prior test runs. At first sight, this ap-

proach may sound a bit strange but various fields of application have been iden-

tified, e.g., for reproduction of erroneous behavior occurring only in very spe-

cific environments.

The actual implementation of a first version was done during the author’s work

at the company TEXAS INSTRUMENTS BERLIN AG. The software framework used

there, as well as the logging tool (also developed by the author) is discussed in

the context of theoretical conception and practical realization of the test case

generator. Requirements concerning user interface, performance and reliability

are analyzed and problems during the implementation are listed. Furthermore,

possibilities to test the test tools themselves are examined.

Since the concrete environment of the proposed generator is the mobile busi-

ness, a general introduction to software and testing methods used for cellular

networks is given in the document, too.

Finally problems not yet solved are discussed and the planning for further de-

velopment is presented.

 II

Preface

Since the beginning of my study at the UNIVERSITY OF POTSDAM in 1995 I had in

mind to finish it some day with a work that would not end up “covered in dust”

but be of practical use in a certain field of the computer science. During almost

four years of work as a student coworker at the company TEXAS INSTRUMENTS

BERLIN AG I could experience the increasing importance of software test auto-

mation and I am full of hope that my beta-version of a test case generator will

evolve to an essential tool for assuring the quality users expect from today’s

mobile applications.

I’d like to thank Prof. Dr. H. Jürgensen and Dr. H. Schmidt for the highly skilled

support but also for the patience they offered to me; my competent team-leader

in the company, F. Reglin, for ideas which originally lead to my concept of a

generator; A. Schmalwasser, among other colleagues, for giving important feed-

back as the first beta-tester; R. Radzinski, the English teacher who had to fight

my “extravagant” grammar; the scientific worker O. Boldt, my brother André

and many others not mentioned here for inspiring discussions; my fellow student

Thomas for spending necessary relaxation breaks with me; Rene, my firefighter

comrade, for providing his color laser printer; and last but not least my girlfriend

Ina for accepting many lonely evenings and, nevertheless, advising me concern-

ing the layout.

Ronny Kießling, February 2004

 III

Table of Contents

Preface .. II

List of Figures and Tables .. V

1 Introduction .. 1

2 Software Testing – State of the Art .. 3
2.1 Software Errors .. 3
2.2 Software Testing .. 6
2.3 Testing Methods... 8
2.4 Specification and Test Script Languages ... 11
2.5 Test Automation... 13
2.6 Test Case Generators ... 16

3 Software and Testing in Cellular Networks ... 19
3.1 Overview.. 19
3.2 Error Analysis in the Mobile Sector .. 21
3.3 Importance of Automation ... 24
3.4 Specifications... 26
3.5 TDC - Test Description Code .. 27

4 The Test Case Generator – Theoretical Concepts.. 29
4.1 General Idea ... 29
4.2 The Framework.. 31
4.3 PCO – Point of Control and Observation... 35

4.3.1 The Universal Viewer Concept ... 36
4.3.2 Observation of Entities.. 37

4.4 TCGen – Test Case Generator ... 39
4.4.1 Interaction with Framework and PCO... 39
4.4.2 Generation Algorithm ... 40

4.5 TAP – Test Application Process .. 43

 IV

5 Practical Realization of the Test Case Generator... 45
5.1 Technical Preconditions... 45
5.2 Coding Rules.. 46
5.3 Frameworks and Software Layers.. 48
5.4 PCO – Point of Control and Observation... 54

5.4.1 Object-Oriented Approach .. 55
5.4.2 Components and Communication ... 56
5.4.3 The Viewer-Interface .. 61
5.4.4 Logging of Entity Communication.. 62

5.5 TCGen – Test Case Generator ... 64
5.5.1 A Special PCO-Viewer ... 64
5.5.2 TDC Generation .. 66
5.5.3 User Interface .. 71

5.6 Test Case Compilation and Execution ... 73
5.7 Comparison with Other Methods... 74
5.8 Testing the Test Tools.. 76

6 Conclusions .. 78

Appendix ... 80
A.1 Example of a Generated Test Case .. 80
A.2 Selected Parts of the Source Code ... 84

A.2.1 Frameworks... 84
A.2.2 PCO (written by the author) .. 87
A.2.3 TCGen (written by the author) .. 91

List of Terms and Abbreviations... 98

List of References.. 104

Statement ... 109

 V

List of Figures and Tables

Figure 1 – Relative Costs in Different Development Phases................................ 7

Figure 2 – Example SDL Specification and Key SDL Symbols 12

Figure 3 – Parts of a Test Case Specification ... 17

Figure 4 – ISO-OSI Reference Model Mapped to Mobile Device PS................ 20

Figure 5 – Electronic Board “D-Sample” ... 22

Figure 6 – Example Message Sequence Chart.. 27

Figure 7 – Partial BNF of the TDC Language .. 28

Figure 8 – Test Case Generation Tool Chain.. 30

Figure 9 – Test Interface Approach... 31

Figure 10 – Routing Possibilities of the FRAME ... 32

Figure 11 – Relations between Entities of a GPRS-PS....................................... 34

Figure 12 – PCO Communications ... 35

Figure 13 – PCO Components .. 36

Figure 14 – Sub-graph Creation to Observe Two Entities.................................. 38

Figure 15 – TCGen Interaction with Framework and PCO................................ 39

Figure 16 – Central Algorithm of TCGen... 40

Figure 17 – Partial BNF of TCGen Rules Descriptions...................................... 42

Figure 18 – TAP Communication with Separated EUT 43

Figure 19 – FRAME Architecture... 48

Figure 20 – FRAME Using VCMS... 50

Figure 21 – Creation of the CCD-Database .. 51

Figure 22 – Software Layers ... 53

Figure 23 – Software Layers Used by PCO.. 54

Figure 24 – PCO Class Hierarchies .. 55

Figure 25 – CMS Queues Used for Inter-PCO-Communication 56

Figure 26 – PCO-Server Appearances .. 58

Figure 27 – PCO Command Line Controller Parameters 59

Figure 28 – Test Environment Dialog of PCO-Controller.................................. 59

Figure 29 – The Standard PCO Viewer .. 60

Figure 30 – GUI of PCO-Controller with Matrix and Observe Dialog 62

Figure 31 – TCGen Class Hierarchy... 64

Figure 32 – CMS Queues Used for TCGen-PCO-Communication.................... 65

 VI

Figure 33 – TDC Files generated by TCGen .. 67

Figure 34 – Comparison of Default and Parameterized Mode 69

Figure 35 – Command Line Parameters of TCGen .. 71

Figure 36 – Output of TCGen Analyze Mode .. 71

Figure 37 – PCO Dialog to Call TCGen ... 72

Figure 38 – Creation and Execution of a Test Case DLL................................... 73

Figure 39 – TAP-Caller Interface.. 73

Figure 40 – Estimated Speed Up of Test Case Creation..................................... 74

Figure 41 – Method of Testing TCGen... 77

Table 1 – Source Code Dimensions .. 5

Table 2 – Average Error Rates.. 5

Table 3 – Structure of the Primitive GMMRR_CELL_IND 20

Table 4 – Examples of FRAME System Commands.. 50

Table 5 – Selected Control Messages of the PCO-Protocol 57

1 Introduction

 1

1 Introduction

Many books have been written about software1 testing since G. J. Meyers intro-

duced it in [MYERS], 1979, as the part of software development taking up 50%

of time and production costs but being less investigated then any other aspect.

Even now, the ultimate testing strategy has not been found and due to obvious

limitations alternatives are increasingly examined. Nevertheless test execution is

still the method mainly used to find errors and ensure product quality. Unfortu-

nately many software companies tend to release new product versions insuffi-

ciently tested, and annoyed end-users have to report the remaining errors. Such

erroneous applications can lead to great monetary losses, thinking, e.g., of the

introduction of the new tollage system on German autobahns in 2003, or even

more terrible catastrophes.

To make the testing process more efficient automation becomes more and

more important today. Although, as is stated in [POSTON], “newcomers to auto-

mated software testing often think that all the automation they need is built into a cap-

ture-replay tool that runs or executes test cases”, there are already a lot of commer-

cial tools on the market which support automating the other technical activities –

test case creation and evaluation. Generation of test cases is the topic of this pa-

per but in contrast to common methods using, e.g., specifications the input for

the proposed generator are data recorded during prior tests. This approach shall

be understood as an addition to others rather then a replacement. In fact, it offers

new possibilities which will be described later in the document.

This diploma thesis was written during my work as a software engineer at

TEXAS INSTRUMENTS BERLIN AG2 (TI, formerly CONDAT AG, see [TI] and

1 Terms and abbreviations emphasized like this at their first appearance are described at the end of the document.

2 Firm or product names capitalized like this are trademarks of the respective company.

1 Introduction

 2

[CONDAT]). As one main product, this company fabricates software for cellular

phones. In the mobile business specific problems appear, like unpredictable

network conditions, and timing takes an important role during operation. From

Chapter 3 I concentrate on the highly specialized testing procedures which have

been developed at TEXAS INSTRUMENTS.

Beside a theoretical introduction in software test automation, the main out-

come of this work is a generator which produces test cases in a format that can

directly be interpreted by existing test tools which are used regularly by devel-

opers and testers of the company. This generator examines log files created by

another application (PCO) which has been developed by the author during a

former undergraduate thesis (see [TRACING]).

Concretely the following topics will be presented:

– General overview about today’s software testing standards, methods and

automation possibilities (Chapters 2)

– Study of the specifics in the mobile sector, introducing the tracing

mechanism and the TDC language (Chapter 3)

– Explanation of the theoretical concepts underlying the test case generator

developed by the author and the framework used (Chapter 4)

– Presentation of details concerning the implementation of the generator, its

usage and comparing measurements (Chapter 5)

In Chapter 6, conclusions on the discussed topics will be drawn.

2 Software Testing – State of the Art 2.1 Software Errors

 3

2 Software Testing – State of the Art

In this chapter the terms “software error” and “software testing” will be intro-

duced. Furthermore, the various testing methods used today will be presented.

Subchapter 2.4 gives an overview of specification types and script languages

currently in use, followed by a subchapter which summarizes facts on how test

processes can be automated. In the final section it will be clarified what makes

up a “generator” and what kinds are available on the present market.

2.1 Software Errors

More and more parts of our daily life rely on computers – this means, in general,

on hardware and software. To gain all the benefits the functioning of computer

systems is expected to be error-free – which is too often not the case as anyone

ever been in contact with a personal computer (PC) will confirm.

But while a crash of an office application during the writing of, e.g., a diploma

thesis is most annoying the collapse of a space shuttle navigation system can

result in a disaster:

On June 4th, 1996 in Kourou / Fr. Guyana, the first flight of the European

space shuttle “Ariane 5” (weight: 740 t, payload: 7-18 t) was terminated 39 sec-

onds after ignition – by self-destruction. The main problem had been an unex-

pected and unhandled value overflow. The navigation computer (running an

ADA program) was considered to be reliable because it had already been used

with “Ariane 4”. Development costs of 5 900 000 000 € (in 10 years) where

“blown” into space. Fortunately the freight contained no humans – but 4 Clus-

ter-Satellites. See [ESA] and [ARIANE] for more details; and [DISASTERS],

[DISASTERS2], [DISASTERS3] for collections of other hazardous software

bugs.

2 Software Testing – State of the Art 2.1 Software Errors

 4

Why can software programs behave that erroneously? The following exam-

ple gives an impression of how a small error can cause big problems. It is writ-

ten in the widely used programming language “C”:

while (x > 0,1) { /* … */ }

This statement will lead to an endless iteration – in other words a controlled sys-

tem would, e.g., stop or rotate infinitely. Apparently the author intended to com-

pare x with the value “0.1”, but the typing mistake causes the consecutive

evaluation of “x>0” and “1” where the latter will always be “true”. No human

programmer is immune of such oversights. Of course this is only one possible

source for software errors. See Chapter 4 of [KANER] for a detailed classifica-

tion. A quite general definition for errors is the following:

”An error occurs if a system does not fulfill the requirements specified.“ (in [HORN])

Concerning software programs one basic requirement is stability, others depend

on the field of application.

How is it possible to detect mistakes before they can do serious damage? To

answer this question, software should first of all be delimited from hardware in

terms of malfunctioning. A well known but exaggerating comment states:

"Hardware may fail, software is broken from the beginning!" (source unknown)

While hardware supports essentially the same small set of basic instructions

stored permanently in each individual computer of a given type, software is not

bound to a dedicated computer. Therefore a piece of hardware once proved to

function correctly will do its job – at least for a longer time period. For software,

several advantages seem obvious: Software cannot be worn off like physical

components. This, of course, does not mean that it will function correctly after

modifications of the environment, e.g., the operating system. Since textually

2 Software Testing – State of the Art 2.1 Software Errors

 5

stored software can be easily changed or adapted to upcoming needs. For more

detailed examinations see [SOFTHARD], [SOFTWARE] and [HARDWARE].

With a continually increasing supply of instructions, libraries and components

even very complex logics can be implemented in software – but with the draw-

back of increasing source code to maintain. The following table (Table 1) gives

a general overview of the dimensions already reached (see [BALZERT]):

TeX 82 14 000 lines of code

Cellular Phone 200 000 lines of code

Hubble Ground Software 1 000 000 lines of code

Atmosphere Control 2 000 000 lines of code

Space Shuttle, IIS 3 000 000 lines of code

B-2 Stealth Bomber 4 000 000 lines of code

Windows 95 10 000 000 lines of code

Windows NT 4.0 16 000 000 lines of code

Windows 2000 27 000 000 lines of code

Table 1 – Source Code Dimensions

One problem clearly appears: The more lines of code we have the higher is the

probability that mistakes where made while writing them. This dilemma is, fur-

thermore, compounded by the time pressure weighing on the developers due to

the competition on the software market.

There exist many statistics concerning average error rates in today’s software;

see, e.g., in [NASA]. The following table (Table 2) gives some examples:

Standard Software 25 errors per 1000 lines of code

Important Software 2 - 3 errors per 1000 lines of code

Medical Software 0.2 errors per 1000 lines of code

Space Shuttle Software < 0.1 errors per 1000 lines of code

Table 2 – Average Error Rates

2 Software Testing – State of the Art 2.2 Software Testing

 6

To get a more intuitive impression [BALZERT] explains what an error rate of

only 0.1% means for the western economy: 20 000 unusable medicaments or

300 defective pacemakers per year; 500 errors during medical operations per

week; 16 000 lost pieces of mail or 18 airplane crashes per day; and 22 000

cheques booked incorrectly per hour! Apparently, life as usual would be impos-

sible and something has to be done to keep the error rate as low as possible.

2.2 Software Testing

Still 50% of failures in industrial applications are caused by software errors.

Nevertheless, the error rates have decreased significantly since the importance

of computers for serious tasks started to grow. For example in 1977, on the av-

erage, 1 000 lines of code contained 7.0–20.0 defects; in 1994 only 0.2–0.05

where erroneous (see [BALZERT]).

How could this have been achieved? First, techniques for analyzing the re-

quirements and creating the software design (e.g., prototyping) have been im-

proved and, therefore, many errors could already be avoided during this phase.

But, as a statistic in [TRAUBOTH] states, 36% of the software errors are intro-

duced during the implementation phase, so it is worth looking at methods used

in this stage as well. The concept of software testing was distinguished from

pure debugging by 1957 and in the 1970s “software engineering” as a term was

used more often (see [KIT]). In 1979 G.J. Meyers made his famous statement:

„Testing is the process of running a program with the intention to find errors.“ ([MYERS])

In other words it is not intended to prove the absence of errors which is in fact

not possible by executing tests because of the undecidability of the “halting

problem” (see [SIPSER]). G.J. Myers, furthermore, presents in [MYERS] a

simple program, containing a loop and a few “if”-statements, which has 100 tril-

2 Software Testing – State of the Art 2.2 Software Testing

lion execution paths. A fast tester could test them all in a billion years.

Currently several algorithms, like “Evolving Algebras” (see [EVALG]), exist

with which formal correctness for small software modules can be shown. See

[FORMAL] for an intuitive introduction to formal specifications. But even if all

the complex details of a piece of software could be formally specified, correct

behavior in a real environment (operating system, hardware, etc.) still cannot be

guaranteed – unless all possible environmental conditions are formalized as

well.

By software tests we try to prove that the part under test (e.g., a function or a

module) is not performing the tasks as specified. So testing, in contrast to pro-

gramming (implementing), is not a constructive activity but destructive instead –

seen short-termed. To achieve positive results in the long run the work of testers

should not be underestimated concerning time, effort and costs.

Figure 1 – Relative Costs in Different Development Phases

In general, the later a mistake is detected the higher is the expense of removing

it. Figure 1 taken from [SCHIRM], presents empirical results concerning this

problem. Avoiding mistakes while writing the source code would be best, of

course. There are several development tools supporting the developer in various

 7

2 Software Testing – State of the Art 2.3 Testing Methods

 8

ways, e.g., by automatically extending reserved words, as done, for example, in

the MICROSOFT DEVELOPER STUDIO.

Often incorrect functioning is caused by the structural characteristics of the

program source. Thus further tests applied to the running program are indispen-

sable. These should not only be performed by the developer itself to avoid bi-

ased results. At least, as is pointed out in [BEIZER], “programmers must wear two

hats: a programmer’s hat and a tester’s hat. When they are testing, they should […] think

like testers”. There are, in fact, companies offering testing to software firms.

Moreover, organizations like the INTERNATIONAL INSTITUTE FOR SOFTWARE

TESTING (see [IIST]) or the GERMAN TESTING BOARD (see [GTB]) try to “pro-

mote a disciplined approach to software testing and to caution against ad hoc testing by

non-qualified individuals and groups.”

Although software tests can never guarantee 100% error-free functioning (see,

e.g., [MYERS]) they help to approach that goal. Today’s standard methods are

described in the next subchapter.

2.3 Testing Methods

This section contains a compact overview of testing methods. See, e.g.,

[MYERS] and [KANER] for more detailed introductions. The key software test-

ing standards can be found in the appendix of [KIT].

In general manual and computer-aided as well as static and dynamic methods

are distinguished. To determine whether a system has behaved correctly on test

execution the outcome of a test is usually predicted by a so-called oracle (see

[HOWDEN]). Finding suitable oracles is a critical part of software testing.

Manual Tests: Manually the developer or a dedicated tester could check the

source code for, e.g., unintended statements, like assignments where actually a

comparison was meant. This static procedure is strongly supported by today’s

2 Software Testing – State of the Art 2.3 Testing Methods

 9

compilers which can detect many mistakes of that kind and will generate warn-

ings and errors – depending on the specified error level.

The Code Walkthrough is an example for a dynamic, but manual method. Here

the tester tries to imagine the paths the processor could take through the source

code, seeking for problematic or erroneous situations. This can be combined

with the developer explaining his3 sources to other experts.

Many bugs (like missing or wrong variable declarations) can already be found

using these techniques. But in most cases they will not substitute dynamic com-

puter-aided methods applied to the actually running program or parts of it. For

one thing with complex source code it is hard to find all possible program states

beforehand. Timing conditions are another problem upcoming only while truly

running the code. On the other hand, examples like the one described in

[THERAC] demonstrate that exclusive usage of computer-aided tests is also not

sufficient.

Computer-Aided Tests: Before performing such tests two main decisions have

to be made: What shall be tested and how should it be done. Before the delivery

of a product an acceptance test has to be performed, most likely in cooperation

with the customer to demonstrate the principal functionality is as expected. This

cannot cover all critical situations and has to be preceded by various independ-

ent tests of the individual components (modules and functions) but also by so-

called integration tests where the cooperation of the components is checked. If

all available components are involved we speak of system tests.

When testing the interoperability of several components, especially in the de-

velopment phase but also to avoid too many possible error sources, pseudo

modules can be used to emulate the environment.

3 The masculine form will be used for both genders in this document without discriminating intensions.

2 Software Testing – State of the Art 2.3 Testing Methods

 10

Depending on whether we start testing small components or complete systems,

either a bottom-up or a top-down strategy is used. It furthermore makes sense to

rerun a dedicated test on the same software part after each modification of the

program to ensure that behavior has not changed. Such techniques are called re-

gression tests and should be automated as much as possible.

With all these tests, finally the proposed quality concerning performance, secu-

rity and usability shall be ensured. Especially for end user applications, like of-

fice software, alpha- and beta-test phases (see [BETA]) are defined where, dur-

ing the first one, the developer installs the application and tries to use it. The

beta-test is performed by selected persons who should not have been involved in

the development.

After having now clarified “what” has to be tested the possibilities of “how” a

(part of a) running application can be tested will now be examined.

We differentiate between black-box and white-box test conditions. A mixture of

them called gray-box tests can also be found. In the first case the module or sys-

tem under test is considered to be a sealed box with a clearly defined interface

for accessing its functionality. The test consists of passing carefully chosen val-

ues as parameters to that box and comparing the returned values or triggered be-

havior with the specification. Such parameters can be found, e.g., by defining

equivalence classes concerning valid and invalid values. Checking only one

member of each class and combinations of them minimizes the number of tests

but might leave some special problems, e.g., appearing only with a particular

number which induces a division by zero, undiscovered. Another approach is to

check extreme values regarding the domain limits. If, for example, the number

of a month is expected, 0, 1, 12 and 13 are tried representing values just

valid/invalid (see [HORN]). This method is also known as data-driven testing.

See [BEIZER] for a comprehensive analysis of the black-box approach.

In contrast to the method described before during white-box testing the inter-

2 Software Testing – State of the Art 2.4 Specification and Test Script Languages

 11

nals of the component under test are known to the tester. By taking the compo-

nent’s control flow graph as a base, tests can be arranged to check the statement,

branch, condition and path coverage. Function-driven testing is another term

describing this method. The debugging process, where the program is executed

step by step to find errors, could also be assigned to the white-box rubric, but

most scientist do not accept it as a testing technique.

To support the testing process program instrumentation can be used, e.g., gen-

eration of extra output. This often speeds up finding bugs but also influences the

timing conditions. It is, therefore, quite common to keep instrumentations in the

release to avoid retesting all components without them.

2.4 Specification and Test Script Languages

Software specifications state or picture how software is expected to behave. Ad-

ditionally, operational characteristics like performance can be described (see

[POSTON]). Not long ago a common opinion among software engineers was

that it would be wasting time to record a description of how software was sup-

posed to behave instead of directly coding it, as analyzed in [JONES], 1991. In

the meantime software design became an increasingly important part of the de-

velopment process and, therefore, it was necessary to record information con-

cerning requirements systematically. Such specifications not only enable

changes, e.g., because of new requests from customers, on a higher level; they

also give testers a suitable reference to detect deviations from expectations. The

so-called One-Source-Concept is a base strategy supported by many companies

in these days – one source, the specification, for designers, programmers and

testers. Unfortunately, this concept is often not rigorously applied.

One of the main reasons is that the specification is not complete or ambiguous.

Various attempts were made to define standardized languages with which also

semantic rules could be expressed. Such formal specifications are, moreover,

2 Software Testing – State of the Art 2.4 Specification and Test Script Languages

much easier to handle by automation tools. Textual notations are usually de-

signed in a way which makes them familiar to anyone who reads English. The

Semantic Transfer Language (STL, in IEEE Standard 1175-1994, see [IEEE]) is

one example. However, graphical specifications became increasingly popular.

They are easier to understand by most people and software tools exist, able to

directly take them as input.

Figure 2 – Example SDL Specification and Key SDL Symbols

Figure 2 taken from [FRAPPIER] gives an impression of the widely used Speci-

fication and Description Language (SDL, see [SDL]), standardized by the

INTERNATIONAL TELECOMMUNICATIONS UNION (ITU, see [ITU]). It is based on

finite state machines running in parallel and communicating via “signals”.

ASN.1 (see [ASN1] and [ASN1BOOK]) is a present example for a notation used

to describe data transmitted by dedicated protocols.

Although, unlike, e.g., STL or SDL the Unified Modeling Language (UML, see

 12

2 Software Testing – State of the Art 2.5 Test Automation

 13

[UML]) does not comprise formal semantic rules, various companies and or-

ganizations have been promoting it for many years as the industry-standard lan-

guage for specifying, visualizing, constructing and documenting the artifacts of

software systems. Currently attempts are made to unite the main concepts of

SDL and UML (see, e.g., [REED]). Chapter 1 of [POSTON] contains more ex-

amples of specification languages.

Beside specifications of software requirements, also standardized methods to

notate test cases have been evolved. A test case includes an unambiguous de-

scription, preferable in a format readably by software tools, of how an actual test

shall be executed. We also speak of test scripts. Version three of the Testing and

Test Control Notation (TTCN-3, see [TTCN3]) is currently one of the most

popular test scripts languages. The significantly increased flexibility in its new-

est version allows the usage in many other sectors than the original one, the tele-

communication. The most important language constructs are so-called compo-

nents which communicate with each other via so-called ports. See [BAUMG]

for a comprehensive introduction. Software companies like TELELOGIC (see

[TELELOGIC]) offer editor applications for TTCN.

2.5 Test Automation

The main reason for automating the test process is to reduce testing errors, as

well as, testing costs. Also, as stated in [GRAHAM2], leading companies have

already achieved reductions in testing time of up to 70%, and 30% improve-

ments in software development productivity by using automation tools.

Human beings are error prone in the things they do, which is just a conse-

quence of being human, and so software testing done by humans is in principle

error prone, too. Automating testing not only reduces the number of errors be-

cause it (partly) removes the human “component” with its individual differences

2 Software Testing – State of the Art 2.5 Test Automation

 14

concerning the tester’s education, training and experience as well as his work

habits. It allows testing to occur as the code is written, which reduces the devel-

opers' tendency to sacrifice quality for productivity. And, moreover, the testing

process can be consecutively improved over multiple uses.

Another advantage is the fact that automating testing captures knowledge that

is ordinarily kept in the tester's brain and which would go to depart with him as

soon as he starts working for a different company, as happens quite often during

a tester’s career. If the testing process is documented and implemented via a

testing tool, the knowledge stays in the test repository, and even a new tester can

come up to speed with a bit of training on the tool and can understand how the

software was tested in the past.

As is the case with software development, the most intense costs associated

with software testing are costs of the humans who do the testing. Although de-

signing and constructing test cases with an automated testing tool does require

an initial investment of person hours up front, the overall human effort has been

shown to be reduced by 50% (see [VTEST]).

Despite all expectable advantages of test automation which have been discussed

and researched since the early 1980’s, in many software companies it is still not

a mature process. And D.R. Graham’s statement, made in 1990, still applies:

“Testing has often been perceived as a tedious activity, yet it is seldom adequately tool-

supported.” (in [GRAHAM]).

This is not a problem of unavailability of testing tools. See, e.g., the appendix of

[KIT] and Chapter 18 in [PERRY] for extensive tool lists. The fact that compa-

nies usually have very specific test strategies makes the use of such, mostly

quite universal, applications difficult, and often proprietary tools are developed

instead. To meet the individual requirements suppliers of automation tools in-

creasingly offer dedicated adaptations.

2 Software Testing – State of the Art 2.5 Test Automation

 15

What can be automated during the test process? R.M. Poston distinguishes in

[POSTON] between three phases: test case generation, execution and evalua-

tion. Generation is the phase supported by the fewest number of today’s tools,

probably because it is the most complex. Test cases that have been created ac-

cording to intelligent guidelines enforced by a tool and stored in the tool's test

repository are expected to be not random in nature as most manually constructed

test cases tend to be. They should not leave testing gaps or redundantly test the

same sections of the code. Subchapter 2.6 deals more intensively with this topic

and in Chapters 4 and 5 the author’s approach is described in detail.

Concerning the second phase, also called the test run, many applications are

available executing predefined test cases. In this way also the simulation of

stress situations, e.g., by providing user input in a speed which could not be

reached manually, is possible. But especially for testing GUI-interfaces there is

still a lack of suitable tools, although some promising attempts exist (see, e.g.,

[APTEST])

In the final phase, the test case evaluation, the actual test results are compared

with the expected ones to discover if software passed or failed a specific case.

This can be supported by tools generating test oracles or taking the initial data

states into account. Chapter 4 in [POSTON] intensively examines this topic. Af-

ter all, the creation of detailed statistics about the test results is a very important

functionality expected from good evaluation software. Furthermore, various

coverage tools exist which can be used to receive particular information about,

for example, memory consumption, function call coverage or CPU load during

the test session.

Is test automation the ultimate solution? This question is discussed very con-

troversially and, e.g., the authors of [STOCKS] believe that totally automating

the testing process may be impossible. It is also not desirable, since a human

tester can bring much insight to testing, as well as a degree of experience and

2 Software Testing – State of the Art 2.6 Test Case Generators

 16

wisdom in test case selection. Graham, moreover, states in [GRAHAM] that

manual testing can find more errors than current software tools. A software tool

can find all occurrences of some types of error, but cannot find all types of error,

only the types which it is capable of looking for. Most tools currently available

offer assistance in detecting only syntactic errors, not semantic errors.

See [AUTOMATION] for detailed disquisitions about test automation.

2.6 Test Case Generators

The advantages expected from automated test case generation are increased

speed during creation of new cases, but also more specialized and less redundant

scenarios which should, nevertheless, cover all parts of code. While the first

point seems quite obvious the second is the actual challenge.

J.B. Goodenough and S.L. Gerhart proposed in [GOODEN] a theory of test

data selection which provides a basis for constructing program tests. This theory

defines test data selection criteria in terms of properties called validity and reli-

ability. They try to prove a fundamental theorem stating that successful execu-

tion of test data satisfying a valid and reliable selection criterion guarantees ab-

sence of errors in a program. Concerning this theorem testing can show the ab-

sence of errors, but only when the tests are properly selected. The author is not

aware of generator software achieving that goal.

As basic precondition an automated generator tool needs a precise definition of

what a test case means in a given context. ANSI/IEEE Standard 829 (see

[IEEE91]) defines a test case specification as a document consisting of seven

parts, as shown in Figure 3.

2 Software Testing – State of the Art 2.6 Test Case Generators

 Figure 3 – Parts of a Test Case Specification

While Parts 5-7 usually have to be created only once for many cases and Part 1

and 2 can be generated quite easily, the most problematic work has to be done

for Parts 3 and 4.

Where from can a generator tool know about input data and expected output?

R.M. Poston differentiates in [POSTON] between three types of sources: speci-

fications, program source code and test design languages. A.A. Omar and F.A.

Mohammad distinguish concerning functional and structural testing

([OMAR89]). Functional testing involves the generation of test cases that are

based on the requirements, specifications, and design functions of a program;

structural testing makes use of the program structure in designing an adequate

test case ([OMAR91]). With reference to [MYERS] the recommended proce-

dure is to develop test cases using the functional method and then develop sup-

plementary test cases as necessary by using the structural method.

G.J. Meyers, furthermore, states that the key issue in designing effective test

cases is to yield the best subset of all the possible test cases, taking into consid-

eration economic constraints, such as time and cost, which has the highest prob-

ability of detecting the most errors.

 17

2 Software Testing – State of the Art 2.6 Test Case Generators

 18

[POSTON] contains a detailed examination of how test case generation can be

done based on specifications. Commercial tools exist for this method; see, for

example, [TELELOGIC].

Torx, Autolink, TGV and UIO are examples for test derivation algorithms cur-

rently favored. A comparison between them regarding their possibilities and

limits can be found in [REED].

3 Software and Testing in Cellular Networks 3.1 Overview

 19

3 Software and Testing in Cellular Networks

After the explanation of universal software testing procedures and automation

methods in the previous subchapters the particular subject of this paper – soft-

ware in the mobile sector – will now be examined.

Preceded by a general overview, the possibilities of error analysis together

with tracing are described in detail, importance and status quo of automation are

examined and finally a specific test script language will be introduced.

3.1 Overview

Concerning software for the mobile business, a large spectrum of issues has to

be mentioned: server software at the base stations; software running on routers;

several protocol layers inside, e.g., a cellular phone implementing the communi-

cation; and finally the end user applications, the so-called Man Machine Inter-

face (MMI). The latter are of particular importance as already 75% of the inhabi-

tants of Germany are confronted with them day by day – while searching the

address book, writing a SMS, playing a game, etc.

This analysis will focus on the implementation of the communication part in

mobile devices. In Europe the ETSI organization (see [ETSI]) provides official

specifications of so-called entities and the control flow requested between them

(via so-called SAPs) relative to the technique used, e.g., GSM, GPRS or UMTS

(see [GSM], [GPRS] and [UMTS]). With respect to the OSI reference model of

the ISO (see [ISOOSI]), these entities provide functionality for the network and

the link layer. Together with lower hardware drivers and higher protocols, they

make up the so-called protocol stack (PS, see Figure 4).

3 Software and Testing in Cellular Networks 3.1 Overview

 20

Figure 4 – ISO-OSI Reference Model Mapped to Mobile Device PS

Since no actual implementational details are specified by the ETSI, companies

use various approaches. One of them is to realize the entities as separated tasks

and build a framework which allows, e.g., the exchange of data packages (primi-

tives) between them. Primitives are hierarchical structured as Table 3 shows ex-

emplarily:

Element Type
cell_info struct

cell_env struct

Rai struct

plmn struct

v_plmn ubyte

mcc ubyte

mnc ubyte

lac ushort

rac ubyte

cid ushort

service_state ubyte

net_mode ubyte

Table 3 – Structure of the Primitive GMMRR_CELL_IND

1

2

3

4

5

Physical Layer

Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

6

7

Hardware driver

G S M

MMI

G P R S

TCP

U M T S

Mobile
part

3 Software and Testing in Cellular Networks 3.2 Error Analysis in the Mobile Sector

 21

3.2 Error Analysis in the Mobile Sector

At Texas Instruments analyzing software designed to run in a mobile device is

done in three states: Simulation-Test, Target-Test and Official Approval.

Simulation-Test: As with “common” software, also in the mobile sector a first

attempt to eliminate programming errors is done by running many function and

module tests (see Subchapter 2.3). Typically this means that developers are

checking and debugging the functionalities of their entities independently of ex-

traneous influences – by, e.g., writing special test programs which call the new

functions with varying parameters.

Even integration tests are possible without real mobile hardware or a network.

To achieve that the protocol stack (containing the entities under test) will be

compiled for the operating system running on the test PC (e.g., MS-WINDOWS)

and linked to an emulation of the operating system which will be used on the

hardware (e.g., NUCLEUS) later. Afterwards special software called the TAP

(Test Application Process) is used to execute precompiled test cases in a defined

order. In brief, data packages will be sent to selected entities and the resulting

data are received and evaluated (see also Subchapter 4.5). This technique is a

mixture of black- and white-box testing since it is possible to follow the control

flow in a debugger; but mostly only the data sent out of the protocol stack simu-

lation are visible. At this point traces are used for the first time. These are spe-

cial data packages containing different information about the current state of the

entities running inside the PS.

Target-Test: During the next test phase the protocol stack is actually loaded

into an electronic board containing the same hardware as will the final product.

Figure 5 gives an impression of a test board typically used in 2003. At this state

it is possible to detect software failures not occurring in the PC emulation.

3 Software and Testing in Cellular Networks 3.2 Error Analysis in the Mobile Sector

Figure 5 – Electronic Board “D-Sample”

The board usually provides an interface (e.g., serial or USB ports) over which

data may be exchanged. That can be AT commands (international standardized

strings in ASCII format) or proprietary messages like the mentioned traces (see

Subchapter 4.1 for more details). During so-called field tests testers drive with

such a test board across the country and run several experiments, in fact try to

check out all the capabilities of the product. But also inside the labs test boards

are used for several purposes like

– Quick Tests, typically run to check the major functions (e.g., setting up

calls, SMS sending or data transmission) after small software changes

– or Robustness Tests where, e.g., the board is just switched on and after a

week is checked whether it is still functioning.

During all these tests the produced traces provide information about progress

and success. In addition they are recorded for further analysis and error repro-

duction in the PC emulation. Although in connection with special hardware tools

it is also possible to directly debug the software image-file on board, this possi-

bility is currently seldom used due to its intricateness. In fact traces are mostly

the only way for developers to understand an error prone behavior.

 22

3 Software and Testing in Cellular Networks 3.2 Error Analysis in the Mobile Sector

 23

Official Approval: This last category is very important concerning the accep-

tance by the fabricators of mobile devices. The ETSI as well as the different

network operators (e.g., E-PLUS) specify sets of test cases and the runtime con-

ditions. Protocol stack software not passing these tests will be considered to be

not ETSI-conform, which discourages potential costumers, and furthermore it

will most likely not function under realistic conditions. Officially the tests are

referred to as FTAs and IOTs as described below:

- FTA – Final Test Approval: FTA specifications are formulated by the

ETSI and quite many companies offering testing capabilities (like ANITE

([ANITE]), AGILENT ([AGILENT]) or RHODE&SCHWARZ ([RSD])), pro-

vide advanced test systems (e.g., SAT – Stand Alone Tester from ANITE)

together with dedicated software which can be used to run the test cases

under basically simulated air network conditions. The term “basically

simulated” is important since, for example, unlike in real networks a data

package not processed at the first attempt won’t be retransmitted.

So-called test houses (laboratories maintained by such companies) may be

used instead of installing all the hard- and software in a private test lab.

TEXAS INSTRUMENTS uses both possibilities.

- IOT – In-Orbit Test: As the name implies these tests are mostly run within

a real network using special base stations provided by the network opera-

tors, although the latter sometimes also use simulators (e.g., SAS – Stand

Alone Simulator). But these are actually emulating a network – with, e.g.,

all kinds of transmission problems. Each network operator has its own set

of test specifications.

All in all, the Official Approval consists of extensive integration tests under al-

most realistic conditions. Traces are very important in this context since mostly

no hardware debugging facilities exist in test houses or at sites of network op-

erators, and every problem has to be reproduced later.

3 Software and Testing in Cellular Networks 3.3 Importance of Automation

 24

As a conclusion, it can be stated that testing in the mobile sector mainly consists

of black-box procedures executed by independent testers where the results will

be used by the actual developers to fix bugs and solve problems. Obviously

these results have to be actually meaningful and so we come to the requirements

demanded by developers and testers.

3.3 Importance of Automation

As described in 2.5 automation of the test processes helps reducing testing er-

rors, as well as, testing costs. Especially in the mobile sector, where new re-

quirements are upcoming every month and therefore new features and function-

alities are permanently introduced in the software, testing needs to be very fast

but still efficient.

Particularly regression testing is done daily and, if done manually, would re-

quire very patient testers executing almost the same procedure day after day –

with increasing tendency to make mistakes. Long-term tests including waiting

phases of many ours are another example of typical analyses in the mobile busi-

ness which no human could endure for long. An alternative would be to mag-

nificently increase the count of testers, leading of course to unnecessarily high

payroll costs.

Since most of today’s tests of mobile software are so complex that tools are

needed for their execution anyway, the automated run of such tools is the main

goal pursued in these days. And already a lot of commercial applications exist

for this purpose, like the Stand Alone Tester mentioned above. The SAT con-

sists of a hard-/software combination which is, e.g., able to simulate air-network

conditions according to test cases written in a proprietary script language.

At TEXAS INSTRUMENTS moreover many internally developed tools exist,

which are widely used during the various test scenarios. As pointed out, tracing

3 Software and Testing in Cellular Networks 3.3 Importance of Automation

 25

mechanisms play a central roll – and so the PCO tool (see Subchapter 4.3 for

more details and [TRACING] for a complete disquisition). It most of all sup-

ports visualization of status information about the active entities. Such is pro-

vided via traces – special data packages sent out of the protocol stack. As men-

tioned before, this can be done via a serial cable. If the protocol stack is running

on the same computer shared memory is another option (further possibilities like

network communication are not considered in this paper). Precondition is an in-

strumentation of the entity source code, e.g., at the entry points of functions or

after significant changes of the internal state. Beside such status messages moni-

toring the content of the actual primitives exchanged between the protocol stack

entities is supported. To make this possible complete information about the used

primitives and their structures is needed. A possibility to manage data like that is

explained in Subchapter 4.2.

To stimulate a protocol stack tools like xPanel (also described in [TRACING])

and TAP (see Subchapter 4.5) are used. The first is able to send key presses –

via a GUI-interface as well as from the command line, which is useful to auto-

mate MMI tests where otherwise a tester would have to manually input key se-

quences.

The TAP is able to send (and receive) any kind of primitives to (and from) the

protocol stack under test. In fact by executing test cases written in the proprie-

tary script language TDC (see Subchapter 3.4) it simulates all entities communi-

cating with the entities under test (EUT) and verifies the correct behavior of the

latter. Such tests typically run automatically, even at night time. But together

with a software/hardware debugger the developers can also use them to repro-

duce and directly analyze errors.

While the execution of test cases is highly automated, computerized generation

of new ones is still not very common. In fact, at TI-Berlin all test cases have

been written manually till now. That involves a costly and time consuming

3 Software and Testing in Cellular Networks 3.4 Specifications

 26

process where developers, familiar with the specific protocol stack internals,

have to think about possible situations and sequences which should be tested.

Moreover, already existing test cases have to be regularly updated – a big prob-

lem if done completely manually. Of course, several attempts where made to

introduce more automatisms, but the examined commercial tools (like CMICRO

from [TELELOGIC]) mostly expected a whole proprietary framework and the

effort to combine this with the existing was always judged to be unacceptable.

The fact that together with the mentioned tracing a logging mechanism exists,

which stores all received information as needed, lead to considerations on how

to use this data for the test case creation. The topicality of the recorded informa-

tion would be one obvious advance. Chapter 4 contains the theory of how test

case generation using traced data can be performed. In chapter 5 an actual im-

plementation is described.

3.4 Specifications

In the telecommunication sector the necessity to have manufacturer-independent

and precise standards for communication protocols and services was realized

quite from the beginning, unlike in many other segments of computer science.

The ITU standardized SDL and Message Sequence Charts (MSC, see [MSC]),

and recommendations by the ETSI are available in this formats.

MSC is a graphical specification language by which the communication be-

havior, e.g., between entities inside a protocol stack can be described. Figure 6

contains an example chart for the SAPs between entities MMI, MM, GMM and

GRR; it represents the process of enabling the GPRS capability of a mobile. At

TEXAS INSTRUMENTS in Berlin such specifications are used by developers as a

reference during the implementation process. They work with a visualization

tool from CINDERELLA (see [CINDERELLA]).

3 Software and Testing in Cellular Networks 3.5 TDC - Test Description Code

Figure 6 – Example Message Sequence Chart

But usually not the original ETSI specs are used. According to them definitions

of SAPs and air message interfaces are maintained in an internal format, which

can also be understood by dedicated tools developed in Berlin for generation of,

e.g., header files and information databases accessible by the protocol stack

software. See Subchapter 5.3, section CCD-Database, for further details.

Regarding the testing process MSCs are used again as reference during writing

of test cases. Furthermore, tools exist to reconstruct sequence charts of the actual

message flow as it occurred during a test. The mentioned information databases

also take an important role for testing.

3.5 TDC - Test Description Code

The Test Description Code (TDC, see also [TDC]) is the proprietary language

currently used at TEXAS INSTRUMENTS to describe test cases. It provides a subset

of TTCN-3 features and has been introduced as an intermediate solution on the

way to the latter standardized language. Basically, primitives with certain con-

tent are defined and, via SEND/AWAIT commands, transmitted.

The TDC syntax consists of a mixture of pure C++ (see [CPP]) statements and

predefined C++ templates. Therefore, a TDC test case is directly compilable by

a standard C++ compiler. Beside the fact that C++ is a well known language by

 27

3 Software and Testing in Cellular Networks 3.5 TDC - Test Description Code

most developers/testers, furthermore, the modularization capabilities of the lan-

guage can be used and the code completion features in up-to-date development

environments help to speed up test case editing.

Together with the TAP (see Subchapter 4.5), which executes TDC cases, ex-

ception handling via TRAP and ONFAIL statements and so-called “parking” of

primitives are provided. The latter comes in useful if the chronological order of

data transmitted is allowed to vary to a certain degree.

Figure 7 contains the partial BNF for the TDC syntax. Italic key words are de-

fined either in the BNF for C or in further TDC specs (see also Subchapter

5.5.2). The distribution into multiple header/source files is not considered here.

An example of an actual TDC test case can be found in Appendix A.1.

 28

<Testcase> ::= ‘T_CASE’ <Name> ‘() { BEGIN_CASE (‘ <Comment> ‘) {‘
<TestcaseBody> ‘} }’

<TestcaseBody> ::= [<TeststepList>]
<TeststepList> ::= <Teststep> [<TeststepList>]
<Teststep> ::= ‘T_STEP’ <Name> ‘() { BEGIN_STEP (‘ <Comment> ‘) {‘

<TeststepBody> ‘} }’
<TeststepBody> ::= [<StatementList>]
<StatementList> ::= <Statement> [<StatementList>]
<Statement> ::= <SendStatement> | <AwaitStatement> | <CommandStatement> |

<TimeoutStatement> | <FailStatement> | <PassStatement> |
<AlternativeStatement> | <TrapStatement> |
<CcodeStatement> |‘{‘ [<StatementList>] ‘}’

<SendStatement> ::= ‘SEND’ ‘(‘ <Primitive> ‘)’ ‘;’
<AwaitStatement> ::= ‘AWAIT’ ‘(‘ <Primitive> ‘)’ ‘;’
<Primitive> ::= ‘T_PRIMITIVE_UNION’ <Name> ‘(‘ [<Arguments>] ‘) {’

<C struct assignment> ‘}’
<CommandStatement> ::= ‘COMMAND’ ‘(‘ <CommandString> ‘)’ ‘;’
<TimeoutStatement> ::= ‘TIMEOUT’ ‘(‘ <Milliseconds> ‘)’ ‘;’ |

‘TIMEOUT_WAIT’ ‘(‘ <Milliseconds> ‘)’ ‘;’ |
‘MUTE’ ‘(‘ <Milliseconds> ‘)’ ‘;’ |

<FailStatement> ::= ‘FAIL’ ‘(‘ ‘)’ ‘;’
<PassStatement> ::= ‘PASS’ ‘(‘ ‘)’ ‘;’
<AlternativeStatement> ::= ‘ALT’ ‘{‘ <OnStatementList> <OtherwiseStatement> ‘}’
<OnStatementList> ::= ent> [<OnStatemen st>] <OnStatem tLi
<OnStatement> ::= ‘ON’ ‘(‘ <AwaitStatement> ‘)’ <Statement>
<OtherwiseStatement> ::= ‘OTHERWISE’ ‘(‘ ‘)’ <Statement>
<TrapStatement> ::= ‘TRAP’ <Statement> ‘ONFAIL’ <Statement>
<CcodeStatement> ::= ‘if’ ‘(‘ ‘)’ ‘{‘ ‘}’ ‘else’ ‘{‘ ‘}’ |

‘for’ ‘(‘ ‘)’ ‘{‘ ‘}’ | ‘while’ ‘(‘ ‘)’ ‘{‘ ‘}’ ‘;’ |
‘do’ ‘{‘ ‘}’ ‘while’ ‘(‘ ‘)’ ‘;’ |
‘switch’ ‘(‘ ‘)’ ‘{ ‘ ‘case’ ‘:’ ‘}’ ‘;’ |
<C variable declaration>

<CommandString> ::= <FromEntity> ‘REDIRECT’ <Orig_Dest_Entity> <New_Dest_Entity> |
‘RESET’ <Entity> |
<FromEntity> ‘DUPLICATE’ <Orig_Dest_Entity> <New_Dest_Entity> |
<Entity> ‘CONFIG’ <ConfigString>

<Milliseconds> ::= <C integer>
<FromEntity> ::= <C string>
<Orig_Dest_Entity> ::= <C string>
<New_Dest_Entity> ::= <C string>
<Name> ::= <C string>
<ConfigString> ::= <C string>
<Comment> ::= <C string>

Figure 7 – Partial BNF of the TDC Language

4 The Test Case Generator – Theoretical Concepts 4.1 General Idea

 29

4 The Test Case Generator – Theoretical Concepts

In addition to the concepts of the test case generator (TCGen) implemented to-

gether with this thesis, this chapter contains theoretical basics concerning the

testing environment as used in the TI laboratories in Berlin – with the main fo-

cus on the previously mentioned tracing and its usage for test case generation.

After an introduction in the general idea for the generator, the framework con-

ditions will be described in Subchapter 4.2. The subsequent sections contain ex-

planations of the generation process and other test applications involved.

4.1 General Idea

As described in Subchapters 3.2 and 3.3, simulation tests take an important role

during the development process of mobile software; writing new or updating

existing test cases is a critical procedure often neglected due to a lack of automa-

tion. On the other hand, large amounts of logged data are created during field

tests. This data is mainly used to review erroneous behavior by replaying them

offline. But in the case of succeeded tests the logfiles contain primitive/message

flows as requested by the specification. A generator accepting them as input

could produce up-to-date test cases.

Of course, such generated tests would only examine already tested functional-

ities, but regression tests are the type of software checks applied most often and

which run, typically, highly automated. Moreover, as explained at greater detail

in Section 4.4.2, various rules have to be applied during generation to produce

correct cases. The rule processing could also be used to vary the behavior and by

doing this create test routines for new functionality, as well. Later on, the gen-

erator might also be enhanced to accept, e.g., MSC specifications (see Subchap-

ter 3.4) as further input. But even if test cases for new behaviors still have to be

4 The Test Case Generator – Theoretical Concepts 4.1 General Idea

written manually, the generated cases would be a good basis for developers.

Another usage option for a test case generator as proposed is the possibility to

exactly reproduce field test situations at a PC-simulation. This way no actual air

network would be necessary to, e.g., analyze an error which appeared while

sending an SMS. To do this the entities in which a bug is expected have to be

separated from the rest of the protocol stack. Section 4.5 introduces techniques

to achieve this.

A prerequisite for a meaningful generation process is the logging of all data

necessary. See Subchapters 4.2 (Section Entity Graph) and 4.3.2 for suitable

methods.

 30

Figure 8 – Test Case Generation Tool Chain

In Figure 8 the existing test applications and the test case generator with their

dependencies regarding the author’s approach are displayed. In brief, the tool

PCO (see Subchapter 4.3) is responsible for the logging of communication data,

the latter is sourced by the generator TCGen (see Subchapter 4.4) to create new

test cases which then will be executed and evaluated by the tool TAP (see Sub-

chapter 4.5). All the applications in this chain use functionality of the framework

described in the next subchapter.

Framework
FrameworkFramework

Mobile
Device

Communication
Data

PCO
Logging

PC-
Simulation

TAP
Test Execution
and Evaluation

TCGen
Test Case

Generation
Test Cases

4 The Test Case Generator – Theoretical Concepts 4.2 The Framework

4.2 The Framework

Frameworks for software testing are primarily proprietary inventions of the in-

dividual company. At TEXAS INSTRUMENTS the FRAME (including a so-called

Test Interface) is the basis for the whole protocol stack – but also for testing as

described below.

Test Interface Approach: To test the behavior of a protocol stack it is neces-

sary to watch the communication flow and state changes inside the running sys-

tem. Using a debugger tool allows direct access to, e.g., content of variables or

the call stack but this has destructive influence on time critical operations. And

debugging actual mobile hardware requires expensive test hardware.

The Test Interface provides the possibility to route internal information out of

the protocol stack. It consists of dedicated software pieces on both ends – proto-

col stack and test PC – which communicate via, e.g., a serial cable or shared

memory. Communication in this context means stimulation of the protocol stack

by sending primitives containing system commands to it and vice versa receiv-

ing traces and duplicated primitives. In this way, the PS can be observed without

interrupting its interactivity with the radio network. Of course, only selected in-

formation should be routed out at a time to keep the Test Interface traffic as low

as possible. Figure 9 gives an overview of this approach:

Figure 9 – Test Interface Appro

Net-
work

actual radio

network,
network

simulation

air,
antenna
cable Test Interface

Protocol
Stack

executable

on test com-
puter

 or actual
hardware

primitives,
system commands

Test
PC

with test
applica-

tions

duplic
p

traces,
ated/redirected
rimitives
31

ach

4 The Test Case Generator – Theoretical Concepts 4.2 The Framework

The FRAME: The term FRAME stands for the whole runtime environment un-

der which all entities are running. More precisely it provides a life cycle man-

agement for tasks running in parallel, and, in the context of a protocol stack, an

entity is implemented by one or more tasks. Furthermore the FRAME contains

functionality for synchronization, timer handling and memory management. A

queuing mechanism also allows inter-task communication. This enables passing

of primitives and, therefore, any kind of data between entities. It is, in fact, an

abstraction from the operating system actually used.

The communication techniques of FRAME (see Figure 10) are of great impor-

tance for software testing. They make it possible to route primitives into and out

of the protocol stack. While requesting the latter it can be decided whether the

primitives should just be duplicated (without changing the communication flow)

or actually redirected. Another possibility is to completely disable communica-

tion queues.

 32

Figure 10 – Routing Possibilities of the FRAME

Traces and system commands are also just special primitives (or better packed

inside them) and, therefore, are transported in the same way. In fact, they are

ASCII-strings as described in more detail in Subchapter 5.3. Each trace is as-

signed to a trace-class, e.g., all error traces to class “error”. Commands exist to

enable/disable the production of traces belonging to a specific class per entity.

The actual routing settings can also be selected by sending a dedicated system

Protocol Stack

redirected primitives

Test PC
with test ap-

plications

traces

duplicated primitives
Entity 1

primitives

Entity 2 system commands

4 The Test Case Generator – Theoretical Concepts 4.2 The Framework

 33

command to the protocol stack. The FRAME running there will acknowledge by

returning one or more traces (e.g., “OK”). This is surely not the best solution. If,

for example, automatic handling of such communication is needed every trace

has to be parsed. Special response commands would be a good alternative.

CCD-Database: CCD is the abbreviation for the Condat-Coder/Decoder which

was originally developed by the company CONDAT AG. It is a software library

mainly used to code and decode air messages, according to various official

communication standards like ASN.1 ([ASN1]). Air messages are the data

blocks finally sent via the cellular network. Inside a mobile device they are car-

ried within primitives.

The so-called CCD-Database contains information about the structure of all air

message types used and also about the primitives. Due to the fact that this data-

base is also available to test applications, e.g., duplicated primitives – in fact a

byte stream delivered to the test PC – can be reconstructed and represented to

testers with all details like values of certain parameters.

Entity Graph: Figure 11 contains a graphic overview of the relationship be-

tween entities in a protocol stack regarding their communication with each

other. These relations can be considered as a finite and directed multi-graph

EG1(V, S) where the set of vertices (V) corresponds to the set of entities existing

in a specific PS and S represents the Service Access Points. A function w1: S →

Ρ(V)×Ρ(V) assigns each SAP a set of entities using the functionalities of one or

more other entities, for example, ({GMM, GSMS, SNDCP}, {LLC}) to the LL-

SAP or ({ACI},{SMS,GSMS}) to the MNSMS-SAP. A simpler representation as

undirected graph EG2(V, E) construes the edges (E) as primitive interfaces be-

tween two entities. The corresponding assignment function is w2: E → I with

I⊂Ρ(V) ∧∀i∈I(⎜i⎜=2). See [GRAPH] for an introduction in graph theory.

4 The Test Case Generator – Theoretical Concepts 4.2 The Framework

Figure 11 – Relations between Entities of a GPRS-PS

By maintaining such a graph and providing various access functions, the frame-

work enables test tools to easily find out which entities communicate with each

other.

When speaking of the framework in context of the protocol stack as well as of

test applications, the same concepts are referred to. In fact FRAME and CCD

are generic and, therefore, available for mobile operating systems as well as per-

sonal computers (see Subchapter 5.3). Tools like TAP running on a test PC can

use the whole task management of FRAME.

Other test software might be useful for very different needs and should not de-

pend that much on a specific runtime system. Thus, the applications developed

by the author, PCO and TCGen, utilize only specific parts of the framework, for

example the routing functionality, as described in the next sections. Refer to

Subchapters 5.4 and 5.5 for a description of actual implementations.

 34

4 The Test Case Generator – Theoretical Concepts 4.3 PCO – Point of Control and Observation

4.3 PCO – Point of Control and Observation

The test tool PCO is mainly used for monitoring the current state of a protocol

stack without changing it. PCO can be combined with more active tools like

TAP (see Subchapter 4.5) or xPanel (see [TRACING]).

As the term “Control” in the name implies, it is not an exclusively passive ap-

plication. For instance, it provides the tester with an interface to decide what

should be monitored. This user input is then realized by sending appropriate sys-

tem commands to the protocol stack. In return, traces and duplicated primitives

can be received and displayed. Figure 12 provides an overview about the general

functionality:

Protocol Stack

 35

supplied by the user of PCO.

Figure 12 – PCO Communications

Visualizing traces is quite easy since only ASCII-strings have to be displayed.

However, as described in Section 5.4.2, much can be done to make the user in-

terface convenient. To present duplicated protocol stack primitives in a mean-

ingful way, it is not sufficient to show the received data as hexadecimal dump –

although this is also supported. The tester/developer wants to look inside the

structure of each primitive, see the current value of each parameter and even

have air messages decoded. PCO provides all this using the CCD-Database. This

requires a database matching the protocol stack actually used, which has to be

 traces

PCO duplicated primitives

Entity 1

primitives

Entity 2
system commands

4 The Test Case Generator – Theoretical Concepts 4.3 PCO – Point of Control and Observation

 36

tuation inside the PS during a test, another main

fe

4.3.1 The Universal Viewer Concept

Although in the previous descriptions PCO has been referred to as one applica-

3 – PCO Com

The PCO-Server is the central part where all trace or primitive data arrive and

the

s

he PCO-Viewer, is responsible for the visu-

a

Aside from supervising the si

ature of the PCO tool is its capability of logging test sessions: all data arriving

via the Test Interface can be stored and replayed if needed.

tion, it actually consists of three conceptual components which are communicat-

ing with each other (see Figure 13).

PCO
Viewer 1

CCD
D

Figure 1 ponents

from where they are distributed. It is directly connected to the Test Interface.

The main function of the PCO-Controller is to provide an interface to

erver. They communicate by using a dedicated PCO-protocol. This way, e.g.,

the logging process can be started/stopped, system commands are requested to

be sent to the protocol stack and Test Interface communication parameters (like

the COM port for a serial connection) can be specified. A controller implemen-

tation may also supervise a whole test environment consisting of the PCO parts

and other applications like xPanel.

The third PCO component type, t

lization of received information and data. Because this can be done in quite dif-

ferent ways depending on specific needs, a universal concept has been worked

PS

atabase

traces
duplicated
primitives

PCO
Server

…

Logfile

PCO
Controller

IIInnnttteeerrr---PPPCCC
CCCooo oonnn

OOO
mmmmmmuuunnniiicccaaatttiiio

PCO
Viewer 2

system
commands

4 The Test Case Generator – Theoretical Concepts 4.3 PCO – Point of Control and Observation

 37

ges for synchronization between differ-

e

4.3.2 Observation of Entities

To observe an entity, specific trace-classes can be enabled for it to retrieve in-

ed by the framework.

F

out by the author. It basically consists of a so-called Viewer-Interface whose ac-

tual implementational details can be found in Subchapter 5.4.3. Any application

supporting this interface can connect to the PCO-server and request data from a

currently running PS or from a PCO-logfile, matching individual filter settings.

The server does not differentiate between the actual viewer implementations but

communicates with all of them via the same PCO-protocol messages. Data is

provided together with information about the sending and the receiving entity, as

well as with a timestamp. A viewer might, e.g., present traces and primitives as

a visual list to the user and use the CCD-Database to interpret/decode hex

dumps. It could as well forward the data to a database server for later process-

ing. In fact, users can easily create their own special viewer and use all existing

capabilities of PCO and the framework.

The PCO-protocol also supports messa

nt viewers, e.g., concerning time stamps. These messages are sent from one

viewer to the server which forwards them to all other connected viewers.

formation about internal states. Furthermore, the duplication of primitives sent

and received by the entity should be requested. This can be done by forwarding

appropriate system commands to FRAME running on protocol stack side. To do

so the user must know about all primitive interfaces to other entities and provide

this information to the PCO tool. But especially if he is interested in more then

one entity this method is quite difficult and inconvenient.

PCO supports users by utilizing the Entity Graph provid

irst of all, the graph enables PCO to provide testers with a list of all existing

entities from which specific ones can be selected. Now duplication commands

for all communication edges can be generated. But since often only the so-called

4 The Test Case Generator – Theoretical Concepts 4.3 PCO – Point of Control and Observation

outer primitive flow is of interest, meaning the communication with all observed

entities considered as one block, the tool can also create a sub-graph by selecting

all needed entity-nodes and combining vertices and edges accordingly.

ub-graph Creation to Observe

ACI

{WAP

 38

Figure 14 – S Entities

Figure 14 exemplarily demonstrates this functionality for the entities WAP and

t for the generator

to

 Two

UDP which exchange primitives with ACI and IP. The Entity Graph shown in

Figure 11 on page 34 has been taken as basis. Only duplication commands for

edges of the new graph will now be sent. This is sufficient, because duplication

settings can but do not have to depend on information about SAPs. To avoid un-

necessary commands the connections in the sub-graph are enhanced by labels,

each containing a subset of the observed entity-block representing the entities

actually exchanging primitives with the particular outer one.

By additionally using the logging functionality of PCO inpu

ol TCGen can be created. The observed entities will then later be the ones un-

der test. In case it is not possible to decide beforehand which communication

data will be needed, another possibility is to duplicate every primitive interface

and let TCGen extract data as needed. This has two major drawbacks: The sig-

nificantly increased traffic on the Test Interface demands high data rates and

logfiles become very large and, therefore, difficult to handle. But recording as

much as possible is quite common, e.g., during field testing.

,UDP}

I

{WAP, UDP}

{UDP}

P

4 The Test Case Generator – Theoretical Concepts 4.4 TCGen – Test Case Generator

4.4 TCGen – Test Case Generator

The author assigned the general name TCGen to his test case generator because

the basic idea was to create a tool which takes various kinds of input and pro-

duces test cases in a configurable language. The currently available beta-version

processes logged communication data and generated structure information. It

exclusively creates test cases for the TAP application.

TCGen can be separated into two conceptual parts: one interacting with the

framework and PCO, the other executing the generation algorithm.

4.4.1 Interaction with Framework and PCO

TCGen is designed as a PCO-Viewer. This means it cannot be used without the

PCO-Server. After connecting to the latter the generator selects a filter to re-

ceive primitives only and initiates a request for recorded data from a logfile

which has to be specified by the user. Now the server transmits all formerly du-

plicated primitives to TCGen in the same order as they were sent inside the run-

ning protocol stack. By accessing the information stored in a matching CCD-

Database the data blocks are transformed into structures, and the Entity Graph is

used to create suitable routing commands to separate the EUT.

In Figure 15 the explained data flow is represented:

 39

Figure 15 – TCGen Interaction with Framework and PCO

TCGen

PCO
Server

Logfile

duplicated

primitives
control

data

structure
information

CCD
Database

Entity Graph

duplicated

primitives

4 The Test Case Generator – Theoretical Concepts 4.4 TCGen – Test Case Generator

4.4.2 Generation Algorithm

The principle of test case generation out of test session logfiles is quite simple,

compared to its actual implementation (see Subchapter 5.5.2). As test oracle the

“status quo” at the time of the preceding field test is used. That means the in-

put/output specifications regarding ANSI/IEEE Standard 829 (see Figure 3 on

page 17) are created by generating ‘send’-commands for all primitives who were

sent to the entity-block specified by the user, and by generating ‘await’-

commands for all primitives emitted by this block, which represents the entities

under test. The sequence of these commands corresponds to the primitive order

in the logfile, and appropriate test script commands are inserted to simulate

longer time differences. To generate the hierarchical content of the primitives

(see Table 3, page 20) substructures are defined level by level, with basic type

elements set to the actual values from logfile.

Figure 16 demonstrates the algorithm in a pseudo programming language:

set level=0;
do
{
 request_logfile();
 set new_elem_found=false;
 while (get_next_primitive(prim))
 {
 if (level==0)
 {
 write_time_differenz_to_last_prim();
 apply_rules(prim);
 write_send_await_command(prim);
 }
 while (get_next_substruct(prim,level-1,substruct))
 {
 write_substract_begin(substruct);
 while (get_next_elem(prim,substruct,elem))
 {
 set new_elem_found=true;
 apply_rules(elem);
 write_elem(elem);
 }
 write_substract_end(substruct);
 }
 }
 set level=level+1;
}
while (new_elem_found);

Figure 16 – Central Algorithm of TCGen

 40

4 The Test Case Generator – Theoretical Concepts 4.4 TCGen – Test Case Generator

 41

Starting with level=0, which represents the primitive level, logfile data are

periodically re-requested from PCO-Server and the substructures contained in

the respective lower level are written to the test case. Called with -1 as second

parameter the function get_next_substruct() returns the primitive itself.

Function get_next_elem() provides access to the direct elements of the

given substructure. Depending on the element type write_elem() creates an

basic type assignment (e.g., struct->elem1=0x23) or uses a substructure

variable newly declared (e.g., struct->elem2=new_struct1), which will

be defined during handling of the next level. The algorithm terminates if no

more elements were found on the current level, which will always happen after a

certain amount of passes since the logged primitives have finite content. In func-

tion write_send_await_command() applied during the first pass the de-

cision about generating input to be sent versus output to be requested is done by

taking the sender/receiver information into account, as provided by the PCO-

Server.

There exists one main reason which led to the decision to use the iterative ap-

proach instead of recursively creating each primitive structure in one step: Cre-

ating the test case sequentially allows instant writing to an actual file system; in

other words only minimal context information needs to be managed and kept in

memory. In general, the memory consumption of TCGen is very low and inde-

pendent of the logfile size, since the latter is not handled as a whole. Only the

primitive currently received via the Viewer-Interface is examined at a time. The

drawback: primitive data are retransmitted many times. This could have per-

formance impacts if the communication between PCO components is realized

by, e.g., a network with low data rates, but can be disregarded for a shared mem-

ory interface. However, despite the general approach actual implementations of,

e.g., the function get_next_substruct() will somehow contain recursive

parts to efficiently navigate through the primitive structure.

4 The Test Case Generator – Theoretical Concepts 4.4 TCGen – Test Case Generator

All functionalities previously described allow a user of TCGen to create test

cases which will instruct the execution tool (TAP) to send and expect primitives

containing exactly the element values as recorded by PCO. A run with such test

scripts will most likely fail, e.g., because of temporary values created randomly

by mobile or base station, or because of elements which are irrelevant in the

given context but were logged with values now awaited. Also the names of some

primitives differ from the ones used for the same task during simulation testing

on a PC. In brief, certain modifications to the original data have to be applied

during the generation process. In the pseudo code on page 40 the function ap-

ply_rules() implements such a mechanism based on a description of rules

which has to be provided by the user. Figure 17 contains the formal specification

for a set of rules understandable by TCGen. The key words printed in italics are

defined in the BNF of the test script language (see, e.g., Figure 7 on page 28).

 42

<RulesDescription> ::= <Options> <RuleList>
<RulesList> ::= <Rule> [<RulesList>]
<Rule> ::= > <SkipRule | <ChangeRule>
<Options> ::= ‘options’ [‘max_timegap=’<Integer>] [‘timeouts=’<Integer>]
<SkipRule> ::= ‘skip’ ‘primitive=’<Mask> [‘param=’<Mask>]
<ChangeRule> ::= ‘change’ ‘primitive=’<Mask> [‘param=’<Mask>]

<ChangeStatement>
<ChangeStatement> ::= <Test-Script-Statement

[including one ore more <Placeholder>]>
<Mask> ::= <String>[‘*’]
<Placeholder> ::= ‘%v’

Figure 17 – Partial BNF of TCGen Rules Descriptions

Beside settings for several options such a description contains various ‘skip’-

and ‘change’-rules, applicable to a whole primitive or a specific element. By

using wildcards equal rules can be combined. Skipped primitives will not be

mentioned in the test case; values of skipped elements will be ignored. Concern-

ing the specification of changes which shall be applied all possibilities offered

by the test script language can be used, since the test case generator will just

substitute the original value by the specified statement. If placeholders are found

the value from the logfile is inserted for each ‘%v’. This method is very easy to

4 The Test Case Generator – Theoretical Concepts 4.5 TAP – Test Application Process

implement and very powerful at the same time. See Appendix A.1 for examples.

A complete test case as expected by the TAP does not only contain the in-

put/output specifications. Moreover, initial FRAME routing commands have to

be generated in a way that the communication to and from the entity-block un-

der test is redirected to TAP. If Entity Graph information is available for the

specific protocol stack, an algorithm similar to the one described in Subchapter

4.3.2 is used to create the appropriate commands. Unfortunately, for some older

protocol stack versions, which still have to be supported, no such graph exists.

TCGen solves this problem by performing an additional pass during which only

the sender/receiver information of the logged primitives is considered to tempo-

rarily build up a communication graph. This, of course, may lack certain primi-

tive interfaces which were not used or not duplicated during the field test.

4.5 TAP – Test Application Process

As already explained, TAP is primarily used to run test cases on a PS simula-

tion. But because of the generic framework the behavior of the entity/ies under

test can be as well checked using an actual mobile phone. In any case the routing

 43

Figure 18 – TAP Communication with Separated EUT

Protocol Stack

redirected primitives

TAP Entities Under Test

Other Entities

primitives

traces
Other Entities

primitives

system commands

4 The Test Case Generator – Theoretical Concepts 4.5 TAP – Test Application Process

 44

commands specified in the test case are sent to FRAME on protocol stack side,

which leads to the situation presented in Figure 18. The EUT are isolated in such

a way that all primitives sent from one of them to another outside the block are

redirected to the TAP, and those that are sent from other entities are completely

discarded.

After this initialization the TAP can send data to the tested entities and evalu-

ate answer-primitives regarding the specifications in the test case. After the test

run a short protocol is created, stating whether the case passed or failed. More

information about problems which occurred during the test can be found out by,

again, examining the produced traces. These are not handled by the TAP, but

since usually PCO is started in parallel, trace and duplicated primitive data are

visualized and logged as already described in Subchapter 4.3.

5 Practical Realization of the Test Case Generator 5.1 Technical Preconditions

 45

5 Practical Realization of the Test Case Generator

In this chapter we describe the actual implementation of parts of the software

theoretically examined in chapter 4.

Beside general conditions like the used environment and coding rules the di-

verse software layers and their functionalities will be explained. Furthermore we

will have a look at specific implementational details of the PCO tool and the test

case generator developed together with this diploma thesis.

5.1 Technical Preconditions

While the generic framework as an operating system abstraction provides ports

for several OS kinds (see Subchapter 5.3), all test tools are currently developed

for the MS-Windows operating system only due to the equipment used by the

testers. However much effort has been put into keeping most of the source code

portable, as explained more deeply in Subchapters 5.4.1 and 5.5.1.

The concrete hardware platform used while developing PCO and TCGen con-

sisted of an INTEL PC (see [INTEL]) running WINDOWS NT 4.0.

C++ was used as programming language together with several generally avail-

able software libraries like the MICROSOFT FOUNDATION CLASSES (MFC, see

[MFC]), the Standard Templates Library (STL, see [STL]) and a module for

parsing XML-files. Compiler and linker have been taken from the software bun-

dle MICROSOFT DEVELOPER STUDIO 6.0.

Furthermore, the software PC-LINT from GIMPEL SOFTWARE (see [GIMPEL]),

a static analysis tool focusing on the C and C++ languages, has been integrated

in the build process.

5 Practical Realization of the Test Case Generator 5.2 Coding Rules

 46

5.2 Coding Rules

The TEXAS INSTRUMENTS BERLIN AG provides several global rules concerning

software programming. The following notes represent some of the more impor-

tant regulations:

– Writing ANSI-C/C++ style is highly requested.

– Several templates for preceding comments in files or before functions

have been provided and have to be used.

– Include files should be functionally organized, i.e., declarations for sepa-

rate subsystems should be in separate files.

– Accidental double-inclusion of include files has to be avoided, e.g., by

dedicated defines.

– Warnings that occur during compilation should be minimized.

– GNU (see [GNU]) compatible makefiles should be provided for each pro-

ject with which it must be possible to compile each part of the code as

well as to build the whole system.

– Naming:

• All names (of, e.g., variables or functions) should be meaningful

and give an idea of their application.

• Function names must consist of the component name, an under-

score, and any other sequence of lower case letters, digits, and un-

derscores.

• The names of new data types defined with the ‘typedef’ command

have to start with a “T_”.

• Variable names must consist of any sequence of lower case letters,

digits, and underscores.

• Constant names must consist of upper-case letters that may be sepa-

5 Practical Realization of the Test Case Generator 5.2 Coding Rules

 47

rated by “_” characters and must not begin with “T_”.

– Coding:

• Avoid labels and the corresponding “goto” statement.

• In new blocks the opening and closing parenthesis have to be put in

the same column as the code before the block. The code within

blocks has an indent of two white spaces. Comment lines have to be

indented as if they were code lines.

• In switch constructs the statements after a label again are shifted

two characters to the right. If the “break” is omitted though there is

at least one statement after the label, a comment must indicate this

as intentional.

• As source code debugging of macros is difficult macros should

only contain a few statements.

Due to the fact that these general guidelines were worked out for development

using the non-object-oriented language C some “internal” rules have been addi-

tionally defined and applied by the author:

– Class names start with a capital letter followed by any sequence of lower

or upper case letters, digits, and underscores.

– Static module variables and member variables of classes are prefixed by

“m_”.

– Call by reference should be the preferred method when passing objects as

function parameters.

– The key word const shall be applied to variables and member functions

in any possible case.

5 Practical Realization of the Test Case Generator 5.3 Frameworks and Software Layers

5.3 Frameworks and Software Layers

This subchapter describes the implementation of frameworks used by the test

tools. The description will be quite general since these software parts were not

implemented by the author.

FRAME: As already mentioned in Chapter 4.1 FRAME is an abstraction of the

operating system actually used. In the case of embedded mobile devices this will

be a real time operating system (RTOS) like NUCLEUS or VXWORKS. But also

desktop operating systems like MS WINDOWS are supported. This is realized by

a part of the FRAME called OS Layer which has to be implemented specifically

for each operating system, but finally provides a common Operating System In-

terface with functions like os_CreateTask() to create a new OS process.

All further layers (as shown in Figure 19) are implemented only once in a ge-

neric fashion, since they need not to know which operating system is used but

can just call into the OS Layer.

FRAME tasks
(protocol stack entities, test interface,

test tools)

 48

Figure 19 – FRAME Architecture

While so far “only” an OS abstraction has been achieved, FRAME offers several

PEI-Interface

Callback

VSI-Interface

FRAME

OS-Interface

Actual operating system

Callback

OS layer

Driver
(Hardware
abstraction)

5 Practical Realization of the Test Case Generator 5.3 Frameworks and Software Layers

 49

extensions – functionalities which cannot be found in all operating systems like

memory supervision, passive task model, timer configuration and last but not

least routing and tracing.

The common way to use FRAME is implementing one or more FRAME tasks

based on a template source file containing empty bodies of all needed PEI-

functions. The Protocol Stack Entity Interface (PEI) consists of a set of callback

functions like pei_init() or pei_primitive() known to FRAME,

which will be called whenever an appropriate event occurs – e.g., during initiali-

zation or if a primitive has arrived. As the name implies, this interface has been

originally designed exclusively for protocol stack entities; but for testing pur-

poses it makes sense to reuse it for the Test Interface and test tools like TAP.

The Virtual System Interface (VSI) on the other hand offers several FRAME

functions to the tasks, which might be handled inside the FRAME or forwarded

via the OS-Interface to the actual operating system. Examples are

vsi_c_send() or vsi_m_new() to send a primitive to another task or to

allocate memory, respectively.

The whole FRAME functionality is collected in several libraries which have to

be linked to the task sources to obtain a protocol stack. The Test Interface re-

sponsible for outbound communication is implemented as a FRAME task as

well. For WINDOWS OS, FRAME consists of three Dynamic Linked Libraries

(DLLs) including shared variables to handle one or more “connected” test tools.

Furthermore it was necessary to wrap the Test Interface into a standalone execu-

table to keep this task running independently from the start/exit of tools. It takes

parameters specifying the communication type.

FRAME supports various system commands (see examples in Table 4) which

can be sent via VSI functions, e.g., for dynamic re-configuration of communica-

tion paths or to enable/disable tracing for specific entities. In return system mes-

sages like ”SYSTEM WARNING: Receiver process entity un-

5 Practical Realization of the Test Case Generator 5.3 Frameworks and Software Layers

known” are emitted. Details may be looked up in [FRAME].

Command Function Example (.. sent to)

RESET Reset the receiver entity RESET GMM

STATUS <resource>
Request information from

the receiving entity
STATUS QUEUE RR

DUPLICATE
<org destination>
<new destination>

Duplicate primitives send
from receiver to <org destina-

tion> to <new destination>
DUPLICATE MM PCO RR

REDIRECT
<org destination>
<new destination>

Route primitives send from
receiver to <org destination>
to <new destination> instead

REDIRECT GMM TAP GRR

TRACECLASS <class-mask>
Configure receiver entity to

trace only information match-
ing the <class-mask>

TRACECLASS FFFF RR

Table 4 – Examples of FRAME System Commands

(V)CMS: The (Virtual) Condat Multitasking System takes an important role in

the FRAME implementation on a desktop operating system. It functions as an

additional layer between the OS Layer and the operating system (see Figure 20)

and provides the actual adaptation. For example the OS Layer function

os_CreateTask() calls the VCMS function p_create() which will fi-

nally use a system call of MS WINDOWS or Linux – the two systems currently

supported – to create a process. Obviously only one implementation of the OS

Layer is needed for desktop operating systems.

 50

Figure 20 – FRAME Using VCMS

Callback OS-Interface

MS Windows or Linux

VCMS

FRAME

OS layer

5 Practical Realization of the Test Case Generator 5.3 Frameworks and Software Layers

This special architecture has evolved historically. The original CMS is an actual

operating system running on gateways connected to multiple mobile devices for

testing purposes. Implementations exist also for, e.g., MOTOROLA M68332 and

the INTEL architecture. One main feature of CMS is the support of communica-

tion queues through which CMS processes can exchange data.

To offer the comprehensive CMS interface and capabilities also to applications

designed for MS WINDOWS (because the CONDAT AG testers primarily worked

on WINDOWS PCs) a virtual version called VCMS had been developed – not ac-

cessing the processor directly anymore. Later on, an adaptation for Linux fol-

lowed. VCMS is available as dynamically loadable library using shared memory

to implement the data queues.

During the FRAME design phase, it was decided to use VCMS due to the fact

that many of the features required were already implemented by the Virtual

Condat Multitasking System – including the OS adaptation. See Source Code 1

on page 84 for details concerning the CMS interface.

 51

Figure 21 – Creation of the CCD-Database

CCD-Database: The database containing all information about primitive and air

message structures as described in 4.1 is realized as a WINDOWS-DLL (per de-

fault: ccddata_dll.dll). Figure 21 explains the creation process of such a

SAPE
(Editor) Compiler/Linker

CCD-Database DLL

SAP and
Air-Message
Definitions

(XML)

ETSI
Recom-

mendations

Structure
Tables for
SAPs and

Air-
Messages

Core
Source

files Table-Generator

5 Practical Realization of the Test Case Generator 5.3 Frameworks and Software Layers

 52

library: Supported by a dedicated editor (see [SAPE]) developers create/edit

definition files for Service Access Points and Air-Messages regarding the ETSI

recommendations. The XML-files are transformed into C-tables by a special

generator tool, compiled and finally linked together with core source files. In the

latter the functional interface to access particular data is defined. It contains, for

example, the functions cde_prim_first() and cde_prim_next() to

read out primitive information. Source Code 2 on page 85 gives an impression

of the functions available.

Each time something is changed in one of the XML-files, a new DLL will be

created automatically during the protocol stack build. So, for correct results test-

ers should always receive a matching library together with a certain PS image-

file. Concepts exist to include the DLL in the image-file.

Entity Graph: For the representation of existing communication interfaces be-

tween entities in a protocol stack the second and simpler graph of the two de-

scribed in Subchapter 4.2 was chosen. In particular, a two-dimensional data field

corresponding to the so-called adjacency matrix of the undirected graph is main-

tained as part of the already described CCD-Database. This is an n×n-matrix

with n being the number of nodes (existing entities). On position (i,j) it contains

the number of edges between node i and node j – 0 if no communication inter-

face exists between entity i and entity j, 1 otherwise. See Source Code 3 on page

86 for an actual example. As can be seen there, the adjacency matrix is symmet-

ric for undirected graphs. Source Code 4 (page 86) contains the small but suffi-

cient set of functions to access the Entity Graph.

The adjacency matrix is currently maintained manually, and no concept exists

so far to generate it, e.g., out of MSC charts. On the other hand, the knowledge

about communication partners of entities is present inside the framework on pro-

tocol stack side right after the initialization phase. During the latter all entities

open their communication channels. So, tools like PCO or TCGen could request

5 Practical Realization of the Test Case Generator 5.3 Frameworks and Software Layers

the Entity Graph from FRAME at runtime instead of using precompiled CCD-

Database information. However, information about existing SAP-s and their

names will, as well, not be available this way, and some efforts are still needed

to include this feature in future versions.

The following picture (Figure 22) summarizes all previous explanations in a

general overview about the software layers and usage relations:

 53

Figure 22 – Software Layers

It can be seen how the test tools TAP, PCO and TCGen utilize the frameworks –

TAP as a FRAME task, PCO and TCGen as direct clients of VCMS. All tools

access information about the PS running on the connected target system by load-

ing the CCD-Database-DLL and calling appropriate functions. The usage rela-

tionship of the tools developed by the author will be explained in more detail in

the next subchapters – including a description of the PCO shortcut to the operat-

ing system.

Finally it shall be stated that the whole frameworks software has been imple-

mented using the original C programming language, unlike, e.g., the test case

generator. This is mainly because stable compilers for all used real time operat-

ing systems exist for this language, but C++ will probably be introduced in the

near future.

RTOS
(Nucleus, VxWorks, …) Operating system (Windows, Linux, …)

FRAME

VCMS

FRAME

Protocol
stack

entities

TST

TST

Target-System Test-PC

PCO

TAP

CCD-Database

TCGen

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

5.4 PCO – Point of Control and Observation

PCO is the testing tool capable of visualizing traces sent out of the protocol

stack under test and, therefore, is used during various test scenarios from field

tests to TAP executions (see Subchapter 3.2). Not every part of PCO is needed

each time, but a common ini-file is always used to store general and component

specific settings. See Source Code 6 (page 87) for a default version.

Although it would have been a possibility PCO was not implemented as a

FRAME entity. This design decision has originally been made with the intension

to create a universal tracing tool. In fact the core implementation does not de-

pend on any specifics of the test frameworks described in Subchapter 4.1. But

till now only one final PCO application exists, which needs specific knowledge

of the FRAME – since it is used to visualize information about FRAME entities

inside a protocol stack.

The different PCO components – server, controller and viewers – communi-

cate via the VCMS interface (named CMS queues, see Figure 25 on page 56)

since all of them are implemented running on top of the VCMS layer as can be

seen in Figure 23. The shortcut to the actual operating system also mentioned

there is drawn due to the fact that the GUIs of PCO are currently not imple-

mented using portable libraries, but the WINDOWS specific MFC.

 54

Figure 23 – Software Layers Used by PCO

The PCO-Server is the only part which connects to FRAME on tool side to

send/receive primitives. The CCD-Database is used by viewers and controller.

Pro-
tocol
stack

CCD-DatabaseTST

PCO- PCO-
FRAME Server Controller PCO-Viewers
 VCMS

Operating system (Windows, Linux, …)

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

5.4.1 Object-Oriented Approach

In contrast to the described parts of the framework, PCO has been implemented

using the language C++ which supports object-oriented design. This feature is

mainly used to separate the functionalities and allows for a generic core with

increasingly specialized inheritors.

 55

Figure 24 – PCO Class Hierarchies

In the overview shown in Figure 24, it can be seen that for each PCO part a class

suffixed by _core exists. These contain general PCO functions, e.g., for creat-

ing communication queues or exchanging data with a common header (see

Source Code 7, page 87).

The core classes are independent of the operating system by using VCMS and

ANSI-C++ and do not contain any information concerning the FRAME test con-

cepts. This specific knowledge is introduced in the derived classes with names

ending on _frameSupp. These are still OS independent, but the separation

maintains the option of PCO to be adapted to other needs without to many

changes. All classes derived from the FRAME-dependent layer are final classes

adding mainly GUI specific functionalities.

PCOSrv_core

PCOSrv_frameSupp

PCOCtrl_core

PCOCtrl_frameSupp

Controller Server Viewer

PCOView_templ

PCOView_srvlog

PCOView_std

PCOView_core

PCOView_frameSupp

PCOSrv_frameSupp_cmdl PCOCtrl_frameSupp_cmdl

PCOSrv_frameSupp_mfc PCOCtrl_frameSupp_mfc

derives from

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

5.4.2 Components and Communication

PCO-Server: The server as the fundamental part of PCO receives traces and

duplicated primitives from the Test Interface entity running on top of the

FRAME and it can, in turn, send system commands. For this purpose a special

FRAME extension called TST reception interface provided as a library is used

offering functions for sending data and to register a CMS queue for receiving

(see Source Code 5, page 86). The receiver queue will always be named “PCO”.

Source Code 8 on page 89 contains the actual implementation of the registration.

 56

GUI Controller Server Viewer
(GUI or Cmdl) (with <pid> == process id)

“PCOC_G“

Figure 25 – CMS Queues Used for Inter-PCO-Communication

For internal control messages coming from the controller or any kind of viewer,

another queue (“PCOS”) is used to be always able to react (see Figure 25). The

controller will usually request a change of the server state (PCO_RUNNING,

PCO_STOPPED or PCO_LOGFILE) or submit FRAME system primitives to be

forwarded to the protocol stack. A viewer has, first of all, to connect to the

server resulting in its queue names and other information being added to the cli-

ent list. Afterwards it can, e.g., ask for data from a logged session or subscribe

for live data emitted by a running PS.

Internal communication follows the general scheme of sending control data

and waiting for a response; this can be either PCO_OK or PCO_ERROR, the lat-

TST
“PV<pid>“

“PCOS“

“PCO“

Cmdl Controller

“PVc<pid>“

“PCOC“

(Cmdl stands for
command line)

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

 57

ter with an error code. Table 5 contains an overview about selected PCO control

messages. More details can be looked up in [TRACING].

Message Parameters Sent from … to …

PCO_CONNECT <CMS queue for receiving traces/primitives> Viewer Server

PCO_SET_FILTER
<names of entities whose data shall not be

forwarded>
[<id to select traces, primitives or both>]

Viewer Server

PCO_START_TESTSESSION <name of test session> Controller Server

PCO_ERROR
<id of message which caused the error>

<error code>
ANY ANY

PCO_OPEN_LOGFILE
<name of test session>

[<start entry nr> <end entry nr>]
Viewer Server

PCO_LOGFILE_COMPLETE - Server Viewer

PCO_SYNCHRONIZE <time stamp> Viewer Server
Server Viewer

Table 5 – Selected Control Messages of the PCO-Protocol

In its initial state (PCO_STOPPED) the server will discard all received primi-

tives until either viewers have subscribed or the state changes to

PCO_RUNNING. In the latter case, the logging process into a previously speci-

fied file will be started. The state PCO_LOGFILE is used to load a logfile into

the server which then can be replayed through all connected viewers in parallel.

Forwarding data to viewers is – for performance reasons – the only PCO com-

munication without acknowledgement. The concrete format of PCO logfiles is

explained in Subchapter 5.4.4.

Currently two complete implementations of the server exist – a command line

version (PCOSrv_frameSupp_cmdl, pcod.exe) and a GUI server for MS

WINDOWS (PCOSrv_frameSupp_mfc, pco_srv.exe). Figure 26 shows

the appearances of these variants. While the command line executable prints out

strings to reflect the current state, the GUI variant changes its colors and can

show more information in a dialog window. Except the GUI interface both serv-

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

ers support the same functionalities. The command line version was mainly im-

plemented to ease an eventually change to Linux as operating system. Only one

server can run at any given time.

GUI Interface:
- Full dialog
- Minimized to

system tray

Command line Interface:

Figure 26 – PCO-Server Appearances

PCO-Controller: Like the server, the controller exists in a GUI

(PCOCtrl_frameSupp_mfc, pco_ctrl.exe) and a command line

(PCOCtrl_frameSupp_cmdl, pcoc.exe) version, the first being MS

WINDOWS specific. Figure 30 on page 62 gives an impression of the graphical

user interface. The common functionality of both versions implemented in the

base classes PCOCtrl_core and PCOCtrl_frameSupp comprises the ma-

nipulation of the server state and the forwarding of system primitives by sending

corresponding messages to the “PCOS”-queue. But controllers receive replies in

queues named differently: “PCOC_G” for the GUI and “PCOC” for the com-

mand line variant (see Figure 25, page 56). This permits the usage of

pcoc.exe even when the GUI controller is running, which makes sense be-

cause the command line executable is heavily used in scripts to automate several

testing tasks. Figure 27 shows the pcoc-parameters representing the available

 58

functions.

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

Figure 27 – PCO Command Line Controller Parameters

The PCO controlle ystem commands,

which will be sent to the connected PS. At the command line he has to input

them manually; this is also possible within the GUI. However, the graphical in-

terface offers also a list with predefined commands which can be combined

All these functions were not integrated into a viewer as there can be more than

one running at a time while controlling should be a central task. Moreover, the

GUI version is also used to manage the start and exit of a set of applications,

including the other PCO components and, for example, the xPanel. This test en-

vironment can be changed by the user in a dedicated dialog (see Figure 28).

rs offer the user several options to specify s

freely and sent by pressing one button. See 5.4.4 for further possibilities.

Figure 28 – Test Environment Dialog of PCO-Controller

Finally the GUI co f communication

(serial connection, shared memory, etc.) to be used to access the protocol stack

can be selected – including all parameters. The choices are used as parameters to

a call of the Test Interface executable.

ntroller is the application where the type o

 59

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

 60

g from one of the viewer classes as ex-

implemented was the so-called Standard Viewer. It is an MFC based W

executable with an interface as shown in Figure 29. This viewer represents

traces and primitives as entries in a list view and uses the CCD-Database to in-

terpret/decode their contents, which then is visualized in a tree view below the

entry list. Users can specify several filter conditions (e.g., by the primitive op-

erating code (OPC)) and select different colors for each sender entity. This is

traces per minute can be produced. All entries can be copied to the clipboard or

exported into several file formats.

After PCO was widely u oped, partly by external

companies – one, for example, monitoring only specific parameters of the net-

PCO-Viewers: Any application derivin

plained in the next subchapter is considered as a PCO-Viewer. The first ever

INDOWS

very important given the fact that during heavy testing easily more than 10 000

Figure 29 – The Standard PCO Viewer

sed, further viewers were devel

work, and another controlling Robustness Tests by evaluating traces. A com-

mand line dumper has been added by the author and many others, e.g., a HTML-

viewer are imaginable. Moreover, the capabilities of the Universal Viewer Ap-

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

 61

application has to comply with the minimal re-

quirements provided by one of the base classes for viewers (see Source Code 9,

y

fu

d to viewer implementations. The parts using the CCD-Database

a

proach are used inside the PCO-Server to implement the logging mechanism: A

hidden internal viewer (implemented by PCOView_srvlog) derived from the

FRAME dependent viewer layer (see Figure 24, page 55) is used to support sev-

eral historical logfile types (containing, e.g., pre-interpreted traces) beside the

standard PCO format. To enable automatic reactions of PCO-Controller upon

restart of the protocol stack, this component was also enhanced by an internal

viewer to receive FRAME system messages.

5.4.3 The Viewer-Interface

To create a PCO-Viewer a new

page 89): PCOView_templ, PCOView_core or PCOView_frameSupp.

While deriving from the first of these classes leaves even the creation of CMS

queues to the final inheritor, PCOView_frameSupp contains all necessar

nctionalities to interact inside a FRAME based test environment. Central part

of the methodology are the virtual functions dispatch_message(), in-

terprete_message() and on_data(). The first is for handling control

messages. Default treatment of, e.g., PCO_EXIT is provided in

PCOView_core, which can be overwritten by final viewer classes. The sec-

ond, interprete_message(), is called whenever new traces/primitives

arrive to extract, e.g., sender, receiver and data part who will afterwards be

passed to on_data(). While at least PCOView_frameSupp includes an im-

plementation of this interpretation concerning the FRAME format, the third

function has always to be implemented by the viewer application – matching the

actual needs.

With pco_view.lib a library containing all core sources is provided, which

has to be linke

re compiled into separate object files to enable viewers without CCD support.

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

5.4.4 Logging of Entity Communication

 62

As Figure 23 on page 54 already revealed, PCO-Controller utilizes the CCD-

 information to provide the user

with a matrix as shown in Figure 30, which allows selection of primitive dupli-

Database, too. In detail, it needs Entity Graph

cation for all communication interfaces available.

Figure 30 – GUI of PCO-Controller with Matrix and Observe Dialog

5 Practical Realization of the Test Case Generator 5.4 PCO – Point of Control and Observation

 63

Clicking on it will result in automatic translation of the selections into matching

system commands. For example, choosing the cross section between entities

MMI and GMM is realized by the string “DUPLICATE GMM PCO” sent to the

protocol stack. Not existing connections are visualized as disabled and grayed-

out fields. A second matrix exists for selecting trace-classes (see Subchapter 4.2)

to be enabled/disabled for specific entities.

The Entity Graph is, furthermore, used after the user has selected several enti-

ties in a dedicated observation dialog. These entities are considered as a block

and, using the algorithm explained in Subchapter 4.3.2, appropriate settings in

the matrix are generated to request .

The activities described so far result in prim

being displayed in connected viewers, de

log these data a session name has to be

“Start logging” button has to be presse ing from

protocol stack is written into an actual file

access to it, the logfile format consists of additional information elements: a ver-

sion identifier, an initial number representing the count of trace/primitive entries

contained and continuous jump marks. This way, it is possible to request only

dedicated parts without the need to examine the whole file, which significantly

rmance in case of large logfiles.

duplication of all outer interfaces

itives arriving at PCO-Server and

pending on the used filter. To actually

 selected in the controller GUI and the

d. Now, the raw binary data com

. But, mainly in order to ease the later

increases perfo

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 64

5

or process

and queue management and ANSI-C++ functions for file handling. It can, there-

each formatted with a FRAME

header, it made sense to derive the core class of the generator, TCGenera-

tor_core, from PCOView_frameSupp. The following picture (Figure 31)

presents an overview of the whole class hierarchy:

Figure 31 – TCGen Class Hierarchy

.5 TCGen – Test Case Generator

Unlike PCO, the test case generator presented in this document does not use any

WINDOWS specific libraries but exclusively utilizes the VCMS layer f

fore, be considered as widely portable; although, only executables for the

MICROSOFT operating system (tcgen.exe) have been created so far. As de-

scribed in the theoretical conception TCGen is a construct consisting of two ma-

jor parts, whose implementation will be examined in the next subchapters.

5.5.1 A Special PCO-Viewer

The object oriented approach of PCO (see Subchapter 5.4.1) has been re-used

consequently for TCGen. Since the tool had been designed to take PCO logfiles

as input which contain traces and primitives,

PCOView_templ

PCOView_core

TCGenerator_core

PCOView_frameSupp

TCGenerator_cmdl

Rules

XmlNotify

derives from

is used by

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 65

By inheriting in the mentioned way, TCGen became a special PCO-Viewer with

ge() function. See Source Code

11 on page 91 for the core class declaration. Only on_data() had to be de-

ally,

nctions used during generation, configuration

methods like set_rules() and finally analyze() and generate(),

Figure 32 – CMS Queues Used on

In the global main function presented in Source Code 12 on page 92 an instance

of TCGenerator_cmdl is created, after interp mand line parame-

ters and the TCGen ini-file. During ob CMS queues for

communication with PCO-Server are initialized (see Figure 32). This is done

an already implemented interpret_messa

fined individually to fulfill the requirements of the Viewer Interface. This func-

tion is the place where the actual generation process takes place, as described in

Subchapter 5.5.2. Some more base class methods like on_connected() were

overwritten to, e.g., add specific behavior in case of successful connection to

PCO-Server. The implementation of the user interface has been moved to the

child class TCGenerator_cmdl. This will simplify the substitution of the

current command line interface by a graphical one in future. But addition

the core class contains auxiliary fu

both taking at least the name of a PCO logfile as parameter to start the actual

algorithm – putting out a communication table (see Figure 36, page 71) in ana-

lyze-mode or generating a TDC test case in generate-mode.

PCO-Server

TCGen

“TCGEN_VIEW“

“PCOS“
“cTCGEN_VIEW“

for TCGen-PCO-Communicati

reting com

ject construction two

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 66

 on_data() con-

tains handling for this special trace, too.

After instantiation of the TCGenerator_cmdl the main function

passes all parameters gathered from ini-file to it, and depending on the user in-

put at command line the starter method of enerate-mode is

called. These initialize some protected class members and request the logfile

from PCO-Server for the first pass. See, e.g., Source Code 13 on page 93 for the

implementation of generate(). Now, the ing in context of

the main thread ies to the two

threads created by the viewer object, until the latter signals the end of analysis or

Triggered by the first data package arriving in the data queue of TCGen and be-

actually by the constructor of PCOView_core but the names

“cTCGEN_VIEW” and “TCGEN_VIEW” for control and data queue are passed

to it by TCGen code. This way the automatic naming regarding the current proc-

ess id of the viewer has been disabled to ease debugging. Furthermore, in the

constructor of TCGenerator_core the registration at the server is started by

using the Viewer Interface function connect(). As soon as a response was

received, and therefore on_connected() is called a filter is set to later re-

ceive primitives only. This is sufficient since traces are not considered by the

generation algorithm. But, although the server announces complete transmission

of all logfile data requested by sending PCO_LOGFILE_COMPLETE to

TCGen’s control queue, depending on the thread scheduling there might still be

some primitives in queue “TCGEN_VIEW” not read out yet. For this reason

PCO-Server always sends a final trace carrying the string "-------- END

OF TESTSESSION --------" after forwarding a recorded session – inde-

pendent of any filter settings. Thus, the implementation of

 object

either analyze- or g

 main function runn

 of the TCGen process leaves all further activit

generation process.

5.5.2 TDC Generation

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

ing passed to on_data(), the central algorithm described in Subchapter 4.4.2

is started. If the analyze-mode was selected by the user, the functions for writing

TDC are skipped and only information about senders, receivers and used SAPs

are collected. SAP names can be found out by requesting the name of each

primitive from the CCD-Database and considering the first part of it, e.g.,

“MMGMM” from “MMGMM_REG_REQ”. Since one pass is sufficient to en-

able a function of TCGenerator_cmdl to present the user this information in

ASCII-format, the logfile is not re-requested.

The generation-mode is significantly more complex. As a first activity the pro-

tected member function write_initials() is called inside which all files

needed for an TDC test case are created and opened for writing. As alluded in

Subchapter 3.5, Test Description Code is typically split into different header and

source files representing cases, steps and constraints (see Figure 33).

 67

he actual values for these have been handed over by the

global main function which originally got them from the TCGen ini-file. In

 the default version of such a file can be looked up.

Figure 33 – TDC Files generated by TCGen

Furthermore, a project-file for editing, compilation and linkage in the

DEVELOPER-STUDIO from MICROSOFT is produced (see also Subchapter 5.6).

This is similar to a makefile containing, e.g., information about external libraries

and include paths. T

Source Code 10 on page 91

The source file containing the TDC-CASE can also be created at once. Calls of

Project-File
for

MICROSOFT
DEVELOPER-

STUDIO

Cases
Header File

Cases
Source File includes

Steps
Header File

Constraints
Header File

Steps
Source File

Constraints
Source File

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 68

mes can be gathered beforehand.

F

CGen; this

would require recompilation of the tool each time an interface has changed. For

th of test c y are indispensable, but only those are needed,

whose structures are actually used. By extracting the SAP parts from the primi-

ti xplained above the p_*-files can easily be identified. To find out

the required m_*-files each primitive has to be checked for carried air-messages.

After the special trace arks the end of data transmission has been re-

ceived, the protected memb m_pass_nr

Server is contacted to s his process will be re-

two TDC-STEPS are inserted into the new CASE: one for setting up routing and

another for the input/output specifications. Some initial lines of code are written

to the other TDC files, as well. Beside various comments explaining their con-

tent and stating, e.g., the PCO logfile used as input, the Entity Graph is utilized

to generate the routing commands inside the first STEP, based on the list of enti-

ties specified by the user which shall be tested as a block. The beginning se-

quence for the second STEP is also written to the appropriate file.

Unfortunately, no information about SAP na

or that reason, the first pass applied to the logfile data has to be “wasted” to

create the #include-statements for further header files. These are files like

p_MMGMM.h or m_SM.h containing C++-declarations of primitive and air-

message structures. They have been created together with the CCD-Database-

DLL (see Figure 21, page 51) but cannot be used internally by T

e compilation

ve names as e

ases the

 which m

er variable is increased, and the PCO-

end the logged primitives again. T

peated until the last TDC-constraint is generated. During each pass declarations

in header files and corresponding definitions are created in parallel. To retrieve

the needed information from the CCD-Database an initial pointer to the structure

table for each primitive is requested, which will be passed to function

write_params() with parameter level set to 0. This function reads out

and examines the elements of the current level and, in case of substructures, re-

cursively calls itself with increased level. By considering m_pass_nr and

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 69

coded before

fu

level the decision is made, whether a TDC constraint shall be written for the

processed element. For elements with basic type (see Source Code 14, page 94)

the equation level==m_pass_nr-1 has to be true. The same holds for creat-

ing substructure assignments, but level==m_pass_nr-2 is the trigger for

writing begin and end sequences of structure definitions (see Source Code 15,

page 95). This way, constraints for all elements can be generated sequentially

and level by level. Arrays and air-messages, which have to be de

rther processing, are handled in a similar manner.

Parameterized
Mode:

Default
Mode:

Figure 34 – Comparison of Default and Parameterized Mode

During the first none-initial pass the SEND and AWAIT commands are addition-

ally written into the steps source file. They get primitive constraints as parame-

ters. Per default one constraint is created for each primitive found, no matter

whether there are some of the same type but with different element values. In

the so-called parameterized mode which can be selected in the ini-file, TCGen is

able to generate only one constraint for each primitive type but with parameters

corresponding to the elements at level 0. The actual values are forwarded to the

constraints inside the SEND/AWAIT commands (see Figure 34). Of course, this

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 70

eping cases, steps and con-

straints with different final suffixes. If the same test case name is specified by

ted constructs are

overwritten.

Concerning the rule processing Rules has been

implemente class

XmlNotify (see Figure 31, page 64) whose source code is freely available and

which provides methods for parsing XML-files. The latter are needed because

the author decided to use this format for rule files. It supports parameterized

tags, optionally containing values, which exactly match the needs to express

rules for the test case generator, e.g.:

<change primitive="MMGMM_*" param="detach_cause">

(%v>=1 ? 0x5 : %v) </change>

mode has to be taken into account inside write_params(), too. The vari-

ables m_parameters and m_header_creation are used in this connec-

tion. The general naming scheme is also affected: Usually constraints are la-

belled like the primitive/substructure elements, suffixed by a continuously in-

creased number. In parameterized mode no such number is necessary for primi-

tive constraints. However, the additional suffix derived from the name of the test

case currently generated is appended in either case. It allows TCGen to incre-

mentally add test cases to the same TDC files by ke

the user in a subsequent execution of TCGen, formerly genera

 capabilities a dedicated class

d which encapsulates all necessary routines. It is derived from

More examples can be found in Source Code 17 on page 97. See [XML] for a

comprehensive introduction in XML. The implementation of class Rules is

straight forward (see Source Code 16, page 96 for its declaration): While read-

ing the XML-file, fields of dedicated structures for the skip- and change-rules

are filled. Whenever a primitive or element (parameter) name is passed to one of

the skip_*() or change_*() functions, these fields are scanned for match-

ing entries and appropriate values are returned. Skipping is then realized by in-

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 71

e is called without any of them (see Figure 35).

serting C++ comment identifiers (“//”) before SEND/AWAIT-commands, re-

spectively element assignments. This is possible because un-initialized elements

are skipped automatically in TDC; and by doing so the user can easily re-enable

the assignment if needed. The algorithm used for the changing of values is pre-

sented in Source Code 18 on page 96.

5.5.3 User Interface

The user interface of a test tool is very important for its acceptance by testers. It

should respond with adequate performance and be intuitively to handle. TCGen

currently supports a command line interface only, whose parameters are listed if

the executabl

Figure 35 – Command Line Parameters of TCGen

Beside the optional name of an ini-file which shall be used instead of the default

one, at minimum a PCO logfile has to be specified. If additionally the analyze-

uch a

rding

the recorded co

mode is chosen output similar to the one in Figure 36 will be produced. S

table is useful to get a quick overview about the content of a logfile rega

mmunication.

Figure 36 – Output of TCGen Analyze Mode

For the generation process some more parameters are required: a directory

5 Practical Realization of the Test Case Generator 5.5 TCGen – Test Case Generator

 72

 to 100 primitives and it took the tool only

some seconds to complete a generation. This is much less time then the subse-

s will need to finish (see Subchapter 5.6).

can be edited inside sensibly designed dialogs, including, of course, the ini-file

content and rules. Moreover, in an optimal way after pressing only one button

all necessary processes should be started automatically. Surely, not all user fan-

tasies are reasonable or even possible to be realized. But a first step was made

by including a dedi PCO-Controller as

where the TDC files shall be stored, or where already existing can be opened to

add a test case; a comma separated list of entity names which will be considered

as the entities under test; a name for the project file which will also be the base

name for the other TDC files; and finally a name for the test case. TCGen has

been tested with logfiles containing up

quent compilation proces

The described possibilities are sufficient to use all capabilities of TCGen and

the final output of the generator contains an example for compiling the test case

from command line. Nevertheless, many users will not be satisfied by the de-

scribed interface. They expect a GUI from today’s tools where all parameters

cated dialog into the GUI version of

shown in Figure 37. This allows the input of TCGen’s command line parame-

ters, which will be forwarded together with the logfile selected in the main dia-

log of the controller to the test generator executable. Another advantage of this

constellation: The PCO-Server is started automatically.

Figure 37 – PCO Dialog to Call TCGen

5 Practical Realization of the Test Case Generator 5.6 Test Case Compilation and Execution

 73

DC core ob-

je

ulation more transpar-

ent for the user, a GUI application called TAP-Caller exists, which has been

partly implemented by the author. Figure 39 gives an impression of its interface.

TAP-Caller is also capable to generate reports for a set of executed test cases.

Figure 39 – TAP-Caller Interface

5.6 Test Case Compilation and Execution

Before a TDC test case – either written manually or generated by TCGen – can

be executed, it has to be converted into a WINDOWS-DLL which is then loaded

by the TAP tool. Since TDC is actually a subset of the C++ language the con-

version is just a usual compilation, followed by the linkage with T

cts. The actual execution process takes place when TAP calls the specified

send/await constructs and evaluates using the CCD-Database. Together with the

optionally started PCO results are created (see Figure 38).

Figure 38 – Creation and Execution of a Test Case DLL

To make the process of starting TAP, PCO and the PS sim

TAP

CCD-Database DLL TDC
Test Case

Test Case
DLL

Protocol
Stack

PCO

Results

TDC
Core

Library

Compiler/
Linker

5 Practical Realization of the Test Case Generator 5.7 Comparison with Other Methods

 74

5.7 Comparison with Other Methods

Comparing TCGen with other generators is rather difficult for the following rea-

 specifications as in-

put. Indeed, no generator known to the author uses logged data as TCGen does.

There exist several replay tools which ollected during

test runs, but they are no real generators whose output can be used, e.g., together

with a protocol stack simulation. Hence, the only m ul comparison can be

anual test case writing.

At the company the author is currentl ing test cases are usually written

by dev iar with specific details of the entities they are maintaining.

In Figure 40 the improvement they could gain from TCGen is estimated:

sons: First, no test case generator has actually been used at TEXAS INSTRUMENTS

BERLIN so far. The only attempt made with the commercial tool from

TESTINGTECH (see [TESTTECH]) proved after more then a years adaptation

work by this company that it is, in principle, possible to create and run test cases

inside their framework, which has to connect to the Test Interface. Beside the

fact that no special framework adaptations are necessary for TCGen, the genera-

tor included in the TESTINGTECH product takes SDL/MSC

can reproduce the data c

eaningf

do mne with

y work

elop milers fa

Average Time to Create A Test Case

4

5

6

io
n

0

1

2

3

0 5 10 15 20

Test Case Num ber

Da
ys

 fo
r C

re
at

Manually Written
TCGen Generated

Figure 4 e Creation 0 – Estimated Speed Up of Test Cas

5 Practical Realization of the Test Case Generator 5.7 Comparison with Other Methods

 75

 PCO logfiles are recorded in

parallel by other persons, which usually is the case. In both situations the crea-

lready and regression tests of this kind are

h

ted to-

gether in so-called multi-entity test cases. For example, this option is very im-

portant if, as it is currently the case with development for UMTS and GPRS,

different implementations of the same entities exist, which can only be consid-

ered as one construct until the developments have been aligned. However,

automatic generation will not completely substitute manual processing as long

as no information from specifications is used, too. And even if that would be the

case, testers and developers typically want to keep the possibility to easily

edit/adapt certain parts of a test case. TCGen supports this by generating human

readable compositions as far as possible.

This estimation is based on the assumption that

tion of first test cases takes a quite long time – for manually writing because

people have to get used to the test script language and while using TCGen be-

cause initially no rule files exist. After this consolidation phase the developers

interviewed by the author estimate the effort per test case to one to three days. If

TCGen would be used together with rules tuned for the specific needs more then

one case could be produced during a day, with the additional advantage that

generation takes place in background allowing other activities in parallel. While

no significant further performance boost can be expected in the manual case,

continuously improvement of TCGen rule files will speed up the process even

more. Of course, this calculations apply only to the generation of test cases

which don’t need to be adapted or reworked, e.g., to regression tests of already

functioning behaviors. But for many lines of work in Berlin the design and ini-

tial implementation phases are over a

ighly demanded, as well as the reproduction of bugs happened in field tests.

In addition, TCGen offers a feature which is quite difficult to achieve by

manually writing: several entities can be considered as a block and be tes

5 Practical Realization of the Test Case Generator 5.8 Testing the Test Tools

 76

e which, of course, does not guarantee

error-freeness. Furthermore, dedicated tests have been and are applied on the

TCGen application. One of the methods used is presented in Figure 41. Based

5.8 Testing the Test Tools

A common problem appearing with tools for testing other software is the fact

that the tools themselves are not sufficiently tested. Usually, after a certain pe-

riod of suspicious trial-usage followed by a time of heavier utilization at least

proving acceptable stability, the tool is classified as reliable. The speed of this

process also depends on the availability of alternatives. To improve the proce-

dure of getting feedback from users and fixing bugs or implementing new fea-

tures regarding this input, the author invented a utility called Moan-Button

which consists of a DLL optionally linked to an application, and providing a

small hammer icon in the system tray. Clicking on it enables the user to directly

send an email to the current maintainer of the running tool. Of course, especially

in the initial development phase various tests have to be done by the developer

himself and the user should be considered as the last instance for finding errors.

But unless formal correctness has been proved no complex test tool can be de-

livered without bugs.

As an example, PCO has been evolved in the way described, but although

automating test case generation is highly demanded, it was rather hard to find

beta-testers for first pre-releases of TCGen. The main reason was probably that

time is extremely valuable for developers in the mobile business, and they don‘t

want to waste hours by trying out tools whose output might not be usable. On

the other hand the author could ensure suitable stability and reliability quite

from the first versions of TCGen. This is because of several reasons: First of all,

the interaction with the framework has been derived from PCO via the Viewer

Interface and the utilization of the CCD-Database to, e.g., interpret primitive

structures is implemented in a very similar way in PCO and TAP. Both tools

have been used successfully for a long tim

5 Practical Realization of the Test Case Generator 5.8 Testing the Test Tools

 77

reated during TAP execution. These are pro-

vided as input to the test case generator, instead of field test recordings.

sense not only to exclude untested side-effects. It can also

b

on existing test cases logfiles are c

Figure 41 – Method of Testing TCGen

To enable TCGen to create new test cases out of such logfiles, the generation

algorithm had to be enhanced by a special handling of the entity TAP, which

now appears as sender of some primitives. This enhancement is kept in official

releases which makes

TAP/
PCO

Manually Written
Test Case

Traces/
Primitives

TCGEN TAP/
PCO

Generated
Test Case

Traces/
Primitives

Comparison

Comparison

e used to convert test cases written in an older format still understood by TAP

into TDC scripts. For TCGen-testing purposes the resulting TDC files are com-

pared with the original test case, which unfortunately is hard to automate since

TDC is very flexible. Thus, a more efficient technique is to re-run TAP with the

generated test case and thereafter compare the traces and primitives.

To check the rule processing a special XML-file is maintained, containing a set

of rules which covers all equivalency classes (e.g., “with wildcards”, “without

wildcards”, …) identified by the author. The current beta-release of TCGen has

successfully passed all tests. Nevertheless, there are still many things to improve

and probably some minor bugs not yet detected.

6 Conclusions

 78

The aims of were to:

– give a general overview about the state of the art in software testing

– present sp concerning so testing in ile sector

– introduce the tracing mechanism used at TEXAS INSTRUMENTS BERLIN AG

– explain cal conc ying the test case generator de-

signed and developed by the author

 this docu-

m

keep the functionalities as gen-

ral as possible, and TTCN-3 will probably be the next format supported. The

long term planning even includes the idea of passing the BNF of any favored

test language to TCGen. Utilization of other input beside the PCO logfiles, e.g.,

6 Conclusions

this diploma thesis

ecifics ftware and the mob

 the theoreti epts underl

– give details concerning the actual implementation of this generator

The author tried to summarize facts concerning software testing methods and

explain their importance for the mobile business as well as requirements arising

in this particular sector. Despite increased efforts to improve the design process

(such as “clean-room software engineering”) for the products have fewer defects

from the start – as this is expected to be more efficient than testing – testing is

currently the main tool to ensure quality and stability.

Furthermore, automating as much parts of the testing process as possible is one

of the main issues in these days. The test case generator presented in

ent represents one possibility to come closer to that goal regarding the creation

of regression tests and the reproduction of erroneous behavior. It strongly de-

pends on the tools PCO and TAP, as well as on the frameworks which have been

examined in this paper, too. Currently, output can be created in the TDC format

only. However, great efforts have been made to

e

6 Conclusions

 79

specifications is another option which might be considered.

hich have to be solved presently are related to the tracing

mechanism, the essential way to get useful information from a running protocol

 entities is realized via primitive ex-

cha t In-

terface are too low to allow duplication of the complete communication flow.

Fin in-

sid h

test cases then before is already possible with TCGen. Especially in the begin-

nin

increa from the TEXAS INSTRUMENTS man-

age e

As mentioned in Chapter 5, the test applications support only MS WINDOWS at

The main problems w

stack. Not every interface between two

nge and can be observed. Moreover, the data rates available for the Tes

ally, the more information is traced out the higher the CPU load will be

e t e mobile device or test board. Nevertheless, the generation of much more

g many of them will contain redundant parts, but the code coverage can be

sed significantly – one main request

m nt.

this time. To provide versions for Linux, e.g., by using a portable GUI library

like QT from TROLLTECH (see [TROLL]), will be another important task for the

future as already many computers in testing laboratories use UNIX-like operat-

ing systems. Another approach would be to use JAVA (see [JAVA],

[JAVABOOK]) for further developments as it becomes increasingly more

common in the mobile sector.

However, a first functional solution has been provided and now users have to

be found to get feedback for improvements regarding the concrete needs of

workers at the company. Some issues for the near future are already registered:

the support of wildcards in rules has to be extended; structures of the same type

should be united where possible, even among different test cases to increase

readability; constants declared in the SAP header files shall be used instead of

actual values; and finally, the CCD-Database used during the logging process

should be included in the PCO logfile to avoid a later search for the right DLL.

The author is ready for the challenges to come.

Appendix A.1 Example of a Generated Test Case

 80

Appendix

A.1 Example of a Generated Test Case

The following figures document the generation of a test case out of data re-

corded during the input of a PIN at a cellular phone. GMM and MM build up the

observed and tested entity-block.

Received primitives displayed and logged by the PCO tool:

Rules file for TCGen with, e.g., modification of the expected mobile class:

Appendix A.1 Example of a Generated Test Case

 81

TDC step for setting up routings needed:

Main TDC step containing send/await commands:

Appendix A.1 Example of a Generated Test Case

Part of the TDC structure definitions:

 82

Appendix A.1 Example of a Generated Test Case

 83

ow during execution of the generated

test case by TAP:

Message Sequence Chart of the primitive fl

Primitives sent during test execution:

Appendix A.2 Selected Parts of the Source Code

 84

arts of the Source Code

This final appendix section contains parts of the source code of the applications

PCO and TCGen discussed in Subchapters 5.4 and 5.5, as well as of the frame-

works explained in Subchapter 5.3. It is meant as a reference for the description

of the implementational details and should solve eventually remaining problems

in understanding the software concept.

The whole sources of the tools developed by the author consist of approxi-

mately 13000 lines of code (PCO: 10000, TCGen: 3000, without comments and

empty lines).

A.2.1 Frameworks

Source Code 1 – Part of CMS interface (mentioned in 5.3):

A.2 Selected P

Appendix A.2 Selected Parts of the Source Code

 85

Source Code 2 – Part of CCDATA interface (mentioned in 5.3):

Appendix A.2 Selected Parts of the Source Code

Source Code 3 – Matrix of Entity Graph (mentioned in 5.3):

Source Code 4 – Entity Graph access functions (mentioned in 5.3):

Source Code 5 – TST reception interface (mentioned in 5.4.2):

 86

Appendix A.2 Selected Parts of the Source Code

 87

A.2.2 PCO (written by the author)

Source Code 6 – Default Version of the PCO ini-file (mentioned in 5.4):

Source Code 7 – Creation of the Communication Header (mentioned in 5.4.1):

Appendix A.2 Selected Parts of the Source Code

 88

Appendix A.2 Selected Parts of the Source Code

 89

Source Code 8 – Registration of the “PCO”-queue (mentioned in 5.4.2):

Source Code 9 – Base classes for individual PCO viewers (mentioned in 5.4.3):

Appendix A.2 Selected Parts of the Source Code

 90

Appendix A.2 Selected Parts of the Source Code

 91

A.2.3 TCGen (written by the author)

Source Code 10 – Default Version of the TCGen ini-file (mentioned in 5.5.2):

Source Code 11 – Declaration of TCGen core class (mentioned in 5.5.1):

Appendix A.2 Selected Parts of the Source Code

 92

 (mentioned in 5.5.1): Source Code 12 – Main function of TCGen

Appendix A.2 Selected Parts of the Source Code

 93

.1): Source Code 13 – Starter function for generation (mentioned in 5.5

Appendix A.2 Selected Parts of the Source Code

 94

: Source Code 14 – Handling of basic type elements (mentioned in 5.5.2)

Appendix A.2 Selected Parts of the Source Code

 95

Source Code 15 – Handling of structure elements (mentioned in 5.5.2):

Appendix A.2 Selected Parts of the Source Code

Source Code 16 – Declaration of class Rules (mentioned in 5.5.2):

 96

Appendix A.2 Selected Parts of the Source Code

Source Code 17 – Example of a rules file (mentioned in 5.5.2):

Source Code 18 – Changing of values in class Rules (mentioned in 5.5.2):

 97

 98

ACI Application Control Interface (AT Command Inter-
face)

ADA Programming language designed in 1979 and named
after Augusta Ada Byron

Air message Block of data, message, sent via the cellular network;
can be contained in a primitive

Alpha-Test Test done by the developer himself
AT commands AT is originally a contraction of attention; AT com-

s
from HAYES MICROCOMPUTER PRODUCTS; they are just
ASCII-strings sent to/from a device

ASCII.............................. American Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
Beta-Test Test done by persons not involved in the development
Black-Box....................... System of which only the outer interface is known
BNF Backus-Naur Form
Bottom-Up...................... Starting with the smallest parts of a system
CCD................................ Condat Coder and Decoder
Clipboard Area of temporary memory used to transfer text or

graphics
Code Completion............ Feature supported by various development environ-

ments, providing quick information about the context
of, e.g., structures or functions the user points on

Code Walkthrough Manually examination of source code (see 2.3)
Compiler A computer program that translates a high-level pro-

gramming language into machine language
CPU Central Processing Unit
Data-driven..................... Processes influenced by the data handled by specific

software
Debugging Attempting to determine the cause of the symp ms of

software malfunctions detected by testing or by fren-
zied user complaints

List of Terms and Abbreviations

mands where firstly used to program SmartModem

to

 99

DLL Dynamic Linked Library
 or field marked by some

specific property
n-

thin a layer performs the functions of the layer

 services to the layer entity

ETSI................................ tandards Institute

-

FRAME

tions implemented by

ces (or nodes) and edges

Grey-Box hite-Box mixture

GSM
GSMS

y

uage

.,
e for a mobile phone

Domain Generally a limited region

Entity OSI terminology for a layer protocol machine; An e
tity wi
within a single computer system, accessing the layer
entity below and providing
above at local service access points (SAPs)
European Telecommunications S

EUT Entity Under Test
Field Test Test done anywhere in the country and under real en

vironmental conditions (see 3.2)
Runtime environment of the protocol stack, product of
TEXAS INSTRUMENTS Berlin

FTA................................. Final Test Approval (see 3.2)
Function-driven Processes influenced by the func

specific software
GMM GPRS Mobile Management
GNU GNU’s Not Unix
GPRS General Packet Radio Service
Graph An object consisting of verti

(or arcs) between pairs of vertices
Black-/ W

GRR................................ GPRS Radio Resource
Global Standard for Mobile Communication
GPRS Short Message System

GUI Graphical User Interface
Hardware The physical part of a computer system; the machiner

and equipment
HTML............................. Hyper Text Markup Lang
IEEE Institute of Electrical and Electronics Engineers, Inc;

the world's largest technical professional society
Image-File Binary file which can be loaded on a test board, con-

taining instructions for the processor at the board, e.g
protocol stack softwar

 100

ng code to a software

IP.....................................

ITU
Java

ng
parately compiled program

Memory Supervision trol the memory access of software

mmon C++ classes
OSOFT for easy access to the

MMI................................
Short Message System

mpany - see [MICROSOFT]

ACCELERATED

t containing both data and instructions
ed on that data

Official Approval ork

One-Source-Concept
 the speci-

Instrumentation............... Adding of special debuggi
IOT In-Orbit Test (see 3.2)

Internet Protocol
ISO.................................. International Standards Organization

International Telecommunications Union
A cross-platform programming language from Sun
Microsystems (see [JAVA], [JAVABOOK])

Linker A program that combines one or more files containi
object code from se
modules into a single file containing loadable or ex-
ecutable code

Linux............................... Operating system based on open sources (e.g., for
PCs), Linux Is Not UniX

LL Logical Link
LLC................................. Logical Link Control

Mechanism to con
parts to detect leaks or access violations

MFC................................ Microsoft Foundation Classes, co
provided by MICR
WINDOWS GUI (see [MFC])

MM................................. Mobile Management
Man Machine Interface

MNSMS.......................... Mobile Network Service for
MS MICROSOFT; software co
MSC................................ Message Sequence Chart
Nucleus Real time operating system by

TECHNOLOGY (see [AT])
Object In the sense of object-oriented programming languages

it is a componen
for the operations to be perform

Object-oriented............... Having to do with or making use of objects
Test using test cases provided by the ETSI or netw
operators (see 3.2)
Approach where all documents used in the different
stages of a software project are derived from

 101

OSI..................................

liv-

PC uter

ee 5.4.2)
anged between compo-

PEI
PIN.................................. er

 exchanged between entities of a

Pseudo Module

ith GUI

Robustness Test

fication, e.g., source code and test cases
OO Object-Oriented
OPC OPerating Code
Operating Code............... Unique ID identifying a specific primitive with its pa-

rameters
Oracle Any means used to predict the outcome of a test

Open System Interconnection
Passive Task Model........ Mechanism providing a general main function to tasks

inside which, e.g., messages are received and de
ered to individual callback functions
Personal Comp

PCO Point of Control and Observation
PCO-Controller Controlling part of PCO (s
PCO-Protocol Set of control messages exch

nents of PCO
PCO-Server Fundamental part of PCO (see 5.4.2)
PCO-Viewer Visualizing part of PCO (see 5.4.3)

Protocol stack Entity Interface (see 5.3)
Personal Identification Numb

Primitive Block of data which is
protocol stack

Process............................ The sequence of states of an executing
Processor The part of a computer that interprets and carries out

the instructions contained in the software; the CPU
Protocol Stack................. A hierarchy of protocols which work together to pro-

vide the services on a communications network
PS.................................... Protocol Stack

Module exporting a specified interface but containing
no real functionality

QT................................... Multiplatform C++ application framework w
support

Quick Test Short test usually applied after small software changes
Regression Act of returning to a previous state

Test checking the robustness of software over long

 102

s the best path for a data packet to be
work to another

RTOS.............................. Operating System
up-

SAS.................................

uter

SMS System
 Protocol

mputer

e [POSTON])

S taskbar

TAP-Caller

TCGen
 Language (see [TCL])

Test, Testing sing a product to identify differ-

Test Case ion of a special test which can, e.g., be used

makes it possible

time periods
Router A device that find

sent from one net
RR................................... Radio Resource

Real Time
Server.............................. The computer in a client/server architecture that s

plies files or services
SAP................................. Service Access Point; a data interface between two

layers of a protocol stack
Stand Alone Simulator

SAT................................. Stand Alone Tester
Script............................... A series of instructions for a comp
SDL................................. Standard Definitions Language
Simulation Test............... Test on a PC-simulation of the PS (see 3.2)

Short Message
SNDCP Sub-Network Dependent Convergence
Software.......................... A set of instructions executed by a co
Stack Abbreviation of Protocol Stack
STL................................. Semantic Transfer Language (se
STL................................. Standard Templates Library for C++ (see [STL])
System Tray.................... Location on the far right of the WINDOW

TAP................................. Test Application Process
GUI application for calling the TAP tool

Target-Test Test on an actual hardware target (see 3.2)
Test Case Generator

Tcl................................... Tool Command
TDC Test Description Code

The process of exerci
ences between expected and actual behavior
Descript
by a dedicated tool to run this test

Tk.................................... Graphical user interface toolkit that
to create powerful GUIs (see [TCL])

 103

Thread............................. larger program that can be executed in-

TI
 used primarily to create, manipu-

programs
e

r-

on meaning
rmation about the internal state of
oftware using traces and dupli-

hree

 (see

T's
s

g System (see 5.3)
tion has to
.3)

ystem by WIND RIVER SYSTEMS

otocol

Windows.........................

One part of a
dependent of the whole
TEXAS INSTRUMENTS

Tool................................. Software program
late, modify, or analyze other

Top-Down Starting with a whole system and finally coming to th
smallest parts of it

Trace String containing specific information about the inte
nal status of a part of software (e.g., an entity)

Trace-class...................... Group of traces with comm
Tracing............................ Visualization of info

a running (mobile) s
cated primitives

TST................................. TeST Interface
TTCN-3 Testing and Test Control Notation, version t
UDP User Datagram Protocol
UML Unified Modeling Language (see [UML])
UMTS............................. Universal Mobile Telecommunication System

[UMTS])
UNIX Multi-user operating system developed by AT&

Bell Laboratories in the USA during the late 1960
USB Universal Serial Bus
VCMS............................. Virtual Condat Multitaskin
Viewer-Interface............. Set of functions and constraints an applica

support to connect to PCO-server (see 5.4
VSI.................................. Virtual System Interface (see 5.3)
VxWorks Real time operating s

(see [WRS])
WAP Wireless Application Pr
White-Box System of which all internal structures are known

PC operating system by MICROSOFT
XML eXtensible Markup Language (see [XML])
xPanel eXtended Panel, tool which emulates a virtual mobile

(see [TRACING])

 104

List of Reference

[ANITE]http:

[ARIANE]http://java.sun.com l; 10-21-2003

aufmann Pub-

[AUTOMATION] ...Few D.: “Software Test Automation”;
fessional; 2000

re-

thodology

[BEIZER]Beiz ck Box Testing“; John Wiley & Sons Inc.;

[BETA]....................Fine ey

[CONDAT]http:
ers/; 10-21-2003

[DISASTERS3]http://www.year2000.com/bugbytes/NFbugbytes.html; 10-

21-2003

spec -Hill; London, 1994

s

[AGILENT]http://www.agilent.com/; 10-21-2003
//www.anite.com/; 10-21-2003

[APTEST]................http://www.aptest.com/; 10-21-2003
/people/jag/Ariane5.htm

[ASN1]http://www.asn1.org/; 10-21-2003
[ASN1BOOK]Larmouth, J.: “ASN.1 Complete”; Morgan K

lishers; 1999
[AT]http://www.acceleratedtechnology.com/; 10-21-2003

ster, M., Graham,
Addison-Wesley Pro

[BALZERT]Balzert, H.: “Lehrbuch der Software-Technik 1: Softwa
Entwicklung“; 2. edition, Spektrum-Verlag; Heidelberg,
2000

[BAUMG]Baumgarten, B.: “OSI Conformance Testing Me
and Ttcn”; Elsevier Science Pub Co; 1994

er, B.: “Bla
1995

, M.R.: “Beta Testing for Better Software”; John Wil
& Sons; 2002

[CINDERELLA]http://www.cinderella.dk/; 11-11-2003
[CPP]Eckel, B.: “Thinking in C++”; Prentice Hall; 2003

//www.condat.de; 10-21-2003
[DISASTERS]http://www.ima.umn.edu/~arnold/disast
[DISASTERS2]http://www-aix.gsi.de/~giese/swr/att1.html; 10-21-2003

21-2003
[ESA].......................http://www.esa.int/; 10-21-2003
[ETSI]http://www.etsi.org/; 10-21-2003
[EVALG].................http://www.brics.dk/Activities/95/EvolvAlg/; 10-
[FORMAL]..............Turner, J.G., McCluskey, T.L.: “The construction of formal

ifications“; McGraw

 105

[FRAME].................frame_users_guide.doc; TI internal documentation; Berlin,

[FRAPPIER]............Frappier, M.: “Software Specification Methods: An Over-
roaches to Comput-

 a Theory of Test
 in Programming Meth-

[GPRS] sInteractive: “GPRS Basics“; J.Schlembach

:
ngs SE90”; Hall,

[GRAHAM2]...........
 Report”; Unicorn Seminars; U.K., 1990

 2000

erlag; 2003

f.de/deu/tester/board/index.php; 10-21-2003
are and Trouble-

 der Softwareentwick-
, 1996

[IEEE]...................... w.ieee.org/; 11-10-2003
ard for Software Test

 York, 1991

[INTEL]................... 1-2003

2003

view Using a Case Study (Formal App
ing and Information Technology)“; Springer Verlag; 2000

[GIMPEL]http://www.gimpel.com/; 11-03-2003
[GNU]......................http://www.gnu.org/; 10-21-2003
[GOODEN]Goodenough, J.B., Gerhart, S.L.: “Toward

Data Selection” in “Current Trends
odology”, Vol. 2; R.T. Yeh (ed), Prentice-Hall; 1977
T.O.P. Busines
Fachverlag; 2003

[GRAHAM].............Graham, D.R..: “Software Verification and Testing Tools
Availability and Uptake” in “Proceedi
P.A.V. (ed.); Brighton, 1990
Graham, D.R: “Computer Aided Software Testing: The
CAST

[GRAPH].................Harris, J.M., Hirst, J.L., Mossinghoff, M.J.: “Combina-
torics and Graph Theory”; Springer-Verlag;

[GSM]......................T.O.P. BusinessInteractive: “GSM Basics“; J.Schlembach
Fachv

[GTB]German Testing Board:
http://www.asq

[HARDWARE]Meyers, M.: “Introduction to PC Hardw
shooting“; Osborne McGraw-Hill; 2003

[HORN]Horn, E.: lecture slides “Grundlagen
lung“; University of Potsdam; Potsdam

[HOWDEN].............Howden, W.E.: “A Functional Approach to Program Test-
ing and Analysis”; IEEE Transactions on Software Engi-
neering 12; 1986
http://ww

[IEEE91]..................IEEE Standard 829-1991: “Stand
Documentation”; IEEE Press; New

[IIST]Institute for Software Testing:
http://www.softdim.com/iist/; 10-21-2003
Intel Corporation: http://www.intel.com/; 10-2

 106

[ITU]........................ www.itu.int/; 11-10-2003

[JAVA]
 Hall; 2002

urements: Assuring Pro-

[KANER].................

ro-

[MSC]...................... ”, Rec.

[MYERS]................. en“, 5.

[NASA] ov; 10-21-2003
, F.A.: “Structural Testing of Pro-

[OMAR91] y of Software

[POSTON]............... tomating Specification-Based Software
 Electronics Engineers;

[RSD].......................
nk-

protokolle auf der Basis von XML“; diploma thesis at

[ISOOSI]http://www.iso.org/; ISO Nr.: 35.100; 10-21-2003
http://

[JASC]http://www.jasc.com/; 10-21-2003
http://java.sun.com/; 10-21-2003

[JAVABOOK].........Eckel, B.: „Thinking in Java”; Prentice
[JONES]Jones, C.: “Applied Software Meas

ductivity and Quality”; McGraw-Hill; New York, 1991
Kaner, C., Falk, J., Nguyen, H.Q.: “Testing Computer Soft-
ware“, 2. edition; Van Nostrand Reinhold; 1993

[KIT]........................Kit, E.: “Software Testing in the Real World”; ACM Press;
1995

[MFC]......................Shepherd, G., Wingo, s.: “MFC Internals. Inside the Micro-
soft Foundation Class Architecture”; Addison-Wesley P
fessional; 1996

[MICROSOFT]http://www.microsoft.com; 10-21-2003
ITU-T SG 10: “Message Sequence Chart (MSC)
Z.120; Geneva, 2000
Myers, G.J.: “Methodisches Testen von Programm
edition; R. Oldenbourg Verlag GmbH; München, 1995
http://www.nasa.g

[OMAR89]Omar, A.A., Mohammad
grams” Softw Eng Notes, Vol 14, No 2; ACM Sigsoft;
1989
Omar, A.A., Mohammad, F.A.: “A Surve
Functional Testing Methods”, Softw Eng Notes, Vol 16,
No 2; ACM Sigsoft; 1991

[PERRY]Perry, W.: “Effective Methods for Software Testing”; John
Wiley & Sons Inc.; 1995
Poston, R.M.: “Au
Testing”; Institute of Electrical and
1996

[REED]....................Reed, R., Reed, J.: “SDL 2001: Meeting UML”; Springer-
Verlag; Heidelberg, 2001
http://www.rsd.de/; 10-21-2003

[SAPE].....................Vogler, T.: “Datentyp- und Interfaceeditor für Mobilfu

 107

ticle/view/45/1/7/; 10-21-

ineering with SDL”;

[SOFTHARD]

lishers;

[SOFTWARE]......... urn, A.: “Agile Software Development”; Addison-

[STL]
tandard Template Library“; Addison-

s
tions”; Proceedings Australian Soft-

[TCL].......................
the Therac-25 Acci-

ted from “IEEE Computer”, Vol. 26, No. 7, pp. 18-

[TDC] -

[TI]...........................
[TRACING]............. ng, R.: „Tracing … an Essential Part of Software

nigs Wusterhausen, 2003
ssicherung. Konstruktive

[TROLL]

“Fachhochschule Konstanz“; 2003
[SCHIRM]http://www.softwaretesting.de/ar

2003
[SDL].......................Mitschele-Thiel, A.: “Systems Eng

John Wiley & Sons; 2001
[SIPSER]Sipser, M.: “Introduction to the Theory of Computation”;

PWS Publishing Company ; 1997
Petersen, D.A., Patterson, Indurkhya, N.: “Computer Or-
ganization and Design Second Edition: The Hard-
ware/Software Interface”; Morgan Kaufmann Pub
1997
Cockb
Wesley Professional; 2001
Meyers, S.: “Effective STL: 50 Specific Ways to Improve
Your Use of the S
Wesley Professional; 2001

[STOCKS]Stocks, P., Carrington D.: “Deriving Software Test Case
from Formal Specifica
ware Engineering Conference; 1991
http://www.tcl.tk/; 10-21-2003

[THERAC]Turner, C.S.: "An Investigation of
dents”;
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.ht
ml; 10-28-2003;
reprin
41; July 1993
8434_510_02_tdc_user_guide.doc; TI internal documenta
tion; Berlin, 2003

[TELELOGIC]http://www.telelogic.com; 10-21-2003
[TESTTECH]http://www.testingtech.de; 12-09-2003

http://www.ti.com; 10-21-2003
Kießli
Testing in the Mobile Business”; undergraduate thesis at
University of Potsdam; Kö

[TRAUBOTH].........Trauboth, H.: “Software-Qualität
und analytische Methoden”; 1993
http://www.trolltech.com/; 10-21-2003

 108

[TTCN3]..................

ard

[WRS]...................... ww.windriver.com/; 10-21-2003

ly & Associates; 2002

TTCN-3 standards;
http://www.etsi.org/frameset/home.htm?/ptcc/ptccttcn3dow
nload.htm; 11-03-2003

[UML]......................Fowler, M.: ”UML Distilled. A Brief Guide to the Stand
Object Modeling Languange”; Addison-Wesley Profes-
sional; 2003

[UMTS]Holma, H., Toskala, A.: “WCDMA for UMTS”; Jonh
Wiley & Sons, Ltd; 2002

[VTEST]..................Arnold, T.R.: “Software Testing with Visual Test 4.0”;
Hungry Minds, Inc; 1996
http://w

[XML]......................Harold, E.R., Means, W.S.: “XML in a Nutshell. A Desk-
top Quick Reference”; O'Reil

 109

Statement

I, Ronny Kießling, born on January 22 that

“Automated Generation of Software Test Cases for Mobile Business

Based on Tracing Mechanisms”

has been written by me, guided by Professor Dr. Jürgensen and Dr.

Schmidt, and that I did not use any sources other than the ones listed at

the end of the paper;

– I denoted explicit quotations and the usage of opinions of other authors

throughout the document.

Ronny Kießling, Königs Wusterhausen, 2004-02-23

th in 1976, hereby confirm

– the diploma thesis titled with

haltsangabe (German Abstract)

hema: Automatische Generierung von Software-Testfällen für
den Mobilfunk-Bereich auf Basis von Tracing-
Mechanismen

Author: Ronny Kießling

Studiengang: Diplom-Informatik

XML

In der vorliegenden Diplomarbeit wird ein

Bereich Mobilfunk präsentiert, der, anders als viele bekannte Generator-

Programme, nicht Software-Spezifikationen oder Implementierungen als Einga-

be erwartet, sondern Daten, die während vorangegangener Testläufe aufgezeich-

net wurden. Auf den ersten Blick mutet dieser Ansatz etwas seltsam an, aber

verschiedene Anwendungsm

Reproduktion von fehlerhaftem Verhalten, konnten bereits identifiziert werden.

D m

Autor während seiner studentischen Tätigkeit bei der Firma TEXAS

INSTRUMENTS BERLIN AG durchgeführt. Im Zusammenhang mit der theoreti-

schen Konzeption sowie der Realisierung des Testfall-Generators werden das

menwerk und das ebenfalls vom Autor entwickelte

n. Die Diplomarbeit enthält eine Analyse der An-

lle, Performance und Zuverlässigkeit

nd berichtet über Probleme und Lösungen während der Implementierung. Wei-

ntersuchung über Möglichkeiten, die Test-Programme selbst

zu testen. Abschließend werden noch bestehende Probleme und Einschränkun-

gen diskutiert und Pläne für zukünftige Weiterentwicklungen vorgestellt.

Deutsche In

T

Schlüsselworte: Mobilfunk; Testfall-Generierung; tracing; C++;

Generator für Software-Testfälle im

öglichkeiten, z.B. für Regressions-Tests oder zur

ie tatsächliche Implementierung einer ersten Programm-Version wurde vo

verwendete Software-Rah

Logging-Programm beschriebe

forderungen bezüglich Benutzer-Schnittste

u

terhin erfolgt eine U

	Introduction
	Software Testing – State of the Art
	Software Errors
	Software Testing
	Testing Methods
	Specification and Test Script Languages
	Test Automation
	Test Case Generators

	Software and Testing in Cellular Networks
	Overview
	Error Analysis in the Mobile Sector
	Importance of Automation
	Specifications
	TDC - Test Description Code

	The Test Case Generator – Theoretical Concepts
	General Idea
	The Framework
	PCO – Point of Control and Observation
	The Universal Viewer Concept
	Observation of Entities

	TCGen – Test Case Generator
	Interaction with Framework and PCO
	Generation Algorithm

	TAP – Test Application Process

	Practical Realization of the Test Case Generator
	Technical Preconditions
	Coding Rules
	Frameworks and Software Layers
	PCO – Point of Control and Observation
	Object-Oriented Approach
	Components and Communication
	The Viewer-Interface
	Logging of Entity Communication

	TCGen – Test Case Generator
	A Special PCO-Viewer
	TDC Generation
	User Interface

	Test Case Compilation and Execution
	Comparison with Other Methods
	Testing the Test Tools

	Conclusions
	Example of a Generated Test Case
	Selected Parts of the Source Code
	Frameworks
	PCO (written by the author)
	TCGen (written by the author)

