
technical_document_20030404.dot

Copyright © 2003 Texas Instruments

Texas Instruments Proprietary Information – Internal Data

Technical Document

GSM PROTOCOL STACK

GPF

CCD_USERGUIDE.DOC

CCD USERS´ GUIDE

TI INTERNAL TECHNICAL DOCUMENT

Document Number: 06-03-20-SHL-0002

Version: 0.4

Status: Draft

Approval Authority:

Creation Date: 2002-May-31

Last changed: 2015-Mar-08 by SIJ

File Name: CCD_userguide.doc

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 2 of 51

Important Notice

Texas Instruments Incorporated and/or its subsidiaries (TI) reserve the right to make corrections, mod-

ifications, enhancements, improvements, and other changes to its products, software and se rvices at
any time and to discontinue any product, software or service without notice. Customers should obtain
the latest relevant information during product design and before placing orders and should verify that

such information is current and complete.

All products are sold subject to TI‟s terms and conditions of sale supplied at the time of order ac-

knowledgment. TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI‟s standard warranty. Testing and other quality control tec h-
niques are used to the extent TI deems necessary to support this warranty. Except where mandated

by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are respon-

sible for their products and applications using TI products, software and/or services. To minimize the
risks associated with customer products and applications, customers should provide adequate design,
testing and operating safeguards.

Any access to and/or use of TI software described in this document is subject to Customers entering
into formal license agreements and payment of associated license fees. TI software may solely be

used and/or copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and/or software may be based on or implement

industry recognized standards and that certain third parties may claim intellectual property rights
therein. The supply of products and/or the licensing of software does not convey a license from TI to
any third party intellectual property rights and TI expressly disclaims liability for infringement of third

party intellectual property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI

patent right, copyright, mask work right, or other TI intellectual property right relating to any combina-
tion, machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a
license from TI to use such products, software or services or a warranty, endorsement thereof or
statement regarding their availability. Use of such information, products, software or services may

require a license from a third party under the patents or other intellectual property of the third party, or
a license from TI under the patents or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronical-
ly or mechanically, including photocopying and recording, for any purpose without the express written
permission of TI.

Change History

Date Changed by Approved by Version Status Notes

2002-May-31 SIJ 0.1 1

2002-Oct-23 SIJ 0.2 2

2003-May-20 XINTEGRA 0.3 Draft

2003-Aug-19 SIJ 0.4 Draft 3

Notes:

1. Init ial version

2. Updated to CCD II

3. New document number; Updated info about melem and bit f ields

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 3 of 51

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 4 of 51

Table of Contents

GSM Protocol Stack ...1

GPF ..1

ccd_userguide.doc ..1

CCD Users´ Guide ..1

TI Internal Technical Document ...1

1.1 Abbreviations ..6

1.2 Terms...6

2 Introduction ..7

2.1 Overview ..7

3 Fundamentals ...7

3.1 CCD in Overview...7

3.2 Coding Types..9

3.2.1 Standard Information Elements ...9
3.2.1.1 Value Part of a standard IE ...11
3.2.1.2 BCD numbers ..11

3.2.2 Non Standard Information Elements ..12
3.2.2.1 T30_IDENT..12
3.2.2.2 CSN.1 Elements ..13
3.2.2.3 CSN1_S1 Elements ...13
3.2.2.4 Rest Octets..13

3.2.2.4.1 Spare Padding ...14
3.2.2.4.2 CSN1_SHL Elements ...14

3.3 Message Buffering ..14

3.3.1 Host and Network Byte Order ...15
3.3.2 Avoiding of overwritings ..15

3.4 CCD data base ...16

4 Message description catalogues ..17

4.1 types ..17

4.2 Messages ...17

4.2.1 Long name, short name, ID, direction ..18
4.2.2 element ID, ref, spec ref, pres, type, len ..18

4.3 Structured elements ..19

4.4 Basic elements..25

5 CCDGEN Intermediate Files *.mdf and *.pdf ...26

6 CCDDATA or CCD tables ..28

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 5 of 51

6.1.1.1 ccdmtab.cdg and ccdptab.cdg ...28
6.1.1.2 mstr.cdg ..28
6.1.1.3 mconst.cdg ..28
6.1.1.4 mvar.cdg and pvar.cdg ...28
6.1.1.5 mval.cdg ..29
6.1.1.6 spare.cdg ..29
6.1.1.7 melem.cdg ...29
6.1.1.8 mcomp.cdg ..32
6.1.1.9 mmtx.cdg...32
6.1.1.10 calc.cdg ...33

6.1.2 Example ..34

7 CCD Modules ..36

7.1 Global macros, prototypes, types and variables ...38

7.1.1 Global C-macros ..38
7.1.2 Prototypes ...38
7.1.3 Global types ..38

7.1.3.1 T_CCD_CompTabEntry – Definition entry for a composition39
7.1.3.2 T_CCD_ElemTabEntry - Table entry for an element ...39
7.1.3.3 T_CCD_VarTabEntry – Table entry for a variable ...40
7.1.3.4 T_CCD_ValTabEntry – Table entry for values of variables40
7.1.3.5 T_CCD_SpareTabEntry – Table entry for spare bits ...41
7.1.3.6 T_CCD_CalcTabEntry – Definition entry for a calculation......................................41
7.1.3.7 t_conv16 - Conversion structure ..41
7.1.3.8 t_conv32 - Conversion structure ..42

7.1.4 Global variables ...42

7.2 ccd.c ..42

7.2.1 Includes, macros, types and variables ...42
7.2.1.1 Includes ...42
7.2.1.2 Macros ..43
7.2.1.3 Types ..43
7.2.1.4 Variables ...43

7.2.2 ccd_init() ...44
7.2.3 ccd_codeMsg() ..45
7.2.4 ccd_decodeMsg...47
7.2.5 ccd_encodeComposition ..47

8 Technical information ...48

8.1.1 Makefile variables ..48

Appendices ..51

A. Acronyms ...51

B. Glossary ...51

List of Figures and Tables

List of References

[ISO 9000:2000] International Organization for Standardization. Quality management sys-

tems - Fundamentals and vocabulary. December 2000

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 6 of 51

1.1 Abbreviations

MDF Message Description File

PDF Primitive Description File

IE Information Element

IEI Information Element Identifier

SAP Service Access Point

1.2 Terms

Entity: Program which executes the functions of a layer

Message: A message is a data unit which is transferred between the entities of the
same layer (peer-to-peer) of the mobile and infrastructure side. Message
is used as a synonym to protocol data unit (PDU). A message may con-

tain several information elements.
Primitive: A primitive is a data unit which is transferred between layers on one

component (mobile station or infrastructure). The primitive has an opera-

tion code which identifies the primitive and its parameters.
Service Access Point: A Service Access Point is a data interface between two layers on one

component (mobile station or infrastructure).

Information Element An information element is part of messages of the air -interface. There are
mandatory, optional and conditional information elements. An IE consists of parameters.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 7 of 51

2 Introduction

In the world of GSM there are messages transmitted over the air -interface. For GSM protocols, these messages are bit
strings of variable length, formally a succession of a fin ite, possibly null, number of bits (i.e., elements of the set {"0", "1"}),

with a beginning and an end. Data in GSM protocol stack entities are normally hold in c-structures.

The size of messages sent over the air inter face is reduced to a minimum so as to enable rap id and compact transfer. Mes-

sages are defined as a structure of information elements concatenated as a bit stream.

Microprocessors are capable of rapid memory access which is not b it-orientated but rather by te-, word- or long -orientated. In

addition, some processor families (e.g. Motorola MC680XX) allow access to even addresses only.

In general, air-interface messages do not start at by te boarders and are not multiples of eight bits in length. Incoming mes-
sage must be decoded, in other words, quickly transformed into a format that the target system can read (e.g. C-structure).

Outgoing messages must be encoded from a C-structure to a bit stream.

Encoding and decoding for the TI GSM Protocol Stack is per formed by the CCD. Additionally there are some functions in-

cluded to code and decode simple data types like by te and long.

This document describes the functions which are used for coding and decoding. Also the data types,

constants and parameters for the functional specification are introduced.

This document is a CCD Programmer’s Guide . Yet it can also serve as a CCD users‟ guide, because

the users of CCD need to know how it handles the message data. This guide is based on the assum p-
tion that the user is familiar with the basic operation principles of mobile phones.

2.1 Overview

The second chapter of this document is dedicated to the fundamental information about encod-
ing/decoding of data for GSM applications. Most of the needed coding types are discussed. Coding

rules are also dependent on the content of the message description files. It is described how the con-
tent of tables in those files can affect the work of CCD.

The third chapter gives a detailed description of the modules in CCD. While the first two sections can
be useful for any user of CCD, the later sections are supposed to help only a smaller group of users.
That means those of them who plans to understand, change or enhance CCD.

The fourth chapter is a technical note on CCD as a software distribution. It shows how to build CCD
object or library files.

Please note that this document is permanently under construction. The author appreciates any
feedback from its readers.

3 Fundamentals

3.1 CCD in Overview

CCD is an interpreter which uses an optimised database for high per formance. The database contains the rules for coding
and decoding all GSM, GPRS or UMTS air-inter face messages.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 8 of 51

A language for describing the messages to generate the CCD database has been defined, which rules over the syntax of
MDF and PDF files . These descriptions are compiled by a CCD compiler (ccdgen.exe) outside the Protocol Stack at gener-
ating time. The compiler generates the database for CCD and the structure definitions (C -header files) used by the Protocol-
Stack components.

The inter face to the applications, i.e. the Protocol-Stack components, is very simple, consisting of an encoding and a decod-
ing function. Thus, all encoding or decoding is carried out by a single function call to CCD. The inter face offers also functions
to retrieve information on errors occurred while encoding or decoding procedures.

It is a lso possible to use CCD database to represent messages in readable form. Applications using CCD are test systems
and tools for analysing signalling.

Primitives are used for communication between Protocol-Stack components. They are defined as C-structures, in the same
way as messages. The CCD compiler generates the C-structures in the form of header files used by the Protocol Stack
components. At run-time CCD does not work with primitives. All primitives are defined with a description language. The
CCD Compiler (CCDGEN) generates header files with C-Structures and constants which are included in the source code of

the Protocol-Stack entities.

The second type of information carriers are messages according to the GSM, GPRS or UMTS standard. The messages are

coded as bit streams and are outside the target system visible at the air -interface. To handle messages efficiently they must
be converted from a bit stream to a C-Structure and vice versa. This is carried out by CCD on the target system. Encoding of
a GSM message means the transformation of a C-structure to a bit stream according to the protocol specifications. Decoding

means the transformation from a bit stream to a C-structure.

The CCD, as a coder/decoder, has two par ts located on the target system. The coding rules for different coding types and
the data about the suppor ted messages and their components.

GSM message definitions

CCDGEN

Header filesCCD definitions

CCD coding rules

+

CCD

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 9 of 51

For a better understanding of the CCD functionality the follow ing sections handle fundamental aspects of message structures
and their elements. A few coding types are described and depicted in details. Also the structure of the so-called message
description documents are discussed in this chapter. The description is completed with an example in the last section.

3.2 Coding Types

CCD uses different functions for coding/decoding of the different types and formats of the information
elements. Next subsection contains definitions for the type and format of a standard IE. Until then we

use the word “type” in the context of “coding type”. At the beginning of each message description cata-
logue (usually msg/*.doc files) there is a table of used coding types. Type names in CCD and in mes-
sage description catalogues are just a little different from each other. For example the type GSM1_V

will change into CCDTYPE_GSM1_V in ccd source code. Until today the following types have been
considered by CCD.

1) For standard information elements: GSM1_V, GSM1_TV, GSM2_T, GSM3_T, GSM3_TV,
GSM4_TV, GSM4_TLV, GSM5_V, GSM5_TLV, GSM1_ASN and GSM1_ASN_NULL.

2) for non-standard information elements: BCDODD, BCDEVEN, BCD_MNC, BCD_NOFILL,
T30_IDENT, CSN1_S1, CSN1_SHL, S_PADDING and GSM7_LV.

In a mixed or nested IE several coding types can be used. A good example is BCDODD which is

sometimes used for basic elements within a standard IE. The next subsections will give a short de-
scription of the mentioned coding types.

3.2.1 Standard Information Elements

Not all but most of the L3 messages have the standard structure described in the GSM documentation
04.07. A standard L3 message consists of an imperative part, itself composed of a header and the rest
of imperative part,

followed by a non-imperative part. Both the non-header part of the imperative part and the non-
imperative part are
composed of successive parts referred as standard information elements.

 The imperative part The non-imperative part

msg header | first IE . . . last IE fir st IE . . . last IE

CCD does not handle the message header since it is processed by the GSM protocol entities. Hence
a description of concepts like Protocol Discriminator, Skip Indicator and Transaction Identifier will be

superfluous here.

A standard IE may have the following parts, in that order:
- an information element identifier (IEI);

- a length indicator (LI);
- a value part.

They are also known as Type (T), Lenght (L) and Value (V). In the comments of the CCD source code

the author uses Tag instead of Type to refer to the IE Identifier. If an optional IE is not present in a
message instance, none of the three parts is present. A standard IE has one of the formats shown in
table:

Format Meaning IEI? LI? V?

T Type only yes no no

V Value only no no yes

TV Type and Value yes no yes

LV Length and Value no yes yes

TLV Type, Length and Value yes yes yes

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 10 of 51

The IE type describes the meaning of the value part. Standard IEs of the same IEI may appear with
different formats. The format used for a given standard IE in a given message is specified within the
message description.

If present, the LI of a standard IE consists of one octet. It contains the binary encoding of the number
of octets of the IE value part. The length indicator of a standard IE with empty value part indicates 0

octets.

The value part of a standard IE either consists of a half octet or one or more octets. The value part of

a standard IE may be further structured into parts, called fields.

Totally four categories of standard IEs are defined :

1) IEs of fo rmat V or TV with value part consisting of 1/2 octet (type 1) which are known as GSM1_V and
GSM1_TV in CCD tables.

Type 1 IE of Format V

Type 1 IE of Format V

Type 1 IE of Format TV

-2) IE of format T with value part consisting of 0 octets (type 2) which is known as GSM2_T in the CCD

tables.

Type 2 IE of Format T

3) IEs of fo rmat V or TV with value part that has fixed length of at least one octet (type 3) which are known as

GSM3_V and GSM3_TV in the ccd tabls.

Octet n
Octet n+1

Octet n+k

 Typ 3 IE des Formats V Typ 3 IE des Formats TV

4) IEs of format TLV or LV with value part consisting of zero, one or more octets (type 4) which are

known as GSM4_TV, GSM4_TLV, GSM1_ASN and GSM1_ASN_NULL in the CCD tables. In a IE of
type 4 (LV, TLV, ASN or ASN_NULL) the value part consists of zero, one, or more octets. If present,
its IEI has one octet length.

In case of LV the value part of the IE is mandatory. In case of TLV the length of the value part must be
calculated by the real time application. In case of elements encoded with ASN.1 BER the LI can be

used to signal an unknown length for the value part. If so then the LI is 0x0080. The end of the value
part is earmarked by two octets filled with zeros. This is known as indefinite form.

Octet n

8 4 1

IEI

8 4 1

value part

value part

.
.
.

value part

8 4 1

IEI

value part

.
.

.

value part

8 4 1

LI

value part

value part

.

.

.

value part

8 4 1

IEI

LI

value part

.

.

.

value part

8 4 1

IEI

LI = 0x0080

value part

.

.

.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 4 1

- - - - value part

8 4 1

value part - - - -

8 4 1

IEI value part

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 11 of 51

Octet n+1
Octet n+2
.

.

.
Octet n+k

 Type 4, Format LV Type 4, Format TLV ASN.1 BER with EOF
 or ASN.1 BER (End Of Content octets)

Besides infinite form of length encoding there are also a short and a long form according to BER.

Definite Short Form (L<128):
The length is given in one octet, representing a range of numbers from 0 to 127 since the first bit must
be 0. For example, a length field of 01010110 indicates that the content field has 86 octets.

Definite Long Form:
The first bit of the first byte is set to 1. The bottom seven bits (#6-#0) of the first byte indicate the num-

ber of bytes of length data to follow. The first subsequent byte is the most significant byte. It is also
permitted to insert all-zero bytes between the first byte and the actual length data bytes. Example:
0x81 0x80 means L=128 and is equivalent to 0x81 0x00 0x80.

There is an extension for the type 4 IEs of format TLV which is defined by CCD as a fi fth type. It is
called GSM5_TLV and can have two octets for the LI. For LIs above 127 the first byte of the LI field is

dedicated to the constant number 0x81. The second one then contains the length information. The T
part consists of an octet.

Another extended type is called GSM5_V. It is used for writing of raw or undecoded bits which has
been read previously from a received message. The structure of this IE is very easy and the coding is
much simpler than for GSM3_V and GSM1_V.

The following table shows by which functions each coding type of standard IEs is actually processed.

coding type decoding function

GSM1_V, GSM3_V cdc_STD_decode

GSM5_V bf_readBitChunk

GSM1_TV, GSM2_T, GSM3_TV, GSM4_TLV,

GSM5_TLV
GSM1_ASN, GSM1_ASN_NULL
GSM4_LV

cdc_TLV_decode

3.2.1.1 Value Part of a standard IE

The value part of a standard IE can be another IE, a few variables or a few spare bits. Often spare bits
are a serie of zeros which help to fill up an octet. All these three types can be mandatory or optional.
One way to show a variable in the value is using a Binary Code Decimal (BCD) number.

3.2.1.2 BCD numbers

There are numbers in GSM world which should be handled digit for digit, e.g. the mobile identity. In
these cases GSM uses Binary Code Decimal numbers. The smallest unit of a BCD number is called

nibble which is made up of four bits. Each nibble represents a digit of a decimal number. For example
the number 5,319 is shown as:

5 3 1 9
0101 0011 0001 1111

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 12 of 51

At the beginning of such arrays the first digit may cover the LSB or MSB. In both cases it is important
to close the array right at the end of the last octet. This GSM Coding rule for BCD numbers prescribes
that the last nibble is filled up with 1111 if the array is finished in the middle of the last octet.

Octett n
Octett n+1

...
Octett n+m

Octett n
Octett n+1
...

Octett n+m

For this reason there is two entries for BCD in the types table at the beginning of each GSM message

catalogue. One for BCDODD and one for BCDEVEN. CCD uses the same function
cdc_BCDODD_decode() to handle all the four cases above. It is called as cdc_BCD_decode (eRef, 1)
for BCDODD and as cdc_BCD_decode (eRef, 0) BCDEVEN.

3.2.2 Non Standard Information Elements

Non standard information elements are partially used in both the standard and non standard L3 mes-
sages. Some of them are older IEs and some has been added later to the protocol specifications. The

coding type T30_IDENT for the fax protocol entity belongs to the second group. Rest octets and
CSN.1 (compact notation described) elements has been known for a bit longer time.

3.2.2.1 T30_IDENT

The standardization document t.30 is one of the ITU Standardisation Serie T. It contains the proce-
dures for document facsimile transmission in the general switched telephone network. One of the i n-
formation fields handled in this document is the subscriber identification number. It is the international

telephone number including the “+” character, the telephone country code, area code and subscriber
number. This field consists of 20 octets which are to written or read as ASCII characters. This type of
octet arrays are aslo used for similar information, e.g. for passwords or sub addresses.

Furthermore t.30 recommends that the information be right justified and the least significant bit of the
least significant digit be the first bit transmitted. For this reason CCD reverses the information when

coding/decoding of such t.30 identification numbers. For example for coding it first reverses the bytes
then the bits.

Digit[20]:
 “+” LS Digit

0 0 1 0 1 0 1 1 . . .

 LSB
bitbuf _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . 1 1 0 1 0 1 0 0 _ _ _ _ _ _ _

Following the ITU recommendation CCD considers a “space” character for each unused octet in the
information field.

MSBit LSBit

7 8 6 5 4 3 2 1

DIGIT_2 DIGIT_1

DIGIT_4 DIGIT_3

: : : : : : : :

DIGIT_Z DIGIT_X

MSBit LSBit

7 8 6 5 4 3 2 1

DIGIT_1 XXXXXXX

DIGIT_3 DIGIT_2

: : : : : : : :

DIGIT_Z DIGIT_X

MSBit LSBit

7 8 6 5 4 3 2 1

DIGIT_2 DIGIT_1

DIGIT_4 DIGIT_3

: : : : : : : :

1 1 1 1 DIGIT_Z

MSBit LSBit

7 8 6 5 4 3 2 1

DIGIT_1 XXXXXXX

DIGIT_3 DIGIT_2

: : : : : : : :

1 1 1 1 DIGIT_Z

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 13 of 51

3.2.2.2 CSN.1 Elements

CSN.1 elements can be subelements of standard information elements or rest octets. There are two
types of CSN.1 elements. In the CCD sources they are named called CSN1_S1 and CSN1_SHL. For

their simplicity we begin with the description of the first group.

3.2.2.3 CSN1_S1 Elements

Like other kinds of IE a CSN1_S1 can be made of mandatory and optional parts. The characteristic of
CSN1_S1 elements relates to the behavior of their optional subelements. The presence or absence of
optional subelements is given by a one-bit valid flag in the message. A valid flag of 0 means the infor-

mation is not present in the IE. A valid flag of 1 is followed by the appropriate information. In other
words such a subelement is made up of a fixed and an optional part. The second part exists only if the
first part is filled with 1.

A simple example for a CSN1_S1 IE is „MS Radio Access Capability Value Part“ which can be d e-
picted as follows:

MS RA capability value part

= {0}

or
= {1, Access Technology Type, Access capabilities, MS RA capability value part}

Thus this IE can have different forms. A few of them is shown in the following schema.

0

1 Access Technology

Type
Access capabilities 0

1 Access Technology

Type1
Access apabilities1 1 Access Technology

Type2
Access capabilities2 0

1 Access

Technology

Type1

Access
Capabilities1

1 Access
Technology

Type2

Access
capabilities2

1 Access
Technology

Type3

Access
capabilities1

0

When CCD is coding or decoding an IE of this category it uses the calls bf_writeBit(0), bf_writeBit(1)
and bf_readBit() in order to process the valid flag.

3.2.2.4 Rest Octets

Rest octets are defined to be IEs of variable length. Thus there is no need for a length information
part. Nor it is easy to find the number of octets in the coding/decoding process. CCD works with rest
octets without any length information. This category of IEs do not have an identifier (IEI) either.

Different parts of a rest octet group are handled as CSN1_S1, spare padding or CSN1_SHL. The last
two categories are described in the next subsections. A simple example can be NT/N rest octets. The

following schemas for the bit string show there are many different possibilities for this IE.

0

1 NLP(PCH) list of Group Call NCH information Spare padding

where the middle part „list of Group Call NCH informat ion“ can have one of the following forms:

0

1 Group Call Reference 0 0

1 Group Call Reference 1 Channel Descriptor 0 0

1 Group Call Reference 1 Channel Descriptor 1 0 Mobile Allocation 0

1 Group Call Reference 1 Channel Descriptor 1 1 Freq. Short List 0

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 14 of 51

In this example only CSN1_S1 and spare padding are involved.

3.2.2.4.1 Spare Padding

Both spare bits of standard IEs and spare padding in the rest octets are used to fill up an octet.
Though there is a big difference between them. The padding spare is not a simple string of zeros or
ones. It is related to the following schema:

0 0 1 0 1 0 1 1

While decoding a message the content of padding spare bits has no relevance, whereas a correct
encoding of them is a must. In this case the output can vary depending on the length and st arting posi-

tion of the padding bits.
If the spare padding bits to be encoded start on an octet boundary and they are a multiple of octets,
there is nothing to do but copy the above bit string to the air message.

If the padding sequence to be encoded starts in the middle of an octet, only the last bits of the above
bit string must be taken in order to fill up an octet.

3.2.2.4.2 CSN1_SHL Elements

The position of the starting bit within the current octet plays a key role also for the CSN1_SHL ele-
ments. For a given position the bit is called an L bit if it has the same value as in the padding pattern
above. Otherwise the bit is called an H bit.

The characteristic of CSN1_SHL elements relates to the behavior of their optional subelements. The
presence or absence of optional subelements is given by a one-bit valid flag. The valid flag is an H (0

or 1) bit to signalize the presence and is or an L (0 or 1) bit to signalize the absence of the IEs.

While Coding/Decoding CCD uses the C-macro GET_HL(bit) to find out the H or L value for a given po-
sition. It uses the simple bit operation
padding_bits[bitpos%8] ^ bit

where the spare pattern is defined as
UBYTE padding_bits[8] = {0, 0, 1, 0, 1, 0, 1, 1};

Therefore the L value is provided by GET_HL(0) and the H value by GET_HL(1). The operation bitpos%8 is

necessary, because the global variable bitpos shows the position from the beginning of the message
bit string and not from the beginning of the octet being processed.

3.3 Message Buffering

CCD uses two global C arrays for buffering of the message information:
GLOBAL UBYTE *bitbuf, *pstruct;

The smaller array is bitbuf and contains the air message written in network byte order. The bigger one
is pstruct into which the related message parts are written in host byte order. Both arrays are write
protected through a single semaphore. In order to exchange the information with the caller function

CCD uses usual pointer assignments.

While coding or decoding a message CCD processes the information given by the caller in a succes-

sive manner. While coding it reads the information successively from pstruct[], following the entries in
CCD-tables

1
. The results are written into bitbuf. While decoding it reads the information successively

from bitbuf[], again according to the entries in CCD-tables. The results are then written to pstruct. The

bit manipulating functions of CCD are all in the file bit fun.c.

The successive processing of data is completed with an updating of written/read position after each

write/read action on the information carriers bitbuf and pstruct. The used global variables for the pos i-
tion in bitbuf and pstruct are respectively bytepos and pstructOffs .

1 The CCD-tables are f iles in the format *.cdg. They are produced by ccdgen.exe, the compiler of the message description

catalogues.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 15 of 51

In general the structural unit for several parts of an IE can be either one bit or one byte. In both cases
CCD reads/writes the data byte wise from/in bitbuf or pstruct. This is very easy for the second array.

For the first one CCD needs some bit operations, e.g. left or right shifting. For an instructive example
suppose we want to write three bits of information in form of one byte in bitbuf. Further for simplicity
suppose that the three bits should be written at the beginning of a new octet. So we need to put the

three bits left adjusted in a byte and write it in bitbuf at the position bytepos. The redundant part of this
byte will be overwritten in the next write action.

There are a few more global variables used by bit manipulation functions:

 GLOBAL UBYTE bitpos : is the number of so far written/read bits in bitbuf.

 GLOBAL UBYTE byteoffs: is the number of the written/read bits of the last byte in bitbuf.

 GLOBAL USHORT bitoffs: is the number of bits which exist in the message but are not to be
processed by CCD. This part of message contains the message header information.

 GLOBAL USHORT buflen: is the number of the bits in the message buffer including message header
information.

 GLOBAL USHORT maxBitpos: is the maximum value allowed for bitpos. It may be calculated or set
equal to buflen.

3.3.1 Host and Network Byte Order

For writing/reading of more than one bit CCD uses a temporary variable of type t_conv16 or t_conv32. These unions are defined
as below:

typedef union { UBYTE c[2]; USHORT s; } t_conv16;

typedef union { UBYTE c[4]; ULONG l; } t_conv32;

After bits are read and settled into the temporary variable they will be copied to bitbuf or pstruct. Before copying CCD may
convert the byte order within this small buffer depending on the technology used. Target systems with Intel processors need

such byte order conversion. The converting steps look a little different for reading out of a t_conv16 or a t_conv32. The first
example shows how the bytes are new ordered while using a temporary variable of type t_conv32. The second example
shows this for t_conv16.

Intel host buffer

Air message in b itbuf

The second example shows how the by tes are new ordered while using a temporary variable of type t_conv16.

Intel host buffer

Air message in b itbuf

3.3.2 Avoiding of overwritings

CCD avoids actively overwriting the bit buffer. This data protection happens through a logical oring or
anding with an appropriate bit pattern. However the bit patterns and the logical operations are different
depending on how many bits are to be written. The short descriptions below are related to the actions

of coding, thus writing in bitbuf. Similar actions do exist for decoding (writing in pstruct).

1) The simple case of writing of one single bit is handled by the function bf_writeBit(). Here the co n-

stant array shift[] contains all the used bit patterns.
LOCAL const UBYTE shift[] = { 128, 64, 32, 16, 8, 4, 2, 1 };

The octet being processed is positioned by bytepos and the bit to be written is positioned with byteoffs.

MSB=32 LSB=1

B0 B1 B2 B3

 Most Significant Word Least Significant Word

B3 B2 B1 B0

B1 B0

MSB=32
LSB=1

B0 B1

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 16 of 51

Now shift[byteoffs] gives an octet filled with a 1 at byteoffs and zeros elsewhere. If we take the byte
bitbuf[bytepos] and do a logical OR with shift[byteoffs] we get a 1 at byteoffs and the previous content
elsewhere.

In order to write a 0 we take the byte bitbuf[bytepos] and do a logical AND with ~shift[byteoffs].

2) For writing of up to 32 bits three steps may be needed: masking, shifting and conversion of byte

order. The used bit patterns for the masking are tabled in mask[]. This table contains valid masks for
right-justificated values. Notice that we use a temporary variable for buffering the bits. The buffered
value needs an AND operation with mask[len]. This lets the last len bits in the temporary variable be

as in pstruct. All other bits will be set to 0.

At this moment the data is not ready to be copied to bitbuf. It must be adjusted in two steps. By a left

shifting of the corresponding bits we guarantee that the bits will be attached to the corresponding byte
just at the position byteoffs. The copying of data into bitbuf happens through an OR between this byte
and the well adjusted bytes in the temporary buffer. By doing this we keep the previous content of the

byte while attaching new bits to it.

The example case, depicted below, would be handled by the function bf_writeBits(3). 3 bits are to be

written in the octet at bytepos in the position byteoffs(= 2). The letter x means the content is not rele-
vant. Other letters represent some unknown content. The letters are used to emphasize the right o r-
der of bits after writing. Only two bytes of bitbuf are shown here.

Original content of bitbuf at bytepos:

Temporary buffering:
conv.s = (USHORT) pstruct[pstructOffs];

Masking:
conv.s &= (USHORT) mask[len];

Shifting:
conv.s <<= (16 - len) - byteoffs;

Copying into bitbuf +
byte order conversion:
 bitbuf[bytepos] |= conv.c[MSB_POS];

 bitbuf[bytepos + 1] |= conv.c[LSB_POS];

Here conv.c[MSB_POS] must refer to the first byte and conv.c[LSB_POS] to the second. For Intel
processors CCD defines MSB_POS=1 and LSB_POS=0. This might be contradictory at first view. But

note that referring to a char belonging to a short union works differently for different types of machins.
For Intel structures conv.c[0] contains the LSB.

3.4 CCD data base

CCD works somehow as an interpreter. While coding it reads the information successively from pstruct[], fo llow ing the en-
tries in CCD- tables. The results are written into bitbuf. While decoding it reads the information successively from bitbuf[],
again according to the entries in CCD-tables. The tables need to be generated by another component of the CCD-Packet

called CCDGEN. CCDGEN reads the word documents containing the message and SAP description catalogues and gener-
ates files needed by CCD and test application system. The ouput (and intermediate) files are of different formats: *.h, *.cdg ,
*.pr, *.val (and *.mdf or *.pdf). Some of the output files are not used by CCD itself. For example header files containing the C-

structure defin itions are to be used by GSM applications or test programs, e.g. CCDTAP.

This chapter gives a description of the formats of the output files *.cdg. The first section however is dedicated to message
description catalogues since it is instructive for understanding of the ccd tables ex tracted from these catalogues.

a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x x x x x x x x x x x x x c d e

0 0 0 0 0 0 0 0 0 0 0 0 0 c d e

0 0 c d e 0 0 0 0 0 0 0 0 0 0 0

a b c d e 0 0 0 0 0 0 0 0 0 0 0

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 17 of 51

4 Message description catalogues

Currently L3 message description catalogues for GSM and GPRS are written in the common used format MS Word 97. Each
file contains six chapters. The message describing part begins w ith the 2nd chapter where the constants used in the file are

given. Type definitions in the third chapter list the coding types needed for each information element (IE). Besides the stan-
dard types like GSM4_TLV and BCDODD there are entries for special types like T30_ident and GSM5_TLV.

The 4th chapter contains tables of different L3 message structures. This shows only the outermost level. The inner par t of

the messages are listed with detailed information in the fifth and sixth chapter. There are two categories of IEs: basic and
structured elements. Basic elements, listed in the last chapter, are simply made of variables or constants. Structured IEs ar e
made up of some other IEs. Therefore there are links between structured IEs within the chapter 5.

For UMTS project no Winword document is used. While the standardisation uses ascii tex t file and ASN.1 abstract notation,

the tool asn2mdf makes an MDF version of this file. Intermediate format MDF is discussed in a separate section of this
document.

4.1 types

The example below is taken from the file RR.doc. The first column gives the coding type of an IE.

name add bit ctrl comment

GSM1_V 0 mandatory IE V-component in one nibble
GSM1_TV 4 optional optional w ith V-Component
GSM2_T 8 optional optional IE, contains IEI only (no V-component)

GSM3_V 0 mandatory / conditional, no IEI, V-component
only

GSM3_TV 8 optional optional IE w ith V-component
GSM4_LV 8 mandatory / conditional, length and V-

component
GSM4_TLV 16 optional optional IE w ith length indicator and V-

component
GSM5_V 0 optional optional IE (bitstream to end of message)

BCDODD 4 binary coded decimal number starting with digit1
BCDEVEN 4 binary coded decimal number starting with digit2

Additional bits (add bit) are meant to be the T part, or the full bits eventually needed for BCD coding. This is impor tant for
ccdgen when calculating the possible bit size of IEs or messages.

Optional types are: Types requiring an identifier (T par t), CSN.1, S_PADDING and GSM5_V. The latter one has been intr o-
duced for par ts of message which can or must be passed without decoding. Optionality is not only given by coding type. Also

conditional IEs are defined as optional for the Coder/Decoder.

Valid types for GSM and GPRS are:

GSM1_V GSM1_TV GSM2_T GSM3_V GSM3_TV GSM4_LV

GSM4_TVL GSM5_V GSM5_TLV GSM6_TLV GSM7_LV GSM1_ASN

BCDODD BCDEVEN BCD_NOFILL BCD_MNC CSN1_S1
 CSN1_SHL

S_PADDING T30_IDENT

Valid types used for e lements of UMTS messages are:

BITSTRING ASN1_OCTET ASN1_CHOICE ASN1_INTEGER ASN1_SEQUENCE

If you want to know which types are suppor ted by which version of Coder/Decoder, take a look at the corresponding file

ccd_codingtypes.h.

4.2 Messages

Relevant information for CCD is inser ted in the tables of message description catalogues. For this reason we focus on the

meaning of table entries using examples from the file RR.doc.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 18 of 51

Note1: Absolutely impor tant entries for coder/decoder are message ID, direction, element ID, type, ctrl and bitlen.

Note2: Indirectly or only in special cases involved entries are long name and shor t name.

Note3: The rest of the table entries are informative par ts, yet not relevant for CCD.

4.2.1 Long name, short name, ID, direction

The first example concerns the message description for “additional assignment” in RR.doc, as depicted below. Long names
will be stored to mstr.cdg by CCDGEN for trace outputs of test systems. Short names will be used for message structure
type defin itions. For d_add_assign there will be an entry typedef struct { ... } T_D_ADD_ASSIGN; in the file m_rr.h which is also

generated by CCDGEN, see the corresponding section. The parameters ID and directions are important to specify a mes-
sage uniquely for each entity. The same PDU-Type (msg ID) can be used for both directions uplink and downlink while the
message structures can be different. Valid (binary) numbers for message type are listed in 10.4 of GSM0408.

Definition:
long name short name ID Direction

Additional assignment d_add_assign 0b00111011 Dow nlink

Elements:
ID long name short

name
Ref spec ref pres type len

 Message Type msg_type 6.60 10.4. M V3 1
 Channel Descrip-

tion
chan_desc 5.6 10.5.2.5 M V 3

0x72 Mobile Allocation mob_alloc 5.17 10.5.2.21 C TLV 3-10

0x7C Starting Time start_time 5.27 10.5.2.38 O TV 3

4.2.2 element ID, ref, spec ref, pres, type, len

Obviously IDs (also called IEI or tag) are needed to control the presence of the optional information elements. No ID is in-

serted in the table for a mandatory IE.

The links in the column ref refer to the later chapters which contain details about structured and basic e lements. The links in
the column spec ref refer to the chapters in the GSM recommendation, here GSM0408.

The columns ref, spec ref and pres are not used by CCD. Thus CCDGEN let them unread. The letter s M, C and O stands for
respectively mandatory, conditional and optional. The actual meaning of optionality for CCD is given in a previous section
about coding types.

The length information in column len is given in bytes. Note that the length of the element “Mobile Allocation” can vary from 3

to 10 bytes. For some IEs even the length of the interval is not known since it depends on other parameters or variables.
Take “BA Range” of the message “Channel Release” as an example.

0x73 BA Range ba_range 5.1 10.5.2.1 O TLV 6-*

The length interval for this IE is shown as “6-?” in GSM0408, 9.1.7. No upper length limit is specified except for that given by

the maximum number of octets in a L3 message. In some other places the notation “-?” is used2.

Note: Relevant length information for CCD and CCDGEN is given in descr iptions of basic elements.

The column type gives the type of coding rules needed for the IE. For historical reasons there are some small differ ences
between the type names declared here and the names listed in the chapter called types. For example types V and TV here

are given as GSM1_V and GSM1_TV in that table. Currently valid types are listed below.

2 Example: “facility” in the message “Alerting” in cc.doc.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 19 of 51

In

chapter Types

and in *.mdf files

In

column

type

In

ccd_codingtypes.h

Source file

name

GSM1_V V CCDTYPE_GSM1_V gsm_1v.c

GSM1_TV TV CCDTYPE_GSM1_TV gsm1_tv .c

GSM2_T T CCDTYPE_GSM2_T gsm2_t.c

GSM3_V V3 CCDTYPE_GSM3_V gsm3_v.c

GSM3_TV TV3 CCDTYPE_GSM3_TV gsm3_tv .c

GSM4_LV LV CCDTYPE_GSM4_LV gsm4_lv.c

GSM4_TLV TLV, TLV4 CCDTYPE_GSM4_TLV gsm4_tlv.c

GSM5_V V5 CCDTYPE_GSM5_V gsm5_v.c

GSM5_TLV TLV5 CCDTYPE_GSM5_TLV gsm5_tlv.c

GSM7_LV GSM7_LV CCDTYPE_GSM7_LV gsm7_lv.c

GSM6_TLV TLV6 CCDTYPE_GSM6_TLV gsm6_tlv.c

GSM1_ASN ASN1 CCDTYPE_GSM1_ASN gsm1_asn.c

BCDODD BCDODD CCDTYPE_BCDODD bcdodd.c

BCDEVEN BCDEVEN CCDTYPE_BCDEVEN bcdeven.c

BCD_NOFILL BCD_NOFILL CCDTYPE_BCD_NOFILL bcd_nofill.c

BCD_MNC BCD_MNC CCDTYPE_BCD_MNC bcd_mnc.c

CSN1_S1 CSN1_S1 CCDTYPE_CSN1_S1 csn1_s1.c

CSN1_SHL CSN1_SHL CCDTYPE_CSN1_SHL csn1_sh.c

S_PADDING S_PADDING CCDTYPE_S_PADDING s_padding.c

T30_IDENT T30_IDENT CCDTYPE_T30_IDENT t30_ident.c

BITSTRING Not applicable CCDTYPE_BITSTRING asn1_bitstr.c

ASN1_OCTET Not applicable CCDTYPE_ASN1_OCTET asn1_octet.c

ASN1_INTEGER Not applicable CCDTYPE_ASN1_INTEGER asn1_integ.c

ASN1_SEQUENCE Not applicable CCDTYPE_ASN1_SEQUENCE asn1_seq.c

ASN1_CHOICE Not applicable CCDTYPE_ASN1_CHOICE asn1_choice.c

4.3 Structured elements

Absolutely impor tant entries for coder/decoder in the descriptions of structured elements are: type and ctrl in the Elements
table. Indirectly or only in special cases involved entries are long name and short name. The rest of the table entr ies are

informative parts, and not relevant for CCD.

Type means coding type. Ctrl contains additional instructions for presence conditions, array formatting
and a few more special steps for special IEs, e.g. mobile identity.

The first example is the IE “Mobile Allocation” from RR.doc with the following tables:

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 20 of 51

Definition:
long name short name type len

Mobile Allocation mob_alloc 4 3-10
Mobile Allocation mob_alloc_befor

e

4 3-10

Mobile Allocation mob_alloc_after 4 3-10

Elements:
long name short

name

ref bit len ctrl

Mobile Allocation Con-
tents

mac 6.61 8 [1..N_MOB_ALLOC]

All the three elements mob_alloc, mob_alloc_before and mob_alloc_after has the same structure
rules.

The columns type and len in the Definition table are not important for the interanl use of CCD. The
acutal length of the structure is calculated by CCDGEN when reading chapter about basic elements.
The annotation of the ctrl-column is specific for its interpreter CCDGEN. In this example the interval

[1..N_MOB_ALLOC] tells us that the IE can occur in the message up to N_MOB_ALLOC times, each
time of 8 bits length. The length according to the field bitlen. In real time CCD will read the value of
this constant and set it to the maximum repeat numbers of the variable mac.

In the next example also the lower limit depends on a variable. CCDGEN will use the c ontent of the
column ctrl to insert some rules in the calc table. CCD will read this variable using the inserted rules by

CCDGEN. The IEs belong to the IE “BA Range” in RR.doc.

Elements:
long name short

name
ref bit len ctrl

Number of
Ranges

num_range 8

Frequency
Range

freq_range 20 [num_range..N_MAX_RANGE]

For BCD numbers the expression under ctrl helps CCD to register their coding type and the total

length of the bit field. An example for this application is “ Location Area Identification” in RR. doc. The
IE must be 5 bytes long but the table below gives only 5 bytes. Where is the rest of the 5 bytes? The
answer is in BCD coding rules: “If the number of the digits is odd, the last Octet contains the bit pattern

1111 in the most significant nibble”. Thus for the bit field mcc 4*4 bits will be used instead of 3*4.

Definition:

long name short name type len

Location Area Identif ica-
tion

loc_area_ident 3 5

Elements:
Long name short

name
ref bit len ctrl

Mobile Country

Code

mcc xxx 4 BCDEVEN[3]

Mobile Netw ork
Code

mnc xxx 4 BCDEVEN[2]

Location Area Code lac xxx 16

In the example above the bit field has a constant and known length. In some other cases the length
can vary between a lower und upper limit. For the IE num of “Called party BCD number” the entry

under ctrl is BCDEVEN[0..20] what says the variable num is a BCD number and can have up to 20*4
bits.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 21 of 51

There is a special kind of IEs called extended octet group. At the beginning of each octet there is a
flag bit which is set to 1 if the current octet should be followed by a further octet. It is set to 0, if the
current octet is the last one in the extended group. Therefore they can be referred as optional ele-

ments.

The first IE of the first octet is marked with the symbol „+‟ in the column ctrl.

The last IE of the last octet is marked with the symbol „-‟.

The middle IEs of between a „+‟ and „ -„ are not marked with any symbols.

A single octet of this type is marked with „*‟.

The example below belongs to the IE “Cause” from cc.doc. From cs till cause there can be up to 3

octets in this group.

Definition:
long
name

short
name

type len

Cause cc_cause 4 4-32
Cause cc_cause_2 4 4-32

Elements:
long name short

name
Ref bit len ctrl

Coding standard
II

cs 6.6 2 +

Spare .0 1
Location loc 6.25 4 -
Recommendation rec 6.46 7 *
Cause value cause 6.3 7 *

Diagnostics diag 6.11 8 [0..MAX_DIAG_LE
N]

Any further octets relating to a protocol extension are marked with „!‟ or „#‟. The last sign marks the
end of such an extended group. For the example bel ow this means:
If a received message has less or more extended facsimile capability receiver octets than specified by

this table, CCD will skip over the difference (octets or IE number) and will not produce any error report.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 22 of 51

Definition:
long name short name ID direction

BCS Digital transmit com-

mand

BCS_DTC 0b10000001 both

Elements:
long name short name ref ref pres len ctrl

Facsimile control f ield fcf 5.3.6.1 M 1

basic facsimile capabilities receiver cap0_rcv 5.3.6.2.1 M 3

extended facsimile capabilities 1 re-
ceiver

cap1_rcv 5.3.6.2.1 O 1 !

extended facsimile capabilities 2 re-
ceiver

cap2_rcv 5.3.6.2.1 O 1 !

extended facsimile capabilities 3 re-
ceiver

cap3_rcv 5.3.6.2.1 O 1 !

extended facsimile capabilities 4 re-
ceiver

cap4_rcv 5.3.6.2.1 O 1 !

extended facsimile capabilities 5 re-
ceiver

cap5_rcv 5.3.6.2.1 O 1 !

extended facsimile capabilities 6 re-
ceiver

cap6_rcv 5.3.6.2.1 O 1 !

extended facsimile capabilities 7 re-

ceiver

cap7_rcv 5.3.6.2.1 O 1 #

Up to here we have learnt the notation used in ctrl column to describe IEs of an extended group or
fields of repetitive elements. The second category is a common source for misunderstandings and

failure. Hence we dedicate a table to sum up the discussed alternatives. The following table gives a
summary of how bit or IE fields are int roduced in message description (*.doc) files.

Field

Type

Msg

Desc
File

IE

short
name

Ctrl-

column

Declarations in

Header file *.h

Bit size of

each field
element

repType

in me-
lem.cdg

Constant length;
Field made of a
simple IE

gmm.doc rand_value [16] UBYTE rand_value[16]; 8 'c'

Constant length;

Field made of a
structured IEs

rr.doc tagged_usf_tn [8] T_tagged_usf_tn tagged_usf_tn[8]; 4 or 0 'c'

Constant length;
Bit field

gmm.doc tmsi [.32] BUF_tmsi tmsi;
typedef struct {
 USHORT l_tmsi;

 USHORT o_tmsi;
 UBYTE b_tmsi[5];
} BUF_tmsi;

1 'b'

Variable lenght;
Bit field

Warp\
rr.doc

allo_bmp7 [.allo_len7..127]

BUF_allo_bmp7 allo_bmp7;
...

typedef struct
{
 USHORT l_allo_bmp7;
 USHORT o_allo_bmp7;

 UBYTE b_allo_bmp7[20];
} BUF_allo_bmp7;

1 'b'

Variable lenght
saved to a counter;
Field made of

simple IEs

Gsm\
cc.doc

subaddr [0..20]

UBYTE c_subaddr;
UBYTE subaddr[20];

8 'i'

Variable lenght
saved to a counter;
Field made of
structured IEs

Gsm\
rr.doc

gr_call_info [0..MAX_GR_C_I
NFO]

typedef struct {
 ...
 UBYTE c_gr_call_info;
 T_gr_call_info gr_call_info[5];

} T_nt_rest_oct;

unknown 'i'

Variable length must
be calculated by ccd;

Gprs\
grr.doc

inst_bitmap [psix_cnt+1..16] UBYTE c_inst_bitmap;
UBYTE inst_bitmap[16];

1 'v'

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 23 of 51

Field made of
simple IEs

Variable lenght must

be calculated by ccd;
Field made of
structured IEs

Gsm\

rr.doc

cod_prop [cnt_cod_prop..3] UBYTE c_cod_prop;

T_cod_prop cod_prop[3];

10 'v'

Variable lenght must
be calculated by ccd;

Field made of
simple IEs

Gprs\
sms.doc

num BCDEVEN[0..20] UBYTE c_num;
UBYTE num[20];

4 'v'

Another type of control information in the field ctrl relates to the conditional expressions. The table
below describes the structure of the IE “Channel Description” from RR.doc. The presence of the IEs

arfcn, maio and hsn depends on the value of the basic IE hop. If this variable is 0 the 12 bits after it
are made of an spare field (00) and 10 bits for the variable arfcn. However if this va riable is 1 the 12
bits after it are made of 6 bits dedicated to maio and 6 bits to hsn.

Elements:
long name short

name
ref bit len ctrl

Channel type and TDMA

offset

chan_type 6.32 5

Time Slot tn 6.101 3
Training Sequence Code tsc 6.104 3
Hopping hop 6.51 1

spare .00 2 {hop=0}
Absolute RF Channel Num-
ber

arfcn 6.11 10 {hop=0}

Mobile Allocation Index

Offset

maio 6.62 6 {hop=1}

Hopping Sequence Number hsn 6.52 6 {hop=1}

The most sophisticated rules in the column ctrl are dedicated to a special IE called “Mobile Identity”.

Definition:

long name short
name

type len

Mobile Identity mob_ident 4 3-10

Elements:
long name short

name
ref bit len ctrl

Type of identity ident_type 3 (GETPOS,:,4,+,:,1,+,SETPOS)
Odd/ Even indicac-

tion

odd_even 1 (SETPOS)

Identity digit ident_dig 4 (SETPOS) {ident_type # ID_TYPE_NO_IDENT
AND ident_type # ID_TYPE_TMSI} BCDODD

[0..16]
spare .1111 4 (:,SETPOS,8,+){ident_type = ID_TYPE_TMSI}
TMSI tmsi 32 (SETPOS){ident_type = ID_TY PE_TMSI} [.32]

In the follow ing table you find a summary of notations in the ctrl column and how they are understood by CCD.

Instruction meaning of instruction example

[0..CONSTANT] array of bytes (also USHORT in *.pdf) [0..MAX_RFL_NUM_LIST]

[var-
name+number..CONS

TANT]

array of bytes (also USHORT in *.pdf) [rfl_cont_len+3..19]

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 24 of 51

[.CONSTANT] array , dot marks a bit array [.32]

BCDODD[numbers] BCD numbers star ting with d igit1

BCDEVEN[numbers] BCD numbers starting with digit2 BCDEVEN[2] or BCDEVEN[0..20]

{ … } conditional {flag=1 AND flag2=1 OR flag=0}

(…) command sequence (GETPOS,:,4,+,:,1,+,SETPOS)

GETPOS get the bitstream pointer (GETPOS,:,4,+,:,1,+,SETPOS)

SETPOS set bit stream pointer As above

KEEP,regNr keep value of a variable in ccd register (KEEP,1)

see GRR.doc chapter 5.65

TAKE,regNr Take the value of ccd register [.(TAKE,1)+1..8]

see GRR.doc chapter 5.136

MAX,regNr Compare and keep the maximum in ccd regis-

ter from a variable and ccd register

(MAX,2)

see GRR.doc chapter 5.73 and 5.74

: duplicate the element (GETPOS,:,4,+,:,1,+,SETPOS)

^ swap the two elements see CC.doc chapter 5.4 bearer capability

+ * - fir st middle last octett see CC.doc chapter 5.4 bearer capability

AND OR XOR logical operations: AND, OR and XOR {flag=1 AND flag2=1 OR flag=0}

= # < > comparisons (KEEP,1) {n_r_cells # 0}

(22) or (0) Maximum length of spare padding bits S_PADDING .00101011 (22) means if the
message consists of less than 22 bytes then
fill up with the bit pattern

S_PADDING .00101011 (0) means if the

message doesn‟t end on octet boundary
then fill up to octet boundary with b it pattern
eg.: xxxx1011

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 25 of 51

4.4 Basic elements

The tables in the last chapter of a message catalogue contains values or value ranges for the so
called basic elements. A basic IE is simply made of one variable. Single values will be C-macros in the

source code. For each entity CCDGEN puts all such C-macro definitions in a file with the extension
*.val, e.g. in m_rr.val for RR.doc.

Furthermore CCDGEN produces the tables mconst.cdg and pconst.cdg which contain the values or
value ranges of the basic IE. The Format of the table will be discussed in a later section of this doc u-
ment.

The two example tables, below, for single values and value ranges do not seem to need a further de-
scription.

Definition:
long
name

short
name

bit len

A5/2 a5_2 1

Values:

value c-macro Comment

0 A5_2_NO encryption algorithm A5/2 available
1 A5_2_YES encryption algorithm A5/2 not available

Definition:
long name short

name

bit len

Low est
ARFCN

low _arfcn 7

Values:
value comment

1-124
DEF reserved

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 26 of 51

5 CCDGEN Intermediate Files *.mdf and *.pdf

Before CCDGEN produces its final output files, another tool (xgen.exe or asn1_to_mdf.exe) must have
processed the information in the message and SAP catalogues. Such a tool puts the relevant informa-

tion in the so-called intermediate files with the extension *.mdf and *.pdf. A comparison between the
content of these files and the *.doc files shows that some information in the *.doc files are redundant
and thus not necessary for the CCD tables.

The different categories of information in these files are labeled with CONST, TYPE, VAR, VAL,
COMP, UNION, MSG (or PRIM), all occurring in the same order. Each category has its own format. In
the examples below the format of each group is given on the top the single entry. The examples be-

long to the entity RR.

1) CONST

Key Word Name Value Comment
CONST L3MAX_ACK 251 ; GSM 4.06, section 5.8.5

2) TYPE

Key Word Coding Type addbits Comment
TYPE GSM1_V 0 ; mandatory IE V-component in one
nibble

3) VAR
Key Word Short Name Long Name Bit Lenght
VAR access_ident "Access identity" 2

4) VAL

Key Word Value Short Name Long Name (or empty)

VAL 0 AI_OCT_ID "octet identifier"

VAL DEF "reserved"

4) COMP
Structured IEs are described in *.mdf under the label COMP (composition). The important parameters
for each composition are name, ID and the entries in the column ctrl. The missing parameter Coding

Type is given under the label MSG together with the name of the IE. Also the parameter Bit Length (in
the column bitlen) is not really forgotten. It is given under the label VAR.

The format given below is valid for all IEs but the sophisticated IE mob_ident.
Key Word Short Name Long Name ID
{

BCD Type or empty (Short Name) or (Short Name + ctrl column) Comment
}

COMP ba_range "BA Range" 0x73

{

 num_range ; Number of Ranges

 freq_range [num_range..N_MAX_RANGE] ; Frequency Range

}

COMP loc_area_ident "Location Area Identification"

{

 BCDEVEN mcc [3] ; Mobile Country Code

 BCDEVEN mnc [2] ; Mobile Network Code

 lac ; Location Area Code

}

5) MSG
This category of information belongs only to the message description files *.mdf. The used structure is

a unifying of the two tables “description” and “elements” for each message in *.doc. Each message is

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 27 of 51

uniquely defined by its ID and direction. The information elements of a message are to find under the
label COMP.

Key Word Short Name Direction ID Comment
{

Coding Type Short Name Comment

}

MSG b_rr_status both 0b00010010 ; RR Status

{

GSM3_V msg_type ; Message Type

GSM3_V rr_cause ; RR Cause

}

6) PRIM

This category of information occurs only in the SAP description files *.pdf.
 Key Word C-macro ID
{

Short Name Comment
}
PRIM MMCC_RELEASE_REQ 0x0202

{

inst_id ; Instance number

ti ; transaction identifier

}

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 28 of 51

6 CCDDATA or CCD tables

The following sections give a detailed description of the CCDGEN output files with the name ex tension *.cdg. Most of the
files w ill contribute to the CCD coding/decoding tables. The entries in the files are c-expressions. Each line is actually a

member of a structure field.

6.1.1.1 ccdmtab.cdg and ccdptab.cdg

This file contains C-expressions which include the relevant *.cdg files in order to define and initializes

the so-called CCD tables. The tables used by CCD only are mvar, spare, calc, mcomp, melem and
mmtx. They contain the rules needed by CCD for coding and decoding the specified messages. The
CCD files used by CCDTAP (CCDEDIT) are pvar, pcomp, pelem and pmtx. A typical entry of

ccdmtab.cdg is shown below:

const T_CCD_VarTabEntry mvar [] =

{

#include "mvar.cdg"

};

6.1.1.2 mstr.cdg

Although this table is not used by CCD at the moment we do give a shor t description about it because of its simple structure.
This is a simple formatted file containing either comments or long names related to the IEs. The entries can be used for

example by the test systems while tracing the activities or errors. Some entries occur repeatedly, e.g. the words „Message
Type“ and „reserved“. There are no entries for message names.

Generally the entries have the same order as they have in the word documents. In the example below, the long name of the
fir st IE "Access identity" is followed by the two value entries, according to the chapter „basic elements“ of CC.doc.

/* 0*/ "",

/* 1*/ "Access identity",

/* 2*/ "octet identifier",

/* 3*/ "reserved",

6.1.1.3 mconst.cdg

A big par t of these files contains defin itions of c-macros for IDs, bit lengths etc for all entities (or SAPs). The small rest is

dedicated to either the c-macros for coding type or the constant values calculated by CCDGEN. The constants defined in
mconst.cdg are impor tant for coding/decoding and are included by CCD. However the constants in pconst.cdg relate to the
SAPs and are only included by CCDEDIT which includes also the mconst.cdg. Below a few examples from mconst.cdg are

given:

#define DATA_REQ 0x1

#define BSIZE_DATA_REQ 0x830 /* max bitlength of coded msg */

. . .
#define CCDTYPE_GSM1_V 0x1

#define CCDTYPE_GSM1_TV 0x2

...

#define NUM_OF_ENTITIES 0x6 /* number of entitys that uses CCD */

#define MAX_MESSAGE_ID 0x7e /* maximum of all message types */

...

6.1.1.4 mvar.cdg and pvar.cdg

The table mvar contains specifying parameters for variables. CCD needs these parameters to decide

for the bit or byte size and value of the variables. The format of the entries are given on the top of the
list.
/*idx name lnameRef bSize cSize cType numValDefs valDefRef */

/* 0*/ { "msg_type" , 1, 8, 1, 'B', 0, 65535 },

/* 1*/ { "msg_id" , 2, 8, 1, 'B', 0, 65535 },

/* 2*/ { "rel_mode" , 3, 8, 1, 'B', 2, 0 },

The parameter name has been called short name in the previous chapters. The parameter lnameRef
gives the index referring to the entry in mstr.cdg. Bit lenght or bSize must be defined by the GSM pro-
tocol while cSize gives the byte size for the variable used in the CCD implementation. The possible

entries for the member cType are B (boolean), S (Short) and X. The member numValDefs is the

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 29 of 51

number of possible values for the variable. valDefRef is an index referring to the first entry for this IE
in the table mval. We say the first entry because there must be numValDefs entries for an IE in mval.
If there is no value supposed for an IE numValDefs will be 0 and valDefRef will be 65535.

Again pvar is only used by CCDEDIT but mvar is needed by CCDEDIT and CCD.

6.1.1.5 mval.cdg

Although this table is not used by CCD at the moment we do give a short description about it because

of its simple structure. The table mval contains specifying parameters for variable values. CCD needs
these parameters to read a single value, a value range. The format of the entries are given on the top
of the list.

/* idx valStrRef isDef startVal endVal */

/* 0*/ { 2, 0, 0x00000000, 0x00000000},

/* 1*/ { 3, 1, 0x00000000, 0x00000000},

The member valStrRef is the index referring to the comment in mstr.cdg about the specific value. The

member isDef is a flag set to 1 whenever the given value is a default one for the corresponding varia-
ble.

Value ranges are given by the first (startVal) and last (endVal) value number. For single values the
startVal is equal to endVal.

6.1.1.6 spare.cdg

This table contains value and bit length information for spare bits. Spare bits are often a series of ze-
ros which help to fill up an octet. The format of the entries are given on the top of the list.

/* idx spareValue bSize */

/* 0*/ { 0x00000000, 3},

/* 1*/ { 0x00000000, 7},

/* 2*/ { 0x00000000, 3},

For referring to an entry from this table CCD often uses the member elemRef of the table melem. An

example reference is: spare[melem[eRef].elemRef].bSize. The last line of the table: /*65535*/ {
0x00000000, 0}, can help to find the error source whenever a programmer uses an invalid index for

referring to a spare IE.

6.1.1.7 melem.cdg

This table contains specific parameters needed for composing an IE. The format of the entries is g iven on the top of the list.

/* idx codingType optional extGroup repType calcIdxRef maxRep structOffs ident elemType ref */

Coding types:

The parameter codingType is necessary to choose the appropriate CCD encoding/decoding functions. Valid types (e.g.
ASN1) are listed in the files mconst.cdg of each project or in ccd_codingtypes.h of the CCD software distribution.

Optional IE:

If the flag optional is set to 1, the presence of the IEs is dependent on some parameters or conditions. This makes CCD
check the conditions while encoding/decoding such an IE. CCD uses the expressions printed in the table calc by CCDGEN.
The member optional is 1 in the following cases:

1. The IE belongs to an ex tended octet group. In th is case the parameter extGroup can be one of the characters: '+', '-', '*',
'!', '# ' and ' '. The characters '+', '-' and '*' signify respectively the first, last and the single octet of an ex tended group. For
the middle IEs shor ter than 7 bits extGroup is set to ' '. Note that this character is a lso used for IEs that do not belong to
an extended octe t group. The example IEs are given in the following four lines.

/* 146*/ { 0, 1, '+', ' ', 0, 0, 0, 0xFFFF, 'S', 15 },

/* 147*/ { 0, 1, ' ', ' ', 0, 0, 0, 0xFFFF, 'V', 82 },

/* 148*/ { 0, 1, '*', ' ', 0, 0, 2, 0xFFFF, 'V', 93 },

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 30 of 51

2. The IE is specified by its tag value (IEI). In th is case, the parameter ident is set to a value other than 0xFFFF.

/* 281*/ { 2, 1, ' ', ' ', 0, 0, 1, 0xD , 'V', 111 },
/* 282*/ { 7, 1, ' ', ' ', 0, 0, 3, 0x4 , 'C', 21 },

3. The IE is specified to be an optional ASN.1 element to be encoded with Packed Encoding Rules. This can be for exa m-
ple a SEQUENCE, a CHOICE or an INTEGER element.

4. The presence of the IE depends on the fulfilling of some conditions. In this case the parameter calcIdxRef is not

0xFFFF any more. As a result the parameters numCondCalcs and condCalcRef in the calcidx table are set to other
values than 0 and 65535, respectively. The parameter numCondCalcs is the number of calculation steps for a UPN cal-
culator. The index condCalcRef refers to the entry for the first calculation step in the table calc. See also “online calcula-

tions” below.

Online calculations:

In the runtime CCD may need to check presence conditions, carry out prologue expressions or calculate length of an array.

The required instructions are printed by CCDGEN in the file calc.cdg. The reference values and flags are printed to ca l-
cidx.cdg. For each IE with a calcIdxRef equal to 0xFF no instructions are given in the calc table. Otherwise cacIdxRef refers
to the appropriate entry in the calcidx and from there to the appropriate instructions in the calc table.

In calcIdx information appears in pairs (reference and number of step): conCalRef together w ith numConCal, prolStepRef
with numProlStep and repCalRef w ith numRepCal.

There is a complicated type of optional IEs to which “mob_ident” belongs. They need a few additional calculations compared

with the usual optional IEs. For mob_ident not only numCondCalcs is different from 0 but also numPrologSteps (in the
calcidx table).

Long name short

name

ref bit len Ctrl

Type of identity ident_type 3 (GETPOS,:,4,+,:,1,+,SETPOS)
Odd/ Even indicac-
tion

odd_even 1 (SETPOS)

Identity digit ident_dig 4 (SETPOS) {ident_type # ID_TYPE_NO_IDENT AND
ident_type # ID_TYPE_TMSI} BCDODD [0..16]

Spare .1111 4 (:,SETPOS,8,+){ident_type = ID_TYPE_TMSI}

TMSI tmsi 32 (SETPOS) { ident_type = ID_TY PE_TMSI} [.32]
Dummy dmy 4 (SETPOS) {ident_type = ID_TY PE_NO_IDENT }

[0..16]

/* 453*/ { 0, 0, ' ', ' ', 25, 0, 0, 0xFFFF, 'V', 163 },

/* 454*/ { 0, 0, ' ', ' ', 26, 0, 1, 0xFFFF, 'V', 160 },

/* 455*/ { 13, 1, ' ', 'i', 27, 16, 2, 0xFFFF, 'V', 153 }, -> ident_dig

/* 456*/ { 0, 1, ' ', ' ', 28, 0, 0, 0xFFFF, 'S', 38 }, -> 1111

/* 457*/ { 0, 1, ' ', 'b', 29, 32, 23, 0xFFFF, 'V', 164 }, -> tmsi

/* 458*/ { 0, 1, ' ', ' i', 30, 16, 36, 0xFFFF, 'V', 165 }, -> dmy

The numbers 25 to 30 refer to entries for conditions, prologues and size calcula tions in calcidx:

 ConCalRef, numConCal, prolStepRef,numProlStep, repCalRef, numRepCal

/* 25*/ { 0, 65535, 8, 25, 0, 65535 }, <- prologue

/* 26*/ { 0, 65535, 1, 33, 0, 65535 }, <- prologue

/* 27*/ { 7, 34, 1, 41, 0, 0 }, <- condition, prologue, repetition

/* 28*/ { 3, 42, 4, 45, 0, 65535 }, <- condition and prologue

/* 29*/ { 3, 49, 1, 52, 0, 32 }, <- condition, prologue and repetition

/* 30*/ { 3, 53, 1, 56, 0, 0 }, <- condition, prologue and repetition

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 31 of 51

Since the last four elements are conditional, the fie ld “optional” is set to 1 for them.

Bit, byte and element arrays:

There are IEs built of a series of values for a repeated variable. For theses IEs the parameter repType is no more set to ' '.

The possible characters for an GSM standard IE are then ' i', 'c', 'v' and 'b' which abbreviate respectively interval, constan t,
variable and bit field.

For elements encoded by PER „C‟, „j‟ and „J‟ have been added to this list. A repType of „C‟ specifies an array of an IE w ith the

ASN.1 type BITSTRING. This is a bit string of constant size. Bit strings of variable size are given by repType=„J‟. Variable
sized arrays of other ASN.1 PER types have repType=‟j‟. Fixed sized arrays of other ASN.1 PER types have repType=‟c‟.

If the number of repeats needs to be calculated the parameter calcIdxRef is different from 0. I f the message description

gives a maximum number for the repeats the structure member maxRepeat is different from 0. The four mentioned catego-
ries of repeated variables are discussed below. The corresponding parameters are underlined in each example.

For repType = 'i' the number of repeats belongs to a known interval. The upper limit of the interval is given by maxRepeat. I t
is 32 for the example IE “num” from CC.doc.

/* 206*/ { 14, 0, ' ', 'i', 7, 32, 4, 0xFFFF, 'V', 99 },

long name short

name
Ref bit len Ctrl

Number digit num 4 BCDEVEN[0..32]

For repType = 'c' the number of repeats are known and constant. So maxRepeat is set to this value

and numRepCalcs is 0. The example IE “mcc” from MM.doc is made of three BCD numbers so the
maxRepeat is set to 3 for it.
/* 447*/ { 15, 0, ' ', 'c', 23, 3, 0, 0xFFFF, 'V', 158 },

Long name short

name
ref bit len ctrl

Mobile Country
Code

mcc 4 BCDEVEN[3]

For repType = 'v' the number of the repeats depends on the value of a variable. Thus in the calcidx
table numRepCalcs is no more set to 0. And the index repCalcRef refers to the entry for the first

calculation step in the table calc. The example IE is “allo_bmp7” from RR.doc. It is a variable field the
lenght of which depends on the variable allo_len7.

/* 788*/ { 0, 0, ' ', 'v', 110, 127, 2, 0xFFFF, 'V', 189 },

long name short name ref bit len type ctrl

Blocks Or Block Periods blp 6.21 1
Allocation Bitmap Length allo_len7 6.10 7

Allocation Bitmap allo_bmp7 6.9 1 [allo_len7..127]

The function ccd_calculatorep() of CCD will need only a read operation on the variable allo_len7.

Therefore cacIdxRef is not 0xFF and numRepCalcs = 1. Using repCalcRef CCD looks at the appropr i-
ate entry of the table calc and finds there a read operation on the element of index 787 (= 0x313).
And this element is nothing but the variable allo_len7.

For repType = 'b' the IE is a bit array of variable length. The maximum length (maxRepeat) is either
given by a constant or by a number. An example for this case is the IE “non standard facilities” which

is a bit field from 1 bit up to N bits, where N should be read from the constant value MAX_NSF_LEN.
/* 1589*/ { 0, 0, ' ', 'b', 254, 720, 4, 0xFFFF, 'V', 480 },

long name short name ref Ref Pres len ctrl

Facsimile control f ield fcf M 1

Non standard facili-
ties

non_std_fac M 1-N [.MAX_NSF_LEN]

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 32 of 51

An instructive example is the bit field ussdString which is the value part of an ASN.1 element encoded with Basic Encoding
Rules:

ID long name short name type ref ctrl Len

0x04 Unstructured SS data coding

scheme

ussdDataCodingSch

eme

ASN

1

6.42 3

0x04 Unstructured SS data string ussdString ASN
1

6.43 [.0..MAX_USSD_STRI
NG]

2-162

Here the upper limit of the bit fie ld should be given as the number of bits and not octets. And the value given for the constant
MAX_USSD_STRING should be the same as the bitlen given in the section 6.43 for the basic element ussdString, currenlty
1280.

Location of an IE in the C-structure:

If the IE belongs to a structured IE, the variable structOffs will be different from 0 and refers to its place within the whole

composition.

Tag or IE identifier:

If the IE has an information element identifier, the parameter ident will be different from 0 and containing the IE identifying

number.

Spare, basic or structured element:

The member elemType can be one of the characters V, S and C which abbreviate respectively variable, spare and composi-
tion. Depending on the element type the parameter ref must be interpreted as an index referring to the entry in mvar, spare
or mcomp table.

6.1.1.8 mcomp.cdg

This table contains a few elementary parameters to specify an IE. The format of the entr ies are given on the top of the list.
/* idx name lnameRef cSize bSize numElems elemRef */

/* 0*/ { "aux_states" , 374, 4, 7, 3, 0 },

/* 1*/ { "bearer_cap" , 375, 74, 98, 37, 3 },

/* 2*/ { "bearer_cap_2" , 376, 74, 98, 37, 40 },

The variable name is the short name as given in the corresponding message description catalogue.
The variable lnameRef longNameRef is an index referring to the entry for this IE in the table mstr. For

messages lnameRef is set t0 0 because there is no entry for messages in mstr.
The number of bits used for an IE is stored to bSize. The space (in bytes) needed in form of a C-
structure is given by cSize. For optional variables an additional byte is dedicated to valid flag. For

example the IE "aux_states" from CC.doc has two optional variables: hold and mpty. The correspon d-
ing C-structure in m_cc.h looks like this:
typedef struct

{

 UBYTE v_hold; /*< 0> valid-flag */

 UBYTE hold; /*< 1> Hold auxiliary state */

 UBYTE v_mpty; /*< 2> valid-flag */

 UBYTE mpty; /*< 3> Multi party auxiliary state */

} T_aux_states;

Thus the cSize is 4 for this IE.

The parameter numElems gives the maximum number of sub IEs that the structured IE can contain. The variable elemRef

is an index referring to the entry in the table melem.

6.1.1.9 mmtx.cdg

This table contains valid (and invalid) reference numbers for all possible (and impossible) IEs of a

GSM application. The reference numbers are indexes referring to an entry in the table mcomp. In or-

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 33 of 51

der to signify the invalid reference numbers for invalid IEs the entry here will be 65535. The format of
the entries are given on the top of the list.
/* entity msg_type up down */

/*[0000]*/

 /*[0000]*/ 65535,65535,

 /*[0001]*/ 28, 27,

 /*[0002]*/ 65535, 30,

At the first look the table seems to be a simple byte fie ld. In fact the table is built to be 3 dimensional. The 3 dimensions are:
1) the number of entities using CCD, 2) the number of message IDs and 3) the number 2 (uplink, downlink). Therefor e CCD
will refer to an element of the table in this way: mmtx[entity][message_type][direction].

Once we have the index from this table we can find more about the message through the mcomp table. From there we can
find the details for composing its sub IEs via the table melem. That is why for coding a structured IE the function is called
with only one parameter:
ccd_encodeComposition (mmtx[entity][theMsgId][direction]);

6.1.1.10 calc.cdg

This table contains parameters to specify the calculation steps for the UPN calculator. Each entry of the table represents one
step. The format of the entries are given on the top of the list:

/* idx operation operand */

/* 0*/ { 'G', 0x00000000 },

/* 1*/ { ':', 0x00000000 },

/* 2*/ { 'P', 0x00000004 },

The meaning of the parameter operand depends on the character shown by the parameter operation. Possible characters
for the member operation are:

operation Meaning of operation Role of operand

P push a constant on the stack constant number to read

R push the content of a C-structure variable on the stack index for the table melem

S get the upper element from the stack an set the position of the bit

stream pointer to th is value

nothing

G push the position of the bitstream pointer on the stack nothing

: duplicate the upper e lement on the stack nothing

^ swap the upper two elements of the stack nothing

+ - * / arithmetic operations nothing

& | bit operations: AND and OR nothing

A O X logical operations: AND, OR and XOR nothing

= # < > numerical comparisons nothing

The UPN calculator is used by CCD when it checks a condition or when it reads the value of a variable or constant.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 34 of 51

6.1.2 Example

In the previous sections we learned two kinds of formatted information:
1) tables in the air message description files which are WINWORD documents

2) CCD tables currently in the output files of CCDGEN which are plain text files *.cdg
Now let us follow the information pieces of an example message from RR.doc into the CCD tables.
The example message is the first message in that file: “additional assignment”.

Definition:

long name short name ID direction

Additional assignment d_add_assign 0b00111011 dow nlink

Elements:
ID long name short

name
ref ref [1] pres type len

 Message Type msg_type 6.60 10.4. M V3 1

 Channel Descrip-
tion

chan_desc 5.6 10.5.2.5 M V 3

0x72 Mobile Allocation mob_alloc 5.17 10.5.2.21 C TLV 3-10
0x7C Starting Time start_time 5.27 10.5.2.38 O TV 3

The entry for “additional assignment” in the table mcomp is
/* 266*/ { "D_ADD_ASSIGN", 0, 40, 148, 4, 969 },

This refers to the 969
th

 entry in melem table. That entry is in turn:
/* 969*/ { 4, 0, ' ', ' ', 0, 0, 0, 0xFFFF, 'V', 302 },

This refres to the 302
th

 entry in mvar table:
/* 302*/ { "msg_type", 1094, 8, 1, 'B', 0, 65535 },

This does not refer to an entry in the mval table since valDefRef =0, 65535. The reason is that the

values for msg_type (message Ids) are given in mconst. All other variable values are given in mval.
Obviously while coding/decoding 0x3b (= 0b00111011) must be written/read for message type. Note
that CCD needs no more information about this variable than its bit size. It also needs not to look for

this value in any table. It reads the value from the buffer given by the entity.
At this point we have followed the trace of the first line (msg_type) in the table above.

Now let us look at the second line about chan_desc. This information element is not so simple as
msg_type. The tabular description of this IE in the chapter „structured elements“ of the message de-
scription catalogues looks like this:

Elements:
long name short

name
ref bit len ctrl

Channel type and TDMA
offset

chan_type 6.32 5

Time Slot tn 6.101 3
Training Sequence Code tsc 6.104 3

Hopping hop 6.51 1
spare .00 2 {hop=0}
Absolute RF Channel Num-
ber

arfcn 6.11 10 {hop=0}

Mobile Allocation Index
Offset

maio 6.62 6 {hop=1}

Hopping Sequence Number hsn 6.52 6 {hop=1}

The following describing entry:

/* 139*/ { "chan_desc_2", 1397, 12, 36, 8, 561 },

in mcomp refers to an enty in melem for the first variable of this group, namely chan_type.

/* 561*/ { 0, 0, ' ', ' ', 0, 0, 0, 0xFFFF, 'V', 220 },

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 35 of 51

The other variables follow this entry:

/* 562*/ { 0, 0, ' ', ' ', 0, 0, 1, 0xFFFF, 'V', 399 }, -> tn

/* 563*/ { 0, 0, ' ', ' ', 0, 0, 2, 0xFFFF, 'V', 412 }, -> tsc

/* 564*/ { 0, 0, ' ', ' ', 0, 0, 3, 0xFFFF, 'V', 275 }, -> hop

/* 565*/ { 0, 1, ' ', ' ', 42, 0, 0, 0xFFFF, 'S', 46 }, -> .00

/* 566*/ { 0, 1, ' ', ' ', 43, 0, 5, 0xFFFF, 'V', 179 }, -> arfcn

/* 567*/ { 0, 1, ' ', ' ', 44, 0, 8, 0xFFFF, 'V', 304 }, -> maio

/* 568*/ { 0, 1, ' ', ' ', 45, 0, 10, 0xFFFF, 'V', 276 }, -> hsn

We see that for all elements codingType=0 because they are simple values. For the last four variables
Optional=1. They are conditional variables. The UPN calculator will check the condition.

Following the four values 42-45 for calcIdxRef we find entries in calcIdx which lead to entries in calc
for online calculations.
/* 42*/ { 3, 57, 0, 65535, 0, 65535 },

/* 43*/ { 3, 60, 0, 65535, 0, 65535 },
/* 44*/ { 3, 63, 0, 65535, 0, 65535 },
/* 45*/ { 3, 66, 0, 65535, 0, 65535 },

In the run time CCD will read three lines (numCondCalcs=3) beginning with the 57

th
 line (condCalc-

Ref=57) from the table calc in order to check the codition for the el ement arfcn. And so on.

Now back to the first element. More about chan_type is to find in mvar, e.g. its bit size.

/* 220*/ { "chan_type", 873, 5, 1, 'B', 28, 571 },

Thus chan_type is 5 bits long and needs one byte in the C structures. This entry also refers to the (at
least) 28 different valid values for chan_type listed in mval. The values are between 1 and 28 plus the
default of „undefined“. They are to find in the 571

th
 line of mval.

/* 571*/ { 0, 0, 0x00000001, 0x00000001}, <- 1

/* 572*/ { 0, 0, 0x00000002, 0x00000002}, <- 2

...

/* 595*/ { 0, 0, 0x00000019, 0x00000019}, <- 25

/* 596*/ { 0, 0, 0x0000001A, 0x0000001A}, <- 26 (27, 28 and 29 are no valid values)

/* 597*/ { 0, 0, 0x0000001E, 0x0000001E}, <- 30

/* 598*/ { 0, 1, 0x00000000, 0x00000000}, <- default

We see that these entries correspond to the value tables of the chapter basic elements in the air mes-
sage catalogue RR.doc.

Values:
value c-macro comment

1 TCH_F TCH/F + ACCHs
2 TCH_H_S0 TCH/H + ACCHs, subchannel 0
3 TCH_H_S1 TCH/H + ACCHs, subchannel 1

...

24 TCH_F_ADD_UNI1 TCH/F+ACCHs, additional unidirectional TCH/FD/SACCH/MD on timeslot n-1
25 TCH_F_ADD_UNI2 TCH/F+ACCHs, additional unidirectional TCH/FD/SACCH/MD on timeslot n+1, n-1

26 TCH_F_ADD_UNI3 TCH/F+ACCHs, additional unidirectional TCH/FD/SACCH/MD on timeslot n+1, n-1 ,
n-2

30 TCH_F_ADD_BI_UNI TCH/F+ACCHs, additional bidirectional TCH/F/SACCH/M and unidirectional
TCH/FD/SACCH/MD on timeslot n+1, n-1

DEF channel not defined

On the PC version of CCDDATA entries in mval refer also to the long names of the values, all collected in mstr.cdg. This
name is impor tant for example for any test application with good comments. The name of the first vlaue is given by:

/* 874*/ "TCH/F + ACCHs",

Similar considerations can be made for the IEs mob_alloc and start_time. Note that there is no additional entry in the mcomp
or melem tables for T and L elements of an TLV type IE. The T part is embedded in the entry in melem:

/* 971*/ { 7, 1, ' ', ' ', 0, 0, 19, 0x72 , 'C', 173 },

and L part is a dynamic value which is calculated and written in the message according to each message structure.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 36 of 51

7 CCD Modules

The main module of CCD is ccd.c. I t contains the entry functions like ccd_encodeMsg() and ccd_decodeMsg() which initiate
encoding and decoding of different sorts of information elements. Besides these CCD-Application inter face (see also

ccdapi.h) offers a few other functions, e.g. ccd_codeBy te in cdc_std.c, for the use of entities to do simple encoding/decoding
procedures. CCD also offers functions like ccd_getFir stError() and ccd_getNextError() (in ccd_err.c) to the applications so
they can read the CCD internal error code whenever errors have occurred.

The figure below shows the hierarchy of function calls in CCD modules. It is valid only for the basic coding/decoding proce-
dures triggered by calls to ccd_codeMsg, ccd_decodeMsg, ccd_codeMsgPtr and ccd_decodeMsgPtr. The bit manipulating
functions (in bitfun.c) is invoked by most of the modules.

The module cdc_com.c contains common used functions of all other modules. The module cdc_std.c contains functions for

code/decode of standard or simple elements. That means elements without special coding rules.

Application

call to coder/decoder

ccd.c

asn1_seq.c

asn1_seq_ext.c

bcd_mnc.c
gsm5_v.c

s_padding.c

t30_ident.c
csn1_s1.c
csn1_sh.c

bcd_nofill.c
bcdeven.c
bcdodd.c

gsm2_t.c
gsm3_v.c

gsm3_tv.c
gsm1_tv.c

gsm4_lv.c
gsm4_tlv.c
gsm6_tlv.c
gsm7_lv.c

gsm1_asn.c
gsm5_tlv.c

asn1_bitstr.c

asn1_octet.c
asn1_integ.c

asn1_integ_ext.c

asn1_objid.c
asn1_opentype.c

bitfun.c

ccd_err.c

asn1_choice.c
asn1_choice_ext.

c

cdc_com.c

cdc_std.c

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 37 of 51

As can be seen from the schema above, there are several source code modules for several coding types. Indeed a CCD
library contains all functions ever implemented for CCD. These types are listed in ccd_codingtypes.h. In general each
application, as a user of CCD, needs only a subset of all these coding functions. This means for CCDDATA a list of the
involved coding types for a given product, e.g. listed in mconst.cdg which is generated by CCDGEN.

However because of the strict separation of CCD and CCDDATA, the only chance to transfer this information from
CCDDATA to CCD is to configure a table at the link time and pass it to CCD at the run time. The figure below describes the
configuration behaviour. Note that ccd_config.c is not a module of CCD but CCDDATA.

 /* ccd_config.c */
#include "ccd_codingtypes.h"
#include "mconst.cdg"

UBYTE cdc_init (T_FUNC_POINTER co-
dec[MAX_CODEC_ID+1][2])

{

...
 for (i = 0; i <= MAX_CODEC_ID; i++) {
 codec[i][0] = cdc_STD_encode;

 codec[i][1] = cdc_STD_decode; }

#if defined GSM1_V

 codec[CCDTYPE_GSM1_V][0] =
cdc_GSM1V_encode;
 codec[CCDTYPE_GSM1_V][1] =
cdc_GSM1V_decode;

#endif
...
#if defined ASN1_CHOICE
 codec[CCDTYPE_ASN1_CHOICE][0] =

cdc_ASN1_CHOICE_encode;

 codec[CCDTYPE_ASN1_CHOICE][1] =
cdc_ASN1_CHOICE_decode;
#endif

Objects in ccd library

gsm1_v.obj-> cdc_GSM1V_decode()

...

bcd_mnc.obj ->
cdc_BCD_MNC_decode()

...

csn1_s1.obj ->

cdc_CSN1_S1_decode

...

asn1_choice.obj ->
cdc_ASN1_CHOICE_decode()

+

cdc_std.obj ->
cdc_STD_decode()

ccd.obj -> ccd_init() ->
cdc_init(codec)

cdc_com.obj

bitfun.obj

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 38 of 51

7.1 Global macros, prototypes, types and variables

7.1.1 Global C-macros

C Preprocessor -
macros

Comment

(For what reason, the macro is set?)

__cplusplus For compatibility

_MSDOS To include dos.h and conio.h

_TMS470 CCD will be compiled for a target board.

WIN32 CCD will be compiled for a win32 target.

BUFFER_ALIGNMENT Size value for for cing n-by te aligned addresses to byte arrays

CCD_C

CCD_ERR_C

CDC_STD_C

To protect against multiple function prototype defin ition when including ccdapi.h.

CCD_CDGINDEP Definition of T_MSGBUF independent of MAX_BITSTREAM_LEN which is given by CCDDATA.

CCD_GPRS_ONLY Allocate a fur ther global structure for GRR.

CCD_MK

CCD_SYMBOLS Traces will contain the name of elements (from mcomp and mvar in CCDDATA).

CCD_TEST CCD will be linked to a one- task system and without any frame (ccdtest.exe)

DEBUG_CCD Trace output for the caller entity, where the trace class TC_CCD is switched on.

DYNAMIC_ARRAYS Dynamic memory allocation for elements of pointer type.

ERR_TRC_STK_CCD To save CCD_ID (element reference number) in a cascade form for error reporting with more details.

FAR_MODEL System will use far model jump table.

M_INTEL (M_MOTOROLA) For using Intel (Motorola) type processor on the target

NEW_FRAME Objects need functions from the new version of frame.

OLD_FRAME_TAP Objects will be linked to TAP with an old version of frame.

SHARED_CCD CCD will be linked to a preemptive multithreaded system (uses old or new frame)

SHARED_VSI CCD will be linked to a preemptive multithreaded system (uses old or new frame)

USE_DRIVER CCD is going to be linked, it will not be used as a driver.

7.1.2 Prototypes

 GLOBAL SHORT (*codec[MAX_CODEC_ID][2])(USHORT, USHORT);

7.1.3 Global types

The table below contains all the global types which are described in the nex t subsections.

Name Description

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 39 of 51

T_CCD_CompTabEntry contains parameters for compositions (structured I Es)
T_CCD_ElemTabEntry contains parameters for all IEs
T_CCD_VarTabEntry contains parameters for IEs which are variables
T_CCD_ValTabEntry contains parameters for values of variables

T_CCD_SpareTabEntry contains parameters for IEs which are spare bits
T_CCD_CalcTabEntry contains parameters for calculation steps for a UPN calculator
t_conv16 contains types to protect the byte order conversion

t_conv32 contains types to protect the byte order conversion

7.1.3.1 T_CCD_CompTabEntry – Definition entry for a composition

Definition:

typedef struct

{

ifdef CCD_SYMBOLS

 char *name;

 USHORT longNameRef;

#endif

 USHORT cSize;

 USHORT bSize;

 USHORT numOfComponents;

 USHORT componentRef;

} T_CCD_CompTabEntry;

Description:

T_CCD_CompTabEntry contains specific parameters of a structured information element. The corresponding CCD table is
mcomp.cdg which contains values for the parameters of all possible IEs according to the message description catalogues.

The number of bits used for an IE is stored to bSize. The space needed in the C-structure is given by cSize. The member
numOfComponents gives the maximum number of IEs that the structured IE can contain. The member componentRef is an
index referring to the entry in the table “melem”.

The members *name and longNameRef are respectively the shor t and long names of the IE given in the corresponding
message description catalogue.

7.1.3.2 T_CCD_ElemTabEntry - Table entry for an element

Definition:

typedef struct

{

 UBYTE codingType;

 BOOL optional;

 char extGroup;

 char repType;

 USHORT maxRepeat;

 USHORT structOffs;

 USHORT ident;

 char elemType;

 USHORT elemRef;

} T_CCD_ElemTabEntry;

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 40 of 51

Description:

T_CCD_ElemTabEntry contains specific parameters needed for composing an IE. The corresponding CCD table is me-
lem.cdg which is generated by CCDGEN.

The member codingType is necessary to choose the appropriate CCD encoding/decoding functions. Valid types are listed in

the file mconst.cdg.

Optional IEs are marked by the member optional. For some optional IEs the condition to be checked is expressed in the
table calc.

For extended groups the member extGroup shows whether the IE appears in the beginning, in the middle or at the end of the
extended group. This member is 0 if the IE does not belong to an extended group.

For IEs made of repeating variables the member repType is one of the characters i, b, c and v which stand for respectively

interval, bit field, constant and variable. I f the message description gives a maximum number fo r the repeats the structure
member maxRepeat is d ifferent from 0.

If the IE belongs to a structured IE the member structOffs is d ifferent from 0 and refers to its place within the whole compo si-
tion. I f the IE has an information element identifier the member ident is d ifferent from 0 and contains the identifying number.

The member elemType can be one of the characters V, S and C which mean respectively variable, spare and composition.
Depending on the element type elemRef must be interpreted as an index referring to the entry in “mvar”, spare or mcomp
table.

7.1.3.3 T_CCD_VarTabEntry – Table entry for a variable

Definition:

typedef struct

{
#ifdef CCD_SYMBOLS
 char *name;

 USHORT longNameRef;
#endif
 USHORT bSize;

 USHORT cSize;
 char cType;
 UBYTE numValueDefs;

 USHORT valueDefs;
} T_CCD_VarTabEntry;

Description:

T_CCD_VarTabEntry contains specific parameters of an information element. The corresponding CCD table is mvar.cdg
which contains all the needed variables according to the message description catalogues. The number of bits used for a
specific variable is stored to bSize. The space needed in the C-structure is given by cSize and cType. The member numVa-
lueDefs gives the maximum number of possible values for a variable. The member valueDefs is an index referring to the

entry for the first value in the table “mval”.

The members *name and longNameRef are respectively the shor t and long names of the IE given in the corresponding
message description catalogue.

7.1.3.4 T_CCD_ValTabEntry – Table entry for values of variables

Definition:

typedef struct

{

 USHORT valStringRef;

 BOOL isDefault;

 ULONG startValue;

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 41 of 51

 ULONG endValue;

} T_CCD_ValTabEntry;

Description:

T_CCD_ValTabEntry contains parameters to specify a single value or value range. For single values the member star tValue

and endValue are identical. For values which are a default for a variable the member isDefault should be 1. The correspon d-
ing CCD table for th is structure is mval which contains values for all possible variables according to the message description
catalogues. The index valStringRef refers to the entry in mstring table for the descriptive string about the specific value.

7.1.3.5 T_CCD_SpareTabEntry – Table entry for spare bits

Definition:

typedef struct

{

 ULONG value;

 UBYTE bSize;

} T_CCD_SpareTabEntry;

Description:

T_CCD_SpareTabEntry contains parameters for composing a group of spare bits. The corresponding CCD table is spare
which contains similar parameters for all possible spare bit groups a ccording to the message description catalogues. The

number of spare bits is stored to bSize. The member value gives the hexadecimal form of the value shown by the spare bits.

7.1.3.6 T_CCD_CalcTabEntry – Definition entry for a calculation

Definition:

typedef struct

{

 char operation;

 ULONG operand;

} T_CCD_CalcTabEntry;

Description:

T_CCD_CalcTabEntry contains parameters to specify the calculation steps for the UPN calculator. The corresponding CCD
table is calc. Each entry of the table represents one step. The meaning of the member operand depends on the character
shown by the member operation, see also the section about calc.cdg.

7.1.3.7 t_conv16 - Conversion structure

Definition:

typedef union

{

 UBYTE c[2]; /* 2 bytes <-> USHORT */

 USHORT s;

} t_conv16;

Description:

This type is used to protect the by te order conversions while reading/writing of 16 bits values.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 42 of 51

7.1.3.8 t_conv32 - Conversion structure

Definition:

typedef union

{

 UBYTE c[4];

 ULONG l;

} t_conv32;

This type is used to protect the by te order conversions while reading/writing of 32 bits values.

7.1.4 Global variables

UBYTE *bitbuf points to the array containing the encoded message.
UBYTE *pstruct points to the array containing the decoded message.
USHORT pstructOffs holds the byte position in *pstruct; refers to the variable that is currently in

process.
USHORT bytepos holds the position in bitbuf; refers to the byte that is currently in process.
USHORT bitpos is the number of so far written/read bits in bitbuf.
UBYTE byteoffs is the number of the written/read bits in the lastly processed byte of bitbuf.
USHORT bitoffs is the number of bits which exist in the message but are not to be processed

by CCD. This part of message contains the message header information.
USHORT buflen is the number of the bits in the message buffer including the message header

information.
USHORT maxBitpos is the maximum value allowed for bitpos. It may be calculated or set to buflen.
USHORT lastbytepos16
USHORT lastbytepos32
UBYTE ccd_recurs_level is the level of the IE that is currently in process within a nested IE.
BOOL TagPending is the flag for reading the T value of an standard IE.
T_CCD_VarTabEntry mvar[] Is the table containing parameters that describe variables of all IEs.
T_CCD_SpareTabEntry spare[] Is the table containing parameters that describe spare bit fields.
T_CCD_CalcTabEntry calc[] Is the table containing UPN operations needed to compose some IEs.
T_CCD_CompTabEntry mcomp[] Is the table containing parameters that describe all IEs.
T_CCD_ElemTabEntry melem[] Is the table containing parameters that describe the different elements of all

IEs.

7.2 ccd.c

7.2.1 Includes, macros, types and variables

7.2.1.1 Includes

Besides the header files of the C standard library the following header files are required:

 In typedefs.h (this has substituted the former file stddefs.h) global types like LONG, ULONG etc.
are defined.

 The prototypes of bit manipulating functions of bitfun.c are collected in bitfun.h.

 The types used for the variable fields called CCD tables are defined in ccdtable.h.

 The file ccd.h contains prototypes of the local functions of the module ccd.c and a few global ma-
cros like BREAK and CONTINUE.

 The file ccdapi.h is an interface to applications. It contains prototypes of the global functions of

the module ccd.c and a number of global macros. These prototypes and macros will be shared be-

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 43 of 51

tween CCD and the application using it. A good example for the macros is the list of the CCD error
codes or the return value ccdOK.

 All custom specific definitions are collected in custom.h.

 All definitions of global constants, types, and macros for the GSM Protocol Stack are collected in

gsm.h.

 The file vsi.h contains definitions for the virtual system interface (VSI). One of the services of this
interface is creating, obtaining, releasing and deleting of semaphores. CCD needs semaphores to

protect its shared message buffer.

 As long as the CCD data tables are not loaded dynamically in the run time we need to include the
file ccdmtab.cdg. The constructions in this file will define variables which will contain the data
read by CCDGEN from the message catalogue word documents.

 For the dos version of CCD which is no more of interest the header files dos.h and conio.h must
be included.

7.2.1.2 Macros

VSI_CALLER is the task handle of CCD when calling to VSI functions

MAX_CODEC_ID is the maximum number of encoding/decoding functions called via codec[][].

ENCODE_FUN
(DECODE_FUN)

is used to distinguish between encoding and decoding function when calling to codec[][].

MAX_UPN_STACK_SIZE is the size of UPN-Stack

MAX_ERRORS is the maximum number of errors in the CCD internal error list

7.2.1.3 Types

Definition:

typedef struct

{

 UBYTE error;

 UBYTE numErrPar;

 USHORT errPar [MAX_ERR_PAR];

} T_CCD_ERR_ENTRY;

Description:

T_CCD_ERR_ENTRY contains parameters to manage the list of detected errors by CDD while coding/decoding. CCD
makes a diagnosis about the detected errors and writes about them in an error list of the type T_CCD_ERR_ENTRY. The
registered errors can be quer ied by the entities if necessary or interesting for them.

The fir st member of the struct error is unique for each diagnosis. Valid error numbers are defined in the CCD-Application
interface ccdapi.h. Often some parameters are attached to an error code so that the application can also do its own diagn o-
sis based on the repor ted parameters by CCD. The number of parameters related to each error repo rt is stored to the struc-

ture member numErrPar. The value of the parameters themselves are put to the member errPar. Each entity can have
access to the list through the functions ccd_getFirstError() and ccd_getNex tError(). Though the list is an internal r esource of
CCD and the struct type T_CCD_ERR_ENTRY is defined only for a local scope.

7.2.1.4 Variables

The error handling by CCD is not restricted to a function return value stored in CCD_Error. It also puts its diagnosis about

the detected errors in the list errlist which contains up to MAX_ERRORS errors for each entity. The number of repor ted
errors for each entity is registered in numCCDErrors. The entity that has called CCD for coding or decoding is registered in
the variable aktEntity for a later use in addressing to errlist.

SHORT CCD_Error;

T_CCD_ERR_ENTRY errlist[NUM_OF_ENTITIES][MAX_ERRORS];

UBYTE numCCDErrors[NUM_OF_ENTITIES];

UBYTE Errnum[NUM_OF_ENTITIES];

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 44 of 51

UBYTE aktEntity;

After an error detection by CCD the function ccd_setError() is called. In some scenarios it may inter-
rupt the normal operation of CCD through a long jump to the return line of the function
ccd_encodeMsg or ccd_decodeMsg. The parameter needed for calling to setjmp() and longjmp() is

jmp_mark . Note that the same code line can be reached either through a normal operation or a long
jump. The flag jmp_mark_set will be TRUE if the code line is reached by a long jump.
jmp_buf jmp_mark;

BOOL jmp_mark_set = FALSE;

The variable mi_length is the length of the Id (or IEI) of the first information element in the message. It
is given to CCD by the entity. CCD reads/writes from/to the array bitbuf so many bits as mi_length.
UBYTE mi_length[NUM_OF_ENTITIES];

The initialisation flag initialized is to prevent multiple calls to the function ccd_init() by the entities using CCD. I t is set to
TRUE after the initia lisation.

BOOL initialized = FALSE;

To realize the calculation steps registered in the CCD table calc a UPN calculator is implemented in
the CCD code. The buffer necessary for such operations is stack which will be over flown if the varia-

ble StackOvfl is set to TRUE. The index SP helps to refer to a special element on the stack.
LOCAL UBYTE SP;

LOCAL ULONG Stack[MAX_UPN_STACK_SIZE];

LOCAL BOOL StackOvfl = FALSE;

In a preemptive multithreaded system each entity is able to call the functions ccd_decodeMsg() or ccd_decodeMsg and
manipulate the coding and decoding section. I t is necessary to protect the critical sections like bitbuf and pstruct w ith the help

of semaphores. The semaphores are created in the function ccd_init() which must be called before any other call to the CCD
functions. Each call to ccd_codeMsg() or ccd_decodeMsg() leads to an attempt to obtain the semaphore. The semaphore
handles are stored to the variables semCCD_Codec and semCCD_Buffer.

#ifdef SHARED_CCD

 T_VSI_SHANDLE semCCD_Codec, semCCD_Buffer;

The semaphore with the handle CCD_Buffer is p lanned to protect the internal CCD Buffer named decMsgBuffer.

LOCAL UBYTE decMsgBuffer[MAX_MSTRUCT_LEN];

This buffer has a special usage and is used whenever a null pointer is given to ccd_codeMsg() or ccd_decodeMsg(). CCD
uses this buffer for writing the encoded or decoded data into it. The application using this facility needs to call ccd_begin()

and ccd_end() before entering the critical section through a call to ccd_codeMsg() or ccd_decodeMsg(). Using an internal
buffer for CCD helps to save buffer space but makes entities slower.

If the switch DEBUG_CCD is on, it will be possible to watch the progress of CCD operation. In case of

ARM7 processors a further variable is used to signalize special case. The special case is described by
messageId=0xfe. The actual meaning of this condition is that no trace reports should be written to the
output file.
#ifdef DEBUG_CCD

 #if defined (_TMS470)

 LOCAL BOOL TraceIt=FALSE;

7.2.2 ccd_init()

ccd_init() initializes CCD und sets the flag initialized. It is one of the interface functions of CCD to
applications. It must be called by the application before any other calls to CCD functions.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 45 of 51

 The two VSI calls to vsi_s_open create two semaphores and write their handles in the variables
semCCD_Codec and semCCD_Buffer. The semaphores are to protect the common buffers bit-
buf and decMsgBuffer.

 We will see later that the first action done for encoding/decoding is writing/reading of the message

identifier. For this action CCD needs to know how many bits in the bit stream present the message
Id. There is an information element called msgType in the table melem from which CCD can read
the bit size of the msgId. The next step CCD does in ccd_init() is to find the place of msgType in

melem: First it looks in the table of all valid messages (mmtx) for the place of the first valid mes-
sage in mcomp. With the reference number read in mcomp then it looks for the first element of the
message which is msgType typically. If this is successful CCD reads the place of the variable

msgType in the table mvar. There the bit size is ready to be read.

 In the next step ccd_init() initialises an internal table named jump table. This table will contain the
addresses of the registered functions for encoding and decoding of the elements of all the used

coding types. After initialisation of the jump table ccd_init() registers the used functions. Such a
registration is necessary since different GSM applications need different coding types although
they have a big part in common.

7.2.3 ccd_register

This function provides a different Coder/Decoder initialization. If the calling entity shall use CCD in a
reentrant manner (i.e. without being synchronized with other entities when using CCD)

ccd_register(CCD_REENTRANT) must be called instead of ccd_init().

It must be guaranteed that enough memory in the D-partitions is available in the order that CCD can
allocate a set of local data for each task which must use CCD in a reentrant manner. The batch file

\gpf\CCD\util\globs.bat can be executed to print the size of memory needed for one task.

For that purpose, the constant in xxxconst.h, denoting the number of dynamic partitions for the CCD
data sets this is currently #define DMEMPOOL_1_PARTITIONS 1 must match the number of tasks

calling ccd_register.

7.2.4 ccd_codeMsg()

ccd_codeMsg() is another function of the CCD inter face to applications. I t is called by an application to trigger an encoding

action. The parameters exchanged between CCD and the application is tabled below:

Name Description

entity ID of the calling entity. Valid entity identifiers are defined as C-macros in
mconst.cdg.

direction specifies whether the message goes UPLINK or DOWNLINK.
This is necessary because the same PDU-Type can be used for

both direction while the message structures can be different.
mBuf specifies the bit stream buffer of the message. The elements of

this structure are l_buf, o_buf and buf. The two first elements

specify the length and offset of the bit stream buf. The o_buf
component must be specified by the caller. The l_buf compo-
nent is calculated by CCD in the older versions or is specified

by the caller in the new version of CCD. The third element buf
will contain the bit stream of the coded message.

mStruct refers to the C-structure containing the C-representation of the

message to be decoded. The type should be cast to UBYTE*.
The first element must contain the message type (PDU) as a
UBYTE value.

mId specifies the PDU-Type of the bit stream. CCD reads this value
as the message ID if it is not equal to 0xff or 0xfe. Normally this
parameter is set to 0xff which means id is not defined. Thus

CCD reads the pdu-type from the appropriate component of

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 46 of 51

*mStruct. The value 0xfe means „NO_TRACE“ according to an
internal convention of the CCD author.

Before entering the critical section CCD gets the semaphore protecting the shared buffer s in case of multi threaded pre -

emptive systems:

vsi_s_get (VSI_CALLER semCCD_Codec);

The usual trace functionality can be stopped for the Target systems utilized by ARM7. In this case if DEBUG_CCD and
_TMS470 are switched on and if mId=0x fe, then the variable TraceIt will be set to 0. The result will be that TRACE_CCD()

will return immediately after being called.

TraceIt = (mId EQ 0xfe);

After an error detection by CCD the function ccd_setError () is called. In some scenarios it may interrupt the normal operation

of CCD through a long jump to the return line of ccd_encodeMsg() or ccd_decodeMsg(). The parameter needed for calling to
setjmp() and longjmp() is jmp_mark. While encoding/decoding the same code line can be reached either through a normal
operation or a long jump. The flag jmp_mark_set will be TRUE if the code line is reached by a long jump. At the beginning

of ccd_codeMsg() it is set to FALSE because this code line is obviously reached through a normal behaviour.

jmp_mark_set = FALSE;

All g lobal (shared) variables must be in itia lized:

bitpos = 0; pstructOffs = 0; lastbytepos16 = lastbytepos32 = 0xffff;

bitoffs = mBuf->o_buf; bitbuf[bytepos] = 0; ccd_recurs_level = 0;

CCD_Error = ccdOK; aktEntity = entity; numCCDErrors[aktEntity] = 0;

The pointer mBuf->buf points to the buffer which w ill contain the bit encoded message. Before any manipulation of this
buffer (also mstruct) CCD needs the follow ing pointer assignments:

bitbuf = mBuf->buf;

pstruct = (mStruct EQ NULL) ? decMsgBuffer : mStruct;

The calling entity has already written the first message par ts in the fir st bits of the buffer up to the bit numbered by mBuf-

>o_buf. Thus the bit position must be adjusted using the function bf_incBitpos(). It also notes the current byte position into
the global variable bytepos.

bitoffs = mBuf->o_buf; bf_incBitpos (mBuf->o_buf);

Now the rest of the buffer needs to be set to 0 so that the old content has no chance to corrupt the new message. For this
action we need to calculate the expected number of bytes in the bit coded message. This number can be calcu lated through
the maximum bit size of the message, as in the older versions of CCD. Another way is to use directly the value mBuf-

>l_buf in case it is set by the entity. Not only in the mentioned calculation but also in the future operations it is importan t to

know the message identifier. I f the function parameter mId has a valid value (it is neither 0x ff nor 0xfe) the temporary variable
theMsgId will be set to th is value. Otherwise CCD assumes that the next element to be read in the C -Structure is the valid
message id and copies it.

if (mId NEQ 0xff AND mId NEQ 0xfe) theMsgId = mId;

else{ theMsgId = *pstruct; }

#if defined OLD_CCD

 maxBytes = (mcomp[mmtx[entity][theMsgId][direction]].bSize>>3)+1;

#else

 maxBytes = mBuf->l_buf>>3;

#endif

...

#ifdef FAR_MODEL

 for (i = 0; i < maxBytes; i++)

 mBuf->buf[i+(mBuf->o_buf>>3)] = 0;

#else

 memset((UBYTE *) &mBuf->buf[(mBuf->o_buf>>3)], 0, maxBytes);

#endif

The first value CCD will write into the message buffer is the message identifier provided it is allowed to
read this value from *pstruct. That means whenever the calling entity sets the parameter mId to 0xff,

Bf_writeBits() will read the identifier from the address given by pstruct+_structOffs.
if (mId EQ 0xff)

 bf_writeBits (mi_length[entity]);

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 47 of 51

The coding can be processed further only if the key information, e.g. theMsgId, have valid values.
Otherwise the coding is interrupt with an error report (ERR_INVALID_MID). The obtained Semaphore
will then be released.
if (theMsgId > MAX_MESSAGE_ID OR mmtx[entity][theMsgId][direction] EQ NO_REF)

 ccd_setError (ERR_INVALID_MID, BREAK, (USHORT) theMsgId, (USHORT) -1);

#ifdef SHARED_CCD

 vsi_s_release (VSI_CALLER semCCD_Codec);

#endif

 return CCD_Error;

Three further initialization steps are needed before the rest of the message can be coded by

ccd_encodeComposition(). The first step is somehow an initialization step for the UPN calculator im-
plemented by calcUPN(). The second step is related to clearing the stack of the UPN calculator and to
the initializing of the table iei_ctx[].
ST_CLEAR;

cdc_GSM_start ();

The third step concerns the usage of long jumps. If this code line is reached through a normal oper a-
tion (jmp_ret=0) then the coding will be continued by a call to order to ccd_encodeComposition().
Otherwise

an error will be reported, the obtained semaphore will be released and the function ccd_codeMsg re-
turns CCD_ERROR. In the latter case CCD calculates the length of the so far coded message in the
buffer and writes it into the structure member mBuf->l_buf.
jmp_ret = setjmp (jmp_mark);

if (jmp_ret EQ 0){

 jmp_mark_set = TRUE;

 ccd_encodeComposition (mmtx[entity][theMsgId][direction]);

}

mBuf->l_buf = (USHORT) bitpos - (USHORT) mBuf->o_buf;

vsi_s_release (VSI_CALLER semCCD_Codec);

return CCD_Error;

7.2.5 ccd_decodeMsg

Because of the analogy between ccd_codeMsg() and ccd_decodeMsg() we leave this function undiscussed.

7.2.6 ccd_encodeComposition

ccd_encodeComposition() is an internal par t of CCD which is called for encoding of IEs of a message. The only parameter of
th is function is: mcompRef. I t refers to the appropriate entry for the IE in the mcomp table.

The function may call itself recursive for nested IEs. The global variable ccd_recurs_level helps to mark the current level in
case of nested calls. For each message coding this variable is set to 0 by ccd_codeMsg() and can be increased or de-

creased only by ccd_encodeComposition().

ccd_recurs_level++;

The coding of the Subelements of the IEs in each recursion level will be processed in a while loop.

while (elemRef < lastElem) {...}; ccd_recurs_level--;

The limits are given by the (melem table) reference number of the first and the last e lement. Both need to be calculated usin g
the members componentRef and numOfComponents of the mcomp table. For each message the first entry in mcomp
(ccd_recurs_level = 0) belongs to the IE named message type. Since message type has been processed before calling

ccd_encodeComposition() we use the nex t number for in th is case; that is componentRef +1.

lastElem = mcomp[mcompRef].componentRef+ mcomp[mcompRef].numOfComponents;

elemRef = mcomp[mcompRef].componentRef+ ((ccd_recurs_level EQ 1) ? 1 : 0);

Within the while-loop the IEs are divided in two categor ies. One is called to be an ex tended octet group, the other one not.
For the latter the structure member extGroup is a white space character. For the first category we need to distinguish b e-

tween the position of the subelement in the whole IEs, e.g. wether it is the first, the last or a middle octet. This issue is
cleared by using the characters +, -, *, ! and #.

if (melem[elemRef].extGroup NEQ ' ') { switch (melem[elemRef].extGroup) {...}

} else {...}

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 48 of 51

For non-extended-group IEs then the corresponding coding function is called. After that the while- loop may be broken if there
is no fur ther element to be coded.

codecRet = codec[melem[elemRef].codingType][ENCODE_FUN](mcompRef, elemRef);

if (codecRet NEQ 0x7f) { elemRef += codecRet; }

For the extended octet groups the coding process has little differences depending on the member extGroup. Here we dis-
cuss each case of the above switch statement.

case '+':

To be continued...
File under construction at this point!

8 Technical information

The suppor ted working environment for building CCD libraries is currently a reasonable command line shell, e.g. 4nt.exe,

and gnumake. The CCD own source and header files are all collected in a directory called ccd. The name of files are given in
the previous chapter.

The header files in the ccd directory are:

bitfun.h, ccd.h, ccdtable.h, ccddata.h and ccd_codingtypes.h

The rest of the required header files, besides those of the C standard library, are:

ccdapi.h, typedefs.h and vsi.h.

These files are shared between CCD and applications, including test applications. That is why they are located in a central

directory called “../inc” relative to the directory of CCD own files.

At the compile time of CCD library there is no dependency to the group of CCDDATA (*.cdg or *.val) files.

Using gnumake rules the final par t of the makefile script for build ing of CCD objects or library may look like this3:

CCD_OBJS := $(OBJDIR)/ccd.$(OBJTAIL) $(OBJDIR)/bitfun.$(OBJTAIL) \

 $(OBJDIR)/cdc_std.$(OBJTAIL) $(OBJDIR)/cdc_com.$(OBJTAIL)...

$(CCD_OBJS) : $(OBJDIR)/%.obj : $(CCD_SRC)/%.c

 $(CC) $(COPTSNF) $<

CCD_LIB := $(LIBDIR)/ccd$(XXX).$(LIBEXT)

ccd.lib : $(CCD_LIB)

$(CCD_LIB) : $(COPTS_FILE) $(CCD_OBJS) makefile

 $(LIB) $(CCD_OBJS)

8.1.1 Makefile variables

In order to specify the name of the different variations of ccd.lib suffixes are appended to that name.
For example ccd_na7_tr_db.lib means the debuggable version with trace outputs and for the RTOS
nucleus on ARM7 target. The different elements of the name suffix are:

trTail = _tr for TRACE=1
dbTail = _db for DEBUG=1
psTail = _ps for MEMSUPER=1

tTail = _na7 for TARGET=nuc and PLATFORM=arm7
tTail = _na9 for TARGET=nuc and PLATFORM=arm9

3 This is actually part of the new version of the makefile for ccd under gpf/ccd/.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 49 of 51

tTail = _npc for TARGET=nuc and PLATFORM=pc

And the final suffix is XXX.
XXX:=$(tTail)$(trTail)$(dbTail)$(psTail)

The full name of the built library will then be
CCD_LIB=$(LIBDIR)/ccd$(XXX).$(LIBEXT)

Where the extension LIBEXT is either lib or dll.

Different projects for different RTOSes use different compilers and linkers. With the RTOS Nucleus the
compiler is cl470 and the archiver is ar470.exe. For the work on the Nucleus emulation on win32

cl.exe is both the compiler and the linker.

The preprocessor macros are the followings:

_TMS470 specifies build for target board
NEW_FRAME for integrating to the new generation of frame
M_INTEL for using intel processor on the target board

SHARED_VSI for using vsi calls in a preemptive multithreaded system
SHARED_CCD for using CCD in a preemptive multithreaded system

The compiler and linker (or archiver) options for each compiler are listed below:

Nucleus

Compiler (cl470) Options Comment

-me Produce code for little-endian configuration.
-mt Generate 16-bit code.
-pw2 Enable all warning messages.
-q Suppress banners and progress information from all

the tools.
-x Expanded inline functions.
-mw
-o
-g

-mn

{only if the environment variable DEBUG=1}

Generate symbolic debugging directives.

Reenable the optimizations disabled by the –g option.

-fr $(OBJDIR) Put the object files into this directory.
-fo $@ Interpret the parameter as the name of the output file.
-c Suppress the linking option.
-I".\" -I"..\INC" Include header files related to CCD.

Linker (ar470) Option Comment
-rq

Nucleus emulation on win32

Compiler option comment
/c Just compile, don't link. Leave output in a .obj file
/nologo Disables the display of the copyright banner.
/W3 Set the most sensitive warning level recommended for

production purposes.

/GX enable synchronous exception handling with the as-
sumption that extern C functions never throw an ex-

ception.
/Zp1 Packs structures on 1-byte boundaries
/MD Use multithread- and DLL-specific versions of the run-

time routines
/FR"..\temp\nucwin" create an .SBR file containing symbolic information.
/Fd"..\temp\nucwin" Use the given name for the program database (PDB).
/Fo./$(OBJDIR)/ Put the object files to this directory.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 50 of 51

/I "c:\programme\devstudio\vc\include" Include the header files of the C standard library
/I /I "..\INC" Include the header files related to CCD
/D "_DEBUG" /DEBUG /Z7

{only if the environment variable DEBUG=1}
Produce debug information in .obj file.

Linker Option Comment
/nologo Disables the display of the copyright banner.
/subsystem:console Produce a console application.
/machine:I386 Set the target platform for the program.
/out:$@ Set the path to the directory in which the stub, header,

and switch files are generated.
/debug

{only if the environment variable DEBUG=1}
creates debugging information for the .EXE file or DLL

/pdb:none
put old-style debugging information into the .EXE file

or DLL.

Win32

Compiler option comment
/c /nologo /W3 /GX /Zp1 /MD /FR"..\temp\win32"

/Fd"..\temp\win32" /Fo./$(OBJDIR)/ /I ... /D

"_DEBUG" /DEBUG /Z7

See descriptions above !

Linker Option Comment

/nologo Disables the display of the copyright banner.
/subsystem:console Produce a console application.
/machine:I386 Set the target platform for the program.
/out:$@ Set the path to the directory in which the stub, header,

and switch files are generated.
/force:unresolved create an output file whether or not LINK finds an

undefined symbol.
/debug
{only if the environment variable DEBUG=1}

creates debugging information for the .EXE file or DLL

/pdb:none

put old-style debugging information into the .EXE file
or DLL.

Technical Document

GSM Protocol Stack GPF ccd_userguide.doc CCD Users´ Guide TI Internal Technical Doc. (06-03-20-SHL-0002) Draft

Texas Instruments Proprietary Information – Internal Data Page 51 of 51

Appendices

A. Acronyms

DS-WCDMA Direct Sequence/Spread Wideband Code Division Multiple Access

B. Glossary

International Mobile Tel-
ecommunication 2000
(IMT-2000/ITU-2000)

Formerly referred to as FPLMTS (Future Public Land-Mobile Telephone
System), this is the ITU's specification/ family of standards for 3G. This
initiative provides a global infrastructure through both satellite and terre-

strial systems, for fixed and mobile phone users. The family of standards
is a framework comprising a mix/blend of systems providing global roa m-
ing. <URL: http://www.imt-2000.org/>

http://www.imt-2000.org/

