
BuSyB User's Guide

Developing and maintaining the build
process of complex software systems

with BuSyB.

Texas Instruments Inc.
Carsten Krueger <ckr@ti.com>

Edited by Joachim RichterErwin Schmid

BuSyB User's Guide: Developing and maintaining the
build process of complex software systems with BuSyB.
by Texas Instruments Inc., Carsten Krueger, Joachim Richter, and Erwin Schmid

Published May 13, 2004
Copyright © 2002, 2003, 2004 Texas Instruments, Inc. All rights reserved.

Project TCS 3.0

ID 89_03_15_00479

Version 1.0.1

Title BuSyB User's Guide

Status Being Processed

Every effort has been made to ensure that the information contained in this document is accurate at the time of printing.
However, the software described in this document is subject to continuous development and improvement. Texas Instruments
reserves the right to change the specification of the software. Information in this document is subject to change without notice
and does not represent a commitment on the part of Texas Instruments. Texas Instruments accepts no liability for any loss or
damage arising from the use of any information contained in this document.

The software described in this document is furnished under a license agreement and may be used or copied only in accord-
ance with the terms of the agreement. It is an offence to copy the software in any way except as specifically set out in the
agreement. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanic-
al, including photocopying and recording, for any purpose without the express written permission of Texas Instruments.

Table of Contents
1. Introduction .. 1

1.1. Prerequisites .. 1
2. Concepts .. 3

2.1. Build Information - Classification ... 3
2.1.1. Main Properties ... 3
2.1.2. Target Properties ... 4
2.1.3. Common Options .. 4
2.1.4. Module Properties ... 4
2.1.5. Tool Properties .. 4
2.1.6. Path Properties .. 4

2.2. Build System - Best Fit Technology .. 5
2.2.1. BuSyB .. 5
2.2.2. XML .. 5
2.2.3. Make .. 6

2.3. Build Process - Lifecycle .. 6
3. Using BuSyB .. 7

3.1. General .. 7
3.2. The Example .. 8
3.3. Main Properties .. 8

3.3.1. DTD for ConfigSet Documents .. 9
3.3.2. Sample ConfigSet Document ... 10
3.3.3. Sample ConfigSet editing with BuSyB 10
3.3.4. DTD for ConfigDef Documents ... 11
3.3.5. Sample ConfigDef Document ... 12
3.3.6. Sample ConfigDef editing with BuSyB 12

3.4. Target Properties .. 13
3.4.1. DTD for TargetSet Documents ... 13
3.4.2. Sample TargetSet Document .. 15
3.4.3. TargetSet information in the makefile 16
3.4.4. Sample TargetSet editing with BuSyB 17

3.5. Common Options ... 17
3.5.1. DTD for OptionSet Documents .. 17
3.5.2. Sample OptionSet Document ... 18
3.5.3. OptionSet information in the makefile 19
3.5.4. Sample OptionSet editing with BuSyB 20

3.6. Module Properties .. 20
3.6.1. DTD for SourceSet Documents .. 21
3.6.2. Sample SourceSet Document ... 21
3.6.3. SourceSet information in the makefile 22
3.6.4. Sample SourceSet editing with BuSyB 23

3.7. Tool Properties .. 23
3.7.1. DTD for ToolSet Documents .. 24
3.7.2. Sample ToolSet Document ... 26
3.7.3. ToolSet information in the makefile .. 27
3.7.4. Sample ToolSet editing with BuSyB ... 28

3.8. Path Properties ... 29
3.8.1. DTD for PathSet Documents .. 29
3.8.2. Sample PathSet document .. 30
3.8.3. Sample PathSet editing with BuSyB ... 31

3.9. The BuSyB Command Line .. 31
A. The complete Makefile ... 34

iv

List of Figures
3.1. General appearance of BUSYB ... 7
3.2. DTD for ConfigSet Documents ... 9
3.3. Sample ConfigSet Document .. 10
3.4. Sample ConfigSet editing with BuSyB .. 10
3.5. DTD for ConfigDef Documents .. 11
3.6. Sample ConfigDef Document ... 12
3.7. Sample ConfigDef editing with BuSyB .. 12
3.8. DTD for TargetSet Documents .. 13
3.9. Sample TargetSet Document ... 15
3.10. TargetSet information in the makefile .. 16
3.11. Sample TargetSet editing with BuSyB ... 17
3.12. DTD for OptionSet Documents ... 17
3.13. Sample OptionSet Document .. 19
3.14. OptionSet information in the makefile ... 19
3.15. Sample OptionSet editing with BuSyB .. 20
3.16. DTD for SourceSet Documents ... 21
3.17. Sample SourceSet Document .. 22
3.18. SourceSet information in the makefile ... 22
3.19. Sample SourceSet editing with BuSyB .. 23
3.20. DTD for ToolSet Documents .. 24
3.21. Sample ToolSet Document .. 26
3.22. ToolSet information in the makefile ... 27
3.23. Sample ToolSet editing with BuSyB .. 28
3.24. DTD for PathSet Documents ... 29
3.25. Sample PathSet document ... 30
3.26. Sample PathSet editing with BuSyB .. 31
A.1. The complete Makefile .. 34

v

vi

Chapter 1. Introduction
This document describes the tool BuSyB and its underlying concepts. It should put the
reader in a position to use BuSyB for the definition of the build process of any software
system. All information in this document refers to version 1.0.4 of the BuSyB software.

The chapter following this introduction will explain the basic concepts that directed the de-
velopment of BuSyB. The underlying concepts include the classification of all information
that is part of a build process and the mapping of these classes to certain XML document
types. Also the cooperation of BuSyB and Make for the actual build and the position of the
two tools in the software lifecycle will be highlighted. The next chapter is dedicated to the
usage of BuSyB. Each aspect of a build system (i.e. each class of information) is covered
in a separate section. While advancing through these sections the build process for a simple
example is developed. At the end of this chapter the build process of the example has been
completely defined.

Today's software systems are often very complex. They are built out of great many files us-
ing different tools. Usually they come in several variants, e.g. for different operating sys-
tems or supporting different feature sets. Modern software paradigms using high-level de-
scription languages for both documentation and implementation and their extensive use of
code generators additionally contribute to the complexity of the build process. The distri-
bution of the software development between various persons, offices and even sites is an-
other challenge to be met by a build system.

Tradditional Make based build systems fail to fulfill these new requirements. The complex-
ity of the software system and the great number of developers working on it lead to com-
plex, hard-to-understand makefiles and build systems that are difficult to maintain.

BuSyB is a tool for developing and maintaining the build process for complex software
products. It is based on a clear classification of all information that is part of the build pro-
cess, e.g. information about the tools, information about the variants. Given this classifica-
tion BuSyB allows a redundancy reduced specification of the build process. This specifica-
tion is stored in a number of XML files. These files are human readable and thus can be
“diff'ed” and “merged”. From this set of XML files BuSyB generates a makefile, which
can then be processed by Make. The generated makefile does not use any sophisticated fea-
ture of a specific Make, i.e. compatibility with Clearmake and GNU Make has been tested.

With the application of this “Best Fit Technology” - BuSyB for information entry and val-
idation, XML for information storage and Make for the execution of the build - it is easy to
create build systems that are despite of their complexity robust and easy to maintain. Each
of the three “technologies” is used in its original area of application and thus “best fits” its
purpose.

1.1. Prerequisites
BuSyB has been developed as a Java™ application. The XML support was achieved
through the Apache XERCES XML parser and the XOM XML object model. These soft-
ware packages are not part of BuSyB and must be supplied by the user.

BuSyB has been tested with the following software versions:

• Java™ - version 1.4.2

• XERCES - version 2.5.0

1

• XOM - version 1.0d22

Introduction

2

1This feature has not been fully implemented yet.

Chapter 2. Concepts

2.1. Build Information - Classification
The information being part of a build system is manifold. It can be classified by its impact
on the build, i.e. by the part of the build process that it influences. For each of these classes
(or aspects) one document type exists (except for the Main Properties, which are spread
over two document types). The following information classes can be identified, the names
of the associated document types are noted in parentheses:

• Main Properties (ConfigSet , ConfigDef) - this class describes valid variants and
supported feature sets.

• Target Properties (TargetSet) - this class contains information about what is built
(e.g. executables, libraries, object files, etc.).

• Common Options (OptionSet) - this class covers options that are common to every
software module.

• Module Properties (SourceSet) - this class covers the information that is specific to
a software module.

• Tool Properties (ToolSet) - this class contains information about the tool (e.g. their
command line specifics).

• Path Properties (PathSet) - this class describes where the files, tools etc. are found in
the filesystem.

Each document type and the information which it can contain is explained in detail in
Chapter Usage.

2.1.1. Main Properties
Main Properties are items that influence the software to be built in a very general manner.
Usually only a few such properties exist. They are characterized by the fact that they have
an impact on almost every module. They may influence also which tools are chosen and
how these tools are used during the build. Examples for such Main Properties are:

• the operating system for which the software should be build,

• the feature set that is supported by the software,

• whether the software contains debug information or not.

Main Properties can have certain relations to each other1. This relation can either be exclu-
sion or implication or none. None means that two properties are completely independent
from each other. Their presence can be chosen individually. Exclusion means that the pres-
ence of one such property excludes the presence of the other property. And implication
means that one property can only be present if the other is present too.

3

2 In future version of the tool it will also be possible to specify targets that are generated without explicit input
files, e.g. Make rules without prerequisites.

An example for such a relation can be taken from a GSM/GPRS protocol stack. One fea-
ture one can choose is whether the software contains a WAP browser or not. Another prop-
erty is whether it contains a TCP/IP module. It makes sense to have a software that has
TCP/IP support but no WAP Browser, but it does not make sense have WAP without TCP/
IP. Thus WAP implies (or depends on) TCP/IP.

2.1.2. Target Properties
Target Properties are those items that describe the output of the build process or - using
Make vocabulary - its targets. Targets are files (or directories) created from other files 2 us-
ing a specified tool. Targets can also be composed of other (sub)targets. BuSyB allows to
specify sets of targets. For the generation of the makefile one target has to be chosen. The
makefile will only contain the rules necessary to build exactly this target.

2.1.3. Common Options
Common Options are items that are passed to the tools during the build process. They are
common for all (or at least for many) modules. Options specific to just one module are
covered in another category (Module Properties). Examples for Common Options are:

• global include directories passed to the C-Compiler,

• global preprocessor definitions passed to the C-Compiler,

• common flags passed to a certain tool.

2.1.4. Module Properties
Module Properties are all pieces of information that are specific to a single software mod-
ule. This includes the source files, specific options and other settings. A software module is
understood as a closely coupled set of files which share the same options, the same file ex-
tension and which are combined (possibly with more files) into a single target.

2.1.5. Tool Properties
Tool Properties are all those properties that are related to the tools used during the build
process, i.e. compiler, linker, scripts, genererators. These properties include among other
things the specifics of the command line, the parameters and the calling modell (executable
vs. script).

2.1.6. Path Properties
The information where files or folders are located is central to the build process. Source
files, output files, tools - for all these the information where they can be found or placed in
the file system is necessary. In addition to that most of this path information is not only
needed in one place but in many places. Centralisation of this information allows to enter it
without redundancy. Examples for Path Properties are:

• the directory where the source files of a module are located,

Concepts

4

• the location of an include directory,

• a directory where intermediate files go.

A well known practice is to have rules for the naming of certain files or directories, e.g. the
name (final) software product, follows a naming scheme expressing the feature set the soft-
ware contains and the platform it runs on (xyz_full_win32.exe). The information that the
name of a file or directory is created following a certain rule can be part of its Path Proper-
ties.

2.2. Build System - Best Fit Technology
Designing a build system with BuSyB is based on three core technologies. On the tool
BuSyB itself for the definition of the build system, on XML for the information storage
and on Make for the actual build process. From these three technologies a foundation is
formed by combining the individual strengths of each of them.

2.2.1. BuSyB
BuSyB allows to produce a precise and concise specification of the build process. Given
the clear classification of build relevant information, BuSyB supports the definition of a
build process with context sensitive editing and a validation of the build system. BuSyB
generates makefiles which can be processed by standard Make.

The big advantage of using BuSyB is that it is especially designed to describe the build
process of complex software systems. It focuses on a clearly structured description of the
build process and helps developing it.

BuSyB is developed using Java. The Java runtime environment is available for all major
platforms thus also BuSyB is nearly platform independent.

2.2.2. XML
All information needed to describe the build process is stored in XML files. These files are
based on a DTD developed especially for this purpose. Seven distinct document types have
been defined within the DTD. Each of these document types is suitable for the specifica-
tion of a certain class of information about the build process. These document types and the
aspect of the build process which they define are:

• ConfigSet - Definition of Main Properties (all possible variants),

• ConfigDef - Selection of Main Properties (the actual variants),

• TargetSet - Definition of Target Properties,

• OptionSet - Definition of Common Options,

• SourceSet - Definition of Module Properties,

• ToolSet - Definition of Tool Properties,

• PathSet - Definition of Path Properties.

Concepts

5

XML with its pure textual representation is ideal for information storage. The XML files
can be subject to comparison and merging. Not only BuSyB but also ordinary XML editors
can be used to manipulate them. Although context sensitive help is available only to a less-
er extend then. Another big advantage of using XML here is that because of its nature a
special parser/lexer is not necessary but standard frameworks can be used for this.

2.2.3. Make
Make is widely accepted as the best tool for building (and rebuilding) software. Given a
makefile Make automatically determines which pieces of a software system need to be re-
compiled and issues the commands to recompile them. Make is fast, mature, reliable and
available on almost every platform.

2.3. Build Process - Lifecycle
As the the definition of a build system is based on three core technologies
(BuSyB,XML,Make), the actual build process is not only one but a series of activities.
First of all the complete build system must be specified with BuSyB. The result is a set of
XML documents. Each set of files describes exactly one build system. This does not mean
that only one target (one piece of software that is produced) can be build. Instead many tar-
gets are part of the build system.

From a set of XML documents a makefile must be generated as a second step. This make-
file contains rules for every target that has been defined.

This makefile can now be processed by Make. Make builds either every target or if expli-
citly given only chosen targets.

If changes to the build system are necessary they must be incorporated using BuSyB or an
ordinary XML editor. Upon that a new makefile must be generated with BuSyB. This new
makefile can then again be processed by Make

The generated makefiles are such that they can be distributed as they are. No other tools
apart from Make and those tools needed during the build are necessary to actually perform
the build. Of course these makefiles can be modified - in fact their structure is very simple,
one rule for every target, almost no variables - but normally this should not be necessary.

Concepts

6

Chapter 3. Using BuSyB
Creating a simple example

This chapter demonstrates the usage of BuSyB. BuSyB is heavily based on the underlying
DTD. Not only the content of the resulting XML files but also the name of GUI elements
are based on it. Therefore the DTD has a central place in the remainder of this chapter.
Each of the following sections covers one class of build information and thus one docu-
ment type. The structure of each section is as follows.

The first part of the section describes the part of the DTD that is defining the document
type relating to this information class. The elements of the DTD and their meaning will be
explained in detail.

The second part is a simple example. This example is first described verbally followed by a
specification in XML. Critical places or spots that require special attention will be ex-
plained.

An optional third part shows a snipped of the generated makefile that corresponds to the
example document described in the previous section. It will be show which information
goes where in the makefile. Please note that this section is only present when applicable.

The fourth part is dedicated to the tool BuSyB. It will be explained how BuSyB is used and
how the example is handled by the tool.

3.1. General
BuSyB presents the content of the files in a tree oriented fashion (vs. a tabular oriented
style of some other XML editors). When initially loading a file, its structure is not fully ex-
panded. Instead the user can navigate to the place of interest by expanding the elements
and attributes.

Figure 3.1. General appearance of BUSYB

7

3.2. The Example
The example has been designed to illustrate the main aspects of defining a build system
with BuSyB while staying as simple as possible. The application whose build process is
specified does not make to much sense but it serves only educational purposes.

The application, whose build process is defined, is a Windows™ program. It will be build
using Microsoft™ tools.

The programm is composed of 3 C-files - one header file (util.h) and two source files
(main.c and util.c).

The application can be built in two main variants “debug” and “non debug”. The “non de-
bug” variant is composed only of one object main.c. The “debug” variant contains addi-
tionally the functionality implemented in a library util.lib created from the object
util.obj.

All input files and all generated files are distributed in a certain directory structure
(separating all output of the build process for the “debug” variant from those of the “non
debug” variant.

The tools (i.e. compiler and linker) used to compile the program are found through the en-
vironment variable PATH. Part of the build process is automatic dependency generation us-
ing two more tools (CPP and a Perl script). The location of the script is explicitly defined
using a relative path.

3.3. Main Properties
The ConfigSet and ConfigDef Documents

Using BuSyB

8

3In future releases relations between properties (exclusion, implication, ...) may also be specified here.
4Relations between properties are not yet implemented in BuSyB

The ConfigSet and ConfigDef document types are designed for the specification of
the Main Properties of the build system. Usually only a few such properties exist but they
impact the build process almost everywhere. The definition of these properties has been
split into two document types.

The ConfigSet document type defines the properties of the build system by giving each
property a specific name. For each property a list of allowed values is specified, too. 3

The ConfigDef document chooses one set of properties by specifying a value for each
property that is of interest.

ConfigSet and ConfigDef

The ConfigSet document describes all possible combinations of properties.
It must therefore be defined by someone knowing all Main Properties and their
relations to each other. This document should be carefully designed such that
only the selection of valid combinations is possible. 4

The ConfigDef document chooses exactly one of these combinations. As-
suming that the ConfigSet document has been carefully designed only valid
versions can be chosen.

3.3.1. DTD for ConfigSet Documents

Figure 3.2. DTD for ConfigSet Documents

<!ELEMENT configSet (comment*, propertyGroup*, propertySet*)> (1)
<!ATTLIST configSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT propertyGroup (comment*, propertySet*)> (2)
<!ATTLIST propertyGroup name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT propertySet (comment*, valueDef+)> (3)
<!ATTLIST propertySet name CDATA #REQUIRED

description CDATA #REQUIRED
shortName CDATA #REQUIRED>

<!ELEMENT valueDef (comment*)> (4)
<!ATTLIST valueDef value CDATA #REQUIRED

description CDATA #REQUIRED
valname CDATA #IMPLIED>

1 The ConfigSet element contains a list propertySets. It can be attributed with a
name and a description.

2 Groups of properties can be constructed with the propertyGroup element. These
groups can be referenced from other document types.

3 Each propertySet element defines one property. The name attribute specifies a
symbolic name through which this property can be referenced from all other docu-
ment types, i.e. many elements have a require attribute in which conditions of the
form NAME==value can be specified. The shortName attribute may contain a string
that can be used for the automatic generation of (files, directory, ...) names.

4 Each propertySet element contains a list of valueDefs. Each valueDef
defines a legal value for this property. The value attribute takes in this value which
must be an integer. The description attribute can contains a verbal description of this
value. The valname attribute may contain a string that can be used for the automatic

Using BuSyB

9

generation of names for files or directories.

3.3.2. Sample ConfigSet Document
This example defines one Main Property (DEBUG_MODE) which has two legal values. This
property will be referenced throughout the the example.

Figure 3.3. Sample ConfigSet Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configSet SYSTEM "bsbDocs.dtd">
<configSet description="Example - Main Properties" name="properties">

<propertySet description="define kind of debug" name="DEBUG_MODE" (1)
shortName="">

<valueDef description="No Debug" value="0" valname=""/>
<valueDef description="Debug with help functions" value="1"
valname="_db"/> (2)

</propertySet>
</configSet>

1 Here the property DEBUG_MODE is defined, which takes two legal values 0 for the
“non debug” and 1 for the “debug” version.

2 The attribute valname contains a string that will later be used for the construction of
the name of certain directories.

3.3.3. Sample ConfigSet editing with BuSyB
The following picture shows how the contents of the previously defined ConfigSet doc-
ument are displayed by BuSyB.

Figure 3.4. Sample ConfigSet editing with BuSyB

Using BuSyB

10

3.3.4. DTD for ConfigDef Documents

Figure 3.5. DTD for ConfigDef Documents

<!ELEMENT configDef (comment*, property*)> (1)
<!ATTLIST configDef name CDATA #REQUIRED

description CDATA #REQUIRED
reference CDATA #IMPLIED>

<!ELEMENT property (comment*)> (2)
<!ATTLIST property name CDATA #IMPLIED

value CDATA #IMPLIED
include CDATA #IMPLIED> (3)

1 The ConfigDef element contains a list of property elements. It must be attrib-
uted with a name and a description. The reference attribute may contain the filename
of an associated BuSyB ".ini" file. If BuSyB is invoked with option -cfg, this attrib-
ute determines the set of documents (ConfigSet, PathSet, TargetSet, etc.) to
be used for this specific configuration. The reference attribute (if present at all) may
be empty or equivalently contain the string "none" (for historical reasons;-); in these
cases BuSyB requires a “standard” "ini"-file.

2 Each property element defines the value of one Main Property of the system. The
attribute name references one defined propertySet element of the associated
ConfigSet document. The value attribute specifies one legal value for this prop-
erty.

3 The attribute include can be used to include the contents of other ConfigDef docu-
ments. Therefore the name of the document that should be included must be specified
in the include attribute. property elements with the same name are allowed in dif-
ferent ConfigDef documents; the last one (in a textual sense) will be evaluated by

Using BuSyB

11

BuSyB.

3.3.5. Sample ConfigDef Document
This example defines that out of two possible configurations the “debug” variant is build.

Figure 3.6. Sample ConfigDef Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configDef SYSTEM "bsbDocs.dtd">
<configDef description="Example - Main Properties Choice"

name="configuration" reference="properties">
<property name="DEBUG_MODE" value="1"/> (1)

</configDef>

1 For the property DEBUG_MODE the value 1 (“debug”) is chosen i.e using this
ConfigDef document the “debug” variant will be build.

3.3.6. Sample ConfigDef editing with BuSyB
The following picture shows how the contents of the previously defined ConfigDef doc-
ument are displayed by BuSyB. Please note that BuSyB displays also some information
that is not found in this document but instead found in the ConfigSet document. In addi-
tion to currently choosen values (“debug” as defined in ConfigDef document) all other
possible (“non debug”) values are shown and can be selected.

Figure 3.7. Sample ConfigDef editing with BuSyB

Using BuSyB

12

3.4. Target Properties
The TargetSet Document

The TargetSet document contains a set of targets, i.e. things to be produced during the
build. Each target can be composed of (sub)targets. Thus a tree like structure repres-
enting the composition of the “root” target can be formed. It is possible to form more
than one of these “build trees” within one TargetSet document. Thus different software
builds can be described within one TargetSet document.

For the makefile generation exactly one “root” target must be chosen. If not, the first
target found in the TargetSet will be chosen by default. Only the “build tree”
defined by this target will be transformed into the makefile, e.g. the generator must be
called twice - with a different target each time - if two “build trees”, i.e. two independ-
ent targets, are described in the TargetSet document. The BuSyB command line is
defined in the command line section of this document.

3.4.1. DTD for TargetSet Documents

Figure 3.8. DTD for TargetSet Documents

<!ELEMENT targetSet (comment*, targetInc*, target+)> (1)
<!ATTLIST targetSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT targetInc (comment*)> (2)
<!ATTLIST targetInc require CDATA #IMPLIED

includePath CDATA #IMPLIED
includeFile CDATA #REQUIRED
description CDATA #REQUIRED>

Using BuSyB

13

<!ELEMENT target (comment*, settings, targetRef*, targetDef*)>(3)
<!ATTLIST target require CDATA #IMPLIED (4)

name CDATA #REQUIRED
autoNamed CDATA #IMPLIED
description CDATA #REQUIRED>

<!ELEMENT targetRef (comment*)> (5)
<!ATTLIST targetRef require CDATA #IMPLIED

target CDATA #REQUIRED>
<!ELEMENT targetDef (comment*, targetPath+, sources*)> (6)
<!ATTLIST targetDef require CDATA #IMPLIED

tool CDATA #IMPLIED
localFlags CDATA #IMPLIED
type CDATA #IMPLIED>

<!ELEMENT targetPath (comment*)>
<!ATTLIST targetPath require CDATA #IMPLIED (7)

pathRef CDATA #IMPLIED
path CDATA #IMPLIED>

<!ELEMENT sources (comment*, sourceFile*, targetDef?)> (8)
<!ATTLIST sources require CDATA #IMPLIED

type CDATA #IMPLIED
sourceSet CDATA #IMPLIED
target CDATA #IMPLIED
localFlags CDATA #IMPLIED>

<!ELEMENT sourceFile (comment*)>
<!ATTLIST sourceFile require CDATA #IMPLIED

pathRef CDATA #IMPLIED
path CDATA #IMPLIED
localFlags CDATA #IMPLIED>

1 The TargetSet element contains a list of targets and optional a list of include
specifications. It can be attributed with a name and a description.

2 If a targetInc element is given, the specified file - which must be a valid Tar-
getSet document - will be included as a set of targets. The file specification con-
sists of two attributes; the (optional) includePath attribute contains a reference to a
node in the current PathSet, while the includeFile attribute specifies the Target-
Set document to be included. The includeFile may be given as an absolute or relat-
ive path. If includeFile is absolute, the includePath attribute will be ignored by
BuSyB. If includeFile is relative, it will be evaluated relative to the specified node in
the current PathSet (if includePath is present) or to the location of the including
TargetSet document. The description attribute should contain a note on the in-
cluded TargetSet. The require attribute controls whether the specified file will be
included dependent on the current configuration settings.

3 Each target element defines a “makeable” target, i.e. a file that is to be produced
during the build. The target contains (a possibly empty) settings element. This
can be used to define target specific options as defined in the OptionSet.

4 A target can be attributed by a description. Two additional attributes define the
name of the target - name and autoNamed. This name of a target is used for two pur-
poses. First it is used for references within the TargetSet document, e.g. to con-
struct a target from (sub)targets. Second it will become part of the name of the
actually produced file during the build, e.g. the name of a library. The autoNamed at-
tribute can be used to reference a name construction rule defined in the OptionSet
document. The require attribute allows for multiple targets with the same name
(buddies). Exactly one of the “buddy”-requirements must evaluate to true with re-
spect to the current configuration, otherwise an error message is generated, and the
resulting makefile will probably be incorrect.

5 A target may contain a list of targetRef elements. Each targetRef element
references a target that must become part of the makefile even if it is not part of
the actual “build tree” for that target, e.g. the documentation of a software may in-
cluded into the makefile by a targetRef even though it should not become part of
the actual executable file.

6 Each target contains a list of targetDef elements. A targetDef element
defines how a target is built. Though more (and less) than one targetDef ele-

Using BuSyB

14

ment is allowed here, exactly one must be valid at a given time. That means in case of
multiple targetDef elements each of them must be restricted by mutually exclus-
ive conditions in the require attribute. The tool attribute references the tool used to
build the target. The type attribute may contain a string (file extension) that will to-
gether with the TargetSets name form the complete name of the file. The local-
Flags attribute may contain special arguments, which need to be passed to the tool
as defined in the ToolSet document.

7 The targetDef element contains a list of targetPath elements. The target-
Path defines the directory where the output file should be produced. This path can
be constructed with the path and pathRef attributes analogous to the procedure de-
scribed in the OptionSet document. Though more than one targetPath ele-
ment is allowed here, exactly one must be valid at a given time. That means in case of
multiple targetPath elements each of them must be restricted by mutually exclus-
ive conditions in the require attribute.

8 The targetDef element contains a list of sources elements. Each sources ele-
ment describes one contributor to the target, i.e. all of them form the list of files
from which the target is built. Four distinct possibilities exist to define such a
sources element. The element sourceFile allows to specify directly a
(physically present) file, e.g. a third party library that must not be built. The attribute
target allows to reference a (sub)target defined in the TargetSet document.
The attribute sourceSet allows to reference a SourceSet defined in the Source-
Set document, i.e. all files defined in the SourceSet will become part of the
target. The fourth possibility using the element targetDef allows the definition
(instead of a reference with the attribute target) of a (sub) target inline, e.g. for a
library that is composed by the archiver from the object files that a compiler produced
from all files of a SourceSet document.

3.4.2. Sample TargetSet Document
This example defines the target (hello). This target is built of two (sub)targets (main
and util). The resulting makefile will contain rules for hello.exe, main.obj and
util.lib.

Figure 3.9. Sample TargetSet Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE targetSet SYSTEM "bsbDocs.dtd">
<targetSet description="Example - Targets Properties" name="targets">

<target description="executable Image" name="hello"> (1)
<settings/>
<targetDef tool="LNK" type="exe"> (2)
<targetPath pathRef="TARGET_OUT"/> (3)
<sources target="main"/>
<sources target="util" require="DEBUG_MODE==1"/> (4)

</targetDef>
</target>
<target description="main objects" name="main">

<settings/>
<targetDef tool="CC" type="obj"> (5)
<targetPath pathRef="OUT_LIB"/>
<sources sourceSet="MAIN"/>

</targetDef>
</target>
<target description="util library" name="util">

<settings/>
<targetDef tool="AR" type="lib"> (6)
<targetPath pathRef="OUT_LIB"/>
<sources>

<targetDef tool="CC" type="obj">
<targetPath pathRef="OUT_OBJ_UTIL"/>

Using BuSyB

15

<sources sourceSet="UTIL"/>
</targetDef>

</sources>
</targetDef>

</target>
</targetSet>

1 Here the target hello is defined.
2 The target is built using the tool LNK defined in the ToolSet document. The file

name (hello.exe) is constructed from the name of the target and the type.
3 The resulting file (hello.exe) will be placed in the directory TARGET_OUT

defined in the PathSet document.
4 The target hello is combined of two (sub)targets main and util. The target

util will only be part of hello (and also only than appear in the makefile at all) if
the condition DEBUG_MODE==1 is true.

5 The target main is built from all the files in the SourceSet main as defined in a
SourceSet document. The output will be placed in the directory OUT_LIB defined
in the PathSet document. The resulting files produced by the tool CC will get the
file extension .obj.

6 The target util is built in two steps. This is done defining an (anonymous) target in-
side util. The anonymous target comprises the results of the tool CC applied to all
files from the UTIL SourceSet document. The target util is then composed by
the tool AR. The resulting file will be named util.lib and will be placed in the
OUT_OBJ_UTIL directory.

3.4.3. TargetSet information in the makefile
The following makefile snippet illustrates how various parts of the previously defined ex-
ample TargetSet document are represented in the makefile. Please note, that this
snipped may not be found exacly like this the makefile. The relative order is preserved but
some lines may have been stripped out for readability.

Figure 3.10. TargetSet information in the makefile

BuSyB-DefaultTarget: hello (1)

out/out_db/hello.exe: \ (2)
out/out_db/lib/main.obj \ (3)
out/out_db/lib/util.lib
link /debug /PDB:NONE /incremental:no /subsystem:console \ (4)
/OUT:out/out_db/hello.exe \
$^

hello: \
out/out_db/hello.exe

clean_hello: (5)
$(BSB_REMOVE) out/out_db/hello.exe

clean: \
clean_main \
clean_util \
clean_hello

1 This rule can be found at the beginning of the makefile. It is the first rule and thus
makes the target hello the default target.

Using BuSyB

16

2 The real file behind hello is hello.exe in the directory out/out_db.
3 The target hello is build from the files main.obj and util.lib, which are the

results of the building (sub)targets main and util.
4 The file hello.exe is produced by the tool link
5 BuSyB automatically inserts clean rules.

3.4.4. Sample TargetSet editing with BuSyB
The following picture shows how the contents of the previously defined TargetSet doc-
ument are displayed by BuSyB.

Figure 3.11. Sample TargetSet editing with BuSyB

3.5. Common Options
The OptionSet Document

The OptionSet document type is designed to contain all those options that are used for
many modules. These options are items passed to tools. They may appear in the directly
tool's command line either as they are or prefixed or otherwise modified. Options may be
conditionally set depending on certain Main Properties.

3.5.1. DTD for OptionSet Documents

Figure 3.12. DTD for OptionSet Documents

Using BuSyB

17

<!ELEMENT optionSet (comment*, options)> (1)
<!ATTLIST optionSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT options (comment*, optionDef+)>
<!ELEMENT optionDef (comment*, condOption+)> (2)
<!ATTLIST optionDef name CDATA #IMPLIED

description CDATA #REQUIRED>
<!ELEMENT condOption (comment*, condValue*)> (3)
<!ATTLIST condOption require CDATA #IMPLIED

name CDATA #IMPLIED
optRef CDATA #IMPLIED>

<!ELEMENT condValue (comment*)> (4)
<!ATTLIST condValue require CDATA #IMPLIED

pathRef CDATA #IMPLIED (5)
path CDATA #IMPLIED
grpRef CDATA #IMPLIED (6)
valRef CDATA #IMPLIED (7)
value CDATA #IMPLIED> (8)

<!ELEMENT settings (comment*, options?)>

1 The OptionSet element contains a list of options. It can be attributed with a
name and a description.

2 Each options element contains a list of optionDefs. An optionDef is the
definition of a group of options. If an optionDef is given a name attribute it can be
referenced using this name from other document types. An optionDef is designed
to contain all those options that are referenced and used together, e.g. all options that
need to be passed to the pre-processor (defines and includes).

3 Each optionDef contains a list condOptions. An condOption is the defini-
tion of a more specific group of options. In contrary to the optionDef these options
are not only used together but they share the same meaning and they result in a simil-
ar command line when passed to the tool, e.g. all pre-processor options that are
defines. The name attribute can be referenced from the ToolSet document type.
Thus the specific handling of this group of options can be defined there. The require
attribute can be used to bind the evaluation of this group of options to a condition.

4 The condValue element contains the actual value of an option, i.e. the string that
finally appears in the tool command line. This can be specified through its various at-
tributes. Again the evaluation of this option can be bound to a logical condition using
the require attribute.

5 With the path and pathRef a path can be constructed, e.g. for include directories. The
pathRef attribute references a symbolic name defined in the PathSet document.

6 The grpref attribute can be used to reference a propertyGroup as defined in the
ConfigSet document, e.g. to reference all elements of this propertyGroup at
once with just one line.

7 The valueRef attribute references the value of one property defined in Config-
Def document.

8 The value attribute can take up an arbitrary string. In addition to that the following
keywords are allowed: [name], [value] and [valname]. Using these keywords
requires the presence of the valref attribute which references property. If one of
these keywords is found it is replaced by the value of a certain attribute from the
ConfigSet document. [value] is replaced by the value of the valueDef ele-
ment, [valname] is replaced by the valname of the valueDef element,
[shortname] is replaced by the shortName of the enclosing propertySet ele-
ment, and [name] is replaced by the name of the enclosing propertySet ele-
ment.

3.5.2. Sample OptionSet Document
The example defines two groups of options named debug_opt and autoname_opt.

Using BuSyB

18

One is used to influence the command line of the compiler depending on whether the de-
bug or non-debug version is built, e.g. whether the command line contains pre-processor
definitions. The other defines a directory name pattern.

Figure 3.13. Sample OptionSet Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE optionSet SYSTEM "bsbDocs.dtd">
<optionSet description="Example - Common Options" name="options">

<options>
<optionDef description="debug options" name="debug_opt"> (1)
<condOption name="define"> (2)

<condValue require="DEBUG_MODE==1" value="NEED_HELP"/>
</condOption>

</optionDef>
<optionDef description="auto name options" name="autoname_opt">
<condOption name="out_dir"> (3)

<condValue value="out"/>
<condValue valRef="DEBUG_MODE" value="[valname]"/> (4)

</condOption>
</optionDef>

</options>
</optionSet>

1 This defines the option group debug_opt. This group is referenced by the
SourceSet document. It contains one subgroup define.

2 The option group define contains only one option. This option is a string with the
value NEED_HELP. Depending on a condition this option is evaluated. The condition
references the property DEBUG_MODE defined in the ConfigDef document.

3 This defines the option (sub)group out_dir. This group specifies a construction
rule for directory (or file) names. All condValue elements will become a part of the
constructed name in their order of appearance. This construction rule is referenced by
the PathSet document.

4 The condOption out_dir is constructed of two parts: the fixed string “out” and
the keyword [valname]. This keyword is replaced by the value of the valname at-
tribute of the valueDef element as defined in the ConfigSet document, i.e. if the
ConfigDef document specifies the value 1 (“debug”) for property DE-
BUG_MODE then [valname] is replaced by the string “_db”. The resulting string in
that case is “out_db”.

3.5.3. OptionSet information in the makefile
The following makefile snippet illustrates how various parts of the previously defined ex-
ample OptionSet document are represented in the makefile. Please note, that this
snipped may not be found exacly like this the makefile. The relative order is preserved but
some lines may have been stripped out for readability.

Figure 3.14. OptionSet information in the makefile

out/out_db/lib/main.obj: \ (1)
src/main/main.c
cl /c /MLd /Z7 /Od /GX /W3 \
/DNEED_HELP \ (2)
/Isrc/inc \
/Foout/out_db/lib/ \

$<

Using BuSyB

19

1 The path where the object file will be created contains the pattern out_db. This has
been automatically created according to the option out_dir.

2 The pre-processor definition NEED_HELP will be passed to the C compiler according
to the option define.

3.5.4. Sample OptionSet editing with BuSyB
The following figure shows how the previous example is presented by BuSyB. Editing the
OptionSet is straight forward. When selecting an element new subelements can added
via the File menue or via dedicated buttons. Elements can be deleted the same way. The
value of attributes can be changed similarly, too.

Figure 3.15. Sample OptionSet editing with BuSyB

3.6. Module Properties
The SourceSet Document

The SourceSet document is designed to contain all those information that are specific to
one software module. Usually a number of SourceSet documents exist - one for each
module - reflecting the software architecture of the system. A SourceSet document con-
tains the names of the source files and defines options that are relevant to these files.

All Files in a SourceSet are handled equally

Using BuSyB

20

5A mechanism using this information is not yet implemented.

The rational behind grouping source files in a SourceSet is that they all be-
long together from a software architecture point of view. In additition to that it
is assumed that their handling during the build process is roughly the same,
e.g. the same tools are used, these tools are called with the same options and
all files are composed into the same target.

It is possible to bind the presence of a file to a condition, i.e. to include it in or
exclude it from the build process depending on a Main Property with the
“require” attribute. It is nevertheless not possible to process two file from the
same SourceSet with different tools. And it is only partially supported to
set individual build options for each file.

If all files of a SourceSet document share the same extension, e.g. *.c or *.java, it is
possible to leave out that extension. Instead it will become part of a sources element of a
target definition in the TargetSet document.

3.6.1. DTD for SourceSet Documents
The SourceSet document may contain the module specific settings which is a list of
options. These elements are defined in the OptionSet part of the DTD. So for the
definition of module specific options, the same mechanism as described for the Option-
Set can be used.

Figure 3.16. DTD for SourceSet Documents

<!ELEMENT sourceSet (comment*, settings, sourceDirs, sourceFiles)(1)>
<!ATTLIST sourceSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT sourceDirs (comment*, srcDir, expDir?)> (2)
<!ELEMENT sourceFiles (comment*, source*)>
<!ELEMENT srcDir (comment*)>
<!ATTLIST srcDir pathRef CDATA #IMPLIED

path CDATA #IMPLIED>
<!ELEMENT expDir (comment*)>
<!ATTLIST expDir pathRef CDATA #IMPLIED

path CDATA #IMPLIED>
<!ELEMENT source (comment*)> (3)
<!ATTLIST source require CDATA #IMPLIED

localFlags CDATA #IMPLIED
name CDATA #REQUIRED>

1 The SourceSet element contains sourceFiles, sourceDirs and settings
elements. It can be attributed with a name and a description.

2 The sourceDirs element defines two directories, the directory (srcDir) where
the source files, specified later in this document can be found and an export directory
(expDir). This directory may contain the files representing the “interface” of the
modul. The directory names can either be entered directly or reference a path defined
in the PathSet document. The latter of which is recommended. 5

3 The sourceFiles element contains a list of source files (source). The name at-
tribute contains the name of the file - possibly without its extension. The require at-
tribute can contain a condition that conduct the presence of this file in the build pro-
cess.

3.6.2. Sample SourceSet Document

Using BuSyB

21

This example defines a SourceSet, i.e. a set of files, consisting of only one file
(util.c). The options for the build of this “module” are partly imported from the Op-
tionSet document (util_global_opt) and partly defined locally (util_local_opt). Two dir-
ectories important (export and source directory) will be defined via references to the
PathSet document.

Figure 3.17. Sample SourceSet Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sourceSet SYSTEM "../bsbDocs.dtd">
<sourceSet description="Example - Module Properties, module Util"

name="util">
<settings>

<options>
<optionDef description="Imported global settings (from optionSet)(1)"

name="util_global_opt">
<condOption optRef="debug_opt"/>

</optionDef> (2)
<optionDef description="Local settings" name="util_local_opt"> (3)

<condOption name="include">
<condValue pathRef="UTIL_INC"/>

</condOption>
</optionDef>

</options> (4)
</settings>
<sourceDirs>

<srcDir path="" pathRef="UTIL_SRC"/>
<expDir path="" pathRef="UTIL_INC"/>

</sourceDirs> (5)
<sourceFiles>

<source name="util.c"/>
</sourceFiles>

</sourceSet>

1 One option group is defined here. It imports (all) the subgroups (define) of the op-
tion group debug_opt from the OptionSet document.

2 Another option group is defined here. Here the subgroup include is specified loc-
ally, i.e. not as a reference.

3 The path UTIL_INC is specified here, which is a reference to a path defined in the
PathSet document.

4 The two module directories are specified here. A directory (UTIL_SRC) where its
source files are located and one (UTIL_SRC), where the header files can be found.
Both directories are defined using a reference from the PathSet document.

5 Here the files that are part of set SourceSet are specified. The example contains
only one source file (util.c).

3.6.3. SourceSet information in the makefile
The following makefile snippet illustrates how various parts of the previously defined ex-
ample SourceSet document are represented in the makefile. Please note, that this
snipped may not be found exacly like this the makefile. The relative order is preserved but
some lines may have been stripped out for readability.

Figure 3.18. SourceSet information in the makefile

out/out_db/lib/util_obj/util.obj: \

Using BuSyB

22

src/util/util.c
cl /c /MLd /Z7 /Od /GX /W3 \
/DNEED_HELP \
/Isrc/inc \ (1)
/Foout/out_db/lib/util_obj/ \

$<

1 The include directory definition src/inc will be passed to the C compiler accord-
ing to the option include.

3.6.4. Sample SourceSet editing with BuSyB
The following picture shows how the contents of the previously defined SourceSet docu-
ment are displayed by BuSyB.

Figure 3.19. Sample SourceSet editing with BuSyB

3.7. Tool Properties
The ToolSet Document

The ToolSet document contains a set of tools, i.e. the software used during the build pro-
cess to produce the targets. These tools serve different purposes and thus differ heavily in
their command line and the supported parameters. Some tools are executables, others are
scripts that must be interpreted by an interpreter. Sometime tools must be combined into a
tool chain.

Using BuSyB

23

3.7.1. DTD for ToolSet Documents

Figure 3.20. DTD for ToolSet Documents

<!ELEMENT toolSet (comment*, preambles*, tool+)> (1)
<!ATTLIST toolSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT preambles (comment*, preamble+)> (2)
<!ATTLIST preambles description CDATA #REQUIRED

require CDATA #IMPLIED>
<!ELEMENT preamble (#PCDATA)>
<!ELEMENT tool (comment*, command+)> (3)
<!ATTLIST tool name CDATA #REQUIRED

description CDATA #REQUIRED
singleRun CDATA #IMPLIED> (4)

<!ELEMENT command (comment*, executable, supports*, args*)> (5)
<!ATTLIST command require CDATA #IMPLIED (6)

name CDATA #REQUIRED
description CDATA #REQUIRED
modifier CDATA #IMPLIED> (7)

<!ELEMENT executable (comment*, flag*)> (8)
<!ATTLIST executable pathRef CDATA #IMPLIED

path CDATA #IMPLIED
toolRef CDATA #IMPLIED> (9)

<!ELEMENT supports (comment*)> (10)
<!ATTLIST supports require CDATA #IMPLIED

option CDATA #REQUIRED (11)
flag CDATA #IMPLIED>

<!ELEMENT args (comment*)> (12)
<!ATTLIST args require CDATA #IMPLIED

template CDATA #REQUIRED> (13)
<!ELEMENT flag (comment*)> (14)
<!ATTLIST flag require CDATA #IMPLIED

valueRef CDATA #IMPLIED (15)
value CDATA #IMPLIED>

1 The SourceSet element contains preambles and tool elements. It can be at-
tributed with a name and a description.

2 Each preambles element contains a list of preamble elements. A preamble
element is a line that goes unchanged into the makefile. These lines will be placed at
the beginning of the makefile, i.e. right after the the first (or default) target. A pre-
amble can be used to express a Make construct that is not (yet) supported by
BuSyB. All preamble elements within one preambles section will be grouped
together in the makefile and headed by a comment containing the description. If a
preamble element contains references to any of the build-in BSB_Variables, this
variable will be automatically generated and preset near the top of the generated
makefile. The require attribute can be used to bind the presence of a preambles
section to a condition.

3 A tool describes a piece of software, which is executed during the build on input
files to produce output files. Each tool element contains a list of commands. Nor-
mally this list contains exactly one command. Only in case of modeling a tool chain
this list will contain more than one command element. A tool chain in this sense
means a tool that consist of a number of successive calls to (possibly different) tools
producing intermediate files which are of not interest and a final result which is of in-
terest. Each tool element can be attributed by a name and a description.

4 The attribute singleRun can be used to describe the collecting nature of a tool.
When the tool is applied to a number of files, e.g. to all files of a SourceSet, it is
via this attribute that can be controlled whether all files are passed to the tool in one
call or in each file individually in a number of successive calls. To mark a tool as
“collecting” singleRun must be set to yes otherwise (the default) the tool will be run
for each file individually. A good example for a “collecting” tool is an archiver

Using BuSyB

24

which produces a library from a number of object files with just one call. An example
for a “non-collecting” tool is a C compiler which produces a number of object files
from a number of C files in a series of successive calls.

5 The command element contains one executable element and lists of supports
and args elements. It describes one command in a tool chain. It can be attributed
with a name and a description.

6 The attribute require can be used to bind the presence of this command in the tool
chain to a condition.

7 The attribute modifier can be used to add a Make modifier to the command in the
makefile. The two commonly used Make modifiers are “@” and “-”. The “@” tells
make to suppress echoing the command. The “-” is for ignoring errors.

8 The executable element describes a physically (i.e. on the hard disk) present soft-
ware (executable or script). It contains a possibly empty list of flag elements. With
the attributes path and pathRef the physical location of this software can be defined.

9 The attribute toolRef can be used to describe that this “executable” is not execut-
able but rather a “script”. It thus can not be run stand alone but instead needs to be in-
terpreted by some “interpreter”, e.g. Perl, Java or Make. In that case the toolRef at-
tribute references a tool (i.e. “the interpreter”) defined elsewhere in the ToolSet
document.

10 The supports element describes a command line parameter that is supported (or
provided) by the tool. This element is especially suitable to describe command line
arguments that can appear several times on the command line, e.g. -D or -I for a C
compiler. The attribute require can be used to bind the presence of this element on a
condition.

11 The attributes flag and option control how the supports element is represented on
the command line. The basic idea is that each appearance of this parameter on the
command line consists of two parts. First comes the (possibly empty) flag part which
is typically a “-” or “/” sign followed by a letter. After that a string (the option) fol-
lows which is specific to this instance of the parameter on the command line. When
looking at -DDEBUG the flag would be -D and the option would be DEBUG. A more
detailed example can be found in the ToolSet document.

12 The args element describes how the command line of the tool is composed. The
presence of certain parts and their placement (beginning, middle, end) can be con-
trolled. The attribute require can be used to control the validity of this element by a
condition.

13 The attribute template defines a template for the command line. The value of this at-
tribute can be a mix of both plain text and some keywords. Keywords are things
between brackets, i.e. the text between a “[” and a “]” sign is a keyword. The follow-
ing keywords exist [dest], [dest_dir], [dest{.ext}], [source],
[source*], [source_dir], [source{.ext}], [localFlags],
[cmdFile]. Each of these keywords will be replaced when the command line is
generated into the makefile. [dest] will be replaced with the target of the rule, i.e.
the file that should be created. [dest{.ext}] is handled similarly, however, the
target-file extension (i.e. the targets type) will be replaced with the specified string.
[dest_dir] will be replaced with the directory of the target. [source] will be
replaced with the source of the rule, i.e. the input file. [source{.ext}] is handled
similarly, however, the source-file extension (i.e. the source type) will be replaced
with the specified string. [source*] will be replaced with the list of all input files,
i.e. for a collective tool like a linker. [source_dir] will be replaced with the dir-
ectory of the input file. [localFlags] will be replaced with the value of the attrib-
ute localFlags as defined in the SourceSet or TargetSet documents. The
keyword [cmdFile] will be replace by the name of temporarily created file. All
text or other keywords that can be found right after [cmdFile and before the clos-
ing “]” will be echoed into this temporary file first, e.g. -@[cmdFile -DDEBUG
-c [source]] would result in a command line that has two parts, the first one
echoing the -DDEBUG -c “the_source_file” into a file and the second part calling a
tool with -@“the_temp_file”. This syntax is necessary for tools which are controlled

Using BuSyB

25

by command files. Apart from these keywords any text found between brackets is in-
terpreted as the name (option) of a former defined supports element. The replacement
is different here. For each condValue found in any condOption with that name,
i.e. as defined in either SourceSet, OptionSet or TargetSet documents one
pair of the flag and the the condValue is created. A more detailed example can be
found in the ToolSet document.

14 The flag element describes a command line parameter of the tool. In contrast to the
supports element this element is for command line parameters that take no ad-
ditonal arguments, e.g. -c for a C compiler. The attribute require can be used to bind
the presence of this element to a condition. Though more than one flag element is
allowed here, only one should be valid at a given time. That means in case of multiple
flag elements each of them should be restricted by mutually exclusive conditions in
the require attribute. The value of the flag element will at the beginning of the com-
mand line, before anything that is specified in the template attribute of the args ele-
ment.

15 The attributes value and valueRef take the actual string of which the command line
parameter consists. Whereas value takes an arbitrary string, valueRef can be used to
reference a condValue as defined in either SourceSet, OptionSet or Tar-
getSet documents.

3.7.2. Sample ToolSet Document

Figure 3.21. Sample ToolSet Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE toolSet SYSTEM "bsbDocs.dtd">
<toolSet description="Example - Tool Properties" name="tools">
<preambles description="Some rules for directory creation"> (1)

<preamble>
allOutDirs: $(BSB_OUT_DIRS_ALL) (2)

</preamble>
<preamble>

$(BSB_OUT_DIRS_ALL):;mkdir.exe -p $@
</preamble>

</preambles>
<tool description="C-Compiler" name="CC"> (3)

<command description="MS C-Compiler" name="MS_CC"> (4)
<executable path="cl"> (5)

<flag value="/c /ML /O2 /GX /W3"
require="DEBUG_MODE==0"/>

<flag value="/c /MLd /Z7 /Od /GX /W3" (6)
require="DEBUG_MODE==1"/>

</executable>
<supports flag="/D" option="define"/> (7)
<supports flag="/I" option="include"/>
<args template="[define] [include] /Fo[dest_dir]/ [source]"/> (8)

</command>
</tool>
<tool description="Object librarian, archiver" name="AR" singleRun="yes">

<command description="MS Archiver" name="MS_AR">
<executable path="link">

<flag value="/lib" />
</executable>
<args template="/OUT:[dest] [source*]"/>

</command>
</tool>
<tool description="Object linker" name="LNK" singleRun="yes"> (9)

<command description="MS standard linker" name="MS_LNK">
<executable path="link">

<flag value="/debug /PDB:NONE /incremental:no /subsystem:console"
require="DEBUG_MODE==1"/>

<flag value="/incremental:no /subsystem:console"
require="DEBUG_MODE==0"/>

</executable>

Using BuSyB

26

<args template="/OUT:[dest] [source*]"/>
</command>

</tool>
</toolSet>

1 A group of preambles consisting of two lines is defined here. A makefile comment
(containing the description) and one line for each preamble will be generated into the
makefile.

2 This preamble resembles one line of text that is generated into the makefile. It defines
a Make rule.

3 One tool (the C compiler CC) is defined here. This tool consists of exactly one com-
mand.

4 One command (the Microsoft™C compiler MS_CC) is defined here.
5 The name of the compiler executable is cl. There is no full path given (with a path-

Ref attribute). So the the call of the compiler will depend the on correctness of the
PATH environment variable.

6 Two flags are defined here. Since only one of them can be active at given time they
are restricted by mutually exclusive conditions on the value of the DEBUG_MODE
property in the require attribute.

7 One supported command line parameter is defined here. This parameter is construc-
ted of a pair of flag and option attributes. For each condValue found in the cond-
Option named define in OptionSet document this pair will be constructed.

8 Here the complete command line for the tool is created as a template. It is constructed
of white space (which will appear unchanged in the makefile) and four blocks con-
taining a keyword or to be more precise something in brackets. At first the result of
the transformation of the two supports elements [define] and [include]
defined above will be placed on the command line. After that comes the string /Fo
followed by the ouput file directory and the string /. Last is the input file. How this
template is filled can be seen in the ToolSet part of the makefile.

9 Another tool (the linker LNK) is defined here. In contrast to the compiler this is a col-
lective tool, i.e. applied on a number of files it will only be called once. Therefore the
attribute singleRun is set to yes.

3.7.3. ToolSet information in the makefile
The following makefile snippet illustrates how various parts of the previously defined ex-
ample ToolSet document are represented in the makefile. Please note, that this snipped
may not be found exacly like this the makefile. The relative order is preserved but some
lines may have been stripped out for readability.

Figure 3.22. ToolSet information in the makefile

out/out_db/lib/util_obj/util.obj: \
src/util/util.c
cl /c /MLd /Z7 /Od /GX /W3 \ (1)
/DNEED_HELP \ (2)
/Isrc/inc \ (3)
/Foout/out_db/lib/util_obj/ \ (4)

$< (5)

out/out_db/hello.exe: \
out/out_db/lib/main.obj \ (6)
out/out_db/lib/util.lib
link /debug /PDB:NONE /incremental:no /subsystem:console \
/OUT:out/out_db/hello.exe \
$^ (7)

Using BuSyB

27

1 The tool cl is called with the parameters /c /MLd /Z7 /Od /GX /W3.
2 The command line starts with /DNEED_HELP which is the translation of all define

options (only one is present coming from the OptionSet document).
3 The next block on the command line is /Isrc/inc, which is the translation of all

include options (only one is present coming from the SourceSet document).
4 Then the directory of the output file prefixed with /F and appended with / appears

on the command line.
5 The last element on the command line is the input file ([source]). It does not ap-

pear as plain text but instead the automatic Make variable $< is used. This variable
will be translated to src/util/util.c by Make.

6 The linker is a collective tool. It takes a list of input files (out/
out_db/lib/main.obj and out/out_db/lib/util.lib) and produces
one output file with just one call.

7 The last element on the command line is the list of input files ([source*]). It does
not appear as plain text but instead the automatic Make variable $^ is used. This vari-
able will be translated to out/out_db/lib/main.obj and out/
out_db/lib/util.lib by Make.

3.7.4. Sample ToolSet editing with BuSyB
The following picture shows how the contents of the previously defined ToolSet docu-
ment are displayed by BuSyB.

Figure 3.23. Sample ToolSet editing with BuSyB

Using BuSyB

28

3.8. Path Properties
The PathSet Document

The PathSet document type is designed to contain all path information. File paths, input
and output directories, tool locations and so on should be specified here. The DTD allows
to specify single files as well as directory trees. Each node - file or directory - can be given
a symbolic name. These names can then be referenced from almost every other document
type.

Paths traversing more than directory level, i.e. containing slashes or backslashes, can either
be specified recursively or entered using slashes and/or backslashes. Both characters are
understood as a delimiter. They are converted into a single internal representation. The
paths in generated makefile will only use slashes.

Both absolute paths as well as relative paths can be entered. Relative paths are always rel-
ative to the physical location of the PathSet document. Relative paths in the PathSet
will result in relative paths in the makefile, absolute paths will stay as they are specified.
Using relative path information is necessary to cope with clearmake. Part of clearmake's
rebuild rules is the comparison of the build command with which an “object” is built. If
this command differs - also if it differs “only” in the path of a certain file or tool - the
“object” is rebuild. Given this behavior and the fact that it is possible to mount ClearCase
views onto different drives it is clear that relative paths are necessary to avoid rebuilds.

Use of relative paths

When creating a makefile into a directory different from the location of the
PathSet document all relative paths in the makefile will be adjusted. This is
done by adding or substracting the “difference” between theese two director-
ies, e.g. when generating the makefile into a subdirectory of the one where the
PathSet document lies ../ will be added to all paths in the makefile. From
that follows that makefiles are not relocatable when using relative path inform-
ation.

3.8.1. DTD for PathSet Documents

Figure 3.24. DTD for PathSet Documents

<!ELEMENT pathSet (comment*, pathTree+)> (1)
<!ATTLIST pathSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT pathTree (comment*, path+, pathInc*, pathTree*)> (2)
<!ATTLIST pathTree name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT pathInc (comment*)> (3)
<!ATTLIST pathInc require CDATA #IMPLIED

includePath CDATA #IMPLIED
includeFile CDATA #REQUIRED
description CDATA #REQUIRED>

<!ELEMENT path (comment*)> (4)
<!ATTLIST path require CDATA #IMPLIED

autoNamed CDATA #IMPLIED (5)
value CDATA #REQUIRED>

1 The PathSet element contains a list of pathTrees. It can be attributed with a
name and a description.

Using BuSyB

29

2 A pathTree element can recursively contain other pathTrees. This is how sub-
directories can be specified. The attribute name contains the symbolic name by which
this node can be referenced.

3 If a valid pathInc element is given, the specified file - which must be a valid Path-
Set document - will be included as a set of pathTrees. The includeFile attribute may
contain an absolute or relative path. If relativ, it will be evaluated as relative to a spe-
cified node in the current PathSet document (the includePath attribute is present),
or to the location of the including PathSet document. absolute or relative path. If
includeFile is absolute, the includePath attribute will be ignored. The description at-
tribute should contain a note on the included PathSet. The require attribute con-
trols whether the specified file will be included dependent on the current configura-
tion settings.

4 The path element describes a file system node. The value attribute is the name of
the file or directory. The require attribute can contain a logical condition.

5 The autonamed attribute can be used to reference a name construction rule defined in
the OptionSet document.

3.8.2. Sample PathSet document
This example defines one root directory. It does so using a relative path. The physical loca-
tion of this root directory is in the same directory as the PathSet document. Its name is
example and it contains 2 subdirectories - out and src. These directories again have
subdirectories. Each pathTree has been given a symbolic name (EXAMPLE,
OUT,SRC,...), this allows to reference each node from within other documents.

Figure 3.25. Sample PathSet document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pathSet SYSTEM "bsbDocs.dtd">
<pathSet description="Example - Path Properties" name="path">

<pathTree description="complete directory tree" name="EXAMPLE">
<path value=".."/>
<pathTree description="output directory tree" name="OUT">
<path value="out"/>
<pathTree description="autonamed output directory"

name="TARGET_OUT">
<path value="" autoNamed="out_dir"/> (1)
<pathTree description="libraries" name="OUT_LIB">

<path value="lib"/>
<pathTree description="object directory for module Util"

name="OUT_OBJ_UTIL">
<path value="util_obj"/>

</pathTree>
</pathTree>

</pathTree>
</pathTree>
<pathTree description="source directory tree" name=""> (2)
<path value="src"/>
<pathTree description="source dir for module Main" name="MAIN_SRC">

<path value="main"/>
</pathTree>
<pathTree description="source dir for module Util" name="UTIL_SRC">

<path value="util"/>
</pathTree>
<pathTree description="export dir for module Util" name="UTIL_INC">

<path value="inc"/>
</pathTree>

</pathTree>
<pathTree description="tool directory" name="TOOLS">
<path value="tools"/>

</pathTree>
</pathTree>

</pathSet>

Using BuSyB

30

1 Here the name of the directory is not specified directly. Instead a name construction
rule is referenced from OptionSet document. There the construction of the name
depending on (some) Main Properies is defined.

2 Omitting the name attribute or entering an empty name is allowed. This makes sense
for a directory which is never referenced itself but its subdirectories are.

3.8.3. Sample PathSet editing with BuSyB
The following figure shows how the previous example is presented by BuSyB. Editing the
PathSet is straight forward. When selecting an element new subelements can added via
the File menue or via dedicated buttons. Elements can be deleted the same way. The value
of attributes can be changed like this, too.

Figure 3.26. Sample PathSet editing with BuSyB

3.9. The BuSyB Command Line
BuSyB can be invoked in two major modes: Edit Mode and Generation Mode. In Edit
Mode a GUI Editor allows to edit the XML files. In Generation Mode the contents of the
XML files are processed and a makefile is generated. In addition, it is possible to generate
Makefiles for selected targets from inside the Target-Editor.

Makefiles generated by BuSyB rely on the existence of some special variables, decribing
certain environment properties. These variables may be present in the current execution en-

Using BuSyB

31

vironment, or can be defined in the Pragma-Section of the ToolSet document. Currently
used variables are:

• BSB_MKDIR specifies a command to create a directory. It is used, when BuSyB is in-
voked with the commandline switch -genOutDirs to automatically create needed target
directories.

• BSB_REMOVE specifies a command to remove a file. It is used, when BuSyB creates
the clean-rule commands for each target.

• BSB_ECHO specifies a command to dump text into a file. It is used, when BuSyB is
directed to generate a command-file by specifying the [cmdFile] keyword in the tools
argument-template attribute.

The command line of BuSyB is the following:

busyb.jar [-i | -ini Inifile] [-c | -cfg ConfigDefFile] [-g | -gen target]
[-out Makefile] [-l] [-err { a | e | l | x }] [-rpt { 0 | 1 | ... }] [-val] [-var { all | ref }]
[-directout] [-softclean] [-settings] [-?]

• -ini with this option an Ini-File can be selected. Alternatively option -i starts a GUI
dialog that allows to browse the file system for an Ini-File. If omitted, BuSyB looks for
a file named “bsb.ini” in the current directory.

• -cfg with this option a ConfigDef document can be selected. Alternatively option
-c starts a GUI dialog that allows to browse the file system for a ConfigDef docu-
ment. This option overrides the the information found in the Ini-File, where the default
ConfigDef document is defined. If the given ConfigDef has a valid reference at-
tribute, the specified file determines the set of documents (ConfigSet, PathSet,
TargetSet, etc.) to be used for this specific configuration; in this case, commandline
selection of an Ini-File can be omitted.

• -g with this option BuSyB is started in Generation Mode. A makefile will be generated
for the first target that is found in the TargetSet document. With option -gen an al-
ternative target can be chosen. If neither of these options is present BuSyB starts in
Edit Mode.

• -out with this option the name and the location of the makefile that will be generated
can be specified.

• -l with this option all targets defined in the TargetSet document will be listed. A
makefile can be generated for each of these targets with option -gen.

• -rpt with this option the reporting level of the tool can be controlled. Reporting can
be disabled (0), enabled (1) for all basic actions and enabled (2) for all actions
(verbose).

• -err with this option both the error handling and the error reporting level of the tool
can be controlled. Verbose error reporting can be turned on for (a)ll errors or only for
(e)xternal errors, i.e. things that are out of the responsibility of BuSyB like file system
errors. With (l)ong - a full stack trace can be additionally enabled. With early e(x)it -
BuSyB aborts on any error otherwise it tries to handle the error.

• -val with this option document validation can be turned on, i.e. all XML documents
are validated agains the DTD. For this to work correctly the XML documents must

Using BuSyB

32

contain “Document Type Declaration”, i.e. reference to the DTD.

• -var with this option it can be controlled if BuSyB generates additional variables into
the makefile. These variable will contain the content of some BuSyB internal variable.
The generation can be turned on for (all) variables or only for those variables which are
(ref)erenced in the preamble section of the ToolSet document. Currently BuSyB is
able to generate the following variables:

• BSB_OUT_DIRS_ALL contains a list of all directories needed by the actual Make-
file to generate the target files.

• BSB_TARGETS_ALL contains a list of all target files (including path information)
that the current Makefile may generate.

• BSB_TG_TYPE_{type} contains a list of all target files (including path information)
of the given {type} that the current Makefile may generate.

• BSB_TG_NAME_{name} contains a list of all files (including path information) that
the current Makefile may generate when exetuting the make-rules for the target
with the given {name}.

• BSB_SOURCES_ALL contains all files that are target sources.

• BSB_SOURCES_ONLY contains all files that are target sources, but not targets
themselves.

• BSB_TOOLS_ALL contains all tools (exes, scripts) for the generated makefile.

• BSB_PATHES_ALL contains name and full path for all PathSet-nodes.

• BSB_PROPS_ALL contains name and value for all ConfigDef-Properties.

• BSB_PATH_{name} contains full path for named PathSet-node.

• BSB_PROP_{name} contains value for named ConfigDef-Property.

• -directout turns off in-memory construction of BuSyB output, and lets BuSyB
write directly to disc (the old way). This implies the creation of an intermediate file.

• -softclean disables the creation of rigid clean rules, so that only the immediate
contributers to a target will be removed by the targets clean rule.

• -settings displays the state of some internal settings, and the current values of im-
portant switches (e.g. defaults for validating, clean rule generation, etc.).

• -? (and any invalid option) shows the BuSyB version information and a summary of
valid commandline options.

Using BuSyB

33

Appendix A. The complete Makefile
This appendix contains the Makefile which has been generated by BuSyB from the XML
files presented in the chapter “Using BuSyB”.

Figure A.1. The complete Makefile

###
MAKEFILE FOR hello
DEFINED IN TARGETSET targets
Z:/gpf/util/busyb/example/xml/targetSet.xml
BASED ON CONFIGURATION configuration
USING TOOLSET tools
generated 3/23/04 3:15 PM
by BuSyB Version 1.0.1
for DTD Version 1.15
###

BSB_OUT_DIRS_ALL = out/out_db \
out/out_db/lib \
out/out_db/lib/util_obj

BuSyB-DefaultTarget: hello

PREAMBLE: Some rules for directory creation

allOutDirs: $(BSB_OUT_DIRS_ALL)

$(BSB_OUT_DIRS_ALL):;mkdir.exe -p $@

TargetName=main
#
TargetType=obj
TargetDir=out/out_db/lib/
#
Using Tool: CC
mode: One to One
command: MS_CC
modifier: n/a
descr.: MS C-Compiler
exec.: cl /c /MLd /Z7 /Od /GX /W3
#
SOURCES:
src/main/main.c
#
RESULTS:
out/out_db/lib/main.obj
#
RULES:

out/out_db/lib/main.obj: \
src/main/main.c
cl /c /MLd /Z7 /Od /GX /W3 \
/DNEED_HELP \
/Isrc/inc \
/Foout/out_db/lib/ \

$<

main: \

34

out/out_db/lib/main.obj

clean_main:
$(BSB_REMOVE) out/out_db/lib/main.obj

TargetName=util
#
TargetType=obj
TargetDir=out/out_db/lib/util_obj/
#
Using Tool: CC
mode: One to One
command: MS_CC
modifier: n/a
descr.: MS C-Compiler
exec.: cl /c /MLd /Z7 /Od /GX /W3
#
SOURCES:
src/util/util.c
#
RESULTS:
out/out_db/lib/util_obj/util.obj
#
RULES:

out/out_db/lib/util_obj/util.obj: \
src/util/util.c
cl /c /MLd /Z7 /Od /GX /W3 \
/DNEED_HELP \
/Isrc/inc \
/Foout/out_db/lib/util_obj/ \

$<

TargetName=util
#
TargetType=lib
TargetDir=out/out_db/lib/
#
Using Tool: AR
mode: Single Run
command: MS_AR
modifier: n/a
descr.: MS Archiver
exec.: link /lib
#
SOURCES:
out/out_db/lib/util_obj/util.obj
#
RESULTS:
out/out_db/lib/util.lib
#
RULES:

out/out_db/lib/util.lib: \
out/out_db/lib/util_obj/util.obj
link /lib \
/OUT:out/out_db/lib/util.lib \
$^

util: \
out/out_db/lib/util.lib

clean_util:
$(BSB_REMOVE) out/out_db/lib/util.lib
$(BSB_REMOVE) out/out_db/lib/util_obj/util.obj

TargetName=hello
#
TargetType=exe
TargetDir=out/out_db/
#

The complete Makefile

35

Using Tool: LNK
mode: Single Run
command: MS_LNK
modifier: n/a
descr.: MS standard linker
exec.: link /debug /PDB:NONE /incremental:no /subsystem:console
#
SOURCES:
out/out_db/lib/main.obj
out/out_db/lib/util.lib
#
RESULTS:
out/out_db/hello.exe
#
RULES:

out/out_db/hello.exe: \
out/out_db/lib/main.obj \
out/out_db/lib/util.lib
link /debug /PDB:NONE /incremental:no /subsystem:console \
/OUT:out/out_db/hello.exe \
$^

hello: \
out/out_db/hello.exe

clean_hello:
$(BSB_REMOVE) out/out_db/hello.exe

clean: \
clean_main \
clean_util \
clean_hello

END OF GENERATED MAKEFILE
###

The complete Makefile

36

	BuSyB User's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites

	Chapter 2. Concepts
	2.1. Build Information - Classification
	2.1.1. Main Properties
	2.1.2. Target Properties
	2.1.3. Common Options
	2.1.4. Module Properties
	2.1.5. Tool Properties
	2.1.6. Path Properties

	2.2. Build System - Best Fit Technology
	2.2.1. BuSyB
	2.2.2. XML
	2.2.3. Make

	2.3. Build Process - Lifecycle

	Chapter 3. Using BuSyB
	3.1. General
	3.2. The Example
	3.3. Main Properties
	3.3.1. DTD for ConfigSet Documents
	3.3.2. Sample ConfigSet Document
	3.3.3. Sample ConfigSet editing with BuSyB
	3.3.4. DTD for ConfigDef Documents
	3.3.5. Sample ConfigDef Document
	3.3.6. Sample ConfigDef editing with BuSyB

	3.4. Target Properties
	3.4.1. DTD for TargetSet Documents
	3.4.2. Sample TargetSet Document
	3.4.3. TargetSet information in the makefile
	3.4.4. Sample TargetSet editing with BuSyB

	3.5. Common Options
	3.5.1. DTD for OptionSet Documents
	3.5.2. Sample OptionSet Document
	3.5.3. OptionSet information in the makefile
	3.5.4. Sample OptionSet editing with BuSyB

	3.6. Module Properties
	3.6.1. DTD for SourceSet Documents
	3.6.2. Sample SourceSet Document
	3.6.3. SourceSet information in the makefile
	3.6.4. Sample SourceSet editing with BuSyB

	3.7. Tool Properties
	3.7.1. DTD for ToolSet Documents
	3.7.2. Sample ToolSet Document
	3.7.3. ToolSet information in the makefile
	3.7.4. Sample ToolSet editing with BuSyB

	3.8. Path Properties
	3.8.1. DTD for PathSet Documents
	3.8.2. Sample PathSet document
	3.8.3. Sample PathSet editing with BuSyB

	3.9. The BuSyB Command Line

	Appendix A. The complete Makefile

