

Copyright  2003 Texas Instruments, Inc. All rights reserved.

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Service Access Point

SAP Example

Department: Aalborg Wireless Center

Creation Date: 7 September, 2001

Last Modified: 15 September, 2003 by Kenneth Skou Pedersen

ID and Version: 8434.405.01.009

Status: Accepted

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 2/23

0 Document Control

Copyright  2003 Texas Instruments, Inc.

All rights reserved.

Texas Instruments Incorporated and / or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and ser-vices at any
time and to discontinue any product, software or service without notice. Customers should obtain the latest
relevant information during product design and before placing orders and should verify that such information
is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used
to the extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI products, software and / or services. To minimize the risks
associated with customer products and applications, customers should provide adequate design, testing and
operating safeguards.

Any access to and / or use of TI software described in this document is subject to Customers entering into
formal license agreements and payment of associated license fees. TI software may solely be used and / or
copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and / or software may be based on or implement
industry recognized standards and that certain third parties may claim intellectual property rights therein. The
supply of products and / or the licensing of software do not convey a license from TI to any third party
intellectual property rights and TI expressly disclaims liability for infringement of third party intellectual
property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination,
machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a license
from TI to use such products, software or services or a warranty, endorsement thereof or statement regarding
their availability. Use of such information, products, software or services may require a license from a third
party under the patents or other intellectual property of the third party, or a license from TI under the patents
or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written per-mission
of TI.

0.1 Document History

ID Author Date Status

8434.405.01.001 KKS 7 September, 2001 Being Processed

8434.405.01.002 KKS 11 September, 2001 Being Processed

8434.405.01.003 CSH 17 September, 2001 Being Processed

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 3/23

8434.405.01.004 CSH 17 September, 2001 Being Processed

8434.405.01.005 CSH 19 September, 2001 Being Processed

8434.405.01.006 CSH 25 September, 2001 Being Processed

8434.405.01.007 KSP 7 March, 2003 Submitted

8434.405.01.008 KSP 4 August, 2003 Submitted

8434.405.01.009 KSP 15 September, 2003 Accepted

0.2 References, Abbreviations, Terms

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 4/23

Table of Contents

1 Introduction ... 5

2 Constants ... 7

3 Primitives ... 8

3.1 EXAMPLE_INTEGER_REQ ... 8
3.2 EXAMPLE_ENUMERATION_IND .. 9
3.3 EXAMPLE_EMPTY_CNF .. 9
3.4 EXAMPLE_STRUCT_IND ... 10
3.5 EXAMPLE_UNION_IND.. 10
3.6 EXAMPLE_OPTIONAL_RES ... 11
3.7 EXAMPLE_POINTER_RES.. 11
3.8 EXAMPLE_ARRAY_RES .. 12
3.9 EXAMPLE_PTR_STRUCT_IND... 12
3.10 EXAMPLE_LINKED_STRUCT_REQ ... 12
3.11 EXAMPLE_POINTER_STRUCT_REQ ... 13
3.12 EXAMPLE_OPTIONAL_U8_REQ .. 13
3.13 EXAMPLE_ELEMENT_C_NAME_REQ... 14
3.14 EXAMPLE_REF_DEFINITION_C_NAME_REQ .. 14
3.15 EXAMPLE_REF_DEF_AND_ELEMENT_C_NAME_REQ ... 15

4 Functions ... 16

4.1 Sla_example_function_call... 16
4.2 Function_returning_u16 ... 16

5 Parameters... 18

5.1 Unsigned Integer, 8-bits (U8) ... 18
5.2 Signed Integer, 8-bits (S8) .. 18
5.3 Unsigned Integer, 16-bit (U16) ... 18
5.4 Signed Integer, 16-bit (S16).. 19
5.5 Unsigned Integer, 32-bit (U32) ... 19
5.6 Signed Integer, 32-bit (S32).. 19
5.7 Enumeration .. 20
5.8 Struct element 1 ... 20
5.9 Struct element 2 ... 21
5.10 Struct element 3 ... 21
5.11 Struct element 4 ... 22
5.12 Simple struct ... 22
5.13 Union element 1 .. 23
5.14 Array Element ... 23
5.15 Imported elements ... 23

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 5/23

1 Introduction

The purpose of this Service Access Point (SAP) document is to illustrate the different possibilities of the
SAP syntax and how these can be constructed. For a more detailed description of the provided features
please refer to the description of the SAP syntax in document [TI 8350.301]. If one is not familiar with the
SAP syntax it is recommended that the SAP syntax document be read before reading this example SAP.

This document does not exhaustively cover all the possibilities in the SAP syntax but tries to cover the most
important aspects ranging from simple declarations to more complicated features such as for instance links to
other SAP documents (To support this an include example SAP document has also been created [TI
8434.404]). The examples used in this document will be based on the fictive entities SLA and MAS, where
SLA is the slave (the service provider) and MAS is the master entity (the service user). Both of these
example SAP documents are fictive and the declarations are for illustration purposes only. However all the
declarations are legal and hence the documents are compilable. As all the primitives, functions and
parameters are fictive the description of them and their purpose is fairly short. In real SAP documents it is
important to make a more thorough and detailed description.

As the SAPs besides declaring primitives and types in the C header files it also serve as documentation it is
very important to make thorough descriptions of the different primitives, functions etc. This also goes for the
introduction to the document. An example of how such an introduction could be constructed is given in the
following:

--------------------------- Start of example ----------------------------

Example of an introduction for a SAP

This document holds the EXAMPLE SAP specification. The specification covers the interface between the
MAS entity and the SLA entity. Please refer to the Dual Mode System Design [TI 8010.944HLS] for further
description of the system design and interfaces.

This document has the following sections:

Section 2 contains a specification of constants used on the interface, which are not specific to the value of a
particular parameter. Such constants are typically size fields, specifying array or element sizes.

Section 3 contains the top-level description of the primitives defined for the interface. For each primitive its
functionality is described and a element list is given. For any primitive using complex structures or
parameters with identified values, references will be given to subsections of section 5

Section 4 contains the top-level description of the functions defined in the interface. For each function a
description and parameter list is given. For all used parameters references will be given to subsections of
section 5.

Section 5 contains the specifications of the types used in the primitives or functions of the interface. It also
contains specifications of parameters with predefined values or value ranges. Cross-references to subtypes
may be used within this section for complex type declarations.

Section 6 contains a set of scenarios illustrating the use of the primitives defined by the SAP through
message sequence charts.

Types which are common or used for several SAPs, are specified in the include SAP [TI 8434.304 EX_INC]
and links to these files will be given.

The document is primarily based on the specification [3G 25.331], [3G 31.102], [3G 24.007] and [3G

8350_301_SAP_Syntax.doc
8434_404_01_EX_INC.doc
8434_404_01_EX_INC.doc

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 6/23

24.008].

Please refer to [TI 8350.301 SAP Syntax] for further information on the SAP syntax.

--------------------------- End of example ----------------------------

Please note the following:

 The description of the sections above should only be present if the section is included in the SAP

 Some of the SAPs have a section in the introduction that describes specific handling of e.g. Common
Configuration Stores. Naturally this should be kept

 The paragraphs mentioning the function definition and MSC section should only be included when
present in the SAP. Please note that the section numbering then changes! By using cross-references
when referring to other sections this can be handled.

 In some of the SAP documents specific paragraphs like the one included below from CUMAC SAP
appears. It would be a good idea to keep them and add it to the paragraph with references to
specifications.

"Snip from CUMAC SAP: The 3GPP MAC specification, [3G 25.321], defines primitives for the
UMAC entity. These primitives are defined in an abstract manner that does not specify or constrain
implementations. The primitives defined in the present document deviates from the ones in the 3GPP
specifications, although the general principle is maintained."

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 7/23

2 Constants

Description:

This section contains declarations of pragmas and constant values. The pragmas are used to modify
the behaviour of the TI tool chain. In this case the parameters and elements are prefixed with EX and
enumerations are created in the .val file instead of #defines. The constants are used in the remaining
part of the document. As can be seen in the Definition table this SAP contains a constant without a
predefined value. This is because it is a linked constant from an include SAP and hence it would not
make sense to assign a value to it in this SAP.

Pragma:

Name Value Comment

PREFIX EXAMPLE Functions and parameters of this document will be prefixed with
EX. Primitives are never prefixed automatically. This has to be

done manually.

ALWAYS_ENUM_IN_VAL_FILE YES Generates enums in the .val file instead of #defines

ENABLE_GROUP NO Do not enable h-file grouping

COMPATIBILITY_DEFINES NO Compatible to the old #defines

Definition:

Name Value Comment Link

SLA_SIZE_MIN 2 Example of a constant used to control the

minimum number of elements of an

structure (value 2)

SLA_SIZE_MAX 0x0010 Example of a constant used to control the

maximum number of elements of an

structure defined in hex (value 16)

MAX_SIZE 5 Constant used to determine upper boundary

of a dynamic array (value 5)

SLA_SIZE_DEFAULT 2 Example of a constant (value 2)

LINK_CONSTANT Example of link to constants. (value will be

taken from include SAP)

8434_404_01_EX_INC.doc -

LINK_CONSTANT

History:

20-February-01 KKS Initial
27-August-01 KKS Pragmas and negative linked constant added
18-September-01 CSH Added link to constant
19-September-01 CSH SLA_SIZE_DEFAULT changed to 2 (used in array definition)
19-September-01 CSH Removed COMPATIBILITY_DEFINES
19-Marts-03 KSP Added MAX_SIZE

8434_404_01_EX_INC.doc#LINK_CONSTANT
8434_404_01_EX_INC.doc#LINK_CONSTANT

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 8/23

3 Primitives

A service access point completely defines the interface to be used to gain access to a set of services provided
by an entity. The definition of the interface can be based on a set of primitives, a set of function calls or both,
depending on the nature of the services provided by the entity. In this case the primitives are exchanged
between a master entity and a slave entity.

For a primitive the Short Name is the primitive name and four general types exists. The four postfixes for
theses types are: requests (REQ), confirms (CNF), indications (IND) and responses (RES), which is part of
the 7-layered ISO model. The primitive ID (primitive number) is a unique identifier of the primitive. As
these are not generated automatically it is up to the developer to keep track of these.

The ID is a 32-bit unsigned integer
1
 and should be specified using the hexadecimal format (although any

ANSI C syntax number format is valid). In older SAP documents, 16-bit primitive IDs may still be seen, but
these are no longer to be used. The value of the primitive ID must follow a set of guidelines, currently as
shown below:

0 x 8 0 XXY0 ZZ

SAP Identifier

Direction

Primitive Number

The SAP identifier is a unique ID for the SAP described by the SAP document. In order to keep track of
these unique IDs it is recommended to keep a document stating which SAP IDs are used and what they are
used for. This way the same SAP ID will never be used twice.

Furthermore the Direction indicates the direction of the primitive, which can be either master-to-slave (REQ
and RES) or slave-to-master (IND or CNF). For primitives of type request or response, the direction should
have a value of 0. For primitives of type confirm or indication the direction should have a value of 4. The
primitive number is the number of the primitive within the SAP and should start at 00 for the first primitive
in the document. Please note that this direction-bit makes it possible to have primitives within the same
SAP, which share the same SAP identifier and primitive number but have different direction bits.

3.1 EXAMPLE_INTEGER_REQ

Description:

This message is an example of a simple request primitive. The primitive contains three unsigned and
one signed integer. In each case the size of the integer is given by its type (e.g. a U8 corresponds to
an unsigned 8-bit integer with a possible value range from 0-255 and a S8 to a signed 8-bit integer
with a possible value range from –128 to 127). The actual declaration of the elements can be found
simply by following the cross-reference given in the Ref column. In this case the only purpose of the
parameter is to illustrate the use of them. As will be seen in the following section any types can be
combined in a primitive. Please notice that the order of the elements is not insignificant as fill bytes
are generated when the SAP is compiled due to alignment. The order provided below would require
12 bytes using 4 alignment bytes while the optimized order (U8, S8, U16, U32) only would require 8
bytes using no alignment bytes.

1 This is the case at the moment, but as the header format for primitives in the TI protocol stack framework is being revised, this may
change.

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 9/23

Definition:

Short Name ID Direction

EXAMPLE_INTEGER_REQ 0x80000000 MAS->SLA

Elements:

Long Name Short Name CTRL Ref Type

8-bit unsigned integer example unsigned_8_bit 5.1 U8

16-bit unsigned integer example unsigned_16_bit 5.3 U16

32-bit unsigned integer example unsigned_32_bit 5.5 U32

8-bit signed integer example signed_8_bit 5.2 S8

History:

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

3.2 EXAMPLE_ENUMERATION_IND

Description:

This message is an example of a request primitive containing an enumeration. In this case the
purpose of the parameter is to illustrate the use of an enumerations.

Definition:

Short Name ID Direction

EXAMPLE_ENUMERATION_IND 0x80004000 MAS->SLA

Elements:

Long Name Short Name CTRL Ref Type

Enumeration example enumeration 5.7 ENUM

History:

1-September-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

3.3 EXAMPLE_EMPTY_CNF

Description:

This is an example of an empty confirm primitive. When the SAP is compiled the compiler
automatically generates a dummy parameter of type U8, as the type generated in the header file
cannot be empty. However this dummy element is not to be used.

Definition:

Short Name ID Direction

EXAMPLE_EMPTY_CNF 0x80014000 SLA->MAS

Elements:

Long Name Short Name CTRL Ref Type

History:

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 10/23

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

3.4 EXAMPLE_STRUCT_IND

Description:

This is an example of an indication primitive containing a struct. For information on the content of
the struct follow the cross-reference to the actual declaration.

Definition:

Short Name ID Direction

EXAMPLE_STRUCT_IND 0x80024000 SLA->MAS

Elements:

Long Name Short Name Ref Type

Struct example struct_element_1 5.8 STRUCT

History:

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

3.5 EXAMPLE_UNION_IND

Description:

This is an example of an indication primitive containing two unions as elements. When the SAP is
compiled, an element (a union controller) is inserted for each union to indicate which of the possible
structures in the union to use. The elements will in this example be named ctrl_union_element_1 and
ctrl_union_element_2. By following the cross-references in the Ref column the valid values for the
union can be found in the TAG id column in the Elements part of 5.13 and 5.15.

Furthermore by following the cross-reference 5.15 in the Ref column it can be seen that the second
union is also an example of a definition included from an external include SAP document.

Definition:

Short Name ID Direction

EXAMPLE_UNION_IND 0x80034000 SLA->MAS

Elements:

Long Name Short Name Ref Type

Simple union example union_element_1 5.13 UNION

Complex Union example union_element_2 5.15 UNION

History:

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 11/23

3.6 EXAMPLE_OPTIONAL_RES

Description:

This is an example of a response primitive containing an optional element. The optional/mandatory
information of an element is set in the Pres column (Pres is the abbreviation for presence). By
default, elements are mandatory and a Pres column is not needed if all elements are mandatory.
However when the presence column is present it should be used for mandatory elements as well as
can be seen in the table below. For optional elements a U8 element (valid flag) is generated when the
SAP is compiled, which will determine whether the optional element is valid or not. The element in
this example will be named v_optional_element.

Definition:

Short Name ID Direction

EXAMPLE_OPTIONAL_RES 0x80010000 MAS->SLA

Elements:

Long Name Short Name Pres CTRL Ref Type

Mandatory element unsigned_8_bit Mandatory 5.1 U8

Optional S16 element signed_16_bit Optional 5.4 S16

Mandatory S32 element signed_32_bit Mandatory 5.6 S32

Optional element example optional_element Optional 5.3 U16

History:

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

3.7 EXAMPLE_POINTER_RES

Description:

This is an example of a response primitive, containing a pointer element. The first element is a
pointer to an unsigned 8-bit element and the second element is a pointer to a dynamic size array of
unsigned 8-bit elements.

Definition:

Short Name ID Direction

EXAMPLE_POINTER_RES 0x80020000 MAS->SLA

Elements:

Long Name Short Name CTRL Ref Type

Dynamic array of 8-bit integers pointer_array PTR[SLA_SIZE_MIN.. SLA_SIZE_MAX] 5.1 U8

History:

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 12/23

3.8 EXAMPLE_ARRAY_RES

Description:

This is an example of a response primitive containing fixed and variable sized elements. The size of
the fixed/dynamic sized elements is controlled by the CTRL column. If an element must have a
fixed size it is given as for the fixed_array_element. If an element must have a dynamic size it is
given as for the dynamic_array_element. For a dynamic sized element an element (counter) is
generated when the SAP is compiled, which is used to indicate the number of elements used. The
counter element will have a c_ prefix and will in this example be named c_dynamic_array_element,
and its type will depend on the value of SLA_SIZE_MAX. In this example the array is of the type
U8, but other types such as for instance STRUCT is also valid for creating an array of structs (but
not UNION, see syntax document).

Definition:

Short Name ID Direction

EXAMPLE_ARRAY_RES 0x80030000 MAS->SLA

Elements:

Long Name Short Name CTRL Ref Type

Fixed size array example fixed_array_element [SLA_SIZE_DEFAULT] 5.14 U8

Dynamic size array example of

structs

dynamic_array_element [SLA_SIZE_MIN.. SLA_SIZE_MAX] 5.14 U8

History:

20-February-01 KKS Initial
17-September-01 CSH Changed to use 32-bit operation codes.

3.9 EXAMPLE_PTR_STRUCT_IND

Description:

This is an example of an indication primitive containing a pointer to a structure. As can be seen in
the CTRL column the PTR keyword is used to indicate that it is a pointer. When PTR is used the
type name will be prefixed with ptr_, which in this case will result in the type name to be
ptr_struct_element_1.

Definition:

Short Name ID Direction

EXAMPLE_PTR_STRUCT_IND 0x80044000 SLA->MAS

Elements:

Long Name Short Name CTRL Ref Type

Struct example struct_element_1 PTR 5.8 STRUCT

History:

25-September-01 CSH Initial

3.10 EXAMPLE_LINKED_STRUCT_REQ

Description:

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 13/23

This is an example of a request primitive containing a linked struct from the example include SAP.
Note that the cross-reference leads to section 5.15 where all elements imported from other SAP
documents are present.

Definition:

Short Name ID Direction

EXAMPLE_LINKED_STRUCT_REQ 0x80040000 MAS -> SLA

Elements:

Long Name Short Name CTRL Ref Type

Linked struct example linked_struct 5.15 STRUCT

History:

16-Marts-03 KSP Initial

3.11 EXAMPLE_POINTER_STRUCT_REQ

Description:

This is an example of a request primitive containing some different elements to illustrate that it is
possible to combine any desired types in the Elements part. Furthermore this primitive also uses
optional elements, dynamic arrays and a pointer to a linked dynamic array of structs.

Definition:

Short Name ID Direction

EXAMPLE_POINTER_STRUCT_REQ 0x80050000 MAS -> SLA

Elements:

Long Name Short Name Pres CTRL Ref Type

Simple optional signed integer signed_8_bit Optional 5.2 S8

Example of dynamic array of simple structs simple_struct Mandatory [1..2] 5.12 STRUCT

Linked struct example. The struct is linked from

the include SAP

linked_struct Mandatory PTR[1..5] 5.15 STRUCT

History:

19-Marts-03 KSP Initial

3.12 EXAMPLE_OPTIONAL_U8_REQ

Description:

This is another example of a request primitive containing some different elements.

Note that the references in the Ref column for the U8 types are identical. By following the cross-
reference to the actual definition it can be seen that it is possible to define two identical elements
with different short names in the same section. In this example the type U8 is used, but this feature is
also available for other types such as for instance STRUCTs

Definition:

Short Name ID Direction

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 14/23

EXAMPLE_OPTIONAL_U8_REQ 0x80060000 MAS -> SLA

Elements:

Long Name Short Name Pres CTRL Ref Type

Struct elements with local elements struct_element_1 Mandatory 5.8 STRUCT

Simple optional unsigned integer unsigned_8_bit_a Optional 5.1 U8

Simple optional unsigned integer unsigned_8_bit Optional 5.1 U8

History:

31-July-03 KSP Initial

3.13 EXAMPLE_ELEMENT_C_NAME_REQ

Description:

This is an example of a request primitive where the C-Name column is used in the Elements part. In
this case the Elements part contains two identical structs with the same Short Name and the C-

Name is used for the first struct only. The result of using this C-Name will be that the member name
of the first struct contained in the primitive will be names according to the name in the C-Name
column instead of the name in the Short Name column. The type the member name will however be
named according to the Short Name . That is the first struct element in the primitive will be named
new_struct_name instead of struct_element_2 and the type of the member will be named according
to the Short Name , namely T_struct_element_2. As no C-Name is given for the second struct both
the member name and type name of the struct will be named according to the Short Name, namely
struct_element_2.

Definition:

Short Name ID Direction

EXAMPLE_ELEMENT_C_NAME_REQ 0x80070000 MAS -> SLA

Elements:

Long Name Short Name Pres CTRL C-Name Ref Type

Struct element with local elements struct_element_2 Mandatory new_struct_name 5.9 STRUCT

Struct element with local elements struct_element_2 Mandatory PTR 5.9 STRUCT

History:

31-July-03 KSP Initial

3.14 EXAMPLE_REF_DEFINITION_C_NAME_REQ

Description:

This is an example of a request primitive where the C-Name column is used in the referenced
Definition part. In this primitive the Elements part contains two structs and the C-Name is not used
in the Elements part but only in the definition of the referenced parameter.

The result of using this combination of C-Name will be that the type name of the member will be
named according to the name in the Definition C-Name column instead of using the name from the
Short Name column. The name of the member will still be named according to the Short Name.
Please follow the cross-reference for a more detailed description.

Definition:

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 15/23

Short Name ID Direction

EXAMPLE_REF_DEFINITION_C_NAME_REQ 0x80080000 MAS -> SLA

Elements:

Long Name Short Name Pres C-Name Ref Type

Struct elements with local elements struct_element_3 Mandatory 5.10 STRUCT

History:

15-September-03 KSP Initial

3.15 EXAMPLE_REF_DEF_AND_ELEMENT_C_NAME_REQ

Description:

This is an example of a request primitive where the C-Name column is used both in the Elements
part and in the referenced Definition part. Again a single struct element is used for illustration.

The result of using this combination of C-Name will be that the type name of the member will be
named according to the name in the Definition C-Name column instead of using the name from the
Short Name column. The name of the member will be named according to the C-Name from the
element table. Please follow the cross-reference for a more detailed description.

Definition:

Short Name ID Direction

EXAMPLE_REF_DEF_AND_ELEMENT_C_NAME_REQ 0x80090000 MAS -> SLA

Elements:

Long Name Short Name Pres C-Name Ref Type

Struct elements with local elements struct_element_4 Optional new_struct_name 5.11 STRUCT

History:

15-September-03 KSP Initial

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 16/23

4 Functions

4.1 Sla_example_function_call

Description:

This is an example of how to define a function interface. The function has an unsigned 8-bit input
parameter and returns an unsigned 32-bit parameter. The handling of functions in the SAPs is special
since it relies on inline specification of the function prototypes using C syntactical notation. In
contrast to the other sections in the SAP the actual content of the definition is not really checked by
the TI tool chain. What identifies this as a special definition to the tool chain is the use of the
keyword InlineC in the ID column of the table. The Direction column identifies the entities
involved just as for primitives. The Short Name column is used to specify the C function prototype
for the SAP function.

There is only a minimum check in the tool chain of the syntax for the prototype. The function
prototype must have brackets around the argument list, and there must be a space before the function
name. Apart from this, it is treated as an inline declaration without interpretation, and it is the
responsibility of the designer of the SAP to find the correct type names The actual functionality has
to be handled else where by the developer. An example of the definition for a function, which takes a
single U8 argument of type unsigned_8_bit and returns a U32 type, could be:

Definition:

Short Name ID Direction

extern U32 example_function_call(U8 unsigned_8_bit) InlineC MAS->SLA

Elements:

Long Name Short Name CTRL Ref Type

Input: Unsigned 8-bit parameter unsigned_8_bit 5.1 U8

Output: Unsigned 32-bit parameter unsigned_32_bit 5.5 U32

History:

29-August-01 KKS Initial

4.2 Function_returning_u16

Description:

This is an example of a simple function, which again takes a single U8 as argument and returns a
U16 of type T_EX_ unsigned_16_bit. This type name cannot be found directly in the SAP but requires
a little knowledge about how the type names are constructed. If one is not familiar with the naming
of the types one can easily find the desired type name by looking in the generated header files. In
this case the type name is constructed by the type prefix T_ plus the SAP prefix EX_ and finally the
short name of the U16. Concatenating these three, results in the type name T_EX_ unsigned_16_bit.

Definition:

Short Name ID Direction

extern T_EX_ unsigned_16_bit example_function_returning_u16(U8

unsigned_8_bit)

InlineC MAS->SLA

Elements:

Long Name Short Name CTRL Ref Type

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 17/23

Input: Unsigned 8-bit parameter unsigned_8_bit 5.1 U8

Output: U16 of type T_EX_ unsigned_16_bit unsigned_16_bit 5.3 U16

History:

31-July-03 KSP Initial

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 18/23

5 Parameters

This section contains declarations of parameter types, parameter values and parameter ranges.

5.1 Unsigned Integer, 8-bits (U8)

Description:

This is the definition of the parameter 8-bit unsigned integer with the possible values given. Note
that it is possible to declare several identical types in the definition, simple by adding another row to
the Definition part. In the Values part the style for defining the range used is “0x00 .. 0x10”. For
backward compatibility reasons the old style “0x00-0x10” is also supported. Please notice that it is
possible to have multiple ranges, which can even overlap each other or exceed the enums defined as
shown below. See also in section 5.5 for another example of how to use ranges.

Definition:

Type Short Name Comment

U8 unsigned_8_bit Description of the type

U8 unsigned_8_bit_a Description of the type

U8 pointer_array Description of the type

Values:

Value C-Macro Comment

0x00 .. 0x10 Range of parameter

0x00 VALUE0 Example of value definition

0x01 VALUE1 Example of value definition

0x02 VALUE2 Example of value definition

History:

20-February-01 KKS Initial

5.2 Signed Integer, 8-bits (S8)

Description:

This is the definition of the parameter 8-bit signed integer. As opposed to the section above no
values or ranges are given.

Definition:

Type Short Name Comment

S8 signed_8_bit Description of the type

S8 second_signed_8_bit Description of the type

History:

29-August-01 KKS Initial

5.3 Unsigned Integer, 16-bit (U16)

Description:

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 19/23

This is the definition of two 16-bit unsigned integer parameters. No values are given.

Definition:

Type Short Name Comment

U16 unsigned_16_bit Description of the type

U16 optional_element Description of the type

History:

20-February-01 KKS Initial

5.4 Signed Integer, 16-bit (S16)

Description:

This is the definition of two 16-bit signed integer parameters. No values are given.

Definition:

Type Short Name Comment

S16 signed_16_bit Description of the type

History:

15-September-03 KSP Initial

5.5 Unsigned Integer, 32-bit (U32)

Description:

This is the definition of the parameter 32-bit unsigned integer. In the Value section an example of
double value definition is given. In the Values part the style for defining the range used is “0x00 ..
0xFF”. For backward compatibility reasons the old style “0x00-0xFF” is also supported.

Definition:

Type Short Name Comment

U32 unsigned_32_bit Description of the type

Values:

Value C-Macro Comment

0x00..0xFF CONFIG_ID_MEASUREMENT Range to be used in connection with measurement configurations.

0x00 .. 0xFD CONFIG_ID_BCH_CONFIG Range to be used in connection with CPHY_BCH_CONFIG_REQ.

0xFE CONFIG_ID_NETWORK_SCAN Fixed configuration ID used in conjunction with network scans.

0xFF CONFIG_ID_ACTIVATION Fixed configuration ID used by PHY for CPHY_BCH_DATA_IND.

History:

20-February-01 KKS Initial

15-September-03 KSP Values added.

5.6 Signed Integer, 32-bit (S32)

Description:

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 20/23

This is the definition of the parameter 32-bit signed integer. No values are given.

Definition:

Type Short Name Comment

S32 signed_32_bit Description of the type

History:

15-September-03 KSP Initial

5.7 Enumeration

Description:

This is the definition of an enumeration parameter with the possible values given.

Definition:

Type Short Name Comment

ENUM enumeration Description of the type

Values:

Value C-Macro Comment

0x00 ENUM_VALUE_0 Example of value definition

0x01 ENUM_VALUE_1 Example of value definition

0x02 ENUM_VALUE_2 Example of value definition

History:

1-September-01 KKS Initial

5.8 Struct element 1

Description:

This is an example of the definition of a STRUCT. This struct is made up of 3 elements. A 32-bit
unsigned integer defined in 5.4 and two local unsigned integers with the values given in the value
table below. In the Values part the style for defining the range used is “0x00 .. 0xAA”. For backward
compatibility reasons the old style “0x00-0xAA” is also supported.

Definition:

Type Short Name Comment

STRUCT struct_element_1 Container

Elements:

Long Name Short Name CTRL Ref Type

Unsigned long unsigned_32_bit 5.5 U32

Local unsigned char local_unsigned_char U8

Local unsigned int local_unsigned_int U16

Values:

Name Value C-Macro Comment

local_unsigned_char 0x00 .. 0xAA Range of parameter

 0x00 CHAR_VALUE0 Comment to avoid warning

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 21/23

 0x01 CHAR_VALUE1 Comment to avoid warning

local_unsigned_int 0x0000 .. 0xBEAF Range of parameter

 0x00 INT_VALUE0 Comment to avoid warning

 0x01 INT_VALUE1 Comment to avoid warning

History:

20-February-01 KKS Initial

5.9 Struct element 2

Description:

This is an example of the definition of a STRUCT. This STRUCT is made up of a single element
namely a 32-bit unsigned integer defined in 5.4. Note that the C-Name column is present in the
definition part of the parameter but it is not used. The use of the C-Name column in the definition
part of parameters is demonstrated in the element struct_element_3 in section 5.10

Definition:

Type Short Name Comment C-Name

STRUCT struct_element_2 Container

Elements:

Long Name Short Name CTRL Ref Type

Unsigned long unsigned_32_bit 5.5 U32

History:

31-July-03 KSP Initial

5.10 Struct element 3

Description:

This is an example of the use of C-Name. In this example the C-Name is only used in the referenced
Definition and not in the Element section of the primitive using the parameter. This struct is made up
of a single element namely a 32-bit unsigned integer defined in 5.4.

Note that the C-Name column is present in the definition part of the parameter and not in the
Elements part of the primitive using the parameter. This results in the type name of the member to be
named according to the name in the C-Name column instead of using the name from the Short

Name column. That is, the type name in the header file will be named T_EX_struct_c_name instead
of T_EX_struct_element_3. The name of the member will however still be named according to the
Short Name .

Definition:

Type Short Name Comment C-Name

STRUCT struct_element_3 Container struct_c_name

Elements:

Long Name Short Name CTRL Ref Type

Unsigned long unsigned_32_bit 5.5 U32

History:

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 22/23

15-September-03 KSP Initial

5.11 Struct element 4

Description:

This is an example of the use of C-Name in both the Elements section of the primitive and in the
referenced Definition section of the parameter.

The result of using this combination of C-Name will be that the type name of the member will be
named according to the name in the Definition C-Name column instead of using the name from the
Short Name column. That is, the type name in the header file will be named T_EX_struct_c_name
instead of T_EX_struct_element_4. The name of the member will be named according to the C-

Name from the element table. That is, the member name in the header file will be named
T_EX_new_struct_name instead of T_EX_struct_element_4.

Definition:

Type Short Name Comment C-Name

STRUCT struct_element_4 Container struct_c_name

Elements:

Long Name Short Name CTRL Ref Type

Unsigned long unsigned_32_bit 5.5 U32

History:

15-September-03 KSP Initial

5.12 Simple struct

Description:

This is an example of the definition of a STRUCT. This STRUCT is made up of 4 elements. Two 8-
bit unsigned integer defined in 5.1 and an enumeration and an union defined in section 5.6 and in
section 5.13 respectively.

Definition:

Type Short Name Comment

STRUCT simple_struct Container

Elements:

Long Name Short Name CTRL Ref Type

Simple signed integer signed_8_bit 5.2 U8

Example of using same definition for a type with another

short name

second_signed_8_bit 5.2 U8

Example of using the same short name in different

structures.

union_element_1 5.13 UNION

Example of using an ENUM enumeration 5.7 ENUM

History:

19-Marts-03 KSP Initial

Service Access Point 8434.405.01.009
SAP Example Accepted

Texas Instruments Proprietary Information

Under Non-Disclosure Agreement – Do Not Copy

Page: 23/23

5.13 Union element 1

Description:

This is an example of the definition of a simple UNION called union_element_1, which contains two
integers.

Definition:

Type Short Name Comment

UNION union_element_1 Container

Elements:

Tag ID Long Name Short Name Ref Type

unsigned_long_example 32-bit unsigned integer unsigned_32_bit 5.5 U32

unsigned_char_example 8-bit unsigned integer unsigned_8_bit 5.1 U8

History:

20-February-01 KKS Initial

5.14 Array Element

Description:

This is an example of the definition of two U8 used for arrays of fixed and dynamic size.

Definition:

Type Short Name Comment

U8 fixed_array_element Container

U8 dynamic_array_element Container

History:

20-February-01 KKS Initial

5.15 Imported elements

Description:

These elements are imported from the include SAP listed in the Link column. The actual definition
in these include documents can be found by following the hyperlink in the Link column.

Definition:

Type Short Name Comment Link

UNION union_element_2 This field can be empty 8434_404_01_EX_INC.doc - union_element_2

STRUCT linked_struct Linked struct from include SAP 8434_404_01_EX_INC.doc - linked_struct

History:

1-Spetember-01 KKS Initial
17-September-01 CSH Changed link to “8434_405_01_EX_INC.doc”
16-Marts-03 KSP Added element linked_struct

8434_404_01_EX_INC.doc#union_element_2
file://Cnb0394928/ClearCaseStorage/nice_release/gpf/example_sap/8434_404_01_EX_INC.doc

