

 2004 Texas Instruments Incorporated. All rights reserved.

Texas Instruments Proprietary Information

Strictly Private

Low Level Design Specification

GPF-based TCP/IP Entity

Department: Berlin Wireless Center

Creation Date: 2004-08-19

Last Modified: 2004-08-19 by Frank Stolte

ID: 8462.701.04.01 Version: 001

Status: Draft ECCN: Not Applicable

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 2/22

0 Document Control

 2004 Texas Instruments Incorporated. All rights reserved.

Texas Instruments Incorporated and / or its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products, software and services at any
time and to discontinue any product, software or service without notice. Customers should obtain the latest
relevant information during product design and before placing orders and should verify that such information
is current and complete.

All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment. TI warrants performance of its products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing of
all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI products, software and / or services. To minimize the risks
associated with customer products and applications, customers should provide adequate design, testing and
operating safeguards.

Any access to and / or use of TI software described in this document is subject to Customers entering into
formal license agreements and payment of associated license fees. TI software may solely be used and / or
copied subject to and strictly in accordance with all the terms of such license agreements.

Customer acknowledges and agrees that TI products and / or software may be based on or implement
industry recognized standards and that certain third parties may claim intellectual property rights therein. The
supply of products and / or the licensing of software do not convey a license from TI to any third party
intellectual property rights and TI expressly disclaims liability for infringement of third party intellectual
property rights.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination,
machine, or process in which TI products, software or services are used.

Information published by TI regarding third–party products, software or services does not constitute a license
from TI to use such products, software or services or a warranty, endorsement thereof or statement regarding
their availability. Use of such information, products, software or services may require a license from a third
party under the patents or other intellectual property of the third party, or a license from TI under the patents
or other intellectual property of TI.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written permission
of TI.

0.1 Export Control Statement

Recipient agrees that it will not knowingly export or re-export, directly or indirectly, any product or technical
data (as defined by the U.S, EU and other Export Administration Regulations) including software, or any
controlled product restricted by other applicable national regulations, received from Disclosing party under
this Agreement, or any direct product of such technology, to any destination to which such export or re-
export is restricted or prohibited by U.S or other applicable laws, without obtaining prior authorisation from
U.S. Department of Commerce and other competent Government authorities to the extent required by those
laws. This provision shall survive termination or expiration of this Agreement.

According to our best knowledge of the state and end-use of this product or technology, and in compliance
with the export control regulations of dual-use goods in force in the origin and exporting countries, this

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 3/22

technology is classified as given on the front page.

This product or technology may require export or re-export license for shipping it in compliance with certain
countries regulations.

0.2 Document History

Date Version Status Author

2004-08-19 001 Draft Jürgen Nickelsen, Dirk Schmidt, Frank Stolte

Initial version.

0.3 References, Abbreviations, Terms

[C_4711.005] G23-GPRS Protocol Stack Release 1.4.0, Product Specificat ion, Condat AG, May 2002

[C_7010.801] 7010.801, References and Vocabulary, Condat AG

[C_8462.601] 8462.601, Socket API for GPF-based TCP/IP, Texas Instruments

[RIV201] RNET Interface – Riv iera NET API (TCP/IP), Version 0.8.2, Texas Instruments

[Stevens 1994] TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

[Stevens 1995] TCP/IP Illustrated, Volume 2: The Implementation, Addison-Wesley, 1995.

[Stevens 1998] UNIX Network Programming, Volume 1, Second Edition: Networking APIs: Sockets and XTI,

Prentice Hall, 1998.

[NexGenIP]

[RNET API]

[TCPIP SAP] TCPIP SAP specification, Texas Instruments

ACI Application Control Interface (includes the AT command interpreter)

API Application Programming Interface

CSD Circuit Switched Data

DCM Data Connection Manager; the component of the protocol stack that manages GSM/GPRS data

connection for use with TCP/IP.

DNS Domain Name Serv ice; the system to map Internet domain names to their IP addresses

GPF Generic Protocol Framework; communication infrastructure and virtual system interface environment

of the G23 protocol stack, developed at TI Berlin (former Condat)

IP Internet Protocol; the layer 3 protocol of the Internet

TCP Transmission Control Protocol; layer 4 protocol of the Internet protocol suite providing a connection -

oriented, reliable byte stream service

TCP/IP the Internet protocol suite; the name is derived from the layer 3 protocol IP and the most w idely used

layer 4 protocol TCP

UDP User Datagram Protocol; layer 4 protocol of the Internet protocol suite providing a best -effort packet-

oriented service

VSI Virtual System Interface; GPF’s abstraction of operating system services

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 4/22

Table of Contents

1 Summary ... 5

1.1 Open Issues ... 5
1.2 Risks... 5

2 Introduction ... 6

2.1 GPF-based TCP/IP Subsystem .. 6
2.2 History of the Implementation .. 6
2.3 Scope of this document .. 7
2.4 Terminology.. 7

3 Architecture of the TCP/IP Entity ... 8

3.1 Overview: Interfaces and Layers ... 8
3.2 TCPIP SAP ... 8

3.2.1 Handling of RNET callbacks .. 9
3.2.2 Data Structures .. 10
3.2.3 Application Interface Primitives.. 11
3.2.4 Control Interface Primitives .. 12

3.3 Handling of Payload Data... 12
3.3.1 To Upper Layer ... 12
3.3.2 From Upper Layer ... 12
3.3.3 To Lower Layer ... 12
3.3.4 From Lower Layer ... 13
3.3.5 Loopback .. 13

3.4 System Services Interface (Remulator) .. 13

4 Message Sequence Charts .. 14

4.1 TCPIP Initialisation (GPRS as bearer) ... 14
4.2 TCPIP Initialisation (CSD as bearer) ... 15
4.3 Open TCP socket (GPRS) .. 16
4.4 Open UDP socket (GPRS) .. 17
4.5 UDP client .. 18
4.6 TCP client ... 19
4.7 Close UDP/TCP Socket.. 20
4.8 Shutdown TCP (GPRS) .. 21

5 Appendices... 22

5.1 List of Figures ... 22
5.2 List of Tables .. 22

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 5/22

1 Summary

To provide TCP/IP services to GPF-based applications, the TI G23 GSM/GPRS protocol stack contains an entity that

implements layer 3 (IP, ICMP) and the most common parts of layer 4 (UDP, TCP) of the Internet protocol suite. The

core of this entity is the NexGenIP implementation from NexGen Software, France. The interface to the other entities of

the protocol stack is based on GPF’s communication primit ives as described in the TCPIP, DCM, and DTI SAP

documents. Parts of the current design stem from the history of the current implementation and may be cleaned up later.

1.1 Open Issues

Currently the following issues are still open and need further consideration:

 IPv6 transition

 Wireless profiled TCP

 Removal o f RNET layer

A few areas in the scope of this document are implemented, but not yet described here:

 handling of payload data, including the DTI interface on the NexGenIP side, is incomplete

 General architecture of the embedded RNET integration of NexGenIP

1.2 Risks

These risks are currently identified :

 Multiple incoming connections may overload an application.

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 6/22

2 Introduction

2.1 GPF-based TCP/IP Subsystem

Application

TCPIP

ACI

DCM

DTI

Mgr.

SNDCP / PPP

other protocol

stack entities

Socket API

Figure 2-1: TCP/IP Subsystem Components

The TCP/IP subsystem in the GPF protocol stack framework consists of three parts:

1. The Socket API library, running in the application task context, which allows application s to open an

according bearer connection (via DCM) and to access the services of the TCPIP entity,

2. the Data Connection Manager (DCM), which opens or closes a bearer connection over the wireless network fo r

use with TCP/IP on request of the application.

3. the TCPIP entity, which contains the implementation of the TCP/IP protocols (IP, TCP, UDP, etc.),

The lower-layer neighbor entity of TCPIP is SNDCP for a GPRS bearer connection or PPP for a CSD (GSM) bearer

connection. DCM will do the internal connection of these specific entit ies automatically, accord ing to the required

bearer, with the help of DTI.

The GPF-based TCP/IP implementation runs as an own GPF task. Pay load data exchange with the lower layer uses the

Data Transmission Interface (DTI). The TCP/IP entity does no GSM or GPRS signaling itself, which is handled by the

DCM .

The Socket API library uses the TCPIP SAP for signaling (control plane) and payload data (user plane). It is specified

in [C_8462.601].

TCP/IP needs an underlying data (bearer) connection over the mobile network to send and receive IP packets. Th is can

be a GSM circu it-switched data call (CSD) or a GPRS PDP context. Management of the bearer connection is done by a

component called Data Connection Manager (DCM).

2.2 History of the Implementation

The current implementation of the TCP/IP entity is derived from the integration of NexGenIP into the Riv iera

application framework. This integration was done by NexGen Software and the SSA group of TI Nice, called RNET

(for Riviera Networking).

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 7/22

Instead of using Riv iera as an application plat form, customers demanded TCP/IP services for GPF -based applications.

Due to the timing constraints of the projectit was decided to port more or less the whole RNET entity from Riv iera to

GPF, including its Riv iera integration, adaptation layers, and API.

2.3 Scope of this document

This document describes the design of the existing TCP/IP entity implementation in the Texas Instruments G23

GSM/GPRS protocol stack; to be more precise, it describes how the entity is embedded into the protocol stack and how

the glue layers that implement this embedding interact with the RNET API layer and the core TCP/IP. It does not

describe the design of the RNET layer or of the core TCP/IP implementation. For these topics the reader is re ferred to

[NexGenIP] and [RNET API] etc.

The document is not intended to replace text books like, for instance, [Stevens 1998] or [Stevens 1994]. [Stevens 1995]

also provides excellent reference material for further work on this entity.

2.4 Terminology

The abbreviation “TCP/IP”, containing the slash character “/”, refers to the Internet protocol suite; in this document it is

also used in compound terms related to the Internet protocol suite as in “TCP/IP entity” or “TCP/IP application”,

meaning the GPF entity containing the implementation of the Internet protocol suite or an application using the Internet

protocols, respectively.

When the term “TCPIP” is used, without the slash character, it denotes something that bears this name also in formal

documents like specifications or program code. It is used either as a shorthand for the TCP/IP entity or for the SAP of

the TCP/IP entity. The context should make any further distinction unnecessary. For example, “TCPIP primitives”

refers to primit ives defined in the TCPIP SAP.

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 8/22

3 Architecture of the TCP/IP Entity

3.1 Overview: Interfaces and Layers

TCP/IP

Application

Socket

API

RNET layer

NexGenNexGen
Software

Glue: Application Interface

Glue: Lower-Layer Interface

DCM G
lu

e
: R

e
m

u
la

to
r

Primitive Interface

Function Call Interface

RAW IPUDP

IP

TCP

TCPIP

G23

Frame / VSI

G
lu

e
:

C
o
n
tr

o
l
In

te
rf

a
c
e

TCP/IP

Application

T
C

P
IP

PPP SNDCP other Layer 2

DTI DTI DTI

DTI Manager

DCM

Socket

API

Figure 3-1: Architecture Overview of the TCP/IP entity

The core of TCPIP consists of the NexGenIP implementation. Around the core is, for historical reasons (see section

2.2), the Riviera adaptation layer called RNET. Around that, there are four glue layers to adapt RNET to the interfaces

provided by the protocol stack:

1. the interface to applications, which is one part of the TCPIP SAP; implemented in tcpip_api_layer.c

2. the control interface, the other part of the TCPIP SAP; also implemented in tcpip_api_layer.c

3. the lower-layer interface, using the DTI SAP; implemented in tcpip_dti.c

4. the interface to system services, using the “Riviera Emulator” (Remulator); the Remulator is not described in

this document

3.2 TCPIP SAP

The control and application interface is specified in [C_8462.601] and [TCPIP SAP]. Most of these primitives are used

in a request/confirmat ion kind of interaction, and some are indications sent from TCPIP to the application, with a

response from the application in one case (TCPIP_DATA_IND/RES).

For every primitive in the TCPIP SAP sent to TCPIP there is a handler function in tcpip_api_layer.c; the name of

the handler function is the same as the name of the primitive, only in lower case. Likewise, fo r every TCPIP primit ive

to be sent there is a sender function with the name of the primitive in lower case (except TCPIP_INTERNAL_I ND,

which is sent by and received from TCPIP).

Request/confirmation interactions pattern fall into two categories:

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 9/22

(a) Some requests produce a direct result, possibly obtained as the return value of a function call o f the RNET

interface or the TCP/IP core (i. e. NexGenIP).

(b) Others may return a direct result in some error case, but in the successful case, the real result is obtained by

some interaction of the TCP/IP core with the network, which takes some time. Because we cannot block the

entity for this time, the result is delivered by RNET as an event via a callback function.

For case (a), the request handler function can directly call the confirmation sender function. For case (b), the callback

function must finally call the confirmation sender function.

Request primitive

handler

function

TCPIP

RNET

Function

call

Confirmation primitive

Client entity

and

result

Direct result interaction

Request primitive

handler

function

TCPIP

RNET

Function

call

Confirmation primitive

callback

function

RNET

event

Callback result interaction

Client entity

Figure 3-2: Request/Confirmation Interaction Patterns

The following table shows what pattern of interaction is used by the TCPIP requests.

Table 3-1: TCPIP Requests and Corresponding Interaction Patterns

Direct result interaction Callback result interaction

TCPIP_INITIALIZE_REQ

TCPIP_SHUTDOWN_REQ

TCPIP_IFCONFIG_REQ

TCPIP_DTI_REQ

TCPIP_CREATE_REQ

TCPIP_CLOSE_REQ

TCPIP_BIND_REQ

TCPIP_LISTEN_REQ

TCPIP_SOCKNAME_REQ

TCPIP_PEERNAME_REQ

TCPIP_MTU_SIZE_REQ

TCPIP_CONNECT_REQ

TCPIP_DATA_REQ

TCPIP_HOSTINFO_REQ

3.2.1 Handling of RNET callbacks

The application interface has a single callback function tcpip_rnet_callback() for all socket-related events.

According to the event type it dispatches to the corresponding event handler function, which in turn sends a primit ive to

the application, if necessary.

For DNS lookups, another callback function, tcpip_hostinfo_callback(), is used, which directly sends the

confirmat ion primit ive to the application.

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 10/22

3.2.2 Data Structures

To associate the socket identifiers in the TCPIP primitives with the RNET socket descriptors and for administering the

interaction with RNET and the application, a few data structures are needed in the application interface.

In the primitive interface, we need the socket identifiers as small integers in order to have deterministic socket IDs for

the testing system. (With pointers, the actual value would be different after each change in t he software.) In the RNET

interface, we have to use RNET’s socket descriptors, which are actually pointers. Finally for TCPIP’s application

interface’s own housekeeping, we need a data structure of socket parameters as well, called “sockpar”, which is

accessed through pointers.

s_index

rtdesc

app_handle

ipproto

request_id

expected_event

is_connected

recv_waiting

s_index

appl_xoff

send.total_length

send.offset

send.buffer

T_sockpar

Socket ID

as in the

primitives

sock_table[]

RNET socket data

payload data

from

DATA_REQ

primitive

user_data

Figure 3-3: Per-Socket Data Structures in Application Interface Layer

This way, we can address a socket through (a) the socket ID in the primit ive, (b) the RNET socket descriptor, and (c)

the sockpar pointer. To get from one to the other, the following methods are used:

Table 3-2: Conversion Between Socket Representations

 From To

Macro SOCKPAR_GET() RNET desc.  sockpar pointer

Macro SOCK_S_INDEX() RNET desc  socket ID

Macro SOCK_RT_DESC() socket ID  RNET desc.

Array sock_table[] socket ID  sockpar pointer

pointer->s_index sockpar pointer  socket ID

pointer->rtdesc sockpar pointer  RNET desc.

The fields of the socket parameter structure are used as follows:

Table 3-3: Fields of the Per-Socket Data Structure

s_index Index of the socket in the sock_table[], also used in the TCPIP primit ives

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 11/22

rtdesc RNET descriptor of the socket

app_handle Communicat ion handle of the application entity, used to send primit ives to the entity

ipproto IP transport protocol number used with the socket (currently only for UDP and TCP), used

where different the transport protocols need to be treated differently

request_id Used to associate request and confirmation primit ives for TCPIP_CREATE_REQ/CNF and

TCPIP_HOSTINFO_REQ/CNF

expected_event Marks the next event type that is expected for the socket; necessary for error handling

because the RNET error indicat ion contains no information which request caused the error

is_connected TRUE iff rnet_connect() has been called for this socket; used to detect if the application

tries to send data on a non-connected socket (NexGenIP apparently does not catch this error)

recv_waiting TRUE iff received data may be waiting to be picked up

appl_xoff TRUE iff flow control to the application is in “xoff” status

send.total_length Total length of send data buffer

send.offset Next offset from which payload data shall be sent from the buffer

send.buffer Pointer to send data buffer

3.2.3 Application Interface Primitives

Table 3-4: TCPIP Application Primitives

Primitives Description BSD Socket API equivalent

TCPIP_CREATE_REQ

TCPIP_CREATE_CNF

Create a socket and return

result

socket()

TCPIP_CLOSE_REQ

TCPIP_CLOSE_CNF

Close a socket and return

result

close()

TCPIP_BIND_REQ

TCPIP_BIND_CNF

Bind socket to a port bind()

TCPIP_LISTEN_REQ

TCPIP_LISTEN_CNF

Listen for incoming

connections

listen(), accept()

TCPIP_CONNECT_REQ

TCPIP_CONNECT_CNF

Connect to a remote peer connect()

TCPIP_DATA_REQ

TCPIP_DATA_CNF

Send data uplink and

acknowledge

send(), sendto(), sendmsg(), write()

TCPIP_DATA_IND

TCPIP_DATA_RES

Send data downlink and

acknowledge

recv(), recvfrom(), recvmsg(), read()

TCPIP_SOCKNAME_REQ

TCPIP_SOCKNAME_CNF

Get local address of socket getsockname()

TCPIP_PEERNAME_REQ

TCPIP_PEERNAME_CNF

Get remote address of

connection

getpeername()

TCPIP_HOSTINFO_REQ

TCPIP_HOSTINFO_CNF

DNS lookup gethostbyname(), gethostbyaddr()

TCPIP_MTU_SIZE_REQ

TCPIP_MTU_SIZE_CNF

Get MTU size of interface getsockopt() (?)

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 12/22

TCPIP_CONNECT_IND Indicate incoming TCP

connection

select(), accept()

TCPIP_CONN_CLOSED_IND Indicate connection close

by peer

select(), read()

TCPIP_ERROR_IND Indicate error on

connection

select(), return values of functions

3.2.4 Control Interface Primitives

The interface to the DCM is specified in [TCPIP SAP]. The following table briefly summarizes the purpose o f the

application-related TCPIP primitives.

Table 3-5: TCPIP Control Primitives

Primitives Description

TCPIP_INITIALIZE_REQ

TCPIP_INITIALIZE_CNF

Make TCPIP allocate its private memory and initialize its data structures.

TCPIP_SHUTDOWN_REQ

TCPIP_SHUTDOWN_CNF

Make the entity deallocate its private memory.

TCPIP_IFCONFIG_REQ

TCPIP_IFCONFIG_CNF

Notify TCPIP about a bearer connection (network interface in TCP/IP speak) coming

up or going down and related parameters.

TCPIP_DTI_REQ

TCPIP_DTI_CNF

Make TCPIP establish or tear down a DTI connection to the appropriate neighbor

entity for a bearer connection.

The control interface does not hold own data structures.

3.3 Handling of Payload Data

{ tcpip_dti.c contains stubs for SAT class E over TCP/IP, which will probably not be used anymore; due to lack of

documentation lower-layer interface designed mainly through reverse-engineering of ATP interface code in

rnet_rt_atp.c }

3.3.1 To Upper Layer

{ send a TCPIP_DATA_IND to upper layer only after receiving a TCPIP_DATA_RES for that socket, except for the

first one (flow control); RNET sends RNET_RECV_IND when incoming data is available; incoming data can be fetched

from RNET until rnet_recv() returns zero length; only then RNET sends a new RNET_RECV_IND for new incoming

data }

3.3.2 From Upper Layer

{ application may send TCPIP_DATA_REQ only after receiving a TCPIP_DATA_CNF for that socket, except for the

first one; tcpip_try_send_data() sends data buffer using rnet_send() partially, if necessary, and sends a

TCPIP_DATA_CNF only after the full buffer has been sent to RNET }

3.3.3 To Lower Layer

{ rnet_rt_dti.c modeled after rnet_rt_atp.c; tcpip_dtiOutput() called by NexGenIP to send data to LL via DTI; flow

control state maintained in tcpip_data->ll[0].flowstat_ul (ul meaning “uplink”); DTI event handling in tcpip_dti.c }

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 13/22

3.3.4 From Lower Layer

{ tcpip_ll_dti_data_ind() adapts incoming data for ngIfGenInput() }

3.3.5 Loopback

To enable TCP/IP communication between different applications attached to the TCP/IP entity, a loopback interface can

be configured in RNET. It has the standard loopback IP address 127.0.0.1. To decouple the sending and receiving

function call chains, IP packets over the loopback interface are passed via a TCPIP_INTERNAL_IND primit ive sent by

the entity to itself.

3.4 System Services Interface (Remulator)

{ adapts several Riviera frame functions to GPF VSI services; anything about that? does not really relate to other

things in TCPIP }

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 14/22

4 Message Sequence Charts

4.1 TCPIP Initialisation (GPRS as bearer)

Description:

1. DCM_OPEN_CONN_REQ will be send on the execution of the Socket API library function sock_open_bearer

2. TCPIP_INITIALIZE_REQ requests the initialisation of the TCPIP entity

3. TCPIP_INITIALIZE_CNF confirms the initialisation of the TCPIP entity

4. TCPIP_DTI_REQ triggers TCPIP entity to get connected with SNDCP since we will use GPRS as a bearer

5. DTI2_CONNECT_REQ TCPIP requests the connection with SNDCP

6. DTI2_CONNECT_CNF SNDCP confirms successful connection with TCPIP

7. DTI2_GETDATA_REQ used for flow control and indicates that TCPIP is ready to get the next

DTI2_DATA_IND primit ive.

8. TCPIP_DTI_CNF confirms the successful connection of SNDCP and TCPIP

9. DTI2_READY_IND is used for flow control and indicates that TCPIP is ready to get the next

DTI2_DATA_REQ primit ive

10. TCPIP_IFCONFIG_REQ informs TCPIP about an successfully created network interface(PDP context

activation)

11. TCPIP_IFCONFIG_CNF response to previous send request

12. DCM_OPEN_CONN_CNF now informs the application about a successful set up of a GPRS network

connection (GPRS) which now can be used by TCPIP as a bearer for sending/receiving data

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 15/22

4.2 TCPIP Initialisation (CSD as bearer)

Description:

1. DCM_OPEN_CONN_REQ will be send on the execution of the Socket API library function

sock_open_bearer

2. TCPIP_INITIALIZE_REQ requests the initialisation of the TCPIP entity

3. TCPIP_INITIALIZE_CNF confirms the initialisation of the TCPIP entity

4. L2R_CONNECT_REQ is used to connect the L2R entity to its peer entity

5. L2R_CONNECT_CNF acknowledges the previous L2R_CONNECT_REQ

6. PPP_ESTABLISH_REQ is used to request establishment of PPP connection

7. DTI2_CONNECT_REQ PPP requests the connection with L2R

8. DTI2_CONNECT_CNF L2R confirms successful connection with PPP

9. L2R_DTI_CNF acknowledges L2R - > PPP connection

10. PPP_DTI_CONNECTED first DTI channel is connected

11. TCPIP_DTI_REQ triggers TCPIP entity to get connected with PPP since we will use CSD as a bearer

12. DTI2_CONNECT_REQ TCPIP requests the connection with PPP

13. DTI2_CONNECT_CNF PPP confirms successful connection with TCPIP

14. TCPIP_DTI_CNF confirms the successful connection of PPP and TCPIP

15. PPP_ESTABLISH_CNF informs about successful establishment of a PPP link

16. TCPIP_IFCONFIG_REQ informs TCPIP about an successfully created network interface(PDP context

activation)

17. TCPIP_IFCONFIG_CNF response to previous send request

18. DCM_OPEN_CONN_CNF now informs the application about a successful set up of a GPRS network

connection (GPRS) which now can be used by TCPIP as a bearer for sending/receiving data

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 16/22

4.3 Open TCP socket (GPRS)

1. TCPIP_CREATE_REQ requests a newly created TCP socket from TCPIP (TCPIP_IPPROTO_TCP

indicates the type of socket)

2. TCPIP_CREATE_CNF returns a newly created TCP socket

3. TCPIP_CONNECT_REQ requests TCPIP to connect a socket to a remote peer.

4. TCP 3-way handshake ensures that both sides are ready to transmit data, and that both ends know that the

other end is ready before transmission actually starts.

5. TCPIP_CONNECT_CNF informs about succesfull connection

Note:

For openeing a TCP socket and using CSD as bearer SND will be PPP instead and the initialisation will of course be the

CSD specific one.

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 17/22

4.4 Open UDP socket (GPRS)

1. TCPIP_CREATE_REQ requests a newly created UDP socket from TCPIP (TCPIP_IPPROTO_UDP

indicates the type of socket)

2. TCPIP_CREATE_CNF returns a newly created UDP socket

3. TCPIP_CONNECT_REQ requests TCPIP to connect a socket to a remote peer.

4. TCPIP_CONNECT_CNF informs about succesfull connection

Note:

For openeing a UDP socket and using CSD as bearer SND will be PPP instead and the initialis ation will of course be

the CSD specific one.

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 18/22

4.5 UDP client

1. TCPIP_DATA_REQ The application requests TCPIP to send payload data on a socket

2. DTI2_DATA_REQ is used to pass on data to the SNDCP entity

3. DTI2_READY_IND indicates that SNDCP is ready to get the next DTI2_DATA_REQ primitive

4. TCPIP_DATA_CNF acknowledges the TCPIP_DATA_REQ and signals to the application how much data

the application is allowed to send (window size). The application may now send data on this socket again; it

may send as much data as the “window” parameter specifies, but at least one

5. DTI2_DATA_IND is used to pass on data to the neighbor entity

6. TCPIP_DATA_IND sends payload data to the application for the specified socket

7. TCPIP_DATA_RES acknowledges a TCPIP_DATA_IND and signals to TCPIP how much data TCPIP is

allowed to send (window size). TCPIP may now send data on this socket again; it may send as much data as

the “window” parameter specifies, but at least one

8. DTI2_GETDATA_REQ is used for flow control and indicates that TCPIP is ready to get the next

DTI2_DATA_IND primit ive

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 19/22

4.6 TCP client

1. TCPIP_DATA_REQ The application requests TCPIP to send payload data on a socket

2. DTI2_DATA_REQ is used to pass on data to the SNDCP entity

3. DTI2_READY_IND indicates that SNDCP is ready to get the next DTI2_DATA_REQ primitive

4. TCPIP_DATA_CNF acknowledges the TCPIP_DATA_REQ and signals to the application how much

data the application is allowed to send (window size). The applicat ion may now send data on this socket

again; it may send as much data as the “window” parameter specifies, but at least one

5. DTI2_DATA_IND is used to pass on data to the neighbor entity

6. TCPIP_DATA_IND sends payload data to the application for the specified socket

7. TCPIP_DATA_RES acknowledges a TCPIP_DATA_IND and signals to TCPIP how much data TCPIP

is allowed to send (window size). TCPIP may now send data on this socket again; it may send as much

data as the “window” parameter specifies, but at least one

8. DTI2_GETDATA_REQ is used for flow control and indicates that TCPIP is ready to get the next

DTI2_DATA_IND primit ive

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 20/22

4.7 Close UDP/TCP Socket

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 21/22

4.8 Shutdown TCP (GPRS)

1. DCM_CLOSE_CONN_REQ starts the disconnection of the GPRS connection

2. TCPIP_IFCONFIG_REQ informs TCPIP that interface is going down(parameter

TCPIP_IFCONFIG_DOW N)

3. TCPIP_DTI_REQ initiates the disconnection of the SNDCP and the TCPIP entity

4. DTI2_DISCONNECT_REQ closes SNDCP dti connection to TCPIP

5. TCPIP_DTI_CNF confirms the disconnection of SNDCP and TCPIP

6. TCPIP_SHUTDOWN_REQUEST requests TCPIP to shutdown

7. TCPIP_SHUTDOWN_CNF confirms the shutdown of TCPIP

8. DCM_CLOSE_CONN_CNF confirms the closing of the GPRS connection

Low Level Design Specification 8462.701.04.01
GPF-based TCP/IP Entity Draft

Texas Instruments Proprietary Information

Strictly Private

Page: 22/22

5 Appendices

5.1 List of Figures

Figure 2-1: TCP/IP Subsystem Components ... 6

Figure 3-1: Architecture Overview of the TCP/IP entity .. 8

Figure 3-2: Request/Confirmation Interaction Patterns .. 9

Figure 3-3: Per-Socket Data Structures in Application Interface Layer ... 10

5.2 List of Tables

Table 3-1: TCPIP Requests and Corresponding Interaction Patterns ... 9

Table 3-2: Conversion Between Socket Representations .. 10

Table 3-3: Fields of the Per-Socket Data Structure .. 10

Table 3-4: TCPIP Application Primitives.. 11

Table 3-5: TCPIP Control Primitives.. 12

