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Enhancing Windows 

Shared Memory for VCMS 

(The SHM-NT Gadget)

“… „cause windows memory-mapped file solution is a lame 

duck!”
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Introduction

 Problems in VCMS with using Memory-Mapped Files

 Fundamentals of the new implementation

 New problems to resolve

 Source glimpses

 Interface

 Discussion
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Problems with using Memory-Mapped Files (1)

 Linking on fixed Address required for some DLL‟s

 pointer issues on different address-ranges requires static linkage

cms.dll:  /base:0x20000000 /fixed

frame.dll: /base:0x60100000 /fixed

 Performance Issues

 some G23Net test cases failed with time out

 stunning result after foolish fiddling with parameters:

 The bigger the queue

 the slower the transfer?!?
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Problems with using Memory-Mapped Files (2)

VCMS: Increasing the queue size
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Problems with using Memory-Mapped Files (3)

 Why?

 Assumption: 

 the bigger size of the queue seems to provoke a higher system 

utilization

 Quick guesses: 

 caused by an additional abstraction layer of file mapped shared 

memory

 which “covers” the shared memory system

 a bad scheduling provokes dispatching of idle processes

 Target solution
 elimination of the additional abstraction layer
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Problems with using Memory-Mapped Files (4)

 Additional Abstraction-Layer of Memory-Mapped Files

 CreateFile()

 CreateFileMapping()

MapViewOfFile()

 uses undocumented shared memory internal functions

 ZwCreateSection()

 ZwMapViewOfSection()
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Fundamentals of the new implementation

 Frank Reglin‟s sample application:

 focuses the internal management of shared memory 

 named sections

 linked list of sections

 managing section contents via alloc/free

 base usage of Zw*() functions

 Some undocumented Windows NT/2000 Zw*() 

functions:

 ZwCreateSection()

 ZwOpenSection()

 ZwMapViewOfSection(), ZwUnmapViewOfSection()

missing:

 ZwDeleteSection()

 ZwCloseSection()
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New problems to resolve (1)

 ZwMapViewOfSection() doesn‟t guarantee a unique 

mapped location for all views of the same memory 

section

 a main goal of our implementation, enhancing the Windows shared 

mem

 but how to achieve?

 ZwMapViewOfSection(hdl, …, &addr, ...) with addr == 0 means 

automatic view map placement

 addr returns the resulting location of this premier placement

 which mustn’t change for all further ZwMapViewOfSection() calls 

with the same handle

 and as to be propagated to all clients, hence

 Win 2000 rejects automatic view map placement

 an incremental, aligned placement has to be applied instead

 till mapping of a premier view placement succeeds
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New problems to resolve (2)

 OK, an initial map view placement of a given section 

may succeed

 How to propagate the location to all clients of interest?

Message Passing?

 temporary File?

 other IPC mechanism?

 Why not use the new shared memory gadget?

 constituting a pool list containing section addresses inside a 

specific, qualified shared memory section?
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New problems to resolve (3)

 There is more implementation-specific shared 

knowledge

 uncritical global scalar data types 

 and  pointers referencing unshared data

 which can be grouped and shared in a DLL by use of a link 

command

 and critical: pointers referencing a shared object

 e.g. fr’s region list constituting a shared memory list

 cause DLL’s also suffers the windows map view location 

weakness

 again: Why not use the new shared memory implementation?

 constituting the region list inside a specific, qualified shared 

memory section?

 And local knowledge reflecting parts of global 

knowledge

 a client needs to know which sections are already mapped
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New problems to resolve (4)

 But: How to use the new shared memory gadget

 to implement itself?

 isn’t that a hen/egg problem?

 No, it‟s just a matter of proper initializing and 

embedding

 both special sections (pool list, region list ) are known to the 

system

 those internal sections receive a special treatment whilst system 

start-up

 the pool list is just an array

 containing section names, addresses and sizes

 the region list is a double linked list

 but its anchor is located outside of it’s shared memory section

 constituted by a DLL global variable
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The Big Picture
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Source glimpses (create & map a 

Section)
create_attrib_object(name, &obj);

ZwCreateSection( &hdl, ..., &obj, ...);

ZwOpenSection( &hdl, ..., &obj  );

Case 1) get_from_pool(name, &tmpaddr) == 

FALSE:

if (osvi.dwMajorVersion == WIN2000 ) {

mappedAddr = shm_offset(); 

/* already stored sections */

} else if (osvi.dwMajorVersion == WINNT) {

mappedAddr = 0L; /* use the first free area. */

}

rc = ZwMapViewOfSection( hdl, (HANDLE)-1, 
&mappedAddr, ...);

if (rc != STATUS_SUCCESS) {

if (mappedAddr == 0)  {

mappedAddr = SHAREDEND;

}

/* incremental, aligned placement */

for( ; mappedAddr != SHAREDBEGIN; 

mappedAddr -= SHAREDSTEP )  {

rc = ZwMapViewOfSection( hdl, (HANDLE)-1, 
mappedAddr, ... );

if( rc == STATUS_SUCCESS )

break;

}

}

put_to_pool(name, mappedAddr, rsize)

Case 2) get_from_pool(name, &tmpaddr) == 

TRUE:

mappedAddr = (char*) tmpaddr;

ZwMapViewOfSection( hdl, (HANDLE)-1, 

&mappedAddr, ...);

Both cases:

notice_mapping_in_context(mappedAddr);
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Source glimpses (creation of a Shared 

Heap)
if (poolAddr == 0) { 

init_shared_address_pool(); /* give access to 
the 2 internal regions */

}

shm_map_all();

reg = regionlist;

while( reg ) {

pr = reg->pregion;

if( strcmp(pr->name, name) == 0 ) {

*phdl = (unsigned long)pr;

return SHM_EXISTS;

}

reg = reg->next;

}

shm_section( name, size, &addr);

... init internal heap managment data ... 

reg = shm_alloc( poolListAddr, 
sizeof(USEDREGION));

reg->pregion = addr;

reg->next = regionlist;

regionlist = reg;
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Source glimpses (init of internal 

sections)

Case 1) regionlist == 0;

ret0 = shm_section((char*)REGIONPOOLNAME, 

poolSize0, &poolAddr );

/* local var poolAdr is != NULL from now on, 

will trigger action of the other pool funcs ... 
*/

if ((ret0 == SHM_OK) || (ret0 == SHM_EXISTS)) {

region0 = poolAddr;

}

ret1 = shm_heap((char*)REGIONLISTNAME, 

poolSize1, &poolListAddr, TRUE);

if ((ret1 == SHM_OK) || (ret1 == SHM_EXISTS)) {

if (ret0 == SHM_OK) 

{

region1 = poolListAddr;

put_to_pool(REGIONPOOLNAME, poolAddr, 
poolSize0);

while((spe++) <= lastSpe) {

spe->name[0] = 0;

spe->addr = 0;

spe->size = 0;

}

reg = shm_alloc( poolListAddr,        
sizeof(USEDREGION));

reg->next = regionlist;

reg->pregion = 
(REGIONGLOBALS*)poolListAddr;

regionlist = reg;

}

}

Case 2) regionlist != 0;

shm_map((char*)REGIONPOOLNAME, 

poolSize0, &region0);

poolAddr = region0;

shm_map((char*)REGIONLISTNAME, poolSize1, 

&region1);

poolListAddr = region1;
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Interface (1)

 int shm_section(char * name, unsigned long int rsize, 

unsigned long int * phdl);

 creates a “raw” (to be managed by user) shared memory section

 no malloc/free available

 int shm_heap(char * name, unsigned long int rsize, 

unsigned   long int * phdl, BOOL forceInit);

 creates a shared memory heap 

 providing classic malloc/free

 based on shm_section()

 int shm_delete_section(unsigned long int hdl);

 deletes a shared memory section

 or a shared heap
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 void * shm_alloc(unsigned long int hdl, unsigned long 

int size);

 allocates a chunk in the denoted shared heap 

 int shm_free(void * addr );

 releases a chunk in the denoted shared heap 

 int shm_exit();

 unmaps all sections from a client

 does not delete any section

 irrespective the internal sections

 which are deleted, if they are the solely remainder 

Interface (2)
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Interface (3)

 int shm_map( char * name, unsigned long int rsize, 

unsigned long int * paddr); 

map a single, specific shared memory section/heap. 

 void shm_map_all();

map ALL remote created shared memory sections

 into current address space

 long int 

shm_map_by_exeption(EXCEPTION_POINTERS* EP );

map ALL remote created shared memory sections by “trap on use”
int q_read(              

__try{

[...main q_read code...]

}

__except (shm_map_by_exeption(GetExceptionInformation())) {

}

)
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Interface (4)

 void shm_list_pools();

 print information about all shared memory address pools (pool list):

 name

 address

 size 

 range

 void shm_list_heap( FILE * outf, char * name );

 service/debug. List internal management data of a shared memory 

heap.  

 used in Program shmList.exe, not really necessary for 

implementation.
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Why dynamic-link-libraries for sharing?

 We‟ve handled shared dynamic data. What‟s about 

linking?

 can we get  rid of that clumsy /base:0x60100000 /fixed linkage 

now?

 YES! But hasn’t  SHM_NT have to handle the shared static data, 

too? By moving it all into shared memory sections? 

 NO! We can safely ignore this type of FRAME data:

 if it is located and referenced in the stack only (single 

process)

 if it is non-win32 code, like all partition-memory related 
data (by now! Partitions may come to win32 later on)

 if the data (or any sub-data, if structured) isn’t remembered 

by it’s location (& address operator and resulting pointer)

 Why providing a DLL-solution only (no shm_nt.lib)?

 SHM_NT uses VCMS semaphores, based on shared data. Easily 
achieved by constituting a dll. Suggestion for a coming VCMS-
Release:  dynamic semaphore creation, based on a SHM_NT 
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Results

 We earn a better performance now

 which is at least, say, 30 % faster than the best of previous

 rather independent from queue buffer element size

 Why isn‟t performance gain higher on larger queues?

 good question!

 but why should it? 

 de-coupling is properly done

 by eliminating the Windows 2nd abstraction level

 No further scheduling/dispatching problems

 we have only one Processor

 Discussion, anybody?



Condat AG, Berlin 2002     Slide No.  22www.condat.de

Conf identi

al

How to access and use the SHM-NT 

Gadget

 Sources:

 \gpf\shm_nt\…

 \gpf\vcms-nt\… (example of usage)

 Includes:

 \gpf\shm_nt\inc\shm_nt.h

 DLL:

 \gpf\shm_nt\lib\shm_nt.dll

 Lables (preliminary):

 SHM_NT_FLOAT

 VCMS_FLOAT
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Further reading

 Jeffrey Richter, MS-Windows für Experten

 An introduction into Windows System Programming

 Gary Nebbett, WINDOWS NT/2000 Native API Reference

Win NT/2K undocumented system calls

 Randy Kath, Managing Virtual Memory in Win32

 http://msdn.microsoft.com/library/en-us/dngenlib/html/msdn_virtmm.asp

 Randy Kath, Managing Memory-Mapped Files in Win32
 http://msdn.microsoft.com/library/en-

us/dngenlib/html/msdn_manamemo.asp
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End

(Enough for today)


