Using SNiFF+ with CVS

Introduction

CVS ("Concurrent Versions System") is a public-domain Version and Configuration Manage-
ment System. It is based on RCS (Revision Control System) repository files, therefore
migrating from RCS to CVS and back is simple. While CVS has all features known from
RCS, it provides additional functionality. Within the SNiFF+ environment, the most useful
features are that CVS

m Allows parallel development without the need for branches. Third party sources can be
tracked. Changes of parallel development are merged automatically, where possible.

m Allows to access repositories not seen in the file system, minimizing network traffic and
enforcing security and access policies.

m Allows to track checked-out revisions, making it possible to freeze (tag) any current con-
figuration.

According to the author, "RCS is [analogous to using] assembly language, while CVS is [like
using] Pascal".

In this paper you will learn how to

m Install the SNiFF+ CVS Adaptor

m Set up your Repository and SNiFF+ Projects using CVS

m Use one of two possible working schemes with SNiFF+ and CVS
m Configure the SNiFF+ CVS Adaptor to your needs

m Avoid the most common pitfalls when using CVS with SNiFF+

All tasks to be done are explained in detailed step-by-step instructions, so you can quickly
get a test installation running.

Assumptions made in this paper

Introduction

You should have a working CVS installation on your system, and you should be able to
execute CVS commands from your Operating System Command Line. Although SNiFF+
helps you performing CVS commands, you should know the CVS concept and how to
operate the CVS system from the command line as well.

Note that this paper does not replace an introduction on CVS. For background information,
please refer to the resources listed below.

You should also be familiar with the SNiFF+ Project and Working Environment concepts.

Feedback

CVS is a sophisticated system, and there are many ways of working on it. Your feedback on
the CVS integration is always welcome. This can be suggestions for better integration,
added functionality or hints to use CVS more efficiently with SNiFF+.

Please send all e-mail to the addresses listed below and mention the word CVS in the
subject.

TakeFive Support

Europe:
sniff-support@takefive.co.at

USA:
sniff-support@takefive.com

Other Useful links

SNiFF+ web pages:
m SNiFF+ Frequently Asked Questions
http://www.takefive.com/support/fag.html

m SNiFF+ Support Searchable Knowledge Base
http://www.takefive.co.at/support/kb.html

m SNiFF+ Users Mailing List
http://www.takefive.com/support/sniff-list.html

m Customer Newsletter
http://www.takefive.com/news/customer_newsletter.htm

SNiFF+

Where to get CVS Software and Information

Version and Compatibility information

CVS Adaptor Version cvs-3.2.1a (03-Apr-2000) and higher
SNiFF+ Versions 3.0.1 and higher
CVS Versions 1.9 and higher

This Document Version cvs-3.2.1a

This document refers to the python-based CVS Adaptor introduced with SNiFF+ 3.0 and is
not to be confused with previous shellscript-based Adaptors. This CVS Adaptor comes as
part of the SNiFF+ product from versions 3.0.2 and above and only needs to be enabled (see
Enabling the Adaptor — page 8). More recent releases can always be downloaded from the
SNiFF+ FTP Server [1].

Compared to the previous adaptor, the new one has been enhanced in the following areas:

m [tis based on python, therefore it runs on both Windows and UNIX.
m CVS remote Repositories can be used with SNiFF+.

m |t provides support for SNiFF+ Shared Working Environments, thereby saving both disk
space and compile time.

m Custom menus have been extended.

Where to get CVS Software and Information

Using SNiFF+ with CVS

You can get the latest CVS distributions from the CVS Homepage [2] currently hosted by
SourceGear. CVS Bubbles [3] by Pascal Molli has links to other resources.

The CVS Manual [4] by Per Cederqvist is the definitive reference, is well readable and
includes a good introduction. It is available in PDF, HTML and Windows Help formats. For
beginners that want to start quickly, the CVS tutorial [5] by Jim Blandy is worth reading. Brian
Berliner put together a paper on the theoretical background of CVS CVS II: Parallelizing Soft-
ware Development [6].

Installing the SNiFF+ CVS Adaptor

If you are using SNiFF+ 3.0.2 or later, all adaptor files are already part of the distribution, and
you just need to enable it (see Enabling the Adaptor — page 8). If you are using SNiFF+
3.0.1 or below, or you are updating to a new version of the CVS Adaptor, you need to
complete the following steps:

1. Download the newest adaptor from the SNiFF+ FTP Server [1]

2. Unpack the adaptor archive (Cvs- <ver si on>.tar. gz or cvs- <versi on>. zi p)
into any directory you like.

3. Copy all files to their corresponding locations in your SNiFF+ installation. This can be per-
formed very easily with the Windows Explorer or with the UNIX cp - Rcommand.

4. If you have existing custom menus, you need to merge the new ones

(Si t eMenus. CVS. sni ff) with your existing ones (Si t eMenus. sni ff) in the
$SNI FF_DI R/ conf i g directory. If you are not yet using custom menus, you can just
copy the Si t eMenus. CVS. sni f f fileto Si t eMenus. sni ff.

Enabling the Adaptor

To enable the custom menus used for running CVS, you need to edit your custom menu defi-
nition file $SNI FF_DI R/ confi g/ Si t eMenus. sni ff and uncomment the corre-
sponding entries: In more recent versions of SNiFF+, you need to remove the tilde character
in front of a *~Pr oj ect Edi t or entry, in older versions you need to remove hash (#)
characters:

m In the Project Editor, there are three menus: CVS, CVS Modules and CVS Admin. Don't
forget to also uncomment the ~Pr oj ect Edi t or entry.

m Inthe Source Editor, there is one menu: CVS.

The entries in the CVS Admin menu are used for administrative purposes only. Therefore
we suggest you leave these commented out in your Si t eMenus. sni ff and only add
them to the CVS Administrator's User Menus. sni ff.

We also recommend to keep the CVS Modules menu commented out for users who are not
yet familiar with CVS. You can perform all necessary actions with the CVS menu as well,
while Workspace Administrators and people who are already familiar with CVS might like to
use the CVS Modules commands for enhance performance (especially when using a remote
repository).

8 SNiFF+

Where to get CVS Software and Information

Setting up a SNiFF+ project with CVS

In this section, we give step-by-step instructions how to set up a CVS repository with
SNiFF+. Although these steps can be completed by any user, we strongly suggest that you
appoint a CVS administrator for larger projects. Only the administrator should be allowed to
change CVS configuration files or import new modules. Refer to the CVS Manual [4] for
details on how to enforce access and security policies.

Most of the steps listed below will not need to be completed if you are If you already work
with CVS outside of SNiFF+. Yet you should quickly read through this passage since it
contains information on how to make SNiFF+ fit for using CVS efficiently.

Defining the Repository

Before starting SNiFF+, set the environment variable CVSROOT to the directory, which will
become the repository root:

On Unix

set env CVSROOT /your/ absol ut e/ path/to/repository/root

On Windows

Using SNiFF+ with CVS

set CVSROOT=: | ocal : d: \ your\ absol ut e\ pat h\t o\ r eposi t or y\ r oot

(: I ocal : is needed for Windows to work with drive letters)
The CVSROOT variable specifies the location of your repository and will be used by all CVS
commands.

Note

Windows UNC pathnames (like \ \ host \ pat h) are not supported
with the current version. However, CVS Remote repositories can
also be used with the CVS Adaptor. Please refer to Advanced topics

— page 19 for details.

Note that the SNiFF+ CVS Adaptor does not depend on CVSROOT being set, because it
takes the information from the RWE; however, it is recommended to set CVSROOT in order
to be able to work with CVS from outside SNiFF+ as well.

If you are setting up a new repository which doesn’t have any files in it yet, you should now
initialize it by executing the command

cvs init

10

from your command line.

Note

We assume that your CVS software is already installed and config-
ured. In most cases it should suffice to set put the CVS executable
in your path and set the CVSROOT environment variable. Please re-
fer to the CVS Manual for detailed information on how to set up
CVS.

You should now check if access to your repository works by entering the command

cvs co -p CVSROOT/ nodul es

on your command line. This should print out the list of modules defined by CVS. Please refer
to the CVS Manual for troubleshooting up to this point.

Setting up the Repository for SNiFF+

In order for the integration to work smoothly, SNiFF+ needs to know the CVSROOT and CVS
needs to know about SNiFF+ temporary file types. To complete these settings:

1.
2.

Start SNiFF+,

In the Working Environments Tool, create a new RWE for your CVS Repository. Enter
$CVSROOT as the directory root for this repository. Verify that the CVSROOT environment
variable is correctly expanded.

Below the CVSROOT RWE, Create a shared source that will hold a checked-out version
of your CVS controlled projects.

Note

The CVS Repository must not be in the same physical directory
branch as your other working environments. Having the CVS Re-
pository directory on the same physical directory as your ImportWE,
SSWE or PWE does NOT work! For your first-time experiments we
propose you create a directory structure like

Cvst est
+- rwe
+- sswe
+- pwe
+-

SNiFF+

Importing your Project into CVS

4. Below the CVS SSWE, create SOWEs and PWEs as usual. Your working environments

should now look more or less like this:

E Working Environments - mober@londo [modified) M=l E3

Toolz File Edit “iew Utlz History 7

Dw HsB X 22 B s
Tupe IAII j Owner |A|| j ‘whorking Environment
Working Environments ITree vl Root | $CYSROOT
@ :servermoberi@apallo: /U sers/mober/cyvsroot
- . CVETes Fioot on Remate Host |
| B S5WE:CVSTest - Platform
. B0 SowE: CVSTest || <defauit>
E‘----@11’1)}3:31:‘ PHE: CVSTest [SSWE Hierarchy

é---@R{d‘E:Filehrowser Exanple ||

------ @ adm PWE:Filebrowser Example - S0WE Hierarchy

[~ Wersion Control Configuration(s)

- Generate Directory Root

(!
"}

Importing your Project into CVS

Using SNiFF+ with CVS

There are three possibilities to get your sources into the CVS repository:

Migrating from RCS (or other VCS systems). You can do this without losing any informa-
tion: see Migrating from other VCS tools to CVS — page 21

Using CVS import for third-party source tracking or fast import of large source trees. See
the Command Reference — page 23 on how to accomplish this. If you already have your
project in CVS, please proceed with Initial Checkout of non SNiFF+-Controlled Projects —
page 14

Using SNiFF+ File Commands for initial check-in. This is the simplest and most rec-
ommended procedure as it works exactly the same way as known from RCS; it is a bit
slower than the CVS import variant, but it doesn’t create an unwanted vendor branch.

The third option above is the simplest one, therefore we describe it in detail in terms of the
conpl ex example here:

1.

Copy the complex sources from the SNiFF+ distribution into the Shared Source or Private
Working Environment you created in step 4 Setting up the Repository for SNiFF+ — page
10

On Windows, you can use the Explorer; on Unix, you can type
cd <your CVS |nport Working Environnent>
cp -R $SNI FF_DI R/ exanpl e/ c++/ conpl ex_di r/ user/ conpl ex.

In the Working Environments Tool, select your SSWE or PWE and choose File > New
Project... > with Defaults.... In the Directory Name Dialog, select your main project direc-
tory (i.e. complex).

11

12

10.

In the Attributes of New Project Dialog, choose the General node and make sure that the
Create Subproject Tree checkbox is activated.

Select the Version Control System Node and select CVS from VCS Tool.

Choose OK to create the project. The Project Editor opens. You should see the three CVS
custom menus.

Select any file to enable the custom menus.

Note

For most CVS commands in the custom menus (including the mod-
ule related commands), it is necessary to select a file first. SNiFF+
will use the name of the SNiFF+ project to which the file belongs as
its CVS module name.

If you don't have a CVS Repository yet, select first CVS Admin > Init CVS Repository.
This will perform a cvs i nit command to create initial CVS administrative files in the
Repository.

Select CVS Admin > Add SNiFF+ cvsignore entries. This will add the SNiFF+ specific
file patterns like . sni f f di r to the CVS ignore list, which is necessary to allow correct
import of projects (otherwise the SNiFF+ temporary files would also be version controlled
after an import command).

Choose CVS Admin > Show cvsignore file to verify that the entries have been correctly
added to the repository.

Select all your files and choose File > Check In.... A dialog box with the standard SNiFF+
parameters for Check In appears. For initial Check In, you can leave these empty.

Note

As you check in your sources, with every directory that was un-
known before, there will appear a dialog box asking for the reposito-
ry directory where you want to put your sources. In most cases, you
can leave the guess by SNiFF+ as it is; however, if you want to put
your sources in a different remote path than the local one, you may
change the directory location.

Watch the messages CVS produces in your shell. Now, your sources are in the CVS reposi-
tory. If you only want to use the File related CVS commands, you are done; only if you want
to use cvs rtag and other purely module related commands, you need to define CVS
modules.

SNiFF+

Defining CVS Modules

Defining CVS Modules

Using SNiFF+ with CVS

All those SNiFF+ projects that you want to be able to access as "master modules" need to be
defined in your CVS modules file. A "master module" is one that is accessible by the CVS
Module commands. The connection between a SNiFF+ project and a CVS module is by its
name: a CVS module name is always constructed by removing the . shar ed extension
from the corresponding SNiFF+ project name. So, for example, the SNiFF+ Project
conpl ex. shar ed must be assigned the CVS module conpl ex no matter where in the
directory hierarchy this module resides!

You can easily edit the modules file by choosing CVS Admin > Edit modules File.

In the modules file, lines starting with a hash sign (#) are comments and can be ignored.
Your new entries should be added at the end of the modules file.

Each line contains the name of a module and, separated by whitespace, it's location relative
to the repository root.

If you imported your entire Working Environment into "." (= the repository root) before and
want to be able to access all modules directly, this is what you should enter into your
modules file:

conpl ex conpl ex
conplexlib conpl ex/ conpl exl i b
iolib conplex/iolib

If you imported your project into sni f f / exanpl es, this is what you would enter:

conpl ex sni ff/ exanpl es/ conpl ex
conplexlib sni ff/ exanpl es/ conpl ex/ conpl exl i b
iolib sni ff/ exanpl es/conplex/iolib

So the modules file provides the connection from SNiFF+ project locations to the repository
locations.

Note that since all CVS module commands will work with the given module and all its subdi-
rectories, it is not necessary to assign a CVS module to all SNiFF+ modules. In the example
above, it would indeed suffice to define the conpl ex module only since accessing
conpl ex will automatically access i ol i b and conpl exl i b as well. However, in that
case it would not be possible to check out the conpl ex| i b module by itself.

For more information about other options in the modules file, please read CVS Manual.

13

14

Initial Checkout of non SNiFF+-Controlled Projects

Since you don't have any SNiFF+ controlled project yet, you need to check out your existing
sources using the cvs commandline interface. The usual way of working with CVS in SNiFF+
is to have all files read-only and change them to writable only by executing a cvs edit
command. Therefore, you should also check out everything read-only.

Note

You can configure CVS to automatically do all check-out op-
erations read-only by editing your $HOVE/ . cvsr c file or by
setting the environment variable CVYSREAD to 1.

For optimal SNiFF+ project setup, you should check out your source modules from the
command line in a way that allows maximum sharing of submodules: For SNiFF+, it is impor-
tant that submodules used in different supermodules can always be accessed at the same
point in your directory hierarchy; usually, this is accomplished by having the repository direc-
tory structure match the structure of the checked-out sources as closely as possible.

Note

If you are not using the CVS modules file, you can safely ignore the
previous paragraph. It only applies for CVS setups with a sophisti-
cated modules file.

Set up your SNiFF+ project in a workspace as usual. In the Project Attributes, select CVS as
the version control tool (VCS Tool). You can do this most easily by selecting all projects and
choosing Project > Attributes of Checkmarked Projects.... When your project descrip-
tions are set up, select all project description files, add them to the CVS repository and do a
commit (See Adding and Removing Files — page 17).

SNiFF+

Working with a Shared Source (file-based approach)

Working with CVS in SNiFF+

There are two different ways to use CVS together with SNiFF+. One way is to use the well-
known file-based SNiFF+ version control commands and the other one is to use the CVS
module-based commands:

m File-based commands behave exactly the same way as known from RCS, so they make
it easy for you to migrate; you can use the SNiFF+ concepts of Shared Working Environ-
ments, Default Version Control Configurations and Branching as known from RCS. In
addition to the SNiFF+ typical commands, there are some more CVS file commands in the
CVS custom menu for providing additional features.

File-based commands have well-defined outcome under all circumstances, but they are
slower (with remote repositories, sometimes much slower) than module based
commands.

m Module-based commands are CVS-specific and provide enhanced performance. How-
ever, due to the nature of cvs they interact poorly with the SNiFF+ concepts of Default
Version Control Configurations and Shared Working Environments. They can be used in
such circumstances as well, but you should know exactly what you are doing.

Generally, we recommend using the file-based commands with local repositories and for
small operations (like checking in two or three files). You can extend the file-based features
with module-based commands for enhanced performance, especially when using remote
repositories and when not using a shared source.

Thanks to the fast cvs update mechanism, it is particularly useful to not use a shared source
on the Windows platform where symbolic links are not available for sharing source and
object files.

More differences, advantages and disadvantages of using a shared source or not will be
explained in the following sections.

Working with a Shared Source (file-based approach)

Using SNiFF+ with CVS

The main advantage is the sharing of source and objects files. Just a small part of all source
and object files need to reside in the Private Working Environments.

After the creation of the Private Working Environment the whole project is visible for
SNiFF+’s browsing and code comprehension tools. Since the Shared Working Environ-
ments are read only, it is necessary to check out modules and files to be modified. The
checked out files will then reside in the private workspace, all other files will be shared from
the Shared Source Working Environments.

Objects files can be shared by using a Shared Object Working Environment (SOWE).

15

16

Advantages Disadvantages

m Sharing of source files by using = Cvsupdate should be used for single files

SSWE(s). only, because it makes all files local; use
m Complete browsing information for the SNiFF+ update instead, which is slower
whole project. m Higher network bandwidth requirements

m Sharing of object files by using due to shared source
SOWEC(S).

m Less compilation time.

m Modules can be checked out from
SNiFF+'s GUL.

m Automatic creation of the private WE by
SNiFF+.

The typical development cycle when using a shared source is like this:

m Open the project in a PWE. All files are shown from the Shared Source, no files are local.
The Shared Source must be CVS-Controlled.

m Browse the files. If a file needs to be edited, execute File > Check out... (with concurrent
lock) to get a local copy of the file to be edited.

m Edit the file until you are satisfied; execute CVS > Update File to incorporate any
changes made by other developers. Resolve any Conflicts.

m Execute File > Check in File to check in single files or CVS Modules > Commit Module
to commit all modifications made in a single step.

m Execute File > Update File or Project > Update Workspace to clean any local copies of
files that have already been updated in the Shared Source.

For other special commands, see the following sections.

Working without a Shared Source (module-based approach)

When using CVS, it is not necessary to use shared workspaces to share source and object
files. The sharing of source files can also be done by just checking out the necessary
modules into the Private Working Environment. The main advantage is that it is not neces-
sary to create and maintain (update) Shared Working Environments; instead, cvs update can
be used which requires less network bandwidth.

The main disadvantage is that object files can not be shared by CVS itself, therefore no
sharing of object files will be possible. Furthermore just source files of checked out modules
are visible within the SNiFF+ browsers - no browsing information about non checked out

SNiFF+

Working without a Shared Source (module-based approach)

source files is available. Therefore it is necessary to check out all files which are of interest
for the development work or necessary for building a target. This may lead to a large number
of checked out modules in the Private Working Environments.

Advantages Disadvantages

m No Shared Working Environment = No sharing of object files.

required. m Increased compilation time.
m No update of shared WE's is necessary m Only checked out modules are visible in
m Less administrative work (no WE admin- SNiFF+

istrator required). m Decreased Browsing Information.
m Less network bandwidth requirements. m Check-Out Modules must be done from

the Command Line.

The typical development cycle when working without a shared source is like this:

m Check out all files from CVS into your PWE. This can be done from the command line, or
by using the CVS Modules > Check out module into... menu in the project editor. open-
ing. Depending on your preferred way of working, the files can either be read-only

(CVSREAD=1) or writable.

m Browse the files. For any modifications, load the file into the editor and execute CVS >
Edit file to make it writable. You can watch other files to get informed when other users
edit files by setting CVS > Watch file(s) or by executing CVS > Show editors of file(s).

m Execute CVS Modules > Update Module from your toplevel module to perform a cvs
updat e on your whole workspace and get the newest versions from the Repository.

m Use the CVS Modules > Commit Module custom menu to commit your modifications.

Adding and Removing Files

Since both SNiFF+ and CVS keep record of what files belong to a specific project or a
specific configuration, the SNiFF+ Project > Add/Remove Files to/from projectname...
dialog should NOT be used for removing files. Instead, you should use the corresponding
CVS custom menu entry CVS > Remove file(s).

Note that your Project Description File must be writable in order for this command to work.

Changing Project Attributes

Using SNiFF+ with CVS

It is important that no CVS update conflicts occur in the SNiFF+ project description files,
because the CVS conflict lines would confuse the SNiFF+ project loading mechanism.
Therefore, Project Description files should be made writable only for a short time and
committed after any modifications. Moreover, CVS update should be executed on the
SNiFF+ project description files with great care. Use File > Update instead to make sure no
conflicts occur.

17

Setting tags (freezing configurations)

You should set tags by using the cvs custom menus; this is much faster than the SNiFF+
Configuration Manager.

To freeze a current checked-out configuration, check out or update all files to the configura-
tion you would like to freeze; then, select all files and execute CVS > tag selected file(s) to
tag the current checked-out version.

To freeze the overall HEAD, the HEAD of a branch, rename or delete configurations, you
should use the CVS Modules > define tag and CVS Modules > delete tag custom menu
entries. They work directly on the repository without taking you current checked-out versions
into account and are therefore even faster.

Working with Branches

To create a new branch, you can either use the SNiFF+ file-based commands or the CVS
module-based commands.

The file-based commands are simple to handle and work as known from RCS; but they are
slow, since for every File/Check in, SNiFF+ needs to execute up to 4 cvs commands (CVS
t ag for creating a branch tag, cvs comit for committing, cvs tag for setting a
change set name and cvs edit for setting a lock).

For module-based branching, you first need to define a branch tag, and then execute the
CVS Modules > Commit Module into branch custom menu. The branch sticky tag will be
set for all files of the module, but only changed files will be really checked in. All further modi-
fications will be committed to the same branch.

To revert your branch to the main trunk, execute CVS Modules > Update Module Tree and
update to the default branch (cvs updat e - A).

Other Actions

For all other actions, see the Command Reference — page 23.

SNiFF+

Customizing the Adaptor

Advanced topics

Customizing the Adaptor

SiteMenus and UserMenus

The CVS custom menus are currently rather large; however, it is easily possible to adapt
these menus to your specific needs.

One customization that is particularly recommended is removing the whole CVS Admin
menu for developers and enable it for the CVS Administrator only. This can easily be accom-
plished by first copying the SiteMenus. sniff file to the Administrator's User -
Menus. sni f f file and then commenting out all entries from the CVS Admin menu.

CVSPrefs.py

Using SNiFF+ with CVS

More customizations can be done by editing the file

$SNI FF_DI R/ I'i b/ pyt hon/ Sni f f/ CVSPr ef s. py. This file defines constants that
customize the behavior of the CVS Adaptor in many ways, and allows to define Access
Control Lists for Administrative commands. Below is a list of the most often requested config-
uration possibilities in CVSPr ef s. py, together with their default values as shipped:

CVSPrefs Entry Meaning

LockersShowExclusive=1 Show exclusive lockers in the lockers column. This
makes the “lockers” display very slow with remote repos-
itories. Set this to 0 to switch off displaying exclusive
locker information. Note: you can still toggle exclusive
lockers display through the CVS custom menu even if the
feature is switched off by default here.

AllowExclusiveLocking=1 Allow to do exclusive locking. If switched off here, the
“Check out / Exclusive Lock” and “Lock” menu entries will
print an error message if called.

AllowMergelnSniffUpdate=1 Allow updating private writable files with cvs update dur-
ing the SNiFF+ Synchronize File / Synchronize Project
command (note that Project Description Files will still be
protected against update conflicts)

DoCVSEdit=1 Run cvs edit for checkout with concurrent or exclusive
lock. Set this flag to 0 to just run a local chmod (set writ-
able) command instead. This might be useful if you have
a dialup connection only and you want to avoid going on-
line for every Edit.

19

20

ChangeRemoteRepUser=1

For RWE Settings like :pserver:user@host, exchange the
user@ setting with the actual current user ID. Set this to
0 if you are using $CVSROOT environment variable for
your RWE Directory setting and your CVS login ID is dif-
ferent than your local login ID.

AllowBranchOpsInCM=0

The “Create Branch”, “Delete Branch” and “Rename
Branch” operations in the SNiFF+ Config Manager are
critical, because they introduce irreversible changes to
the Repository. In particular, “Rename Branch” only
works correctly only with very few CVS versions. Set this
setting to 1 if you still want to use these commands.

EditRemoveBaseForPDF=0

Set this to 1 if you get confused by seeing superfluous
SNiFF+ Project description files in the “Open Project” Di-
alog which are left over in the CVS/Base directory.

RequireComment =0

If set to 1, check in operations will only be allowed if a
comment is entered. Note: this will not be active for the
“commit” dialog!

RequireChangeset =0

If set to 1, check in operations will only be allowed if a
SNiFF+ Changeset is entered. Note: this will not be ac-
tive for the “commit” dialog!

DiffOptions = "-b”

If files differ by blank characters (spaces, tabs) only, don’t
show this as difference in the Diff/Merge tool. Set this to
“ (empty string) to see blank’s differences as well.

RetainLockMode=gRetainEXIfEx

This entry controls how pressing the “Retain Lock” button
in the Check In dialog is interpreted. The default setting
will do a concurrent lock if the file was concurrently
locked before, or an exclusive lock if the file was exclu-
sively locked before. For other settings, see the
CVSPrefs.py file.

CheckoutTimestampFix=0

It was observed with some versions of CVS, that when a
file is checked out for the first time (for instance, after
checking out and reloading a project where this file was
newly added), the timestamp for this file is not set to the
time of the checkout but to the time when it was created.
When a Shared Object Working Environment is used, the
wrong timestamp may lead to the file not being compiled
although it should. If this switch is set to 1, SNiFF+ will
work around this problem by touching the file if it was not
already set to the timestamp of the checkout by CVS.

DoFixDollar=0

Allow to use filenames with a Dollar Sign in their name.
This fix is not thoroughly tested and thus OFF by default.

SNiFF+

Migrating from other VCS tools to CVS

Adm nACL=[] This Python List may be set to a list of Strings which rep-
resent User IDs. If set, then only the users listed here are
allowed to perform the following actions:

m “Delete Version”

m "Delete Symbol" in the CM

= "Rename Symbol" in the CM

m "Delete Branch name" in the CM if also
AllowBranchOpsInCM is set on

m "Set Symbol for branch" in the CM if also
AllowBranchOpsInCM is set on

m "Rename Branch" in the CM if also
AllowBranchOpsInCM is set on

If empty (default setting), everyone may perform these
actions.

Br eakLock ACL=[] This Python List may be set to a list of Strings which rep-
resent User IDs. If set, then only the users listed here are
allowed to break locks. If empty (default), everyone may
break locks.

Br anchACL={} This Python Dictionary may be set to a list of branch
names each associated with a list of User IDs. If set, then
only the members of the list may check in to the corre-
sponding branch. This can be used, for instance, to en-
able branching policies. Branch names not mentioned
may be checked-in to by everyone.

TagACL={} This Python Dictionary may be set to a list of tag names
each associated with a list of User IDs. If set, then only
the members of the list may set or move the correspond-
ing tag. Names not mentioned may be set or moved to
by everyone.

For more detailed information, please contact the WindRiver support team at
sniff-support@takefive.co.at

Migrating from other VCS tools to CVS

Using SNiFF+ with CVS

Since CVS uses RCS for its internal files, no history or configuration information will be lost
when you migrate from RCS to CVS. For in-depth information on migrating to CVS (also from
other revision control systems), please refer to the CVS Manual [4].

For the RCS to CVS migration with SNiFF+ specifically, there is a shell script rcs2cvs which
can be obtained through the SNiFF+ Knowledge Base at

http://www.takefive.co.at/fag/kbMigrateRcsRepositoryToCVS.html

21

22

CVS Remote Repositories and Multi-Site Development

The cvs | 0gi n command for remote repositories using the "pserver" access command is
not implemented in the SNiFF+ CVS Adaptor.

Please do cvs | ogi n from the commandline; your CVS password will be saved in your
home directory’s . cvspass file. SNiFF+ requires this password caching because you don't
have a chance to enter passwords during the custom menu and adaptor commands.

Windows to UNIX Cross-Platform Development with CVS

There are two problems when doing Windows to UNIX Cross Platform development:

1. When cvs is run on Windows, it will add a Carriage Return (CR) Character at the end of
the line of every file it creates: both CVS internal files and files managed by CVS. Most
UNIX Compilers don't work with the resulting CRLF line ending scheme.

2. The CVSROOT scheme required by Windows local repositories
(:local :d:\the\repository)canis saved in the CVS/Root file with the sources.
UNIX Versions of CVS don't understand this special form of CVSROOT and produce an
error.

These problems can be solved by using a version of CVS on Windows that has been
compiled with the “Cygwin” kit. By compiling CVS with this kit, it will behave more UNIX-like.
For more information, see the SNiFF+ Knowledge Base at

http://www.takefive.co.at/fag/kbUsingCvsInCrossSetup.html

Pitfalls when using SNiFF+ with CVS

Both SNiFF+ and CVS keep a database of your software structure and what files belong to a
specific version; similarly, SNiFF+ and CVS use different methods to handle working environ-
ments with branches: while CVS uses "sticky tags" to make sure branch versions are
checked in into the correct branches again, SNiFF+ uses working environments with "Default
Configurations" for that purpose.

It is important that SNiFF+ and CVS information are kept in sync: particularly when Shared
Working Environments are checked out with CVS sticky tags it is important to make sure that
all Private Working Environments based on these use the same default configuration.

Known Limitations

m SNiFF+ project description hierarchies and CVS Modules files cannot automatically be
converted into each other.

SNiFF+

CVS Admin Menu (Project Editor)

Command Reference

CVS Admin Menu (Project Editor)

The CVS Admin menu contains all commands for administering the CVS Repository and
internal files, and for importing new files into CVS.

Init CVS Repository

Initializes the repository. This menu will invoke the cvs i ni t command, which will create
all CVS administration files under $CVSROOT/ CVSROOT.

Add SNiFF+ cvsignore entries...

Creates a new ignore file (see the CVS Manual [4] for more info about cvsignore files). You
will be prompted to insert the name patterns that should be ignored while running update,
import and release. The following name patterns are recommended to be ignored when
working with SNiFF+:

.sniffdir
. Proj ect Cache
.Snifflast*

*%

Add SNiFF+ cvswrappers...

This menu item creates a new cvswrappers file, which may be used to make file types known
to CVS as being binary (see the CVS Manual [4] for more info about the cvswrappers file).
You will be prompted to insert the name patterns that should be treated as binary files. The
following name patterns are recommended to treat as binary with SNiFF+, and will be prese-
lected in the dialog:

* shared -m’' COPY

* . proj -m’ COPY’
*ogif -k b’
*. png -k 'b’
*.vcl -k b’

Edit cvsignore file

Invokes a little editor window in SNiFF+ which displays the current cvsignore file. The
contents can be modified, and upon pressing the “OK” button the master cvsignore file will be
automatically updated by committing your changes to the CVS Repository.

Using SNiFF+ with CVS

24

Edit cvswrappers file...

Invokes a little editor window in SNiFF+ which displays the current cvswrappers file. The
contents can be modified, and upon pressing the “OK” button the master cvsignore file will
be automatically updated by committing your changes to the CVS Repository.

Edit modules file...

Invokes a little editor window in SNiFF+ which displays the current CVS modules file. The
contents can be modified to add or remove CVS modules, or change their properties, and
upon pressing the “OK” button the master modules file will be automatically updated by
committing your changes to the CVS Repository.

Import sources from current project...

Invokes the import command from the directory of the currently selected file. The import
command is used to check-in the sources for the first time. You will be prompted to enter the
correct parameters:

-m : Log information

directory : Directory name (relative to $CVSROOT) into which the files will be imported.

tagl : Vendor Tag — Used to specify a symbolic name for a branch - e.g., takefive.

tag2 : Release Tag — Used to specify a symbolic name for a release - e.g., start.

Compare Directories...

Compares the directory rooted at the currently selected file's directory with a second direc-
tory you select. SNiFF+ and CVS administrative information is masked out before compar-
ison. This allows you to check for successful CVS import.

Overwrite Tag on selected file(s)...

This entry allows to move labels or changesets from any other version to the version which is
currently in the workspace. It can be used if the standard “CVS > Tag selected file(s)”
command returns an error because of an already-existing Label name.

CVS Modules Menu (Project Editor)

The CVS Modules Menu contains all commands for working with multiple files. The current
module is always determined by the name of the SNiFF+ project description file to which the
currently selected file belongs. You should make sure that for all module related commands,
only ONE FILE is selected before executing the command!

Check out module into...

This command will be used when the module structure cannot be mapped to any project.
When you launch this command a directory dialog will appear to select the directory from
where you want to perform the check out. You will then be prompted (in the SNiFF+ shell) to
enter the name of the module you want to check out.

SNiFF+

CVS Modules Menu (Project Editor)

Schedule file(s) for addition

Performs acvs add on the files selected. Note that you will need to commit your module to
make the addition permanent.

Show Workspace update status

Changes to the Workspace’s toplevel directory and runs the “cvs -n -qg update”
command in the SNiFF+ shell. This command shows what files would be updated if a “cvs
updat e” command were run on the Workspace. It will display all files which are not up-to-
date without actually changing anything. Therefore, it is a nice feature to check what has
been going on with the project.

Note: for this command to work correctly in your workspace root directory, you will need to
have the “TopLevel Adni n=yes” in your CVSROOT/ confi g configuration file.

Update entire Workspace w/options...

Performs a cvs updat e for your entire workspace. Refer to the CVS Manual [4] for a
description of what the options mean.

Note: for this command to work correctly in your workspace root directory, you will need to
have the “TopLevel Adni n=yes” in your CVSROOT/ conf i g configuration file.

Commit entire Workspace...

Changes directory to your Workspace Root Directory and performs a cvs commit operation.
A question dialog is opened to allow entering a comment for the commit operation. We
recommend to run “Show update status” (see above) before committing, to check what files
will be committed.

Note: for this command to work correctly in your workspace root directory, you will need to
have the “TopLevel Adni n=yes” in your CVSROOT/ confi g configuration file.

Show update status of current module

Runs the “cvs -n -q update” command in the SNiFF+ shell, in the directory / directories in
which the currently selected files reside. This command shows what files of the current
module(s) would be updated if a “cvs update” command were run. This command will display
all files which are not up-to-date without actually changing anything in your working direc-
tory. It can be used to check what has been going on with the project.

Update current module w/options...

Performs a cvs updat e for the current module. Refer to the CVS Manual [4] for a descrip-
tion of what the options mean.

Commit files from current module...

Using SNiFF+ with CVS

Performs a commit in the directory of the selected file. A question dialog is opened to allow
entering a comment for the commit operation. We recommend to run “Show update status”
(see above) before committing, to check what files will be committed.

25

26

Recursively commit current module...

Same as above, but recursively descend into subdirectories

Commit files from module into branch...

Commits files from current module into specified branch.

Define tag for module...

You can use this command to assign symbolic tags to the sources of the current module. It
prompts for the tag name and then runs cvs rtag <tag> <nodul e>. Note that you
need to have defined the current module in the cvs modules file for this command to work.
Also note that the rtag command will always freeze the current HEAD or HEAD OF BRANCH
configuration. For freezing checked-out versions, you need to use cvs > tag selected file(s).
Define branch tag for module...
Same as above, but make the tag a branch tag. Again note that you need to use cvs > tag
selected file(s) to tag checked-out versions.
Delete tag for module...

Delete the tag, also using cvs rt ag.

CVS Menu (Project Editor)

The Project editor's CVS menu contains all CVS commands that go beyond the features of
the File menu for working with individual files or complete working environments.

Status of selected file(s)

Performs a cvs status —| —v <filename> . This command displays status informa-
tion on checked out files.

Show editors of file(s)

Shows who is currently editing the selected file(s).

Uncheckout selected file(s)

This command performs a “cvs unedit” operation to revert a local file to the version it had
before “edit” or “checkout” was issued. If a Shared Source is used and, because of the
unedit, the local file is now the same as the SSWE, the local file is also removed.

SNiFF+

CVS Menu (Project Editor)

Remove selected file(s)

Physically removes the selected files and removes the entries from the SNiFF+ project
description file and the CVS Repository. For this command to succeed, the SNiFF+ Project
description file which contains the selected file(s) must be writable!

Note: SNiFF+ will open a dialog and ask you for every file that you select to remove. You
should therefore not use this command for removing very many files at once. For removing
many files, or removing entire subprojects, you should:

1. Check out / no lock the files and projects to your local workspace

2. Use the SNiFF+ Add / Remove file(s) and / or Remove Subproject command(s) to remove
the file(s) from SNiFF+

Use the Project > Check Obsolete Files dialog to physically remove the files

Use the “cvs remove” and “cvs commit” commands on the commandline to notify CVS
of removed files and commit your changes.

Update selected file(s) w/options...

Does a cvs updat e to merge changes made by other developers since the last checkout
or update. The most important properties of cvs update compared to SNiFF+'s File/Update
are as follows:

m CVS updat e looks at writable files, too. The latest version is applied to a checked-out
file by applying a patch. This is more efficient than SNiFF+ Update, but may lead to con-
flicts that need to be resolved.

m CcVS updat e will never delete a file to show the SSWE version again.

You may give options to the cvs updat e command, like the “-j” option for automatically
merging other developer’s work into your local version. See the CVS Manual [4] for more
information on options to the cvs updat e command.

Tag selected file(s)...

Sets a symbolic name on the selected file's checked-out version. This is the preferred
method for “freezing” a configuration which is currently in the local Working Environment.
Note: when very many files (more than 1000) are selected, this command can cause trou-
bles. If you are not using modules, we recommend to use the module-based commandline
“cvs tag” command in that case. If using Shared Workspaces, we recommend splitting the
operation into multiple requests of less than 1000 files each.

Watch selected file(s)

Sets a watch on the selected file: any subsequent cvs edit commands on the selected file(s)
will now notify the watcher by eMail.

Offline Edit selected file(s)

Using SNiFF+ with CVS

Makes the selected files (which are already checked out) writable. This command does not
notify CVS about the file(s) being edited and thus will not need to open a remote connection
to your CVS Server. It is meant for offline using CVS.

27

28

Online Edit selected file(s)

Makes the selected files (which are already checked out) writable and notifies CVS that they
are going to be edited. This can also be used to re-synchronize offline edit actions that were
done before: use the project editor’s writable filter to show only writable files in your Work-
space; these are the ones that your offline edited before. You can now select from all these
files and online edit them (CVS will not choke if you “online edit” files more than once).

Unedit selected file(s)

Makes the selected files read-only and notifies CVS that they are not edited any more. This
command is similar to the Uncheckout command (see above), but it will not remove any
local file even if it is the same as in the SSWE.

Toggle exclusive Lockers

Switches on or off the display of who has an exclusive lock in the Project Editor’'s lockers
column. Note: Showing exclusive lockers makes the lockers display much slower than
showing the CVS Editors only, especially when a CVS Remote Repository is used. We there-
fore recommend to use this feature only in local area networks.

Toggle CVS Debugging

Switches on or off the display of detailed CVS specific debug information into the SNiFF+
Log Tool. Note: when using this option, you should set the “Open Log Window on Output”
option in the SNiFF+ Preferences / Tools node to “off” !

Toggle vcs Debugging

Switches on or off the display of general SNiFF+ Version Control operation debug informa-
tion into the SNiFF+ Log Tool. Having this switch “on” will print all the CVS commandline
commands as they are executed. Note: when using this option, you should set the “Open
Log Window on Output” option in the SNiFF+ Preferences / Tools node to “off” !

Reload CVS Adaptor

Reloads all Python Modules of the CVS Adaptor. May be used when you personally modify
CVS Adaptor files, like preferences in the CVSPr ef s. py file. This command will also print
the current CVS Adaptor version.

CVS Menu (Source Editor)

The editor's CVS menu contains some of the CVS commands from the Project Editor's CVS
menu plus one text based command:

cvs status <filename>

Show the CVS status of the currently edited file: this is the version from which editing started,
the currently active branch tag and the repository file that is involved.

SNiFF+

File Menu (Project Editor and Source Editor)

Show editors of <filename>

Show who is currently registered by CVS as editing the current file.

cvs update <filename>

Performs a cvs update to incorporate the latest changes into the current file by patching it.
Note that this can introduce conflicts that you need to resolve. This command will not allow
you to enter options for the cvs update command (if you need options, use the Project
Editor’s update command instead).

Edit <filename>

Makes the currently edited file writable and notifies CVS that it is going to be edited.

Unedit <filename>

Makes the currently edited file read-only and notifies CVS that no more editing is going to be
done. Note that any changes you made will be lost after the next SNiFF+ Update File since
read-only files will be brought to the revision requested by update file without any patching.
So in case you want to keep your changes, you should keep your files writable (=edited) or
commit them to the repository.

Find next conflict (C-t ¢)

Finds the next string "<<<<" marking a CVS conflict after an update. The same functionality
is available on the Key Sequence <CTRL>-t c.

File Menu (Project Editor and Source Editor)

The standard SNiFF+ CMVC functionality for individual files is available in the File menu.
Most functions are available for CVS although many of them can be accomplished more effi-
ciently by using the CVS custom menus. Especially note the small differences in meaning
between the File Menu's functions and the CVS custom menu's functions.

Check Out...

Using SNiFF+ with CVS

Check out a selected file from the Repository. Note that your Current Project must have been

initialized ("Initialize current Project/Module") for this command to work. You may select a

version to check out and a locking option:

No Lock - the file is checked out read-only.

Concurrent Lock - the file is checked out and cvs edi t is executed to make the file writ-
able. This should be the default function for you to use!

Exclusive Lock - the file is checked out and exclusively locked with cvs admi n -1 . Note
that exclusive locking is NOT recommended with CVS!

29

The File > Check out... internally uses a cvs updat e command but deletes the file
before sending the command. Therefore no cvs merging can occur, and the whole file is
transferred. Therefore, especially when using remote repositories, a cvs updat e
command is more efficient for checking out files.
If you check out an older version than head, a CVS sticky tag for the corresponding version
will be set (see the CVS manual on sticky tags).

Check In...

Checks in the selected file(s) to the repository, makes them read-only and notifies CVS that
editing has been finished. There are some things to note:

m Before committing, CVS checks the files to be committed: if conflicts are found, a mes-
sage is printed and the corresponding file is not checked in. Also, CVS will not check in
files that have not been changed.

m When multiple files are selected, this command will perform an individual cvs commit for
every file. Therefore, when committing multiple files, the cvs commit custom menu com-
mands are to be preferred, especially if CVS is set up to notify an administrator of every
commit that is made.The File > Check In... command allows you to specify SNiFF+
Changesets. These are implemented as CVS tags. Note that when check-in is not possi-
ble due to a conflict, the changeset will also not be set for the corresponding file.

Because of these reasons, we recommend to use the File > Check In... command only if
few files are affected, if you want to assign a changeset and if no conflicts are assumed.
Whenever possible, you should use the CVS Module > Commit or CVS > Commit entire
Working Environment custom menu commands instead and enter changesets with the
CVS > Tag files... custom menu command.

Lock...

Sets an exclusive lock on the given file. Note that this is not recommended because exclu-
sively locked files can still be edited by CVS users but can not be committed!

Unlock...

Removes an exclusive lock. If the file currently selected is currently being locked by a

different user as the one calling the action, a “Break Lock” is issued. This Break Lock func-

tionality can be restricted to Administrators only in the CVSPr ef s. py file (see Advanced

topics — page 19). Note that Breaking a Lock is not supported in all versions of CVS.
Delete Version...

This command is not recommended for CVS, because checked-out files of the version to be
deleted can still exist. In the CVSPr ef s. py file there exists a flag that allows to disable this
command or reserve it for Administrators only.

Replace Description

Change the "file description" of a selected file.

SNiFF+

Project Menu (Project Editor)

Replace Comment...

Change the comment of a file version currently selected in the History Window.

Synchronize File...

Performs a SNiFF+ Synchronize on the selected file. By default, this means running cvs
update on the file (regardless if it is writable or read-only), then comparing it with the corre-
sponding shared source file (if this exists) and if the contents is the same, deleting the local
file so the shared one can be seen.

If the current file to be synchronized is a Project Description file, this command will also
check whether the cvs update command introduced any conflicts, and if yes, discard the
update and keep the old file version. In this case, you will need to manually merge the latest
changes into your file version.

The default behavior of this command can be overridden in the CVSPrefs.py file to not touch
writable files and more resemble the standard SNiFF+ behavior, which is as follows:

m In standard SNiFF+, Synchronize File... only looks at read-only files. Writable files are
never changed. Files will always be checked out completely and never be patched, there-
fore conflicts cannot occur; changes in read-only files will be overwritten.

So if you switch on this behavior, the SNiFF+ Synchronize File and the Custom Menu’s CVS
Update functions complement each other.

Note that the SNiFF+ Menu Entry Project > Synchronize Workspace also does a SNiFF+
Synchronize File for all files of all currently selected projects, plus some additional optimiza-
tions.

Show Differences...

Opens a dialog to select versions of files to compare in the DifffMerge tool. If a version is
selected in the History pane, this version will be selected by default; otherwise symbolic
names (configurations) can be used to select file versions. If the local file is writable, merging
will be enabled in the Diff/Merge tool.

Note that there is a flag in CVSPr ef s. py which allows you to tree differences of blanks
only as differences or not. (diff -b flag).

Project Menu (Project Editor)

Synchronize Checkmarked Projects

Using SNiFF+ with CVS

Runs “Synchronize File” (see above) for every file of every currently selected project. This
command has some optimizations for running faster if there is direct filesystem-level access
to the Repository. However, if a Remote Repository is used this command is slow and we
recommend working with CVS Modules instead (“Update current module” command).

31

32

Configuration Manager

While most functions of the SNiFF+ Configuration Manager work as usual, there are some
differences due to the specific nature of CVS; particularly, you should not set any tags from
the Configuration Manager but use the CVS Modules custom menu instead.

Also note that CVS branch tags will not be shown in the configuration manager if the corre-
sponding branches are empty.

SNiFF+

Configuration Manager

Useful Links

Using SNiFF+ with CVS

[1] SNiFF+ FTP Server
ftp://ftp.takefive.com/pub/SNiFF/integrations/cvs/
[2] CVS Homepage
http://www.sourcegear.com/CVS
[3] CVS Bubbles
Pascal Molli
http://www.loria.fr/~molli/cvs-index.html
[4] CVS Manual

Per Cederqgvist et al. Version Management with CVS for CVS 1.10. Signum Support AB,
1998. Online.

http://www.fido.de/kama/cvs-de.html
http://www.loria.fr/~molli/cvs/doc/cvs_toc.html
http://www.loria.fr/~molli/cvs/doc/cvs.pdf

[5] CVS tutorial
Jim Blandy
http://www.cyclic.com/cvs/doc-blandy.html

[6] CVS lI: Parallelizing Software Development
Brian Berliner, Prisma, Inc. 1989.
http://www.loria.fr/~molli/cvs/doc/cvs-paper.pdf

[7] CVS Mailing List
cvs-info@gnu.org
Archived at
http://www.egroups.com/list/cvs-info/

33

	Introduction
	In this paper you will learn how to
	Assumptions made in this paper
	Feedback

	Version and Compatibility information
	Where to get CVS Software and Information

	Installing the SNiFF+ CVS Adaptor
	Setting up a SNiFF+ project with CVS
	Importing your Project into CVS
	Defining CVS Modules
	Initial Checkout of non SNiFF+-Controlled Projects

	Working with CVS in SNiFF+
	Working with a Shared Source (file-based approach)
	Working without a Shared Source (module-based approach)

	Advanced topics
	Customizing the Adaptor
	Migrating from other VCS tools to CVS
	CVS Remote Repositories and Multi-Site Development
	Windows to UNIX Cross-Platform Development with CVS
	Pitfalls when using SNiFF+ with CVS
	Known Limitations

	Command Reference
	CVS Admin Menu (Project Editor)
	CVS Modules Menu (Project Editor)
	CVS Menu (Project Editor)
	CVS Menu (Source Editor)
	File Menu (Project Editor and Source Editor)
	Project Menu (Project Editor)
	Configuration Manager

	Useful Links

