
Tornado Integration
Guide

TakeFive Software GmbH
A Wind River Company

5020 Salzburg, Austria

E-mail: info@takefive.co.at

TakeFive Software, Inc.
A Wind River Company

San Jose, CA

E-mail: info@takefive.com

Version 3.2.1 for Unix and Windows

Copyright
Copyright © 1992–2000 TakeFive Software Inc., A Wind River Company.

All rights reserved. TakeFive products contain trade secrets and confidential and
proprietary information of TakeFive Software Inc. Use of this copyright notice is
precautionary and does not imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,

Amsterdam, The Netherlands.

Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.

Other brand or product names are trademarks or registered trademarks of their
respective holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union
Bank of Switzerland. Its development was considerably facilitated by the public
domain application framework ET++.

Authors of the first version:

Walter Bischofberger (Sniff)

Erich Gamma (Sniffgdb)

Erich Gamma and André Weinand (ET++)

Table of Contents

Ja
Part I Introduction

Road Map 9

Using this Guide . 9
Feedback and useful links . 9

Overview 11

The SNiFF+ Tornado Integration. 11

Installing SNiFF+ for Tornado 13

Requirements . 13
SNiFF+ Installation . 13
Licensing . 14

Part II Browsing Source Code

Single-User Project Setup 19

Starting SNiFF+. 19
The Launch Pad . 19
Creating a New Project for Browsing. 20

The Project Editor 21

Opening the Project Editor . 21
Adding a subproject. 22
The Project Tree . 23
Saving a Project Tree view . 23

Browsing Source Code 25

The Symbol Browser . 25
The Source Editor . 27
The Cross Referencer . 28
The Hierarchy Browser . 28
The Retriever. 30
The Include Browser . 31

Part III Make Support and Version Control

Opening the project 35

The Launch Pad . 35
va Tutorial

Table of Contents
SNiFF+ MakeSupport 37

Building the executable. .37
Accessing Tornado Tools .38
Understanding SNiFF+ Makesupport .39

SNiFF+ Version Control 43

Checking whether RCS is in your path (Unix Only) 43
Setting files to read-only .43
File’s history information .44
Displaying locking information .45
Tracking changes in file versions .45

Configuration Management 51

 Opening the Configuration Manager .51
Looking at configurations .51
Comparing two configurations .52

Part IV Team Support

Key Concepts 57

Shared projects. .57
Working environments .57

Working with an Existing Team Project 61

The Working Environments tool .61

Setting up a Multi-User Project 65

Multi-User Project Setup. .65
Setting Up Make Support .66
Building the Executable .68
Checking all files into the Repository .68
Creating a Shared Source Working Environment.69
Copying the shared project into the SSWE .70
Changing Working Environment Hierarchy Structure70
Synchronizing Working Environments .71

Part V Advanced Issues

Working with BSPs 75

BSP Setup for Tornado-Only Makesupport .75
Version Controlling a Released BSP in SNiFF+.77
Enabling SNiFF+ Makesupport for a BSP .78
SNiFF+

Ja

Table of Contents
Working with Bootable Applications 81

Setting up a SNiFF+ Project for a Customized VxWorks Project . . . 81
Removing Absolute Path References . 82
Using SNiFF+ Automatic Linking of Submodules 83

Working with WindRiver Source Products 85

Working Environment Setup . 85
Setting up SNiFF+ Projects for WindRiver Sources 86
Using WindRiver Sources in Own Projects . 87

Advanced Issues and Customizing 89

Changing your Version Control System . 89
Enabling additional SNiFF+ Parsers . 89
Optimized Compilation and Changing Build Specifications. 90
Extending Custom Menus . 92
va Tutorial

Table of Contents
SNiFF+

Part I
Introduction

To
1Road Map

Introduction
This guide describes how to install SNiFF+ into your Tornado environment and assists you in
importing your first projects into SNiFF+. This guide is designed to provide new users with an
accessible introduction to setting up SNiFF+ projects and using them in the Tornado environ-
ment.
Although each consecutive part and chapter is in itself more or less modular, it is assumed
that you are familiar with what has gone on before.
We assume that you have gone through the Tornado Getting Started Guide. To learn about
the full power of SNiFF+ browsing tools, please refer to the SNiFF+ documentation set.

What this guide is not

This is not an exhaustive guide to the SNiFF+ or Tornado products. It merely covers the inte-
gration between the two tools and points you to the original documentation for advanced
issues.

Using this Guide
While simply reading the tutorial may be edifying, we encourage you to perform the steps
described in this guide so that you can experience SNiFF+ first hand.
This guide consists of the following:

n Overview

n Installing SNiFF+ for Tornado

n Part: Browsing Source Code

n Part: Make Support and Version Control

n Part: Team Support

n Part: Advanced Issues

A note on Unix/Windows

Throughout this guide we will be using Windows conventions for pathnames, as well as
screenshots made on Windows. These may differ slightly on Unix.

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
rnado Integration Guide 9

Chapter 1 Feedback and useful links
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

n TakeFive Support Knowledge Base

http://www.takefive.com/support/kb.html

n Frequently Asked Questions

http://www.takefive.com/faq

n SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

n SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

n TakeFive SCE Newsletter

http://www.takefive.com/news/sce-news.html
10 SNiFF+

To
2Overview

The SNiFF+ Tornado Integration
SNiFF+ provides an extensive collection of code comprehension, navigation, editing, build
and configuration management tools. It is a highly integrated toolset that makes the daily
work with your source code easier, more organized and more productive. In the illustration
below, you can see how SNiFF+ fits into your Tornado Environment.

While Tornado is aimed to boost hardware start-up and to support platform (OS) and applica-
tion developers without the need for team collaboration support, SNiFF+ focuses on applica-
tion development with the need for advanced project management, scalable build and first
class code analysis support. Both tools together offer the power of Tornado’s tool chain with
SNiFF+’s advanced capabilities for software development in teams.
In particular, SNiFF+ will allow you to:

n Manage all your file types in clean, hierarchically structured projects

n Use the SNiFF+ browsing and source code analysis tools to quickly navigate through,
understand and develop your code

n Use clean, understandable graphical dialogs to automatically generate Makefiles for
multi-language multi-platform hierarchical builds with correct dependencies across arbi-
trarily complex directory hierarchies

n Integrate all your Analysis & Design, Documentation and Test Tools into a single compre-
hensive development environment
rnado Integration Guide 11

Chapter 2 The SNiFF+ Tornado Integration
n Use your favorite Configuration Management System to put your work into managed
workspaces, share projects among your development teams, synchronize their work and
get change reports through an easily understandable, powerful GUI.
12 SNiFF+

To
3Installing SNiFF+ for Tornado

This chapter covers

n Requirements — page 13

n SNiFF+ Installation — page 13

n Licensing — page 14

Requirements
You will need to have Tornado II installed before you install SNiFF+ and the integration. A
’basic’ installation of SNiFF+ for Tornado needs approximately 43,5MB of disk space while a
full installation needs 71MB (on Windows) up to 120MB (on Unix). The full installation
contains additional components like an Ada Parser, the Visaj Java GUI Builder and Adobe
Acrobat files for the printed documentation.
For details about required versions and patches, please refer to the Integration Release
Notes (%SNIFF_DIR%\integrations\TornadoII\README.html).

SNiFF+ Installation
Log on using the same user name used when installing Tornado. If you downloaded SNiFF+
from the Internet, change the directory to the folder where you placed your downloaded files.
If you have a SNiFF+ CD, please insert it into your CD-ROM drive and change the directory
to the toplevel folder. Now, execute:
On Windows

Setup.exe

On Unix

./install.kit

In the Setup Wizard

1. Install SNiFF+ into any path that does not contain space characters: we suggest
C:\sniff or C:\Tornado\sniff. Please note that

C:\Program Files\sniff

will not work!
A single SNiFF+ installation can handle multiple Tornado environments. We will refer to
the SNiFF+ installation directory as SNIFF_DIR throughout this guide.

2. In the following Wizard pages, accept the defaults. When asked which packages to install,
select “basic” and “example” , the other packages are optional.

3. Accept all defaults for the rest of the setup.
rnado Integration Guide 13

Chapter 3 Licensing
Preparing the Environment

Once SNiFF+ and Tornado are installed, you need to run the Tornado integration install
script, which is located in the root of the Tornado Integration directory.
On Windows, run

%SNIFF_DIR%\integrations\TornadoII\install.exe

On Unix, run

$SNIFF_DIR/integrations/TornadoII/install.sh

You may accept all defaults during the installation process. When the installation of the
Tornado integration is complete,
On Windows
A SNiFF+ for Tornado icon is put on your desktop
On Unix
The installation program will create startup scripts (sniff.cshrc and
sniff.profile) in your $WIND_BASE directory. Depending on your login shell, you
should merge the appropriate script with your shell startup script.

Licensing
SNiFF+ comes with a pre-installed personal license, which will allow you to use the product
for evaluation and non-commercial projects of up to 200 files. This will suffice for working
through most of this guide. For working with Board Support Packages (BSPs) in SNiFF+, we
recommend that you obtain a full evaluation license. This will enable all SNiFF+ features for
projects of arbitrary size, but for a limited time. You can request both evaluation and full
product licenses from your local WindRiver Representative. Contact information is available
from:

n Corporate Headquarters, US and Canada

inquiries@windriver.com

n France, Southern Europe, Middle-East, Africa

inquiries-fr@windriver.com

n Germany, Austria, Switzerland, Central Europe

inquiries-de@windriver.com

n UK, Western Europe

inquiries-uk@windriver.com

n Northern Europe

inquiries-se@windriver.com

n Benelux

inquiries-benelux@windriver.com

n Italy

inquiries-it@windriver.com
14 SNiFF+

To

Licensing
n Israel

inquiries-il@windriver.com

n For the Far East, South America, Australia, New Zealand and any other countries not
listed here, please refer to

http://www.windriver.com/corporate/html/contact.html

for contact information.
rnado Integration Guide 15

Chapter 3 Licensing
16 SNiFF+

Part II
Browsing Source Code

To
4Single-User Project Setup

The Single User Project Setup, also known as Browsing-Only Setup, is the easiest way to
look at your code with SNiFF+. It enables you to use all the Browsing and Editing Tools as
well as some basic level of version control. SNiFF+ Makesupport cannot be used in this
configuration, but you may use your own hand-written Makefiles together with SNiFF+.
This chapter is about

n starting SNiFF+ and creating a project for browsing your source code

We assume you have successfully installed SNiFF+. If not, please refer to Installing SNiFF+
for Tornado — page 13.

Starting SNiFF+
On Windows

n The installation program should have created an icon, called SNiFF+ for Tornado, on
your desktop. Double-click on this icon to start SNiFF+ (do not use the standard SNiFF+
for Windows icon).

On Unix

n Incorporate the code from sniff.cshrc or sniff.profile, which has been put in
your $WIND_BASE directory, into your shell start-up file. Since these files extend your
PATH setting, you may then start SNiFF+ by just typing sniff & on the command line.

When you first start SNiFF+, the Welcome dialog appears. From this dialog, you can check
your SNiFF+ installation. If errors are reported at this stage and if you need assistance,
please contact us (see Feedback and useful links — page 9).
If everything is okay, you can close this dialog. The Launch Pad will remain on the screen.

The Launch Pad
The Launch Pad is the main application window and serves to manage projects and open
tools on your desktop. The Help (?) menu has supplementary commands that are available
only in the Launch Pad.

The first item in the menu bar is for launching tools.

Note

On Unix, you need the Netscape Browser to look at SNiFF+ online
documentation.
rnado Integration Guide 19

Chapter 4 Creating a New Project for Browsing
n On Windows, it is called Tools.

n On Unix, it is depicted by an icon.

When we refer to this menu in order to launch a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName.

Creating a New Project for Browsing
We will now set up a SNiFF+ project for the factory C++ example, which is also part of
your Tornado installation. Using a C++ example allows us to show both object-oriented and
non object-oriented browsing tools. For other Languages like Ada or Java, see the respec-
tive SNiFF+ Tutorials, which are available from the Welcome dialog or the Help (?) menu in
the Launch Pad.
To work through the factory example:

1. In the Launch Pad, choose Project > New Project > with Template...

The Project Template dialog appears.

2. In the Available Template Files list, select the Tornado_BrowsingOnly.ptmpl
template.

3. Press the Change Directory... button.

4. In the Directory dialog that appears, navigate to

SNIFF_DIR\example\Tornado\1_BrowsingOnly\factory

and press Select.

5. Press Ok.

The Attributes of New Project dialog appears. Thanks to the Project Template, you may
leave all settings as they are. Don’t be confused by the many options you can set, the
template will be good for 99% of your own C/C++ projects, too. In fact, there are only two
settings that are important at this point:

n In the General node, there is the Ignore Directories field. It allows you to specify
(with GNU Regular Expressions) any directories that SNiFF+ should not take into
account when creating its project descriptions.

n In the File Types node, you may change the list of file types that SNiFF+ should add
to its project description files.

For more information, please refer to the SNiFF+ Reference Guide.

6. For now, you may just press OK to set up your project.

SNiFF+ will now set up the project and parse your files.

7. In the dialog that appears asking if you want to generate cross reference information,
press No since SNiFF+ will automatically generate cross reference information as soon
as it is needed.

When SNiFF+ is finished, it opens the new project and displays its structure and contents in
a Project Editor.
20 SNiFF+

To
5The Project Editor

The Project Editor is used to edit and browse project-specific information, including project
attributes, subprojects, files and version control and locking information. A project is the main
structuring element in SNiFF+ for grouping together files and directories that logically belong
together.
This chapter is about

n project filtering in the Project Editor

n adding a subproject to an existing project

n saving a project set

Opening the Project Editor
The Project Editor is opened automatically when you create a new project or open an
existing project. Since we just set up a SNiFF+ project for the factory example,
factory.proj is now displayed in the Project Editor.
rnado Integration Guide 21

Chapter 5 Adding a subproject
n To open the Project Editor from any other SNiFF+ tool, you would choose Tools > Project
Editor; make sure the project you want to open is highlighted in the Launch Pad.

Adding a subproject
We will now add a subproject for the VxWorks C++ headers.

1. In the Project Tree, highlight factory.proj by clicking on its name.

2. Choose Project > Add Subproject to factory.proj.

3. In the Load Subproject Named dialog that appears, navigate to

SNIFF_DIR\PDFs\VxWorks5.4

4. Select the VxWorks5.4_h_Cplus.proj project and press Open.

SNiFF+ will add the VxWorks C++ Headers to your Project Tree. The projects are
separated into the C++ Standard Classes (Strings, Exceptions and Iostream), the
Standard Template Library (STL) and the Wind Foundation Classes (WFC). You can verify
that this has been done by taking a look at the Project Tree. Notice also that the icon next
to factory.proj has changed to warn you that the project has been modified and not
yet saved.

n To save the project, choose Project > Save factory.proj.

Filters

Project Tree
22 SNiFF+

To

The Project Tree
The Project Tree
Having structured project descriptions for VxWorks has the advantage that you can focus
your interest exactly on those portions of code that you need, and you won’t be distracted by
parts that you are not interested in. You may select modules for browsing simply by selecting
SNiFF+ project description files (source modules) as subprojects.

Checkmarking Projects

In the Project Tree, click into the checkboxes (left of the project names) to show/hide files in
the File List. In SNiFF+, a project that has a checkmark in its checkbox is called a check-
marked project.

1. In the Project Tree, click into the checkbox next to h_STDCPP.proj to clear it and
notice what happens in the File List.

All the files in the h_STDCPP.proj project are no longer shown in the File List.

2. Click into the checkbox next to h_STDCPP.proj again to select it.

The files in this project are now shown.

Selecting from a tree of projects

Very often, when the project structure gets more complex and contains many subprojects,
you will want to view and manipulate a tree of projects like a single project.

1. Click on the node of VxWorks5.4_h_Cplus.proj to collapse it.

2. Try alternately checkmarking and clearing the checkbox next to the collapsed node.

When the project is checkmarked, all the files in VxWorks5.4_h_Cplus.proj and
its tree of subprojects are listed. Conversely, when the project is not checkmarked, neither
its own files, nor any of those in its subprojects, are shown.

Saving a Project Tree view
Rather than always resetting the Project Tree, you can save a view of the Project Tree to
reuse later.
rnado Integration Guide 23

Chapter 5 Saving a Project Tree view
Preparing the Project Tree

n Expand the nodes of all projects and checkmark only

factory.proj

h_WFC.proj

Your Project Tree should now look like this:

Saving the Project Set

1. From the menu, choose View > Save Project Set.

2. In the dialog that appears, enter a name for the view of the Project Tree as it appears
now, e.g., factory_with_h_WFC and press Ok.

We will use this name to refer to the project set when we next use it.
Note that you can save and reuse project sets using the View menu in any tool that has a
Project Tree.
24 SNiFF+

To
6Browsing Source Code

SNiFF+ contains an extensive set of browsing tools to make the daily work with your source
code easier and more productive. Some of these tools are briefly described in this chapter,
for more information please refer to the SNiFF+ documentation.
Tools described in this chapter:

n Symbol Browser

n Source Editor

n Cross Referencer

n Hierarchy Browser

n Retriever

n Include Browser

Note that you can open all SNiFF+ tools using the Tools menu.

The Symbol Browser
In the Symbol Browser you can easily find program elements such as functions, global vari-
ables and classes and filter symbol information from a large symbol scope.
rnado Integration Guide 25

Chapter 6 The Symbol Browser
n From any open SNiFF+ tool, choose Tools > Symbol Browser.

The Symbol browser displays all symbols in the factory.proj project as well as in all
subprojects.

Let’s now filter the Symbol list to show functions only. To do so:

n In the Symbol drop-down, choose function.

Only the functions are displayed.

n Click into the Symbol list and type te to navigate to the testFactory function.

n Double-click on this function to position at its definition in the Source Editor.

These filters appear in
most SNiFF+
browsing tools and
are used to filter the
list.

Symbol list
26 SNiFF+

To

The Source Editor
The Source Editor
The integrated Source Editor is mouse- and menu-driven. It understands C++ syntax,
provides browsing support and automatically highlights structurally important information,
such as class names, method names and comments. When a source file is modified and
saved, its symbol information is immediately updated.

1. In the definition of testfactory, highlight objectCreate and choose Show >
Symbol(s) objectCreate...

The Source Editor is now positioned at the objectCreate function.

2. Press the green back arrow in the button bar to position the Source Editor at the
testFactory function once more.

Lets now look at the call graph of the testFactory function in the Cross Referencer. To
do so:

n Make sure that testFactory is highlighted and choose Info > testFactory Refers-To.

The Cross Referencer opens.
rnado Integration Guide 27

Chapter 6 The Cross Referencer
The Cross Referencer
The Cross Referencer provides symbol cross reference information. All kinds of cross
references including call graphing, interface analysis and component browsing can be
visualized.

Lets look at the backward references of struct object_t. To do so:

1. Highlight object_t in the call graph.

2. Right-click in the Graph View and choose object_t Referred-By.

The backward references of the struct are now displayed.
Let’s now look at object_t in the entire class hierarchy. To do so:

n Make sure that object_t is highlighted and choose Class > Show object_t in Entire
Hierarchy.

The Hierarchy Browser opens.

The Hierarchy Browser
The Hierarchy Browser shows the inheritance relationships of classes. It either displays the
entire class tree or only the superclasses and subclasses of a class.
Lets now use the Project Set which we saved in Saving a Project Tree view — page 23 to
restrict the graph. To do so:
28 SNiFF+

To

The Hierarchy Browser
1. Choose View > Select Project Set > factory_with_h_WFC.

Now only classes in factory.proj and h_WFC.proj are shown in the Hierarchy
view. Abstract classes are shown in blue typeface.

2. We will now look at the immediate relatives (subclasses and superclasses) of
object_t. Make sure that object_t is highlighted in the Hierarchy view, right-click
and choose Show object_t Relatives.

The Hierarchy view now displays only the relatives of object_t.

Lets now change all occurrences of the base structure blue_t to skyblue_t in all
projects. To do so:

n Highlight blue_t in the Graph view and choose Info > Retrieve object_t From All
Projects.

The Retriever opens.
rnado Integration Guide 29

Chapter 6 The Retriever
The Retriever
The Retriever is a global textual retrieve-and-replace tool, whereby regular expression filters
can be used for complex retrievals and modifications. For an introduction to regular expres-
sion syntax, please refer to the SNiFF+ Reference Guide.
Since we’ve just retrieved blue_t from all projects, all occurrences of blue_t are
displayed.

Now, to change blue_t to skyblue_t:

1. In the Change To field, enter skyblue_t.

Take a look at the Preview field below the integrated Source Editor, the code line
(highlighted in the Files — Matches List) is shown as it would appear after modification.
You can use the Next button at the bottom of the tool to look at each line as it would
appear after being changed.

2. To change all occurrences of blue_t to skyblue_t, press the Change All button.

3. In the dialog that appears, press Yes.

All occurrences of blue_t are now changed to skyblue_t. You can verify this by
pressing the Retrieve button again to requery.
30 SNiFF+

To

The Include Browser
Although the changes you made above are harmless, knowing how to undo global changes
is not a bad idea. To do so:

n Choose Edit > Undo Change All

When making global changes, you may be interested in knowing which files include the
affected header file. Lets see which files include factory.h. To do so:

n In the Files Matches List, highlight factory.h - factory.proj and choose Info > factory.h Is
Included-By.

The Include Browser opens.

The Include Browser
The Include Browser graphically displays include references made in the project source files.
It can be used to see which files are included by a particular file and vice-versa, as well as to
make sure that there are no redundant includes.
You will see that factory.cpp is the only file that includes factory.h.
Lets now look at which files factory.h includes. To do so:

1. Make sure that factory.h is highlighted, right-click and choose Includes.

The header files which factory.h includes are shown.

We will now query to the next level.
rnado Integration Guide 31

Chapter 6 The Include Browser
2. In the Depth field, enter 2.

The header files are displayed to 2 levels.

3. To see which projects these files belong to, choose View > Show Project Name.

Scroll to the right of the Graph view. You can now see the projects to which the files
belong.

What’s Next
You should now be familiar with the most common SNiFF+ browsing tools, so we can now
close factory.proj. To do so:

n In the Launch Pad, select factory.proj and choose Project > Close Project
Project.

We recommend that you now set up a browsing project for your own source code in the
same way as you did with the factory example code. You should also try to add new files to
your project (Project Editor: Project > Add New File to project or Project > Add/Remove
Files to/from project).
If you prefer to continue with the next part, you will learn about SNiFF+ MakeSupport as well
as Version Controlling and Configuration Management. Please note that you won’t be using
the factory.proj project but rather an already set up project called gizmo.shared.
32 SNiFF+

Part III
Make Support and

Version Control

To
7Opening the project

This part shows you how SNiFF+ interacts with your Tornado Environment to make, run and
debug your programs. Here we will use an already-setup project called Gizmo.shared to
show you how easy it is for developers to work with SNiFF+ MakeSupport. By looking at the
Project Attributes we have set, you will also learn how to set up your own projects.
In this chapter, you will

n open an existing project

The Launch Pad
The Launch Pad automatically opens when you start SNiFF+.

n Select the Working Environments tab.

Working environments (WE’s) are based on physical directories on your file system in
which SNiFF+ projects reside. A SNiFF+ Working Environment is similar to a Tornado
Workspace. We will look at Working Environments in detail in the Team Support part of
this guide.

To open the example project:

1. Double-click on the Working Environment that matches your Tornado Simulator type:

n adm PWE: Gizmo SIMNT (on Windows NT).

n adm PWE: Gizmo SIMSPARCSOLARIS (on Solaris)

n adm PWE: Gizmo SIMHPPA (on HP-UX)

If there is no Simulator for your host type, you may use any other
adm PWE: Gizmo(any target) instead. Make Support will work in the same way as in
the Simulator Environments.
The Open Project dialog opens.
rnado Integration Guide 35

Chapter 7 The Launch Pad
2. In the Open Project dialog, press the Update List button to display the projects in this
Working Environment.

3. From the Project List, select gizmo.shared and press Open.

SNiFF+ parses all the symbol files in the project and loads the project with symbol
information. After the project is opened, SNiFF+ displays the project’s structure and
contents in a Project Editor, which should look like the one illustrated below.

Note

The Gizmo application shown here is a modified version of the ex-
ample shown in the original Tornado Getting Started Guide. The ex-
ample is modified to contain both a Library and a main module to
demonstrate SNiFF+ automatic linking of submodules.
36 SNiFF+

To
8SNiFF+ MakeSupport

This chapter is about:

n building the project’s executable

n how SNiFF+ interacts with the Tornado Environment to make, run and debug programs

Building the executable

In the Project Editor

Notice in the Project Editor’s File list that there’s a file called Makefile and a file called
Makefile_sniff in each project. Makefile is the one which is automatically created
by Tornado; Makefile_sniff is automatically generated and maintained by SNiFF+, so
both Make systems work in parallel.
All commands needed to compile, run and debug targets can be found in the Project Editor’s
Target menu.
Before building, make sure that the projects’ Make Support information is up-to-date. Make-
files should be updated whenever structural changes are made to the projects, or when
projects are first opened.

1. Choose Target > Update Makefiles... to generate the Make Support Files for all projects.

A dialog appears asking you whether the dependencies information should also be
updated.

2. Press Yes.

SNiFF+ generates the Make Support Files and stores them in the .sniffdir
subdirectory of each project directory.

SNiFF+ needs to know where to start the Make execution. You tell SNiFF+ this by selecting
the appropriate project. In the example project, Make execution starts in gizmo.shared.

3. In the Project Tree, highlight gizmo.shared by clicking on its name.
rnado Integration Guide 37

Chapter 8 Accessing Tornado Tools
4. Choose Target > Make > all to recursively build both the library (which is a subproject)
and the main application.

A Shell Tool appears, in which the make all command is executed in each project
directory.

On a plain host-based system you could choose Target > Run to test your application. But,
since we are working in a Cross Compilation Environment, we will now use the Tornado
menu to access the various Tornado Tools.

Accessing Tornado Tools
As you must have already noticed there is a Tornado menu in the Project Editor menu bar.
We will use the commands in this menu to access Tornado tools.

1. Choose Tornado > Launch Simulator... to start a VxWorks simulator on your machine.

2. In the dialog that appears, press OK.

3. Now choose Tornado > Target Server... to see your Target Server’s properties.

4. In the Select Target Server dialog, disable the Show before every tool start checkbox
and press OK. By doing so you can select a current target server for all future operations.

5. Choose Tornado > Download [...]/gizmo.out... to download your application to the tar-
get.

In the dialog that appears, press Ok.

6. Choose Tornado > WindSh... to connect a WindShell to the Target.

7. In the WindSh, type moduleShow to verify that the module has loaded and type
progStart to run the program.

You should get "0x0" as output in the WindSh, and soon thereafter the VxSim Window
should display messages like "Warning - HOT".

Note

When you run this example on a real target, you can use this menu
to connect to a running target server (in order to start a new Target
Server, please use the standard Tornado IDE, which you can start
with Tornado > Launch Tornado IDE).

Note

If the Download menu item does not start [...]gizmo.out, or you get
an error during the download, please click into the Project Editor’s
File list and press the <ESC> key to remove any current selection.
Now, select gizmo.shared in the Project Tree again and try to
download again.
38 SNiFF+

To

Understanding SNiFF+ Makesupport
8. Back in the Project Editor, select Target > Debug to open the SNiFF+ Debugger tool. It
will automatically connect to your currently selected target server (this is only possible if
an application has already been downloaded). In the SNiFF+ Debugger tool, type
attach tMonitor to attach to the running program. Depending on where the pro-
gram is currently executing, the SNiFF+ Source Editor should open up with an additional
button bar for debugging.

If the Source Editor doesn’t open automatically:

n Open the Project Editor and double click on cobble.c

n Select monitor from the symbol list on the right hand side of the Source Editor (as
you get more familiar with SNiFF+, you may directly use the Symbol Browser for this
task, so that you don’t need to find the right program file first!)

n Click on the line containing the if statement (line #329)

n Click the Break At button in the Source Editor’s Debugger Button Bar: an exclamation
mark showing your breakpoint will appear

n Click the Continue button: An arrow showing your instruction pointer will appear at the
breakpoint.

The SNiFF+ Debugger

The advantage of the SNiFF+ Debugger as opposed to CrossWind is that it has full browsing
support, and thus it is particularly useful for object-oriented programs. You may particularly
like the Cross Referencer’s Refers To query (see The Cross Referencer — page 28) to show
call graphs which allow you to quickly set breakpoints.
The disadvantage of the SNiFF+ Debugger is its limited capability of data display. Basically,
data structures can just be printed or watched in the SNiFF+ Debugger Tool, which is a pure
text-based interface to gdb. However, on UNIX it is possible to use the DDD (Data Display
Debugger) as a front-end between the SNiFF+ Debugger Tool and the Tornado gdb backend.
This will allow for very advanced data display capabilities. For more information about DDD,
see http://www.gnu.org/software/ddd/

Understanding SNiFF+ Makesupport
n To understand how SNiFF+ Makesupport works, you should now close the Source Editor

and the Debugger tool.

On Windows

The Tornado gdb may issue an Application Error message, which
can be safely ignored since all data is saved at that point
rnado Integration Guide 39

Chapter 8 Understanding SNiFF+ Makesupport
1. Look at the File list in the Project Editor.

You will notice that there is a file called Makefile and a file called Makefile_sniff
in each project. Makefile is the one which is automatically created by Tornado,
Makefile_sniff is automatically generated and maintained by SNiFF+, so both
Make systems work in parallel. While Tornado re-writes its entire Makefile whenever the
Project is changed, SNiFF+ takes a different approach.

2. Double-clilck on Makefile_sniff to open it in the Source Editor:

You will see that this is a Template, which includes other files like macros.incl from
the directory .sniffdir. Macros.incl is one of 4 different Make Support Files
which are generated by SNiFF+ when you choose the Target > Update Makefiles menu.
Together with a set of general Makefiles from the $SNIFF_DIR/make_support
directory, these configure the Make Support. Makefile_sniff itself, however, is
never modified by SNiFF+, it can be used to change any settings that are not available
through the GUI.

Looking at Project Attributes

The standard way of customizing SNiFF+ Makesupport is not by editing the Makefile, but in
the GUI, by editing the SNiFF+ Project Attributes.

1. To look at (or modify) the attributes of the hotLib.shared project, double click on
hotLib.shared in the Project Editor’s Project Tree.

The SNiFF+ Project Attributes dialog opens.

2. In the Project Attributes dialog, select the Build Options node.

Here make sure that the Use SNiFF+ Make Support checkbox is selected.
The Make Command field may contain the name of your Make program plus additional
command line options. If this field is empty, the SNiFF+ Platform default will be used,
which is sniffmake DEBUG=1 for Tornado.
The General Targets field may contain a list of targets for Make that you would like to see
in the Project Editor’s Target menu. Entries are separated by colons; each of the entries
will be shown as a menu entry and will be passed to your make program on the
commandline.

3. Select the Directives node.

When you press the Generate button, SNiFF+ automatically generates include directives
for the Compiler.
In the Additional field you may enter more "external" include directives which should not
be overwritten when SNiFF+ generates include directives.
In the Preprocessor Directive(s) field you may enter -DSOMETHING directives for your
Compiler/Preprocessor.
The Directives list above these, allows you to have separate -D or -I directives for
various Build Specs or Platforms. For more information, please refer to the SNiFF+
Reference Guide or Online Documentation.

4. Select the Project Targets node.

Here you can enter the names of any targets that SNiFF+ Makesupport should generate.
40 SNiFF+

To

Understanding SNiFF+ Makesupport
5. For the hotLib example, we build a Library so make sure that hotLib.a appears in the
Library field.

SNiFF+ allows only one master target per project, which may either be an executable or a
library or a relinkable object, or a shared library (but no two of them at the same time).
Additional targets may be stated in the Other field, separated by colons.

6. Select the Build Structure node.

Here you specify which of the targets (if any) should be exported to the superproject.
Since we build a library in hotLib.shared, this library should also be automatically
linked to any superprojects (in our case gizmo.shared), thus, Library is entered in the
Passed to Superproject field.

7. Press OK to close the Project Attributes dialog.

You won’t need the Advanced node so you can safely ignore it.

8. Now open the Project Attributes of gizmo.shared by double clicking on it.

9. In the Project Attributes dialog, select Build Options > Project Targets.

Notice that gizmo.out is entered in the Executable field.

10. Select the Build Structure node.

Notice that ../hotLib is entered in the Recursive Make Dir(s) field.

Attributes of Multiple Projects

It is also possible to modify the attributes of multiple projects by doing the following:

n In the Project Tree, checkmark the projects that you are interested in and choose Project
> Attributes of Checkmarked Projects.

The Group Project Attributes dialog opens. The Group Project Attributes dialog is an
extended Project Attributes dialog that lets you set the project attributes of multiple
projects listed in the Project Editor’s Project Tree. For more information, please refer to
the SNiFF+ User’s Guide.

Using Tornado Target Tools from SNiFF+

In the Project Editor

On Unix:

n The most important Tornado target tools can be directly started from the Project Editor’s
Tornado menu. To open Tornado target tools, choose Tornado > Launcher..., Cross-
Wind..., Browser..., ProjectTool...

n The tools will automatically use your currently selected target server. In some of the Tor-
nado Tools (CrossWind in particular), even navigation back to SNiFF+ is possible by using
a custom menu.

n For other tools, please use Tornado > Launch Tornado IDE: it will open the Tornado
Launcher, from which you can start all other target tools.
rnado Integration Guide 41

Chapter 8 Understanding SNiFF+ Makesupport
On Windows:

n Since the Tornado IDE is not as open for external interaction as on UNIX, it is not possible
to directly start target tools from SNiFF+.

n You may start the Tornado IDE in the context of a particular Tornado project simply by
double-clicking on a .wpj or .wsp file in the Project Editor’s File List.

n If you do not have a Tornado Project for a particular SNiFF+ Project, you can start the Tor-
nado IDE by choosing Tornado > Launch Tornado IDE.

In Tornado

n You will be able to connect to a target server that you started from SNiFF+, and use all tar-
get tools, even if you do not have a Tornado Project open.

n In order to start a target server for a real target (not a simulator), you will always need to
use the Tornado Launcher (Unix) or Tornado IDE (Windows).
42 SNiFF+

To
9SNiFF+ Version Control

In this chapter you will:

n look at a file’s history information

n look at locking information#

n track changes in file versions

Checking whether RCS is in your path (Unix Only)

The Tornado example comes with an RCS repository. This tutorial relies on RCS 5.7 which is
supplied together with the SNiFF+ package and is installed from there.
To check whether the correct version of RCS is in your path:

1. Open a Unix shell.

2. Enter % rcs -V1 at the command prompt.

You will receive one of the following outputs:

n rcs error: -V1 out of range 3..5

This shows that the correct version of RCS is installed.

n rcs error: Unknown option: -V1

This shows that an old, unusable version of RCS is installed. If you get this output,
please install RCS 5.7 (supplied together with the SNiFF+ package) to execute the
version control steps in the next chapter.

Setting files to read-only
Before proceeding with this chapter, we suggest that you set all files in the Project Editor’s
File List to read-only.
To set project files to read-only, do the following:

1. In the Project Tree, make sure that all projects are checkmarked.

2. Click into the File List.

Note

This guide assumes that you will use RCS (included in the SNiFF+
package) for version controlling. Most other CMVC tools are also
supported by SNiFF+. Please refer to the Release Notes for details.
rnado Integration Guide 43

Chapter 9 File’s history information
3. Right-click and choose Select All.

4. Right-click and choose Set Read Only.

Notice that the files in the File List are no longer in bold typeface. This means that they
are now read-only. The icons in the Project Tree have also changed to indicate that the
projects, too, are read-only.

File’s history information
Lets look at the history information of cobble.c. To do so:

1. Highlight cobble.c in the File List.

2. Select the History check box.

A History window appears to the right of the Project Editor. The History window contains
three views that show the history information of the selected file. To see a description of
the icons used, choose Help(?) > QuickRef.

All versions of cobble.c as stored and maintained by your version control tool are
displayed. In the File History view, you can see the complete history of cobble.c.
To see the history information of a particular version of cobble.c:

n Highlight the change set MOB_French_language_support_20000314 in
the Configuration History view. A change set is a set of files checked in at the same

Configuration History view

File History view

Description view
44 SNiFF+

To

Displaying locking information
time under the same symbolic name.

You can now only see the history record (stored and maintained by your version control
tool) of MOB_French_language_support_20000314 in the File History view.

n Close the History window.

Displaying locking information
You may now want to see which files are locked. To do so:

1. Make sure that the hotLib.shared project is checkmarked in the Project Tree.

2. In the Project Editor, select the Lockers check box.

In the File List, the Lockers column appears showing locking information.

3. Look at the files hotLib.c and hotLib.h in the File List.

In the illustration below, you can see that the version control tool that is used is RCS, the
file is locked by mober and the locked version number is 1.1 for hotLib.c and 1.2
for hotLib.h.

Tracking changes in file versions
Lets now take a look at which files have been modified and what changes have been made
to these files.

1. In the Project Editor, choose Modified from the File Status drop-down (next to the Use
Cache checkbox).

2. In the Files Compared to dialog that appears, press Ok.

You will notice that one file is shown in the File List, this means that this is the only file that
has been modified.

3. Highlight the cobble.c file, right-click and choose Show Differences...

4. In the Differences between dialog that appears, accept the defaults and press Ok.

The Diff/Merge tool opens and is positioned at the first difference.

Locked file version

Owner of the lock

Version Control Tool
rnado Integration Guide 45

Chapter 9 Tracking changes in file versions
The Diff/Merge tool

The Diff/Merge tool allows you to show and merge differences between files and versions of
files. The Diff/Merge tool offers two- or three-way differences. Three-way differences are
important for investigating changes made by two developers to the same file. In such a case
you want to look at the two file versions compared to a common ancestor.

Now lets look at the second difference.

Differences View:
displays the
differences in the
compared files/
versions

Differences List
46 SNiFF+

To

Tracking changes in file versions
n Select 121:progStart (f) in the Differences List.

121 is the line number and progStart is the name of the function that contains the
difference. The Differences view on your screen should look like the following:

The Differences View displays the differences in the compared versions. The areas of
code containing differences are split into two views and are separated by a Merge button.
The Merge button between the working file and the compared version allows you to
merge differences into the working file. If the working file is not writable, or if two versions
of the same file are being compared (as in our case), the Merge button is disabled.
Notice that the language specified in the WORK version is English whereas the language
specified in the HEAD_BR_DEV:HEAD version is French. Here you can see that French
is incorrectly spelled, this has been done intentionally to test if the compiler reports this
error. The differences show that your workspace is not up-to-date so we will now
synchronize your workspace in the Project Editor.

Synchronizing your Workspace

1. Make sure that all projects are checkmarked in the Project Tree.

2. From the File Status drop-down, choose All Files.

3. Choose Project > Synchronize Checkmarked Projects...

4. In the Files Compared to dialog that appears, press Ok.

Your workspace is now up-to-date.

5. To verify this, choose Modified from the File Status drop-down.

No files are shown in the File List.

6. From the File Status drop-down, choose All Files once more.

Building the Executable

1. Choose Target > Update Makefiles... to generate the Make Support Files for all projects.

2. In the dialog that appears, press Yes.

3. In the Project Tree, highlight gizmo.shared.

Merge button:
disabled when
the work version
is read only
rnado Integration Guide 47

Chapter 9 Tracking changes in file versions
4. Choose Target > Make > all to recursively build both the library (which is a subproject)
and the main application.

A Shell tool appears, in which the make all command is executed in each project
directory.

As you can see, errors are reported in the Shell tool. Lets now correct the error in line 124
of the cobble.c file.

5. Highlight the line shown in the above illustration, right-click and choose Show Error...

The Source Editor opens and is positioned at the error.

6. In the Source Editor, choose File > Check Out... to make the file writable.

7. In the dialog that appears, press the Exclusive Lock button.

8. In the highlighted line in the Source Editor, change FRNECH to FRENCH and save the file.

9. Choose Target > Make > all to compile the project.

Notice that no errors are reported in the Shell tool so compilation has been successful.

Checking in your changes
Once compilation is successful, check in your changes into the Repository. To do so:

1. In the Project Editor’s File Status drop-down, choose Writable.

2. In the Project Tree, right-click and choose Select From All Projects.

File Status drop-down
48 SNiFF+

To

Tracking changes in file versions
3. You should only see the cobble.c file, select it and choose File > Check In...

The Check In dialog appears.

In the Check In dialog

You can use this dialog to check in versions of single or multiple files. When you have made
changes to multiple files, you can check in all the files at the same time and associate them
with a change set. Moreover, change sets are nicely displayed in Lists making it easier to
track your changes. Note that change set names must be unique in your entire project’s
history; therefore, we recommend that you add your name and the current date to your
changeset specifier.

1. Clear the New Branch checkbox.

2. Leave the Version field blank. SNiFF+ will automatically assign a version number (1.1)
and later increment it automatically.

3. In the Change Set field, enter a name for the change set, e.g.,

<Your_Name> Bugfix FRENCH typo <current_date>

4. In the Comment field, enter a descriptive text, e.g, Changed FRNECH to FRENCH.

5. Press Ok.
rnado Integration Guide 49

Chapter 9 Tracking changes in file versions
50 SNiFF+

To
10Configuration Management

The Configuration Manager gives a structural and file-based overview of the changes
between two configurations of a software system. Configurations are selected file versions
grouped together under the same symbolic name.
In this chapter you will:

n look at the configurations in gizmo.shared

n compare two configurations

 Opening the Configuration Manager
1. In the Project Editor, choose Tools > Configuration Manager.

The Configuration Manager opens.

2. Close the Project Editor.

Looking at configurations
You may want to look at the configurations of gizmo.shared. To do so:

1. Highlight gizmo.shared in the Project Tree of the Configuration Manager.

2. Choose Context menu > Select from gizmo.shared Only.

The configuration information for gizmo.shared is shown in the Configuration List.

3. Highlight HEAD in the Configuration List.
rnado Integration Guide 51

Chapter 10 Comparing two configurations
HEAD is the symbolic name of the latest version of all files in a particular configuration. The
HEAD configuration thus reflects the current state of your software system. In the illustration
below, you can see all files that are part of HEAD.

Comparing two configurations
Let’s view the changes between the latest configuration (HEAD) of gizmo.shared with its
branch configuration HEAD_BR_DEV:

1. Make sure that HEAD is highlighted in the Configuration List.

Change List File List
52 SNiFF+

To

Comparing two configurations
2. In the Compared to List, highlight HEAD_BR_DEV.

As you can see, the differences between the two configurations are displayed in the
Change List. Icons in the Change List indicate the nature of the difference.
To see a description of the icons, choose Help(?) > QuickRef.

You may now want to look more closely at a change set in the Change List. To do so:

1. Make sure that the Change Sets checkbox is selected.

When selected, change sets are displayed and the changes to the individual files that are
part of the change sets are not displayed.

2. Highlight MOB_Rename_MakevxApp_to_Makefile_sniff_20000323 in the
Change List.

The files of MOB_Rename_MakevxApp_to_Makefile_sniff_20000323 are
now displayed in the File List.

3. From the drop-down above the filter field, select different branches.

4. In the Change List, you should see the following:

Here you can see that there are different versions of the cobble.c file in the HEAD
configuration and in the branch configuration HEAD_BR_DEV.
rnado Integration Guide 53

Chapter 10 Comparing two configurations
What’s Next
n Close the gizmo.shared project by selecting it in the Launch Pad and choosing

Project > Close Project.

The next part of this guide introduces you to SNiFF+’s team support. You will learn how to
create Working Environments and shared projects.
54 SNiFF+

Part IV
Team Support

To
11Key Concepts

This chapter introduces 2 key concepts

n shared projects

n working environments

The quick overview below will help you to understand these concepts and later apply them
for your own Team Support Setup. For detailed information going beyond this brief introduc-
tion, please refer to the SNiFF+ User’s Guide.

Shared projects
A shared project is, as the name suggests, suitable for team development. However it is
equally recommended for single-user work situations.
Shared projects offer a great deal of flexibility. Because all references to files and subprojects
are relative to a root directory, you can easily move a shared project to another location on a
file system.
The root directory mentioned is defined by the SNiFF+ Working Environment. Therefore, a
SNiFF+ shared project can only exist inside a Working Environment.

Working environments
SNiFF+ Working Environments serve several purposes, to mention a few:

1. They define the root directory for your projects.

2. They allow you to easily find and open projects, without having to search your file system.

3. They define the target platform and build specification that you would like to use for com-
piling.

4. They provide managed workspaces, where you can automatically work on a given Ver-
sion Control Configuration. You can also use scripts to automatically synchronize your
workspace with the given configuration.

5. They allow you to define areas of shared source code, that will be automatically visible to
every developer.

Depending on the version control system that you are using, some of these issues may
already be handled by the version control tool. With ClearCase, for instance, the sharing of
sources is already done by the CM tool, therefore you will only need SNiFF+ Private Working
Environments (PWEs) in this case. For most other CM tools, SNiFF+ provides 4 different
kinds of working environments:

n Repository Working Environment (RWE)

n Shared Source Working Environment (SSWE)
rnado Integration Guide 57

Chapter 11 Working environments
n Shared Object Working Environment (SOWE)

n Private Working Environment (PWE)

The RWE (Repository Working Environment)

Your team members access and modify a permanent shared data Repository using
commands provided by your underlying configuration management and version-control
(CMVC) tool.
Depending on the CMVC tool you are using, there are different ways to make the Repository
location known to your tool. Some tools (like, for instance, ClearCase) know implicitly where
the Repository is located; for most other tools, like the RCS system we are using in this
guide, you define the Repository location by defining a Repository Working Environment
(RWE) and setting the RWE root directory

The SSWE (Shared Source Working Environment)

SNiFF+ allows you to define a location on your file system, where you may store a copy of
your source code that can be easily accessed by every team member. This shared work-
space is called the Shared Source Working Environment (SSWE).
All team members see, or share, all the source files in the SSWE. When browsing the
source files, this view is read-only. When editing source files, team members work on local
copies of the shared source files they want to modify—they never directly modify the shared
source files in the SSWE.

You may use an SSWE without Version Control. For instance, you may define an SSWE for
the target directory of your Tornado Installation (the WIND_TARGET_BASE). This will
allow you to get read-only access to a clean copy of original Tornado Sources from every
working environment that accesses the SSWE.
For full Configuration Management Support, you may add another SSWE, in which you regu-
larly synchronize the files and directories with the RWE to reflect a well-defined state of your
team’s software system. For instance, many users define one SSWE to be automatically
updated to the latest version every night, while you may have another SSWE to contain the
latest stable version, which is only synchronized at well-defined milestones.
If you plan to use an SSWE with full Configuration Management and automatic synchroniza-
tion, it is strongly recommended that one person be appointed to administer this “mainte-
nance system”. In SNiFF+ this person is called the Working Environments Administrator. For
more information about Working Environments and the automatic synchronization mecha-
nism, see the SNiFF+ User’s Guide.

Note

On Unix: File sharing is done by symbolic links from the team mem-
ber’s WE to the SSWE.
On Windows: Since symbolic links are not supported on Windows
local copies are made.
58 SNiFF+

To

Working environments
The SOWE (Shared Object Working Environment)

Just like with shared source code, SOWEs serve as shared repositories for your team’s most
current and stable object code.
An essential aspect of SOWEs is avoiding unnecessary builds in Private Working Environ-
ments (see below) that access them. Because this object re-use facility makes extensive use
of symbolic links, it only works well on Unix systems, and it is only advisable for very large
projects. Therefore, we will not cover SOWEs in this guide.

The PWE (Private Working Environment)

Developers must be able to work in isolation from other team members. They need their own
workspaces in which they can edit, compile and debug projects without interfering with the
work of other team members.
SNiFF+ supports this by allowing each member of a team to work in an isolated workspace.
In SNiFF+, you define a Private Working Environment (PWE) to specify the root directory of
each team member’s workspace.
For your daily development, you will always work in PWEs only. You should open a project in
an SSWE or SOWE only for synchronization, but never for any modifications. Therefore, the
SNiFF+ Launch Pad only shows your PWEs while only the Working Environments Tool
allows you to modify the entire working environment configuration. The next chapter explains
how to use the Working Environments Tool.
rnado Integration Guide 59

Chapter 11 Working environments
60 SNiFF+

To
12Working with an Existing Team Project

This chapter will describe how to use SNiFF+ Team Support when working with an
existing SNiFF+ project. You will first add a Private Working Environment (PWE) to the
Working Environment containing shared source files (SSWE) and then specify a platform,
on which you want to build your projects. For a description of shared projects and Working
Environments, please refer to Key Concepts — page 57.

The Working Environments tool
The Working Environments tool is used for creating and maintaining Working Environ-
ments(WEs), for opening projects and for modifying Working Environments to suit your
needs, for example you can specify a platform on which you want to build, you can specify
your build preferences for compiling and debugging, etc.

n In the Launch Pad, choose Tools > Working Environments to open the Working Envi-
ronments tool.

Understanding the Working Environment Configuration

Our example configuration contains three different Repositories, which represent three
completely different projects:

n the Filebrowser Example, which is used in the SNiFF+ C++ Tutorial
rnado Integration Guide 61

Chapter 12 The Working Environments tool
n the Gizmo Example, which is our main Project in this guide

n and an empty Repository for a New Project, that we will use in Setting up a Multi-User
Project — page 65.

Directly below the Gizmo Example Repository, there are two PWEs which do not access an
SSWE. They both refer to the same root directory, but they are set up to use different Plat-
forms (Build Specifications) for compiling. You have been working in Simulator PWE so far.
The SSWE:WIND_TARGET_BASE is set up on the target directory of your Tornado Installa-
tion, so that you can access original Tornado Source code from any Working Environment
below. Finally, the SSWE:Gizmo Latest Stable contains a snapshot of an extended
version of the Gizmo Example. In this SSWE, we have prepared a BSP and a Customized
VxWorks for Gizmo. By creating a new PWE below this “snapshot” SSWE, you will get
access to these projects.

Adding a new Working Environment

In order to get access to the Team Project that we have set up for you, you have to create a
new PWE which accesses the SSWE. To create your new PWE:

1. Highlight SSWE:Gizmo Latest Stable.

This is the Working Environment containing the team’s source files.

2. Choose Edit > New Private based on SSWE.

The Working Environment - New Private based on SSWE dialog opens.

In the Working Environment - New Private based on SSWE dialog

1. In the Working Environment field, enter the name of the working environment, for exam-
ple myPWE.

2. In the Root field, use the Directory button to navigate to G:/Tornado/sniff/
example/Tornado/2_Gizmo/ and add myPWE. The path is now G:/Tornado/
sniff/example/Tornado/2_Gizmo/myPWE

3. In the Platform field, use the drop-down to select a platform on which you want to build
projects in this Working Environment. Select your favorite Tornado Target platform, for
instance, torPENTIUMgnu.

4. Delete Latest_Stable:HEAD from the Version Control Configuration field. This is
necessary in order to allow checking in new versions from your PWE (you will check in to
the latest version, HEAD, instead of the frozen Latest_Stable).

5. Notice that your User name is entered in the Owner field. Being the owner of the Working
Environment means that you are the only one who is allowed to modify its attributes.

The Working Environment is now created.
62 SNiFF+

To

The Working Environments tool
6. In the Working Environments tool, choose File > Save.

The Working Environments tool should now look similar to the illustration below.

In the same way, each team member can create a Private Working Environment for
himself/herself to ensure that the entire team is working with the same project structure
and to ensure that changes are made locally in each team members Private Working
Environment, projects are compiled locally to test changes and then checked in to the
Shared Source Working Environment to maintain a ’clean’ code base.
Lets now open the shared project called Workspace. shared in this newly created
Working Environment.

Opening the shared project in your Working Environment

1. In the Working Environments tool, double-click on <owner>PWE:myPWE, where
<owner> is your User name.

The Open Project dialog appears.

2. In the Open Project dialog that appears, press the Update button.

The files in the Shared Source Working Environment (SSWE) are displayed. Notice that
the files are shown in italics to represent that these files are in the SSWE instead of in
your PWE.

3. Scroll to the bottom of the list and double-click on Workspace.shared.
rnado Integration Guide 63

Chapter 12 The Working Environments tool
4. In the dialog that appears, select the Repeat checkbox and press Create Directory.

SNiFF+ now recreates the directory structure of the SSWE in your PWE. On Unix
symbolic links are created to the source files whereas on Windows local copies are made.
After the project structure has been recreated, SNiFF+ parses all the symbol files in the
project and loads the project with symbol information. After the project is opened, SNiFF+
displays the project’s structure and contents in a Project Editor, which should look like the
one illustrated below.

You have now opened your own copy of the shared project Workspace.shared in your
Private Working Environment and can now go ahead and compile this project but just
remember to Update Makefiles before doing so.

On Unix, files are
displayed in italics
because they are
symbolic links
64 SNiFF+

To
13Setting up a Multi-User Project

This chapter describes how to set up a multi-user project from scratch, including how to set
the Make Attributes for your project as well as how to create Working Environments for the
team.
This chapter is about

n using a predefined template for setting up a SNiFF+ shared project for development.

n setting up Build Support for a newly created project.

n creating a Shared Source Working Environment for source files and projects.

We have created Tornado-specific SNiFF+ Project Templates to make it easier to set up your
projects. We explain the steps to be taken in terms of the gizmo and hotLib C++ exam-
ples, which are also part of your SNiFF+ Tornado integration (in the SNIFF_DIR/
example/Tornado/3_NewProject/PWE directory).

Multi-User Project Setup
We will now set up a multi-user project in an existing Working Environment. We have already
set up a repository RWE:New Project and a private Working Environment adm PWE:
New Project, see the illustration of the Working Environments tool below.

1. In the Launch Pad, select Tools > Working Environments.

The Working Environments tool opens. We have already set up a repository RWE:New
Project and a private Working Environment adm PWE:New Project, see below.

2. In the Working Environments tool, select adm PWE:New Project.

3. Choose File > New Project... > with Template...

The Project Template dialog appears.

4. In the Available Template Files list, select the Tornado_Application.ptmpl tem-
plate.

5. Press the Change Directory... button.

6. In the Directory dialog that appears, navigate to SNIFF_DIR/example/Tornado/
3_NewProject/PWE and press Select.

7. Press Ok.

The Attributes of New Project dialog appears. For now, there are only two settings that are
important at this point:

n In the General node, there is the Ignore Directories field. It allows you to specify (with
GNU Regular Expressions) any directories that SNiFF+ should not take into account
rnado Integration Guide 65

Chapter 13 Setting Up Make Support
when creating its project descriptions.

n In the File Types node, you may add or remove any file types that SNiFF+ should add
to its project descriptions.

For more information, please refer to the SNiFF+ Reference Guide.

8. For now leave all settings as they are and press OK. In the next section, we will set the
project attributes using the Group Project Attributes dialog.

SNiFF+ will now set up the project and parse your files.

9. In the dialog that appears asking if you want to generate cross reference information,
press No since SNiFF+ will automatically generate cross reference information as soon
as it is needed.

When SNiFF+ is finished, it opens the new project and displays its structure and contents
in a Project Editor.

Setting Up Make Support
We will now set up the necessary Make attributes for the example project. For a description
of the other project attributes, please refer to the SNiFF+ User’s Guide.
66 SNiFF+

To

Setting Up Make Support
In the Project Editor

1. In the Project Tree, highlight PWE.shared, right-click and choose Select from All
Projects.

2. Choose Projects > Attributes of Checkmarked Projects...

The Group Project Attributes dialog opens. The Group Project Attributes dialog is an
extended Project Attributes dialog that lets you set the project attributes of multiple
projects listed in the Project Editor’s Project Tree.

In the Group Project Attributes dialog

Setting up Make Support for hotLib.shared

1. Highlight hotLib in the Project List (the list on the right of the Group Project Attributes dia-
log).

2. Under the Build Options node, select Project Targets.

3. In the Library field of the of the Ansi C/C++ tab, enter hotLib.a. This will be the name
of the library built in this project.

4. Under the Build Options node, select Build Structure.
rnado Integration Guide 67

Chapter 13 Building the Executable
5. In the Build Structure view, choose Passed to Superproject drop-down > Library.

The project’s library is exported to PWE.shared and is used to build the myApp
executable.

Setting up Make Support for gizmo.shared

1. Highlight gizmo in the Project List.

2. Under the Build Options node, select Project Targets.

3. In the Executable field of the Ansi C/C++ tab, enter gizmo.out. This will be the name
of the project’s executable.

4. Under the Build Options node, select Build Structure.

5. In the Build Structure view, press the Generate button next to the Recursive Make Dir(s)
field.

The executable is built using recursive Make rules. By pressing the Generate button,
SNiFF+ generates the order of subprojects in which Make is executed.

Generating the include paths for all projects

1. Under the Build Options node, select Directives.

2. Select the checkbox to the right of the Generate button.

3. Press the Set for All button to generate the include paths for all projects in the Project
List.

4. Press Ok to apply the changes to the project attributes.

The icons in the Project Tree of the Project Editor warn you that the projects have been
modified.

5. A dialog appears asking you to update Makefiles. We will do this later so press No.

In the Launch Pad

To save the changes made to PWE.shared and its subprojects:

1. Select PWE.shared in the Project List.

2. Choose Project > Save Project PWE.shared.

3. In the Alert dialog that appears, press the Save All button.

Building the Executable
n Once you’ve set the Make attributes, compile gizmo.shared to see if the attributes

have been set correctly. To do so refer to Building the executable — page 37.

Checking all files into the Repository
Once compilation is successful, check in all files into the Repository. To do so:
68 SNiFF+

To

Creating a Shared Source Working Environment
1. In the Project List, right-click and choose Select All.

2. Choose File > Check In...

3. In the dialog that appears asking you if you want to create the Repository directory, select
Repeat and press Yes.

4. In the Check In dialog that appears, press Ok to start the check in.

In the Project Editor

When the check-in process is over, take a look at your Project Editor. You should notice the
following changes:

n The files in the File List are no longer in bold typeface. This means they are now read-
only.

n The icons in the Project Tree have also changed to indicate that the projects, too, are
read-only.

Creating a Shared Source Working Environment
Lets now import your project from the PWE into a new SSWE, so that other team members
can see your projects too.

In the Working Environments tool

1. Select RWE:New Project.

2. Choose Edit > New Shared Source based on Repository.

3. In the Working Environment - New Shared Source based on Repository dialog that
appears, enter a name in the Working Environment field - for example New Project.

4. Press the Directory... button next to the Root field.

5. In the Directory Name dialog that appears, click on the New Folder icon and enter Sswe
as its name.

6. Double-click on Sswe and press Select.

7. Press Ok.

The SSWE is now created and added to RWE:New Project.
We have just created a SSWE and now we will copy over the shared project and then check
out the shared files into it

Note

Team members should NEVER directly work in the SSWE and
these files should always be READ-ONLY to maintain a ’clean’ code
base.
rnado Integration Guide 69

Chapter 13 Copying the shared project into the SSWE
Copying the shared project into the SSWE

In your OS Shell (or the Windows Explorer)

n Copy PWE.shared from

SNIFF_DIR/example/Tornado/3_NewProject/PWE

to

SNIFF_DIR/example/Tornado/3_NewProject/SSWE.

In the Working Environments tool

1. Double-click on SSWE:New Project.

2. In the Open Project dialog that appears, press the Update List button.

3. To open the root project and all its subprojects, double-click on PWE.shared.

4. In the dialog that appears, press Yes.

SNiFF+ informs you that it cannot find the directories of the shared projects in the SSWE
root directory (they haven’t been created yet). You will now have SNiFF+ initialize your
SSWE by copying the PWE project directory structure into the SSWE.

5. Select the Repeat check box and then press Create Directory.

Selecting Repeat saves you from having to press Create Directory for each new project
directory.
When SNiFF+ has finished initializing your SSWE, the project is automatically opened in it
and displayed in the Project Editor.

6. Select Project > Close Project.

Changing Working Environment Hierarchy Structure
The SSWE now contains the shared project as well as the source files. This code should
never be directly modified in the SSWE. If team members make modifications to files, these
files should be checked out and changes should be made in their PWEs. In order for this to
be possible, the PWEs should access the SSWE, i.e., they should lie under the SSWE in the
Working Environment hierarchy.
You must have noticed that adm PWE:New Project lies directly under the RWE:New
Project and not under SSWE:New Project. If we want this PWE to access the shared
code base in the SSWE, we need to change the hierarchy structure. To do so:

n In the Working Environment hierarchy, drag and drop adm PWE:New Project into
SSWE:New Project. the hierarchy structure should now look like the following:

n Click File > Save to save the modifications made to the Working Environment structure.
70 SNiFF+

To

Synchronizing Working Environments
Synchronizing Working Environments
Lets now synchronize the PWE to get it up-to-date.

1. Double-click on adm PWE: New Project, select PWE.shared and press Open to
open your project in the PWE.

2. Make sure that all projects in the Project Tree are checkmarked and choose Project >
Synchronize Checkmarked Projects...

The Files Compared To dialog appears. All files in the PWE will be updated to the version
that appears in the dialog’s Version field (HEAD by default).

3. Press Ok.

A Log tool appears, and SNiFF+ updates all the files in the PWE.

4. If the project structure has changed, a dialog appears asking you to reload the project
structure. If so, press Yes.

SNiFF+ can perform the synchronization procedure automatically driven by scripts. For more
information on synchronizing Working Environments, please refer to the SNiFF+ User’s
Guide or refer to the automatic update scripts in your SNIFF_DIR/ws_support direc-
tory.

What’s Next
The next part of this guide describes advanced issues such as creating BSPs and bootable
applications, WindRiver Source products as well as customizing issues.
rnado Integration Guide 71

Chapter 13 Synchronizing Working Environments
72 SNiFF+

Part V
Advanced Issues

To
14Working with BSPs

SNiFF+ can help you to create or configure your Board Support Packages (BSPs) for
Tornado. Depending on your team size and configuration management setup, the
environment can be set up at different levels of sophistication. We will explain everything
in terms of a Pentium BSP here, but the steps can be followed in the same manner for any
other BSP you may use.
This chapter is about:

n how to set up BSPs for Tornado-only Make Support.

n version controlling a Released BSP in SNiFF+.

n enabling SNiFF+ Make Support for a BSP.

BSP Setup for Tornado-Only Makesupport
This very simple setup will suffice for most applications, and because only original
Tornado Makesupport is used it is more than likely that your BSP will compile correctly. To
create a modified version of the Pentium BSP under SNiFF+ control, we will do the
following:

n First, we will copy the original WIND_BASE/target/config/pcPentium directory
into a new directory, for instance WIND_BASE/target/config/pcPentium_T5.
WIND_BASE is your Tornado installation directory. This is necessary because Tornado
Makesupport will write into the WIND_BASE tree during the Make Release process,
and we do not want to overwrite original Tornado files.

Setting up a SNiFF+ Project onto a BSP

Next, we will set up a SNiFF+ Project onto the newly copied BSP.

1. In the Working Environments tab of the Launch Pad, select

adm PWE:WIND_TARGET_BASE

If you copied the BSP to a different place, select this as your PWE.

2. Choose Project > New Project... > With Template...

3. In the dialog that appears, select the Tornado_BSP.ptmpl Template

Note

If you do not have write access to the WIND_BASE tree, you may
also copy the BSP into your PWE (for instance $HOME/
Sniff_WS/PWE/config/pcPentium_T5) and work there.
rnado Integration Guide 75

Chapter 14 BSP Setup for Tornado-Only Makesupport
4. Press the Change Directory... button next to the Project Directory field and navigate to
the WIND_BASE/target/config/pcPentium_T5 directory.

5. Press the OK button

6. In the Project Attributes dialog that appears, you may want to change the project descrip-
tion file’s name from pcPentium_T5.shared to BSP_pcPentium_T5.shared
or config_pcPentium_T5.shared to clearly document that this is a BSP (we will
refer to BSP_pcPentium_T5.shared in the remainder of this document). Press the
OK button again (all settings from the Template should be correct).

When SNiFF+ is finished creating the project, it opens the new project and displays its
structure and contents in a Project Editor.

7. In the Project Editor, double click on the Makefile and change all occurrences of pcPen-
tium to pcPentium_T5 to make sure Tornado will create correct output files. Save the
file.

8. Choose Target > Make > bootrom to verify that the original BSP compiles correctly.

9. In the Project Editor, choose Project > Add Subproject to add any SNiFF+ Projects you
would like to see for browsing. If you just need to do some simple customizing, you prob-
ably don’t even need to do this; for advanced customizing or writing additional drivers, you
may want to add some or all of the following project description files:

n config/VxWorks5.4_config.shared to see user-configurable hooks for
76 SNiFF+

To

Version Controlling a Released BSP in SNiFF+
old-style BSPs

n src/VxWorks5.4_src_comps.shared to see user-configurable hooks for
new-style BSPs

n src/VxWorks5.4_src_drv.shared to see sources for hardware drivers

n h/VxWorks5.4_h_drv.shared to see headers for hardware drivers

n h/VxWorks5.4_h_SYSTEM.shared to see the VxWorks system headers.

n h/make/VxWorks5.4_h_make.shared to see the VxWorks General Make-
files.

10. Check in all files of the BSP project, so that you can track the modifications that you make
later.

11. When you are done with any modifications you need to do, choose Target > Make >
release to build the entire BSP and create a Tornado Template project in $WIND_BASE/
target/proj/pcPentium_T5_vx.

From that point on, your BSP is released and other users can build their bootable
applications based on it. In a multi-user environment on Windows, where every developer
has his private copy of Tornado, the released BSP needs to be copied into the other
Tornado Installations. This can be simplified by putting the released Tornado template
project under SNiFF+ Control as well.

Version Controlling a Released BSP in SNiFF+
Having your released BSP and template projects under SNiFF+ Version Control allows
every developer to quickly get new versions by simply synchronizing his workspace. In a
multi-team environment with two SSWEs, this can even be done automatically at night
with the update scripts. All you need to do is create a SNiFF+ "Master Project" for your
Tornado installation, which will contain all your BSPs and template projects as
subprojects. Again, we will explain everything in terms of our pcPentium_T5_vx
project, but the instructions apply equally to other BSPs.

n First, we create a Workspace.shared project which will be the common root of all
released BSPs. If you already have a such a Workspace Project, you may skip this step,
open your Workspace Project and continue with step 8 below. If not, this is what you
should do

Note

You may need a full SNiFF+ product license or a time-limited full
evaluation license to be able to add these projects, because some
of them may contain more than 200 files. See Licensing — page 14
for information on how to get an evaluation or product license.
rnado Integration Guide 77

Chapter 14 Enabling SNiFF+ Makesupport for a BSP
Creating the root project

1. In Working Environments tab of the Launch Pad, select the adm
PWE:WIND_TARGET_BASE working environment.

2. If you have no write access to the $WIND_BASE tree, first copy the $WIND_BASE/
target/proj/pcPentium_T5_vx directory into your PWE (for instance $HOME/
Sniff_WS/PWE/proj/pcPentium_T5_vx) and select the PWE instead.

3. Select Project > New Project... > With Template...

4. Select the Wrapper.ptmpl Project Template.

5. In the Project Directory field, enter a dot (.) to tell SNiFF+ that we would like to set up the
project in the root of the Working Environment and press Ok.

6. In the Project Attributes dialog that appears, enter a name for your Workspace Project (for
instance Workspace.shared) and press the OK button.

Adding Subprojects to the Root Project

1. In the Project Editor that opens, select your Workspace.shared project. If it is read
only, check it out.

2. Select Project > Add Subproject to Workspace.shared... and add your BSP project
config/pcPentium_T5/BSP_pcPentium_T5.shared.

3. Select Project > Add New Subproject... > With Template...

4. Choose the Tornado_Customized_VxWorks.ptmpl template.

5. Press the Change Directory... button and navigate to the $WIND_BASE/target/
proj/pcPentium_T5_vx directory and press Ok.

6. In the Project Attributes Dialog, click OK to accept all defaults.

7. Save the root project and check-in all files from the root project as well as all subprojects.

Now, any user who opens the Workspace.shared project and synchronizes his
workspace, will automatically get the latest version of the released BSP. For full SNiFF+
Workspace Support without absolute directory references, it may be necessary to replace
absolute paths created by Tornado in the pcPentium_T5_vx.wpj project with
relative paths. For more information, see Working with Bootable Applications — page 81.

For removing a subproject from your SNiFF+ project, select a subproject in the Project Tree
and choose Project > Remove Subproject.
Similarly, you can also add/remove files to/from a project. To do so, select the project in the
Project Tree and choose Project > Add New File to project or Project > Add/Remove
Files to/from project.

Enabling SNiFF+ Makesupport for a BSP
One disadvantage of using the Tornado Makesupport for your BSP is, that you cannot use
SNiFF+ Recursive Make for your entire workspace, to build a complete product. The other
disadvantage is that you cannot switch Build Specifications (for instance, Release and
Debug Build) for your BSP and that object files are not redirected into a Platform-specific
78 SNiFF+

To

Enabling SNiFF+ Makesupport for a BSP
subdirectory. All these drawbacks can be amended easily by enabling SNiFF+
Makesupport for your BSP. Again, we show the steps necessary in terms of the
pcPentium_T5, but they can be done in just the same way for any other BSP.

1. Open your project BSP_pcPentium_T5.shared in the Working Environment where
you have created it.

2. The Project Editor appears. Select BSP_pcPentium_T5.shared in the Project Edi-
tor’s Project Tree.

3. If the project is read-only, check it out.

4. Choose Project > Attributes of BSP_pcPentium_T5.shared...

5. In the Build Options view, enable the Use SNiFF+ Makesupport checkbox and clear the
Make Command field. Having this field empty will allow you to use the general make
command from your Platform Description. Press the OK button.

6. SNiFF+ will ask you to copy a Makefile from Template, since SNiFF+ Makesupport has
been enabled. Press Yes, and you will get a new file called Makefile_sniff.

7. In the dialog that appears prompting you to update Makefiles, press Yes.

8. Choose Target > Make > bootrom to verify that you can correctly build your BSP.
rnado Integration Guide 79

Chapter 14 Enabling SNiFF+ Makesupport for a BSP
80 SNiFF+

To
15Working with Bootable Applications

Bootable Application Projects, also known as “Customized VxWorks”, are very tightly
coupled to the Tornado Environment. In fact, you customize your VxWorks Kernel in the
Tornado GUI, and the GUI dumps a Makefile plus some C Source files to the disk, which
describe your configuration.
In general, you will continue to use your Tornado IDE to configure your bootable VxWorks
Kernels. But SNiFF+ can help you to keep this configuration together with the BSP and the
application code in a single managed workspace; it gives you more flexibility to move your
project by getting rid of absolute path references; it allows for full Version Control, and it
allows you to build your entire application in a single step.
This chapter is about:

n Setting up a SNiFF+ Project for a Bootable Application

n Modifying the Project to get rid of absolute path references.

Setting up a SNiFF+ Project for a Customized VxWorks Project
We will describe the setup in terms of the pcPentium_T5_vx project that we created from
the pcPentium_T5 BSP in the previous chapter. All descriptions equally apply to any
other VxWorks project. If you want to set up a SNiFF+ project onto an existing Customized
VxWorks project, just copy the corresponding directory into your PWE instead of making a
new setup in Tornado.
To create your Customized VxWorks Project:

1. Launch the Tornado IDE. You can do this from the SNiFF+ Launch Pad or Project Editor
by selecting Tornado > Launch Tornado IDE.

2. In Tornado, Choose New Project > Bootable Application (Customized VxWorks) and
select a directory inside your PWE as the target directory. In our example, we choose to
create a new project based on the pcPentium_T5_vx project, call it
pcPentium_T5_vx, and place it into $HOME/Sniff_WS/example/Tornado/
3_NewProject/myPWE/proj/pcPentium_T5_vx.

Tornado will create the project and show its Project Facility. You may now customize any
options you like. Build your project once to make sure that the Makefile is dumped, then
close the Project in Tornado.

3. In the SNiFF+ Launch Pad, select the Working Environments Tab and choose your PWE.
Select Project > New Project > With Template.

4. In the New Project with Template Dialog, select Tornado_Bootable_VxWorks.ptmpl.
Press the Change Directory button and navigate to the directory where you created the
Tornado Project. Back in the dialog, press OK.
rnado Integration Guide 81

Chapter 15 Removing Absolute Path References
5. In the Project Attributes for New Project Dialog, leave all settings as they are and press
OK.

SNiFF+ opens the Project Editor.

6. In the Project Editor, select all files and choose File > Check In.

7. In the Check In Dialog, press the Retain Lock button to check the files in but keep a writ-
able copy in your PWE.

It is important to know, that Tornado will re-generate and modify all files of your “Customized
VxWorks” Project whenever you make any modification to the Kernel configuration. Along
with this re-generation, Tornado will always produce absolute paths in your project, which are
not suitable for Teamwork.
Therefore, we will now manually modify the Tornado Project to get rid of all absolute path
references. Since this is an operation that can easily destroy your project, it was important to
check in all original files, so that we are sure we can always revert to a good version. More-
over, it will be instructive for you to compare subsequent versions with the original ones
created by Tornado.
Note that later, when you plan to modify the project in Tornado again, all files must be writ-
able or Tornado will issue an error message and refuse to save your modifications.

Removing Absolute Path References
In a regular Tornado Project, there may be three types of absolute path references:

n References into your Tornado installation ($WIND_BASE)

n References to an external BSP from which you created the Project

n References to external libraries that should be linked.

Each of these absolute references limits re-using your project in other environments. To
remove these absolute references:

1. In the Project Editor’s File List, select pcPentium_T5_vx.wpj, then right-click and
choose Edit File.

2. Choose Edit > Find to search for absolute references.

On Windows, you may want to search for the colon (“:”) that is found in all pathnames
with a drive letter.
On Unix, you may want to search for a prefix like /opt or /Users.

3. When you find an absolute reference, we will use the SNiFF+ Retriever to replace it with a
reference relative to $(PRJ_DIR). The PRJ_DIR is the only variable that can be used in
Tornado to create references relative to the location of your project. For example, let us
assume that

n Your PWE is located at C:/Projects

n Your Customized VxWorks is located at C:/Projects/myVxWorks

n Your BSP is located at C:/Projects/myBSP and has been released to
$(WIND_BASE)/target/config/myBSP
82 SNiFF+

To

Using SNiFF+ Automatic Linking of Submodules
n An external library is located in C:/Projects/myLib.

Then you would do the following:

4. Select C:/Projects at the first location where you find it in the Editor, then choose
Info -> Retrieve C:/Projects from this file.

5. In the Retriever’s Change to box, enter $(PRJ_DIR)/.. since relative to the project
directory this is the equivalent to C:/Projects. Then, press the Change All button.

6. If you want to link with your BSP from the PWE rather than from the WIND_BASE, go
back to the Source Editor and select $(WIND_BASE)/target/config at any place
where you find it. Choose Info -> Retrieve... from this file.

7. In the Retriever’s Change to box, enter $(PRJ_DIR)/.. again, since this is the cor-
rect relative reference to your BSP. Press the Change All button again.

8. Choose File > Check In in any tool to save your project’s .wpj file. In the Check In Dialog,
press the retain lock button to keep the file writable.

You should now open your project in Tornado again to verify that your changes were correct,
and to re-generate the Make file. To do so:
On Windows: Double click on pcPentium_T5_vx.wpj in the Project Editor’s File List
On Unix: In the Project Editor, choose Tornado > Tornado Project Tool...

In the Tornado Project Tool

Build your Project in Tornado to re-generate the Makefile and to make sure that your Modifi-
cations were OK. If the Build works, close Tornado and check in all files of your project (this
time, you should press the OK button to make the files read-only after check in).

Using SNiFF+ Automatic Linking of Submodules
You can now apply version control to your project from SNiFF+, and you can build from
SNiFF+ using the original Tornado Makefile. But you can not yet use full SNiFF+ Recursive
Make. To enable this feature:

1. Check out the Project Description pcPentium_T5_vx.shared.

2. Add any subprojects of libraries or downloadable modules that you would like to link with
your application. If you like to manage your BSP in the same workspace, you should also
add the BSP project as a subproject.

3. In the Project Editor’s Project Tree, Double Click on pcPentium_T5_vx.shared. The
Project Attributes Dialog will open.

4. In the Project Attributes Dialog, choose the Build Options node and

n enable the Use SNiFF+ Makesupport Checkbox.

n delete the contents of the Make Command field.

5. Under the Build Options Node, choose the Build Structure node. Press the Generate but-
ton beside the Recursive Make Directories field. Verify that the entries for Recursive
Make Directories and Received from Subprojects match your needs.
rnado Integration Guide 83

Chapter 15 Using SNiFF+ Automatic Linking of Submodules
6. In the Project Targets Node, verify that the Executable Target is set to vxWorks. Below
it, you will find a field for +Libraries linked. Here, you may specify any external libraries
that should be linked to your project, and for which you have not set up SNiFF+ projects.

7. Press the OK button. SNiFF+ will ask you whether a Makefile Template should be copied
to your project directory: answer yes. Rebuild your project to verify that everything is
linked correctly.

Beta Notice

Automatic Linking of submodules will only work with the Tornado Integration released after
May 1, 2000 (t2-1.0_rc8 or later).

Note

You should specify these libraries with make macros and relative
paths. You may use the macros $(SNIFF_RELATIVE_ROOT_DIR),
which points to your working environment root directory,
$(OBJECT_DIR) which is set to your build specification, and any
environment variables such as $(WIND_BASE).

Note:

SNiFF+ Makesupport will override the $(EXTRA_MODULES) Macro
of your Tornado Makefile, so any modules that you configured in
VxWorks Makesupport to be linked will not be taken into account.
You may add external libraries in the SNiFF+ Project Attributes in-
stead, as described above.
84 SNiFF+

To
16Working with WindRiver Source Products

A good deal of Wind River Software is shipped as source code: source code that you are
meant to understand, modify and re-use in your own products. SNiFF+ Browsing facilities
can help you to understand such external source code more quickly, and to better handle it in
managed workspaces.
This chapter is about:

n Working Environment Setup

n Setting up projects for WindRiver Source Products

Working Environment Setup
Wind River Source Code will always be installed into the WIND_BASE/target/src tree.
You may either set up your own source code in the WIND_BASE/target tree as well (then you
will get along with only one SNiFF+ Working Environment).
The other option is to set up a SNiFF+ SSWE onto the WIND_BASE/target tree, and leave
original sources untouched. All modifications and local additions can then be made in a
PWE.
To create this setup, open the SNiFF+ Working Environments Tool and:

1. Create an RWE called WIND_REPOSITORY with root directory $WIND_REPOSITORY

2. Below, create an SSWE called WIND_TARGET_BASE with root directory
$WIND_TARGET_BASE

3. Below, create a PWE called myPWE with root directory C:/Projects (or wherever you
would like to place your own projects).
rnado Integration Guide 85

Chapter 16 Setting up SNiFF+ Projects for WindRiver Sources
Your Working Environments Tools should now look more or less like this:

Note that this time, we have set two separate PWEs, one for the Debug Build and one for the
Release build. The SNiFF+ Platform for the Release Build is torI80486gnu_O whereas the
Debug build is bound to the Platform torI80486gnu. Both PWEs may reference the same
Root Directory, C:/Projects, since SNiFF+ Build Specifications for Tornado automati-
cally redirect objects into subdirectories.

Setting up SNiFF+ Projects for WindRiver Sources
To set up SNiFF+ Projects for the WindRiver Source Products you have obtained:

1. Select the SSWE:WIND_TARGET_BASE and choose File > New Project > With Tem-
plate.

2. In the New Project with Template dialog, select Tornado_BrowsingOnly.ptmpl

3. When the Project Editor opens, you should choose Project > Check Obsolete Files to
make sure that all files are visible in the SNiFF+ project. Files may be missing if they use
filename patterns that are not present in the Project Creation Template.

If the dialog shows any obsolete files, this is the best to do:

Note

Although we are going to set up a shared SNiFF+ project, we take
the BrowsingOnly Template because we can not expect that the un-
known source code will correctly build with SNiFF+ Makesupport.
The BrowsingOnly project is set up to support original Tornado
Makesupport. You may switch to SNiFF+ Makesupport at any time
later by selecting Use SNiFF+ Makesupport in the Project At-
tributes and deleting the contents of the Make Command field.
86 SNiFF+

To

Using WindRiver Sources in Own Projects
n In the Launch Pad, choose Project > Delete Project to remove the SNiFF+ project
descriptions again

n Select Project > New Project > With Template again

n In the Project Attributes Dialog, show the File Types node. Press the Show All and
Add buttons to add any file types that were missing, or edit the Signature field of any
existing filetype.

n When you think the filetypes are correct, press the OK button to set up the project
again.

4. When all files are visible in the Project Editor, you may want to check them all in (this step
is optional).

Using WindRiver Sources in Own Projects
You should create your own projects in your PWE just as usual; when you need to access
WindRiver Sources, just add the corresponding project as a subproject.
Note that the special BrowsingOnly Template has set up the projects in a manner where
source files are not copied to your PWE, they are merely for browsing. To copy Sources from
the SSWE to the PWE, just check them out.

Note

If you expect that you will have to set up projects with the special file
type(s) more often, you may create your own project template. Just
show the General node of the Project Attributes Dialog, and select
the Save as Template radiobutton. SNiFF+ will create a new project
template rather than setting up a project.
rnado Integration Guide 87

Chapter 16 Using WindRiver Sources in Own Projects
88 SNiFF+

To
17Advanced Issues and Customizing

This chapter is a compilation of Hints and Information that you may find useful. You will find
many more Tips on the SNiFF+ online FAQ and Knowledge Base at

http://www.takefive.com/support/kb.html

If there are still any questions or issues, please do not hesitate to contact us at any of the
addresses shown in Feedback and useful links — page 9.

Changing your Version Control System
To change the Version Control System for existing projects, you have to first check out all
SNiFF+ Project Description Files. Then, you best use the Group Project Attributes Dialog
(see page 67) to change the setting in the Version Control System node. It will depend on the
CM systems used, whether migration of the Repository is possible or not.
You can also change the default RCS system in the Project Templates to your favorite CM
System. To do so:

1. In the Launch Pad, select Project > New Project > With Template

2. In the New Project with Template Dialog, select the Template you’d like to change.

3. In the Directory field, enter a single dot (.) - The contents doesn’t matter at this stage,
since we just want to change the template. Press OK.

4. In the Project Attributes General Node, select the Save as Template Radiobutton - we
recommend to do this first so as not to forget it later.

5. In the Version Control System Node, select your favorite CM system and press OK.

6. In the Save Project Template, either choose the same name as before to overwrite the
template, or save it with a new name.

For more information about specifics of a particular Version Control System with SNiFF+,
please refer to the corresponding documentation. Note that some Version Control Systems
like Perforce and MKS SourceIntegrity need to be installed from the SNiFF+ integrations
directory before they can be used. Some others, like Sablime and TeamConnection are not
part of the standard SNiFF+ installation, they are rather available for download at the SNiFF+
Web site.

Enabling additional SNiFF+ Parsers
For regular Tornado projects, only the C/C++ Parser and the GNU Assembler Parser are
enabled by default.
SNiFF+ contains additional Parsers for Shell Scripts, Makefiles and TCL scripts. These
parsers are provided on an as-is basis, they are not supported and by default turned off.
To enable these parsers:
rnado Integration Guide 89

Chapter 17 Optimized Compilation and Changing Build Specifications
1. Open the Project Attributes Dialog of a project where you would like to use one of the
Parsers

2. Select the File Types node and press the Show All Button

3. For the Makefile Parser, for instance, add the filetype Makefile with Parser

4. Make sure that the Signature field of Makefile with Parser is the same as for the Make
filetype; then, remove the Filetype Make.

5. If you want to use the parser on a regular basis, you may modify the project template as
explained above.

Other Languages Supported

SNiFF+ also comes with parsers for Java, Fortran, Ada, Python and Perl. Each of these
parsers is activated by simply using the corresponding Filetype. Note that for Java, Fortran
and Ada the corresponding packages must be installed during the setup procedure.
For Java in particular, SNiFF+ also provides a high-end GUI builder called Visaj. Please refer
to the SNiFF+ documentation for details.
More parsers for various Assembler dialects and languages like Delphi, Cobol, Chill, VHDL
and many others are available from TakeFive on request.

Optimized Compilation and Changing Build Specifications
In SNiFF+, build specifications are called Platforms. The SNiFF+ Tornado Integration comes
with pre-set Platforms for the standard Debug and OPTIM_NORMAL settings as defined in
original Tornado Makefiles. You can modify compiler settings for a particular platform on
global (working environment) level, on project level and on file level.

Creating a new Build Specification

To create a new build specification:

1. select Tools > Preferences from any SNiFF+ Tool.

2. In the Preferences Dialog, select the Platforms node.

3. In the Platforms display, choose any platform that most closely resembles what you want.
Press the Copy button and copy it to a new name.

4. In the lower part of the Preferences Dialog, select the Make Support tab. You may now
specify directory names where your objects and targets should be stored; and, most
important, you must specify a name by which this Platform will be internally recognized.

Note

On Windows, the SNiFF+ TCL Parser is not installed by default. It
will only work if you selected Additional Packages and TCL/ITCL
Parser during installation. If you didn’t do this during first-time instal-
lation you can add it later by running the setup program again. Set-
up will not overwrite existing packages installed.
90 SNiFF+

To

Optimized Compilation and Changing Build Specifications
Enter this name in the Platform Makefile field. We usually recommend to have this name
match the name of your Platform: for example, choose torI80386_OPTIM_DRIVER.

5. Actual make settings are then stored in a file called SNIFF_DIR/make_support/
torI80386_OPTIM_DRIVER.mk. Create this file by copying any of the existing
*.mk files into it.

6. In your Platform Makefile, you may override and redefine any of the make macros you
know from Tornado Makefiles.

7. To assign your new build specification to a working environment, open the Working Envi-
ronments tool, select a PWE or an SOWE and choose Edit > Modify.

Changing Build Specifications on Project Level

In the Project Attributes Dialog, select the Directives node (below Build Options). You may
use the Additional field to enter any compiler options that should be valid for all build specifi-
cations.
If you want to use particular compiler options only for particular build specifications, press the
new button and select any platform that should receive special handling. You may now enter
directives per Platform.
If the GUI is not versatile enough for the settings you need to take, you can always edit the
local Makefile_sniff to accomodate your changes: it contains a load of comments that
shows you what you can customize and where.
In SNiFF+, the Makefile_sniff is treated like a source file: it is never overwritten, and it should
be handled with regular Version Control. So any changes you make to the Makefile_sniff will
be persistent.

Changing Build Specifications on File Level

In order to enable file-level compiler options, you have to modify the file SNIFF_DIR/
make_support/general.c.mk and add / modify the following lines:

CC_OPTION_FILE=‘if [-f $*.cop]; then \
cat $*.cop; else echo ""; fi‘

CXX_CMD = $(CXX) $(ALL_CXXFLAGS) $(CC_OPTION_FILE) \
$(OVERALL_OPTION_CXX) “$<“ $(CXX_OUTPUT_FLAG)

CC_CMD = $(CC) $(ALL_CFLAGS) $(CC_OPTION_FILE) \
$(OVERALL_OPTION_CC) “$<“ $(CC_OUTPUT_FLAG)

Now, for every file toto.c where you need special compiler options, you just add a file
called toto.cop that contains your compiler options (the filetype for *.cop files is already
defined in the Tornado Project Templates). Future versions of the SNiFF+ Tornado integra-
tion will have the two lines mentioned already pre-set in the makefiles.

Filtering Make Messages

The default setting for your Tornado Platforms is to have make output all commands as it
executes. You can filter these messages to the most important ones by using the switch
DEBUG=0 either in your Platform Makefile, or on the Make commandline.
rnado Integration Guide 91

Chapter 17 Extending Custom Menus
Extending Custom Menus
The Tornado menu in your Project Editor and Source Editor can easily be extended to acco-
modate additional tools that you need more often. You can also easily add additional menus.
Just add the file SNIFF_DIR/config/SiteMenus.sniff. For more information, see
the SNiFF+ User’s Guide.
92 SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-2000 TakeFive Software GmbH, a Wind River Company.
All rights reserved.

sniff \’snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster’s Unabridged Third New International Dictionary

	Introduction
	Using this Guide
	Feedback and useful links
	The SNiFF+ Tornado Integration
	Requirements
	SNiFF+ Installation
	Licensing

	Browsing Source Code
	Starting SNiFF+
	The Launch Pad
	Creating a New Project for Browsing
	Opening the Project Editor
	Adding a subproject
	The Project Tree
	Saving a Project Tree view
	The Symbol Browser
	The Source Editor
	The Cross Referencer
	The Hierarchy Browser
	The Retriever
	The Include Browser

	Make Support and Version Control
	The Launch Pad
	Building the executable
	Accessing Tornado Tools
	Understanding SNiFF+ Makesupport
	Checking whether RCS is in your path (Unix Only)
	Setting files to read-only
	File’s history information
	Displaying locking information
	Tracking changes in file versions
	Opening the Configuration Manager
	Looking at configurations
	Comparing two configurations

	Team Support
	Shared projects
	Working environments
	The Working Environments tool
	Multi-User Project Setup
	Setting Up Make Support
	Building the Executable
	Checking all files into the Repository
	Creating a Shared Source Working Environment
	Copying the shared project into the SSWE
	Changing Working Environment Hierarchy Structure
	Synchronizing Working Environments

	Advanced Issues
	BSP Setup for Tornado-Only Makesupport
	Version Controlling a Released BSP in SNiFF+
	Enabling SNiFF+ Makesupport for a BSP
	Setting up a SNiFF+ Project for a Customized VxWorks Project
	Removing Absolute Path References
	Using SNiFF+ Automatic Linking of Submodules
	Working Environment Setup
	Setting up SNiFF+ Projects for WindRiver Sources
	Using WindRiver Sources in Own Projects
	Changing your Version Control System
	Enabling additional SNiFF+ Parsers
	Optimized Compilation and Changing Build Specifications
	Extending Custom Menus

