
ÿþýþüþûúþùø÷öõþ

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

Table of Contents

Re
Part I Guidelines

About this Manual 3

Conventions. 3
Tool elements . 4
Typography . 5
Feedback and useful links . 5

SNiFF+J for Java 7

Part II Tools Reference

Some Common Elements 11

Fast positioning in lists . 11
Regular expression filters . 11
Keyboard and mouse shortcuts. 11
Status line . 12
Frozen check box . 12
Layout handle . 12

Common Menus 13

Tools menu . 13
File menu . 15
Edit menu . 16
Show menu . 18
Target menu . 19
Info menu . 20
Class menu . 22
View menu. 23
History menu . 23
Help (?) menu . 23
Right-click context menus . 24

Common Dialogs 25

Open Project dialog . 26
Choose Symbol dialog . 30
Find/Change dialog . 30
Target dialog . 32
Check In dialog . 34
Check Out dialog . 35
Differences dialog . 36
ference Guide

Table of Contents
Lock dialog .37
Unlock dialog .37
Directory Dialog (Unix) .38
Directory Dialog (Windows) .39
File Dialog (Unix) .40
Project File dialog (Unix). .41
Project File dialog (Windows) .43
Print dialog .44
Licenses dialog .45

Class Browser 47

Quick Reference. .48
Basic components .50
Filters .50
Status Line .53
Menus. .53

Configuration Manager 55

Quick Reference. .56
Basic components .57
Status Line .59
Menus. .60

Cross Referencer 65

Quick Reference. .67
Basic components .69
Filters .70
Status Line .70
Menus. .71
X-Ref Filter dialog .73

Debugger (Unix and Java) 75

Starting the Debugger. .75
Multiple simultaneous Debugger sessions .76
Supported debuggers .76
Selecting a debugger back-end .77
Status line .77
Menus. .78
Tabs .80
Dialogs .81

Diff/Merge tool 83

Quick Reference. .84
Basic components .85
SNiFF+

Re

Table of Contents
Status Line. 86
Menus . 86

Documentation Editor 89

Quick Reference . 90
Modes of operation . 91
Basic components . 91
Menus . 92
Documentation Synchronizer . 93
Quick Reference — Synchronizer . 93
Basic Components—Synchronizer . 94
Filters—Synchronizer . 95
Menus — Synchronizer . 96

Hierarchy Browser 101

Quick Reference . 102
Basic components . 103
Filters. 103
Status Line. 104
Menus . 105

Include Browser 107

Quick Reference . 108
Basic components . 109
Filters. 109
Check boxes . 110
Status Line. 110
Menus . 110

Launch Pad 113

Quick Reference . 114
Basic components . 115
Menus . 115
Open Project dialogs . 119

Log 121

Log window . 121

Preferences 123

Preferences . 123
Preferences dialog. 124
Appearance view . 126
Tools view . 130
Source Editor view. 132
ference Guide

Table of Contents
Retriever view. .137
Cross Referencer view .138
Documentation Editor view. .140
Shell view .143
Working Environments view .144
New Project Setup view .146
Version Control System view .149
File Types view. .153
Platform view .157
Others view. .160

Project Attributes 163

SNiFF+’s Project Attributes .163
General view. .164
General Advanced .167
Build Options view .169
Directives .170
Project targets - C/C++. .172
Project targets - Java .173
Build Structure - C/C++. .174
Build Structure - Java .175
Build Options Advanced .177
Parser view. .179
Version Control System view .181
File Types view. .182
Group Project Attributes .187

Project Editor 189

Quick Reference. .190
Basic components .192
Filters .193
Status line .195
Menus. .197
History window .204
Add/Remove Files dialog .206
Statistics dialog. .208

Retriever 209

Quick Reference. .210
Indexing and caching .211
Basic components .212
Files — Matches List .214
Navigation buttons .214
Modification control buttons .215
SNiFF+

Re

Table of Contents
Undoing changes. 215
Menus . 216
The Retriever in “replace only” mode . 217
Advanced Retriever Options dialog . 217
Find and Replace Filters dialog . 218
Locking Status dialog . 221

Shell 223

Menus . 223

Source Editor 225

Quick Reference . 226
Shortcuts . 227
Basic components . 230
Menus . 231
Debugging mode — extra buttons added to the Source Editor 232

Symbol Browser 233

Quick Reference . 234
Basic components . 234
Filters. 235
Status line . 236
Menus . 237

Working Environments 239

Quick Reference . 240
Basic components . 241
Modifying Working Environments . 243
Working Environments information . 244
Menus . 246
Modify/New Working Environment dialog . 249
Users dialog. 250

Part III Advanced Reference

SNiFF+ Executables 253

sniff . 253
Environment variables . 254
Multiple simultaneous SNiFF+ sessions . 255
SNiFF+ without display (batch mode) . 256
sniff_arch . 256
sniff_genproj . 257
ference Guide

Table of Contents
Sniffaccess 259

Invoking Sniffaccess. .259
SNiFF+ external access communication protocol261
Sniffaccess requests. .264
Sniffaccess notifications .271
HP Softbench BMS bridge (Unix only) .274

Advanced Customization 279

Customizing the SNiFF+ <Meta> key (Unix only)280
Template files .282
Parser config file .282
Filter file .282
Custom menus .283
Error formats. .288
Setting SNiFF+’s look and feel (Windows NT/95 only).290

Working with IDL Projects in SNiFF+ 293

What the SNiFF+ IDL Parser does .293
Integration of the SNiFF+ IDL Parser with SNiFF+.293
Using the SNiFF+ IDL Parser without SNiFF+294
Using SNiFF+’s Make Support for compiling IDL files295
IDL Projects .296
Editing $SNIFF_DIR/make_support/<platform>.mk297
Creating a server project and configuring Make support for it297
Creating a client project and configuring Make support for it301
Default Makefile .306

Regular Expressions in SNiFF+ 307

Quick Reference - Syntax. .308
Literals and metacharacters .309
Character classes or lists .314
Groups, alternatives and back references .317

SNiFF+ - Generated Files 319

Generated files .320

Part IV Glossary and Index

Glossary 325

Index 331
SNiFF+

Part I
Guidelines

1About this Manual

What this manual is
This manual is part of the SNiFF+ documentation set, which consists of:

� User’s Guide

� Reference Guide

� C++ Tutorial

� C Tutorial

� Java Tutorial

� Fortran Tutorial

� Quick Reference Guide

� Release Notes, Installation Guide and Application Papers

� Online documentation of the above in HTML, PostScript and PDF formats

Conventions

One basic term

� Symbol — any programming language construct such as a class, method, etc.

Two conventions: menu references

For clarity and to avoid undue verbosity, the phrase:
“Choose the MenuCommand from the MenuName” is presented as follows:

� Choose MenuName > MenuCommand .

A context menu that appears when you click the right mouse button is referred to as:
Context menu , and consequently:
“Choose a menu command from the context menu that appears when you click the right
mouse button” is presented as follows:

� Choose Context menu > MenuCommand
3

Chapter 1 About this Manual Tool elements
A note on Unix/Windows

The screenshots in this manual are all done on Windows NT. If you are working on Unix,
what you see on your screen may look slightly different.

When you start SNiFF+, the first tool that appears
is the Launch Pad. In this and other SNiFF+ tools,
the first item in the menu bar is for launching tools.

� On Windows, it is called Tools .

� On Unix , it is depicted by an Icon .

When we refer to this menu in order to launch
a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName .

� On Unix a “check box” looks like a “button” (Motif Look), and a “drop-down” looks like a
“pop-up”.

Tool elements

Choose Target > Make > all

Select / clear check box

Field

Tree

List

Select from drop-down
Highlight project

Checkmark project
4 SNiFF+

Typography
Typography

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

� SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

� SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

� Frequently Asked Questions

http://www.takefive.com/support/faq.html

� Customer Newsletter

http://www.takefive.com/news/customer_newsletter.html

Capitalized
Words

Names of tools, windows, dialogs and menus start with capital letters.
Examples: Symbol Browser, Tools menu, File dialog.

Italics Names of manuals and newly introduced terms are in italics.
Examples: User's Guide, the workspace concept.

Boldface and
Bold italics

Menu, field and button names and menu entries are printed in bold-
face. Placeholders for symbols, selections or other strings in menus
are in bold italics.
Example: From the menu, choose Show > Symbol(s) selection ...

Monospace Code examples and symbol, file and directory names, as well as user
entries are printed in monospace type.
Examples: .login , $PATH, class VObject . Type abc .

<Keys> Special keys are printed in monospace type with enclosing '< >'.
Examples: <CTRL>, <Return> , <Meta> .
5

Chapter 1 About this Manual Feedback and useful links
6 SNiFF+

R

2SNiFF+J for Java

This manual relates to SNiFF+ in general.

� For Java-specific issues, please refer to the SNiFF+ Java Tutorial. To open the Java
Tutorial online, choose Help(?) > Tutorials > Java from the Launch Pad’s menu.

� Please also refer to the Java Tutorial to find out how to get started with the Visaj GUI
Builder integration. SNiFF+ integration features are incorporated in the Visaj User’s
Guide under the Visaj Class Editor’s Help menu.
eference Guide 7

Chapter 2
8 SNiFF+

Part II
Tools Reference

R

1Some Common Elements

Introduction
This chapter introduces the following user interface elements that are common to many tools
in SNiFF+:

� Fast positioning in lists — page 11

� Regular expression filters — page 11

� Keyboard and mouse shortcuts — page 11

� Status line — page 12

� Frozen check box — page 12

� Layout handle — page 12

Fast positioning in lists
Click into a list and press a sequence of keys to position the list to the first entry that matches
the sequence. By pressing the <ESC>key, you can restart the sequence.

Regular expression filters
Most tools offer a name filter for filtering the items according to a regular expression.

To filter the list, enter a regular expression in the Filter field. After you press <Return> , the
list is filtered according to the regular expression. To remove the filter, delete the regular
expression from the Filter field and press <Return> again. If you press the Whole Word
button, only whole words are matched to the expression.
For more information about regular expressions, see also Regular Expressions in SNiFF+ —
page 307.

Keyboard and mouse shortcuts
Keyboard and mouse shortcuts are available throughout SNiFF+. Each tool chapter in this
manual has a Quick Reference section, accessible also via the Help(?) menu of each tool,
where available shortcuts are decribed.

If selected, the filter selects
matches for a whole word only

Regular
expression
eference Guide 11

Chapter 1 Some Common Elements Status line
Please refer to Customizing the SNiFF+ <Meta> key (Unix only) to find out how to redefine
the <Meta> key.

Status line
Every SNiFF+ tool has a status line at the bottom. Besides showing important status informa-
tion, it contains a Frozen check box (see Frozen check box — page 12). The tool-specific
status information is described in the corresponding tool chapters.

Frozen check box
The Frozen check box controls whether the tool can be reused for a new request. If the
Frozen check box is selected and a request is sent to the tool, this tool will stay untouched
and another tool of the same type is instantiated. If the Frozen check box is not selected,
tools are reused.

Layout handle
All SNiFF+ tools consisting of more than one view have a layout handle. The layout handle
allows modification of the size ratio between two views.
Dragging the handle with the mouse changes the ratio. A view can be resized to zero,
leaving all the space for the other view.

� A double-click on the handle shows/hides the less important view completely.

Toggles whether tool is reusabe

Click with the mouse and drag;
double-click to show/hide the view completely
12 SNiFF+

R

2Common Menus

Introduction
The menu commands described in this section apply to the tools listed under each menu
heading. Due to the specific functionality of a given tool, individual commands within a menu
may differ. Where this is the case, tool-specific commands or variations are described in the
relevant tool chapter.

Tools menu
The Tools menu is the first menu in the menu bar of every tool.

� On Unix , the Tools menu is represented by the Icon of the open tool. The icon used to
represent each tool can be seen in the menu itself (below).

Tools menu command Description

Tool name Activates the named tool. If the tool is not already open or
frozen (i.e. not reusable), a new instance of the tool is
opened.

The tool that you choose from this list
becomes the active tool. A new instance of
the tool is opened if no reusable one is
available
eference Guide 13

Chapter 2 Common Menus Tools menu
When a project is open, all commands are available. If no project is open, only the following
commands are available:

� Launch Pad

� Working Environments

� Log...

� Preferences...

� Quit SNiFF+

Debugger If the Debugger is already open, it can be easily located
by using this menu entry.

Visaj Opens a dialog in which you can open an existing Visaj
project in the Visaj Class Editor or in which you can create
a new Visaj project.

Print... Opens a Print dialog for printing the tool's main view. Be-
fore opening the Print dialog, some tools with multiple
views (like the Configuration Manager) open a dialog in
which you can select the view that you want to print. The
Print... command is disabled in some tools.

Hide Project Hides the selected project and all tools associated with it.
When the project is hidden, the project name is displayed
in italics in the Launch Pad. Show the Project again by
double-clicking on its name in the Launch Pad.

Duplicate Tool Opens a duplicate of the tool in which you executed this
command. The duplicate then becomes the “active” tool—
when you issue a command that makes use of this tool,
the duplicate (the “active” tool) will be used. Note that the
starting state of the duplicate tool is the same as the state
of the original tool. For example, the History menu (if the
tool has one) is the same in both the original and the du-
plicate tool.The Duplicate Tool command is disabled in
the Tools menu of the Include Browser, Cross Referencer
and Diff/Merge tools.

Close Tool Closes the active tool.

Quit SNiFF+ Terminates the current SNiFF+ session.

Tools menu command Description
14 SNiFF+

Re

File menu
File menu
The commands described below apply to the File menu in the

� Source Editor

� Diff/Merge tool

� Documentation Editor

For a description of the File menu in other tools please refer to the appropriate chapters in
this manual.

File menu command Description

Load... Opens a File dialog, in which you can enter the name of the
file to be loaded.

Save Saves the modified file. This command is enabled for modi-
fied files. The file is saved, and SNiFF+'s Symbol table is up-
dated. Furthermore, all tools are automatically updated to
reflect the changes made to the file.
In the Preferences, you can set whether backups are made. If
backups are made, these are named filename%.

Save As... Opens a File dialog, where you can enter a new name for the
file.

Revert Returns the file to its last state before any modifications were
made to it. The command is enabled for modified files.

Check Out ... Opens the Check Out dialog, where you can select the ver-
sion of the file that you want to check out.

Check In... Opens a Check In dialog for checking a file in to the reposito-
ry.

Lock... Opens a Lock dialog for locking the current file.

Unlock ... Opens an Unlock dialog for unlocking the current file.

Show History Info Opens a Project Editor and a History dialog to display the ver-
sion history information of the loaded file. If a Project Editor is
already open (and its Frozen check box is not selected), it is
used.

Show Differences... Opens a Differences dialog, in which you can enter two ver-
sions of a file that you want to compare with each other.
ference Guide 15

Chapter 2 Common Menus Edit menu
Edit menu
The commands described below apply to the Edit menu in the

� Source Editor

� Diff/Merge tool

� Documentation Editor

� Retriever

For a description of the Edit menu in other tools please refer to the appropriate chapters in
this manual.

Edit menu command Description

Undo last command Undoes the change you made to the text. You can spec-
ify undo levels in the Preferences.

Redo last command Redoes the last undone change.

Cut Cuts the current selection to the paste buffer.

Copy Copies the current selection to the paste buffer.

Paste Pastes the paste buffer contents to the current cursor po-
sition or selection. This command is enabled when the
paste buffer is not empty.

Paste File Opens a File dialog where you can select a file to be cop-
ied into the current file. The selected file is pasted to the
cursor position.

Find/Change... Opens a Find/Change dialog. You can use regular ex-
pressions in this dialog.

Find Again Repeats the latest search triggered from Find/Change di-
alog.

Go To Line... Opens the Go To dialog, where you can enter the line
number you want to jump to.

Search Forward Searches for the next sequence of characters that match-
es the current selection. If a match is found, the editor po-
sitions to the match and selects it.

Search Backward Searches for the previous sequence of characters that
matches the current selection. If a match is found, the ed-
itor positions to the match and selects it.

Select All Selects the entire file.
16 SNiFF+

Re

Edit menu
Nest Shifts the currently selected line(s) one tab width to the
right.

Unnest Shifts the currently selected line(s) one tab width to the
left.

Comment Inserts '//' comment characters at the beginning of the cur-
rently selected line(s).

Uncomment Removes '//' comment characters from the beginning of
the currently selected line(s).

Edit menu command Description
ference Guide 17

Chapter 2 Common Menus Show menu
Show menu
The commands that are described below apply to the Show menu in the

� Source Editor

� Retriever

� Documentation Editor

Show menu command Description

Symbol(s) symbol ... Shows the declaration or implementation of symbol . If
symbol is ambiguous, a dialog opens with a list of val-
id alternatives.

Baseclass class Shows the declaration of the base class of the current-
ly selected class. This entry is enabled when the cur-
sor is positioned in the scope of a class that has a base
class. If class has multiple base classes, you can
choose one of them from a submenu.

Overridden Method method Shows the overridden method of the closest base
class that defines method into a Source Editor.

Declaration/Implementation
of method

Shows the declaration/implementation of method .

Header/Implementation File Shows the corresponding header/implementation file.

Next Match If an Editor is requested from, e.g., the Cross Refer-
encer, this command shows the next reference to the
symbol. (Does not apply in the Retriever.)
18 SNiFF+

Re

Target menu
Target menu
The commands that are described below apply to the Target menu in the

� Project Editor

� Source Editor

� Shell

You can use the Target menu to issue make commands or run and debug executables. The
commands and targets that are executed and made in this menu are specified in the Project
Attributes. See also Build Options view — page 169.

Target menu command Description

Make File objectfile Spawns a Shell and issues make objectfile
in the source directory of the project. object-
file is the object file of the selected source file.

Recursively Make target Spawns a Shell and recursively starts make for all
the subprojects for which make support files are
generated. Finally, make for the default target of
the root project is called. SNiFF+ generates Make
support files for projects whose Generate Make
Support Files attribute is enabled. You can en-
able this attribute in the Build Options view of the
Project Attributes dialog. To learn about a project’s
default target, please refer to User’s Guide —
Specifying the targets of a project — page 95.

Update Makefiles Updates the make support files of all the projects
in the Project Tree. There are three types of make
support files: dependency file, macros file and in-
clude file. See also Build Options view — page
169.

Make target Spawns a Shell tool and issues make target in
the source directory of the project. target is the
default target of the project.

Make Submenu The Make... submenu contains the targets entered
in the Project Attributes dialog. A separator line
separates helping targets from project targets.
You can build the individual targets of the project
by choosing the appropriate entry.
The Make all command works in conjunction with
SNiFF+’s Make Support feature. See also User’s
Guide — Building targets recursively — page 98.
ference Guide 19

Chapter 2 Common Menus Info menu
Info menu
The commands that are described below apply to all of the SNiFF+ tools, except for the
Include Browser, Working Environments tool and the Configuration Manager.
In SNiFF+'s browsing tools, symbols are unambiguously specified as items in a list. Ambigu-
ities may arise in the Source Editor, since the cursor is positioned in plain text. Nevertheless,
SNiFF+ is able to minimize ambiguity by means of the symbolic information in the Symbol
table. SNiFF+ does this by employing the notion of the “scope” of the cursor position.You can
unambiguously select a symbol by clicking directly on the symbol's signature, or in a refer-
ence (function body or comment) to this symbol. If the symbol is not unique in the given
context, a dialog appears when you choose a command from the Info menu. This dialog
contains a list of possible candidates that you can then choose from.
* The Info menu in the Project Editor only contains six of the commands described below.
The commands that apply to the Project Editor are preceded by an asterisk (*).

Run target Spawns a Shell tool and executes the default tar-
get of the project. When you execute this com-
mand, a Program Arguments dialog appears. You
can enter arguments for the run command in this
dialog.

Debug target Starts the debugger and loads the target execut-
able. This entry is only enabled when you have en-
tered the target name in the Make view of the
Project Attributes dialog and the target is execut-
able. See also Build Options view — page 169.

Target Dialog... Opens the Target dialog, in which you can choose
a target from the list of all the targets in the Project
Tree.

Info menu command Description

Show Declaration of selection Opens the Source Editor and positions at
the declaration of selection.

Retrieve selection From This File This command is only available in the
Source Editor.
Opens a Retriever and retrieves all occur-
rences of selection from the current file.

Target menu command Description
20 SNiFF+

Re

Info menu
Retrieve selection From This Project This command is only available in the
Source Editor.
Opens a Retriever and retrieves all occur-
rences of selection from the project to
which the current file belongs.

* Retrieve selection From All Projects Opens a Retriever and retrieves all occur-
rences of selection from all projects in the
Project Tree.

* Retrieve selection (using Retriever
settings)

Opens a Retriever and retrieves all occur-
rences of selection from the projects that
are checkmarkeded in the Retrievers
Project Tree. Also all other settings in the
Retriever, except filters, are applied.

* Find Symbols Matching selection Opens a Symbol Browser to search for
symbols that match selection as a whole
word.

* Find Symbols Containing selection Opens a Symbol Browser to search for
symbols that contain selection as a sub-
string.

Symbol Refers-To Opens a Cross Referencer and starts a Re-
fers-To query on symbol. The settings of
this Cross Referencer’s Xref Filter are used
for the query parameters.

Symbol Referred-By Opens a Cross Referencer and starts a re-
fers-by query on symbol. The settings of
this Cross Referencer’s Xref Filter are used
for the query parameters.

Symbol Refers-To Components Opens a Cross Referencer and starts a
query for showing all symbols (classes and
structures) that are components of symbol.
If the current selection is a member of a
class/structure, the class/structure is taken
for this query.

Symbol Referred-By As Component Opens a Cross Referencer and starts a
query for showing all symbols that have
symbol as a component. Note that you can
also query primitive C data types with this
command.

Info menu command Description
ference Guide 21

Chapter 2 Common Menus Class menu
Class menu
The commands that are described below apply to all of the SNiFF+ tools, except for the
Project Editor, Include Browser and the Configuration Manager.
You can use the Class menu to issue commands for obtaining class-specific information
about the current selection. The entries are only enabled if the selection is a class. The
following commands are available:

* selection Includes Opens an Include Browser and shows the
files that selection includes.

* selection Is Included-By Opens an Include Browser and shows the
files that include selection.

Show Documentation of symbol Opens a Documentation Editor and posi-
tions it to the documentation of symbol. An
alert message appears if no documentation
file exists for either the entire file or for
symbol. You then have the option of creat-
ing a documentation file.

Documentation Synchronizer... Opens the Documentation Synchronization
dialog.

Class menu command Description

Browse class Shows the members of class in the Class
Browser

Show class in Entire Hierarchy
Show class Relatives

Opens a Hierarchy Browser and loads ei-
ther the entire class graph or the graph of
the base and derived classes. class is
highlighted in the Hierarchy Browser.

Mark Definers of class in Entire Hierar-
chy
Mark Relatives Defining class

Opens a Hierarchy Browser and loads ei-
ther the entire class graph or the graph that
consists of class and its base and derived
classes. All classes that define class are
displayed in boldface in the Hierarchy
Browser.

Info menu command Description
22 SNiFF+

Re

View menu
View menu
The View menu of all tools that have a Project Tree offers the following commands:

History menu
You can use the History menu, available in most tools, to return the tool to a previous state
(or to re-issue an earlier query). The type of entries depends on the tool.
You can specify the number of entries in the History menu in the Preferences.

Help (?) menu
Online help is displayed in your preferred HTML browser, which you can set in the Prefer-
ences.

View menu command Description

Select Project Set > Opens a submenu with a list of all saved project sets.

Save Project Set Opens a dialog where you can enter a name for sav-
ing the current view of your Project Tree, that is, which
projects are checkmarked and which nodes are ex-
panded/collapsed. Note that, if the name exists al-
ready, it is simply overwritten.

Remove Project Set Removes the selected project set.

Help(?) menu command Description

Tool help Opens the Online Reference at the description of the
current tool

Context help Changes the cursor to context help mode. Clicking
into a specific context then opens the Online Refer-
ence at the description of the selected context.

Quick Ref This command is available in all tools where icons and
typeface provide graphical feedback. The Online Ref-
erence is opened at a summary of these elements as
they apply to the current tool.
ference Guide 23

Chapter 2 Common Menus Right-click context menus
Right-click context menus
Right-click context menus are available throughout SNiFF+. The Context menu offers a
selection of frequently used commands. Generally, these correspond to menu commands.
An exception are the commands in the Project Tree’s Context menu .

The Project Tree Context menu

The following commands are available in the Project Tree Context menu of all tools that have
a Project Tree.

Context menu command Description

Select from Project Only Only the highlighted Project is checkmarked. Only the
elements of the checkmarked project are shown in the
main view of the tool.

Select From All Projects All Projects are checkmarked. The elements of
projects are shown in the main view of the tool.

Propagate Selection The selection of checkmarked projects is propagated
to all other open tools that have a Project Tree.

Collapse/Expand Subprojects of
Project

Collapses/Expands the node of Project.

Collapse to Level... Starts a dialog where you can enter the number of lev-
els you want to expand the node to.

Expand all Projects Fully expands all nodes. Fully expanded nodes are in-
dicated by a “—” sign.

Propagate Expansion Propagates the tree arrangement to all other open
tools that have a Project Tree.

Total number / Selected number Shows the total number of projects in the Project Tree
and the number of those that are currently check-
marked.
24 SNiFF+

R

3Common Dialogs

Introduction
The dialogs described in this chapter can be opened from a number of different contexts
within SNiFF+.
Dialogs with unique contexts, that is, those that are opened from only one tool, are described
in the corresponding tool description chapter of this manual.

� Open Project dialog — page 26

� Choose Symbol dialog — page 30

� Find/Change dialog — page 30

� Target dialog — page 32

� Check In dialog — page 34

� Check Out dialog — page 35

� Differences dialog — page 36

� Lock dialog — page 37

� Unlock dialog — page 37

� Directory Dialog (Unix) — page 38

� Directory Dialog (Windows) — page 39

� File Dialog (Unix) — page 40

� Project File dialog (Unix) — page 41

� Project File dialog (Windows) — page 43

� Print dialog — page 44

� Licenses dialog — page 45
eference Guide 25

Chapter 3 Common Dialogs Open Project dialog
Open Project dialog
You can open projects in the current Working Environment with the Open Project dialog.
The dialog appears when, in the Working Environments tool, you

� double-click on a Working Environment or

� choose the File > Open Project menu command.

The dialog also appears when, in the Launch Pad’s Working Environment tab, you

� double-click on a Working Environment

Projects in the Project List are listed alphabetically. The project name is followed (in paren-
theses) by the path relative to the root directory.

Note

When you open this dialog for the first time, it is initially empty. To popu-
late the dialog with projects, press the Update button. Also changes
(new or removed projects) will only be reflected after you press Update .
26 SNiFF+

Re

Open Project dialog
Typeface in the Project List

Mouse clicks

� Double-click on an item in the Project List to open the project in the working environment
selected in the Working Environments tool.

Working Environment drop-down

Use the Working Environment drop-down to constrain the Project List.

Typeface Project is

Bold writable in the current working environment

Non-bold read-only in the current working environment

Italics located in a shared working environment

Non-italics located in the current Private Working Environment

Grayed not at specified location

List entry Description

All Shows all projects in the hierarchy tree of the current working en-
vironment. The displayed Project List is also subject to the selec-
tions in Filter check boxes.

Other entries Constrains the list to individual working environments in the hier-
archy tree of the current working environment. The displayed
Project List is also subject to the selections in Filter check boxes.
ference Guide 27

Chapter 3 Common Dialogs Open Project dialog
Filter check boxes

Selected check boxes filter the entries in the Project List

Opening Mode check boxes

Selected Opening Mode check boxes determine what data is used in opening the project.

Writable Shows all projects that are writable in the current working envi-
ronment. The displayed Project List is also subject to the selec-
tion in Working Environment drop-down and the other Filter
check boxes. Default: selected.

Read only Shows all projects that are read-only in the current working envi-
ronment. The displayed Project List is also subject to the selec-
tion in Working Environment drop-down and the other Filter
check boxes. Default: selected.

Accessed Shows also the projects in accessed working environments. Note
that the Accessed filter button is only effective when you choose
All in the Working Environment drop-down. Default: not select-
ed.

With Symbols Opens projects with symbol information. For browsing and day-to-day
development work, enable this check-box. If you do not need symbol in-
formation, e.g. to open large projects for making structural changes,
clear this check box. Also, if you are using the database-driven cross
reference system, and X-Ref databases are locked, projects can still be
opened without symol information by deselecting this check box.
Default: selected.
28 SNiFF+

Re

Open Project dialog
Buttons

Use Cache When projects are closed, all necessary information for re-opening them
is cached in a single file to speed up project opening. If Use Cache is
selected, only this file is read. If not, all and the original Project Descrip-
tion Files (PDFs) are read, and all source files are checked.
Caution: The cached information can be incorrect if (1.) changes are
made to projects and files between SNiFF+ sessions, that is, outside of
SNiFF+, or (2.) if the preceding SNiFF+ session was terminated unex-
pectedly. Default: not selected.

Open X-Ref-DB
Read Only

Applies only if the database-driven cross reference system is used.
The option is only available for the first Project to be opened in a given
Working Environment.
As soon as the first Project has been opened with Read Only database
access, all subsequent Projects can also only be opened with Read
Only database access in the current Working Environment and current
SNiFF+ session. Default: not selected.

Open Opens the project selected in the Project List.

Update Recursively checks for new projects, starting from the root direc-
tory of the current working environment and updates the Project
List with the latest information. If the current working environ-
ment is a Private Working Environment, a dialog asks whether
the accessed shared working environments should also be
checked.

Open Other Opens the Project File dialog, in which you can open a project
other than those listed in the Project List.
ference Guide 29

Chapter 3 Common Dialogs Choose Symbol dialog
Choose Symbol dialog
The dialog appears when you choose Show > Symbol(s) symbol... or otherwise request a
symbol, and multiple matches for symbol are found.

Check boxes

Buttons

Find/Change dialog
To open the Find/Change dialog, choose the Edit > Find/Change... menu command.
The Find/Change dialog allows finding and changing strings and supports regular expres-
sions. An overview of regular expressions is provided under Regular Expressions in SNiFF+
— page 307.

Scan only included
files

Displays only those symbols that are defined in included files of
the current file.

Show listing of files Displays the file name and project name where the symbol is lo-
cated.

Definition Jumps to the definition of the selected symbol.

Implementation Jumps to the implementation of the selected symbol. A dou-
ble-click on a symbol has the same effect as pressing the
Implementation button.

List of choices
depending on the Scan
only included files
check box setting.
Double-clicking an
entry positions you to
the implementation

Select to
consider
only
symbols of
included
files

Select to display file
and project names
30 SNiFF+

Re

Find/Change dialog
You cannot modify read-only files in the Find/Change dialog.

Edit fields

Direction group

Options group

Change All Scope group

Find Describes the text that is to be found. It may contain regular expres-
sions. When the Find/Change dialog is started from a text with high-
lighted text, this selection is automatically entered into the Find field.

Change Text that replaces a match when the Change and Find or Change All
is pressed.

Forward/
Backward

Search direction. The search begins at the current cursor position.

Ignore Case Specifies whether the search should be case-sensitive or not.

Match Whole
Word

Specifies whether the search string should match a whole word.

All of
Document/
Selection Only

Specifies whether the scope of the search is the whole document or just
the currently active selection. Option only applies to Change All .

The search was unsuccessful
ference Guide 31

Chapter 3 Common Dialogs Target dialog
Buttons

Target dialog
In the Target dialog, you can perform operations on custom or temporary targets, as well as
on the targets that are specified in the project attributes.
To open the Target dialog, select Target Dialog... in the Target menu of the Source Editor,
Project Editor or Shell.

Find Next Triggers the search for the next match.

Change and
Find

Replaces the current selection with the change string, then starts a new
search.

Change All Changes all occurrences of the find string in the current change scope
to the text entered in the Change field.

Close Closes the Find/Change dialog.

Enter either an absolute or
relative path for the custom
target

Select which type of targets are
displayed by pressing the
corresponding buttons

Enter arguments for the Run
and Debug buttons here

Target
List:
targets
listed by
type

Enable to show
compiler
directives during
make

Argument History pop-up menu

Press to cancel and close dialog

Highlight a target in the Target List and select to
execute make recursively in all of the
subdirectories that are defined in the project’s
makefile

Targets
of check-
marked
projects
are listed
32 SNiFF+

Re

Target dialog
Buttons

Adding arguments to the Argument History pop-up menu

You can quickly add an argument to the Argument History drop-down by entering the argu-
ment in the Args field and then pressing either <Return> or <Tab> .

Recursive make switch

When you highlight a target in the Target List and select this check box, Make is recursively
executed in all of the subdirectories that are defined in the SUBDIRSmacro of the makefile
of this target. By default the SUBDIRS macro is set to the SNIFF_SUBDIRS macro
(defined in the macros.incl make support file).

Make Starts a Shell and makes the target that you selected from the Target
List.

Run Runs the target that you selected from the Target List.
You can enter arguments for the Run command in the Args field or you
can use the Argument History pop-up menu to select a previously
used argument.

Debug Starts the Debugger. You can enter arguments for the Debug com-
mand in the Args field or you can use the Argument History pop-up
menu to select a previously used argument.
Note : When you select a target from the Target List, the Run and De-
bug buttons are enabled only if the selected target exists in your file
system and is executable.

Add Adds the name of the target in the Custom Target field to the Target
List. Note that the custom target is added to the root project of the
Project Tree.

Remove Removes the currently selected target from the Target List.

Close Cancels the operation and closes the dialog.
ference Guide 33

Chapter 3 Common Dialogs Check In dialog
Check In dialog
The Check In dialog appears when you choose File > Check In... menu command.

Check boxes

New Branch When you select this check box, a field where you can enter the name
of a new branch appears. SNiFF+ will automatically give the new
branch’s name the prefix HEAD_. The version number (or associated
configuration name) you enter will be the point at which the new branch
starts, and the file that you are checking in will be the first version of the
new branch.

Note

For the SCCS version control system, you have to create branches in
the Check Out dialog. As a result, the Check In dialog for SCCS does
not contain the New Branch check box.
Some version control tools do not allow you to check in unmodified files.
Please refer to your tool’s documentation for details.

Version to be checked in (HEAD means latest)

Name of the change set to be associated with the file(s) that you
are checking in (optional)

Descriptive text for the version that you are checking in

This field appears when you select the New Branch check box

Select to compare the working file to the latest version. A warning
is given if there are no differences
34 SNiFF+

Re

Check Out dialog
Check Out dialog
The Check Out dialog appears when you choose File > Check Out... menu command.

To check out a file, enter its version number. Alternatively, you can also click the associated
configuration name of a version from the Configuration List on the right. The list also contains
branch configuration names. Note that configuration names that begin with HEAD_refer to
branches.

Check
Difference

Press to check whether the contents of the file that you are checking in
are different from the current HEAD version. If the file has not been
modified, you will be informed by the following dialog.

Check In button Checks in the unmodified file(s) with a new version number.

Unlock button Unlocks the unmodified file(s) to make them available to other team
members without assigning a new version number.

Repeat check
box

If Repeat is selected, the command button action is applied to all affect-
ed files.

Configuration List

HEAD is the default version
ference Guide 35

Chapter 3 Common Dialogs Differences dialog
SNiFF+ uses your Default Configuration to enter the default version of the file in the Version
field. See also Default Configuration — page 150

Differences dialog
The Differences dialog appears when you choose the File > Show Differences... menu
command.

Exclusive Lock Checks out the specified version of the file to the Private Working Envi-
ronment and puts an exclusive lock on the file in the version tool. An ex-
clusive lock means that nobody else can lock the same version. The
working file status is set to writable.

Concurrent
Lock

Checks out the specified version of the file to the Private Working Envi-
ronment and locks the file in the version tool in such a way that others
can also lock the same branch of the file. The working file status is set
to writable. For systems like RCS that do not support concurrent lock-
ing, no lock is set at all. Only the first developer who checks in a concur-
rently locked file can directly check in the file — all others have to
merge their versions back instead of checking them in.

No Lock Checks out the specified version of the file to the Private Working Envi-
ronment. The status of the working file is set to read-only. No lock is set
on the file.

Note

For the SCCS version control system, the Check Out dialog contains the
New Branch check box for creating a branch from the version of the file
that you are checking out. However, due to limitations in SCCS, you
cannot attach a symbolic name to head versions of branches.
36 SNiFF+

Re

Lock dialog
Radio buttons

Lock dialog
The Lock dialog appears when you choose the File > Lock... menu command.

To lock a file, enter its version number. Alternatively, you can also click the associated config-
uration name of a version from the Configuration List on the right. The list also contains
branch configuration names. Note that configuration names that begin with HEAD_refer to
branches.
SNiFF+ uses your Default Configuration to enter the default version of the file in the Version
field. See also User’s Guide — Default Configuration — page 150.

Unlock dialog
The Unlock dialog appears when you choose the File > Unlock... menu command.

WORK Refers to a working file. If the working file exists in a Private Working
Environment, WORK refers to it. Otherwise, WORK refers to the
shared file in the shared working environment.

SHARED Refers to the version of the shared file in the shared working envi-
ronment.

Default
Configuration
(here HEAD)

Refers to the default configuration of the file. This version will not be
the same as the SHAREDversion if a member of your team has
checked out the file, modified it and then checked it in again.

Note

If you select the SHARED radio button for the Version Right field, you
must select WORK for the Version Left field.

Configuration List

HEAD is the default version
ference Guide 37

Chapter 3 Common Dialogs Directory Dialog (Unix)
To unlock the file, enter its version number. Alternatively, you can enter the associated
configuration name of a version.
SNiFF+ uses your Default Configuration to enter the default version of the file in the Version
field. See also User’s Guide — Default Configuration — page 150.

Directory Dialog (Unix)
The Directory dialog allows the selection of a directory.

The Directory Name field expands shell metacharacters like '~' and $variables . You
can enter a directory by either pressing <Return> or the Open button.
Entering a C-shell regular expression in the Filter field and pressing the Update button filters
the list to only those entries that match the filter.

Directories menu

The Directories menu lists the most recent active directories. Choosing an entry from the list
opens that directory and displays its contents in the Directory List.
To remove entries, choose Options > Edit Directories .

List of files and directories:
Pressing a sequence of keys positions the list
to the first entry that matches the sequence

Selects highlighted
directory

Opens
highlighted
directory

The Directories menu contains a history of
the selected directories.
You can use the Options menu to create
directories, remove entries from the
Directories menu and select whether to
display hidden files

You can use the Directory drop-down to
navigate up the directory hierarchy to the
root

You can enter a shell pattern for filtering the
list of directories

Updates the list to reflect the current files and
directories in your file system
38 SNiFF+

Re

Directory Dialog (Windows)
Options menu

The Options menu lets you configure entries for the Directories menu, create directories,
and select whether hidden files are displayed.

Directory drop-down

The Directory drop-down shows the list of directories in the path from the current directory to
the root. You can click on any directory in the path to enter it.

Buttons

Directory Dialog (Windows)

Open Opens the highlighted directory and displays its contents in the Directo-
ry List.

Select Selects the opened directory and closes the Directory dialog.

Update Updates the File List (useful when new files are externally created or
deleted while the Directory dialog is open or when a regular expression
is entered into the Filter field).

The Options menu lets you
configure entries for the Directories
menu, create directories, and select
whether hidden files are displayed.

The Directories menu lists the most
recent active directories. Choosing
an entry from the list opens that
directory and displays its contents in
the Directory List.
To remove entries, choose
Options > Edit Directories .
ference Guide 39

Chapter 3 Common Dialogs File Dialog (Unix)
File Dialog (Unix)
The File dialog is opened on save and load file operations.

The Open File Named field expands C-shell metacharacters like '~' and $variables .
Pressing <Return> in the text field selects the Open button.
Entering a C-shell regular expression in the Filter field and pressing the Update button filters
the list to only those entries that match the filter.

Files menu

The Files menu lists the most recently opened files. Choosing a file from the list opens the
selected file and then closes the File dialog. Files marked by a button remain in the list until
they are removed in the options menu.

Directories menu

The Directories menu lists the most recent active directories. Choosing an entry from the list
updates the directory.

Options menu

The Options menu serves to configure entries for the Files and Directories menus and
allows creation of a new directory.
The Create Directory directory command creates directory in the current directory. This
entry is only enabled if directory is entered in the editable text field.

List of files:
Pressing a sequence of keys positions the
list to the first entry that matches the
sequence

The Files menu holds a list of the most
recently used Files.
The Directories menu contains a history of
the selected directories.
Use the Options menu to create directories
and to configure the other menus.

Use the Directory drop-down to go up the
directory hierarchy

You can enter a shell pattern for filtering
the list of directories

Updates the list to reflect the current files
and directories in your file system
40 SNiFF+

Re

Project File dialog (Unix)
Directory drop-down

The Directory drop-dpwn shows the list of directories in the path from the current directory to
the root. You can click any directory in the path to open it.

Update Button

Updates the File List (useful when new files are created or deleted while the File dialog is
open or when a regular expression is entered into the Filter field).

Project File dialog (Unix)
The Project File dialog appears whenever you want to open project description files (PDFs).
It is very similar to the normal File dialog, except that it provides special options for opening
PDFs.

Disable to open the project
without loading its symbol
information

File List:
press a sequence of keys to position
the list to the first entry that matches
the sequence. Press <ESC> to restart
the sequence

You can also use the up/down arrow
keys

Directories menu remembers the
history of selected directories. Files
menu remembers opened files.
Options menu can be used to create a
directory

Directorydrop-down allows you to go
up in the hierarchy

You can enter a shell pattern to filter
the list of directories

PDFs are
listed first,
then
directories

Other files
are grayed
out
ference Guide 41

Chapter 3 Common Dialogs Project File dialog (Unix)
Check boxes

Buttons

Files menu

The Files menu in the Project File dialog is slightly different from the one in the File dialog. In
the Project File dialog, the Files menu displays the relative paths of (shared) projects.
When you select a PDF (Project Description File) in the Files menu, SNiFF+ first tries to
open the project in your Private Working Environment. If the PDF is not located there,
SNiFF+ searches for it in the shared source working environment. To override this default
behavior of SNiFF+, type in the path of the PDF (in the field right above the Open button).

Directories menu

See Directories menu — page 40.

With Symbols Opens projects with symbol information. For browsing and day-to-day
development work, enable this check-box. If you do not need symbol in-
formation, e.g. to open large projects for making structural changes,
clear this check box. Default: selected.

Use Cache When projects are closed, all necessary information for re-opening them
is cached in a single file to speed up project opening. If Use Cache is
selected, only this file is read. If not, all and the original Project Descrip-
tion Files (PDFs) are read, and all source files are checked.
Caution: The cached information can be incorrect if (1.) changes are
made to projects and files between SNiFF+ sessions, that is, outside of
SNiFF+, or (2.) if the preceding SNiFF+ session was terminated unex-
pectedly. Default: not selected.

Open X-Ref-DB
Read Only

Applies only if the database-driven cross reference system is used.
The option is only available for the first Project to be opened in a given
Working Environment.
As soon as the first Project has been opened with Read Only database
access, all subsequent Projects can also only be opened with Read
Only database access in the current Working Environment and current
SNiFF+ session. Default: not selected.

Open Opens the selected project in the current working environment.

Update Updates the File List (which is useful when new files are created or de-
leted while the Project File dialog is open or when a regular expression
is entered into the Filter field).
42 SNiFF+

Re

Project File dialog (Windows)
Options menu

See Options menu — page 40.

Project File dialog (Windows)

Check boxes

With Symbols Opens projects with symbol information. For browsing and day-to-day
development work, enable this check-box. If you do not need symbol in-
formation, e.g. to open large projects for making structural changes,
clear this check box. Default: selected.

Use Cache When projects are closed, all necessary information for re-opening them
is cached in a single file to speed up project opening. If Use Cache is
selected, only this file is read. If not, all and the original Project Descrip-
tion Files (PDFs) are read, and all source files are checked.
Caution: The cached information can be incorrect if (1.) changes are
made to projects and files between SNiFF+ sessions, that is, outside of
SNiFF+, or (2.) if the preceding SNiFF+ session was terminated unex-
pectedly. Default: not selected.

Open X-Ref-DB
Read Only

Applies only if the database-driven cross reference system is used.
The option is only available for the first Project to be opened in a given
Working Environment.
As soon as the first Project has been opened with Read Only database
access, all subsequent Projects can also only be opened with Read
Only database access in the current Working Environment and current
SNiFF+ session. Default: not selected.
ference Guide 43

Chapter 3 Common Dialogs Print dialog
Files menu

The Files menu in the Project File dialog is slightly different from the one in the File dialog. In
the Project File dialog, the Files menu displays the relative paths of (shared) projects.
When you select a PDF (Project Description File) in the Files menu, SNiFF+ first tries to
open the project in your Private Working Environment. If the PDF is not located there,
SNiFF+ searches for it in the shared source working environment. To override this default
behavior of SNiFF+, type in the path of the PDF (in the field right above the Open button).

Directories menu

See Directories menu — page 40.

Options menu

See Options menu — page 40.

Print dialog

In the Print dialog, you can choose from among the available Windows printers. You can set
the properties of the printers in the Print Manager (from the Windows Control Panel).

A File dialog is opened
44 SNiFF+

Re

Licenses dialog
Licenses dialog
To open the dialog, choose the Launch Pad’s Help(?) > Licenses... menu command.
The Licenses dialog displays information about the floating license server and opens auto-
matically when there is a problem in connecting to the license server process.

For information on obtaining and installing a licenses, please refer to the SNiFF+ Installation
Guide.

License Info View:
Shows information about
the license server and the
currently active licenses

Updates the License Info
View
ference Guide 45

Chapter 3 Common Dialogs Licenses dialog
46 SNiFF+

R

4Class Browser

Introduction
The Class Browser shows the locally defined and inherited members of a class or structure.
It provides a wide range of filtering possibilities based on the inheritance, visibility and type of
the members.
The content of the list is determined by the settings of the Inheritance Graph view at the
bottom of the tool, the Filter field and the various semantic filters. To browse a class, either

� click on a class in an open tool and choose Class > Browse class from the menu, or

� choose Tools > Class Browser and enter the name of the class in the Name field.
eference Guide 47

Chapter 4 Class Browser Quick Reference
Quick Reference

Icons in the Member List

Icon colors in the Member List

Typeface in the Member List

� Typeface in the Member List corresponds to text highlighting in the Source Editor (you
can set this in your Preferences).

� If members are shown in gray, this means that the member is not visible in the class being
browsed.

Public Member

normal

virtual

is overridden

overrides

is overridden and overrides

static

Color Visibility

yellow public

blue protected

gray private
48 SNiFF+

Re

Quick Reference
Typeface in the Inheritance Graph

Mouse clicks in the Inheritance Graph

� <CTRL>click on the name (not the checkbox) of a class lists members of that class only;
members of all other classes are hidden.

Typeface Class

Normal does not have members that fulfill current filter criteria

Bold has members that fulfill current filter criteria

Italics is abstract
ference Guide 49

Chapter 4 Class Browser Basic components
Basic components

Name Field

Enter the name of a class you want to Browse.

Member List

For a description of the icons used in the Member List, please see Quick Reference — page
48.
The Member List is determined by the settings of the various filters. The icons show
attributes of class members.

Inheritance Graph

For a description of the typeface and mouse clicks in the Inheritance Graph, please see
Quick Reference — page 48.
The Inheritance Graph shows the graph consisting of the browsed class and its base
classes. Select/clear the checkboxes in the graph to show/hide members of classes.

Filters
A number of filtering controls are provided at the top of the tool. Individual selections are
possible in the various drop-downs and the Overridden check box, multiple combinations of
filters can be selected using the Filters dialog.

Filters... Button

The Filters... button opens the Filters dialog, where you can select multiple combinations of
filters.

The Filters Dialog

� The Apply button applies the selected filters and leaves the dialog open.
50 SNiFF+

Re

Filters
� The Ok button applies the selected filters and closes the dialog.

The Class Browser’s Filters dialog has four tabs, the elements in the tabs correspond to
those in the drop-downs on the tools.
If multiple combinations are selected, the corresponding drop-downs show the entry,
Filtered... .
Selecting Filtered... in a drop-down opens the Filters dialog.

Overridden Check Box

Also overridden members are shown when the check box is selected.

Symbols drop-down

The Symbols drop-down specifies the type of symbols shown in the Member List.

All Symbols Shows all members.

Filtered... Means that multiple selections were made in the Filters dialog. Se-
lecting the Filtered... entry itself opens the Filters dialog.
ference Guide 51

Chapter 4 Class Browser Filters
Visibility drop-down

The Visibility drop-down filters the symbol list according to the visibility of the members as
seen from the class currently being browsed.

Modifiers drop-down

The Modifier drop-down filters the symbol list according to modifiers. Note that this includes
also implicit modifiers, e.g., overriding or overloaded methods.

Filter field

Enter a Regular Expression here and hit <Return> to filter accordingly. See also Regular
expression filters — page 11

public Shows only public members.

protected Shows only protected members.

local private Shows only local private members, that is, those visible within the
class being browsed.

invisible private Shows also private members of other classes, that is, also those that
are not visible from the class being browsed.

All Shows members of the classes checkmarked in the Inheritance
Graph.

Filtered... Means that multiple selections were made in the Filters dialog. Se-
lecting the Filtered... entry itself opens the Filters dialog.

All Modifiers Shows all members.

no modifiers Shows only members without modifiers.

Filtered... Means that multiple selections were made in the Filters dialog. Se-
lecting the Filtered... entry itself opens the Filters dialog.

Language-specific
modifiers

Shows only members modified by the selected modifier.
52 SNiFF+

Re

Status Line
Status Line

Frozen check box

The Frozen check box is described under Status line — page 12.

Signature

If the Signature check box is selected, the complete signature of each the member is
displayed. This makes it possible, for example, to distinguish between overloaded methods.

Menus

Info menu

Please refer to Info menu — page 20.

Class menu

Please refer to Class menu — page 22.

History menu

Please refer to History menu — page 23.

Help (?) menu

Please refer to Help (?) menu — page 23.
ference Guide 53

Chapter 4 Class Browser Menus
54 SNiFF+

R

5Configuration Manager

Introduction
The Configuration Manager gives a structural and file-based overview of the changes
between two configurations. You can also use it to create and manage branches.
eference Guide 55

Chapter 5 Configuration Manager Quick Reference
Quick Reference
These icons are used to represent the types of changes between two configurations

Icon Description

A change set.

A single unnamed version change on the branch selected in the Configuration
List.

The difference between two file versions, where each version is part of a config-
uration, and each configuration is on a different branch.

A single unnamed version change on the branch selected in the Compared To
List.

A single unnamed version change on the branch selected in the Configuration
List. The file has also been modified on the branch selected in the Compared To
List.

A new file added to a branch.

A removed file.

A version of a file that is part of the configuration selected in the Configuration
List.

A single unnamed backward version change on the branch that is selected in the
Configuration List.

A new version of a file that is the same as the last version.

Head version of a branch.
56 SNiFF+

Re

Basic components
Basic components

Configuration List and Compared To List

The Configuration List and Compared To List show all available configurations of the
selected projects in the Project Tree. If only one configuration is selected in the Configuration
List, the File List shows all the files and versions that are part of this configuration. If two
configurations are selected (one in the Configuration List and one in the Compared To List)
the Change List and the File List show the differences between those two configurations. The
configurations can be ordered by date or name.

Change List

For a description of the icons used in the Change List, please see Quick Reference — page
56.
The Change List displays the changes between two configurations selected in the Configura-
tion List and Compared To List. An entry in the Change List can have one of a number of
forms, depending on the type of change it represents. For example, the following entry repre-
sents a single, unnamed change on a branch that is selected in the Configuration List:

All entries start with a change icon. This icon indicates the type of change made to files in the
two configurations. The change icon is followed by the name of the file affected by the
change. Depending on the type of change, the name of the file is followed by either two
version numbers, one, or none.
The following diagram shows how the icons on page 56 are used if two configurations on one
branch are selected:

Change icon
Name of file

Old version > new version
ference Guide 57

Chapter 5 Configuration Manager Basic components
The following diagram shows how the icons on page 56 are used if two configurations on two
different branches are selected:

Sorting the Change List with the option buttons

You can use the Date and Name option buttons to sort the Change List:
Date Sorts the Change List according to the date (default).
Name Sorts the Change List according to the name of the entries. Multiple modifications to a
single file are displayed collectively showing just a single line for each file and the version
number range (e.g., 1.5 > 1.13).

File List

If a configuration is selected in the Configuration List, the File List displays all the files and
versions that belong to the selected configuration. If a change is selected in the Change List,
the File List displays all the files and versions that belong to that change. This is especially
interesting for change sets, which usually contain a number of files. For a discussion on how
to manage change sets, please refer to Version Control — page 145.

Project Tree

The Project Tree can be used to filter the Configuration List, Change List and File List. Only
entries of checkmarked projects are shown in the lists. The same Project Tree commands as
in the other tools are also available in this Project Tree. See also The Project Tree Context
menu — page 24.
58 SNiFF+

Re

Status Line
Change Type drop-down

You can select what type of changes to display with the Change Type drop-down

Change Sets check box

The Change Sets check box determines whether change sets are displayed in the Change
List or not.
If the check box is enabled, change sets are displayed and the changes to the individual files
that are part of the change sets are not displayed.
If the check box is disabled, file changes are displayed together with version numbers and
change sets are not displayed.

History information

The lower right corner of the Configuration Manager displays information about the entry
selected in the Change List or File List.

Status Line

Frozen check box

The Frozen check box is described under Status line — page 12.

all Displays all changes.

change sets Displays only change sets.

different branches Displays only the differences between two branched configura-
tions (shown by the icon).

new files Displays files that have been added

removed files Displays files that were removed to a branch. Note that SNiFF+
does not maintain information on files that have been physically
removed from projects.

Author Displays the author of the selected change.

Date Displays the check-in date of the selected change/version.

Comment Displays the comment that has been checked in together with the
selected change/version. If a file is selected, the file description is
displayed.
ference Guide 59

Chapter 5 Configuration Manager Menus
Hidden Symbols check box

When this check box is enabled, deleted versions of files are displayed in italics in the
Configuration Manager and Project Editor, and menu items relating to file versions are
disabled for deleted file versions.

Menus

File menu

These commands are enabled only when you select a version of a file in the File List

Files menu command Description

Show File Loads the file into a Source Editor.

Check Out... Opens the Check Out dialog, in which you can select
the version of the file that you want to check out.

Delete Version... Opens a Delete Version dialog, in which you can de-
lete the version that is selected in the File List.
If a version is selected in the Version Tree, this ver-
sion is filled in as the default value of the dialog’s Ver-
sion field. If no version is selected in the Version Tree,
SNiFF+ uses the Default Configuration of the working
environment in which you opened the project (see Us-
er’s Guide).

Replace Comment... Opens a Replace Comment dialog, in which you can
change the comment of the version that is selected in
the File List.

Show History Info Opens a Project Editor and shows the history informa-
tion of the selected file. If a Project Editor is already
open (and its Frozen check box is not enabled), it is
used to show the history information of the selected
file.
60 SNiFF+

Re

Menus
Configuration menu

Configuration menu command Description

Show 3-Way Differences Shows the three-way differences between the configu-
rations selected in the Configuration and Compared
To Lists with respect to the common ancestor configu-
ration. The two selected configurations must be locat-
ed on different branches

Merge Branch Configuration... Merges the second configuration into the first one.
This command checks out and locks the first configu-
ration and merges the files of the second configuration
into the newly checked-out files. The Diff/Merge tool is
opened with a list of all files to be merged. This com-
mand checks whether the second configuration is a
branch configuration of the first before checking out
the files.

Check Out Configuration... Opens a dialog for checking out the configuration that
is selected in the Configuration List. After pressing
one of the lock buttons, all files belonging to the con-
figuration are checked out.

Freeze Head... This menu entry appears in the Configuration menu
when HEAD is selected in the Configuration List.
When you choose this command, a Freeze Head dia-
log appears.
After you press Ok, all HEADversions of the main
branch will have the configuration name that you en-
tered in this dialog.

Freeze Default Configuration... When you choose this command, a Freeze Default
Configuration dialog appears.
After you press Ok, the default configuration of all ver-
sions of the main branch will be saved under the con-
figuration name that you entered in this dialog.
ference Guide 61

Chapter 5 Configuration Manager Menus
Freeze Head Of... This menu entry appears in the Configuration menu
when the HEADconfiguration of a branch is selected
in the Configuration List. When you choose this com-
mand, a Freeze Head Of dialog appears.
After you press Ok, all HEADversions of the branch
will have the configuration name that you entered in
this dialog. Note that only files that are part of the se-
lected configuration will be frozen.
The Freeze Head Of... command is disabled for the
SCCS version control system.

Freeze Configuration As This menu entry appears in the Configuration menu
when a non-HEAD configuration is selected in the
Configuration List. When you choose this command, a
Freeze Configuration As dialog appears.
After you press Ok, all configurations that are associ-
ated with the selected configuration will have the con-
figuration name that you entered in this dialog. Note
that only files that are also part of the selected config-
uration will be frozen.

Rename Configuration... Opens a Rename Configuration dialog, in which you
can rename the configuration that is selected in the
Configuration List.
After you press OK, the selected configuration is re-
named.

Delete Configuration Name... Opens a dialog in which you are asked to confirm the
deletion of the configuration that is selected in the
Configuration List. After you press Ok, the selected
configuration name is deleted.
Note that the Delete Configuration Name... com-
mand deletes only the configuration name from the re-
pository and does not delete any versions or files that
are associated with it.

Configuration menu command Description
62 SNiFF+

Re

Menus
Differences menu

These entries are enabled when you select a change from the Change List

Differences menu command Description

Show Differences... Opens a Show Differences dialog, in which you can
specify the type of differences (2-way or 3-way) to be
displayed between the entries selected in the Change
List and the Configuration List:
2-Way — Opens a Diff/Merge tool which shows the
differences between the versions of the entry that is
selected in the Change List.
3-Way — Opens a Diff/Merge tool which shows three-
way differences between the versions of the entry that
is selected in the Change List with respect to their
common ancestor.
Cancel — Cancels the command and closes the dia-
log.

Merge Differences... Opens a Merge Differences dialog, in which you can
specify the type of differences (2-way or 3-way) be-
tween the selected entries in the Change List and the
Configuration List that are to be merged:
2-Way Merge — Opens a dialog for checking out the
files of the configuration that is selected in the Config-
uration List. The Diff/Merge tool then appears and the
differences between the working file (checked out file)
and the entry that is selected in the Change List are
displayed.
3-Way Merge — Opens a dialog for checking out the
files of the configuration that is selected in the Config-
uration List. The Diff/Merge tool then appears and the
3-way differences between the working file (checked
out file), the entry selected in the Change List, and
their common ancestor are displayed.
Cancel — Cancels the command and closes the dia-
log.

Show All Change Set Displays the change sets of all of the configurations in
the Change List.

Check Out... Opens a Check Out dialog for checking out the entry
that is selected in the Configuration List. If the entry is
a change set, all file versions that are part of the
change set are checked out.
After you press one of the lock buttons, the files that
are part of the configuration are checked out.
ference Guide 63

Chapter 5 Configuration Manager Menus
View menu

Please refer to View menu — page 23.

Rename Change Set... Opens a Rename Change Set dialog, in which you
can rename the selected change set.
After you press Ok, the selected change set is re-
named.

Delete Change Set Name... Opens a dialog in which you are asked to confirm the
deletion of the change set that is selected in the
Change List. After you press Ok, the name of the se-
lected change set is deleted. The Delete Change Set
Name... command deletes only the name of the
change set from the repository and not any versions or
files that are associated with it.

Differences menu command Description
64 SNiFF+

R

6Cross Referencer

Introduction
The Cross Referencer provides symbol cross reference information. All kinds of cross refer-
ences, including call graphing, can be visualized.
Basically, the Cross Referencer offers three kinds of symbol cross references:

� Function body cross referencing — Displays all symbols that a symbol refers to or dis-
plays all symbols that are referred to by another symbol. Call graphing is a special case of
function body cross referencing in which the graph is filtered to show only functions and
method calls. Another example of function body cross referencing is a query where all
symbols are displayed that access a variable in write mode. Questions like: “Which sym-
bols are referenced by this function?” or “Who calls this method?” or “Who accesses this
variable in write mode” can be answered.

� Component analyzing — Displays all types that are components of other types, or dis-
plays all classes or structures that have a type as a component. An example of a special
case component query is to show all types that have a primitive C data type as a compo-
nent. Questions like: “What are the components of this class displayed to level 5?” or
“Who has an instance variable that points to this type?” or “What classes have integer
instance variables?” can be answered.

� Interface cross referencing — Displays all types that are part of a type's interface, i.e.
that are either a return or a parameter type, or displays all types that use another type in
their interface. Questions like: “Who returns a character pointer?” or “Who uses an
instance of the object in its parameter list?” or “What are the return and parameter types of
this class?” can be answered.
eference Guide 65

Chapter 6 Cross Referencer
The Cross Referencer can be opened from the Tools menu or by using the four query
commands in the Info menu.
66 SNiFF+

Re

Quick Reference
Quick Reference

Typeface in the Graph view

Mouse clicks in the Graph view

� Click on a symbol node to show it in the integrated read-only Code view.

� Double-click on a symbol node to open a Source Editor positioned at the symbol.

� <SHIFT>click on a symbol node to show the reference in the integrated read-only Code
view.

� <SHIFT>double-click on a symbol node to open a Source Editor positioned at the refer-
ence. The Source Editor can then step through subsequent references with the

Show > Next Match menu command.
With a <SHIFT>double-click on the first node in a reference list, you can then step
through all of the references in the Source Editor.

� <CTRL>double-click shows the declaration of the selected symbol in the Source Editor.

� <SHIFT><CTRL>double-click. If a Source Editor is already open, this command freezes
the already opened editor and shows the reference in a new Source Editor.

Abbreviations

Access Indicators

Typeface Symbol

Normal appears once in the Graph view

Italics appears more than once in the Graph view

Access indicator Access mode

r Read

w Write

H Used as component type (has-a relationship)

P Used as a parameter type

R Used as return value type
ference Guide 67

Chapter 6 Cross Referencer Quick Reference
Type Indicators

Type indicator Symbol type

cl Class

cd Constructor or destructor

iv Instance variable

me Method

f Function

v Global variable

co Constant variable

ma Macro

en Enumeration

ei Enumeration item

td Typedef

te Template

st Structure

un Union

pc Primitive C data type (e.g., char, int, float)

ud Undefined symbol (e.g., the printf function, which is not de-
fined in one of the loaded projects)

bo builtin opertator

bf builtin function
68 SNiFF+

Re

Basic components
Basic components

Graph view

For a description of the abbreviations and typeface used in the Graph view, please see Quick
Reference — page 67.
The Graph view shows the results of cross reference queries. It always has one root symbol
and extends from left to the right. The view shows either forward or backward references
(indicated by arrow icons in nodes). The graph is filtered by the Filter settings. Each node in
the Graph view represents a symbol. The type/access indicator string at the head of each
node shows additional information about the type of the symbol and the kind of reference
(see Access Indicators — page 67 and Type Indicators — page 68).
Each symbol is expanded only once— the graph is therefore actually a tree. A node that
appears repeatedly in the tree is shown in italics to denote that this node has a probable
expansion somewhere else. You can navigate to the expanded node by clicking it in the
Symbol List.

Code view

References to the symbol selected in the Graph view are displayed in the read only Code
view. To jump to the reference in the Source Editor, <CTRL>double-click on the symbol in
the Graph view.

Root Symbol field

You can directly enter a symbol name in the Root Symbol field. When you press <Return> ,
the existing graph is reset and the entered symbol is placed as the new root symbol in the
graph. After that, choose the appropriate reference command from the Info menu.

Symbol List

The Symbol List lists all nodes in the graph in alphabetical order. Multiple nodes in the graph
are only shown once in the list. When a node is selected in the graph, the corresponding
entry in the list is also selected and vice versa.
ference Guide 69

Chapter 6 Cross Referencer Filters
Filters

Filters.. button

This evokes the X-Ref Filter dialog, please refer to X-Ref Filter dialog — page 73.

Project Tree

The Project Tree can be used to limit the displayed references in a subsequent cross refer-
ence query.

Language drop-down

In the Language drop-down, you can choose the language you want to query.

Depth field

The (integer) value in the Depth field specifies how many levels will be expanded during the
next query. Large values naturally result in long query times and large graphs.

Status Line

Frozen check box

The Frozen check box is described under Status line — page 12.

Nodes

Indicates the number of nodes in the Graph view.

Matches

Indicates the number of matches in the Graph view.

Cached Files

Indicates the number of cached files.
70 SNiFF+

Re

Menus
Menus

Edit menu

Show menu

Info menu

Please refer to Info menu — page 20.

Class menu

Please refer to Class menu — page 22.

Edit menu Description

Replace
Referencers of
SymbolName

Starts the Retriever in Replace Only mode where you can globally
change the references.

Show menu Description

Next Match Displays the next reference to the symbol in the Code view. You
can use this command to step through subsequent references.

Reference Opens a Source Editor and is positioned at the reference of the
symbol.

Declaration of
SymbolName

Opens a Source Editor and is positioned at the declaration of the
symbol.

Implementation of
SymbolName

Opens a Source Editor and is positioned at the implementation of
the symbol.
ference Guide 71

Chapter 6 Cross Referencer Menus
View menu

You can use the View menu entries to specify the layout of the Graph view:

History menu

Please refer to History menu — page 23.

Commands Description

Select Project Set The names of the project sets (defined in the Save Project Set dia-
log) are displayed. You can then select the project set that you
want to work with.

Save Project Set You can select a set of projects to view. When the Save Project
Set command is chosen, a Save Project Set dialog is opened in
which you enter a name for the project set. These project sets are
then displayed in the Select Project Set sub-menu.

Remove Project Set Removes the selected project set, displayed with a tick to the left
of it, from the Select Project Set sub-menu.

Filter... Opens the Filter dialog. See also X-Ref Filter dialog — page 73.

Layout > LeftRight Redraws the Graph view, displaying it from left to right (default).

Layout > TopDown Redraws the Graph view, displaying it from top to bottom.

Layout > Indented Redraws the Graph view as an indented list with rectangular con-
necting lines.

Layout > Direct Draws the connecting lines directly (default).

Layout > Diagonal Draws the connecting lines diagonally.

Layout > Orthogonal Draws orthogonal connecting lines.

Start from
SymbolName

Makes the currently selected symbol the root symbol of the graph.
All other nodes are deleted from the graph.

Hide Subnodes of
SymbolName

Hides all subnodes of the selected symbol.

Show Restricted
Tree of
SymbolName

Shrinks the graph in such a way that only parent and subnodes
are displayed. All other nodes are deleted from the graph.

Zoom commands Allows you to zoom in and out.
72 SNiFF+

Re

X-Ref Filter dialog
X-Ref Filter dialog
You can use the X-Ref Filter dialog to set the scope of the query. The dialog is non-modal
and can be opened by doing the following:

� choose View > Filter... or

� press the Filter... button:

Elements Description

Filter Allows you to filter the graph with a regular++++ expression.
The filter settings are used for the next query. For more infor-
mation about regular expressions, see Regular Expressions in
SNiFF+ — page 307.

Function Bodies Defines whether function bodies are to be included in queries.
If enabled, the function body cross reference information is
loaded by SNiFF+. Note that cross reference tables are loaded
incrementally on demand in order to save memory. Function
body cross reference information is not needed for component
or interface cross referencing.

All Overloaded Specifies whether each member of a set of overloaded items
(methods or functions) should be referenced during the next
query. If enabled, all overloaded items are taken into consider-
ation.
If disabled, only one specific overloaded item is referenced.
ference Guide 73

Chapter 6 Cross Referencer X-Ref Filter dialog
Read (r) Specifies whether read accesses to variables should be includ-
ed in the next query. If disabled, no read accesses to variables
will be shown.

Write (w) Specifies whether write accesses to variables should be in-
cluded in the next query. If disabled, no write accesses to vari-
ables will be shown.

Components (H) Defines whether class component (has-a) relationships should
be included in the next query. If enabled, component relation-
ships will also be shown.

Interface (PR) Defines whether class interface usage should be included in
the next query. If enabled, Parameter and Return types will
also be shown.

Save Default Saves your current Filter Settings as the default setting. Note
that if you work in projects with other languages, your settings
will be incorrect.

Load Default Loads the saved default setting. Note that if you work in
projects with other languages, your settings will be incorrect.

Types Specifies which types are to be included in the next query.
Pressing All enables all check boxes; pressing None disables
all check boxes.

Refers-To Starts a Refers-to query.

Referred-By Referred-by query.

Close Closes the X-Ref Filter dialog.

Elements Description
74 SNiFF+

R

7Debugger (Unix and Java)

Introduction
The SNiFF+ Debugger is a graphical front-end to debuggers like gdb, dbx and SNIFF+s
sniffjdb Java debugger. It is integrated into the environment by using the Source Editor to
display the source code and the current stack frame. It forwards all commands to the under-
lying debugger and interprets its output.

Starting the Debugger
The Debugger can be started from the Target dialog and the Tools menu.
Note that the Debugger can be started only if the target name is specified in the project
attributes and the target file exists in the project directory and is executable. See also Build
Options view — page 169
eference Guide 75

Chapter 7 Debugger (Unix and Java) Multiple simultaneous Debugger sessions
Multiple simultaneous Debugger sessions
In SNiFF+, a session refers to a process on UNIX or Windows NT/95. You can have multiple
Debugger sessions running in different SNiFF+ sessions.

Multiple Debugger sessions in different SNiFF+ sessions

If you want to select the same target name in multiple Debugger sessions, you will have to
start new SNiFF+ sessions and launch the Debugger in each of them.

� Start a SNiFF+ session by executing

% sniff -s <sniff_session_name>

on the command line.
<sniff_session_name> is a session id that uniquely identifies each SNiFF+ session.
The session id is a string and cannot contain any blank spaces within it.
If you start SNiFF+ without the -s option, the value of the SNIFF_SESSION_ID
environment variable is used by default for the session id. If SNIFF_SESSION_ID is
not set, session0 is used for the session id. See also SNIFF_SESSION_ID — page
255

� In each SNiFF+ session, open a Source Editor tool and launch the Debugger from it.

� Select the target that you want to debug.

Supported debuggers
This SNiFF+ release supports the following debugging systems:

Platform Debugger & Version

AIX 4.2 gdb 3.x
gdb 4.x
dbx 3.1

Alpha-DEC 3.0 gdb 3.x
gdb 4.x
dbx 3.11.8
decladebug 4.0-7

HP/UX 10.x gdb 3.x
gdb 4.x
dde 3.25A.P1
xdb A.09.01

IRIX 5.3 gdb 3.x
gdb 4.x
dbx 3.19
76 SNiFF+

Re

Selecting a debugger back-end
Selecting a debugger back-end
You select the debugger back-end as well as edit debugger-specific preference settings in
the Platform view of the Preferences. To open the Preferences dialog, choose Tools > Pref-
erences . For more information, please refer to Platform view — page 157.

Status line
The status line of the Debugger differs from the status lines of other tools and does not have
a Frozen button. The Debugger status line has the following elements:

The Debugger can be in one of four possible states:

Linux (ELF) gdb 3.x
gdb 4.x

Sinix 5.43
(Reliant Unix)

gdb 3.x
gdb 4.x
dbx 2.0C

Solaris 2.4 or newer gdb 3.x
gdb 4.x
dbx

Unixware 7 gdb 3.x
gdb 4.x

All platforms Java debugging adaptor

source file Current source file.

exec file Target file name of the executable.

status State of the debugger.

not running The back-end debugger is running, but the application being de-
bugged is not running.

running The application being debugged is running.

stopped The application being debugged has stopped (e.g., due to a break-
point).

idle The Debugger has no debugger back-end process running.

Platform Debugger & Version
ference Guide 77

Chapter 7 Debugger (Unix and Java) Menus
Menus

Tools menu

For a description of the Tools menu, please refer to Tools menu — page 13.

Edit menu

Execution menu

Edit menu command Description

Cut Cuts the current selection to the paste buffer.

Copy Copies the current selection to the paste buffer.

Paste Pastes the paste buffer contents to the current cursor position
or selection. This command is enabled when the paste buffer is
not empty.

Clear Clears the complete Shell buffer.

Show Error Filters the line containing the cursor. If it understands the error
message format, it opens a Source Editor and displays the cor-
responding source code. The section Error formats — page 288
explains how to extend the list of understood message formats.

Execution menu
commands

Description

Next Single-steps over the next function/method.

Step Single-steps into the next function.

Run Runs the application being debugged from scratch. You can enter
arguments for Run in the Program Arguments dialog that appears
when you execute the command.

Cont Continues execution (only enabled if the application is stopped).

Step Out Finishes the current function or method.

Interrupt Interrupts the debugged application process (entry is only enabled
if the application is running). This command is not available for re-
mote debugging.
78 SNiFF+

Re

Menus
Print menu

Display menu

Attach Opens the Process Picker dialog, in which you can choose a pro-
cess from the list of running processes. sniffgdb then attaches
to the chosen process. The Attach command only works if your
debugger back-end supports attaching. This command is not avail-
able for remote debugging.
Note: This command is not supported on Linux platforms.

Print menu
commands

Description

Print selection Displays the value of the current selection in the main view. The
selection must be known in the current stack frame

Print * selection Displays the value of the memory location pointed to by the current
selection in the main view. The selection must be known in the cur-
rent stack frame and must point to a memory location for which the
type is known to the Debugger.

Print
*this>selection

Displays the value of the memory location pointed to by the current
selection in the main view. The selection must be an instance vari-
able of this object and must point to a memory location for which
the type is known to the Debugger.

Print this>selection Displays the value of the selection in the main view. The selection
must be an instance variable of this object.

Print *this Displays all instance variables of this object.

Display menu
commands

Description

Display selection
Display * selection
Display
*this> selection
Display
this> selection
Display *this

Continuously outputs the values of the displayed variables in the
Display tab. Selections and semantics are the same as in the Print
menu (see above). Outputs the values after the next single step
command or program stop.

Execution menu
commands

Description
ference Guide 79

Chapter 7 Debugger (Unix and Java) Tabs
Info menu

Please refer to Info menu — page 20.

Class menu

Please refer to Class menu — page 22.

Tabs

Callstack tab

When the Callstack tab is selected, the following buttons appear
:

Breakpoints tab

The Breakpoints tab displays a list of currently active breakpoints and allows their deletion or
loading of their source code into a Source Editor. When the Breakpoints tab is selected, the
following buttons appear:

Undisplay selection Deletes a variable from the list of displayed variables.

Update Lists all stack frames beginning with the current one and going up
to the main function entry (the list is also called call hierarchy).
Frames for which symbol information is loaded are displayed in
boldface.

Up Goes one stack frame up in the call hierarchy. A reusable Source
Editor is automatically positioned at the source location of the new
stack frame.

Down Goes one stack frame down in the call hierarchy. A reusable
Source Editor is automatically positioned at the source location of
the new stack frame.

Locals Displays all local variables of the current stack frame in the main
view.

Show Loads the source containing the selected breakpoint into a Source
Editor.

Display menu
commands

Description
80 SNiFF+

Re

Dialogs
Display tab

When the Display tab is selected, the following buttons appear:

Dialogs

Process Picker dialog

You can open the Process Picker dialog by choosing Execution > Attach . In the dialog, you
can select a process from the list of currently running user processes. After you have
selected a process, the debugger back-end attaches to it. This command is not available for
remote debugging.

Clear Deletes the selected breakpoint.

Status Displays status information about the breakpoints in the main view.

Undisplay Deletes a variable from the list of displayed variables. The selec-
tion must refer to a displayed variable.

Status Displays status information about the displayed variables in the
main view.

List of currently active user
processes
ference Guide 81

Chapter 7 Debugger (Unix and Java) Dialogs
82 SNiFF+

R

8Diff/Merge tool

Introduction
The Diff/Merge tool allows you to show and merge differences between files and versions of
files. The Diff/Merge tool offers two- or three-way differences. Three-way differences are
important for investigating changes made by two developers to the same file. In such a case
you want to look at the two file versions compared to a common ancestor.
The following illustration shows the Diff/Merge tool displaying the differences between two
versions of a file:

The Diff/Merge tool can also be used for editing files. However, we suggest using the Source
Editor for editing, as it supports many more editing features than the Diff/Merge tool.
eference Guide 83

Chapter 8 Diff/Merge tool Quick Reference
Quick Reference

Merge Button symbols

The following table describes the symbols found on the Merge button.
(In the table, HEADrefers to the latest version of a file as maintained by your version control
tool, and INIT refers to the initial version of the file.)

Symbol background color

In addition, the following background colors have been added to emphasize the above.

Merge button symbol Description

= The changes are the same in both versions. There is no
need to merge anything.

? Here is a conflict. The same lines in both versions have
been changed.

< The version in the right column has changed. The version
in the left column has not changed. If you click on it, the
version in the left column is restored.

: The version in the left column has changed. The version
in the right column has not changed. If you click on it, the
version in the right column is restored (normally you don’t
want this since you will restore the original).

! If the left most file is not writable or if you look at a differ-
ence between versions in the repository, ! is the read only
version of <. This means that clicking on the button has
no effect.

If the left most file is not writable or if you look at a differ-
ence between versions in the repository, # is the read
only version of ?. This means that clicking on the button
has no effect.

Symbol background
color

Description

red CAUTION: Here is a conflict!

green It is advisable to click on the merge button.

black No need to merge anything.
84 SNiFF+

Re

Basic components
Basic components

Header

The Header shows which files and which versions of the files are being compared. If two files
are compared, the header displays the two filenames; if versions are compared, the file-
name and the two versions are displayed (as shown in the illustration below). The special
version WORKdenotes the current working file; the version HEADdenotes the latest version
of the file. A third version that can be used for comparison is SHARED, which refers to the
version of the shared file (in the Shared Source Working Environment). Please refer to the
Glossary for a definition of working file and shared file.

Differences View

The Differences View displays the differences in the compared files/versions. Areas of code
containing differences are split into two views and separated by a Merge button. An area
where the two files/versions are the same is not split.

The Differences View shows two- or three-way differences. The Merge button between the
working file and the compared file(s)/version(s) allows you to merge differences into the
working file. If the working file is not writable, or if two versions of the same file are being
compared, the Merge button is disabled.
Merged differences are shown in italics in the Differences List.

File List

The files shown in the File List depend on your selections in other views. The list contains
only one file if the Diff/Merge tool compares two versions of a single file.
Clicking on a file loads the file into the Diff/Merge tool and shows the differences between the
corresponding versions.

File name of compared
versions

Second version

First version

Difference (added in left file)

Pressing the Merge button copies
the text from the right view to the left
view; button is only enabled if the
working file is writable
ference Guide 85

Chapter 8 Diff/Merge tool Status Line
Differences List

The Differences List shows all the differences between the files/versions. The line number
and the name of the symbol that contains the difference are provided.
Entries in italics indicate a difference that has already been merged.

Status Line

Frozen check box

The Frozen check box is described under Status line — page 12.

Menus

File menu

Please refer to File menu — page 15.

Edit menu

Please refer to Edit menu — page 16.

Show menu

Please refer to Show menu — page 18.

Info menu

Please refer to Info menu — page 20

Class menu

Please refer to Class menu — page 22.
86 SNiFF+

Re

Menus
Utilities menu

History menu

Please refer to History menu — page 23.

Utilities menu command Description

Merge Merges the current difference into the working file. For
three-way merges, the first file is merged into the
working file. If you want to merge the second file, you
have to use the Merge buttons.

Merge All Merges all differences into the working file. For three-
way merges, all differences in the first file are merged
into the working file. If you want to merge the second
file, you have to use the Merge buttons.
ference Guide 87

Chapter 8 Diff/Merge tool Menus
88 SNiFF+

R

9Documentation Editor

Introduction
The Documentation Editor supports the iterative and incremental generation, writing and
maintenance of source code documentation. You can use its hypertext-like browser to
quickly navigate between source and documentation. Furthermore, you can freely define the
structure and contents of the generated documentation.
You can open an instance of the Documentation Editor by:

� selecting a documentation file from the File List in the Project Editor and double-clicking it,
or by

� choosing the Info > Show Documentation of symbol... in any of the browsing tools
(except for the Project Editor)

In the following illustration, the documentation file BrowserView.d has been loaded into
the Documentation Editor. You can see the documentation frame for the class Browser-
View in the tool’s Documentation View.
eference Guide 89

Chapter 9 Documentation Editor Quick Reference
Quick Reference

Icons in the Symbol List

These icons show the status of a symbol in the Documentation Editor. They are also used in
the Documentation Synchronizer’s File List and Project Tree where the apply to the docu-
mentation status of all the symbols in a file and in a project, respectively.

Typeface

The typeface indicates the following about a symbol:

Mouse clicks

� Click on a symbol name to jump to the Documentation Frame.

� Double-click on a file name to jump to the source file.

� Triple-click in the Documentation View to select the entire documentation for a symbol.

� Triple-click on a section identifier to select a section.

� Triple-click in the section text to select the section text.

Icon Symbol is

(white) undocumented

(green) partially documented

(blue) fully documented

Typeface Symbol

normal can be browsed, documentation is valid

italics cannot be browsed, documentation is obsolete
90 SNiFF+

Re

Modes of operation
Modes of operation
The Documentation Editor operates in one of two modes (set in your Preferences — Docu-
mentation Editor view — page 140):

� Browsing mode (read-only) — Usual mode for simply browsing documentation files.
When the Documentation Editor is in browsing mode, no changes can be made to existing
documentation, and obsolete documentation will not be displayed.

� Editing mode (read/write) — Mode for documenting a software project. In this mode, you
can generate documentation files from your source code.

Basic components

Documentation View

The Documentation View contains the documentation of source code at the symbol level.
The documentation of a particular symbol is contained within separators. A symbol's docu-
mentation starts with the symbol name and symbol signature (if it has one). The actual
documentation of the symbol follows in the documentation body, which is split into a series
of sections. Each section begins with a section identifier. Its section text follows on the next
line.

Symbol List

For a description of the icons used in the Symbol List, please see Quick Reference — page
90.
The Symbol List displays the list of symbols that are documented in the documentation file.
The list contains one or more symbols, depending on whether the documentation file has
been generated for one symbol or an entire file.
The icons that precede the symbols in the Symbol List and the typeface of the symbols indi-
cate what their documentation status is.
A typical entry in the Symbol List looks like this:

It consists of a status icon, the symbol name and, in parentheses, the symbol type. For a list
of the various symbol types, please refer to Graph view — page 69.

Class drop-down

You can use the Class drop-down to specify which classes of symbols are to be displayed in
the Symbol List.
ference Guide 91

Chapter 9 Documentation Editor Menus
Menus

File menu

Please refer to File menu — page 15.

Edit menu

Please refer to Edit menu — page 16.

Show menu

Please refer to Show menu — page 18.

Status menu

You can use the Status menu to change the documentation status of a symbol’s documenta-
tion. A symbol’s documentation can be in one of three possible states: undocumented,
partially documented, or (fully) documented.
Note that you alone are responsible for determining what the documentation status of a
symbol is. SNiFF+ does not automatically change the status when you have made changes
to a symbol’s documentation.

Info menu

Please refer to Info menu — page 20.
When you choose the Documentation Synchronizer... command in this menu, the Docu-
mentation Synchronizer appears. See also Documentation Synchronizer — page 93.

Class menu

Please refer to Class menu — page 22.

History menu

Please refer to History menu — page 23.
92 SNiFF+

Re

Documentation Synchronizer
Documentation Synchronizer
The Documentation Synchronizer appears when you choose the Info > Documentation
Synchronizer... .

Quick Reference — Synchronizer

Icons used in the Documentation Synchronizer

Icon Symbol list File List Project Tree

– Empty file :
This source file doesn’t
have a corresponding
documentation file.

Empty project :
None of the source files
in the project has a corre-
sponding documentation
file.

Undocumented symbol :
The documentation sta-
tus of the symbol is un-
documented.

Undocumented file :
All symbols in the corre-
sponding documentation
file are undocumented.

Undocumented project :
Project contains at least
one undocumented
source file.
ference Guide 93

Chapter 9 Documentation Editor Basic Components—Synchronizer
Basic Components—Synchronizer

File List

The File List displays the header and implementation files that are part of the projects check-
marked in the Project Tree. All header and implementation files are displayed—both those
for which documentation files exist and those for which no documentation files exist. Note
that there is one documentation file (with extension .d) for each header file and its corre-
sponding implementation file.
Each entry in the File List contains the name of the source file and two icon boxes. The first
icon box indicates the type of the source file—header or implementation. The second icon
box tells you what the documentation status of the source file is. A source file can be in one
of four possible documentation states—empty, undocumented, partially documented and
fully documented. These states are described on Icons used in the Documentation Synchro-
nizer — page 93.
When you select a file—let’s say BrowserView.C or BrowserView.h —in the File List,
the symbols that have documentation frames in BrowserView.d are displayed in the
Symbol List.
You can select multiple files in the File List by pressing <SHIFT> without letting go and then
clicking on each file name. The symbols that are documented in the corresponding docu-
mentation files are then displayed in the Symbol List.
You can jump directly to a source file by double-clicking its name in the File List.

Synchronizing documentation and source files with each other

After time, your documentation and source files may no longer be in sync with each other.
For example, you might have defined a new symbol in a source file, or renamed an existing
one. To update documentation and source files with each other, select one or more source
files in the File List and then choose the Synchronize Documentation of Selected Files
command in the dialog’s Synchronize menu. Note that you can also use this command to
generate new documentation files.

Partially documented
symbol :
The documentation sta-
tus of the symbol is par-
tially documented.

Partially documented
file :
At least one symbol in the
corresponding documen-
tation file is either partial-
ly documented or fully
documented.

Partially documented
project :
Project contains at least
one source file that is ei-
ther partially document-
ed or fully documented.

Fully documented sym-
bol :
The documentation sta-
tus of the symbol is doc-
umented.

Fully documented file :
All symbols in the corre-
sponding documentation
file are fully documented.

Fully documented
project :
All source files in the
project are fully docu-
mented.

Icon Symbol list File List Project Tree
94 SNiFF+

Re

Filters—Synchronizer
Symbol List

The Symbol List displays the documented symbols in the source files that are selected in the
File List. Documented symbols are those symbols for which documentation frames exists.
Each entry in the Symbol List contains the name of the symbol, followed by its type in quotes
and then file in which it is documented. The icon box that precedes the symbol’s name tells
you what the documentation status of the source file is. A symbol can be in one of three
possible documentation states—undocumented, partially documented and fully docu-
mented. See also Status menu — page 92.
You can jump directly to the documentation frame of a symbol by double-clicking its name in
the Symbol List.

Filters—Synchronizer

Project Tree

The Project Tree in the Documentation Synchronization dialog is very similar to those in the
other SNiFF+ tools.
Each node of the Project Tree contains the name of the project and two icon boxes. The first
icon box should already be familiar to you—it’s the box that you have to click on to check-
mark the corresponding project. When you checkmark a project, its source files—both imple-
mentation and header—are displayed in the File List.
The second icon box tells you what the documentation status of the project is. A project can
be in one of four possible documentation states—empty, undocumented, partially docu-
mented and fully documented. These states are described on Icons used in the Documenta-
tion Synchronizer — page 93.

Symbols drop-down

You can use the entries in this menu to filter the list of symbols that are displayed in the
Symbol List according to documentation status.
ference Guide 95

Chapter 9 Documentation Editor Menus — Synchronizer
Menus — Synchronizer

Edit menu

You can modify the documentation files that are listed in the File List directly by means of the
entries in the Edit menu.
You can also issue these anywhere in the Documentation View with the right-click Context
menu .

Synchronize menu

The following entries are available in the Synchronize menu :

Matching symbols for Obsolete symbol

This menu entry is highlighted when you select an obsolete symbol in the Documentation
View. You can use this command to paste the documentation body of an obsolete symbol
over the documentation body of another symbol.
When you choose this command, the Choose Symbol dialog appears. This dialog contains a
list of undocumented symbols from the same documentation file in which the obsolete
symbol is documented. Note that only symbols of the same type as the obsolete symbol are
displayed.

To copy the documentation of the obsolete symbol (that is selected in the Documentation
View), select one of the matching symbols in the match list and press the Merge button.
The documentation body of the obsolete symbol will then be pasted over the documentation
body of the matching symbol.

Note

If you issue Edit commands before saving modifications to the docu-
mentation file(s) of the selected symbol(s), SNiFF+ will first revert the
file(s) to their unmodified state before executing the command.
96 SNiFF+

Re

Menus — Synchronizer
Synchronize Documentation of Selected Files

You can use this command to update the documentation of the source files that are selected
from the File List.
When you select one or more source files from the File List and then execute this command,
SNiFF+

� checks to see if all the symbols in the source file(s) are documented in the corresponding
documentation file(s). Documentation frames for symbols that aren’t yet documented will
be created. If no documentation file exists for a source file, SNiFF+ will create a new doc-
umentation file with empty (undocumented) documentation frames for all the symbols in
the source file.

� SNiFF+ then checks to see whether the symbols documented in the documentation files
also exist in the Symbol table. Those symbols that do not exist in the Symbol table will be
marked as obsolete.

Note that there is one documentation file for both types of source files — header and imple-
mentation.

Synchronize Documentation of Checkmarked Projects

You can use this command to update the documentation of the projects that are selected
from the Project Tree.
When you checkmark one or more projects in the Project Tree and then execute this
command, SNiFF+

� checks to see if all the symbols in the source files of the checkmarked projects are docu-
mented in corresponding documentation files. Documentation frames for symbols that
aren’t yet documented will be created. If no documentation file exists for a source file,
SNiFF+ will create a new documentation file with empty (undocumented) documentation
frames for all the symbols in the source file.

� SNiFF+ then checks to see whether the symbols documented in the documentation files
also exist in the Symbol table. Those symbols that do not exist in the Symbol table will be
marked as obsolete.
ference Guide 97

Chapter 9 Documentation Editor Menus — Synchronizer
Export menu

You can use the command in the Export menu to export the documentation of whole files or
whole projects, in either file or book format.
When you choose either one of these two commands, the Documentation Export dialog
appears.

You can export your documentation files in either FrameMaker  MIF (Maker Interchange
Format) or HTML format. SNiFF+ uses the names of the files that you chose from the File
List of the Documentation Synchronization dialog for the names of the corresponding export
files (MIF files have the extension .mif , and HTML files have the extension .htm). By
default, the export files are stored in the project directory.

Exporting your documentation files as MIF files

When you export your documentation files as MIF files, you can create a book file that
contains the MIF files, or you can leave the MIF files as is.

� To create a book file, switch on the Book option button in the dialog. The contents of the
Documentation Export dialog change.

� Enter the name of the book file and the extension .book in the Book File Name field. By
default, the book file is stored in the project directory.

� Press Ok to create the book file.

SNiFF+ will then create the individual MIF files and the book file.
You can then browse and edit the MIF files with any version of FrameMaker .

You can choose between two
output formats: MIF (Maker
Interchange Format) and HTML

When you export multiple
documentation files, you can store
them either in a tree or non-
hierarchically

Select
option
button to
include
MIF files
in a book

Export
drop-
down
98 SNiFF+

Re

Menus — Synchronizer
Exporting your documentation in HTML format

When you choose HTML from the Export drop-down, the contents of the Documentation
Export dialog change:

� Enter the title of the HTML table of contents document in the Title field. You will then see
this title at the top of the HTML table of contents document in your HTML browser.

� Enter the name of the HTML book file in the Book File Name field.

The table of contents document consists of the names of the symbols in the
documentation files that you selected in the File List of the Documentation
Synchronization dialog. You can jump to a symbol’s documentation frame by clicking on
its name in the table of contents document.

Note

An HTML file is created for each of the files that you selected in the
File List of the Documentation Synchronization dialog. The name of
the HTML file is the same as the name of its corresponding docu-
mentation file, and its extension is .htm .

Title of the
HTML table
of contents
document

Name of the HTML table
of contents document
ference Guide 99

Chapter 9 Documentation Editor Menus — Synchronizer
100 SNiFF+

R

10Hierarchy Browser

Introduction
The Hierarchy Browser shows the inheritance relationships of classes. It either displays the
entire class tree or only the superclasses and subclasses of a class. Like other SNiFF+
browsers, the Hierarchy Browser allows you to filter the tree according to project boundaries
and other filter settings.
You can invoke the Hierarchy Browser from the Class menu, or by choosing
Tools > Hierarchy Browser .
eference Guide 101

Chapter 10 Hierarchy Browser Quick Reference
Quick Reference

Typeface in Hierarchy view and Symbol List

The typeface indicates the following about a class:

� Selected classes are connected to their immediate base and derived classes by red lines.

Mouse clicks in Hierarchy view and Symbol List

� Clicking on a class in the Symbol List selects the class in the Hierarchy view (and vice-
versa).

� Deep-click (<CTRL>double-click) on a symbol in the Hierarchy view, jumps to a symbol’s
reference in the Source Editor.

Keyboard Navigation

As in lists, the current selection can be positioned to an element (in this case a class) by
typing the name while the mouse cursor is over the Hierarchy view or the Symbol List.

Typeface and frame Class is

Normal typeface and
rectangular frame

normal

Blue italics and rectangu-
lar frame

abstract

Italics and rounded cor-
ners

an interface (Java)

GreenTypeface final (Java)

Bold Typeface documented

Grayed not in checkmarked projects, only the classes needed to draw
a minimal tree are displayed
102 SNiFF+

Re

Basic components
Basic components

Hierarchy view

For a description of the abbreviations and typeface used in the Hierarchy view, please see
Quick Reference — page 102. The Hierarchy view shows inheritance relationships from left
to right. Multiple inheritance is displayed by multiple connecting lines between class nodes.
The view can be restricted to just relatives of a class. Classes of disabled projects are
grayed-out if they are needed to draw a minimal tree (see “Project Tree” below).
C++ templates are shown with their formal parameter list.

Code view

References to the symbol selected in the Hierarchy view are displayed in the Code view. The
Code view is a read-only view.

Symbol List

Classes are displayed in the Symbol List in alphabetical order.

Filters

Project Tree

The Project Tree can be used as a filter to show only classes belonging to a certain project.
Classes of projects not checkmarked in the Project Tree are only shown grayed-out if they
are needed to form a minimal Tree for the classes of the checkmarked projects. The illustra-
tion above shows the Hierarchy Browser with only the root project checkmarked.

Language drop-down

In the Language drop-down, you can choose the language whose symbols you want to
browse. Only the languages used in your project structure are listed.

Inheritance drop-down (Java)

This drop-down is only visible for Java projects.

Inheritance Shows

complete class and interface inheritance

class classes only

interface classes inheriting from interfaces
ference Guide 103

Chapter 10 Hierarchy Browser Status Line
Filter field

Please refer to Regular expression filters — page 11.

Status Line

Frozen check box

The Frozen check box is described under Status line — page 12.

Marked

When the Hierarchy Browser is started from another tool using the menu command
Class > Mark Definers of method or Class > Mark Relative Defining method ,
the classes implementing method are marked by being displayed in bold typeface.
This information field tells you which method is being queried.

Project

Indicates the project to which the selected symbol belongs.

Number of Nodes

Indicates the number of nodes in the Hierarchy view.
104 SNiFF+

Re

Menus
Menus

Info menu

Please refer to Info menu — page 20.

Class menu

For a description of the other commands, please refer to Class menu — page 22.

View menu

The first three commands in the View menu are described under View menu — page 23.
Other commands:

History menu

Please refer to History menu — page 23.

Class menu Command Description

Edit Loads the implementation of the corresponding method of
the marked class into an Source Editor.

Reset Markings Resets the current markings.

View menu command Description

Layout > The first three commands in the Layout submenu allow
you to select a general layout for the Hierarchy Graph.

The three commands below the separator allow you to se-
lect the kind of connecting lines used for each general lay-
out selected above the separator. This in turn affects the
overall layout.

Zoom commands Allow you to zoom in and out in the Hierarchy view.
ference Guide 105

Chapter 10 Hierarchy Browser Menus
106 SNiFF+

R

11Include Browser

Introduction
The Include Browser graphically displays include references between files in your projects. It
is very similar in both layout and functionality to the Cross Referencer tool.
You can use the Include Browser to see which files are included by a particular file and vice-
versa, as well as to make sure that there are no redundant includes. As an example of a
redundant include, suppose A.h includes B.h and B.h includes C.h . A third include,
namely A.h includes C.h , would be redundant, and you will be able to notice such redun-
dancies in the Graph View of the Include Browser.
Furthermore, you can also use the Include Browser to make sure that the includes in your
project files are “clean”, meaning that the files are neither included by nor include files
outside of your projects.
eference Guide 107

Chapter 11 Include Browser Quick Reference
Quick Reference

Typeface in Graph view

The typeface indicates the following about a class:

Mouse clicks in the Graph View

Typeface Description

bold File is part of a SNiFF+ project.

italics File is already in the parent tree of the graph, danger of in-
finite loop.

grayed-out Symbol information of the file is no longer up-to-date
(e.g., file has been modified), the next query updates the
Graph view.

normal File is not part of a SNiFF+ project.

double-click A double-click on a symbol node in the Graph View loads the file into
a Source Editor.

<SHIFT>double-click A <SHIFT>double-click on a symbol node loads the location of the in-
clude statement of the symbol into a Source Editor (depending on the
include type).
108 SNiFF+

Re

Basic components
Basic components

Graph View

For a description of the abbreviations and typeface used in the Graph View, please see
Quick Reference — page 108.The Graph View shows the results of the include queries. It
always has one root file and extends from left to right. The view shows either files that are
included by the root file or files that include the root file (indicated by the direction of the
arrows in the nodes). You can limit the amount of information that is shown in the graph by
means of filter settings. Each node represents a file.

File List

The File List is an alphabetical listing of the nodes in the graph. Multiple nodes in the graph
are only shown once in the index. When a node is selected in the graph, the corresponding
entry in the list is also selected and vice-versa. A right-arrow (>) after a file means that the
included files of this file are displayed in the graph; and a left-arrow (<-) after a file means
that the files that include this file are displayed in the graph.

Filters

Root File field

You can use any file name as the root file in the graph by entering the file’s name in the Root
File field. By pressing <Return> , the existing graph is reset and the entered file name
becomes the root file in the graph. You can then select a query in the Reference menu.

Project Tree

You can use the Project Tree to constrain the search in an include query. A check mark next
to the name of a project means that the contents of the project will also be searched during a
query. To update the graph so that it corresponds to the new settings in the Project Tree,
select a query in the Reference menu.

Note

For Java projects, only those files that are actually used are shown.
Files in imported packages that are not used in the project are not
shown.
ference Guide 109

Chapter 11 Include Browser Check boxes
Check boxes

Includes Only

Filters the Graph view to display only .h files.

Unix File Matching

Toggles case sensitivity of file names.

Status Line

Frozen check box

The Frozen check box is described under Status line — page 12.

Nodes

Indicates the number of nodes in the Graph view.

Menus

Edit menu

Show menu

Edit menu command Description

Replace Include
Statements

Starts the Retriever in Replace Only mode where you can
globally change the references.

Show menu command Description

Include Statement Opens a Source Editor and is positioned at the include
statement.

FileName Opens a Source Editor and loads the currently selected
file into it.
110 SNiFF+

Re

Menus
Info menu

View menu

The first three commands in the View menu are described under View menu — page 23.
You can use the following View menu entries to specify the layout of the Graph View:

History menu

The History menu contains a list of previous root files, as well as the current root file.
Selecting a file from the list makes it the new root file of the graph.

Info menu command Description

Includes Starts a query to display the files that the selected file in-
cludes. The current filter setting applies.

Included-By Starts a query to display the files that include the selected
file. The current filter setting applies.

View menu Command Description

Show/Hide Project Name Toggles whether project names are displayed in the
Graph View

Layout > The first three commands in the Layout submenu allow
you to select a general layout for the Hierarchy Graph.

The three commands below the separator allow you to se-
lect the kind of connecting lines used for each general lay-
out selected above the separator. This in turn affects the
overall layout.

Show/Hide Project Name Shows/hides project names.

Start from FileName Makes the currently selected file the root file of the graph.
All other nodes are deleted from the graph.

Hide Subnodes of FileName Hides all subnodes of the selected file.

Show Restricted Tree of
FileName

Shrinks the graph in such a way that only parent and sub-
nodes are displayed. All other nodes are deleted from the
graph.

Zoom commands Allow you to zoom in and out.
ference Guide 111

Chapter 11 Include Browser Menus
112 SNiFF+

R

12Launch Pad

Introduction
The Launch Pad is the main SNiFF+ application window and serves to manage projects and
open tools on your desktop. You can also open projects in your Private Working Environ-
ments directly from the Working Environments tab.
The Help (?) menu has supplementary commands that are available only in the Launch Pad,
see Help (?) menu — page 117.
.

Use the Help (?) menu in the Launch
Pad to open online documentation,
and also for information relating to
your SNiFF+ installation
eference Guide 113

Chapter 12 Launch Pad Quick Reference
Quick Reference

Icons in the Projects Tab

The icons in the Projects tab indicate the following about the status of open projects:

Typeface in the Projects tab
:

Mouse clicks in the Projects tab

� Double-click on a listed project to hide/show the project and all tools associated with the
project.

� <CTRL>click on a listed project to show the selected project and hide all other open
projects.

Mouse clicks in the Working Environments tab

� Double-click on an entry to invoke the Open Project dialog. The dialog lets you select
from a list of projects that can be accessed in the selected Private Working Environment
(PWE). See also Open Project dialog — page 26.

Icon Project Status

The project is writable; the Project Description File (PDF) is writable and the files
of the project may be modified if they are writable

The project is frozen; neither the Project Description File (PDF), nor the files of
the project may be modified even if they are writable. Typically such projects are
libraries.

The Project Description File (PDF) is read-only, but files of the project may be
modified if they are writable

The project (attributes or structure) has been modified, but not yet saved to the
Project Description File (PDF).

Typeface Project is

Normal visible

Italics hidden
114 SNiFF+

Re

Basic components
Basic components

Projects tab

For a description of the icons and typeface used in the Projects tab, please see Quick Refer-
ence — page 114.
Open projects are listed in the Projects tab together with the working environment they were
opened in.
Double-click on a listed project to hide/show the project and all tools associated with the
project.
<CTRL>-click on a listed project to show the selected project and hide all other open
projects.

Working Environments tab

Your Private Working Environments (PWEs) and PWEs that belong to nobody (that is, the
default user adm) are listed in the Working Environments tab. See also Working Environ-
ments — page 239
Double-click on an entry to invoke the Open Project dialog. The dialog lets you select from a
list of projects that can be opened in the selected Private Working Environment (PWE). See
also Open Project dialog — page 26

Menus

Project menu

The Project menu offers commands for handling projects, as well as a list of the five most
recently opened projects.

Project menu command Description

New Project... > Opens a submenu with 3 options for creating new
projects. For more information please refer to User’s
Guide — Project Setup Overview — page 53.

> with Defaults... Opens the Directory dialog. In the Directory dialog,
you select the directory where the source files of the
new project are located. Then, an Attributes of a New
Project dialog appears. You set the new project’s at-
tributes in this dialog, see also New Project Options —
page 165. The defaults for new projects are set in the
Preferences, see also New Project Setup view —
page 146.
ference Guide 115

Chapter 12 Launch Pad Menus
> with Template... Allows you to set the attributes of a new project from a
template. A dialog opens and you can select a Project
Template File (extension .ptmpl) to use as a tem-
plate. Select a file to open the Project Attributes dia-
log. You can edit the opened template, have the new
project created, and save the edited template under a
new name. See also User’s Guide — Working with
new project templates — page 57.

> with Wizard... Starts the Project Setup Wizard, which guides you
through project setup. See also User’s Guide —
SNiFF+ Project Setup Wizard — page 53.

Open Project... Opens a dialog where you can navigate to the Project
Description File (PDF) of the project that you want to
open. After a PDF has been specified, the project is
loaded into SNiFF+ and the environment (all window
positions, sizes and contents) is restored to the same
status that the project had when it was last closed.

Save Project project Saves the Project Description File (PDF). If Make
Backups in the Tools view of the Preferences dialog
is enabled, a backup file with the name project% is
created. This command is only enabled if the PDF has
changed.

Save Project project As... Opens a File dialog for saving the current project to a
new Project Description File.

Reload Project > Reloads the selected project from disk. The com-
mands in the submenu can be chosen if the Project
Description File (PDF) has changed while the project
was open, or when you want to discard all unsaved
modifications to a project. If the structure of the select-
ed project has changed, the corresponding files/sub-
projects are (un)loaded. The project attributes are also
updated.

> In Current Working
Environment

Reloads the open project in the working environment
you are currently working in.

> In Other Working
Environment...

Opens a dialog where you can select the working en-
vironment to reload the project in.

Project menu command Description
116 SNiFF+

Re

Menus
Windows menu

A list of all open tool windows, grouped by project, is available in the Windows menu. Select
an item to activate the tool window. Note that tool windows of hidden projects are not
displayed in this list. Project-independent tools are also grouped.

Help (?) menu

Apart from the Help commands common to all SNiFF+ tools (Tool Help , Context Help and
Quick Ref), the Launch Pad Help menu provides the following commands:

Delete Project project Opens an Alert dialog for the selected project and
each of its subprojects. Select the Repeat check box
on the dialog and confirm. SNiFF+ deletes the Project
Description File of the project (thereby deleting the
project) and all other files that were generated by
SNiFF+. Note that all files not generated by SNiFF+
(e.g., source code files) remain untouched.

Close Project project Closes the selected project and all associated tools. If
the structure or attributes of the project have been
modified, a dialog appears asking whether the project
file should be saved. Projects are reopened with the
same tools and window settings that they were closed
with.

Hide/Show Project project Hides/shows the selected project and all tools associ-
ated with it. When the project is hidden, the project
name is displayed in italics.

List of Recent Projects At the bottom of the Project menu there is a list of up
to five recently opened projects together with the
working environments they were opened in. Note that
projects are only listed once. If you, e.g., open the
same project in the same environment twice, once
with symbols and once without, the latest version only
is stored in the list.

Help menu command Description

Online Documentation Opens User’s Guide and Reference manuals.

Tutorials > Offers a submenu with four tutorials to choose from.
Each tutorial uses an example project in a different
programming language.

Project menu command Description
ference Guide 117

Chapter 12 Launch Pad Menus
> CPP This tutorial uses C++ code examples.

> C This tutorial uses a C code example.

> Java This tutorial uses a Java code example. A SNiFF+ for
Java Technical Reference is also included.

> Fortran This tutorial uses a Fortran code example.

Launch Pad Help Provides help for the Launch Pad.

Context Help Provides context help. Choose this command or, point
to a tool element with the mouse and press <F1> for
context-specific help. If no context help is available,
<F1> opens the tool help.

Quick Ref Opens documentation at a Quick Reference to icons,
typeface and mouse-clicks used in the Launch Pad.

Welcome To SNiFF+... Opens a dialog allowing you to quickly check on instal-
lation and license features. The dialog also guides you
to the SNiFF+ language-specific tutorials.

Licenses... Opens the Licenses dialog to display information
about the current license status of your SNiFF+ instal-
lation (see Licenses dialog — page 45).

Feedback... Opens a form for sending TakeFive’s Support service
feedback about your SNiFF+ installation.

About SNiFF+... Opens the About SNiFF+ dialog to display version and
copyright information.

Help menu command Description
118 SNiFF+

Re

Open Project dialogs
Open Project dialogs
Two different Open Project dialogs can be invoked from the Launch Pad.

1. One dialog is invoked via a double-click on a Working Environment in the Working Envi-
ronments tab. This dialog is described under Open Project dialog — page 26.

2. The second dialog is invoked from the Launch Pad’s Project > Open Project... menu,
and is described below.

Menus

Menu Description

Files Lists a history of recently opened files.

Directories Lists a history of recently opened directories.

Options Allows you to configure the Files and Directories menus.
ference Guide 119

Chapter 12 Launch Pad Open Project dialogs
Opening Mode check boxes

Selected Opening Mode check boxes determine what data is used in opening a project.
.

With Symbols Opens projects with symbol information. For browsing and day-to-day
development work, enable this check-box. If you do not need symbol in-
formation, e.g. to open large projects for making structural changes,
clear this check box. Default: selected.

Use Cache When projects are closed, all necessary information for re-opening them
is cached in a single file to speed up project opening. If Use Cache is
selected, only this file is read. If not, all and the original Project Descrip-
tion Files (PDFs) are read, and all source files are checked.
Caution: The cached information can be incorrect if (1.) changes are
made to projects and files between SNiFF+ sessions, that is, outside of
SNiFF+, or (2.) if the preceding SNiFF+ session was terminated unex-
pectedly. Default: not selected.
120 SNiFF+

R

13Log

Introduction
The Log window displays SNiFF+ error and control messages. Messages are sent to the Log
window and not to the terminal where you started sniff . The information displayed in the
Log window can be appended to a log file, and the window can be set (not) to pop up auto-
matically on output (defined in the Preferences, Tools view — page 130).

Log window
To open the Log window, choose the Tools > Log menu command. If set (see Preferences,
Tools view — page 130), the window pops up automatically when output is written to it.

Tool menu

Tool menu command Description

Close Closes the Log window.

Clear Clears the buffer of the Log window.

Find... Opens the Find/Change dialog.

Find Again Repeats the last find operation.
eference Guide 121

Chapter 13 Log Log window
Show Error Allows direct navigation to the source of parsing errors report-
ed in the Log. This only works if the -e preprocessor directive
is set.

Tool menu command Description
122 SNiFF+

R

14Preferences

Introduction
This chapter focuses on the Preferences dialog. For advanced customizing options, please
refer to Advanced Customization — page 279.
SNiFF+ supports customization at three different levels:

� Site level —Each installation of SNiFF+ can have its own settings. These settings are
used by all users that access this installation.

� User level —Each user can have private settings that override or merge with the site level
settings.

� Project —Each project has its own project attributes that are stored in the project descrip-
tion file (PDF) and can be edited using the Project Attributes dialog. Project Attributes —
page 163.

Preferences
The preference attributes in your Preferences allow you to customize certain aspects and of
SNiFF+ and its tools:

� appearance

� tool-specific settings

� default project attributes settings for new projects

� version and configuration management interface

� file types

� platform-specific settings

� other preferences

There are two levels of preferences in your Preferences:

� user preferences (stored in $HOME/.sniffrc/UserPrefs.sniff on Unix and in
%SNIFF_DIR%\Profiles\<Username>\UserPrefs.sniff on Windows)

� site preferences (stored in $SNIFF_DIR/SitePrefs.sniff on Unix and in
%SNIFF_DIR%/SitePrefs.sniff on Windows)

The site level preference file with default values is delivered with SNiFF+; an empty user
preferences file is created in your home directory when you start SNiFF+ the first time.
eference Guide 123

Chapter 14 Preferences Preferences dialog
Whenever SNiFF+ reads a preference attribute, it first searches at the user level, and if the
value there is not specified, it takes the value from the site preferences. If you have write
permissions to access the SitePrefs.sniff file, there are two tabbed pages in your
Preferences, a User tab and a Site tab. To make site level changes, select the Site tab.

Preferences dialog
The Preferences dialog allows the modification of both site- and user-level preferences. The
dialog consists of thirteen views or groups of preference attributes.

User-level preferences can be manipulated directly and saved. Site level preferences need
to be locked before they can be modified to prevent concurrent modification by two users.
However, you can break a lock of another user.

Caution

The preferences files are marked-up ASCII files that contain a data
schema in front of the actual data. These files should be modified with
the Preferences dialog. If you modify them manually, be very careful that
you do not corrupt the structure of the files.

Note

If you are working in some directory other than the SNiFF+ installation
directory, set the environment variable SNiFF_RESOURCE_DIRto
this directory before starting SNiFF+. When set, the user specific prefer-
ences files will be added to this directory.

Select a
view
124 SNiFF+

Re

Preferences dialog
The dialog offers the following buttons that are present at the bottom of all views:

OK Saves the current modifications to the corresponding preferences file (de-
pendent on the level), updates SNiFF+ with the changes and closes the Pref-
erences tool.

Cancel Discards all changes and reverts to the last saved version of the active view.

Apply Saves the current modifications to the corresponding preferences file (de-
pendent on the level) and updates SNiFF+ with the changes.

Default Resets all values in the current view to those in the next preferences level.
For example, you may want to press this button at the user level to reset the
complete view and to take all values from the site level.
ference Guide 125

Chapter 14 Preferences Appearance view
Appearance view

Look

Motif (Unix only) Indicates whether the windows are drawn in Motif look.

Windows (Unix
only)

Indicates whether the windows are drawn in Windows look.

Font for Titles,
Menu names and
Entries

Defines the general font that is used for all SNiFF+ texts that are
drawn in proportional text.

Font for Lists of
Symbols

Specifies the font that is used for all fixed-width texts. Note that
Source Editor fonts are specified separately. See also Source Editor
view — page 132.
126 SNiFF+

Re

Appearance view
Motif Colors (Unix only)

View Background
Color

Specifies the background color of all views in SNiFF+.

Window
Background Color

Defines the background color of all windows in SNiFF+.

Highlight Color Defines the highlight color used for selected text or menus.

Disable Color Specifies the color in which disabled items are drawn.

Caret Color Defines the color of the text caret.
ference Guide 127

Chapter 14 Preferences Appearance view
Color Picker dialog

Colors in SNiFF+ can be set in the Color Picker dialog. This dialog appears when you press
the Color button in either the Source Editor or Documentation Editor view of the Preferences
dialog.

Gauges Define the RGBA values of the color:
R: red
G: green
B: blue
A: alpha value (should always be 255)

HSVA tab Switches to the HSVA view. For details, please refer to page 129.

Reset Resets the color to the value it had when the dialog was opened.

Cancel Leaves the current color values unchanged, discards all modifica-
tions and closes the dialog.

Set Color Sets the current color to the values of the Color Picker and closes
the dialog.

Current Color

New color
128 SNiFF+

Re

Appearance view
The following illustration shows the HSVA view of the Color Picker on a color wheel:

Hue Defines the hue of the color (the value is modified when the color pointer
is dragged with the mouse).

Saturation Defines the saturation of the color (the value is modified when the color
pointer is dragged with the mouse).

Gauges Define the values of the color wheel:
V: Sets the Value of the color wheel.
A: Sets the Alpha value of the color wheel.

RGBA tab Switches to the RGBA view. See also Color Picker dialog — page 128.

Dragging
the color
pointer
with the
mouse
sets the
color
ference Guide 129

Chapter 14 Preferences Tools view
Tools view

File Modification

Make Backups Specifies whether SNiFF+ creates a backup file when a file is saved.
The setting is used by the Source Editor, the Diff/Merge tool and the
Documentation Editor, as well as by the Launch Pad and the Project
Editor for project description files. The name of the backup file is file-
name%.
Default : selected (make backup file)

New Files
Template
Directory

Indicates the directory in which template files are stored. Template
files are used for new files that are created in SNiFF+. The template
that is used is determined by the extension of the new file. Tem-
plates must be called template .extension , whereby exten-
sion is one of the allowed file type extensions.
Template files are stored in your $SNIFF_DIR/config directory.

Undo Levels Defines how many commands can be undone in tools like the
Source Editor, the Diff/Merge tool and the Documentation Editor.
130 SNiFF+

Re

Tools view
History

Logging

Max. No. of
History Menu
Entries

Defines the size of the History menu, i.e., how many entries are re-
membered by SNiFF+.
Default : 10

Open Log Window
on Output

Indicates whether the Log window should automatically appear on
your screen when output is written to.
Default : selected

Use Log File Indicates whether a log file should be used to store logging informa-
tion.
Default : not selected

Log File Specifies the location of the SNiFF+ log file.
Default :
On Unix:
$HOME/.sniffrc/sniff.log
On Windows:
%SNIFF_DIR%\Profiles\<Username>\sniff.log
ference Guide 131

Chapter 14 Preferences Source Editor view
Source Editor view

Settings

The following settings apply for the SNiFF+ Source Editor only.

Current Editor Specifies which editor is used, an external editor or the internal
Source Editor.
132 SNiFF+

Re

Source Editor view
Alignment

Editor Width
[chars]

Defines the line length (horizontal size) of the Source Editor view in
characters. Lines that are longer than the Editor Width are
wrapped.

Fill Indent with
Tabs

Determines whether indentations are filled with tab characters. If se-
lected, indentations are filled with the largest possible integer value
of tab characters from the quotient Indent Size /Tab Width (at least
1).

Indent Size
[chars]

Specifies the spacing (in blank characters) when the <Tab> key is
pressed or when lines are nested in the Source Editor. If Indent Size
is set to 0, the Tab Size attribute is used. If Fill Indent with Tabs is
selected, the indentations are filled with tab characters.
For details about the Tab Size attribute, please refer to General Ad-
vanced — page 167.

Automatically
Indent Input Text

Automatically indents the text that is entered. Please note that
changes are only effective once the current project is closed then re-
opened.

Show Nonprinting
Characters

Shows all whitespace characters.
ference Guide 133

Chapter 14 Preferences Source Editor view
Text Highlighting

Text Properties for
Symbol and
Keyword
Highlighting

Defines the fonts and colors of the Text view in the Source Editor.
Press Choose... to open the Text Properties dialog, in which you
can choose the font and colors of various symbols and keywords as
well as specify whether they should be underlined.

Support for
Keyword
Highlighting

Highlights language specific keywords in source code.
134 SNiFF+

Re

Source Editor view
Advanced

Line Separator
Style

Specifies whether the line separator style should be Unix, Dos or Mac.

Source Editor
for Error
Messages

During builds, the Shell displays line numbers in which your compiler
finds errors during compilation. Here, you can specify which Source Ed-
itor should be use for positioning to location of the errors.

Reusable Loads the location of the error into a reusable Source Editor. If no re-
usable Source Editor is available, a new one will be opened.

Showing File Loads the location of the error into the Source Editor that already
shows the file, regardless of whether the Source Editor is reusable. If
no Source Editor shows the file and no reusable Source Editor is
available, a new one is opened.

Last Started
Make

Loads the location of the error into the Source Editor from which Make
was last invoked.

Default : Showing File

Source Editor
for Editor
Requests

Specifies which Source Editor should be used for editing requests.
ference Guide 135

Chapter 14 Preferences Source Editor view
Reusable Loads requested symbol/file into a reusable Source Editor. If no reus-
able Source Editor is available, a new one is opened.

Showing File Loads the symbol/file into the Source Editor that already shows the
symbol/file, regardless of whether the Source Editor is reusable or
not. If no Source Editor has loaded the file and no reusable Source
Editor is available, a new one is opened.

Default : Showing File
136 SNiFF+

Re

Retriever view
Retriever view

General Settings

Filter File Defines the location of the filter file for the Retriever. The file defines
filters that are available in Find and Replace Filters dialog of the Re-
triever. In the file, each filter definition is contained in a struct data
type. The name of the filter as it appears in the Retriever is specified
by the “Name” element of a filter definition. The regular expression
used for implementing the filter is specified by the “Search ” ele-
ment. In the regular expressions, %s expands to the current match
for each matched source line currently displayed in the Retriever. %s
can be used any number of times in the regular expressions.
Default: $SNIFF_DIR/config/Filters

Create Index Specifies whether an index should be created. To use this index, se-
lect the Use Index checkbox in the Retriever and each time a query
is triggered the Retriever searches the index.
ference Guide 137

Chapter 14 Preferences Cross Referencer view
Cross Referencer view

General Settings

Max. No. of
Cached Files

Specifies the maximum number of cross reference files that are kept
in memory. A value of zero (0) means no limit (x-ref files are loaded
on demand and memory is not limited). A value of 1 means that only
one x-ref file is kept in memory. A larger value means that more x-ref
files will be kept in memory, thereby reducing the query times of re-
ferred-by queries at the cost of increasing memory usage.
Values in this field apply only if you do not use a cross reference da-
tabase.
138 SNiFF+

Re

Cross Referencer view
Database Settings

Ignore Macro with
same name

Determines how the Cross Referencer treats references to a symbol
that has the same name as a macro. If disabled, the Cross Referenc-
er treats the referenced symbol as the identically-named macro. If
enabled, the Cross Referencer treats the referenced symbol as a
symbol, thereby ignoring the fact that there is a macro with the same
name.
Default: selected

Use database If you select this option, a cross reference database is generated at
the root of each Working Environment where Projects are opened.
Once the database has been generated, cross reference queries di-
rectly access it. Consequently, subsequent "referred-by" queries are
constantly faster and require negligible additional memory, regard-
less of Project size and query complexity.
If this option is not selected, a RAM-based cross reference system is
used.
Please refer to the User’s Guide for more information about the
SNiFF+ cross reference subsystems.

Data Cache Size Limits the amount of memory for caching database index files. De-
fault: 1000 kB. Smaller values are not recommended (performance).

Index Cache Size Limits the amount of memory for caching database data files. De-
fault: 3000 kB. Smaller values are not recommended (performance).
ference Guide 139

Chapter 14 Preferences Documentation Editor view
Documentation Editor view

Alignment

Editor
Width[chars]

Defines the maximum number of characters allowed on a line in the
Documentation view. Lines that are longer than the Editor Width are
wrapped.
140 SNiFF+

Re

Documentation Editor view
Text Highlighting

Documentation Creation

Text Properties for
HTML Tags

Specifies the font and color properties of a number of the HTML tags
that are supported by the Documentation Editor. Press Choose... to
open the HTML Tags Text Properties dialog.

Documentation
Template
Directory

Specifies the directory in which your documentation template files are
stored. These template files are then used for creating documentation
frames for symbols.
You can specify multiple directories in the Template Directory field. A
colon (:) separates multiple directories from each other. When search-
ing for a template file, SNiFF+ searches the directories in the order
they are given and terminates the search as soon as the template file
is found.
To learn how to customize template files, please refer to User’s Guide
— Creating documentation templates files — page 300.
Default : $SNIFF_DIR/config/docu (SNiFF+ default documen-
tation template files are stored in this directory)

Caution

If you want to use the default documentation template files for document-
ing any or all of your symbols, make sure to include $SNIFF_DIR/
config/docu in the Documentation Template Directory field!
ference Guide 141

Chapter 14 Preferences Documentation Editor view
Documentable Symbol

Specifies which kinds of symbols are documentable. You can restrict documentable symbols
according to access specifiers (Private, Protected, Public).

Sort Symbols
Alphabetically

Sorts the symbols in the documentation files alphabetically.

Use Read-Only
Mode

Documentation can only be browsed — it can neither be generated
nor edited. Obsolete documentation is hidden completely.
142 SNiFF+

Re

Shell view
Shell view

General Settings

Local Shell
Executable

Defines which shell runs in the Shell tool.

Local Executable
for Remote Shell

Specifies the Shell Executable in which you can login to a remote
host. For detailed information on remote compiling and debugging,
please refer to User’s Guide — Remote Compile and Debug — page
217.
ference Guide 143

Chapter 14 Preferences Working Environments view
Working Environments view

General Settings

Working
Environment
Config. Directory

Defines the location of the directory where Working Environment
information files are maintained. By default, this is
$SNIFF_DIR/workingenvs
There are two Working Environment files:
WorkingEnvUser.sniff - stores user and permissions in-
formation
WorkingEnvData.sniff - stores the location of Working
Environment root directories.

Default Working
Environment

Defines the Working Environment where Projects are opened by
default, that is when no specific Working Environment is select-
ed.
144 SNiFF+

Re

Working Environments view
Default Working
Environment for
Absolute Projects

Information for Absolute (Browsing-Only) Projects (that do not
have a Working Environment as such) is maintained in this direc-
tory. Any directory where you have write permissions can be en-
tered. By default, that is, if you do not enter anything in this field,
the directory used is:
� On Windows
%SNIFF_DIR%\Profiles\ Username
� On Unix
$HOME/.sniffrc

The following information is maintained under this directory:
� Project cache files for fast opening of projects
� Retriever index files
� Cross Reference database files

Note that the above information is only written to this directory
� if Absolute Projects are opened outside of a “normal” Working

Environment, or
� if this Working Environment (at the root of the Working Environ-

ments Tree in the Working Environments tool) is specifically
selected for opening absolute projects.

� if the Retriever indexing option and/or the database-driven
Cross Referencing option is used.
ference Guide 145

Chapter 14 Preferences New Project Setup view
New Project Setup view
The values that you set here for the various check boxes and fields are used as default
settings during the creation of new projects. (Please refer to the User’s Guide for more infor-
mation about setting up projects.)

General

Ignore Directories List of directories to ignore during the automatic creation of the
project’s subprojects. Colons (:) separate multiple directories from
each other.
Example: It doesn’t make any sense to create a SNiFF+ subproject
for a shared data repository directory.
Default : RCS:SCCS:CVS
146 SNiFF+

Re

New Project Setup view
Build System

Tab Size Spacing (in blanks) between two tab stops.
Default : 4

Projects Template
Directory

Specifies the location of the template files to be used for setting up
new projects. For more information on setting up projects with tem-
plates, please refer to User’s Guide — Project Setup Overview —
page 53.

Use SNiFF+ Make
Support

Select if you want to use SNiFF+’s Make Support. For details about
Make Support, please refer to User’s Guide — Build and Make Sup-
port — page 83

Make Command Command to be submitted to the Shell when a Make command is is-
sued.
For details about executing Make commands, please refer to User’s
Guide — Building a project’s targets — page 195.
Default:
On Unix: gmake
On Windows: sniffmake

General Targets Name(s) of a project's general targets (also known as “help targets”).
The general targets are used to drive the Make command and the
Debugger. Multiple targets are separated with a colon (:).
For details about general targets, please refer to User’s Guide —
SNiFF+ help targets — page 200.
Default:
all:symbolic_links:clean:clean_targets:help
ference Guide 147

Chapter 14 Preferences New Project Setup view
Parser

Version/Configuration Management

Parser
Configuration
File(s))

Specifies the location of any parser configuration files that you use
for selectively preprocessing your source code. The path specifica-
tion of the parser configuration file(s) must be absolute.
For details about preprocessing source code in SNiFF+, please refer
to User’s Guide — Preprocessing C/C++ Code in SNiFF+ — page
183.
Default: no file (blank)

Preprocessor
Directive(s)

Specifies the preprocessor directives you use for preprocessing your
source code. The cpp command line syntax should be used (-Dmac-
ro-spec and -U macro-spec strings separated by blanks).
For details about preprocessing source code in SNiFF+, please refer
to User’s Guide — Preprocessing C/C++ Code in SNiFF+ — page
183.
Default: no directives (blank)

Use Parser
Comments for
Syntax
Highlighting

When selected, SNiFF+ uses information from the Parser to recog-
nize a comment. The advantage is that the Parser recognizes the
comments and therefore SNiFF+ displays these accurately. The dis-
advantage is that SNiFF+ uses more memory. When not selected,
SNiFF+ uses information from the Editor to recognize a comment.
The advantage is that SNiFF+ uses less memory. The disadvantage
is that it results in preprocessor related problems, e.g., no macro ex-
pansion.

Extended Symtab
API Positioning

When selected, parameter names and start and end positions of the
argument list and the constructor initialization list are added to the
Symbol Table. To activate this option, execute the Force Reparse
command in the Project Editor.

Version Tool Default version control tool for a project. The list of available tools is
determined by the adaptors that are defined for your SNiFF+ installa-
tion. SNiFF+ comes with a set of predefined adaptors for some of the
most commonly-used version and configuration system tools. Please
refer to the Release Notes for more information about the individual
tools.
Default: <None>
148 SNiFF+

Re

Version Control System view
Version Control System view
This view defines the adaptors used by SNiFF+ for integrating 3rd-party version control tools.
The Version Control System view of the Project Attributes dialog allows you to choose one
of the adaptors that are defined in your Preferences.
ference Guide 149

Chapter 14 Preferences Version Control System view
The following buttons allow you to modify the list of file types:

ClearCase Options dialog

The following applies for ClearCase only.

Note

There is no limit to the length of the CMVC commands that you enter in
the CMVC Command Specification fields. Note, however, that your
Preferences are written to a file. The longer the file, the longer the time
necessary to read its contents. Therefore, rather than entering a long list
of commands in the CMVC Command Specification fields, we suggest
that you write your commands in scripts and execute these scripts in this
view.

New... Allows you to create a new adaptor. Pressing the button will open a
New Adaptor dialog prompting you for the name of the new adaptor.
You will be warned if an adaptor with the same name already exists.

Copy... Copies the name of the currently selected adaptor and adds -1 at
the end of the existing name.

Rename... Opens the Rename dialog in which you can rename the selected
adaptor.

Delete Deletes the selected adaptor from your Preferences.

Set Writable In the User Level tab, press this button to copy the currently select-
ed adaptor from the Site level. You can then modify the adaptor at
the User level.

More Options... Enabled only if ClearCase is selected. Opens the ClearCase Op-
tions dialog — page 150.
150 SNiFF+

Re

Version Control System view
Symbol Update

For more information, please refer also to the User’s Guide — Notifying SNiFF+ of files
checked-in with ClearCase — page 282

Symbol Sharing

� General

SNiFF+ symbol files can be shared among views, via winkin, as derived objects. To
achieve this, a .shared directory holding the symbol files is checked in to the project
root directories.
The whole mechanism is fully automated, and requires no user action apart from the
steps outlined below.
Because this feature demands a certain overhead (creation of derived objects and
winkin), it should only be applied where a number of similarly configured views are used.

� Initial activation

For initial activation, open your root project(s) (With Symbols enabled!) in a view with a
baseline configuration and no branches.
After setting the symbol sharing options, close the project(s) in the current view.
Once the projects have been closed after the initial setting, they can be opened in other
views.

Enable Automatic Update Enable to start automatic periodic updating.

Update Log File Specifies the name of the log file containing information
about the updates.

Update Interval Specifies the interval at which SNiFF+’s should check the
Update Log File.

Show Confirmation
Dialog

When selected, whenever SNiFF+ checks the Update Log
File, a dialog will appear with a list of all the files checked-in
since the last check of the log file.
ference Guide 151

Chapter 14 Preferences Version Control System view
� Dialog check boxes

Enable Symbol Sharing Makes SNiFF+ symbol files available to other views, via
winkin, as derived objects.

Do Sharing
Asynchronously

If symbol sharing is enabled, derived object files are created
as needed when projects are closed. Depending on the
project size and ClearCase server performance, this may
take some time. Enable this option to run the sharing process
in the background.
Caution : Do not attempt to immediately reload a project be-
fore the sharing process has run its course!
152 SNiFF+

Re

File Types view
File Types view
Each time a new project is created, the file types are copied from your Preferences to the
new project attributes. After project creation, each project manages its own file types. If you
want to modify the file types of a project, use the Project Attributes dialog. The file types in
your Preferences should only be modified if you want to modify the file types globally for
future projects.
ference Guide 153

Chapter 14 Preferences File Types view
You can modify the list of file types with the following buttons:

Tabs

General tab

New... Allows you to create a new file type. When the button is pressed, a
New File Type dialog opens, prompting you for the name of the new
file type. You will be warned if a file type with the same name already
exists.

Copy... Copies the name and attributes of the currently selected File Type
and adds -1 at the end of the existing name.

Rename... Opens a dialog in which you can rename the currently selected file
type.

Delete Deletes writable copies of the selected file type.

Set Writable Press this button to create a writable copy of the currently selected
file type.

Signatures Specifies the pattern for the file type using shell regular expressions.
SNiFF+ uses signatures to determine the file type of a given file. A
file type can have more than one signature. Multiple signatures are
separated from each other by a colon (:).
SNiFF+ keeps an alphabetical list of file types. If a file matches the
signature of more than one file type, SNiFF+ associates the file with
the first file type it finds in the list.

Type Specifies a generalized (pre-defined) name for the File Type (e.g.
Implementation or Header).

Directory Specifies the directory where files of this file type are stored. If the
Directory specification is a relative path, it is relative to the Project
Directory. An absolute path can also be specified.
154 SNiFF+

Re

File Types view
Context Menu tab

Commands are executed in the Shell tool and can contain the following variables that will be
expanded before execution of the command:

Context menu... Opens the Context menu dialog. Here you can modify the com-
mands that appear in the context menu in the Project Editor’s File
List.

Command Label Specifies the menu command labels that should appear in the
Project Editor’s File List context menu. For each Command Label ,
you must specify a tool name in the Corresponding Command list.
Multiple names are separated with a colon (:).

Corresponding
Command

Specifies the possible tools that can be opened from the context
menu. Multiple tools are separated with a colon (:). The tools can be
called in the Project Editor’s File List by selecting a file and then
pressing the right mouse button. The first tool in the list is the default
tool.
The following predefined tools can be opened from the Project Edi-
tor’s File List context menu:

Tool name SNiFF+ tool Can be used for

SniffEdit Source Editor All file types

DocBrowser Documentation Editor Documentation

SniffOpen Launch Pad Project Description Files

%d full path of Project Description File (PDF)

%f full path of source file

%F base name of source file

%D source directory of project

%l repository path without the tool-specific extension
ference Guide 155

Chapter 14 Preferences File Types view
Build System tab

Advanced tab

General Makefile Specifies the Language Makefile. For details, please see User’s
Guide — Language Makefiles — page 91.

Generated From Defines from which other file type this type is generated. For exam-
ple, object files are generated from source files.

Source Code
Parser

Defines which SNiFF+ parser is used for extracting symbolic infor-
mation from files of this file type. If this field is empty, the file is not
parsed at all.

Icon for File Type Specifies the icon that should be associated with the file type. It is
shown whenever the file is shown in SNiFF+. SNiFF+ comes with a
set of icons for most of the predefined types. If the directory specifi-
cation is a relative path, it is relative to the project directory. An abso-
lute path can be specified instead. By clicking the File... button, you
can browse and select an icon from the File dialog.

Add/Remove
Automatically to/
from Project

Select if you want SNiFF+ to add/remove files of a particular file type
automatically to/from a project.
We suggest that you select this check box for “derived files” (e.g.,
object files, template files, c files generated by lex, ref, IDL, or other
tools). On the other hand, you should clear this check box for files
that you share with other team members (e.g., source files).
Note that you cannot add/remove file of file types for which this
check box is selected; SNiFF+ will add/remove these files for you.
If SNiFF+ cannot find files during the opening or updating of a
project, you will not see these files in your project. Furthermore, if
you delete a file outside of SNiFF+ and then select it in the Project
Editor, an Alert dialog appears and the file disappears from the File
List.

Generated in
Object Directory

The files that are automatically added/removed are loaded from the
object redirection directory of the current platform when a project is
opened or reloaded.

Is Default File
Type

Defines whether the file type should be automatically loaded into a
new project during the project’s creation.
156 SNiFF+

Re

Platform view
Platform view

You can modify the list of platforms with the following buttons:

Default Platform The default platform that you specify in this field will be used for all
Working Environments where no platform is specified and for
projects that aren’t in a Working Environment, i.e., absolute projects.

New... Allows you to specify a new platform. When the button is pressed, a
New Platform dialog opens, prompting you for the name of the new
platform.

Copy... Copies the name and attributes of the currently selected platform
and adds -1 at the end of the existing name.

Rename... Opens a dialog in which you can rename the currently selected plat-
form.
ference Guide 157

Chapter 14 Preferences Platform view
Tabs

Debugger tab

Make Support tab

Delete Deletes writable copies of the selected platform.

Set Writable In the User Level tab, select this button to copy the currently select-
ed platform from the Site level. You can then modify the specifica-
tions of the platform at the User level.

Adaptor List of supported debuggers (see the Release Notes for a list of cur-
rently supported debugger back ends). Choosing an item from the
list instructs SNiFF+ to use the correct adaptor for the back-end pro-
cess and also fills the other fields with default values.

Executable Name of the back-end executable. If only the name of the debugger
executable is specified without a path, SNiFF+ searches for the exe-
cutable in the default command path list.
To call a specific executable, specify the complete path.

Prompt Must match the prompt of the back-end debugger. This attribute
should be changed only if the prompt of the back-end debugger does
not match the suggested default value. If Prompt does not match
the prompt of the back-end debugger, the SNiFF+ Debugger will not
work correctly.

Make Command Specifies the Make command for each platform, e.g. sniffmake
on Windows and gmake on Unix.

Platform Makefile Sets the Platform Makefile used during builds. For details, please re-
fer to User’s Guide — Platform Makefile — page 92.

Object Directory Directory where the object files will be generated.

Target Directory Directory where the target files will be generated.
158 SNiFF+

Re

Platform view
Remote Settings

Host Defines the build and debug host of the specified platform and
checks to see whether a local or remote shell should be run in the
Shell tool and the Debugger.

Wait_Seconds for
Shell to Become
Ready

Specifies the number of seconds reserved for remote shell script ex-
ecution. If the scripts need more time to execute, increase this value.

User Name Specifies the name of the User working on the remote host.

Remote Host
SNIFF_DIR

Specifies the path to the SNiFF+ installation directory on your re-
mote host. For detailed information on remote compiling and debug-
ging, please refer to User’s Guide — Remote Compile and Debug —
page 217.
ference Guide 159

Chapter 14 Preferences Others view
Others view

General Settings

Function of Delete
Key

Defines the function of the <Delete> key to be either Delete (de-
lete the character right of the cursor) or Backspace (delete the char-
acter left of the cursor). Set the value according to your keyboard.

Double Click Time
[ms]

Specifies the time in milliseconds (ms) in which SNiFF+ recognizes a
second mouse click as a double-click.

Scroll Time [ms] By default, Scroll Time is set to 1 which is the maximum scrolling
speed. To make it slower, increase the value in the range 1 to 500.

Scroll Width
[Pixel]

By default, Scroll Width is set to 32. You can change the Scroll Width
by selecting a value between 1 and 500.
160 SNiFF+

Re

Others view
Store Window
Layout between
Sessions

Defines whether the window layout is stored between sessions.
Default: selected (window layout stored between sessions)

Ask for
confirmation
before Quitting
SNiFF+

Defines whether SNiFF+ asks for confirmation when Quit SNiFF+ is
chosen from the Tools menu.
Default: not selected (do not ask before quitting)

Use Case
Sensitive File
Matching

Determines how include directives are generated and external re-
quests (Sniffaccess and external editors) are handled.
Default: selected (case sensitive file matching used)

Global File Type
Menus

When selected , adds the commands specified in the Preferences
— File Types view — page 153 to the context menu in the Project
Editor’s File List. When not selected , adds the commands specified
in the Project Attributes — File Types view — page 182 to the con-
text menu in the Project Editor’s File List.
ference Guide 161

Chapter 14 Preferences Others view
162 SNiFF+

R

15Project Attributes

Introduction
When you select a project or subproject and then choose Project > Attributes of Project
Projectname ..., the Project Attributes dialog appears. This dialog also appears when you
double-click on a project in the Project Tree. Default values for some of these attributes are
defined in your Preferences — page 123.
Changes to the project attributes take immediate effect if not otherwise specified in the text
below. Attributes of frozen projects or of projects with a read-only project description file
(PDF) cannot be modified.

SNiFF+’s Project Attributes

Project attributes are organized in five categories in the Project Attributes dialog:

� General

� Build Options

� Parser

� Version Control System

� File Types

All views contain the following two buttons:

OK Editing the project attributes and pressing OK only modifies the
project in memory and sets the state of the project to modified (indicat-
ed by a modified icon in the Project Editor and the Launch Pad). To
save the Project Description File to disk, choose Save project from
the Project menu.

Cancel Discards all modifications, leaving the project attributes unchanged.
eference Guide 163

Chapter 15 Project Attributes General view
General view
The following illustration shows the General view of the Project Attributes dialog:

Project Options

File Name and
Type

Specifies the name of the Project Description File and automatically
shows the type of the project.

Project Directory Specifies the main Project Directory. In the standard case, this path is
set when the project is created and is never changed. If the path spec-
ification (which can contain shell environment variables) evaluates to
an absolute path, this is an absolute project (see “File Name and
Type” above). If the path specification of this attribute evaluates to a
relative path, this is a shared project and the complete Project Directo-
ry path is formed by adding this relative path to the directory path
specified by the working environment root directories.

Read Only Indicates that the project is a library and doesn’t use Shared Source
Working Environments.
164 SNiFF+

Re

General view
New Project Options

� The following are only visible when you generate a new project using the Launch Pad’s
Project > New Project > with Defaults or Project > New Project > with Template menu
commands.

Update Shared
Project Directory
immediately

Should only be selected if you want to immediately update the Shared
Source Working Environment when you check in a file. If this button is
selected and you check in a file, the file is automatically checked out
to the Shared Source Working Environment (SSWE) that the current
working environment accesses. This means that you must have write
permissions in this SSWE. We recommend that you do not select this
attribute and only update working environments at regularly scheduled
times.

Do not create
Symbolic Links
to Source Files

Symbolic links (local copies on Windows) between sources in Shared
and Private Working Environments need only be created if you use
SNiFF+ Make Support. Also, if you only want to browse (not compile)
sources in a Shared Working Environment their is no need for symbol-
ic links (local copies) to be created.

Ignore
Directories

List of directories for which subprojects are not to be created during
the automatic creation of the project’s subprojects. Colons (:) separate
multiple directories from each other.
Example: It doesn’t make any sense to create a SNiFF+ subproject for
a repository directory. Default : RCS:SCCS:CVS

Destination
Directory

You can specify the directory where SNiFF+ should store the newly
created project description files.

Ignore
Directories
without Project
Specific Files

Ignores directories which do not contain files that match the file types
specified for the project.

Generate
Subproject Tree

Subprojects are automatically generated for all the subdirectories in
the project root directory.

Generate Unique
Project Names

When selected, specifies that each project should have a unique
name.

Follow Symbolic
Links (Unix only)

Specifies whether symbolic links to other directories should be fol-
lowed and whether new projects should be generated for those direc-
tories.
ference Guide 165

Chapter 15 Project Attributes General view
Save Current Project Attribute Settings

In Project
Description File

Saves the current project attribute settings in the project description
file.

As Template Saves the project description file as a template in the Projects Tem-
plate Directory specified in the Preferences. For more information on
setting up projects with templates, please refer to User’s Guide —
Project Setup Overview — page 53.
166 SNiFF+

Re

General Advanced
General Advanced

SNiFF+ Generated Files

Generated Files
Directory

Indicates the directory where SNiFF+ stores the generated files for
this project. A relative path is always relative to the Project Directory.
By default, the generated files are stored in .sniffdir (created in
the Project Directory). You may want to change the Generated Files
Directory if you do not have write permission in the Project Directory.
SNiFF+ displays a warning message in the Log window if permissions
prevent writing to the Generated Files Directory.
See also SNiFF+ - Generated Files — page 319.
ference Guide 167

Chapter 15 Project Attributes General Advanced
Tool Status Files

Other Options

Use Generated
Files Directory

Points to the directory where SNiFF+ stores the tool status files. You
may want to change the directory if you do not have write permission
at the default location. If SNiFF+ cannot write the tool status file of a
project, the window positions, contents and tool histories are not re-
stored the next time the project is opened.

Other directory You can specify a directory in which SNiFF+ should store state files.

Tab Size Specifies the number of spaces to use for tab size.
168 SNiFF+

Re

Build Options view
Build Options view
The project attributes that are relevant for Make Support are grouped together in the Build
Options view. The default values for the various fields and check boxes in the view are taken
from your Preferences — page 123.

Options

Use SNiFF+
Make Support

Select to use SNiFF+’s Make Support.

Make Command Command submitted to the Shell when a Make command is issued.
You can attach Make arguments to the command. Furthermore, you
can also use your own shell scripts.
Default : On Unix: gmake. On Windows: sniffmake

General
Target(s)

Name(s) of a project's general target(s). The general targets are used
to drive the Make command and the Debugger. Multiple targets are
separated with a colon (:).
(Please refer to the User’s Guide for a description of the general tar-
gets.)
Default:
all:symbolic_links:clean:clean_targets:help
ference Guide 169

Chapter 15 Project Attributes Directives
Directives

You can add a new platform or delete an existing platform from the Platform list using the
following buttons:

New... Allows you to add a new platform to the Platform list. When the button
is pressed, a New Platform Setting dialog opens, prompting you for
the name of the platform. You can scroll down the list and select a
platform.

Delete Deletes the platform from the Platform List.
170 SNiFF+

Re

Directives
Edit Directives dialog

Include
Directive(s)

List of include directive(s) that are used by the preprocessor. This field
is initially empty. Press the Generate button, to generate include di-
rective(s) for the project. As a rule, you should use the Generate but-
ton whenever you’ve changed a project source file to include a file that
isn’t listed.
Directives cannot be generated for included files that are external to
the SNiFF+ project structure. Enter these in the Additional field (see
below).

Additional List of additional include directive(s) used by the preprocessor. Pre-
processor command line syntax is used in this field (-I path strings
separated by blanks). Additional include directives point to included
files that are external to the project structure, and that cannot therefore
be generated (see above).

Preprocessor
Directive(s)

Specifies the directives for the preprocessor (excluding the include di-
rectives, which are defined by the Include Directives attribute). Pre-
processor command line syntax is used in this field (-D macro-spec
and -U macros-spec strings separated by blanks).

Edit... Opens the Include Directive(s) , Additional and Preprocessor Di-
rective(s) dialog.

New... Opens a dialog where you can enter a new directive name.

Rename... Opens a dialog where you can rename the currently selected directive.

Delete Deletes the currently selected directive.

Up Moves the currently selected directive one position up in the list.

Down Moves the currently selected directive one position down in the list.
ference Guide 171

Chapter 15 Project Attributes Project targets - C/C++
Project targets - C/C++

Executable The name of the executable to be built.

+ Libraries
Linked

The libraries that are linked to the executable.

Relinkable
Object

The name of the relinkable object to built.

+ Libraries
Linked

The libraries that are linked to the relinkable object.

Library The name of the static library to be built.

Shared Library The shared library to be built.

Other User-defined targets. Note that SNiFF+ doesn’t provide Make rules for
building user-defined targets.
172 SNiFF+

Re

Project targets - Java
Project targets - Java

Note: Please refer to the Java Technical Reference in the Java Tutorial for more information.

Application
Class

Specifies the application target class.

Applet Class(es) Specifies the applet target classes.

HTML File Specifies the HTML file which embeds the applet. If no file is specified
SNiFF+ generates a default file. Only works for JDK 1.1.x, because of
changes in behavaviour of JDK 1.2 appletviewer .

Library (JAR) Specifies the name of the library target to be built.

+ JAR Filelist List of files used by your project but not compiled as part of the project.
These files must, however, be relative to the Project directory.

Target Class(es) Specifies other target classes (e.g., for Java beans).
ference Guide 173

Chapter 15 Project Attributes Build Structure - C/C++
Build Structure - C/C++

Passed to
Superproject

Select the type of object that is to be exported to the superproject. For
details, please refer to User’s Guide — Build and Make Support —
page 83.

Received from
Subprojects

The objects that are exported from the subprojects of the project are
listed in this box. These objects are prerequisites that are used to build
the project’s targets.
Note that you cannot alter the contents of this box.

Recursive Make
Dir(s)

This field lists the subprojects in which Make is to run recursively.
For details, please refer to User’s Guide — Building targets recursively
— page 98.

Edit... Opens the Recursive Make Dir(s) dialog. This dialog is very similar to
the Include Directive(s) dialog. See also Edit Directives dialog —
page 171.
174 SNiFF+

Re

Build Structure - Java
Build Structure - Java

Class Path to

Libraries This setting is used to provide a list of absolute paths to library byte-
code, zip or jar files used in you project, if there is no source code
available for them.
However, if the source code is available for the libraries, as is the
case for the JDK library, it is best to create SNiFF+ Projects for them
and then add these as subprojects. There is then no need to enter
anything in the Classpath field for these projects.
The advantage of creating and adding subprojects is that you can then
also correctly browse inheritance relationships and cross-references
etc.
You can also enter the class path to external source code packages
that you have not added to your SNiFF+ project as subprojects. This
will allow correct compilation, but you will not see any symbol informa-
tion.
This applies also to libraries where no sources are available; SNiFF+
will recognize the data types in such files, but not the symbol names.
If you use RMI, you have to enter the path to the JDK class files in this
field.
ference Guide 175

Chapter 15 Project Attributes Build Structure - Java
Make

Source Package
Root

This setting is the class path as you would enter it after
-classpath . You can specify this relative to the current project or,
in the case of an absolute project, as an absolute path.
The class path to the Source Package Root ends where the package
begins. That is, it is always one directory level higher than the high-
est-level directory containing code in named packages. Bear this in
mind especially also during Project Setup. Once the project has been
set up, this can be set relative to the project, as seen from the pack-
age (e.g. .. or ../.. etc.)
If you specify the class path to the Source Package Root for a root
project, it is generated correctly for all sub-projects. For subsequent
modifications, it is easiest to checkmark all projects in the Project Edi-
tor and to choose Project > Attributes of Checkmarked Projects .
Then press the Generate button to the right of the field.

Byte-Code
Package Root

By default, byte-code is generated to the same directories as the
source code. If you prefer to keep your source and byte-code sepa-
rately, enter a root directory (relative or absolute) where you would like
your byte-code packages to start, then press the Generate button.
SNiFF+ will create the specified directory, and recreate the package
structure. Byte-code will be generated to this directory when you build
your project.
If you simply enter a name for a directory, it will be created in the cur-
rent project directory.

Recursive Make
Dir(s)

Lists the subprojects where Make is to run recursively.
176 SNiFF+

Re

Build Options Advanced
Build Options Advanced

Make Support Files Directory

Use Generated
Files Directory

Location of the generated Make Support files. By default, the generat-
ed Make Support files are located in the directory that is specified in
the Generated Files Directory field of the General > Advanced view.
If you do not use the default value, you will have to modify the project
Makefile to reflect the location of the Make Support files.
ference Guide 177

Chapter 15 Project Attributes Build Options Advanced
Make Support Files

These fields are enabled if you use SNiFF+ Make Support; you can set this in the Build
Options view — page 169.

Note that SNiFF+ automatically updates the Macros Make Support file of a project when you
do one of the following:

� Choose the Add/Remove Files to/from project... command, or the Add Subproject to
project command, or the Remove Subproject subproject command from the Project
menu in the Project Editor.

� Modify any Make attribute of the project.

Make Support files are automatically added to and removed from projects, since they are
associated with the SNiFF+ Make Support file type. (The Add/Remove Automatically
attribute of this file type is selected.) When you create a new project, you have to explicitly

Note

You can set the SNIFF_MAKEDIRmacro in the project’s macros file to the directory in
which the generated Makefiles are located (default: .sniffdir). As a result, Makefiles
need not be modified when the location of the generated Make Support files changes.

Other Directory You can specify a directory in which SNiFF+ should store generated
Make Support files.
Please note: The path specified in this field must be relative since ab-
solute paths are not currently supported.
Once you’ve specified another directory for Make Support files, you
must manually enter the path to this directory in your project Make-
files.

Dependencies Name of the dependencies file that is generated for the project.

Macros Name of the macros file that is generated for the project.
178 SNiFF+

Re

Parser view
tell SNiFF+ to add the Make Support file type to the new project. You can do this by
selecting the file type in the File Types view of the Attributes of a New Project dialog and
then pressing the Copy from Preferences button (in the same view).

Parser view
You can look at or modify the parser settings of a project in the Parser view. The default
values of the various fields and check boxes in this view are taken directly from your Prefer-
ences. See also Preferences — page 123

Include File List Name of the file that contains the include file list for the project.

Use Include
Directives for
Dependencies
Generation

Determines whether the include directives (from the Include Direc-
tive(s) field, see Directives — page 170) should be taken into account
when generating the project’s dependencies file.
ference Guide 179

Chapter 15 Project Attributes Parser view
Parser

Parser
Configuration
File(s)

Specifies the Parser Configuration File(s). Multiple files are separated
with a semi colon (;). The files must be specified with an absolute path
(but can contain environment variables which evaluate to an absolute
path). If the list of files or their contents change, you should reparse
the project by choosing Reparse from the Project menu. Default: no
files (also none inherited from Preferences).

Preprocess Source Code
before Parsing

Specifies whether the source code of this project should be
preprocessed before parsing. If you change the setting, you
should reparse the project by choosing Force Reparse from
the Project menu.

Use Standard Header
Dependencies

SNiFF+ also considers standard includes, for example
#include<file.h> for dependencies generation.

Use Parser Comments
for Syntax Highlighting

When selected, SNiFF+ uses Parser information to recognize
comments, and is therefore more accurate. However, more
memory is required.

Extended Symtab API
Positioning

When selected, parameter names and start and end positions
of the argument list and the constructor initialization list are
added to the Symbol Table. To activate this option, execute
the Force Reparse command in the Project Editor.
180 SNiFF+

Re

Version Control System view
Version Control System view
The Version Control System (VCS) view groups attributes that are related to the version
controlling of projects. The default VCS tool can be specified in the Preferences — Version
Control System view — page 149.

General Settings

VCS Tool Version control tool used for this project. The drop-down lists tools for
which pre-defined adaptors are provided. Please refer to the Release
Notes for more information on specific tools. If no adaptor is available for
your tool, you can define a new one. Default : RCS.

Repository
Directory

Note that SNiFF+ specifies a default value for the Repository Directory, so
you can generally leave this field blank. If you do, SNiFF+ assumes that
each Repository Directory is a subdirectory of its corresponding Project Di-
rectory. If you want to specify another location for your repository, enter
the path to the repository in this field. Note that multiple SNiFF+ projects
can share a single Repository Directory.
ference Guide 181

Chapter 15 Project Attributes File Types view
File Types view
SNiFF+ handles different kinds of files by associating them with file types. SNiFF+ comes
with a set of predefined commonly used file types.
During the creation of a project, the file types are copied from your Preferences to the project
attributes. Each project has its own set of file types, so modifying the file types in the Prefer-
ences does not affect already existing projects.
New file types can be created by pressing New.... For details, please see To set File Types
attributes — page 143.
The following illustration shows the File Types view:

Typography of File Types List

Bold File type is part of the project. To remove this file type from the project,
select it and press the Remove button.

Italics File type is not part of the project. To add this file type to the project,
select it and press the Add File Type button.
182 SNiFF+

Re

File Types view
You can modify the list of file types with the following buttons:

File Types — Tabs

General tab

New... Allows you to create a new file type. When the button is pressed, a
New File Type dialog opens, prompting you for the name of the new
File Type. You will be warned if the name already exists.

Copy... Copies the currently selected file type together with its attributes and
adds -1 at the end of the existing name.

Rename... Opens a dialog in which you can rename the currently selected File
Type.

Remove File
Type

Removes the selected File Type from the Project.

Add File Type Adds a pre-configured File Type to the Project (to see all pre-config-
ured File Types, press the Show All button).

Show All / Hide
Unused

File Types which are not part of the Project (italics) will be shown/hid-
den.

Signatures Specifies the pattern for the file type using shell regular expressions.
SNiFF+ uses signatures to determine the file type of a given file. A file
type can have more than one signature. Multiple signatures are sepa-
rated from each other by a colon (:).
SNiFF+ keeps an alphabetical list of file types. If a file matches the
signature of more than one file type, SNiFF+ associates the file with
the first file type it finds in the list.

Type Specifies a generalized (pre-defined) name for the File Type. Some
File Types (Implementation, Object and IDL) have a special signifi-
cance in SNiFF+. These are described under Special File Types be-
low).

Directory Specifies the directory where files of this file type are stored. If the di-
rectory specification is a relative path, it is relative to the Project Direc-
tory. An absolute path can also be specified.
ference Guide 183

Chapter 15 Project Attributes File Types view
Special File Types

SNiFF+ uses generalized File Types, some of which have a special significance in the
SNiFF+ Make Support system.

� Implementation File Type

If you add a new file type (extension *.myC) to a SNiFF+ project, and you define *.myC
files to be of the Implementation type, the SNiFF+ Make Support system will know that

� the *.myC files are compilable, and that, by default, *.o files are to be generated

� dependencies have to be checked.

� Object File Type

If you add an Object file type and derive it from a given implementation file type (e.g. from
the *.myC files used in the above example), you can specify a custom extension for
generated object files.

� IDL

If you specify files to be of the IDL type, the targets for these files will always be generated
prior to all other (standard) targets.

Context Menu tab

This tab allows you to configure the right-click context menu of the Project Editor’s File List
according to file types.

Command Label Specifies the menu command labels that should appear in the Project
Editor’s File List context menu. For each Command Label , you must
specify a tool name in the Corresponding Command list. Multiple
names are separated with a colon (:).

Corresponding
Command

Specifies the possible tools that can be opened from the context
menu. Multiple tools are separated with a colon (:). The tools can be
called in the Project Editor’s File List by selecting a file and then press-
ing the right mouse button. The first tool in the list is the default tool.
The following predefined tools can be opened from the Project Editor’s
File List context menu:

Command SNiFF+ tool Can be used for

SniffEdit Source Editor All text file types

DocBrowser Documentation Editor Documentation

SniffOpen Launch Pad Project Description Files
184 SNiFF+

Re

File Types view
Commands are executed in the Shell tool and can contain the following variables that will be
expanded before execution of the command:

Build System tab

%d full path of Project Description File (PDF)

%f full path of source file

%F base name of source file

%D source directory of project

%l repository path without the tool-specific extension

General
Makefile

Specifies the Language Makefile. For details, please refer to User’s
Guide — Build and Make Support — page 83.

Generated From Defines whether this file type is generated from another file type. For
example, object files are generated from source files.
ference Guide 185

Chapter 15 Project Attributes File Types view
Advanced tab

Source Code
Parser

Defines which SNiFF+ parser is used for extracting symbol information
from files of the File Type selected in the L . If this field is empty, the file
is not parsed at all. SNiFF+ accommodates many predefined parsers.
Please contact SNiFF+ Support for information on predefined parsers
and incorporating your own parser.

Icon for File
Type

Specifies the icon that should be associated with the file type. It is
shown whenever the file is shown in SNiFF+. SNiFF+ comes with a set
of icons for most of the predefined types. If the directory specification is
a relative path, it is relative to the project directory. An absolute path
can also be specified.

Add/Remove
Automatically
to/from Project

If you want SNiFF+ to add/remove files of a particular file type automat-
ically to/from a project, checkmark Add/Remove Automatically to/
from Project .
We suggest that you checkmark Add/Remove Automatically to/from
Project for “derived files” (e.g., Make Support files). On the other hand,
you should clear the Add/Remove Automatically to/from Project
checkbox for files that you share with other team members (e.g.,
source files). This attribute simply allows SNiFF+ to add/remove files
to/from a project. It does not modify files outside the SNiFF+ environ-
ment in any way.
Note that you cannot add/remove files in SNiFF+ when Add/Remove
Automatically to/from Project is checkmarked. By checkmarking it,
you have delegated the task of adding/removing these files to SNiFF+.
If SNiFF+ cannot find files (when Add/Remove Automatically to/from
Project is checkmarked) during the opening or updating of a project,
you will not see these files in your project. Furthermore, if you delete a
file outside of SNiFF+ and then select it in the Project Editor, an Alert
dialog appears and the file is no longer listed in the Project Editor.

Generated in
Object Directory

Only applicable for IDL. The files that are automatically added/removed
are loaded from the Object Directory of the current platform (see also
Platform view — page 157) when a project is opened or reloaded.
186 SNiFF+

Re

Group Project Attributes
Group Project Attributes
You can modify the attributes of multiple projects in the Project Tree at the same time by
checkmarking them and then choosing Project > Attributes of Checkmarked Projects... .
The Group Project Attributes dialog appears. The views in the Group Project Attributes
dialog are the same as those in the Project Attributes dialog, except for a few additional
features. These appear in all views and are described below using the General view.

Setting attributes for multiple projects

To set attributes for multiple projects:

1. Select a project in the Project List.

The attributes of the highlighted project are now shown in the various views.

2. Set the individual attributes as you would when setting attributes for single projects.

3. Select the check box to the right of the individual attribute to make the attribute globally
effective for all projects in the Project List.

Note

Attributes of frozen projects or of projects with a read-only project
description file (PDF) cannot be modified.
ference Guide 187

Chapter 15 Project Attributes Group Project Attributes
4. Press the Set for All button and then OK.

The changes made to the project attributes will immediately take effect.

Navigating in the Project List

� You can navigate in the Project List by using the Prev and Next buttons. These buttons
display the attributes of the previous/next project in the Project List.

Further features in the File Types view

For information about setting file types attributes for multiple projects, please refer to User’s
Guide — To set File Types attributes — page 143

Checkbox Description

Replace Applies current settings to the same file type in all projects in the
Project List.

Add/Delete Adds/Deletes current file type to/from all projects (including current
one) in the Project List.
188 SNiFF+

R

16Project Editor

Introduction
The Project Editor is used to edit and browse project-specific information, including

� project attributes

� subprojects

� files

� version control and locking information

When you create new projects, a Project Editor is automatically opened.
You can open a Project Editor by choosing Project Editor from the Tools menu of any tool.
eference Guide 189

Chapter 16 Project Editor Quick Reference
Quick Reference

Icons in the File List

Icons are used to represent file types. Note that the following is only a selection of some
default file types, you can add your own file types and/or associate files with different icons.

Typeface in the File List

Mouse clicks in the File List

� Double-click on a file to open it in the associated editor.

� <Shift>-click selects all items from a previously selected item to the currently selected
file.

� <Ctrl>-click adds/removes current selection to/from an existing selection.

Icon File Type

C/C++

Header

Java

Fortran

IDL

Project Description (PDF)

Makefile

Other

... etc.

Entry typeface File is

Bold writable in current working environment

Non-bold read-only in current working environment

Italics located in a shared working environment
190 SNiFF+

Re

Quick Reference
Icons in the Project Tree

The icons in the Project Tree indicate the following about the projects:

Typeface in the Project Tree

The typeface in the Project Tree indicates the following about the project

Mouse clicks in the Project Tree

� Double-click on a project to open the Project attributes dialog for the selected project.

� <Ctrl>click on a project (not on the checkbox) to display only files from that project and
hides all others

Icons in the History window

The History window opens when you select the History check box at the bottom of the tool.
Icons are described under History window — page 204

Icon Status of the project

The project is writable; the Project Description File (PDF) is writable and the files
of the project may be modified if they are writable.

The project is frozen; neither the Project Description File (PDF) nor the files of the
project may be modified (even if they are writable). Typically, such projects are li-
braries.

The Project Description File (PDF) is read-only, but files of the project may be
modified if they are writable.

The project (attributes or structure) has been modified, but its Project Description
File (PDF) hasn’t been saved yet.

The object files of this project will be linked directly to the targets of its super-
project.

Do not link the object files of this project directly to the targets of its superproject.

Entry typeface Description

Normal Symbol information is available for the project.

Italics No symbol information is loaded for the project.
ference Guide 191

Chapter 16 Project Editor Basic components
Basic components

File List

Icons, typeface and mouse shortcuts are described under Quick Reference — page 190.
The File List shows the files belonging to the projects that are checkmarked in the Project
Tree. The list can be further constrained by various filters (all located above the list).
You can filter the File List according to:

� status — modified? locked? own? (this information can be cached).

� location — private/shared working environments?

� permissions — read/write?

� file types

� regular expressions

See also Filters — page 193

Right-click Context menu in the File List

Apart from including frequently used commands, the right-click Context menu is config-
urable. To find out how to configure the commands, please refer to the Preferences on page
153. Note that the available commands in the menu are the same for all files of a particular
file type.

File Info Line

The File Info Line, between the File List and the Project Tree, uses an icon to show read/
write/modified status of a selected file, followed by the name of the project the file belongs to.
The icons are the same as those used in the Project Tree and are described under Quick
Reference — page 190. Note that the “modified” status can only be shown if the History
check box at the bottom of the tool is selected.

Project Tree

Icons, typeface and mouse shortcuts are described under Quick Reference — page 190.
The Project Tree shows the hierarchical project structure.
The nodes in the Project Tree can be clicked to expand or collapse them. An expanded node
is indicated by a “-” sign, a collapsed node by a “+” sign.
The icons in the Project Tree show whether a project is writable and whether its objects
should be linked to its superproject's targets.
The attributes displayed in the Project Tree can be edited in the Project Attributes dialog, for
more information please refer to Project Attributes — page 163.
A checkmark next to a project’s name means that the files of the project are shown in the
File List. In SNiFF+, a project with a checkmark next to it is referred to as a checkmarked
project.
Note that the same project can be a subproject of more than one project.
192 SNiFF+

Re

Filters
The Project Tree drop-down

This drop-down, above the Project Tree, is used to organize the view in Project Tree:

Filters
A number of filtering controls are provided at the top of the tool. Individual selections are
possible in the various drop-downs, multiple combinations of filters can be selected using the
Filters dialog.

Filters... Button

The Filters... button opens the Filters dialog, where you can select multiple combinations of
filters.

The Filters Dialog

� The Apply button applies the selected filters and leaves the dialog open.

� The Ok button applies the selected filters and closes the dialog.

Entry Description

Full Tree The full hierarchical structure of the Tree is shown.

No Duplicates Duplicates are hidden (the same project can be a sub-
project of more than one project).

Sorted The Projects are sorted by path names (case sensitive).
ference Guide 193

Chapter 16 Project Editor Filters
If multiple combinations are selected, the corresponding drop-downs on the tool show the
entry, Filtered... . Selecting Filtered... in a drop-down opens the Filters dialog.
The Project Editor’s Filters dialog has four tabs.

File Status tab

The entries correspond to those described under File Status drop-down — page 194.

File Location tab

The entries correspond to those described under File Location drop-down — page 195.

File Permission tab

The entries correspond to those described under File Permission drop-down — page 195.

File Types tab

The entries depend on the file types included in the project. Use this tab to display any
multiple combination of file types included in the project.

File Status drop-down

The File Status drop-down filters the File List according to locking and version information
provided by your version control system. This information can be cached using the Use
Cache check box (see Use Cache check box — page 195).

Entry Description

All Files Displays all files in the File List regardless of the file status.

Modified Opens a Version dialog prompting for a configuration name;
only those files that differ from the entered configuration are
then displayed.

Unchanged Opens a Version dialog prompting for a configuration name;
only those files that are unchanged compared to the entered
configuration are then displayed.

Own Displays only those files that are locked by you.

Own Modified Opens a Version dialog prompting for a configuration name;
only those files that are locked by you and different compared
to the entered configuration are then displayed.

Locked Displays only locked files in the File List.

Not Locked Displays only unlocked files in the File List.
194 SNiFF+

Re

Status line
Use Cache check box

Caution: Use this check box with care!
If the check box is selected, file status information provided by your version control system is
cached and therefore more quickly accessed. This improves performance when you change
filters in the File Status drop-down — page 194. Versioning commands issued within SNiFF+
by yourself will update the cached information.
However , if other team members e.g. check out/in files, this will not be reflected if the Use
Cache check box is selected. Repository changes made outside of SNiFF+ are also not
registered. Information may therefore be inconsistent.
If you need reliable, up-to-date Repository information, clear this check box.

File Location drop-down

Use this drop-down to filter for files located in

� the Private Working Environment you are working in or

� Shared Working Environment(s) or

� Private and Shared Working Environments.

File Permission drop-down

Use this drop-down to filter for

� writable files or

� read-only files or

� both read-only files and writable files

Filter field

Enter a regular expression here and hit <Return> to filter accordingly.
For more information, please refer to Regular expression filters — page 11.

Status line

Frozen check box

The Frozen check box is described under Status line — page 12.

Filtered... Multiple entries are selected in the Filters dialog. Selecting
the Filtered... entry itself opens the Filters dialog.

Entry Description
ference Guide 195

Chapter 16 Project Editor Status line
Lockers check box

Selecting the Lockers check box adds a new column to the File List. The following locking
information of currently displayed files is shown:

� the version control tool used

� the owner of the lock and

� the version number of the locked files

History check box

Selecting the History check box opens the History window. Please refer to History window
— page 204 for details.
196 SNiFF+

Re

Menus
Menus

File menu

The Project Editor's File menu serves to issue commands for the currently selected file(s) of
the File List.

File menu command Description

Check Out... Opens a Check Out dialog for checking out select-
ed file(s).

Check In... Opens a Check In dialog for checking in selected
file(s).

Lock... Opens a Lock dialog for locking selected file(s).

Unlock... Opens an Unlock dialog for unlocking selected
file(s).

Delete Version... This command is enabled when the History win-
dow is open. Opens a Delete Version dialog for de-
leting a version of the selected file(s).If a version is
selected in the Version Tree, this version is filled in
as the default value of the dialog’s Version field. If
no version is selected in the Version Tree, SNiFF+
uses the Default Configuration of the working envi-
ronment in which you opened the project. For more
information, please refer to User’s Guide — De-
fault Configuration — page 150.

Replace Description This command is enabled when the History win-
dow is open. Replaces the description of the se-
lected file(s) in the underlying version control tool.

Replace Comment... This command is enabled when the History win-
dow is open. Opens a Replace Comment dialog for
changing the comment of a specific version of the
selected file.

Select All Selects all entries in the File List.
ference Guide 197

Chapter 16 Project Editor Menus
Synchronize File... Synchronizes the currently selected files with the
repository status. A Files Compared To dialog ap-
pears, where you can enter a configuration name.
If Ok is pressed in the dialog, all selected working
files in the File List are compared with the entered
configuration.
In shared working environments, out-of-date read-
only files are replaced with up-to-date versions
from the repository.
In private working environments, out-of-date read-
only files are replaced with a view to files in the
corresponding shared environment.
The Synchronize Checkmarked Projects... com-
mand of the Project menu does exactly the same
at project level. This command uses the update file
command of the version and configuration adaptor.

Show Differences... Opens a dialog where you can enter two versions
of a file (or multiple files) selected in the File List.
After pressing Ok in the dialog the Diff/Merge tool
opens.
For a discussion of how to manage versions and
configurations with SNiFF+, please refer to User’s
Guide — Version Control.

Show File <filename> Opens the file in your preferred editor.

File menu command Description
198 SNiFF+

Re

Menus
Project menu

You can use the Project menu to issue commands that browse or modify the attributes and
structure of the projects in the Project Tree.

Project menu command Description

Add/Remove Files to/from project... Only enabled if the Project Description File
(PDF) is writable. Opens the Add/Remove Files
dialog. See also Add/Remove Files dialog —
page 206.

Add New File to project... Only enabled if the Project Description File
(PDF) is writable. The new file is added to the
PDF which is highlighted in the Project Tree.

Add Visaj Project to project... Opens a dialog where you can enter a name -
without any extension - for the Visaj project (the
Visaj Project File Type must be included in
project’s Attributes). A file with the extension
.vcl appears in the file list. Double-click on
the .vcl file to open the Visaj Class Editor.

These commands apply to the project that
is highlighted in the Project Tree

These commands apply to the root project
in the Project Tree and all subprojects

These commands apply to the projects that
are checkmarked in the Project Tree
ference Guide 199

Chapter 16 Project Editor Menus
Add Subproject to project... Opens a Subproject File dialog where you can
select the Project Description File of the sub-
project to be added. The project that you se-
lected before choosing the Add Subproject...
command becomes the superproject of the se-
lected subproject.
Note: For absolute projects: To enhance the
transportability of absolute projects, the specifi-
cation of the subproject file can contain envi-
ronment variables. Selecting files using the File
dialog always writes the absolute file path into
the Project Description File. Manually entering
the complete subproject file specification in the
text field retains environment variables and oth-
er shell metacharacters like '~'.

Add Subproject... > This command allows you to create a new
Project using either the New Project defaults or
a Project template. The newly created Project
is then immediately added to the highlighted
project as a subproject.

Remove Subproject project... Removes the selected subproject from the PDF
of its superproject. Note that you cannot delete
the Project Description File or any of the files of
the subproject by issuing this command.

Save project Saves the project that is selected in the Project
Tree. This menu entry is only enabled if the se-
lected project has been modified. If Make
Backup in the Tools node of the Preferences
dialog is set, a backup file with the name pro-
jectname% is created.

Attributes of project... Opens the Project Attributes dialog. Please re-
fer to Project Attributes — page 163 for more
information.

Reload Project... > Reloads the selected project from disk. The
commands in the submenu are active if the
Project Description File (PDF) has changed
while the project was open, or when you want
to discard all unsaved modifications to a
project. If the structure of the selected project
has changed, the corresponding files/sub-
projects are (un)loaded. The project attributes
are also updated.

Project menu command Description
200 SNiFF+

Re

Menus
> In Current Working Environment Reloads the open project in the working envi-
ronment you are currently working in.

> In Other Working Environment... Opens a dialog where you can select the work-
ing environment to reload the project in.

Close Project Closes all projects.

Check Obsolete Files Opens a dialog listing all the files which are in
project directories, but which are not used in
the projects, that is, they are not recorded in
any of the PDFs in the Project structure. You
can selectively filter and delete obsolete files.

Update Cross Reference Info Applies only to C/C++ projects. This allows up-
dating of Cross-Reference information without
reparsing symbol information. Subsequent Re-
ferred-By queries are then faster. To update
Cross Reference information for Java and oth-
er languages , use the Force Reparse com-
mand.

Load/Update Symbol table Checks to see whether the symbol information
of the files in the File List is current or not. If it
is, no action is taken. If it isn’t, those files where
symbol information is no longer current will be
reparsed. You should execute this command
only when you have modified project files with
tools other than SNiFF+. You can also use this
command to incrementally load the Symbol ta-
ble for projects that have been opened without
symbolic information.

Force Reparse Reparses the files of the projects that are
checkmarked in the Project Tree. Reparsing is
necessary, for example, when the parser con-
figuration file has been modified. Note that only
files of projects whose symbol information is
currently loaded into SNiFF+ are reparsed. In
large project structures, reparsing can be time
consuming.
For more information, please refer to User’s
Guide — Parser configuration file — page 188.

Project menu command Description
ference Guide 201

Chapter 16 Project Editor Menus
Target menu

Please refer to Target menu — page 19.

Delete Symbol Information Deletes all generated symbol information
stored in the “Generate Directories” of the
projects that are checkmarked in the Project
Tree. Symbol file management is normally fully
transparent to the user. This command is nec-
essary only if the symbol files have a wrong
modification date (due to a copy or some other
reason) or are corrupt; then, when a project is
closed, new symbol files will automatically be
created.

Attributes of Checkmarked Projects... Opens the Project Attributes dialog for multiple
projects, that is, for the projects checkmarked
in the Project Tree. See also Group Project At-
tributes — page 187

Synchronize Checkmarked Projects Synchronizes all files in checkmarked projects
with the repository files. Note that the check-
marked projects are reloaded in the current
working environment after the completion of
the command. See also Synchronize File... —
page 198.

Synchronize File Status Updates the File List display of the file read/
write permissions of all files in the projects that
are checkmarked in the Project Tree. If the files
have changed on disk, they are reparsed and
symbol information is brought up to date.

Display Statistics Opens a Display Statistics dialog. In this dialog,
you can select the type of statistics that you
want to see - either File Type, Symbol table, or
both. Statistics are displayed for each check-
marked project in the Project Tree. When you
press the Ok button, a Statistics dialog ap-
pears. For more information, see Statistics dia-
log — page 208.

Project menu command Description
202 SNiFF+

Re

Menus
Info menu

The Info menu in the Project Editor is a simplified version of the Info menu that is available in
other tools. For a description of the commands below, please refer to Info menu — page 20.

View menu

Please refer to View menu — page 23.

Help (?) menu

Please refer to Help (?) menu — page 23.
ference Guide 203

Chapter 16 Project Editor History window
History window

Icons in the History window

The History window opens when you select the History check box at the bottom of the
Project Editor.

You can use the History window to check on file version and configuration information as
provided by your version control system.

Symbol Description

a single unnamed file version

a new file version without a change

file version is the first version on a new branch

file version is part of a change set

file version is part of a configuration

File Version History

History view

Description view
204 SNiFF+

Re

History window
Filter check boxes

The two check boxes at the top of the window allow you to filter for Change Sets or/and
Configurations.

Version Tree

The symbols and text in the Version Tree provide versioning information about the file
selected in the Project Editor’s File List.

History

Displays the history records (stored in the version control tool) of the selected file. If no entry
is selected in the Version Tree, the complete history of the file is displayed. Otherwise, only
the history record of the selection in the Version Tree is displayed. The exact contents of the
History view depends on the underlying version control tool. The information contains at least
the version number, the name of the person who created the version, and when it was
created. Also, a comment string is stored with the history record. The comment string of a
specific version can be changed by choosing the Project Editor’s File > Replace
Comment... menu command.

Description

Displays the description (stored in the version control tool) of the selected file. The descrip-
tion can be changed by choosing the Project Editor’s File > Replace Description menu
command.
ference Guide 205

Chapter 16 Project Editor Add/Remove Files dialog
Add/Remove Files dialog
You can add/remove files to/from a project with the Add/Remove Files dialog.

In the Project Editor

To add and remove files from a given project:

1. Make sure the Project Description File you want to add/remove files to/from is writable.

2. In the Project Tree, highlight the relevant project by clicking on it’s name.

3. Choose Project > Add/Remove Files...

The Add/Remove Files dialog appears. At the top of the dialog, the currently selected
project and path are shown.

The File Types Filter

The File Types filter allows you to filter the view for individual, or all, file types included in the
project.
206 SNiFF+

Re

Add/Remove Files dialog
Buttons in the Add/Remove Files dialog

Button Description

All Selects all elements in the respective File List.

Remove Removes the selected source file(s) from the current project, but
does not delete the file. All symbols of an unloaded file are removed
from the project. A file can also be removed by double-clicking.

New Opens a dialog which prompts for the name of a new file to be creat-
ed and added to the project. The new filename must match one of
the legal file types of this project (it must match one of the signature
patterns. See also File Types view — page 182).

Add Adds the selected source file(s) to the project. To add a file to a
project means to parse the file and load the symbolic information. A
file can also be added by double-clicking it.

Rename Pops up a dialog box which prompts for the new name of the file.
Only files in the directory can be renamed.
To rename the file belonging to a project, unload the file, rename it
and load it again. The button is only enabled if a file is selected.
Note: This button should not be used to rename archived files, nei-
ther for Clearcase nor for any other Version Control tool.

Delete Deletes the selected file(s) if the file permissions allow it. SNiFF+
asks for confirmation before actually deleting the file(s).

Update Updates the file lists. Necessary when, for example, a new file is cre-
ated in the shell.

Ok Closes the Add/Remove Files dialog and applies the changes.

Cancel Closes the Add/Remove Files dialog without applying any changes.
ference Guide 207

Chapter 16 Project Editor Statistics dialog
Statistics dialog
When you choose Project > Display Statistics..., a dialog appears asking what type of statis-
tics (Symbol table and/or File Type) you would like to see. When you have selected the type
of project statistics, the Display Statistics dialog appears and shows the appropriate statistics
for the projects checkmarked in the Project Tree.

Statistics are given for each checkmarked project in the Project Editor. In the Display Statis-
tics dialog, you first see statistics for the different types of the Symbol table information
(number of files in the project, number of includes, etc.).
The Symbol table statistics are followed by the File Type statistics for each checkmarked
project. You can also see whether SNiFF+ automatically adds/removes files of a particular
file type in the Add/Remove Automatically field. A Symbol table Statistics total and a File
Type Statistics total for all checkmarked projects are then given at the bottom of the Display
Statistics dialog. Please refer to Preferences, File Types view — page 182 for a description
of the Add/Remove Automatically attribute of a file type.

The total number of files of a
particular file type is given for
each checkmarked project. You
can also see if files of this file
type are automatically added/
removed to/from a project (here:
FALSE)

Statistics are given for each
checkmarked project. At the
end of the dialog, a statistics
total for all projects is given
208 SNiFF+

R

17Retriever

Introduction
The Retriever is opened with the appropriate Info > Retrieve menu commands available in
most tools, or by choosing Tools > Retriever from the menu of any tool.
The Retriever is a global textual retrieve-and-replace tool, whereby regular expression filters
can be used for complex retrievals and modifications. For an introduction to regular expres-
sion syntax, please refer to Regular Expressions in SNiFF+ — page 307.
Queries can be constrained in terms of projects and file types, and filtered using regular
expressions. Inter-file navigation is seamless, and modifications can be globally applied.
eference Guide 209

Chapter 17 Retriever Quick Reference
Quick Reference

Regular expressions

Please refer to Regular Expressions in SNiFF+ — page 307.

Icons in the Files — Matches List

These icons are used to represent the following default file types (note that you can add your
own file types and/or associate file types with different icons):

Typeface in the Files — Matches List

Mouse clicks in the Files — Matches List

� Click on a text match to position the integrated Source Editor to the match.

� Click on a file name to position the integrated Source Editor to line one of the file.

� Double-click on a matched line to open the corresponding file in a new Source Editor
positioned at the match.

� Double-click on a file name to open the file in a new Source Editor positioned at line one.

Icon File Type

C/C++

Header

Java

Fortran

IDL

Project Description (PDF)

Makefile

Other

Typeface File is

Bold writable in current working environment

Non-bold read-only in current working environment

Italics located in a shared working environment
210 SNiFF+

Re

Indexing and caching
Indexing and caching
To speed up retrievals in large project structures, the Retriever allows a combination of word
indexing and memory caching.

Indexing

Files and words (case-insensitive) are indexed, and therefore simple string queries are a
lot faster. Index creation (true by default) is set in the Preferences Retriever view — page
137.
Whether the index and associated features are used for individual queries can be toggled
in the Advanced Retriever Options dialog — page 217.
See also Retriever index files — page 321 for more information about the generated index
files.

Caching

Files can also be cached in memory after the first retrieval. This will further accelerate
subsequent queries, especially also if you query a succession of complex regular
expressions that cannot be easily mapped to indexed words. Or also something as simple
as “i ”, which is mapped as a substring of a whole lot of words.
Caching can be toggled in the Advanced Retriever Options dialog — page 217.
ference Guide 211

Chapter 17 Retriever Basic components
Basic components

Retrieve button

The Retrieve button starts a query based on the entries in the Retrieve field and the Filter
field. Note that you have to press this button to trigger a re-query after you change project
selections in the Project Tree, or after changing selected File Types.
Queries can also be triggered either from the Info menu, or by pressing <Return> in the
Retrieve field. Filtered queries can also be triggered from the Find and Replace Filters
dialog — page 218.

Retrieve field

A string or a regular expression can be entered directly into the Retrieve field. The query
starts when <Return> or the Retrieve button is pressed. See also Regular Expressions in
SNiFF+ — page 307

Change To field

This field is used for entering modifications, that is, a replacement string which is subject to
the modifications imposed by a combined regular expression filter/modifier in the Filter field.
A preview of the line as modified according to the regular expression evaluation is supplied
in the Preview field. Changes only take effect after one of the modification control buttons
are pressed. Note that if the Change To field is empty, and one of the modification control
buttons is pressed, the matched expression is replaced by an empty string, i.e. deleted.
For details about modification control buttons, please refer to Modification control buttons —
page 215.

Filter... button

The Filter... button resets the current filter and opens the Find and Replace Filters dialog.
This dialog is used for creating, selecting, and maintaining regular expression filters, as well
as for triggering filtered queries. See also Find and Replace Filters dialog — page 218

Filter field

You can enter regular expressions directly in this field. The string in the Retrieve field can be
referenced as “%s”. For more complex, or pre-defined, regular expressions that you might
also want to save for later use, the Filter field can be filled using the Find and Replace Filters
dialog. To use the dialog, press the Filter... button.

Note

Because the Retriever is independent of symbol information, it is the
only SNiFF+ tool that is not updated after changes to the source code.
To retrieve from modified files, you have requery.
212 SNiFF+

Re

Basic components
Check boxes

If you change the settings in these check-boxes, you have to press Retrieve to requery using
the new settings.

Advanced... button

This button opens the Advanced Retriever Options dialog — page 217. The button is only
enabled if the Create Index check box is selected (default) in the Preferences Retriever view
— page 137.

File Types Button

Press this button to open the File Types dialog, where you can select the file types you want
to query and/or make changes in. Note that you have to press the Retrieve button to re-
query again after changing the file types selection.
Not all file types are selected in the dialog by default. It doesn’t make sense, for example, to
include image files in text-based queries. The fewer file types you select, the quicker the
retrieval.
By default, the following file types are not selected: Image, Object, Makefiles, Generated,
Project Description (PDF) and Documentation.

Project Tree

Changing the Project Tree settings affects only subsequent (re-)queries.
The settings in the Project Tree determine the scope of the search (exception: Search All
Indexed Files — page 217). Only those files that are part of checkmarked projects are
queried. The check boxes can be manipulated directly with the mouse or by using the right-
click context menu.

Ignore Case Toggles case-sensitivity in the query.

Whole Word Toggles whether only whole words are matched.
Note that if you use an alternation, the alternatives must be grouped
using \(...\) , e.g. \(FirstWord\|SecondWord\)

Preview Files Lists indexed files in the checkmarked projects that contain the que-
ried string (also as a substring). The displayed file list is, however,
derived from a case-insensitive, word-based index list, and all filters
are ignored. The number of files where matches are actually found
will thus generally be a subset of the Preview.
This check box is only enabled if the Create Index check box is se-
lected (default) in the Preferences Retriever view — page 137.
ference Guide 213

Chapter 17 Retriever Files — Matches List
Files — Matches List
The number of files and matches found is shown at the top of the list, as well as memory
cache size (if used), the size and number of indexed files, and the time taken for the last
search.
The list of files and matches shows the result of the latest query (subject to the various
applied filters and constraints). The list shows the names of files and the projects they belong
to in red, each followed by a list of text lines where matches were found within the file. Each
match is preceded by the line number within the file.

Integrated Source Editor

The Retriever’s integrated Source Editor is fully functional. For information on menus and
handling, please refer to Source Editor — page 225. Menus specific to the Retriever are
described under Menus — page 216.

Preview field

A preview of the line as it would appear after modification according to the contents of the
Change To field is supplied in the Preview field. Changes only take effect after one of the
modification control buttons are pressed. See also Modification control buttons — page 215

Navigation buttons
Navigation is across the full list of files and follows the order in the Files — Matches List.
Individual matches can be directly displayed by clicking on a match in the Files — Matches
List.

Button Description

Previous Shows the previous match in the Files — Matches List in the
integrated Source Editor.

Next Shows the next match in the Files — Matches List in the inte-
grated Source Editor.
214 SNiFF+

Re

Modification control buttons
Modification control buttons

Undoing changes
Individual changes made using the Change and the Change and Next buttons can be
undone using the right-click Context Menu in the integrated Source Editor.
You can undo global changes (Change All button) by choosing Edit > Undo Change All
immediately after a Change All .

� Note that Edit > Undo Change All restores all files to the status before the last Change
All command. Any changes already saved to disk, that is, also changes you may have
made manually are also discarded. See also Edit Menu — page 216

Button Description

Change Modifies the selected item according to the entries in the
Change To field and the Filter field.

Change and Next After modifying the selected item according to the entries in
the Change To field and the Filter field, positions to the next
match in the Files — Match List.

Change All Changes all the matches in the Files — Matches List. Before
global changes are made you are warned by a dialog, then
the file locking information is checked. If not all the files are
writable, a dialog opens to display the locking status of the af-
fected files. See also Locking Status dialog — page 221
ference Guide 215

Chapter 17 Retriever Menus
Menus
Most of the menus and commands in the Retriever are common to many SNiFF+ tools. Only
the menu commands that are unique to the Retriever are described here. For more informa-
tion, please refer to Common Menus — page 13.

File menu

Edit Menu

Show menu

The commands above the separator in the Show menu are not executed in the integrated
Source Editor, but re-directed so that a new Source Editor is opened to show the requested
information.
The Next/Previous Match commands correspond to the buttons described under Navigation
buttons — page 214.

File menu command Description

Load File... Corresponds to the menu command of the same name in the
Source Editor (see Common Menus — page 13), except that
files loaded via this menu are not stored in the Retriever’s His-
tory menu.

Select All Files Selects all files in the Files — Matches List. This is useful for
checking the locking status or for multiple check outs.

Check Locking Status Checks the locking status of files selected in the Files — Match-
es List and displays the results in the Locking Status dialog. See
also Locking Status dialog — page 221.

Edit menu command Description

Undo Change All Appears after a Change All (button) command has been exe-
cuted. Restores all affected files to the status immediately prior
to the Change All command. All other changes that may have
been made in the meantime are also discarded, even if these
were saved to disk.

Redo Change All Appears after an Edit > Undo Change All command has been
executed. Redoes the undone global changes.
216 SNiFF+

Re

The Retriever in “replace only” mode
The Retriever in “replace only” mode
The retriever is opened in “replace only” mode from the Cross Referencer with the menu
command:
Edit > Replace Referencers of Symbol
and from the Include Browser with
Edit > Replace Include Statements
Here, the query information is already supplied by the requesting tools, and the Retriever
provides the functionality for globally changing the references.
For full retrieval functionality, press the New Query button.

Advanced Retriever Options dialog
This dialog opens when you press the Retriever’s Advanced... button. The button is only
enabled if the Create Index check box is selected (default) in the Preferences Retriever view
— page 137.

Checkboxes

Use Index Toggles whether the Retriever index is used for queries. See
also Indexing and caching — page 211.

Search All Indexed Files Searches all files indexed in the current Working Environment,
regardless of which (sub)projects are currently loaded. Note that
this includes also files in subprojects that are physically outside
the current Working Environment (e.g. libraries) that have been
added as subprojects to projects within the Working Environ-
ment. See also Retriever index files — page 321 for more infor-
mation.
ference Guide 217

Chapter 17 Retriever Find and Replace Filters dialog
Find and Replace Filters dialog

The Find and Replace Filters dialog, opened by pressing the Filter... button, is used for
creating, selecting and maintaining regular expression filters. You can also use the dialog for
applying a once-only filter.
For more information on regular expressions in SNiFF+, please refer to Regular Expres-
sions in SNiFF+ — page 307.

Show Only Similar
Words

Lists all indexed words containing the queried string (case-insen-
sitive). Regular expressions can be used to restrict the list to sub-
strings that appear at the beginning (e.g. \bmystring) or end
(e.g. mystring\b) of a word.

Cache Files In Memory Toggles whether queried files are cached in memory. See also
Indexing and caching — page 211.

Show Only Similar
Words

Lists all indexed words containing the queried string (case-insen-
sitive). Regular expressions can be used to restrict the list to sub-
strings that appear at the beginning (e.g. \bmystring) or end
(e.g. mystring\b) of a word.
218 SNiFF+

Re

Find and Replace Filters dialog
Modification buttons

Each defined regular expression filter that you save must have at least:

� a unique identification name.

Saving the name on its own is not usually very useful, so it makes sense to define at least

� a retrieve filter, which is applied in the retrieve process.

You may want to use the output of the retrieve filter to define

� a replace filter, which is applied in the replace process.

Name field

To make it easier to quickly find and identify the regular expression, each regular expression
is associated with a unique name. Entering the name of an existing expression automatically
selects the expression in the list.

Retrieve field

If an existing filter is selected, the “retrieve” part is copied into the Retrieve field. The
“replace” part (if any) is copied into the Replace field. Retrieve filters can also be created and
edited in this field. The filter here is applied in a re-query of the current set of matches when
you press Apply or Ok.

Replace field

If an existing filter is selected, the “replace” part is copied into the Replace field. Modifiers
can also be created and edited in this field. The filter here is applied in replacing matched
lines when you press Apply or Ok.

The Regular Expressions List

Defined filters are listed in the Regular Expressions List. The name of the filter is followed by
the corresponding regular expression. If you create a combined retrieve-and-replace filter,
the name is followed by the retrieve part of the filter in the next column, and then the replace
part of the filter in third column. Items are added to the Regular Expressions List using the
Save button for new names in the Name field, or by pressing Ok.

Button Description

Save If the name of the filter is unique, a new regular expression fil-
ter is added to the Regular Expressions List. If an existing fil-
ter has been changed, the changes are saved.

Delete Removes the selected regular expression filter from the list.

Reset Resets the current filter to show all matches from the latest
retrieval.
ference Guide 219

Chapter 17 Retriever Find and Replace Filters dialog
Pre-defined filters

Control buttons

Name Filters for

call method, function or procedure calls

assignment value assignments

comparison parts of a comparison

new dynamic allocations

>MEMBER a dynamic member of any object

>MEMBER(a dynamic member function of any objects

Object>member an object; all dynamic members are listed

OBJECT>member(an object; only dynamic member functions are listed

class::MEMBER any static member of any class

class::MEMBER(a static member function of any class

CLASS::member a class; all static members are listed

CLASS::member(a class; only static member functions are listed

CLASS<...> a template class

whole word a whole word

Button Description

Ok If the entry in the Name field is unique, a new filter is added to
the Regular Expressions List and saved. If an existing filter
has been changed, the changes are saved. If anything is en-
tered in the Regular Expressions fields, the filter is applied.
The dialog is closed.

Cancel Discards any changes made in the dialog and closes it.

Apply Adds a new regular expression filter to the List and applies it
in the Retriever. The filter is, however, not saved. The dialog
remains open.
220 SNiFF+

Re

Locking Status dialog
Locking Status dialog
The Locking Status dialog can opened by choosing File > Check Locking Status... . The
dialog also opens before (batch) modifications are executed if not all selected files are writ-
able.
If files are read-only (e.g., in a Shared Working Environment), or locked by other users, the
Locking Status dialog shows these files in two lists. The file name and the versioning tool are
displayed in both lists. In the Locked Files List, the name of the user who has checked out
the file is also shown, followed by the file version number. Read-only files in shared working
environments can be checked out, and files locked by other users can be unlocked or
concurrently locked.
Pressing Ok closes the dialog and, if it was automatically started after a Change All
command, the change process continues. If not all files are writable, you are warned by a
dialog showing the non-writable files, and you can either continue or cancel the process.
Pressing the Cancel button aborts automatic check out and batch modification. No files are
affected in any way.
ference Guide 221

Chapter 17 Retriever Locking Status dialog
Note

Use the Check Out feature carefully when the Locking Status dialog is
automatically started after a Change All command.
If a checked out file is different from the one originally searched by the
Retriever, the result may be wrong. In particular, do not use this feature
when Keyword Substitution for RCS and SCCS is used in your source
files. Keyword Substitution always changes a file while checking it out
and therefore will lead to wrong replace results.
222 SNiFF+

R

18Shell

Introduction
The Shell is a front-end to the regular Unix command line interface, the DOS command set is
also supported. It can be used for system-level manipulations, and it is used by SNiFF+ to
issue make commands. Furthermore, it serves to select an error message and to trigger the
marking of the corresponding source code with the Edit > Show Error command.

Menus

Edit menu

The Edit menu contains the usual Cut /Copy /Paste /Find commands, plus a Clear and a
Show Error command.

Edit menu command Description

Clear Clears the complete Shell buffer.

Show Error Filters the line containing the cursor. If it understands
the error message format, it opens a Source Editor and
displays the corresponding source code. The section
Error formats — page 288 explains how to extend the
list of understood message formats.
eference Guide 223

Chapter 18 Shell Menus
Info menu

Please refer to Info menu — page 20.

Class menu

Please refer to Class menu — page 22.

Target menu

Please refer to Target menu — page 19.

Shell menu

The following commands are available in the Shell menu:

Shell menu command Description

Reconnect Closes the connection to the current shell and connects
to a new shell.

Auto Reveal On/Off Turns the auto-reveal feature on and off. If auto-reveal
is on and input is typed or sent from a process, the
Shell automatically scrolls to reveal the new text (this is
the default).
224 SNiFF+

R

19Source Editor

Introduction
SNiFF+ offers several possibilities for editing source code:

� SNiFF+'s own integrated Source Editor

� an interface to several third party editors (Emacs, vim, Codewright, MS Developer Studio).
Please refer to the User’s Guide for details.

This section describes how to work with the integrated Source Editor.
SNiFF+'s Source Editor consists of a multi-style text Source Editor and a list of classes,
methods, and functions defined in the loaded file. The Source Editor understands C/C++,
Java, Fortran, CORBA IDL, Ada and Python, and supports customizable syntax highlighting.
In addition to the normal editing functionality, the Source Editor offers the following features:

� Quick symbol navigation —Many symbol navigation facilities are provided, for example,
quick navigation to the symbols in a file via a Symbol List, switching between declaration
and implementation of a symbol, navigating in the inheritance hierarchy, triggering all
kinds of other browsing tools, and jumping directly to cross-references and retrieved
strings.

� Multiple undo/redo levels beyond file save —This means you can go back to the origi-
nal state of a file even if you have saved the file several times in between.

� Wide range of keyboard shortcuts —The Source Editor offers many keyboard shortcuts
for fast cursor navigation and text manipulation. Most of the commands are accessible via
Emacs-like shortcuts.

� Word completion —Words that already occur in the file can be automatically completed.

� History —The Source Editor remembers a history of files and locations you have visited
during editing and browsing.

� Customizability —Colors, fonts and other attributes of the Source Editor can be custom-
ized in your Preferences. See also Preferences — page 123
eference Guide 225

Chapter 19 Source Editor Quick Reference
The following illustration shows the SNiFF+ integrated Source Editor:

Quick Reference
� File status indicators — page 226

� Selecting text — page 227

� Word completion — page 227

� Matching parentheses and quotes — page 227

� Copying/moving text — page 228

� Keyboard shortcuts — page 228

� Keystroke macros — page 229

File status indicators

� On Windows , the file status (writable / read only / modified) is indicated in the title bar.
226 SNiFF+

Re

Shortcuts
� On Unix , the icon of the Tools menu indicates the File Status:
.

When a file is saved, the symbol information of the file is extracted anew, the text is
reformatted, and the Symbol List is updated.

Shortcuts
On Windows , keyboard shortcuts are generally native Windows like.

Selecting text

The are three ways to select text:

� to select a sequence of characters, single-click a character and drag the mouse

� to select a sequence of words, double-click on a word and drag the mouse

� to select a sequence of lines, triple-click on a line and drag the mouse

Word completion

<Shift+tab> completes a word if the word already occurs in the loaded file.

Matching parentheses and quotes

Double-clicking close to any of the following language elements causes the Source Editor to
mark the code between this item and its matching one:

Icon File status

writable

read-only

modified and not yet saved

single quotes -- ' --

double quotes -- “ --

parentheses -- (--

brackets -- [--

braces -- { --
ference Guide 227

Chapter 19 Source Editor Shortcuts
Copying/moving text

Drag-and-drop copying/moving

You can drag text from one position to another by selecting it with the mouse and then drag-
ging it. If you want to copy text rather than move it, hold down the <CTRL> key while drag-
ging the text.

� On Unix , a fast copy command is available. To use it, press the <SHIFT> and <CTRL>
keys at the same time and select text. The selected text is then inserted at the current cur-
sor position.

Keyboard shortcuts

The following table shows the Source Editor's cursor navigation keyboard shortcuts

Cursor navigation Keyboard shortcut

Normal Emacs-like

Word forward <SHIFT> cursor-right <ESC>f

Word backward <SHIFT> cursor-left <ESC>b

Beginning of line <CTRL>cursor-left <CTRL>a

End of line <CTRL>cursor-right <CTRL>e

Page down <PageDown> or
<SHIFT> cursor-down

<CTRL>v

Page up <PageUp> or
<SHIFT> cursor-up

<ESC>v

Beginning of file <Home>or
<CTRL>cursor-up

Bottom of file <End> or
<CTRL>cursor-down

Start/End cursor text
selection

<CTRL> <Space>
228 SNiFF+

Re

Shortcuts
The following table shows the Source Editor's text modification keyboard shortcuts

Keystroke macros

The SNiFF+ Source Editor can remember keystrokes in a macro. The following table shows
how to define and execute a macro:

Text modification Keyboard shortcut

Normal Emacs-like

Delete left of cursor <Backspace>

Delete right of cursor <Delete> <CTRL>d

Delete from cursor to end of line <CTRL>k

Delete word right of cursor <CTRL><Backspace> <ESC>d

Delete word left of cursor <SHIFT><Back-
space>

<ESC> <Backspace>

Zap (delete from cursor to right
until character)

<ESC>z character

Cut <Meta> x <CTRL>x <CTRL>x

Copy <Meta> c <CTRL>x <CTRL>c

Paste <Meta> v <CTRL>x <CTRL>v

Undo <Meta> z <CTRL> /

Redo <CTRL>?

Macro Keyboard shortcut

Start macro <CTRL+x> (

End macro <CTRL+x>)

Execute macro <CTRL+x> e
ference Guide 229

Chapter 19 Source Editor Basic components
Basic components

Text View

The Text View shows the source text by using different styles to highlight symbols and
comments. Many attributes of the view, including fonts and colors for the various symbol
types and keywords, or whether or not nonprinting characters are displayed can be custom-
ized in your Preferences (see Source Editor view — page 132).
Available shortcuts are described under Shortcuts — page 227.

Symbol List

The Symbol List is constrained by the Class pop-up and shows the list of:

� method declarations (md) and implementations (mi)

� class declarations (cl)

� functions (f)

� structures (st)

The Source Editor is positioned at the symbol by clicking on an entry in the Symbol List. A
deep click (<CTRL>click) on a declaration entry will position the Editor at the implementation
and vice versa.

Class drop-down

The Class drop-down scopes the Symbol List to either show only symbols of one class or to
show all symbols of this file. This feature eases navigation when there is more than one
class defined in a file.
230 SNiFF+

Re

Menus
Menus

File menu

Please refer to File menu — page 15.

Edit menu

Please refer to Edit menu — page 16.

Show menu

Please refer to Show menu — page 18.

Target menu

Please refer to Target menu — page 19.

Info menu

Please refer to Info menu — page 20

Class menu

Please refer to Class menu — page 22.

Debug menu

The commands in the Debug menu are enabled when the Editor is in debugging mode.
Please refer to Execution menu — page 78, Print menu — page 79 and Display menu —
page 79 for a description of the commands in the Debug menu.

History menu

Please refer to History menu — page 23.
ference Guide 231

Chapter 19 Source Editor Debugging mode — extra buttons added to the Source Editor
Debugging mode — extra buttons added to the Source Editor
After the Debug target command is issued from the Target menu, the Debugger is started
and the Source Editor is in debugging mode. In debugging mode the file is read-only and a
row of new buttons is added to the Source Editor window.

Button Description

Run Runs the application being debugged from scratch.

Cont Continues interrupted execution.

Step Single-steps into the next function/method.

Next Single-steps over the next function/method.

Break In Sets a break point at the current selection, whereby selection must
be a valid function/method name.

Break At Sets a breakpoint at the current cursor position (linewise).

Clear Clears the breakpoint in the current line. The cursor must be posi-
tioned to a line with a breakpoint.

Print * Prints the value pointed to by the current selection. The selection
must evaluate to a valid pointer.

Print Prints the value of the current selection. The selection must evalu-
ate to a valid variable.

this Prints the value of the current object.

Stack Opens a Stack window and displays the current call stack. See also
Callstack tab — page 80.

Up Goes one stack frame up in the call hierarchy. A reusable Source
Editor is automatically positioned at the source location of the new
stack frame.

Down Goes one stack frame down in the call hierarchy. A reusable
Source Editor is automatically positioned at the source location of
the new stack frame.
232 SNiFF+

R

20Symbol Browser

Introduction
The Symbol Browser shows the symbols used in your projects. You can filter according to
language, symbol types, modifiers and regular expressions.
The content of the list is determined by the Filter field and the various filter drop-downs at
the top of the tool, as well as the Project Tree at the bottom of the tool. To browse symbols:

� click on a string in an open tool and choose Info > Find Symbols Matching selection or
Info > Find Symbols Containing selection, or

� choose Tools > Symbol Browser in any open tool.
eference Guide 233

Chapter 20 Symbol Browser Quick Reference
Quick Reference

Typeface in the Symbol List

� Typeface in the Symbol List corresponds to text highlighting in the Source Editor (you can
set this in your Preferences).

Mouse clicks

� In the Symbol List, double-click on a symbol to show it in the Source Editor.

� In the Project Tree, <CTRL>click on the name of a project lists members of that project
only; members of all other projects are hidden.

Basic components

Symbol List

The Symbol List displays the symbols of the projects checkmarked in the Project Tree,
subject to the various filter settings.
Symbols of the same type with the same name are qualified by the name of the file they
belong to.
C++ templates are listed as classes. However, the names of templates are identified as
templates and are shown with their formal parameters.

Project Tree

The Project Tree shows the project structure including subprojects. Only symbols used in
checkmarked projects are shown in the Symbol List.
234 SNiFF+

Re

Filters
Filters
A number of filtering controls are provided at the top of the tool. Individual selections are
possible in the various drop-downs, multiple combinations of filters can be selected using the
Filters dialog.

Filters Button

The Filters... button opens the Filters dialog, where you can select multiple combinations of
filters.

The Filters Dialog

� The Apply button applies the selected filters and leaves the dialog open.

� The Ok button applies the selected filters and closes the dialog.

The Symbol Browser’s Filters dialog has three tabs, the elements correspond to the indi-
vidual entries in the drop-downs on the tool.
If multiple combinations are selected, the corresponding drop-downs on the tool show the
entry, Filtered... .
Selecting Filtered... in a drop-down opens the Filters dialog.

Language drop-down

In the Language drop-down, you can choose the language whose symbols you want to
browse. Only those languages used in your projects are listed
ference Guide 235

Chapter 20 Symbol Browser Status line
Symbols drop-down

The Symbols drop-down specifies the type of symbols shown in the Symbol List.

Modifier drop-down

The Modifier drop-down filters the symbol list according to modifiers. Note that this includes
also implicit modifiers, e.g., overriding or overloaded methods.

Filter field

Enter a regular expression here and hit <Return> to filter accordingly.
Please refer to Regular expression filters — page 11 for more information.

Status line

Frozen check box

The Frozen check box is described under Status line — page 12.

Signature check box

When the Signature check box is enabled, the full signature of each symbol is displayed.

All Symbols Shows all symbols.

Filtered... Means that multiple selections were made in the Filters dialog. Se-
lecting the Filtered... entry itself opens the Filters dialog.

Language-specific
symbols

Shows the selected language-specific symbol types.

All Modifiers Shows all symbols, irrespective of modifier.

no modifier Shows only methods without modifiers.

Filtered... Means that multiple selections were made in the Filters dialog. Se-
lecting the Filtered... entry itself opens the Filters dialog.

Language-specific
modifiers

Shows only symbols modified by the selected modifier.
236 SNiFF+

Re

Menus
Menus

Info menu

Please refer to Info menu — page 20.

Class menu

Please refer to Class menu — page 22.

View menu

Please refer to View menu — page 23.

History menu

Please refer to History menu — page 23.

Help (?) menu

Please refer to Help (?) menu — page 23.
ference Guide 237

Chapter 20 Symbol Browser Menus
238 SNiFF+

R

21Working Environments

Introduction
To open the Working Environments tool, choose Tools > Working Environments from the
menu of any tool.
You use the Working Environments tool to create and maintain working environments. You
can also use the Working Environments tool to open projects.
If you are not familiar with SNiFF+ Working Environments, please refer to User’s Guide —
Working Environments for more information.

The selected Private Working
Environment (PWE) is owned by
the user eric. The * means that this
is the working environment where
projects are opened by default.

These fields show information
relating to the selected working
environment.
eference Guide 239

Chapter 21 Working Environments Quick Reference
Quick Reference

Abbreviations

The following abbreviations are used in the Working Environments tool and in the documen-
tation:

Typeface in the Working Environments Tree

The typeface indicates the following about a working environment:

Mouse clicks in the Working Environments Tree

� Click on a working environment to make it the current working environment, i.e., the one
in which projects will be opened.

� Click on a node of the Working Environments Tree to collapse/expand the node.

� Double-click on a working environment to invoke the Open Project dialog — page 26.

Abbreviation Working Environment

RWE Repository

SSWE Shared Source

SOWE Shared Object

PWE Private

Typeface Working Environment is

Bold PWE owned by you

Non-bold RWE, and PWEs not owned by you

Italics SOWE or SSWE

Asterisk (*) default working environment
240 SNiFF+

Re

Basic components
Basic components

Type drop-down

Owner drop-down

View drop-down

List entry Description

All Shows all Working Environments in the Working Environment-
sTree.

Repository Shows only the Repositories in the Working EnvironmentsTree.

Shared Source Shows all Shared Source Working Environments and all Work-
ing Environments that are accessed by an SSWE.

Shared Object Shows all Shared Object Working Environment and all Working
Environments that are accessed by an SOWE.

Private Shows all Private Working Environments and all Working Envi-
ronments that are accessed by a PWE.

List entry Description

All Shows the Working Environments of all team members in the
Working EnvironmentsTree.

Own Shows your own Private Working Environments and all access-
ed Working Environments.

List entry Description

Tree Shows the Working Environments in a hierarchical tree.

Sorted Shows the Working Environments in alphabetical order.
ference Guide 241

Chapter 21 Working Environments Basic components
Working Environments Tree

For a description of abbreviations and typeface, please see Quick Reference — page 240.
The Working Environments Tree shows your development team’s working environments.
These can be displayed in a hierarchical tree or in alphabetical order, and filtered according
to type and ownership.
Each node of the tree refers to one working environment. For example, the node

RWE: Filebrowser Example

refers to an RWE (Repository). The name of this working environment is Filebrowser
Example .
The working environment currently selected in the Working EnvironmentsTree is the current
working environment. All shared projects are opened in the current working environment.
If no working environment is selected, projects are opened in the default working environ-
ment, which is indicated by an asterisk (*) to the left of its name. The menu command Edit >
Set Default sets the default working environment in the Preferences for you.
Each PWE has an owner. By default, all newly set up PWEs are assigned an owner with the
log-in name of whoever set them up. This can be changed as described under Users dialog
— page 250. If no owner is assigned (i.e. deleted in the Users dialog), PWEs are assigned to
a default user named adm.
For example, the node: * harry PWE:MyPlace
would refer to the PWE (Private Working Environment) named MyPlace , which is owned by
the user harry . You can specify the owner of a PWE with the Edit > Modify... menu
command. Being the owner of a PWE allows you to filter for your own PWE(s) and the
shared environments accessed by your PWE(s). Once you have identified yourself in the
Users Dialog, only you and users with administration permissions (i.e. permissions to create/
modify hierarchically higher, shared working environments) can modify a PWE owned by
you. See also Users dialog — page 250 PWEs that you own, or that are owned by adm
(nobody), are also shown in the Working Environments tab of the Launch Pad.
242 SNiFF+

Re

Modifying Working Environments
Modifying Working Environments
You can modify the structure of the Working Environments Tree using drag-and-drop, the
appropriate toolbar buttons, or the right-click Context menu and the Edit menu.
Using drag-and-drop, you get visual feedback (highlighting) if the drop target is permissible.
The Edit > Modify... menu command opens the Modify/New Working Environment dialog,
where you can modify attributes of individual working environments. See also Modify/New
Working Environment dialog — page 249
If you modify working environments, all the working environments in the tree are locked and
remain locked until the modifications have been saved. This prevents other members of your
development team from trying to modify the same working environment at the same time.
Note that deleting a working environment deletes the selected working environment and all
working environments hierarchically below the selected working environment.

� On Windows , you are warned in the title bar that there are unsaved modifications.

� On Unix , the Tools icon additionally indicates whether you have made any unsaved mod-

ifications to the working environments by changing to

If you try to modify a working environment that has been locked by someone else, a warning
message appears.
Note that any changes made to a working environment where a project is already open are
only “seen” by the project after is has been closed and re-opened.
ference Guide 243

Chapter 21 Working Environments Working Environments information
Working Environments information
The fields to the right of the Working Environments Tree display information about the
working environment selected in the Working EnvironmentsTree. The information in the
various fields is automatically filled in and updated after modifications. These fields can be
set/modified using the Edit > Modify... menu command to open the Modify/New Working
Environment dialog. See also Modify/New Working Environment dialog — page 249

Root fields

If the path to the selected working environment was specified using an environment variable,
both this path and the expanded path are shown. If the working environment root was
defined without using an environment variable, only this path is shown.

Root on Remote Host field

This field is only needed for remote compiling and debugging in a cross-platform work situa-
tion (and if you have a SNiFF_CROSSlicense). Enter the path to the remote working envi-
ronment root as the remote machine would see it, e.g., if the remote working environment is
on Unix, you would not use drive letters. See also User’s Guide — Compiling and Debugging
in SNiFF+ — page 195.

Platform field

You can specify different platforms (together with debugger adaptors) for each working envi-
ronment in the Preferences, see Platform view — page 157. Once platforms are defined,
these can be selected in the Modify/New Working Environment dialog. See also Modify/New
Working Environment dialog — page 249

SSWE Hierarchy field

The SSWE Hierarchy field shows the root directories of SSWE(s) accessed by the selected
working environment. If multiple SSWEs are accessed by the selected working environment,
a colon (:) is used to separate the SSWEs from each other.

SOWE Hierarchy field

The SOWE Hierarchy field shows the root directories of SOWE(s) accessed by the selected
working environment. If multiple SOWEs are accessed by the selected working environ-
ment, a colon (:) is used to separate the SOWEs from each other.
244 SNiFF+

Re

Working Environments information
Version Control Configuration(s) field

Please refer to User’s Guide — Specifying Default Configurations — page 164.

Generate Directory Root field

In most cases, you would leave the Generate Directory Root field empty.
In the Generate Directory Root field, you can specify the path of the root directory for the
SNiFF+ - generated directories (SNiFF+ stores project-specific information in these directo-
ries). If you leave this field blank, these directories are generated directly in the project direc-
tories.
This leads to problems when SNiFF+ tries to store the generated directories in project direc-
tories for which you don’t have write permission.
A situation where this may occur is with library projects, which are generally read-only. You
can avoid this problem by entering the SNiFF+ - generated directories path in the Generate
Directory Root field. The path of the root directory must be relative to the selected working
environment’s root directory.

Note

To specify the HEAD version of a branch as the default, enter
HEAD_<branch_name> in this field.
ference Guide 245

Chapter 21 Working Environments Menus
Menus

File menu

File menu command Description

Save Saves the settings of newly defined or modified working envi-
ronments.

Reload Reloads the files that store the working environments data
(user permissions, names of working environments etc.). If
you modify working environments and choose this command
before saving, the changes are discarded.

New Project... > Opens a submenu with 3 options for creating new projects.
For more information please refer to User’s Guide — Project
Setup Overview — page 53.

> with Defaults... Opens the Directory dialog. In the Directory dialog, you select
the directory where the source files of the new project are lo-
cated. Then, an Attributes of a New Project dialog appears.
You set the new project’s attributes in this dialog, see New
Project Options — page 165. The defaults for new projects
are set in the Preferences, see New Project Setup view —
page 146.

> with Template... Allows you to set the attributes of a new project from a tem-
plate. The Project Template Dialog opens and you can select
a Project Template File (extension .ptmpl) to use as a tem-
plate. Select a file to open the Project Attributes dialog. You
can edit the opened template, have the new project created,
and save the edited template under a new name. See also
User’s Guide — Working with new project templates — page
57.

> with Wizard... Starts the Project Setup Wizard, which guides you through
project setup. See also User’s Guide — SNiFF+ Project Set-
up Wizard — page 53.

Open Project... Opens the Open Project dialog, where you can choose a
project to open in the working environment selected in the
Working EnvironmentsTree.
246 SNiFF+

Re

Menus
Edit menu

You can create, delete or modify working environments with the entries in the Edit menu.
When you select a working environment from the Working EnvironmentsTree, only permis-
sible commands are enabled. The following commands are available:

Edit menu command Description

Undo last command Undoes the last command. You can set the number of undo
levels in the Preferences.

Redo last command Redoes the last command.

Cut Cuts the selected environment to a buffer.

Paste Pastes buffer contents to selected position. Enabled only if
the buffer is not empty and a valid target is selected.

Delete Deletes the selected working environment and all working en-
vironments hierarchically below the selected working environ-
ment.

Modify... Opens the Modify/New Working Environment dialog — page
249, where you can modify all the attributes you see in the in-
formation fields at the right of the tool. You can also specify
the owner of a Private Working Environment.

New Repository... Opens a dialog where you can define a new Repository
(RWE). The command is enabled when you select the root of
the Working Environments Tree and if you have the appropri-
ate permissions, which are set in the Users dialog — page
250.

New Shared Source... Opens a dialog where you can define an SSWE. To define an
SSWE, an RWE must be selected in the Working Environ-
mentsTree and you must have the appropriate permissions,
which are set in the Users dialog — page 250.

New Shared Object... Opens a dialog where you can define an SOWE. To define an
SOWE, an SSWE must be selected in the Working Environ-
mentsTree and you must have the appropriate permissions,
which are set in the Users dialog — page 250. The new
SOWE then accesses the selected SSWE.

New Private... Opens a dialog where you can define a PWE. To define a
PWE, an RWE, SSWE or SOWE must be selected in the
Working EnvironmentsTree. The new PWE then accesses
the selected working environment if you have the appropriate
permissions, which are set in the Users dialog — page 250.
ference Guide 247

Chapter 21 Working Environments Menus
View menu

Utils menu

History menu

Working environments in which you have opened projects are automatically added to the
history. The number of entries can be set in the Preferences, see Tools view — page 130.

Set Default Sets the working environment selected in the Working Envi-
ronmentsTree to the default working environment. See Work-
ing Environments Tree — page 242 for a description of
default working environments.

View menu command Description

Collapse/Expand Collapses/expands the selected node in the Working Environ-
ments Tree.

Utils menu command Description

User Permissions Opens the Users dialog. Users dialog — page 250, where
you can add or remove users and their permissions for work-
ing environments.

Edit menu command Description
248 SNiFF+

Re

Modify/New Working Environment dialog
Modify/New Working Environment dialog
The dialog shown below opens when a PWE is selected, and you choose
Edit > Modify... from the menu.
Very similar dialogs open when other working environments are selected, or when you
choose one of the Edit > New Working Environment commands.

The fields in the dialog correspond to the information fields in the Working Environments tool
- see Working Environments information — page 244
Which fields are writable depends on the type of working environment you want to modify/
create.
The dialog for creating/modifying SOWEs has an additional button next to the SOWE Hier-
archy field. The SOWE... button opens a dialog where you can hierarchically arrange
SOWEs in complex working environment trees. This is possible where you have hierarchical
SSWEs, each accessed by SOWEs, e.g., the following structure:
ference Guide 249

Chapter 21 Working Environments Users dialog
Users dialog
The Users dialog appears when you choose the Utils > User Permissions... menu
command. The information in this dialog is stored in
<sniff_installation_dir>/workingenvs /WorkingEnvUser.sniff .
You can specify a different directory in the Preferences. Generally, only the Working Environ-
ments Administrator should have write permissions for this file. The Working Environments
Administrator would then create working environments and set permissions for new users.
For more information about working environments administration, please refer to the User’s
Guide.
As long as the Users List is empty, anyone can modify/create working environments.

Buttons

Button Description

Add Opens a dialog to add a new user to the Users List.

Remove Removes the selected user from the Users List.

Only the working environments
administrator should be allowed to create,
modify, or remove working environments of
all types

If you have this permission, you can only
create your own PWEs; you can modify or
remove your own PWE even if you don’t
have this permission
250 SNiFF+

Part III
Advanced Reference

R

1SNiFF+ Executables

Introduction
This chapter describes the SNiFF+ executables that are delivered with the product package
and that are of interest to the user. All executables can be found in the binary directory of the
SNiFF+ installation ($SNIFF_DIR/bin). Platform-dependent executables are links to the
shell script sniff_wrapper , which determines the current platform with the script
sniff_arch and calls the corresponding executable in the platform-specific subdirectory.

sniff
sniff is the executable of the programming environment.

Synopsis

sniff [-s <sniff_session_name>] [-c <license_file>] [-l
<log_file>] [-v] [<project_file>]

Arguments and Options

<sniff_session_name> is the session id that is associated with a SNiFF+ session
(see page 255).
<project_file> is the name of an existing SNiFF+ project description file.
<log_file> is the name of the file where SNiFF+ stores logging information. By default
the log file is:
On Unix: $HOME/.sniffrc/sniff.log
On Windows: %SNIFF_DIR%/Profiles/< username>/sniff.log
The default log file name can be set in your Preferences.
<license_file> points to the license file to be used. Please refer to the Installation
Guide for more information on licensing issues.
On Unix, -v only prints the release number and date, but does not start SNiFF+. For
example:

% sniff -v

SNiFF+ V2.3 Apr 10, 1997

On Windows

-v does not print the version number and the date to screen, instead it
prints the version number and date to standard error.
eference Guide 253

Chapter 1 SNiFF+ Executables Environment variables
Environment variables
SNiFF+ needs two environment variables, SNIFF_DIR and PATH. The environment vari-
ables should be set in the .login file of the SNiFF+ user. Furthermore, a third variable,
SNIFF_SESSION_ID , may be set before starting a new SNiFF+ session (see Multiple
simultaneous SNiFF+ sessions — page 255).

SNIFF_DIR

This environment variable can be set on Windows via the Control Panel.
On Unix:

where <sniff_directory> is the root of the directory tree of your SNiFF+ installation.

PATH

This environment variable can be set on Windows via the Control Panel.
On Unix:

As is the case for any X-window application, the DISPLAY variable must be set to point to
the server where the SNiFF+ windows should appear.

setenv SNIFF_DIR <sniff_directory> (for csh)

SNIFF_DIR=<sniff_directory>; export SNIFF_DIR (for sh or ksh)

set path = ($SNIFF_DIR/bin $path) (for csh)

PATH=$SNIFF_DIR/bin:$PATH; export PATH (for sh or ksh)
254 SNiFF+

Re

Multiple simultaneous SNiFF+ sessions
LM_LICENSE_FILE

The LM_LICENSE_FILE variable has to point to a valid license file if it is not at its default
location as suggested by the Installation Guide. For more information please refer to the
Installation Guide or your FLEXlm documentation. The license file can also be specified with
the -c command line option of sniff . The following setting shows a configuration where
the license file is located in the SNiFF+ installation directory:

If you want to use a license administrated by a license server on a remote machine, check
for the host name and port number in the license.dat file (in the line starting with
SERVER). Then set the LM_LICENSE_FILE variable to <port number>@<hostname>. In
this way, when you start SNiFF+ on your local machine it will use the license administered by
the license server on the remote machine.

Multiple simultaneous SNiFF+ sessions
You can have multiple SNiFF+ sessions running at the same time. In order for you to start a
new SNiFF+ session, type the following on the command line:

sniff -s <sniff_session_name>

<sniff_session_name> is a session id that uniquely identifies each SNiFF+ session.
Note that the session id is a string and cannot contain any blank spaces within it.
If you start SNiFF+ without the -s option, the value of the SNIFF_SESSION_ID environ-
ment variable is used by default for the session id (see below). If SNIFF_SESSION_ID is
not set, session0 is used for the session id.

SNIFF_SESSION_ID

The SNIFF_SESSION_ID environment variable is set to uniquely specify a SNiFF+
session. When you set this variable, the session id of your next SNiFF+ session will be auto-
matically set to the value of this variable. To set the value of SNIFF_SESSION_ID envi-
ronment variable, type the following on the command line:

setenv SNIFF_SESSION_ID <sniff_session_name>

<sniff_session_name> uniquely identifies each SNiFF+ session. It is a string and
cannot contain any blank spaces.

setenv LM_LICENSE_FILE <sniff_directory>/
license.dat

(for csh)

LM_LICENSE_FILE=<sniff_directory>/license.dat;
export LM_LICENSE_FILE

(for sh or ksh)
ference Guide 255

Chapter 1 SNiFF+ Executables SNiFF+ without display (batch mode)
SNiFF+ without display (batch mode)
You can start a SNiFF+ session without a display. This is particularly useful on Unix, since
you can then run SNiFF+ without an Xserver host during unattended updates of your working
environments.
SNiFF+ runs without a display when the SNIFF_BATCHenvironment variable is set to 1. To
set the variable:
On Unix:

1. Open a shell in which you will be updating your working environments.

2. In the shell, set the SNIFF_BATCHenvironment variable to 1:

setenv SNIFF_BATCH 1

3. When updating your working environments, run the appropriate update scripts without the
<Xserver_host> parameter.

On Windows:

1. Open a Command Prompt in which you will be updating your working environments.

2. In the Command Prompt, set the SNIFF_BATCHenvironment variable to 1:

set SNIFF_BATCH=1

sniff_arch
sniff_arch is a shell script that determines the platform and outputs a string that exactly
identifies the platform. All SNiFF+-supported platforms are handled correctly by this script.
The script can also be used for setting the location of Shared Object Working Environments
and platform-dependent make support files.

Synopsis

On Unix: sniff_arch
On Windows: sh < sniff_dir>/bin/sniff_arch

Output

The output has the format:

<Architecture>-<Vendor>-<OperatingSystem>

On Sun:

% sniff_arch
sparc-sun-sunos4.1

On HP:

% sniff_arch
pa_risc-hp-hpux9.0
256 SNiFF+

Re

sniff_genproj
On an unsupported platform:

% sniff_arch

SNiFF+ unsupported system type

MACHINE=...

RELEASE=...

SYSTEM=...

VERSION=...

sniff_genproj
sniff_genproj is a program for creating SNiFF+ project description files (PDFs) from a
directory tree in batch mode.
If the names of generated PDFs are not unique, sniff_genproj makes them unique by
prefixing the generated PDF names with parent directory names.

Synopsis

sniff_genproj [options] <directory>

Arguments and Options

<directory > specifies the absolute path name of the directory for which SNiFF+ project(s)
are to be created. For absolute projects, use quoted environment variables to create projects
that are easily locatable.
By default all project attributes are taken from your Preferences. See also New Project Setup
view — page 146.

Option Description

-a Generate project description files (PDFs) for the spec-
ified directory and the complete directory tree recur-
sively. If this option is omitted, only one PDF is created
for the specified directory.

-d <pdf_dir> Put the generated PDFs into <pdf_dir> (absolute
path name). If this option is omitted, the PDFs are
stored in the project directories.

-e Generate PDFs for empty directories, i.e., ones with-
out any files or subdirectories. If this option is omitted,
no PDFs are created for empty directories.

-f <path_to_template> Generate PDFs according to a template file. The path
to the template must be either absolute, or relative to
the value specified in the New Project Setup View of
your Preferences.
ference Guide 257

Chapter 1 SNiFF+ Executables sniff_genproj
-i <ignore_dirs> Ignore <ignore_dirs> directories. Multiple direc-
tories must be separated with a colon (:).
(default: can be defined in the Preferences).

-k Follow symbolic links neither to files nor to directories
(by default, symbolic links are followed).

-n <name> Save the root project’s PDF under <name>. If this op-
tion is omitted, the file is saved under name <direc-
tory> .extension (see also -x option).

-r <abs> Make the generated projects relative, i.e., relative to a
root directory, by cutting away the absolute path
<abs> . If this option is omitted, absolute projects are
created.

-S <abs> Make the generated projects shared, i.e., relative to a
root directory, by cutting away the absolute path
<abs> . If this option is omitted, absolute projects are
created.

-t <tag> Use <directory>_<tag> .extension as the name
of the generated PDF (this is ignored for the root direc-
tory if the -n option is present).

-u <pdf> Make name of existing PDF <pdf> and its subproject
PDFs unique. You would run sniff_genproj with
this option after generating PDFs in a directory that
contains identically-named subdirectories.

-v Unix only: Print version number of your current
sniff_genproj release.

-x <extension> Use <extension> as the extension for all created
project files. If this option is omitted, the first extension
of the File Types attribute Signatures is used. See
also File Types view — page 153.

Option Description (cont.)
258 SNiFF+

R

2Sniffaccess

Introduction
Aside from the graphical user interface, Sniffaccess is the means by which SNiFF+ interacts
with the outside world. Sniffaccess is an executable program that connects to SNiFF+ and
allows you to send requests to and receive notifications from SNiFF+. In other words, Snif-
faccess provides control integration between SNiFF+ and other programs.
Sniffaccess can be used for several purposes:

� Driving SNiFF+ in batch mode. For example, this is used for unattended updates and
builds of working environments.

� Integrating SNiFF+ with other third-party tools like CASE tools and GUI builders.

� Writing proprietary scripts for project generation and modification with SNiFF+.

This chapter explains how to use Sniffaccess and describes all of the available requests and
notifications.

Invoking Sniffaccess
Sniffaccess can be invoked in three ways:

� by a single request on the command line

� interactively

� in batch mode with a command file

A single request on the command line

Sniffaccess sends the request to sniff , prints the reply and terminates.
Usage:

% sniffaccess [-q] REQUEST [ARGUMENTS]

� Note that the -q flag can be used for all requests. It suppresses output of sniff status
and information comments. Data output is not suppressed.

Example:

% sniffaccess open_project $SHARED_WE/pe/sniff.shared
eference Guide 259

Chapter 2 Sniffaccess Invoking Sniffaccess
Interactively

Starting Sniffaccess without arguments will prompt you for Sniffaccess commands.
Usage:

% sniffaccess

Example:

% sniffaccess

sniffaccess: connected to sniffappcomm
sniffaccess: setting timeout to 20 seconds

> browse_class * ActionButton

sniffaccess: port number of sniff is 1000
sniff: OKAY

> edit_symbol * ActionButton::GetMinSize METHOD_IMPL

sniff: ERROR: ActionButton::GetMinSize: symbol not found

> edit_symbol */ ActionButton::GetMinSize METHOD_IMPL

sniff: OKAY

> exit

sniffaccess: disconnecting from sniffappcomm

%

Batch mode with a command file

Sniffaccess can also be started with input redirect from a command file.
Usage:

% sniffaccess < COMMAND_FILE

COMMAND_FILEcontains a list of requests, one request per line. Comments start with ‘#’
and end with the next newline.
Example COMMAND_FILE:

#

An example file for SNiFF+ external access
#

Sets the maximum time to wait for a reply from sniff to 60
seconds.

Loads a project and then registers for all possible
actions inside sniff,

waits for notifications and echoes each notification.

set_timeout 60 # timeout is 60 seconds

open_project /Projects/SNiFF+/SharedWE/HEAD/pe/sniff.shared

registe r * * post nowait echo
260 SNiFF+

Re

SNiFF+ external access communication protocol
Multiple simultaneous Sniffaccess sessions

You can have multiple Sniffaccess sessions running at the same time. To do so, type the
following on the command line:

% sniffaccess -s <sniffaccess_session_name>

<sniffaccess_session_name> is a “session id” that uniquely identifies each Sniffaccess
session. Note that the session id is a string and cannot contain any blank spaces within it.
To get a list of the currently active SNiFF+ sessions, type:

% sniffaccess -i

When you execute this command, you will get output similar to the following:

Current active SNiFF+ sessions

session0

session1

To connect to an active SNiFF+ session, select one of the session id’s and use it for
<sniffaccess_session_name> above.

SNiFF+ external access communication protocol
Sniffaccess distinguishes between requests and notifications. Requests are sent to SNiFF+
and usually are actions for SNiFF+ to execute. Notifications are sent by SNiFF+ to Sniffac-
cess upon the execution of a registered action. The following is a description of the possible
requests and notifications.

Request format

The format for requests from external programs to SNiFF+ is:

REQUEST = REQUEST_STRING [ARGUMENTS].

Arguments can be enclosed in double quotes “”.

Comment format

Request strings can contain comments. A comment starts with an unquoted ‘#’ and ends with
the next newline.
Example:

this is a comment

retrieve */ “menu” # retrieves the string “menu” from all
projects
ference Guide 261

Chapter 2 Sniffaccess SNiFF+ external access communication protocol
Project name format

Projects are specified this way:

PROJECT = PROJECT_PATH [“/”].

PROJECT_PATH = PROJECT_NAME | PROJECT_PATH “/”
PROJECT_NAME.

PROJECT_NAME = PATTERN.

A PATTERNhas the same format as filename patterns in the bourne shell.

Project specification examples:

Wildcard character Match

* any number of characters

? a single character

[a-zA-Z] a single character in the given range of characters

[^...] or
[!...]

a single character NOT in the given range of characters

Project specification Description

fb.proj/et3.proj/CONTAINER.proj subproject CONTAINER.proj
only

sniff_et3.proj root project sniff_et3.proj
only

sniff_et3.proj/ root project sniff_et3.proj
and all sub-projects

sniff_et3.proj/et3.proj subproject et3.proj of project
sniff_et3.proj

sniff_et3.proj/et3.proj/* all subprojects (nonrecursive) of
et3.proj (without et3.proj)

sniff_et3.proj/et3.proj/*/ all subprojects (recursive) of
et3.proj (without et3.proj)

*/ all loaded projects recursively
262 SNiFF+

Re

SNiFF+ external access communication protocol
Symbol format

The following is the symbol format:

SYMBOL_NAME = NON_MEMBER_NAME | CLASS_NAME “::”
MEMBER_NAME.

Path and filename format

The following placeholders are used below:

REPOSITORY = PATH.

SHARED_WE = PATHS.

PRIVATE_WE = PATH.

PATHS = PATH [“:” PATHS].

PATH = Unix absolute pathname.

FILE = Unix absolute pathname.

Environment variables are allowed in the pathname specifications as long as the resulting
path evaluates to an absolute path.

Version and configuration format

The following placeholders are used below:

CONFIGURATION =string.

VERSION = integer { “.” integer }.

COMMENT =quoted string.

Working environment format

The following placeholders are used below:

WORKING_ENVIRONMENT = ’ “
’”’[owner](“PWE”|“SSWE”|“SOWE”|“RWE”)“:”workenv_name’”’

owner = string

workenv_name = string

TYPE_SPEC = “ANY” | “CLASS” | “INSTVAR” | “METHOD_DEF” |
“METHOD_IMPL” | “FRIEND” | “VARIABLE” | “CON-
STANT” | “FUNCTION” | “ENUM” | “ENUM_ITEM” |
“TYPEDEF” | “MACRO”.
ference Guide 263

Chapter 2 Sniffaccess Sniffaccess requests
Sniffaccess requests

Working Environment requests

� set_workingenv WORKING_ENVIRONMENT

Set the SNiFF+ working environment. For PWEs, you have the option of entering the
name of the owner of the PWE. If you don’t enter the name of the owner, SNiFF+ will use
the name of the current user. For all other working environments, the owner is “adm”.

� update_private_we PROJECT [CONFIGURATION]

Updates PROJECT in the Private Working Environment to the configuration indicated by
the parameter. After the update, the specified projects are reloaded. If no configuration is
supplied, the default configuration of the project is taken.
Project Editor menu: Project > Update Checkmarked Projects...

� add_workingenv WORKING_ENVIRONMENT PATH [ACCESSED
WORKING_ENVIRONMENT]

Creates a new working environment. An accessed base working environment can also be
specified (e.g. an SOWE to be accessed by a new PWE). The working environment can
only be created using this request if the user is also allowed to do so from the graphical
user interface.

� delete_workingenv WORKING_ENVIRONMENT

Deletes a working environment together with all the working environments that access the
specified working environment (e.g. deleting an SSWE also deletes all SOWEs and
PWEs that access the specified SSWE. The working environment can only be deleted
using this request if the user is also allowed to do so from the graphical user interface.
Working Environments menu: Edit > Delete...

� get_workingenv_root WORKING_ENVIRONMENT

Returns the directory specified for the working environment.
264 SNiFF+

Re

Sniffaccess requests
Project requests
.

� open_project PROJECT

[“WITH_SYMBOLS” | “WITHOUT_SYMBOLS”]
[“NO_CACHE” | “USE_CACHE”]
[“OPEN_XREF_DB_STRATEGY (0|1|2)”]
[“OPEN_XREF_DB_TIMEOUT 30”]

Open a project. The symbols argument determines whether the symbol table is loaded.
Default: open with symbols.
The cache argument determines whether cached symbol information is used.
Default: cache is not used.
If database-driven cross reference system is used the following database access control
strategies can be used:

� Strategy 0: If locks preventing Write access to the cross reference database are set,
abort opening the project (default).

� Strategy 1: Save and close all open files and projects in active SNiFF+ sessions pre-
venting Write access to the cross reference database.

� Strategy 2: Break all locks. Not to be recommended!

Execution of the above strategies commences after the number of seconds entered after
the OPEN_XREF_DB_TIMEOUTstring. Default: 30 seconds.
Launch Pad menu: Project > Open Project.. .

� reload_project PROJECT_NAME [WORKING_ENVIRONMENT]

Reload a project. If a working enviornment is specified, the project is opened there.
Default: current working environment. Launch Pad/Project Editor menu: Project > Reload
Project.. .

� close_project PROJECT_NAME [“SAVE” | “DISCARD” | “ASK”]

Close a project. By default, SNiFF+ discards modifications to projects.
Launch Pad menu: Project > Close Project .

Note

When you run the make_project and make_file commands via the
Sniffaccess interface, you immediately receive an Ok message from
Sniffaccess. However, this does not mean that the Make process is
over. Basically, the SNiFF+ Shell tool cannot tell when a Make pro-
cess has ended. As a result, in critical situations where you need to
know exactly when the Make process is over, we suggest that you
run Make via the update scripts that are supplied with your SNiFF+
installation
ference Guide 265

Chapter 2 Sniffaccess Sniffaccess requests
� check_obsolete_files PROJECT_NAME

Note: The PROJECT_NAME argument must be unambiguous, that is, do not use
wildcards; all sub-projects will always be recursively checked.
Lists all files which are in the project directory tree, but which are not used in projects, i.e.
which are not recorded in any of the PDFs in the project structure. These files are listed in
the SNiFF+ Log Window. To execute this command, make sure that the project is open in
SNiFF+.
Project Editor menu: Project > Check Obsolete Files...

� update_file_info PROJECT_NAME

Update the file status of all files in all Project Editors of a project.
Project Editor menu: Project > Synchronize File Status

� force_reparse PROJECT_NAME

Force a reparse of all files of a project.
Project Editor menu: Project > Force Reparse

� update_symtab PROJECT_NAME

Update the symbol table of a project. This command checks for all files whether they have
changed and reparses them if necessary.
Project Editor menu: Project > Load/Update Symbol Table

� generate_xref_info PROJECT_NAME

Generate and dump (cache) the cross reference information of a project

� add_subproject PROJECT_NAME PROJECT

Add a subproject to a project. Specify the path to the PDF.
Project Editor menu: Project > Add Subproject...

� remove_subproject PROJECT_NAME PROJECT_NAME

Remove a subproject from a project.
Project Editor menu: Project > Remove Subproject

� add_file PROJECT_NAME FILE

Add a file to a project. The project description file is saved immediately.
Project Editor menu: Project > Add/Remove Files...

� remove_file PROJECT_NAME FILE

Remove a file from a project. The project description file is saved immediately.
Project Editor menu: Project > Add/Remove Files...

� make_project PROJECT_NAME [TARGET_NAME]

Make the target of a project.
Project Editor/Source Editor/Shell menu: Target > Make Project
266 SNiFF+

Re

Sniffaccess requests
� make_file PROJECT_NAME FILE

Make a file of a project.
Project Editor/Source Editor/Shell menu: Target > Make File

� update_makefiles PROJECT_NAME

Update (generate) the make support files of a project.
Project Editor/Source Editor/Shell menu: Target > Update Makefiles...

� get_attributes PROJECT_NAME ATTRIBUTE

Gets Project Attributes of one or more projects. ATTRIBUTE is specified using the name
of the Project Attribute in the PDF.
Project Editor menu: Project > Attributes...

� set_attributes PROJECT_NAME ATTRIBUTE VALUE

Sets Project Attributes of one or more projects. ATTRIBUTE is specified using the name
of the ProjectAttribute in the PDF.
Project Editor menu: Project > Attributes...

� list_dirs PROJECT_NAME

Lists all source directories in PROJECT_NAME and its sub-projects (private and shared
WEs) - one directory per line. List can be used e.g. as source path for a debugger.

Configuration management requests

� update_cms_info PROJECT_NAME

Update and dump (cache) the configuration information of a project. Configuration
Manager menu: Configuration > Update Information

� checkout_config PROJECT_NAME [CONFIGURATION]

Check out all files belonging to a configuration of a project. Note: Before issuing this
command, issue the update_cms_info command.
If no configuration is supplied, the HEADconfiguration is taken. The checked-out files are
read-only and the repository is not locked.
Configuration Manager menu: Configuration > Check Out...

� delete_config PROJECT_NAME CONFIGURATION

Deletes a project configuration name.
Configuration Manager menu: Configuration > Delete Configuration Name...
ference Guide 267

Chapter 2 Sniffaccess Sniffaccess requests
� freeze_config PROJECT_NAME CONFIGURATION [“OVERRIDE”]

Freezes the default configuration of a project (as defined in the working environment).
The OVERRIDE argument allows a previouse configuration name to be associated with
the configuration to be frozen.
Configuration Manager menu: Configuration > Freeze Default Configuration...

� rename_config PROJECT_NAME CONFIGURATION_OLD CONFIGURATION_NEW

Renames a project configuration.
Configuration Manager menu: Configuration > Rename Configuration

File requests

� show_difference PROJECT_NAME FILE VERSION1 VERSION2 [VERSION3]

Starts a diff on FILE . VERSION1is the left version, VERSION2is the right version, and
VERSION3is optional — if present a 3-way diff is started. Version can be either a version
label (e.g. HEAD) or a version number (e.g. 1.1.2).
* Menu: File > Show Differences...

� edit_file PROJECT_NAME FILE [LINE_NUMBER]

Load a file into a reusable Source Editor. If necessary, open a new Source Editor. If a line
number is supplied, select that line and position to it.
Project Editor:double-click on file.

� save_file PROJECT_NAME FILE

Save a file. The file is only saved if it is loaded in a Source Editor and modified.
* Menu: File > Save .

� file_changed PROJECT_NAME FILE

Tell SNiFF+ that a file has changed. SNiFF+ reparses the file and updates the symbol
information.

� checkout_file PROJECT_NAME FILE (“EXCLUSIVE” | “CONCURRENT” | “NOLOCK”)

[VERSION_OR_SYMBOL BRANCH_FLAG]
Check out a file to the Private Working Environment. BRANCH_FLAGcan be 'T' or 'F'. If
BRANCH_FLAGis set to 'T', a branch is created from the specified version. Default:
version HEADand no branching (BRANCH_FLAGis 'F').
* Menu: File > Check Out...

Note

The value of BRANCH_FLAG depends on your underlying version
control system:
checkout_file request T for SCCS, F for RCS
checkin_file request: F for SCCS, T for RCS
268 SNiFF+

Re

Sniffaccess requests
� checkin_file PROJECT_NAME FILE (“UNLOCK” | “LOCK”)
[VERSION_OR_SYMBOL CHANGE_SET COMMENT BRANCH_FLAG
BRANCH_NAME]

Check in a file. BRANCH_FLAGcan be 'T' or 'F'. If BRANCH_FLAGis set to 'T', a branch
is created from the specified version. Default: HEADversion, no change set, no comment,
no branching.
* Menu: File > Check In...

� lock_file PROJECT_NAME FILE (“EXCLUSIVE” | “CONCURRENT”)
[VERSION_OR_SYMBOL]

Lock a file. Default version: HEAD.
Project Editor/Source Editor/DiffMerge menu: File > Lock...

� unlock_file PROJECT_NAME FILE [VERSION_OR_SYMBOL]

Unlock a file. Default version: HEAD.
* Menu: File > Unlock....

Symbol requests

� browse_class PROJECT_NAME CLASS

Load a class into the Class Browser.
* Menu: Class > Browse Class class.

� hierarchy PROJECT_NAME CLASS (“RESTRICTED” | “FULL”)

Load a class into the Hierarchy Browser and select it. Default mode: FULL.
* Menu: Class > Show class in Hierarchy.

� find_symbol PROJECT_NAME SYMBOL

Find a symbol in the Symbol Browser.
* Menu: Info > Find Symbols Matching selection.

� edit_symbol PROJECT_NAME SYMBOL [TYPE_SPEC FILE]

Load a symbol into the Source Editor. If the symbol is unambiguous, TYPE_SPECand
FILE can be omitted. If the symbol is ambiguous, the first symbol found is taken.
Source Editor menu:Show > Symbol(s) symbol.

� retrieve PROJECT_NAME STRING [“CASE_SENSITIVE” “WHOLE_WORD”]

Retrieve a string in the Retriever. Default: retrieve case-insensitive and also part of a
word. * Menu: Info > Retrieve string.
ference Guide 269

Chapter 2 Sniffaccess Sniffaccess requests
� documentation PROJECT_NAME SYMBOL [TYPE_SPEC FILE]

Load the documentation of a symbol into the Documentation Editor. If the symbol is
unambiguous, TYPE_SPECand FILE can be omitted. If the symbol is ambiguous, the
first symbol found is taken.
*Menu: Info > Show documentation of symbol

Data query requests

� list_projects

List all open projects (including complete path) to stdout .

� list_classes PROJECT_NAME

List all classes of a project to stdout.

� list_files PROJECT_NAME [“FULLPATH”]

List all open projects (including complete path) to stdout .

General requests

� set_timeout SECONDS

Set the timeout for reply waits between SNiFF+ and Sniffaccess.

� iconify [PROJECT_NAME]

Iconify the windows of a project. If PROJECT_NAMEis omitted, all open projects and
SNiFF+ itself are iconified.

� normalize [PROJECT_NAME]

Normalize (de-iconify) the windows of a project. If project is omitted, all open projects and
SNiFF+ itself are normalized.

� wait SECONDS

Wait for the specified time and then process the next request; SNiFF+ continues
processing in the meantime.

� quit [“SAVE” | “DISCARD” | “ASK”]

Quit SNiFF+ and Sniffaccess. By default, SNiFF+ discards modifications to files and
projects.

� exit

Quit only Sniffaccess, but don't quit SNiFF+.
270 SNiFF+

Re

Sniffaccess notifications
Request replies

SNiFF+ replies to each request with a message like this:

sniff: OKAY

or

sniff: ERROR: filebrowser.proj: no such project

The format of the reply is:

RequestReply = SimpleOK | DetailedReply.

SimpleOK = “sniff: OKAY”.

DetailedReply = “sniff: ” (“OK” | “WARNING” | “ERROR”)[“: ”
MessageText].

MessageText = string.

Sniffaccess notifications
Sniffaccess can register to be notified upon the execution of actions in SNiFF+. The notifica-
tion registration requests allow you to register for specific actions.

Notification registration requests

� register PROJECT_NAME ACTION_PATTERN (“PRE” | “POST”) (“WAIT” | “NOWAIT”)
SHELL_COMMAND

Register for a notification. Please refer to Notification ACTIONs and ARGUMENTs —
page 272 for a list of possible ACTIONS. The SHELL_COMMANDis called (notified) upon
the execution of a registered action.

� unregister PROJECT_NAME ACTION_PATTERN (“PRE” | “POST”)

Unregister for a notification. Below you can find a list of possible ACTION_PATTERNs. If
the action is not registered, a warning is displayed.

ACTION_PATTERNis a pattern that must match one or more ACTIONs as shown in
Notification ACTIONs and ARGUMENTs — page 272 and can contain the following
wildcard characters:

Wildcard character Match

* any number of characters

? a single character

[a-zA-Z] a single character in the given range of characters

[^...] or [!...] a single character NOT in the given range of characters
ference Guide 271

Chapter 2 Sniffaccess Sniffaccess notifications
What happens when SNiFF+ sends a notification?

When SNiFF+ sends a notification, Sniffaccess calls the shell command
(SHELL_COMMAND) that has been supplied with a notification registration. The notification
registration arguments PRE and POSTdetermine when a shell command is called. PRE
means that Sniffaccess is notified before a registered action is executed in SNiFF+; POST
means that Sniffaccess is notified after a registered action is executed.
A PRE notification can have either WAIT or NOWAITstatus. When Sniffaccess calls the
shell command of a PRE WAITnotification, SNiFF+ waits for the shell command to finish
before the action is executed. If the return value of the shell command is zero (0), the action
is executed; otherwise SNiFF+ does not execute the action. Thus a PRE WAITnotification
shell command can control whether SNiFF+ can execute registered actions. When an action
is blocked via the Sniffaccess interface, a dialog informs the user about the block.
The shell command is called with the following arguments:

SHELL_COMMAND (“PRE”|”POST”) (“WAIT”|”NOWAIT”) ACTION
{ARGUMENT}

The possible ACTIONs and ARGUMENTs are described below.

Notification ACTIONs and ARGUMENTs

The following shows the possible ACTIONs and ARGUMENTSfor notification registration
requests. Each item also represents the argument of the shell command which is called by
Sniffaccess upon notification of an action execution.

� save_file PROJECT_NAME FILE

SNiFF+ saves a file.

� edit_file PROJECT_NAME FILE

SNiFF+ loads a file into the Source Editor.

� checkout_file PROJECT_NAME FILE (“EXCLUSIVE” | “CONCURRENT” | “NOLOCK”)
[VERSION_OR_SYMBOL]

SNiFF+ checks out a file.

� checkin_file PROJECT_NAME FILE (“UNLOCK” | “LOCK”) [VERSION_OR_SYMBOL
COMMENT]

SNiFF+ checks in a file.

� lock_file PROJECT_NAME FILE (“EXCLUSIVE” | “CONCURRENT”)
[VERSION_OR_SYMBOL]

SNiFF+ locks a file.

� unlock_file PROJECT_NAME FILE [VERSION_OR_SYMBOL]

SNiFF+ calls make for a file.
272 SNiFF+

Re

Sniffaccess notifications
� make_file PROJECT_NAME FILE

SNiFF+ calls make for a file.

� make_project PROJECT_NAME [TARGET]

SNiFF+ calls make for a project.

� open_project PATH

SNiFF+ opens a project.

� close_project PROJECT_NAME

SNiFF+ closes a project.

� quit

SNiFF+ quits.

The following shows the possible ACTIONs for POSTnotification registration requests. Each
item also represents the argument of the shell command which is called by Sniffaccess after
notification of an action execution.

� add_subproject PROJECT_NAME PATH

SNiFF+ adds a subproject to a project.

� remove_subproject PROJECT_NAME PROJECT_NAME

SNiFF+ removes a subproject from a project.

� add_file PROJECT_NAME FILE

SNiFF+ adds a file to a project.

� remove_file PROJECT_NAME FILE

SNiFF+ removes a file from a project.
ference Guide 273

Chapter 2 Sniffaccess HP Softbench BMS bridge (Unix only)
HP Softbench BMS bridge (Unix only)
The SNiFF+ package contains a generic and extendable bridge between the Sniffaccess
interface and the HP Softbench Broadcast Message Server (BMS). The bridge consists of
two commands that route messages between Sniffaccess and the BMS. The two commands
are implemented as shell scripts, are named sniff_to_softbench.sh and
softbench_to_sniff.sh , and are located in $SNIFF_DIR/bin .
This section explains the usage of the bridge and also shows how to extend the bridge with
your own commands.

Using the HP Softbench BMS bridge

The commands should be started while SNiFF+ and the Softbench BMS are running and can
be executed as background processes. For example, a shell script that starts SNiFF+, the
HP Softbench BMS and the bridge could look like this:

Script for starting SNiFF+, Softbench and the bridge

#
Script for starting SNiFF+,
Softbench and the bridge
#

sniff & Start SNiFF+ in the background.

softbench & Start Softbench and the BMS in
the background.

sleep 45 Wait until both programs come
up.

sniff_to_softbench.sh & Start the bridge for communica-
tion from SNiFF+ to Softbench.

softbench_to_sniff.sh & Start the bridge for communica-
tion from Softbench to SNiFF+.
274 SNiFF+

Re

HP Softbench BMS bridge (Unix only)
sniff_to_softbench.sh

The shell script sniff_to_softbench.sh registers for SNiFF+ notifications, transforms
them, and routes them to Softbench BMS messages via the ciclient program.
The following is the content of sniff_to_softbench.sh with an explanation of its
structure and how to extend it:

sniff_to_softbench.sh

#!/bin/sh
#
sniff_to_softbench
#
Convert SNiFF+ action notifications to
SoftBench requests.
#

PROG=`basename $0`

if [$# = 0]; then

If invoked without argu-
ments, register for all com-
mands. This script is
invoked again when a noti-
fication from SNiFF+ is re-
ceived, but this time with
arguments (see else
branch below).

(echo register '*/'file_changed post nowait $0;\
echo register '*/'checkout_file post nowait $0;\
echo register '*/'checkin_file post nowait $0;\
echo register '*/'lock_file post nowait $0;\
echo register '*/'unlock_file post nowait $0)\
| sniffaccess

Register self with SNiFF+
for all file_changed
notifications.
If you want to register for
other notifications, you
have to extend this list (and
also the case statement
below where the notifica-
tions are handled).

else
PRE_POST=$1; shift
WHEN=$1; shift
ACTION=$1; shift
ARGS="$@"

Script is invoked with argu-
ments on a notification
from SNiFF+. Arguments
are: ("PRE"|"POST")
("WAIT"|"NOWAIT") AC-
TION [ARG S]
ference Guide 275

Chapter 2 Sniffaccess HP Softbench BMS bridge (Unix only)
softbench_to_sniff.sh

The shell script softbench_to_sniff.sh registers for Softbench BMS notifications,
transforms them, and uses Sniffaccess to react to these notifications.
The following is the content of softbench_to_sniff.sh with an explanation of its
structure and how to extend it:

case "$ACTION" in
file_changed | checkout_file | checkin_file

|\
lock_file | unlock_file)

$1 is PROJECT, $2 is PATHNAME
DIR=`dirname $2`
FILE=`basename $2`
echo send_notify FILE-MODIFIED $FILE NULL\

PASS NULL | \
ciclient -directory $DIR

;;

*)
echo $PROG: cannot convert action $ACTION

;;
esac

fi
exit 0

On any of the file changed
notifications from SNiFF+,
send a message to the
BMS.
You have to extend this
case statement if you want
to forward other notifica-
tions from SNiFF+. This list
must match the registration
notifications above.

softbench_to_sniff.sh

#!/bin/sh
#
Convert SoftBench notifications to SNiFF+
requests.
#

if [-z "${child_proc:-}"]; then
child_proc=1
export child_proc

exec ciclient -toolclass SNIFF -mode name \
-o 5 -e $0

fi

Restart this program
as a child of cicli-
ent .

sniff_to_softbench.sh (cont.)
276 SNiFF+

Re

HP Softbench BMS bridge (Unix only)
unset child_proc

PROG=`basename $0`
HOSTNAME=`uname -n`

echo make_reply_trigger -host $HOSTNAME -action\
FILE-MODIFIED -status PASS >&5

echo make_reply_trigger -action STOP -status\
PASS >&5

Register self with Soft-
bench for FILE-
MODIFIED messag-
es.
If you want to register
for other messages,
you have to add addi-
tional echo lines (and
also add the corre-
sponding case
branches below).

while read COMMAND ARGS
do

eval $ARGS
case $COMMAND in
nvreply_trigger)

case $action in
FILE-MODIFIED)

sniffaccess file_changed '*/' `basename\
$operand`

;;
STOP)

if [$toolclass = MSG-SERVER]; then
exit 0

fi
;;

*)
echo $PROG: unknown action: $action
;;

esac
;;

*)
echo $PROG: unknown command: $COMMAND
;;

esac
done
exit 0

Read and parse Soft-
bench messages and
send the correspond-
ing commands to
SNiFF+ via Sniffac-
cess.
You have to extend
this case statement if
you want to handle
other messages from
Softbench. This list
must match the regis-
trations above.

softbench_to_sniff.sh (cont.)
ference Guide 277

Chapter 2 Sniffaccess HP Softbench BMS bridge (Unix only)
278 SNiFF+

R

3Advanced Customization

Introduction
SNiFF+ supports customization at three different levels:

� Site level —Each installation of SNiFF+ can have its own settings. These settings are
used by all users that access this installation. Location of the SitePrefs.sniff file:

� your <sniff_installation_dir>

� User level —Each user can have private settings that override or merge with the site level
settings. Location of the UserPrefs.sniff file:

� On Unix: $HOME/.sniffrc/

� On Windows: %SNIFF_DIR%\Profiles\<Username>\

� Project —Each project has its own project attributes that are stored in the project descrip-
tion file (PDF) and can be edited by the Project Attributes dialog. Project Attributes —
page 163.

� Most of the various customization settings can be done in your Preferences. For details,
please refer to Preferences — page 123.

� On Windows NT/95, you can set SNiFF+’s look and feel in your Preferences file. For
details, see Setting SNiFF+’s look and feel (Windows NT/95 only) — page 290.
eference Guide 279

Chapter 3 Advanced Customization Customizing the SNiFF+ <Meta> key (Unix only)
Customizing the SNiFF+ <Meta> key (Unix only)
By default, SNiFF+ recognizes the Xwindows modifier key 1 (mod1) as <Meta> . Some
vendors use the same modifier key for generating special characters. Using the same
<Meta><key> combination for generating special characters and as a SNiFF+ keyboard
shortcut can cause a conflict. In such a case the special character is generated and the
SNiFF+ keyboard shortcut is executed as well. If you want to use a special modifier for
SNiFF+ keyboard shortcuts, you can redefine the Xwindows modifier keys and tell SNiFF+ to
recognize a different key as <Meta> .
The following text shows a standard keyboard mapping on an HP as output by the xmodmap
utility:

% xmodmap -pm

xmodmap: up to 3 keys per modifier, (keycodes in parenthe-
ses):

shift Shift_R (0xc), Shift_L (0xd)

lock Caps_Lock (0x37)

control Control_L (0xe)

mod1 Meta_R (0xa), Meta_L (0xb), Mode_switch (0x36)

mod2

mod3

mod4

mod5
280 SNiFF+

Re

Customizing the SNiFF+ <Meta> key (Unix only)
The output shows that both the left and the right <Meta> keys are translated to mod1.
To change the mapping, follow these steps:

� Modify the Xwindows key map with xmodmap. To associate mod2 with the left <Meta> key
in the example above, you could type the following:

You can apply the modification at every start-up of your Xwindows server by adding the
appropriate lines to the .xinitrc file. (Please refer to the Xwindows documentation for
more information.) Please note that the Mode_switch key may not be necessary on your
machine.

� On Unix :

Load the $HOME/.sniffrc/UserPrefs.sniff (or the $SNIFF_DIR/
SitePrefs.sniff) into an editor.

� Search for the second occurrence of UseModifierKey and change it to the modifier you
have selected with xmodmap. For example, modify the entry as follows:

“*.UseModifierKey” [2]

Please be careful that you are not modifying the schema entry
"*.UseModifierKey" [! 1 "AnyInt"] , which needs to stay exactly as shown.
Also make sure that you insert a blank before and after the modifier number. You can set
modifier numbers from 1 to 5.

� Restart SNiFF+.

SNiFF+ now uses the changed modifier key as <Meta> , which does not interfere with the
other modifier key that can be used for generating special characters.

% xmodmap -

clear mod1

clear mod2

add mod1 = Meta_R Mode_switch

add mod2 = Meta_L

<CTRL>D
ference Guide 281

Chapter 3 Advanced Customization Template files
Template files
When new files are created in SNiFF+ by means of the New File dialog, they are filled with
templates. The template that is used is determined by the extension of the new file.
Templates must be called template.extension , whereby extension is one of the
allowed file type extensions. The location of template files can be specified in the Projects
Template Directory field in the New Project Setup view of the Preferences dialog.
The Documentation Editor uses special documentation templates for generated documenta-
tion. You can customize these template files. The location of the documentation template
files can be specified in the Documentation Template Directory field in the Documentation
Editor view of the Preferences dialog.
To learn how to customize template files, please refer to Creating documentation templates
files — page 300

Parser config file
The Parser configuration file contains special configuration instructions for the Parser. The
location of the parser configuration file(s) can be specified in the Parser Configuration
File(s) field in the New Project Setup view of the Preferences dialog and in the Parser view
of the Project Attributes dialog. The Parser considers the configuration file both when prepro-
cessing is enabled and when it is disabled. If preprocessing is enabled, the directives in the
configuration file are evaluated and executed after preprocessing. For a list of directives,
please refer to User’s Guide — Parser configuration file.

Filter file
The Filter file describes filters that are added in the Find and Replace Filters dialog of the
Retriever and consists of a sequence of lines of ""- delimited string pairs. The first string is
added to the menu and the second string is the regular filter expression that is applied on
selecting the corresponding menu entry. In formulating a filter criterion, %s can be inserted
several times, which will be expanded with the actual match for every retrieved source line.
The location of the filter file can be specified in the Filter File field in the Retriever view of the
Preferences. By default, the filter file is located in the $SNIFF_DIR/config/Filters
directory.
282 SNiFF+

Re

Custom menus
Custom menus
SNiFF+ allows the definition of custom menus for the Source Editor and Project Editor.
Custom menus are defined in a custom menus file which can be located either in a user's
home directory or in the SNiFF+ installation directory for site-wide custom menus. The
custom menu file is called,

� On Unix:

$HOME/.sniffrc/UserMenus.sniff or $SNIFF_DIR/config/SiteMenus.sniff .

� On Windows:

%SNIFF_DIR%\Profiles\<Username>\UserMenus.sniff or
%SNIFF_DIR%\config\SiteMenus.sniff .
SNiFF+ searches first for the user-level and then for the site-level custom menu file. The
custom menu files are loaded during start-up.

If there are more than 20 entries, the menu can be scrolled by dragging the mouse below the
menu border.

Custom menu file format

The custom menu file can define more than one custom menu for each SNiFF+ tool. A new
menu is defined by preceding its title with the “>” character. If the first menu does not have a
title, its title will be set to Custom .

CustomMenuFile = { ToolFrame }

ToolFrame = ToolSpec { MenuSpec { MenuEntry } }

ToolSpec = "^" ("Editor" | "ProjectEditor") NL

MenuSpec = ">" MenuLabel NL

MenuEntry = (SimpleAction | InteractiveAction |Separator) NL

SimpleAction = ("shell" | "filter" | "debugger" | "python")

'"' MenuEntryName '"' '"' MenuEntryAction '"'

InteractiveAction = ("FileNameDialog" | "DirectoryNameDialog" |

"YesNoDialog") '"' MenuEntryName '"'

'"' MenyEntryAction '"' '"' PromptMessage'"'

|"AskQuestionDialog" '"' MenuEntryName '"'

'"' MenyEntryAction '"' '"' PromptMessage'"'

['"'DefaultValue'"]

MenuEntryName = MenuEntryString [Accelerator]
ference Guide 283

Chapter 3 Advanced Customization Custom menus
A shell command is executed in a SNiFF+ Shell tool.
A debugger command is sent to the Debugger.
A python command is executed by the python interpreter.
A filter command is any kind of process. Its input is the current selection in the Source
Editor and its output replaces the current selection.
A separator causes the insertion of a line in the menu. It is used for aesthetic reasons only.
Strings may be delimited with double quotes (“”) if they contain blanks.
All menu actions (’shell’, ’debugger’, ’FileNameDialog’ , etc.) can now be
extended by ’*’ or ’**’ , for example, shell*, python** (no blanks before * and **):

MenuEntryAction = String that can contain % variables

Accelerator = "@" Character

Separator = "-"

NL = newline

* all file-dependent variables in the command will be expanded for the
selected files. Project dependent variables are expanded using the
root project data. The menu action will be executed once only.

** the selected files are grouped by project. For each project, the file de-
pendent variables are expanded for all selected files (of the project).
The menu action will then be executed for each project that is refer-
enced by the selected files.

Note

This convention is disabled for ’filter’ commands.
284 SNiFF+

Re

Custom menus
Commands are executed in the shell and can contain the following variables:

%A repository file of selected file

%C file category directory (dot, if there isn’t one)

%d full path of project description file (PDF)

%D or %W absolute private project directory

%e sniffaccess project name format (see Project name format — page
262)

%E working environment name

%f full path of source file

%F name of source file

%g Shared Object Working Environments (same as in CMVC interface)

%G Shared Source Working Environments (same as in CMVC interface)

%H Shared Source Working Environment root directories, separated by
semicolon

%i session id of the SNiFF+ session

%k selected class/union/struct

%l locking path of project

%m selected method

%N number of expanded files (only for* or ** commands)

%p Root Main Target (of the current root project)

%P Main Target (of the project whose files you are currently working on)

%R Repository Working Environment root directory

%s a selection, single-quoted and with conversions

%S a selection, as is

%t the parameter, single-quoted and with conversions

%T the parameter, as is

%V selected file version (in the Project Editor’s History window)

%w Private Working Environment root directory
ference Guide 285

Chapter 3 Advanced Customization Custom menus
Lines in the menu files may contain comments. A comment starts with an unquoted number
sign (#) and ends with the next newline.
Examples:

this is a comment

shell “echo %s” “echo %s” # Just output the current
selection

Interactive Actions

Shell commands can get information from the user via dialog boxes. The format of the
commands is:

<command> <menu_item_string> <shell_command>
<prompt_string> [<defaul_value>]

Notice that the format is the same as the shell command, but there is a supplementary
prompt string.
The <command>may be one of: AskQuestionDialog, YesNoDialog,
FileNameDialog or DirectoryNameDialog .

AskQuestionDialog Presents a prompt string to the user and expects an answer.
If Cancel is hit, the command is aborted and the script is not
invoked. If OK is pressed the input from user is passed to the
shell as %t.

YesNoDialog Displays a question and prompts for Yes/No/Cancel. Cancel
aborts without running the script; otherwise the %t variable is
set to YES or NO and the shell command is called.

FileNameDialog Presents SNiFF+'s standard File dialog with the specified
prompt. The name of the selected file is passed to the shell
as %t.

DirectoryNameDialog Prompts the user to select a directory using SNiFF+'s stan-
dard Directory dialog. The name of the selected directory is
passed to the shell as %t.

<menu_item_string> Displayed in the
. Variables (for example %f) as shown above can be used.

<shell_command> Command given to the shell. There is a supplementary vari-
able %t. Its value is the user input (depending on the <com-
mand>). In %t, newline characters are replaced with the
string “\n ” to protect them from being interpreted by the shell.
286 SNiFF+

Re

Custom menus
Examples

The following example defines a menu called Custom in the Project Editor

<prompt_string> Prompt string which is displayed in the dialog boxes. Vari-
ables (for example %f) as shown above can be used.

<default_value> Valid for the AskQuestionDialog and is the default value
which can also contain the above mentioned variables.

Example file for a "Custom" menu in the Project Editor
#
^ ProjectEditor
> Custom
shell "RCS diff" "rcsdiff -kk %l/RCS/%F,v %f"
shell "SCCS diff" "cd %D; sccs -d%l diffs %F"
-
filter Date date
shell "Load File Into vi" "cmdtool vi %f"
-
FileNameDialog "Launch Document..." "open_document %t"

"Choose a document to launch:"
AskQuestionDialog "Special Checkin..." "check_in -version %t %f"

"Enter checkin version:" "%V"
YesNoDialog "Cancel Checkout..." "cancel_checkout %t %f"

"Are you sure you want to cancel your checkout of %f?"
-
debugger "Info Files" "info files"
ference Guide 287

Chapter 3 Advanced Customization Error formats
The following example defines two menus for the Source Editor. The first menu is called
Echo ; the second is called Misc :

It is now possible to use back slashes at the end of a line, inside double quotes, to logically
continue the line. For example:

python "Greeting"

"print ’Welcome to SNiFF+’ \

print ’This is an example Custom menu’"

Error formats
SNiFF+ integrates various compilers and other tools (like Purify). The Shell tool and the
Debugger are able to interpret the output messages of such tools based on a configurable
error formats file. The file $SNIFF_DIR/config/ErrorFormats contains a list of regular
expressions for the most common error formats. If the error messages of your compiler are
not covered by an entry in that file, you can add the corresponding regular expression.
Regular expressions are explained in Regular Expressions in SNiFF+ — page 307.

Example menu file for two Editor menus
#
^ Editor
> Echo
shell "echo %s" "echo %s"
shell "echo %d" "echo %d"
shell "echo %f" "echo %f"
shell "echo %D" "echo %D"
shell "echo %F" "echo %F"
shell "echo %l" "echo %l"
-
filter "date" "date"
> Misc
DirectoryNameDialog "Clean Directory..." "clean_directory %t"

"Choose a directory to clean:"
-
shell "Command 1" "echo 1"
shell "Command 2" "echo 2"
288 SNiFF+

Re

Error formats
Supplied ErrorFormats file (extract)

The parts of the regular expression that match the file name and the line number must be
enclosed in a \(\) construct. Each regular expression must have exactly two such
constructs.

SNiFF+ - regular expressions for compiler error messages

"file.c", line 123
"\([^"]+\)",[]+line[]+\([0-9]+\)
file.c, line 123
\([^]+\),[]+line[]+\([0-9]+\)
Purify: [line 123, file.c,
line[]+\([0-9]+\),[]+\([^,]+\)
file.c:123
\([^:]+\):[]*\([0-9]+\)
file.c(123)
\([^]+\.[^]+\)(\([0-9]+\))
ference Guide 289

Chapter 3 Advanced Customization Setting SNiFF+’s look and feel (Windows NT/95 only)
Setting SNiFF+’s look and feel (Windows NT/95 only)
In general, all Windows system settings are valid in SNiFF+. Flags set in your Preferences
file (located in <sniff_dir>\.UserPrefs) tell SNiFF+ to apply these system settings to
its look and feel. You can, however, change the value of these flags as desired.
The following flags affect SNiFF+’s look and feel:

� WindowSystem.Look

� WindowSystem.Feel

� Env.Source

� WindowSystem.NativeMenu

These flags are set in the following lines of code in <sniff_dir>\.UserPrefs :

“WindowSystem.Look” []

“WindowSystem.Feel” []

“ Env.Source ” []

“ WindowSystem.NativeMenu ” []

A flag’s value is given by a number in the brackets ([]). Initially, these brackets are empty,
meaning that the flag’s default value applies.

Setting SNiFF+’s look

SNiFF+’s look is set by the WindowSystem.Look flag. SNiFF+ can have one of three looks:

� Windows NT/95 (default look)

� Motif

� ET++

To use the Windows NT/95 look

� set WindowSystem.Look to 2, like this:

“WindowSystem.Look ” [2]

To use the Motif look

� set WindowSystem.Look to 1, like this:

“WindowSystem.Look ” [1]

To use the ET++ look

� set WindowSystem.Look to 0, like this:

“WindowSystem.Look ” [0]
290 SNiFF+

Re

Setting SNiFF+’s look and feel (Windows NT/95 only)
Setting SNiFF+’s feel

SNiFF+’s feel is automatically set to match the corresponding look. For example, if the
Windows 95 look is set, the Windows 95 feel will also be set.
If you want to change SNiFF+’s feel, you can do so with the WindowSystem.Feel flag.
SNiFF+ can have one of three feels:

� Windows NT/95

� Motif

� ET++

To use the Windows NT/95 feel

� set WindowSystem.Feel to 2, like this:

“ WindowSystem.Feel ” [2]

To use the Motif feel

� set WindowSystem.Feel to 1, like this:

“ WindowSystem.Feel ” [1]

To use the ET++ feel

� set WindowSystem.Feel to 0, like this:

“WindowSystem. Feel ” [0]

Overriding operating system color settings

By default, your operating system’s color settings are applied to SNiFF+’s user interface. You
can use the Env.Source flag to apply the settings in your Preferences instead.
To use the color settings in your Preferences

� set Env.Source to 0, like this:

“ Env.Source ” [0]

Using ET++ menus

By default, native Windows 95 menus are used in SNiFF+. You can use the Window-
System.NativeMenu flag to use ET++ menus instead.
To use ET++ menus

� set WindowSystem.NativeMenu to 0, like this:

“ WindowSystem.NativeMenu ” [0]
ference Guide 291

Chapter 3 Advanced Customization Setting SNiFF+’s look and feel (Windows NT/95 only)
292 SNiFF+

R

4Working with IDL Projects in SNiFF+

Introduction
This chapter describes and gives instructions on how to use the SNiFF+ IDL Parser. Note
that the Parser is included in your installation kit. However, it requires a separate license and
must also be purchased separately. Please note that the SNiFF+ IDL Make Support is
specific for IONA ORBIX.

What the SNiFF+ IDL Parser does
The SNiFF+ IDL Parser parses IDL files according to the CORBA 2.0 standard. Symbol infor-
mation is extracted from the IDL files during parsing. This symbol information is then mapped
into C/C++ data types and placed in the Symbol Table.
The symbol information in the Symbol Table is persistent between sessions, meaning that
you do not have to reparse IDL source files (and source files of all other languages that
SNiFF+ supports, for that matter) whenever you open a project that contains IDL source files.

Integration of the SNiFF+ IDL Parser with SNiFF+
As just mentioned, the symbol information of IDL source files is stored in the Symbol Table.
SNiFF+ accesses this information from the Symbol Table whenever you open a project that
contains IDL source files. The Symbol Table is the central data repository that is used by the
various SNiFF+ tools for displaying information.
eference Guide 293

Chapter 4 Working with IDL Projects in SNiFF+ Using the SNiFF+ IDL Parser without SNiFF+
How IDL information is mapped by the SNiFF+ IDL Parser

The SNiFF+ IDL Parser maps symbol information from IDL files to C/C++ data types
according to the following mapping scheme:

Using the SNiFF+ IDL Parser without SNiFF+
To check the syntax of an IDL file, you can launch the SNiFF+ IDL Parser independently of
your SNiFF+ session on the command line interface. Note that this is the only way to use the
SNiFF+ IDL Parser independently of a SNiFF+ session.
To run the SNiFF+ IDL Parser, enter the following from the command line interface:

sniffidl [options] <name_of_idl_file>

You can include one or more of the following options when running sniffidl:
-h[elp] message with command line syntax and options is printed
-v[ersion] version number of sniffidl is printed
-e<file> errors and warnings found during parsing are written to <file>

Information in IDL C/C++ data type

definition of an interface and its basis interfaces class definition and base classes

definition of a type type definition

definition/usage of a constant constant

definition/usage of an attribute instance variable

definition/usage of an operation function

Note

Modal parameters (in, out, inout) and context arguments in IDL do not
have corresponding C/C++ data types.
294 SNiFF+

Re

Using SNiFF+’s Make Support for compiling IDL files
Using SNiFF+’s Make Support for compiling IDL files

What makes IDL files so unique?

It is not possible to create a simple implicit rule in Make to create target files (source and
object) out of IDL files (of the type *.idl). This is because an IDL compiler has three types
of source targets: *C.cc , *S.cc and *.hh .
Files of the type *C.cc are client files, and files of the type *S.cc are server files. Files of
the type *.hh are header files. There is one set of header files for both client and server
files. In addition to source targets, IDL compilers also have object targets of the type *C.o
and *S.o .

IDL file types

The source targets of the IDL compiler are derived files. Derived files are associated with
SNiFF+ file types that are automatically added to and removed from projects. (The Add/
Remove Automatically attribute of these file types is set to TRUE.)
The following table lists the file types that are associated with IDL derived files:

IDL derived file Derived file type

*C.cc IDL Client Implementation

*S.cc IDL Server Implementation

*C.o IDL Client Object

*S.o IDL Server Object

*.hh IDL Header
ference Guide 295

Chapter 4 Working with IDL Projects in SNiFF+ IDL Projects
IDL Projects
You will need to create two types of projects (server project and client project) for your IDL
project files in the same directory (grid_server) and configure Make support for each of them.

Differences between client and server projects

Client projects contain the following files:

� *.idl

� *C.cc

� *.hh

� *C.o

When you compile the *.idl files in client projects, the derived files *C.cc and *.hh are
added automatically to the projects.
Server projects contain the following files:

� *.idl

� *S.cc

� *S.o

� *.hh

When you compile the *.idl files in server projects, the derived files *S.cc and *.hh
are added automatically to the projects.

Client projects have their own .sniffdir directory (e.g., .sniffdir_client) for
derived files. Server projects also have their own sniffdir directory (e.g.,
.sniffdir_server) for derived files.
Finally, client and server projects have different Makefiles (e.g., Makefile.client and
Makefile.server , respectively). Each project’s Makefile is unique to the project and
allows Make to create the project’s target source files.

Note

The IDL interface files (*.idl) and header files (*.hh) are the
same in both client and server projects.
296 SNiFF+

Re

Editing $SNIFF_DIR/make_support/<platform>.mk
Editing $SNIFF_DIR/make_support/<platform>.mk
Before you begin creating the server and client projects and configuring Make support for
them, you will have to edit $SNIFF_DIR/make_support/<platform>.mk .
In this file, enter the paths of your Orbix IDL compiler installation and IDL binaries, library and
include directories. The following is an example of what these lines in <platform>.mk
should look like (highlighted in boldface):

orbix installation directory

IDL_DIR = <installation_directory>

binary, library and include directories

IDL_BINDIR = $(IDL_DIR)/ <binaries_subdirectory>

IDL_LIBDIR = $(IDL_DIR)/ <library_subdirectory>

IDL_INCDIR = $(IDL_DIR)/ <include_subdirectory>

IDL compiler

IDL = $(IDL_BINDIR)/idl

IDLFLAGS =

server and client libraries

IDL_SERVER_LIB = -lITsrv

IDL_CLIENT_LIB = -lITclt

Creating a server project and configuring Make support for it
For example, we assume that:
you have a directory called grid_server containing a file called grid.idl .

� Copy the template.Makefile file from your SNIFF_DIR/config directory to
your grid_server directory and rename it Makefile.server.

This is your server Makefile.
You will now create a project for the server.

1. Start SNiFF+.

2. In the Launch Pad, select Project > New Project... > with Defaults...

3. In the Directory dialog that appears, navigate to the grid_server directory.

4. Press Open and then Select .

The Attributes of New Project dialog appears.
ference Guide 297

Chapter 4 Working with IDL Projects in SNiFF+ Creating a server project and configuring Make support for it
In the Attributes of a New Project dialog

1. Select the General > Advanced node.

2. In the Advanced view > Generated Files Directory field, enter .sniffdir_server .

3. Select the Build Options node.

4. In the Build Options view, enter a Make command in the Make Command field, so that
Make uses the project Makefile Makefile.server instead of the default Makefile.

Example:

make -f Makefile.server

5. Select the Build Options > Project Targets node.

6. In the Executable field, enter the executable target name (e.g., grid_server)

7. In the +Libraries Linked field (below the Executable field), enter
$(IDL_SERVER_LIB).

8. Select the File Types node.

9. In the File Types view, select the Make file type (by single-clicking it) and delete the entry
in the General tab > Signatures field. Then enter Makefile.server in this field.

10. Press the Show All button to see all the file types.

11. For each of the following file types, select the file type (in the order given) and then press
the Add File Type button:

- IDL Interface
- IDL Header
- IDL Server Implementation
- IDL Server Object
Now, files of this file type will be added to the grid_server project during project creation.

12. Press OK to create the project.

13. In the dialog that appears asking if you want to generate cross reference information,
press No.

14. Add server source files to the project by copying these files to the grid_server direc-
tory and then choosing Project > Add/Remove Files to/from grid_server.shared... in
the Project Editor. Remove client source files from the project and make sure that only
server files are part of the project.

You are now ready to edit and then run the Makefile for your server project.
298 SNiFF+

Re

Creating a server project and configuring Make support for it
15. Edit Makefile.server .

The following example shows part of your Makefile. The IDL-specific commands are
highlighted in boldface . Make sure that these commands are in your Makefile. If they are
not, please add them:

Project makefile

Location of make support files

SNIFF_MAKEDIR = .sniffdir_server

Include the generated make support files

include $(SNIFF_MAKEDIR)/macros.incl

The following macros are defined in the Make view of the
project attributes

Include directive(s)

$(SNIFF_INCLUDE) += -I$(IDL_INCDIR)

Executable target

LINK_TARGET = $(SNIFF_LINK_TARGET)

Relinkable object target

RELINK_TARGET = $(SNIFF_RELINK_TARGET)

Library target

LIB_TARGET = $(SNIFF_LIB_TARGET)

Libraries received from subprojects.

Linked to executable and relinkable object target.

SUB_LIBS = $(SNIFF_SUB_LIBS)

Relinkable objects received from subprojects.

Linked to executable, relinkable object and library
target.

SUB_RELINK_OFILES = $(SNIFF_SUB_RELINK_OFILES)

Other libraries linked to executable target
ference Guide 299

Chapter 4 Working with IDL Projects in SNiFF+ Creating a server project and configuring Make support for it
OTHER_LIBS = $(SNIFF_OTHER_LIBS)

Other libraries linked to relinkable object target

RELINK_OTHER_LIBS = $(SNIFF_RELINK_OTHER_LIBS)

Recursive make directories

SUBDIRS = $(SNIFF_SUBDIRS)

you can define the following additional flags here

#

#OTHER_OFILES = <other object files>

#OTHER_CFLAGS = <other C compiler flags>

#OTHER_CXXFLAGS = <other C++ compiler flags>

#OTHER_YACCFLAGS = <other yacc compiler flags>

#OTHER_LEXFLAGS = <other lex flags>

IDL-specific macros

OTHER_IDLFLAGS = -B

#OTHER_FFLAGS = <other fortran compiler flags>

OTHER_LDFLAGS = -L$(IDL_LIBDIR)

PRE_TARGETS is currently used only for IDL make support.

The PRE_TARGETS macro is needed, since it is not possible
to

create a simple implicit rule to compile the IDL files

PRE_TARGETS = $(SNIFF_PRE_TARGETS)

IDL-specific macro

"S" stands for server and "C" for client

IDL_CFILE_TYPE_SPEC = S

Common makefile definitions

include $(SNIFF_DIR)/make_support/general.mk

Include the generated dependencies file

include $(SNIFF_MAKEDIR)/dependencies.incl
300 SNiFF+

Re

Creating a client project and configuring Make support for it
In the Project Editor

1. In the Project Tree, double-click on grid_server.proj .

The Project Attributes dialog appears.

2. In the Project Attributes dialog, select the Build Options > Directives node.

3. In the Directives view, press the Generate... button to the right of the Include Directive(s)
field.

The include directives for this project are now generated and appear in the Include
Directive(s) field.

4. In the Project Editor, choose Target > Update Makefiles... to update the generated Make
support files.

5. Press Yes in the dialog that appears.

6. Choose Target > Make... > grid_server to build the project’s target.

gridS.cc and grid.hh will be created by the IDL compiler and then gridS.o will
be created by the C++ compiler.

7. Make sure that grid_server.proj is selected in the Project Tree and choose
Project > Reload Project... > In Current Working Environment .

You should now see the gridS.cc and grid.hh files in the Project Editor’s File List.
You have just completed configuring Make support for the server project. You will now have
to create the client project and configure Make support for it.

Creating a client project and configuring Make support for it
� Copy the template.Makefile file from your SNIFF_DIR/config directory to

your grid_server directory and rename it Makefile.client.

This is your client Makefile.
You will now create a project for the client.

1. Start SNiFF+.

2. In the Launch Pad, select Project > New Project... > with Defaults...

3. In the Directory dialog that appears, navigate to the grid_server directory.

4. Press Open and the Select .

The Attributes of New Project dialog appears.

In the Attributes of a New Project dialog

1. In the General view > File Name and Type field, enter grid_client .

2. Select the General > Advanced node.

3. In the Advanced view > Generated Files Directory field, enter .sniffdir_client .

4. Select the Build Options node.
ference Guide 301

Chapter 4 Working with IDL Projects in SNiFF+ Creating a client project and configuring Make support for it
5. In the Build Options view, enter a Make command in the Make Command field, so that
Make uses the project Makefile Makefile.client instead of the default Makefile.

Example:

make -f Makefile.client

6. Select the Build Options > Project Targets node.

7. In the Executable field, enter the executable target name (e.g., grid_client)

8. In the +Libraries Linked field (below the Executable field), enter
$(IDL_client_LIB).

9. Select the File Types node.

10. In the File Types view, select the Make file type (by single-clicking it) and delete the entry
in the General tab > Signatures field. Then enter Makefile.client in this field.

11. Press the Show All button to see all the file types.

12. For each of the following file types, select the file type (in the order given) and then press
the Add File Type button:

- IDL Interface
- IDL Header
- IDL Client Implementation
- IDL Client Object
Now, files of this file type will be added to the grid_client project during project creation.

13. Press OK to create the project.

14. In the dialog that appears asking if you want to generate cross reference information,
press No.

15. Add client source files to the project by copying these files to the grid_server direc-
tory and then choosing Project > Add/Remove Files to/from grid_client.shared... in
the Project Editor. Remove server source files from the project and make sure that only
client files are part of the project.

You are now ready to edit and then run the Makefile for your client project.

16. Edit Makefile.client .

The following example shows part of your Makefile. The IDL-specific commands are
highlighted in boldface . Make sure that these commands are in your Makefile. If they are
not, please add them:

Project makefile

Location of make support files

SNIFF_MAKEDIR = .sniffdir_client

Include the generated make support files

include $(SNIFF_MAKEDIR)/macros.incl
302 SNiFF+

Re

Creating a client project and configuring Make support for it
The following macros are defined in the Make view of the
project attributes

Include directive(s)

$(SNIFF_INCLUDE)+= -I$(IDL_INCDIR)

Executable target

LINK_TARGET = $(SNIFF_LINK_TARGET)

Relinkable object target

RELINK_TARGET = $(SNIFF_RELINK_TARGET)

Library target

LIB_TARGET = $(SNIFF_LIB_TARGET)

Libraries received from subprojects.

Linked to executable and relinkable object target.

SUB_LIBS = $(SNIFF_SUB_LIBS)

Relinkable objects received from subprojects.

Linked to executable, relinkable object and library
target.

SUB_RELINK_OFILES = $(SNIFF_SUB_RELINK_OFILES)

Other libraries linked to executable target

OTHER_LIBS = $(SNIFF_OTHER_LIBS)

Other libraries linked to relinkable object target

RELINK_OTHER_LIBS = $(SNIFF_RELINK_OTHER_LIBS)

Recursive make directories

SUBDIRS = $(SNIFF_SUBDIRS)

you can define the following additional flags here

#

#OTHER_OFILES = <other object files>

#OTHER_CFLAGS = <other C compiler flags>
ference Guide 303

Chapter 4 Working with IDL Projects in SNiFF+ Creating a client project and configuring Make support for it
#OTHER_CXXFLAGS = <other C++ compiler flags>

#OTHER_YACCFLAGS = <other yacc compiler flags>

#OTHER_LEXFLAGS = <other lex flags>

IDL-specific macros

OTHER_IDLFLAGS = -B

#OTHER_FFLAGS = <other fortran compiler flags>

OTHER_LDFLAGS =-L$(IDL_LIBDIR)

PRE_TARGETS is currently used only for IDL make support.

The PRE_TARGETS macro is needed, since it is not possible
to

create a simple implicit rule to compile the IDL files

PRE_TARGETS = $(SNIFF_PRE_TARGETS)

IDL-specific macro

"S" stands for server and "C" for client

IDL_CFILE_TYPE_SPEC = C

Common makefile definitions

include $(SNIFF_DIR)/make_support/general.mk

Include the generated dependencies file

include $(SNIFF_MAKEDIR)/dependencies.incl
304 SNiFF+

Re

Creating a client project and configuring Make support for it
In the Project Editor

1. In the Project Tree, double-click on grid_client.proj .

The Project Attributes dialog appears.

2. In the Project Attributes dialog, select the Build Options > Directives node.

3. In the Directives view, press the Generate... button to the right of the Include Directive(s)
field.

The include directives for this project are now generated and appear in the Include
Directive(s) field.

4. In the Project Editor, choose Target > Update Makefiles... to update the generated Make
support files.

5. Press Yes in the dialog that appears.

6. Choose Target > Make... > grid_client to build the project’s target.

gridC.cc and grid.hh will be created by the IDL compiler and then gridC.o will
be created by the C++ compiler.

7. Make sure that grid_client.proj is selected in the Project Tree and choose
Project > Reload Project... > In Current Working Environment .

You should now see the gridC.cc and grid.hh files in the Project Editor’s File List.
You have just completed configuring Make support for the client project.
This completes the Make support setup for your IDL server and client projects.
ference Guide 305

Chapter 4 Working with IDL Projects in SNiFF+ Default Makefile
Default Makefile
When you have the server and client project in the same directory and if Make is called from
some place higher up in the directory structure, you need to create the following additional
Makefile in your grid_server directory and call it Makefile . This Makefile in turn calls
Makefile.server and Makefile.client .

all:

@if [-f Makefile.server]; then\

$(MAKE) $(MFLAGS) -f Makefile.server all;\

fi;\

if [-f Makefile.client]; then\

$(MAKE) $(MFLAGS) -f Makefile.client all;\

fi

.DEFAULT:

@if [-f Makefile.server]; then\

$(MAKE) $(MFLAGS) -f Makefile.server $@;\

fi;\

if [-f Makefile.client]; then\

$(MAKE) $(MFLAGS) -f Makefile.client $@;\

fi
306 SNiFF+

R

5Regular Expressions in SNiFF+

Introduction
Regular expressions (regex) are a powerful means to specify patterns for filters and search
strings in the various SNiFF+ tools. The syntax conforms largely to the GNU regular expres-
sion syntax used in the Emacs editor, with some SNiFF+ specific enhancements.
Basically, regular expressions are a system of matching character patterns. How you use
regular expressions depends on what you need. This introduction to regular expressions,
following the Quick Reference - Syntax table, groups regular expression usage by function-
ality.

Quick Reference - Syntax — page 308

Literals and metacharacters — page 309

Escape character — backslash (\) — page 310
Do not match — exclamation point (!) (in SNiFF+) — page 310
Single character wild card — period (.) — page 310
Quantifiers — how often to match — page 311
Position — where to match — page 312
Nonprinting or whitespace characters — page 314

Character classes or lists — page 314

Choosing from a range of alphanumeric characters — page 314
Excluding a character list — page 315
Metacharacters inside square brackets — page 315
Special character classes in SNiFF+ — page 315
Example — page 316

Groups, alternatives and back references — page 317

Examples — page 317
eference Guide 307

Chapter 5 Regular Expressions in SNiFF+ Quick Reference - Syntax
Quick Reference - Syntax
The following table summarizes metacharacters and sequences (\<char>) used in SNiFF+
regular expressions.

Regex matches

\ escape

. any character except newline

* zero or more occurrences of preceding

+ at least 1 occurrence of preceding

? zero or one occurrence of preceding only

^ beginning of line

$ end of line

[...] character list

[^...] complement of character list

!<regex> everything except <regex> — only in SNiFF+ filter fields

\b<regex> word begins with <regex>

<regex>\b word ends with <regex>

\B<regex> word does not begin with <regex>

<regex>\B word does not end with <regex>

\‘<regex> file begins with <regex>

\´<regex> file ends with <regex>

\f formfeed

\n newline

\r carriage return

\t tab

\v vertical tab

\s any nonprinting character, that is, [\f\n\r\t\v]

\S any printing character, that is [^ \f\n\r\t\v]
308 SNiFF+

Re

Literals and metacharacters
Literals and metacharacters
Literals in regular expressions are ordinary characters that are literally matched, that is, they
match only themselves. Metacharacters are characters that are not matched literally; they
are a kind of shorthand for defined functionalities.

Metacharacters — escape with backslash

Characters that are used as metacharacters must be preceded by a backslash (\) to be liter-
ally matched. These are:

\d any digit, that is [0-9]

\D any non-digit [^0-9]

\w any word constituent, that is [A-Za-z0-9_]

\W any non-word constituent, that is [^A-Za-z0-9_]

\(<regex>\) groups

\1...\9 back references to groups

\| alternative

%s used in filters to reference a retrieved string in the Retriever

Expression Matches Does not match

a a b, ...

ABC ABC 123 , ...

� Backslash (\) � Period (.)

� Asterisk (*) � Plus sign (+)

� Question mark (?) � Square brackets ([...])

� Dollar sign ($) � Caret (^)

Regex matches
ference Guide 309

Chapter 5 Regular Expressions in SNiFF+ Literals and metacharacters
Escape character — backslash (\)

The backslash (\) has “escape” functionality. That is, a literal character following a backslash
can escape its “literalness” and, in combination with the backslash, attain new functionality (if
defined). Conversely, a metacharacter following a backslash escapes its meta-meaning and
is literally matched.

� If a backslash-literal sequence is not defined, the backslash is ignored and the following
character is literally matched.

Do not match — exclamation point (!) (in SNiFF+)

This applies only in filter fields of SNiFF+ tools: An exclamation point at the beginning of a
regular expression means “match everything except the following regex”.
Note that this is not a metacharacter in the usual sense (does not have to be escaped,
unless it is in position one of the regex). Note also that this is a SNiFF+ specific implementa-
tion and not usually part of the regular expression syntax.

Single character wild card — period (.)

Matches any single character, except newline (\n)

Expression Matches Does not match

\ nothing, because not followed by
anything (undefined)

\ , ...

\\ \ (first \ escapes meta-function-
ality)

\ \ , ...

\n newline (a defined sequence) n, \ , ...

\a a (because \a not defined) \ , ...

Expression Matches Does not match

.et get, Get, set, 2et got ...
310 SNiFF+

Re

Literals and metacharacters
Quantifiers — how often to match

Zero or more occurrences — asterisk — *

Note that the asterisk is not a wild card, but a quantifier. A regex followed by an asterisk (*)
matches zero or more occurrences of the regex. A period followed by an asterisk (.*) there-
fore matches “any character (except newline) occurring any number of times, or not at all”.

One or more occurrences — plus sign — +

A regex followed by a plus sign (+) matches one or more occurrences of the regex. A period
followed by a plus sign (.+) therefore matches “any character (except newline) occurring at
least once”.

Zero or one occurrence only — question mark — ?

A regex followed by a question mark (?) matches zero or one occurrence only of the regular
expression. A period followed by a question mark (?) therefore matches “any character
(except newline) occurring only once or not at all”.

Expression Matches Does not match

Do*Command DCommand
myDoCommand
DoooCommand...

DoMenuCommand
abc ...

Do+Command DoCommand
myDoooCommands...

DCommand
DoMenuCommand...

Do?Command DCommand
DoCommand

(anything else)
ference Guide 311

Chapter 5 Regular Expressions in SNiFF+ Literals and metacharacters
Position — where to match

Matches can be restricted to their position in words, lines and files.

Beginning or end of word — \b

\b followed by a regex matches only at the beginning of a word.
\b preceded by a regex matches only at the end of a word.

Not beginning or end of word — \B

A regex preceded by \B matches everywhere except at the beginning of a word.
A regex followed by \B matches everywhere except at the end of a word.

Beginning of line — caret — (^)

The caret means “match the following regex only if it is at the beginning of a line”. Note that
the caret has a different meaning (negation) when it is used within Character classes or lists
— page 314.

Expression Matches Does not match

\bCommand Command
Command er

DoCommand
...

Command\b Command
DoCommand

Commander
...

\bCommand\b Command (only) (anything else)

get\B get Date, for get ful get, forget ...

\Bget for get , for get ful get, getDate ...
312 SNiFF+

Re

Literals and metacharacters
End of line — dollar sign — ($)

The dollar sign means “match the preceding regex only if it is at the end of a line”.

First in file — \accent grave — (\ `)

The \‘ means “match the following regex only if it is at the beginning of a file”.

Last in file — \accent acute — (\ ')
The \´ means “match the preceding regex only if it is at the end of a file”.

Expression Matches Does not match

^void void (only if void is the first
text in the line)

// void, avoid,
void preceded by any
characters...

)$ foo(a) (only if the ’) ’ is the last
character in the text line)

anything where ’) ’ is fol-
lowed by any characters,
e.g. ’;’

Expression Matches

\‘.* the first line in every file (e.g. in the Retriever)

.*\´ the last line on every file (e.g. in the Retriever)
ference Guide 313

Chapter 5 Regular Expressions in SNiFF+ Character classes or lists
Nonprinting or whitespace characters

Nonprinting characters are represented as follows in SNiFF+ regular expressions:

� Any nonprinting character — \s (lower case)

This is a special character class (seepage 314), namely
[\f\n\r\t\v] , the listed items are:

� Space — <space>

� Formfeed — \f

� Newline — \n

� Carriage-return — \r

� Tab — \t

� Vertical tab — \v

Character classes or lists
Character classes — enclosed in square brackets — [...]
A character class is a list of characters, any of which can be matched. The list can also be
excluded from matches. Ranges of ASCII characters can also be specified.

Choosing from a range of alphanumeric characters

A minus sign (-) within square brackets indicates a range of consecutive ASCII characters.
For example, [0-9] is the same as [0123456789] .

Expression Matches

[\t]+$ all (unnecessary) space and tab characters at the end of lines.

Expression Matches Does not match

[gs]et get, set (only) (anything else)

Expression Matches Does not match

Do[A-Za-z]*Command DoCommand
DoMenuCommand
DomouseCommand...

Do-Command
Do88Command
abc...
314 SNiFF+

Re

Character classes or lists
Excluding a character list

If the first character in the square brackets is a caret (^), any character except those in the
square brackets will match.

Metacharacters inside square brackets

To include the minus sign itself in a range, it must be the first character (after an initial ^ , if
any — see Excluding a character list — page 315), e.g., Do[-A-Za-z]*Command would also
match Do-Command.
If a right square bracket (]) immediately follows a left square bracket, it does not terminate
the set but is considered to be one of the characters to match.
The caret (^) in first position negates the rest of the character class.
All other metacharacters , such as backslash (\), asterisk (*), or plus sign (+) etc., are also
matched literally if they are inside square brackets.

Special character classes in SNiFF+

Special character classes can be used in SNiFF+ as a kind of shorthand to make writing
(and reading) regular expressions easier.

� Any word constituent character — \w (lower case) which includes all alphanumerics
and underscore, that is, [A-Za-z0-9_]

� Any non word-constituent character — \W (upper case), that is, [^A-Za-z0-9_]

� Any digit — \d , that is, [0-9] .

� Any non-digit — \D , that is [^0-9] .

� Any nonprinting (whitespace) character — \s (lower case), that is, [\f\n\r\t\v] . This
class is described under Nonprinting or whitespace characters — page 314.

� Any printing character — \S (upper case) which is everything except nonprinting or
whitespace characters, that is, [^ \f\n\r\t\v] . See also Nonprinting or whitespace charac-
ters — page 314.

Expression Matches Does not match

Do[^\s(Cc] DoMenuCommand
DomouseCommand
Domino

Do (followed by space)
Do(
DoCommand
abc ...
ference Guide 315

Chapter 5 Regular Expressions in SNiFF+ Character classes or lists
Example

1. The following example tries to match “any call of ’foo’ that takes at least one parameter”.
The first expression tries to achieve this by excluding ’)’, but neglects the possibility of
nonprinting characters, compound words and nested parentheses. The second expres-
sion covers these eventualities and matches the entire call upt, and including, the final
closing parentheses.

� In the second expression above, recall:

< — beginning of word
foo — three ordinary literal characters that match themselves
\s — any nonprinting character
* — zero or more occurrences of preceding, here \s
(— an ordinary literal character that matches itself
[^)\s] — anything except ’)’ and nonprinting characters
[.\n]*] — any character and newline, zero or more occurrences
) — an ordinary literal character that matches itself

Expression Matches Does not match

foo([^)]+) foo(a)
foo()
myfoo(int a, int b, c) ...

foo (a)
foo()
...

<foo\s*(\s*[^)\s][.\n]*]) any foo with at
least 1 parameter

(anything else)
316 SNiFF+

Re

Groups, alternatives and back references
Groups, alternatives and back references
Groups — enclosed in \parentheses — \(...\)
Alternatives — \pipe — \|
Back references — \1...\9

Groups enclosed in \(...\) serve three purposes

� To group an expression so that it can be treated as if it were a single character. For exam-
ple, a group will be governed by a quantifier like * as if it were a single character:

Thus, ba\(na\)* matches ba , bana , banana , bananana , etc.

� To enclose a set of \| alternatives.

For example, my\(foo\|bar\) matches either myfoo or mybar .
The alternation (\|) applies to the largest possible surrounding expressions. Only a
surrounding \(... \) grouping can limit the grouping power of \|.

� To mark a matched substring for back references. The first nine groups in a regex can be
referenced using \1 through \9.

For example, \(.*\)\1 will match any string that is composed of two identical halves. The
\(.*\) matches the first half, which can be anything (except newline), but the \1 that follows
must match the exact text matched by the \(.*\) group.
Groups, alternation and back references can be useful in find/change operations either for
global editing in the Retriever or in the Source Editor’s Find/Change dialog.

Examples

1. This example matches

SetupMenu or SetupStyles and
changes Setup to Update
concatenates this with Menu or Styles (whichever was matched) and
adds the substring Always at the end.

Good results
Found DoSetupMenu and changed to DoUpdateMenuAlways
Found SetupStyles and changed to UpdateStylesAlways

Potential pitfall
Found SetupMenu Styles and changed to UpdateMenuAlways Styles
Remember: “The first match always wins.”

Find: Setup\(Menu\|Styles\)

Change to: Update\1Always
ference Guide 317

Chapter 5 Regular Expressions in SNiFF+ Groups, alternatives and back references
2. This example matches foo(parameter1,parameter2) and changes the parame-
ter order. Nonprinting characters are not taken into account, nor are nested parentheses
considered.

Good results
Found foo(a,b) and changed to foo(b,a)
Found foo(int a,char* b) and changed to foo(char* b,int a)

Potential pitfall
Found foo(f(x,y) ,int b) and changed to foo(y),f(x ,int b)
You could of course “fix” the regex by matching ’;’ at the end, but that does not solve the
actual problem. As always, it’s safer to check before globally changing things.
Regular expressions are cumbersome for nested parentheses of any depth, and cannot
handle arbitrary depths.

Find: <foo(\([^,]+\), \([^,]+\)

Change to: foo(\2,\1)
318 SNiFF+

R

6SNiFF+ - Generated Files

Introduction
SNiFF+ generates files for keeping information persistent between sessions and for
supporting the build process. Make Support Files are described in User’s Guide — Build
and Make Support. This section focuses on the other generated files:

� Symbol tables (projectname.symtab)

� Temporary lexical analysis files (sourceFilename.lex)

� Preprocessor cache files (sourceFilename.cpp)

� Cross reference files (sourceFilename.ref)

� Cross reference indexes (project.index)

� Configuration management cache (project. VersionTool.cmi)

� Custom targets file (project.user.customtargets)

� Tool status file (project.user.state2)

� Retriever index files

(RetrieverIndex.fii , RetrieverIndex.wbi , RetrieverIndex0001S.idx)
These files are stored in the directory indicated by the Generate Directory project attribute.
See also General view — page 164. By default, this attribute is set to .sniffdir . In the
rest of this Appendix, we will use this value for the directory.

Sharing of symbol information

The symbol information of a project is stored in .sniffdir . For shared projects, the
symbol information is shared whenever possible; only information which is different from the
shared workspace symbol information is stored in the private workspace. SNiFF+ manages
the sharing of symbol information transparently for the user by creating and deleting the
symbol files in the private workspaces when the workspace changes.

Note

All generated files can be safely deleted, since SNiFF+ will auto-
matically regenerate them on demand. If they are deleted, ac-
tions will take longer to execute the first time while the files are
regenerated. Choosing Delete Symbol Files from the Project
menu of the Project Editor will delete all generated files of a
project except the Window layout file.
eference Guide 319

Chapter 6 SNiFF+ - Generated Files Generated files
Generated files

Symbol tables

Whenever SNiFF+ loads the source code of a project for the first time, it parses the source
files and extracts the symbol information into a symbol table. When the project is closed, this
symbol table is stored to disk in the file projectname.symtab . The next time this project is
opened, the files are not parsed again, but the symbol information is directly loaded from the
symbol table file. SNiFF+ checks whether any of the source files have been modified and
reparses files when necessary. Thus the symbol information is always kept up-to-date.

Temporary lexical analysis files

During parsing, SNiFF+ generates temporary lexical analysis files for each parsed source
file. The files are called sourceFilename.lex and are used as input for the generation of
the cross reference information. The lexical analysis files are removed when the cross refer-
ence information has been successfully generated and stored to disk.

Preprocessor cache files

If preprocessing is enabled, SNiFF+ creates preprocessor files for all preprocessed source
files. This speeds up preprocessing, since header files are preprocessed only once and are
then directly loaded from the cached file. The cache files are called sourceFilename.cpp .
The preprocessor cache files are regenerated transparently whenever a source file is modi-
fied, reparsed and preprocessed again.

Cross reference files

Cross reference files are generated on demand when cross reference queries are executed.
When a cross reference query for a particular project is executed for the first time, SNiFF+
processes the temporary lexical analysis files and generates cross reference tables for fast
cross referencing. After the information has been successfully created, it is stored to disk in
files called sourceFilename.ref and the temporary lexical analysis files are deleted. The
next time a cross reference query is executed, the cross reference information is directly
loaded from disk. The reference files are updated dynamically and transparently whenever
files are modified and reparsed.

Cross reference indexes

To speed up referred-by queries, SNiFF+ generates a cross reference index for each project
called project.index . This index allows the efficient and fast access of cross reference
information for large projects. Cross reference information is stored in .ref files. The index
is created the first time a comprehensive referred-by query is executed and is then stored to
disk. The next time a referred-by query is executed, the index is used to decide what
symbols and files need to be considered in order to answer the query. The index is updated
dynamically and transparently whenever a file is modified and reparsed.
320 SNiFF+

Re

Generated files
Configuration management cache

To speed up the access to the configuration management information of underlying configu-
ration management tools, SNiFF+ uses configuration management cache files. The first time
the Configuration Manager displays the configuration management information of a project,
this information is extracted from the underlying configuration management tool. When the
project is closed, the information is dumped to a file called project. VersionTool.cmi . The
next time the Configuration Manager displays configuration information, it is loaded directly
from this file. The cache is updated dynamically and transparently whenever the configura-
tion information of a project changes.

Custom targets file

SNiFF+ stores the user-specific list of custom targets for making, execution and debugging in
a file called project.user.customtargets . The file can be modified in the Target
dialog. See also Target dialog — page 32.

Tool status file

When a root project is closed, SNiFF+ stores the window layout for each user in a file called
project.user.state2 . Whenever a root project is reopened, SNiFF+ restores the window
layout to the same state it had when the project was closed. The following information is
stored in the tool status file:

� Window locations and sizes

� Window contents

� Active selections

� History menus

By default, the file is located in the .sniffdir directory of the project. You can specify
another directory under Tool Status Files in the project attributes. See also Tool Status Files
— page 168

Retriever index files

If the Create Index checkbox is selected in the Preferences Retriever view — page 137, a
system of indexes (referred to as “the index” in the following) is created as soon as the first
retrieve query is run.
This index serves to restrict text retrievals to only those files where there is high probability of
matching a query, thus greatly reducing retrieval time in large projects.
The index is created for the files in the queried projects, and includes also files in projects
physically outside the current Working Environment if these have been added as subprojects
(e.g. libraries).
Thus, if you run a query over all projects in a given Working Environment (including associ-
ated external projects), a complete index of words and files is created.
Alternately, if you query only a subset of the projects, only this subset is indexed. Over time,
and as you query different subsets, the index will be incrementally built up.
ference Guide 321

Chapter 6 SNiFF+ - Generated Files Generated files
Index files are stored in the .RetrieverIndex/ directory in the Working Environment
root. If absolute projects are queried outside of Working Environments, the index files are
stored in the project root.
The index is made up of the following files:

� RetrieverIndex.fii

A list of files that have been indexed.

� RetrieverIndex.wbi

A case-insensitive list of words in the indexed files.
The Retriever’s Show Only Similar Words option provides a selective view to this list.

� RetrieverIndex0001S.idx

Word — file mappings. There can be one or more of these files because the size of
individual files is optimized for faster access. The Retriever’s Preview File List option
provides a selective view to this list by showing the files where a given word (case-
insensitive and not filtered in any way) occurs.
322 SNiFF+

Part IV
Glossary and Index

Glossary

Adaptor is the specific implementation of a SNiFF+ interface. For example, the generic
CMVC interface of SNiFF+ has adaptors for CMVC tools. The SNiFF+ debugger interface
has adaptors for debuggers (gdb, dbx, etc.).

Branches occur in a version tree when you create new versions of a file from the middle
instead of the end of the tree. Basically, SNiFF+ allows you to perform the same operations
on branches that you can perform on the main trunk of a version tree.

Browser is a tool that is used for viewing (and not editing) data only. SNiFF+ offers several
browsers like the Symbol Browser, the Class Browser and the Hierarchy Browser. The infor-
mation displayed in browsers can be filtered in several ways.

Build is the process of creating the targets of a project. The build steps are usually
described in makefiles which are executed by programs like Make. A build can involve trans-
lations of source files and the construction of binary files by compilers, linkers and other
tools.

Check-in is the process of checking in a working file from a working environment, thereby
creating a new version of the file in the Repository. A complete project can be also checked
in. Typically, after a file has been checked in, locks made on the file are removed from the
Repository. A file check-in can be associated with a change set. Note that SNiFF+ doesn’t
check in files itself. It delegates the operation to your underlying CMVC tool (by means of
CMVC adaptors).

Check-out is the process of creating an editable working file in the working environment
from a specific version of the file in the Repository. Depending on what actions are planned
with the file, a lock of that file in the Repository is set. A check-out can be associated with a
change set. SNiFF+ delegates the actual check out operation to your underlying CMVC tool
(by means of CMVC adaptors).

CMVC is the abbreviation for configuration management and version control.

Concurrent lock is a lock that, unlike an exclusive lock, does not prevent others from
locking the same version of a file. Versions that are concurrently locked must be merged
back into the Repository.

Configuration is a coherent and consistent state of a system or project. A configuration has
a name and refers to specific versions of files in the Repository. Typically, a configuration is a
buildable state of a system.

Configuration management is the process of controlling and administrating the compo-
nents of configurations. Configuration management includes the freezing (baselining) of
configurations.

Default Configuration is the version of your software system that you work on. You can set
your Default Configuration when you define your working environments. SNiFF+ uses your
Default Configuration for the default value when you choose one of the various version
325

control commands (e.g., checking out file versions, locking/unlocking file versions), and
during the updating of Shared Source and Private Working Environments. Source files are
made up-to-date with respect to the Default Configuration.
By default, the HEADversion of your software system is the Default Configuration for your
Private Working Environment.

Dependency as used in Make is a relationship between two files that says that one file
must be updated or rebuilt when the other one changes. In the Makefile, a dependency is a
word listed after the colon ':' on the same line as a target. Source-level dependencies can be
extracted from source code and are typically stored in dependency files. SNiFF+ generates
dependency files that are included by Makefiles as part of its Make Support feature. Build-
order dependencies must always be specified explicitly.

Derived file is a file that can be generated (derived) from another file. A typical example of
a derived file is an object file that is generated from a source file after compilation.

Documentation template is a file that describes the structure and content of documenta-
tion frames. Each documented symbol type has its own documentation template. When
documentation for a symbol is generated, SNiFF+ creates a documentation frame for the
symbol. You can customize documentation templates.

Documentation frames are created when you tell SNiFF+ to document a symbol in your
source code. Empty documentation frames represent the initial, undocumented state of a
symbol’s documentation. The structure and content of documentation frames are described
by documentation templates.

Editor is a tool that is used for both viewing and changing data. SNiFF+ offers a number of
editors (e.g., Source Editor and Project Editor). Tools that just show, but do not modify data,
are called browsers.

Exclusive lock is set on a version in the Repository when a file is checked out for modifica-
tion. Each version can have only one exclusive lock, thus preventing other developers from
modifying the same version.

File is a component of a project. Each file is associated with a file type.

File type is associated with a file and determines several attributes of the file. Every file of a
SNiFF+ project has a file type. SNiFF+ comes with a set of predefined file types, but there
can be any number of file types in a project. Examples of file types are C++ implementation,
C++ header, makefile, yacc source, shell script, etc. A file’s file type determines how SNiFF+
treats the file and what operations may be performed on the file.

Freezing a configuration is the process of creating a “virtual snapshot” of the system (or,
to be exact, of its source files) at special times during the software development process.
You do this in SNiFF+ by associating the current state (configuration) of all project source
files with a single symbolic name. The process of creating a single configuration and associ-
ating it with a symbolic name is called “freezing a configuration”.

HEAD is the latest version on the trunk or branch of a file’s version tree.

History reflects all the different versions of a file and is stored in the Repository file.
326 SNiFF+

Inheritance is a directed relationship between two classes in which one class inherits the
attributes of another classes. In single inheritance, a class inherits from only one class.
Multiple inheritance means that a class inherits from several classes.

INIT is used by SNiFF+ as name to refer to the initial version of a file in the Repository. The
INIT version is created when a file is checked into the Repository for the first time.

Interfaces are intermediaries between two components or tools or between the user and the
machine. SNiFF+ uses interfaces to interact with the outside world and external tools. A
SNiFF+ interface can have multiple specific implementations. called adaptors. For example,
the generic CMVC interface of SNiFF+ has adaptors for CMVC tools. The SNiFF+ debugger
interface has adaptors for debuggers like gdb and dbx.

Lock is a mechanism that controls access to versions of files in the Repository. SNiFF+
distinguishes between exclusive locks (only one developer can modify a specific version)
and concurrent locks (multiple developers can simultaneously modify the same version).

Locking is the process of setting locks.

Main branch is the starting branch of a file's version tree. Unless otherwise specified by
your default version control configuration, the main branch is the default branch for CMVC
operations.

Make is the program that reads Makefiles and drives the building process. SNiFF+ inte-
grates a wide range of different Make implementations.

Makefile is a text file read by Make programs that describes the building of targets. A Make-
file contains source-level dependencies and build-order dependencies. As part of its Make
Support feature, SNiFF+ generates Make Support Files that contain both kinds dependency
information.

Make macro is a variable in a Makefile which can be assigned a string value. The value can
be set in the Makefile itself, on the command line or by setting an environment variable with
the same name. SNiFF+ uses Make macros to separate general, platform-specific, project-
specific, and team-specific information. A coherent, generic and extendable set of Make
macros is part of SNiFF+'s Make Support feature.

Make Support File is either generated out of the project's source code or supplied with the
SNiFF+ package. Make Support Files contain the following information: generic Make rules,
source-level dependencies, build-order dependencies, project-specific macros and platform-
specific macros.

Merge is the process of combining the contents of two or more files into a single file. Typi-
cally, the files involved in a merge are versions of a single Repository file. A merge can be
done automatically, but often requires manual intervention to resolve conflicts. SNiFF+'sDiff/
Merge tool is used for merging files.

Object file is a derived file that is generated from source code after a build. SNiFF+ main-
tains a list of all object files for a project and generates a make support file containing this list.

Shared Object Working Environment is a working environment that, in contrast to a
source working environment, stores only platform-specific files. Typically, a Shared Object
Working Environment stores all object files of a project. A Shared Object Working Environ-
327

ment always accesses a corresponding Shared Source Working Environment. As a result, it
must also have the same directory structure as the common (accessed) part of the corre-
sponding Shared Source Working Environment.

Obsolete file is a file that is located in a project's directory but is not part of any SNiFF+
project. Obsolete files are generated by continuous development and changes to the project
structure and should be deleted from time to time in order to keep a project's working envi-
ronment clean. SNiFF+ Make Support feature offers mechanisms for finding and deleting
obsolete files.

Owner is a developer that owns a file or a working environment.

PDF see Project description file (PDF) .

Platform is the combination of architecture, vendor and operating system. SNiFF+ executes
on all supported platforms. Object working environments are platform-specific. The targets of
SNiFF+ projects can be platform-specific. SNiFF+ executes the sniff_arch script to
determine which platform its running on.

Preferences are the customizable attributes of SNiFF+. SNiFF+ supports user-level and
site-level preferences. Most preferences can be edited with the Preferences dialog.

Private Working Environment (PWE) is a directory tree that contains the projects and
working files of a single developer. A Private Working Environment is accessible and
changeable by only one developer. All check-in and check-out operations work with files in
the Private Working Environment. A Private Working Environment must have the same direc-
tory structure as the common (accessed) part of the corresponding Shared Source Working
Environment.

Projects consists of files, attributes and subprojects. A project is the main organizational
element in SNiFF+ and is described by a Project Description File (PDF). Project hierarchies
can be built by adding one project to another project, thus creating a superproject-subproject
relationship between the two projects.

Project Description File (PDF) is the file that describes a project's attributes, structure
and contents. A PDF is a structured ASCII file that is created, saved and opened by SNiFF+.
PDFs can also be generated with the sniff_genproj batch program.

Project history is the set of all configurations of a project.

PWE see Private Working Environment (PWE) .

RCS is a widely used revision control system that is licensed under the GNU public license.
SNiFF+ integrates RCS as an underlying version control tool and also supplies it with the
package.

Repository contains all Repository files of version-controlled projects. The Repository is
typically directly accessed only by the managing CMVC tool and usually stores the different
versions in an optimized delta format to save space.

Repository file is the file in the Repository that saves all the complete version tree of a file.

Root directory see Working environment root directory .
328 SNiFF+

SCCS is the widely used source code control system that is supplied with most Unix imple-
mentations. SNiFF+ integrates SCCS as an underlying version control tool.

Shared file is a source file that is shared among the members of a development team.
Shared files are located in a Shared Source Working Environment.

Shared working environment (SWE) is a directory tree that contains the files (source or
object) shared in a team. Shared working environments are accessed (shared) among
several developers in a team. There are two types of shared working environments: Shared
Source and Shared Object.

Shared Source Working Environment (SSWE) is a shared working environment that
contains source files only. Typically the platform-specific files are contained in a corre-
sponding Shared Object Working Environment.

SOWE see Shared Object Working Environment (SOWE).

SSWE see Shared source working environment (SSWE).

Symbol is a named language construct in the source code.

Symbol information is extracted from the source files of a project. A project’s symbolic
information is stored in a Symbol Table, which is saved to disk and transparently managed by
SNiFF+.

Symbol Table is the information base that contains information about the declaration, defi-
nition and use of named program elements such as classes, methods, variables and func-
tions of a project. Each project has its own Symbol Table that is generated and maintained by
the appropriate language parser. Symbol Tables are kept in memory and are persistently
stored to disk.

Symbolic link is a symbolic reference to a file in the Unix file system. In contrast to hard
links, symbolic links can span different file systems.

Target is the result of a build process. SNiFF+ allows multiple targets to be built in a single
project.

Team is a group of software developers working together on a set of projects and sharing a
set of common working environments.

Update is the process of checking out all new HEADversions of projects in a working envi-
ronment. Typically, updates are done automatically overnight and are followed by automatic
builds of all Shared Object Working Environments and Private Working Environments.

VCS is the abbreviation for version control system.

Version is a particular revision and an element of the version tree of a file. A version is
created by checking in a working file. The version of a file that you check out is your working
file.

Version control is the process of managing and administrating versions of files. The
Project Editor in SNiFF+ is the main tool for version control.
329

Version tree is the hierarchical structure in which all versions of a file are organized. A
version tree has one main trunk and can have several branches. The version tree is typically
stored in a Repository file.

Working file is a file that has been checked out of the Repository in a working environment
(usually in a Private Working Environment). A working file can be directly accessed. Each
working file has a corresponding Repository file.

Working Environment is a directory tree that contains projects and working files. SNiFF+
distinguished between private and shared working environments. A shared working environ-
ment is accessed among several developers in a team and is overridden by their Private
Working Environments. Shared working environments can be split into Shared Source and
Shared Object Working Environments in order to separate platform-independent from plat-
form-dependent files. Shared working environments can override other shared working envi-
ronments, resulting in multiple levels of overriding working environments. The common part
of overridden and overriding working environments must have the same directory structure.

Working Environments Administrator is the person who is responsible for the setup,
administration and maintenance of working environments. An administrator is informed of the
results of automatic updates and builds. Typically, shared working environments are adminis-
trated by experienced developers with a thorough understanding of all projects that reside in
a working environment.

Working Environment root directory is the root directory of a working environment. All
root projects that are located in the working environment are subdirectories of the working
environment root directory. If many projects need to be managed in a working environment,
groups of projects can be located in subdirectories of the working environment root directory.
330 SNiFF+

Index
Symbols
$LM_LICENSE_FILE 255
$PATH 254
$SNIFF_DIR 254

A
Absolute Projects

default working environment 145
Adaptor 325
Add/Remove Files dialog 206
Adding subprojects 200
Analyzing component information 65
Assignment, filter in Retriever 220
Attributes of Checkmarked Projects 187
attributes of multiple projects 187

B
Batch mode project creation 257
Bean 7
Branches 325
Breakpoints 80
Browser 325
Build 325
Build Options view of the Project Attributes

dialog 169

C
C++ templates, viewing in the Hierarchy

Browser 103
Cache

Project Editor - Use Cache check box 195
Call, filter in Retriever 220
Check In dialog 34
Check Out dialog 35
Check-in 325
Checkmarked projects, definition of 192
Check-out 325
Choose Symbol dialog 30
Class Browser 47

Class menu 22
displaying signatures of members 53, 70,

Cl
CM
Co

d
Co
Co
Co
Co
Co
Co

Co
F

Co
Cr
Cr

Cr

Cr
i

Cr
Reference Guide
104
Filters 50
hiding overriden methods 51
History menu 23
Info menu 20
Interface pop-up menu 52
sorting members alphabetically 70, 104
using the Inheritance Graph 50
Visibility pop-up menu 52
ass menu 22

VC 325
lors, customizing with Color Picker
ialog 128
mparison, filter in Retriever 220
mpilers, and error formats file 288
ncurrent lock 325
nfiguration 325
nfiguration management 325
nfiguration Manager 55

change sets, displaying 59
Configuration menu 61
Differences menu 63
displaying files and versions 58
File menu 60
merging branch configurations 61
selecting what type of changes to display 59
using the Change List 57
nfiguring Context menu in Project Editor’s
ile List 184
ntext menus 24
eating projects in batch mode 257
oss Reference
database 138
oss Referencer 65
analyzing component information 65
Class menu 22
cross referencing function body information 65
cross referencing interface information 65
entering the root symbol of the graph 69
History menu 23
Info menu 20
using the Filter dialog to set the scope of a

query 73
using the Graph view 69
oss referencing function body
nformation 65
oss referencing interface information 65
331

Current working environment, updating 202
Custom menus 283

D
Debugger 75

Class menu 22
Display menu 79
Execution menu 78
History menu 23
Info menu 20
Print menu 79
selecting a process for attaching 81
Stack menu 80
using a different debugger back end 77
using the Breakpoints window 80, 81

Default Configuration 325
default for absolute projects 145
Default working environment

selecting 144, 145
default working environment 145
Deleting versions in the Project Editor 197
Dependency 326
Derived file 326
Diff/Merge tool 83

Class menu 22
Edit menu 16
File menu 15
History menu 23
Info menu 20
Show menu 18

Differences dialog 36
Directory dialog 38
Displaying change sets 59
Documentation Editor 89

Class menu 22
Class pop-up 91
Documentation View 91
Edit menu 16
File menu 15
History menu 23
Info menu 20
modes of operation 91
Show menu 18
Status menu 92
Symbol List 91
updating documentation

see Documentation Synchronization Dialog

Do
Do

Do
Dr

E
Ed
Ed
Ed
Ed
Em
En

S
Er
Ex
Ex

F
Fa
Fil
Fil
Fil
Fil
Fil

Fil
Fil

d
Fil

Fil
Fil
Fil
332
updating documentation, see Documentation
Synchronization Dialog

cumentation frames 326
cumentation Synchronization Dialog 93

Edit menu 96
Export menu 98
exporting documentation 98
Synchronize menu 96
cumentation template 326
agging text, in the Source Editor 228

it menu 16
iting shortcuts 227
itor 326
itor, see Source Editor
acs 259

vironment variables, needed by
NiFF+ 254

ror formats file 288
clusive lock 326
porting documentation
in HTML format 99
in MIF format 98

st copying, in Source Editor 228
e 326
e dialog 40
e menu 15
e type 326
e types
adding to existing project 182
configuring Context menu in Project Editor’s File

List 184
removing from existing project 182
e Types List 182
e Types view of the Project Attributes
ialog 182

es
checking in using Check In dialog 34
checking out using Check Out dialog 35
es, adding/removing to projects 199
es, deleting versions in Project Editor 197
ters 11
Assignment 220
SNiFF+

Index
Call 220
Comparison 220
Filter fields in tools 11
New 220

Find/Change dialog 30
Force reparsing source files 201
Freezing a configuration 326
Frozen check box 12

G
General view of the Project Attributes

dialog 164
Generated files 320

configuration management cache 321
cross reference files 320
custom targets file 321
lex files 320
preprocessor cache files 320
Symbol table 320
tool status file 321
types of 320

Generated files directory 167
Group Project Attributes dialog 187
GUI Builder 7

H
Having multiple SNiFF+ sessions at the same

time 255
HEAD 326
Help menu 23
Help Targets

name, defining in the preferences 169
Help Targets, defining in the preferences 147
Hierarchy Browser 101

Class menu 22
Hierarchy menu 72, 105
History menu 23
Info menu 20

History 326
History menu 23
HP Softbench BMS bridge 274

I
IDL 293

compiling files 295
parsing in SNiFF+ 293

ID

Inc

Inf
Inh
IN
Int
Int
is

J
JA
Ja

K
Ke
Ke

L
La

La
Lic
Lo
Lo
Lo
Lo
Lo
Lo
Lo

e

M
Ma
Ma

Ma
Ma
Ma
Reference Guide
L Parser 293
compiling IDL files 295
using without SNiFF+ 294
lude Browser

Graph menu 111
History menu 111
Reference menu 111
o menu 20
eritance 327

IT 327
egration, VisaJ 7
erfaces 327
329

R 7
va 7

yboard macros in the Source Editor 229
yboard shortcuts

in the Source Editor 228

unch Pad 113
Project menu 115
Windows menu 117
yout handle 12
ense Info dialog 45
ading/updating Symbol Table 201
ck 327
ck dialog 37
cking 327
g Window 121
g window 121
oking at the selected working
nvironment 244

in branch 327
ke 327

using to compile IDL files 295
ke macro 327
ke Support File 327
kefile 327
333

Manually loading/updating Symbol Table 201
Matching brackets 227
Merge 327
Merging

branch configurations in the Configuration
Manager 61

Meta key, customizing 280
Mouse shortcuts

copying text by dragging 228
fast copying in the Source Editor 228

Multiple inheritance 103
Multiple SNiFF+ sessions 255

N
New, filter in Retriever 220

O
Object file 327
Obsolete file 328
Opening projects in Projects dialog 26
Owner 328

P
Parser view of the Project Attributes dialog 179
Parsing

using SNiFF+ IDL Parser 293
Parsing, forcing a reparse 201
PDF 328
Platform 328
Predefined filters 220
Preferences 123, 328

customizing Meta key 280
general SNiFF+ 123
Preferences dialog 124

Preferences dialog 126
Appearance view 126
Cross Referencer view 138
Documentation Editor view 140
Editor view 132
File Types view 153
New Project Setup view 146
Others view 160
Platform view 157
Retriever view 137
Tools view 130
Version Control System view 149

Pr
Pr

Pr
Pr

Pr
Pr

Pr
Pr
Pr
Pr

Pr

Pu
PW
PW

(

R
Re

Re
334
Working Environments view 144
ivate Working Environment (PWE) 328
oject
settings for multiple projects 187
oject Attributes 163
oject Attributes dialog
Build Options view 169
File Types view 182
General view 164
Parser view 179
Version Control System view 181
oject description file (PDF) 328
oject Editor 189
Add/Remove Files dialog 206
configuring Context menu in File List 184
Custom menu 283
deleting file versions 197
File menu 197
File Status drop-down 194
force reparsing source files 201
Info menu 20
Project menu 199
right-click Context menu 24
right-click context menu in File List 192
Target menu 19
typography of entries in File List 190
updating current working environment 202
oject File dialog 41
oject history 328
oject Tree 192
ojects 328
adding as a subproject 200
adding/removing files 199
creating in batch mode 257
opening in the Projects dialog 26
ojects dialog
opening project in 26
rify, understanding messages from 288
E 328
E see Private Working Environment

PWE) 328

gular expressions 307
Filter fields in tools 11
syntax 307
moving subprojects 200
SNiFF+

Index
Reparsing
forcing a reparse 201

Repository 328
Repository file 328
Retriever 209

Class menu 22
History menu 23
Info menu 20

Right-click context menus 24
Root directory 328
Run command, in the Debugger 232
Running SNiFF+ without display 256

S
Searching, with the Find/Change dialog 30
Selecting default working environment 144
Selecting text, in the Source Editor 227
Shared file 329
Shared Object Working Environment 327
Shared Source Working Environment

(SSWE) 329
Shared working environment (SWE) 329
Shell 223

Class menu 22
Edit menu 223
Info menu 20
Shell menu 224
Target menu 19

Shell view 143
Shortcuts

in the Source Editor 227
Show menu 18
SitePrefs file 123
SNiFF+ sessions, having multiple at the same

time 255
SNiFF+J 7
sniff_arch 256
SNIFF_BATCH 256
sniff_genproj 257
Sniffaccess 259

about requests and notifications 261
having multiple sessions 261
invoking 259
notifications 271
requests 264

Softbench BMS bridge 274

So

So
SO
SS
St
St
Su

Su
S

Sy
Sy

Sy
Sy
Sy

Sy
Sy

T
Ta
Ta
Ta

Te
To
To
Reference Guide
urce Editor 18, 225
Class menu 22
Debug menu 231
dragging text 228
Edit menu 16
fast copying 228
File menu 15
History menu 23
Info menu 20
keyboard shortcuts 228
matching brackets 227
selecting text with the mouse 227
Target menu 19
urce files, and forcing a reparse 201
WE 329
WE 329

atistics dialog 208
atus line 12
bprojects

adding 200
removing 200
per class, quick positioning to in the
ource Editor 18

mbol 329
mbol Browser 233
Class menu 22
Filters 235
History menu 23
Info menu 20
using the Language drop-down 235
using the Language pop-up menu 103
mbol information 329
mbol Table 329
mbolic information
loading/updating manually 201
mbolic link 329
ntax, for regular expressions 307

rget dialog 32
rget menu 19
rgets 329
name, defining in the preferences 147, 169
am 329
ol menu 13
ol status file 321
335

Typography of File Types List 182

U
Unattended updates, and SNIFF_BATCH 256
Undo levels, specifying in Preferences 130
Unix shell, Shell 223
Unlock dialog 37
Update 329
Updating current working environment 202
Updating outside SNiFF+, and

SNIFF_BATCH 256
Updating Working Environments

without Xserver host 256
User interface basics 11
UserPrefs file 123
Using a different debugger back end 77

V
VCS 329
Version 329
Version control 329
Version Control System view of the Project

Attributes dialog 181
Version tree 330
VisaJ 7

W
Working Environment 330
Working Environment Config. Directory 144
Working Environment root directory 330
Working Environments

files in Config Directory 144
selecting default 144, 145
updating current 202

Working environments
looking at the selected working environment 244

Working Environments Administrator 330
Working Environments tool

looking at the selected working environment 244
saving changes 246
using the menus

File menu 246
History menu 248
User menu 248
Working Environments menu 247

using the Project dialog 26

W

X
X-

Z
Za
336
orking file 330

Ref
database 138

p command, in the Source Editor 229
SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-1999 TakeFive Software GmbH.
All rights reserved.

sniff \'snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster's Unabridged Third New International Dictionary

	Guidelines
	About this Manual
	Conventions
	Tool elements
	Typography
	Feedback and useful links

	SNiFF+J for Java

	Tools Reference
	Some Common Elements
	Fast positioning in lists
	Regular expression filters
	Keyboard and mouse shortcuts
	Status line
	Frozen check box
	Layout handle

	Common Menus
	Tools menu
	File menu
	Edit menu
	Show menu
	Target menu
	Info menu
	Class menu
	View menu
	History menu
	Help (?) menu
	Right-click context menus

	Common Dialogs
	Open Project dialog
	Choose Symbol dialog
	Find/Change dialog
	Target dialog
	Check In dialog
	Check Out dialog
	Differences dialog
	Lock dialog
	Unlock dialog
	Directory Dialog (Unix)
	Directory Dialog (Windows)
	File Dialog (Unix)
	Project File dialog (Unix)
	Project File dialog (Windows)
	Print dialog
	Licenses dialog

	Class Browser
	Quick Reference
	Basic components
	Filters
	Status Line
	Menus

	Configuration Manager
	Quick Reference
	Basic components
	Status Line
	Menus

	Cross Referencer
	Quick Reference
	Basic components
	Filters
	Status Line
	Menus
	X-Ref Filter dialog

	Debugger (Unix and Java)
	Starting the Debugger
	Multiple simultaneous Debugger sessions
	Supported debuggers
	Selecting a debugger back-end
	Status line
	Menus
	Tabs
	Dialogs

	Diff/Merge tool
	Quick Reference
	Basic components
	Status Line
	Menus

	Documentation Editor
	Quick Reference
	Modes of operation
	Basic components
	Menus
	Documentation Synchronizer
	Quick Reference — Synchronizer
	Basic Components—Synchronizer
	Filters—Synchronizer
	Menus — Synchronizer

	Hierarchy Browser
	Quick Reference
	Basic components
	Filters
	Status Line
	Menus

	Include Browser
	Quick Reference
	Basic components
	Filters
	Check boxes
	Status Line
	Menus

	Launch Pad
	Quick Reference
	Basic components
	Menus
	Open Project dialogs

	Log
	Log window

	Preferences
	Preferences
	Preferences dialog
	Appearance view
	Tools view
	Source Editor view
	Retriever view
	Cross Referencer view
	Documentation Editor view
	Shell view
	Working Environments view
	New Project Setup view
	Version Control System view
	File Types view
	Platform view
	Others view

	Project Attributes
	SNiFF+’s Project Attributes
	General view
	General Advanced
	Build Options view
	Directives
	Project targets - C/C++
	Project targets - Java
	Build Structure - C/C++
	Build Structure - Java
	Build Options Advanced
	Parser view
	Version Control System view
	File Types view
	Group Project Attributes

	Project Editor
	Quick Reference
	Basic components
	Filters
	Status line
	Menus
	History window
	Add/Remove Files dialog
	Statistics dialog

	Retriever
	Quick Reference
	Indexing and caching
	Basic components
	Files — Matches List
	Navigation buttons
	Modification control buttons
	Undoing changes
	Menus
	The Retriever in “replace only” mode
	Advanced Retriever Options dialog
	Find and Replace Filters dialog
	Locking Status dialog

	Shell
	Menus

	Source Editor
	Quick Reference
	Shortcuts
	Basic components
	Menus
	Debugging mode — extra buttons added to the Source Editor

	Symbol Browser
	Quick Reference
	Basic components
	Filters
	Status line
	Menus

	Working Environments
	Quick Reference
	Basic components
	Modifying Working Environments
	Working Environments information
	Menus
	Modify/New Working Environment dialog
	Users dialog

	Advanced Reference
	SNiFF+ Executables
	sniff
	Environment variables
	Multiple simultaneous SNiFF+ sessions
	SNiFF+ without display (batch mode)
	sniff_arch
	sniff_genproj

	Sniffaccess
	Invoking Sniffaccess
	SNiFF+ external access communication protocol
	Sniffaccess requests
	Sniffaccess notifications
	HP Softbench BMS bridge (Unix only)

	Advanced Customization
	Customizing the SNiFF+ <Meta> key (Unix only)
	Template files
	Parser config file
	Filter file
	Custom menus
	Error formats
	Setting SNiFF+’s look and feel (Windows NT/95 only)

	Working with IDL Projects in SNiFF+
	What the SNiFF+ IDL Parser does
	Integration of the SNiFF+ IDL Parser with SNiFF+
	Using the SNiFF+ IDL Parser without SNiFF+
	Using SNiFF+’s Make Support for compiling IDL files
	IDL Projects
	Editing $SNIFF_DIR/make_support/<platform>.mk
	Creating a server project and configuring Make support for it
	Creating a client project and configuring Make support for it
	Default Makefile

	Regular Expressions in SNiFF+
	Quick Reference - Syntax
	Literals and metacharacters
	Character classes or lists
	Groups, alternatives and back references

	SNiFF+ - Generated Files
	Generated files

	Glossary and Index
	Glossary
	Index

