
-DYD�7XWRULDO

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

Table of Contents

Ja
Part I Guidelines

About this Manual 3

Conventions. 3
Tool elements . 4
Typography . 5
Feedback and useful links . 5

Road Map 7

The SNiFF+J Java Tutorial . 7

Part II Project Setup

Setting up a Java Project 11

Preparing the Environment . 11
Setting your Preferences . 12
Project Setup . 14

The Project Editor 19

Opening the Project Editor . 19
The Project Tree . 20
Creating a project for the JDK sources . 20
Adding the JDK projects to your project . 23
Saving a Project Tree view . 24

Checking in files 25

Checking in the project files. 25

Part III Browsing

Browsing Symbols 29

Opening the Symbol Browser . 29
The Symbol List. 30
Looking at an anonymous class . 31
Using filters . 32
Keyboard navigation in lists . 32

Understanding Class Hierarchies 35

Opening the Hierarchy Browser . 35
Colors, typeface and frames . 36
va Tutorial

Table of Contents
Browsing class members 39

Opening the Class Browser .39
Filtering .41

Code Dependencies and Impact Analysis 45

Opening the Cross Referencer .45
Component browsing – Has-A relationships.46
Impact Analysis. .48
Navigating through the source code references48
Call graphing. .49

Textual search with the Retriever 51

Opening the Retriever. .51
Global Find and Replace .52

Differences between versions of files 57

Opening the Diff/Merge tool .57
Differences between two file versions .58

Part IV Edit/Compile/Debug

SNiFF+ Java Build System 63

Assumptions .63
What SNiFF+ needs to know .63
Setting Java Make .64
Compiling the application .65
Running the application .66

Editing and Compiling 69

Checking out and opening a file .69
Compilation errors .70

Debugging 73

Setting the debugger in the Preferences .73
The debugger command line .74
Setting Breakpoints. .75
The Variable Viewer .76
The Threads Viewer .77

Freezing the Project 83

Freezing the project .83
Looking at the history of a file .85
SNiFF+

Ja

Table of Contents
Adding new team members 87

Preparing the Environment . 87
Adding new working environments . 87
Initializing the new working environment . 88
Updating working environments . 88

Part V Technical Reference

Introduction and Basic SNiFF+ Concepts 93

SNiFF+ Java Shared Projects and Working Environments 94
Typical Java development system. 95

Java Working Environments and Projects 97

Source code directory structure. 98
Java Working Environments and Shared Project setup 100
Adding source code library projects . 102
Multi-Language Projects . 102

Java Project-Level Settings 103

Project Attributes dialog. 103
Build Structure . 106

Compilation, Compiler Options and Execution 109

Compilation . 109
Compiler options . 110
Execution. 112

Class Path 113

Class path . 113

Java IDL, JNI and RMI 115

Java IDL Generation . 115
JNI (Java Native Interface) Generation . 115
RMI (Remote Method Invocation) Generation. 116

Symbol Information and Automated Updates 117

Opening Projects with Symbols. 117
Unattended Updates . 117

SniffJdb Debugger 119

To use the SniffJdb debugger ... 119
The debugger command line. 119
Debugging from the Source Editor . 124
The Variable Viewer . 125
va Tutorial

Table of Contents
The Threads Viewer .128

Upgrade Issues 131

Upgrading SNiFF+ 2.x to 3.x .131
Upgrading to SNiFF+ 3.1 .131
Upgrading source code library projects (e.g. JDK)132
Upgrading from JDK 1.1.x to JDK 1.2.x .132

Visaj GUI Builder Integration 133

Installation .133
Adding Visaj projects to a SNiFF+ project .134
Working with SNiFF+ in Visaj .135
SNiFF+

Part I
Guidelines

1About this Manual

What this manual is
This manual is part of the SNiFF+ documentation set, which consists of:

n User’s Guide

n Reference Guide

n C++ Tutorial

n C Tutorial

n Java Tutorial

n Fortran Tutorial

n Quick Reference Guide

n Release Notes, Installation Guide and Application Papers

n Online documentation of the above in HTML, PostScript and PDF formats

Conventions

One basic term

n Symbol — any programming language construct such as a class, method, etc.

Two conventions: menu references

For clarity and to avoid undue verbosity, the phrase:
“Choose the MenuCommand from the MenuName” is presented as follows:

n Choose MenuName > MenuCommand.

A context menu that appears when you click the right mouse button is referred to as:
Context menu, and consequently:
“Choose a menu command from the context menu that appears when you click the right
mouse button” is presented as follows:

n Choose Context menu > MenuCommand
3

Chapter 1 About this Manual Tool elements
A note on Unix/Windows

The screenshots in this manual are all done on Windows NT. If you are working on Unix,
what you see on your screen may look slightly different.

When you start SNiFF+, the first tool that appears
is the Launch Pad. In this and other SNiFF+ tools,
the first item in the menu bar is for launching tools.

n On Windows, it is called Tools.

n On Unix, it is depicted by an Icon.

When we refer to this menu in order to launch
a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName.

n On Unix a “check box” looks like a “button” (Motif Look), and a “drop-down” looks like a
“pop-up”.

Tool elements

Choose Target > Make > all

Select / clear check box

Field

Tree

List

Select from drop-down
Highlight project

Checkmark project
4 SNiFF+

Typography
Typography

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

n SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

n SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

n Frequently Asked Questions

http://www.takefive.com/support/faq.html

n Customer Newsletter

http://www.takefive.com/news/customer_newsletter.html

Capitalized
Words

Names of tools, windows, dialogs and menus start with capital letters.
Examples: Symbol Browser, Tools menu, File dialog.

Italics Names of manuals and newly introduced terms are in italics.
Examples: User’s Guide, the workspace concept.

Boldface and
Bold italics

Menu, field and button names and menu entries are printed in bold-
face. Placeholders for symbols, selections or other strings in menus
are in bold italics.
Example: From the menu, choose Show > Symbol(s) selection...

Monospace Code examples and symbol, file and directory names, as well as user
entries are printed in monospace type.
Examples: .login, $PATH, class VObject. Type abc.

<Keys> Special keys are printed in monospace type with enclosing ’< >’.
Examples: <CTRL>, <Return>, <Meta>.
5

Chapter 1 About this Manual Feedback and useful links
6 SNiFF+

Ja
2Road Map

Introduction
This manual is a handbook for getting to know the SNiFF+ solution for Java source code
engineering and is centered around three tutorials.
Each of the tutorials focuses on different SNiFF+ tools, tasks and concepts.
The Java example code used in all three tutorials is based on a multi-threaded client/server
simulation, based on an idea by Kai-Uwe Maetzel at Ubilab, Union Bank of Switzerland, and
adapted by TakeFive.

Technical Reference

The Technical Reference — page 91 summarizes Java-specific compilation, debugging, and
other aspects of SNiFF+ for Java.
Please refer also to the User’s Guide and/or the Reference Guide for more in-depth infor-
mation relating to SNiFF+ in general.

What this manual is not

This manual is not an exhaustive guide to SNiFF+, nor will it teach you Java.

The SNiFF+J Java Tutorial

The SNiFF+ Java Tutorial consists of the following parts

I Project Setup

This part is for you if

n you want to quickly set up a single user project

n you want to add a browsing only project to an existing project

II Browsing

This part is for you if

Note

Please note that a Log Window, displaying SNiFF+ error and control mes-
sages, may appear at several stages throughout this tutorial.
va Tutorial 7

Chapter 2 Road Map The SNiFF+J Java Tutorial
n you are a new SNiFF+ user

n you want to quickly learn how to use SNiFF+ for browsing Java code

III Edit/Compile/Debug

This part is for you if

n you want to learn about compiling Java targets

n you want an introduction to the tools used in the Java edit/compile/debug cycle

n you need SNiFF+ and RCS (included in the SNiFF+ package) for configuration manage-
ment and version control (CMVC)

n you are responsible for setting up and maintaining projects and working environments in a
multi-user/multi-platform work situation (Working Environments Administrator)

Note that this tutorial introduces concepts and tools used in developing, irrespective of
whether you are working alone or as part of a team.

IV Technical Reference

This section deals only with the Java-specific aspects of SNiFF+. For all other aspects of
SNiFF+, please see the User’s Guide and the Reference Guide.
8 SNiFF+

Part II
Project Setup

Ja
1Setting up a Java Project

In this chapter we are setting up a Java project for a single user. Under Adding new team
members — page 87, we will show you how to add new team members.
This chapter is about

n settings for SNiFF+ Java projects

n using the Project Setup Wizard to set up a SNiFF+ version controlled project.

Preparing the Environment
Before starting this tutorial —

n Make sure that your PATH environment variable points to

<your_jdk_installation_dir>/bin

so that SNiFF+ can find the JDK javac compiler.

n If you didn’t select the “Other Packages” option (for Java) during the SNiFF+ installation
process, start the SNiFF+ installation again and select only this option.

n If you are using JDK version 1.1.x, set the following system environment variable

CLASSPATH=<your_jdk_1.1x_dir>/lib/classes.zip
The JDK 1.1.x compiler needs this to find the JDK class library.

n If you are using JDK version 1.2, make sure you do not have a CLASSPATH system
environment variable pointing to older JDK class libraries.

You needn’t set any CLASSPATH environment variable at all in order for the JDK 1.2
compiler to find the JDK class library. However, system environment variables will
override the compiler’s defaults, so caution is advised.

n You can download the latest JDK from

http://java.sun.com

On Windows NT

Problems can be caused by a CLASSPATH environment variable that
does not conform to the upper case conventions (e.g., an application
may set an environment variable as ClassPath). If this is the case,
set a single environment variable CLASSPATH to point to all the paths
in an existing CLASSPATH as well as any variation such as Class-
Path.
va Tutorial 11

Chapter 1 Setting up a Java Project Setting your Preferences
Copying the example

Copy the directory, including subdirectories,

<your_sniff_installation_dir>/example/java/sniff_java

to somewhere, where you have write permissions. We will refer to the full path of this direc-
tory as <sniff_java> in the rest of this tutorial.
The <sniff_java> directory contains

n two directories (pwe_1 and pwe_2) which will hold your Private Working Environ-
ments.

pwe_1 already contains the OfficeApp directory with the example source code files
(<sniff_java>/pwe_1/OfficeApp).
pwe_2 (at present empty) will be used later on for team work.

n a Repository (<sniff_java>/repository), which will be used for version control
(at present empty).

n A configuration directory (<sniff_java>/working_envs_config), where
SNiFF+ will maintain working environment configuration information (at present empty).

Setting your Preferences
n Start SNiFF+.

The Launch Pad appears.

n From the menu, choose Tools > Preferences, (on Unix, the Tools menu is represented
by an icon).
12 SNiFF+

Ja

Setting your Preferences
In the Preferences — Working Environment Settings

1. Under the Tools node, select Working Environments.

2. Press the Dir... button.

3. In the Directory dialog, navigate to <sniff_java>/working_envs_config and
open it.

4. Press the Select button.

5. Press OK to close the Preferences and apply the setting.

All Working Environment information will now be maintained in this directory by SNiFF+.
va Tutorial 13

Chapter 1 Setting up a Java Project Project Setup
Project Setup
We assume you have completed all the necessary preparations described in the previous
section of this chapter.

n In the Launch Pad, choose Project > New Project... > with Wizard... to start the Project
Setup Wizard.

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ project.

n Accept the default selection, Standard Setup, and press Next.

The “Select development task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the title bar of the Wizard.

In the “Select development task” page

n Select Create a new SNiFF+ Project from scratch and press Next.

In the “Your development organization” page

This tutorial starts off with a single-user development situation using RCS for configuration
management and version control, we will later add a new team member to quickly make it a
multi-user development situation so:

1. For the radio buttons, accept the defaults (No/No).

2. From the drop-down, choose RCS.

3. Press Next.

Note

RCS must be available or installed on your computer. If RCS isn’t
already installed, install RCS from the SNiFF+ package.
14 SNiFF+

Ja

Project Setup
In the “Select file types” page

n Select Java and press Next.

HTML and Visaj_Project are automatically added when you select Java. Note that, after
project setup, you can always add more file types. How to do so is described in the User’s
Guide.

In the “Specify Repository” page

You are asked to specify your Repository (RWE) root directory. We will use the repository
root directory, <sniff_java>/repository.

1. Press Browse....

2. In the Directory dialog, navigate to <sniff_java>/repository, open it and press
Select.

3. In the RWE name field, enter a name for the RWE, e.g., repository.

4. Press Next.

In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory. We will
use the PWE_1 root directory, <sniff_java>/pwe_1.

1. Press Browse.

2. In the Directory dialog, navigate to <sniff_java>/pwe_1, open it and press Select.

3. In the PWE name field, enter a name for the PWE, e.g., pwe_1.

Notice that your user name is entered next to the selected Owner check box. SNiFF+
needs your user name to correctly handle permissions. Being the owner of the PWE
means that you are the only one who is allowed to modify its attributes.

4. Press Next.

Note - Multi Language Projects

If you are using SNiFF+ Make Support, a directory can only contain
Java files. It is not possible to build a project correctly if source files
of other languages are located in the same directory. To avoid this
problem, store these files in separate directories and create separate
projects for them.
va Tutorial 15

Chapter 1 Setting up a Java Project Project Setup
In the “Create New SNiFF+ Project” page

SNiFF+ automatically enters the root of your Private Working Environment (PWE) in the
Project root directory field.

1. Modify the entry in the Project root directory field to specify the root directory of the new
project. This is:

<sniff_java>/pwe_1/OfficeApp

Notice that the new project’s name has changed to OfficeApp.

2. Accept the default project name.

3. The OfficeApp directory, which does not itself contain any source code files, is the
root directory where your source code packages start. Remember that, according to the
Java language specification, the class path to the package root always ends one direc-
tory level higher than the highest-level directory containing named package code.

So leave the Source Package Root field blank. When the project is generated, SNiFF+
will correctly use OfficeApp as the source code package root directory by default.

4. In the Byte-Code Package Root field, enter a name, e.g. Classes, for the generated
byte-code root. When you compile, SNiFF+ will create a directory called Classes at the
same level as the project root directory (OfficeApp). The byte-code will then be gener-
ated into the Classes directory (the javac compiler’s -d option).

5. By default, the Create Subprojects check box is selected, which is correct.

6. Select the Use SNiFF+’s Makefiles checkbox.

7. Press Next .

In the “Specify Java Make Attributes” page

You are asked to enter Classpath(s) to external packages. You needn’t enter anything here.
If you are using JDK 1.1.x, we assume you have already set a system environment variable
for the JDK class library (under Preparing the Environment — page 11), so this need not be
re-entered here. The SNiFF+ Classpath setting is generally used for libraries, where no
source code is available. We do not use any such libraries in the example, so

n Press Next.

Note

When you are running SNiFF+ in "personal mode", you must accept
the default project name to be able to open the example project once
you’ve added JDK as a subproject (we will do so later).
16 SNiFF+

Ja

Project Setup
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ Java project and required
Working Environments.

n Make sure that your Project Setup Summary page is similar the following. If it isn’t, please
go back to the beginning of the Wizard and start again.

n Press Finish.

SNiFF+ will now create the new OfficeApp project and all its subprojects.

n In the dialog that appears asking if you want to generate cross reference information,
press No.

Cross Reference information will be automatically generated when you open the Cross
Referencer later on.
When SNiFF+ is finished, the new project is opened in the Project Editor.

Review
In this chapter you

n made the necessary preparations for your environment

n set the directory where SNiFF+ maintains working environments information

n set up a version controlled single-user project using the Project Setup Wizard
va Tutorial 17

Chapter 1 Setting up a Java Project Project Setup
18 SNiFF+

Ja
2The Project Editor

This chapter is about

n project filtering in the Project Editor

n adding a subproject (the JDK API classes) to an existing project (Office-
App.shared) so that you can properly follow all the references in your source code

Opening the Project Editor
n The Project Editor is opened automatically when you create a new project.

n To open the Project Editor from any tool, you would choose Tools > Project Editor; make
sure the project you want to open is highlighted in the Launch Pad.

Project Tree

Filters
va Tutorial 19

Chapter 2 The Project Editor The Project Tree
The Project Tree

Checkmarking Projects

In the Project Tree, click into the checkboxes (left of the project names) to show/hide files in
the File List. In SNiFF+, a project that has a checkmark in its checkbox is called a check-
marked project.

1. In the Project Tree, click into the checkbox next to backoffice.shared and notice
what happens in the File List.

All the files in the backoffice.shared project are now shown in the File List.

2. Click into the checkbox next to backoffice.shared again to clear it.

The files in this project are no longer shown.

Selecting from a tree of projects

Very often, when the project structure gets more complex and contains many subprojects,
you will want to view and manipulate a tree of projects like a single project.

1. Click on the node of backoffice.shared to collapse it.

2. Try alternately checkmarking and clearing the checkbox next to the collapsed node.

When the project is checkmarked, all the files in backoffice.shared and its tree of
subprojects are listed. Conversely, when the project is not checkmarked, neither its own
files, nor any of those in its subprojects, are shown.

Creating a project for the JDK sources
To properly follow references into the JDK sources, you need to create a project for the JDK
API sources (in <your_jdk_directory>/src/ directory) and then add it to the
existing project as a subproject.

A project for the JDK API sources is, like other libraries, a typical browsing-only situation.

Note

You will need at least JDK 1.1.x for the example project. If you don’t
have an up-to-date JDK, you can download one from:

http://java.sun.com.
20 SNiFF+

Ja

Creating a project for the JDK sources
In the Launch Pad

n To set up a SNiFF+ project for the JDK sources, choose the menu command

Project > New Project... > with Wizard...

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

n Select Browsing-only Setup, and press Next.

The “Select file types” page appears.

In the “Select file types” page

n Select Java and press Next.

In the “Specify project location and name” page

1. Press the Browse button next to the Source code root directory field and navigate to

<your_jdk_directory>/src/

2. Open the <your_jdk_directory>/src directory and press Select.

3. Enter jdk_src_java as a name for the project in the Project Name field.

In this tutorial, we will use jdk_src_java to refer to the project.

4. Press Next.

If you do not have write permissions for the source code root directory, the Specify
writable location for SNiFF+ Generated Files page appears. In the Generate Directory
root field, press Browse... and specify a root directory for which you have write
permission.

In the “Specify Java Make Attributes” page

Leave this field blank.

n Press Next.
va Tutorial 21

Chapter 2 The Project Editor Creating a project for the JDK sources
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ Java Project.

1. Make sure that your Project Setup Summary page is similar to the following. If it isn’t,
please go back to the beginning of the Wizard and start again.

2. Press Finish.

If you are running Personal SNiFF+

If you are not running Personal SNiFF+, ignore the step below and continue with If you have
a SNiFF+ License other than one for Personal SNiFF+ — page 23.

n A dialog appears warning you that you can load a maximum of 200 files. The example
projects are an exception so you can safely ignore this warning and press Ok. This project
has been created and then closed. You will add the jdk_src_java project to the
OfficeApp project later on.
22 SNiFF+

Ja

Adding the JDK projects to your project
If you have a SNiFF+ License other than one for Personal SNiFF+

If you are running Personal SNiFF+, continue with Adding the JDK projects to your project —
page 23.

1. In the dialog that appears asking if you want to generate cross reference information,
press No.

Cross Reference information will be automatically generated when you open the Cross
Referencer later on.
When the SNiFF+ Project Setup Wizard has finished creating the project for you, a
Project Editor is automatically opened, and the project structure of the new project is
displayed.

2. You won’t need the jdk_src_java project open in SNiFF+ so in the Launch Pad, select the
jdk_src_java.proj and choose Project > Close Project jdk_src_java.proj to
close the project.

You will add the jdk_src_java project to the OfficeApp project later on.

Adding the JDK projects to your project

In the Project Editor

To add the jdk_src_java project to your OfficeApp.shared:

1. In the Project Tree, highlight OfficeApp.shared by clicking on its name.

2. Choose Project > Add Subproject to OfficeApp.shared.

3. In the Subproject File dialog that appears, navigate to

<your_jdk_1.1.x_directory>/src

or to the root directory where you’ve stored your project description file.

4. Select jdk_src_java.proj and press Open.

5. In the dialog that appears asking you if you want to synchronize the “Byte-Code Package
Root Directory”, select the Repeat checkbox and press No.

The Project you set up with the Wizard was for browsing only, and no Makefiles were
generated. Hence when you compile, the projects you are now adding will not be
compiled. Also, even if this were the case, you would only choose this option if you are
sure that you will not be adding the source code library projects to any other projects.
The jdk_src_java.proj will now be added as a subproject of
OfficeApp.shared. You can verify that this has been done by taking a look at the
Project Tree. Notice also that the icon next to OfficeApp.shared has changed to
warn you that the project has been modified and not yet saved.

n To save the project, choose Project > Save OfficeApp.shared.
va Tutorial 23

Chapter 2 The Project Editor Saving a Project Tree view
Saving a Project Tree view
Although you added the JDK API sources so as to properly follow references, you will gener-
ally be more interested in your own projects than in libraries. Rather than always resetting
the Project Tree, you can save a view of the Project Tree to reuse later.

Preparing the Project Tree

n Collapse the nodes of all projects and checkmark only

backoffice.shared

BOutilities.shared.

The root project, OfficeApp.shared, doesn’t contain any source files, so clear the
checkbox next to it.
Your Project Tree should now look like this:

Saving the Project Set

1. From the menu, choose View > Save Project Set.

2. In the dialog that appears, enter a name for the view of the Project Tree as it appears
now, e.g., MySources and press Ok.

We will use this name to refer to the project set when we next use it.
Note that you can save and reuse project sets using the View menu in any tool that has a
Project Tree.

Review
In this chapter you

n worked in the Project Tree

n created a browsing-only project for a source code library

n added a subproject to an existing project

n saved a view of a project set
24 SNiFF+

Ja
3Checking in files

Checking in project files for the first time is the first step in version-controlling your SNiFF+
projects. Once files have been checked in, you can see the history and version tree of
selected files.
This chapter is about:

n checking in files into the repository

Checking in the project files
To check the project in, complete the following steps.

In the Project Editor

Remember that, in the last section Saving a Project Tree view — page 24, you saved a
project set which we called MySources. Use this set again and since we will be version
controlling OfficeApp.shared:

n in the Project Tree, checkmark OfficeApp.shared as well.

We won’t checkmark the jdk_src_java.proj project because there is no need to
version control this project since we won’t be making any changes to it.

In the Project Editor

We will now check in all the projects’ files to the Repository.

1. From the menu, choose File > Select All.

2. From the menu, choose File > Check In....

SNiFF+J informs you that it cannot find
the directories of the project in the RWE
root directory (they haven’t been created
yet). You will now have SNiFF+ initialize
your RWE by copying the PWE project
directory structure into the RWE. This
dialog will reappear for each new
Repository directory, unless you enable
Repeat.

3. Select the Repeat check box and press Yes to create the necessary Repository directo-
ries for the project.

When SNiFF+ has finished initializing your RWE, the Check In dialog appears.
va Tutorial 25

Chapter 3 Checking in files Checking in the project files
In the Multiple Check In dialog

You can use this dialog to check in versions of single or multiple files. When you have made
changes to multiple files, you can check in all the files at the same time and associate them
with a change set. By doing so, you can perform a variety of version-control operations on
all the files in a change set at the same time.
At this point, although we haven’t made any changes, we will make use of the Change Set
field to reflect the fact that we are checking in the initial versions of all the files in the project.

1. Leave the Version field blank. SNiFF+ will automati-
cally assign a version number (1.1) and later increment
it automatically.

2. In the Change Set field, enter a description, e.g.,
Initial_file_set.

3. In the Comment field, enter a descriptive text, e.g.,
Original OfficeApp files.

4. Press Ok.

In the Project Editor

When the check in process is over, take a look at your Project Editor. The following will have
changed:

n The files in the File List are no longer in bold typeface. This means they are now read-
only.

n The icons in the Project Tree have also changed to indicate that the projects, too, are
read-only.

To get an overview of what icons and typefaces signalize in a particular tool, choose
Help > Quick Ref.

Review
In this chapter you checked in all the files into the repository.
The next part of this tutorial introduces you to the SNiFF+ browsing tools.
26 SNiFF+

Part III
Browsing

Ja
1Browsing Symbols

In SNiFF+, a symbol is any programming language construct such as a class, method, field,
etc.
This chapter is about

n further user interface features which are common to many SNiFF+ tools

n using the Symbol Browser to filter symbol information

Opening the Symbol Browser
n To open the Symbol Browser from any tool, choose Tools > Symbol Browser.

The Symbol List is empty now because there are no symbols in the default selection in the
Project Tree. You will now selectively populate the Symbol List with symbols from your
source code.

Symbol List (now blank):
The symbols that are shown depend on
the settings in the filters and the Project
Tree

Filters
va Tutorial 29

Chapter 1 Browsing Symbols The Symbol List
The Symbol List
To look at only those symbols defined in a given project, e.g. backoffice.shared

1. In the Project Tree, highlight backoffice.shared by clicking on its name.

2. Right-click anywhere in the Project Tree, and choose

Context menu > Select From backoffice.shared Only.

3. From the Symbols drop-down in the tool (the Symbols filter), select class to see only the
classes in backoffice.shared.

As you can see, there are seven classes defined
in backoffice.shared. Five of these are
anonymous classes.
Naming of anonymous classes follows the SUN
convention: the anonymous class name consists
of the outer class name, followed by the ’$’
character and a consecutive number for each new
anonymous class within the outer class.

The Signature check box

You can find out more about these symbols by
selecting the Signature check box at the bottom of
the tool.

n Select the Signature check box at the bottom of
the tool, and then make sure you see all the col-
umns in the Symbol List.

n Clear the Signature check box to get a less clut-
tered view.
30 SNiFF+

Ja

Looking at an anonymous class
Looking at an anonymous class
To take a look at the anonymous class BackOfficeApplication$1:

n In the Symbol List, double-click on BackOfficeApplication$1.

A Source Editor is now opened, the source file BackOfficeApplication.java is
loaded and the cursor is positioned to the line where the symbol is defined.
Here, because the class is anonymous, the space immediately after new is highlighted.
This is how SNiFF+ shows anonymous classes in the Source Editor.

n To avoid cluttering your screen, close the Source Editor.
va Tutorial 31

Chapter 1 Browsing Symbols Using filters
Using filters
Besides classes, you can filter for all other Java types and also modifiers. Because the
example project contains only Java source files, only Java symbol types can be filtered, and
only Java can be selected in the Language drop-down.
You can filter for any combination of Java symbol types and modifiers.

1. In the Project Tree, choose Context menu > Select From All Projects.

2. Press the Filters... button.

3. In the Filters dialog, select different items on the various tabs and press Apply.

Your selections are applied and the Filter dialog remains open, ready for new selections.
You might want to play around with different selections. Go ahead.

4. To close the Filter dialog, press Ok.

Your selections in the dialog are applied and the dialog is closed.
Notice that, if multiple filters were selected when you closed the dialog, the selected entry
in the corresponding drop-downs has changed to Filtered.... You can now either choose
other list entries, or the Filtered... entry itself. If you do so, the Filters dialog opens again
and you can check to see the combination selected.

Keyboard navigation in lists
In each list of any SNiFF+ tool, you can quickly navigate to entries by clicking into the list,
then typing the name of the entry you wish to find. Each consecutive keystroke immediately
causes the list to position to the next matched entry.
Situation: You know the name of a method, but you don’t know where it is implemented. For
example, you will need to know where main is implemented in order to compile later on.
The quickest way to get the information you need is:

1. First, restrict the search to the actual source code projects. Remember you saved a view
to these projects under Saving a Project Tree view — page 24.

So, choose View > Select Project Set > MySources

2. In the Filter drop-downs, make sure All Symbols and All Modifiers are selected.

3. Click into the Symbol List.

4. Press the <m> key.

The list is positioned to the first entry that starts with ’m’ , which is already the entry you
need.

5. For more information, select the Signature check box at the bottom of the tool.

The main method is implemented in the class BackofficeApplication .
In the next chapter we’ll use this class as a starting point for a structured “top down”
overview of the classes in whole project structure. So leave the Symbol Browser open
and make sure that main in BackofficeApplication is selected.
32 SNiFF+

Ja

Keyboard navigation in lists
Review
In this chapter you

n worked with filters and the Filters dialog, which is available also in other SNiFF+ tools

n learned about keyboard navigation in lists. This useful feature is available throughout
SNiFF+.

n found the file and project location of symbol

n used a previously saved view of a project set
va Tutorial 33

Chapter 1 Browsing Symbols Keyboard navigation in lists
34 SNiFF+

Ja
2Understanding Class Hierarchies

To understand the interrelationships between symbols, you need to add a new dimension to
the “flat” view the Symbol Browser provides. This new dimension is provided by the Hier-
archy Browser.
This chapter is about

n using the Hierarchy Browser to

n get a hierarchically structured “top down” view of interface and class inheritances in the
Java software project

Opening the Hierarchy Browser
n Make sure main in BackofficeApplication is still selected in the Symbol

Browser, then right-click anywhere in the Symbol List and choose

Context menu > Show BackofficeApplication in Entire Hierarchy.
The Hierarchy Browser opens.

n You might want to close the Symbol Browser to get a less cluttered view.

You can open the Hierarchy Browser from any tool where you can select a class by clicking
on the class you are interested in, and then choosing the menu commands
Class > Show className in Entire Hierarchy, or Class > Show className Relatives.
You can also open the Hierarchy Browser, like any other SNiFF+ tool, using the Tools menu.
va Tutorial 35

Chapter 2 Understanding Class Hierarchies Colors, typeface and frames
The Hierarchy Browser opens to show the class BackOfficeApplication in the Entire Hier-
archy.

Colors, typeface and frames
Different colors, typefaces and frames around the symbol names provide visual feedback
about the kind of class you are looking at. For a description of these elements, choose
Help(?) > Quick Ref
Many SNiFF+ tools use different typefaces, icons etc. to provide different kinds of visual
feedback. Choosing the Help(?) > Quick Ref menu command opens online documentation
at the section describing these features.

Class inheritance

The Hierarchy Browser opens with all projects in the Project Tree checkmarked. You have a
graphical representation of all the inheritance relationships among all the classes and all the
interfaces, including the JDK classes. In other words, far too much information — scroll
around and take a look.
Remember that, in the section Saving a Project Tree view — page 24, you saved a project
set which we called MySources. You can now use this set again.
36 SNiFF+

Ja

Colors, typeface and frames
1. From the menu, choose View > Select Project Set > MySources

The classes and interfaces of all the projects in the Project Tree, except for those in
jdk_src_java.proj that are not used in the example project, are displayed. SNiFF+
traces only those classes and interfaces needed to display a complete tree (grayed); all
others are hidden.

2. Now, let’s take a look at the classes used in the project (without interfaces).

From the Inheritance drop-down (above the Hierarchy view), choose class inheritance.
You now have an overview of the class hierarchy in your project structure.

Review
In this chapter you

n moved from a flat view of the symbols to a hierarchically structured view of the classes
and interfaces.

n used a previously saved view of a project set.

n got an overview of the class hierarchy in the example project.
va Tutorial 37

Chapter 2 Understanding Class Hierarchies Colors, typeface and frames
38 SNiFF+

Ja
3Browsing class members

With the Class Browser you can find out about

n member methods and fields of a class

n visibility of members

n modifiers (explicit and implicit)

n overloaded, overriding and overridden methods

Opening the Class Browser
You should still have the Hierarchy Browser open. After looking at the overall class hierarchy,
let’s now browse the members (the internal structure) of an individual class of a project. We
will use the class named Browser as a test case. To open the Class Browser with the
member information for the class named Browser:

1. Click into the Class List and type br

The focus is set to Browser.

2. Choose Context menu > Browse Browser.

Note that you can open the Class Browser from any tool where you can select a class by
clicking on the class and then choosing the Browse ClassName command either from
the right-click Context menu or from the Class menu.
va Tutorial 39

Chapter 3 Browsing class members Opening the Class Browser
The Class Browser opens to show you the members of Browser.

The Class Browser is very similar to the Symbol Browser in layout. But, instead of a Project
Tree, there is an Inheritance Tree at the bottom of the tool. The essential handling concepts
of Lists, Trees and Filters, however, stay the same in all the tools.
The Member List in the Class Browser also has (often a combination of) icons; the color tells
you about member visibility:

n public — yellow

n protected — blue

n private — dark gray

For a description of the icons, choose Help(?) > Quick Ref

Filters

Visibility drop-down
40 SNiFF+

Ja

Filtering
Filtering
As in the Symbol Browser and the Project Editor, there are also a number of Filter drop-
downs. Pressing the Filters... button opens a Filters dialog where you can choose any
combination of filters.

Visibility

When the tool opens, you see all the members of Browser, this is because the default
selection in the Visibility drop-down (above the Overridden check box) is All.
You might be interested in all symbols that Browser has access to:

1. Right-click in the Inheritance Tree at the bottom of the tool, and choose

Context menu > Select From All Classes.
The Member List shows a list of all the members of all the classes in the inheritance tree
as seen by Browser. That is, all the members of Browser itself, as well as the public
and protected members of Browser’s base classes. Private members in base classes
are grayed because these are not visible from Browser. To hide these completely:

2. Press the Filters... button.

3. In the Filters dialog, select the Visibility tab.

4. In the Visibility tab, clear the invisible private check box.

5. Press Apply.

You now see only those symbols that are accessible from Browser.

Overloading

You might be interested in all overloaded methods in the hierarchy.

1. In the Modifiers drop-down, which is set to All Modifiers by default, select overloaded.

Assuming that all the classes are still checkmarked, you see all overloaded methods in
the Members List of Browser.

2. Enable the Signature check box in the status line.

The signature of each member is also listed, and you can see the parameter lists.
va Tutorial 41

Chapter 3 Browsing class members Filtering
Overriding

You may need to know which methods
override and/or are overridden by other
methods. For this kind of information:

1. From the Modifier drop-down, choose
override.

2. Make sure the Overridden check box
is selected.

3. Clear the Signature check box in the
status line.

You now see all the members that
override methods defined in a base
class, as well as all the methods that are
overridden in derived classes.
Look at the addNotify method at the
top of the Member List, you can see that
it is overridden 3 times, giving a total of 4
implementations.

Marking classes where methods are
overridden

You can see by the icon in the Class
Browser’s Member List that the initial imple-
mentation of addNotify is in Compo-
nent, so this is your starting point.
To visualize the relationships:

1. In the Class Browser’s Member List, highlight the addNotify method implemented in
the class Component.

2. Choose Class > Mark Relatives Defining addNotify.

The Hierarchy Browser opens and is focussed on Component.
42 SNiFF+

Ja

Filtering
In the Hierarchy Browser

n From the Inheritance drop-down, choose class inheritance to see only class inherit-
ance.

The classes implementing addNotify are indicated in bold typeface. We have ringed
the classes where addNotify is defined/overridden in Browser’s chain of inheritance
(you know this from the Class Browser).
You can also see clearly which classes override which implementation of addNotify.

Review
In this chapter you

n used visibility filters.

n looked at overloaded methods.

n visualized overriding/overridden methods in a class hierarchy.
va Tutorial 43

Chapter 3 Browsing class members Filtering
44 SNiFF+

Ja
4Code Dependencies and Impact Analysis

This chapter is about using the Cross Referencer to find out about:

n symbol types used as components of a given symbol

n all the symbols that a given symbol refers to (“Refers-To”)

n all the symbols that refer to a given symbol (“Referred-By”)

Opening the Cross Referencer
You should still have the Hierarchy Browser and the Class Browser open from the previous
chapter.

1. In the Hierarchy Browser highlight the class Browser (click into the Class List and type
br).

2. To take a look at the components of the class, choose

Context menu > Class Browser Refers To Components.
The Cross Referencer appears and shows the components of Browser.
You can also open the Cross Referencer from any tool where you can select a symbol by
clicking on the symbol you are interested in, then choosing
Info > symbolName Refers-To, or whichever one of the next 3 items in the Info menu is
appropriate to your needs.

n To get a less cluttered screen, close the Class Browser and the Hierarchy Browser.
va Tutorial 45

Chapter 4 Code Dependencies and Impact Analysis Component browsing – Has-A relationships
Component browsing – Has-A relationships
You opened the Cross Referencer by choosing Info > Browser Refers-To Components.
The Cross Referencer therefore opens to display all the components of Browser.

In your Reference Tree you should see the following:
cl Browser > H jt int [2]

This means that: the class Browser Has java data type int components [2 of them].
The only component types shown in this view are the class type(cl), the java data type(jt)
and the interface type(if). The number of times each component type occurs is only supplied
when it is used more than once, e.g., [2].
46 SNiFF+

Ja

Component browsing – Has-A relationships
The Depth Field

Now, to follow the references to the next deeper level:

n In the Depth Field enter 2 and hit <Return>.

All the components that have more than one component reference level are shown to two
levels.
va Tutorial 47

Chapter 4 Code Dependencies and Impact Analysis Impact Analysis
Impact Analysis
Let’s change perspective and see who Browser is referenced by.

n Choose Context menu > Browser Referred-By

Navigating through the source code references
To look at the references in the source code:

1. In the Reference View, <SHIFT>double-click on the first reference in one of the levels.

The Source Editor opens at the reference.

2. Position the Source Editor and the Cross Referencer so that you can see both.

3. In the Source Editor, you can follow the references by choosing the menu command
Show > Next Match.

4. When you are ready, close the Source Editor.
48 SNiFF+

Ja

Call graphing
Call graphing
To see the call graph of, for example, makeMenubar

1. Highlight the makeMenubar method either in the Reference Graph or the Symbol List.

2. Press the Filters... button.

3. In the Xref Filter dialog, press the None button to deselect all Symbol Types.

4. Select method (me).

5. Press the Refers-To button.

You now see the call graph of makeMenubar to two levels.

n Close the Cross Referencer.

Review
In this chapter you used the Cross Referencer for

n component analysis

n impact analysis

n navigating through source code references

n call graphing
va Tutorial 49

Chapter 4 Code Dependencies and Impact Analysis Call graphing
50 SNiFF+

Ja
5Textual search with the Retriever

This chapter is about using the Retriever to:

n find every line in all your source files containing a given set of characters

n re-filter search results to conform more closely to your needs

n effectively edit text in combination with the Source Editor

Opening the Retriever
n Open the Retriever by choosing Tools > Retriever.

You could also open the Retriever from any tool by highlighting the string you are interested
in, then choosing one of the Info > Retrieve string menu commands.
va Tutorial 51

Chapter 5 Textual search with the Retriever Global Find and Replace
We chose the Tools menu to avoid retrieving from all the JDK projects as well.

Global Find and Replace
The Retriever can do a lot more than “only” retrieve strings.

n You can apply second stage regular expression filters to narrow down your query to con-
form more closely to your needs. For information on Regular Expressions, see Reference
Guide — Regular Expressions in SNiFF+.

n You can directly edit code in the integrated Source Editor

n You can globally find and replace strings in code lines.

Setting the Project Tree

Especially for global editing you wouldn’t want to include the JDK files. Also, you save time
by restricting the scope of your queries.
Remember that, in the section Saving a Project Tree view — page 24, you saved a project
set which we called MySources. You can now use this project set again.
52 SNiFF+

Ja

Global Find and Replace
n From the menu, choose View > Select Project Set > MySources

Entering a string

Earlier on you looked at Browser in various contexts, so now we will retrieve all occur-
rences of Browser from the source files.

1. In the Retrieve field (top-left edit field), enter Browser.

2. Press the Retrieve button.

All occurrences of the (sub-)string Browser are displayed.

Filtering

For some reason, you might want to see all the method calls that contain the string
Browser.

n To open the Find and Replace dialog, press the Filter... button.

In the Find and Replace Filter dialog

1. From the dialog’s Regular Expressions List, select call.

2. Press the Apply Button.

The filter is applied as a second stage filter to the results of the original query.
Note that you can write and save your own regular expressions in this dialog.

3. Press Ok or Cancel to close the dialog.
va Tutorial 53

Chapter 5 Textual search with the Retriever Global Find and Replace
The Filter field

The Filter field is used for regular expression filters. You have just filled the filter field using
the Find and Replace Filter dialog. For simple filters, it is easiest to enter them directly in the
field. For example, if you want to know where the string Browser is used in a comment:

1. In the edit field next to the Filter... button (above the Project Tree), delete the call regular
expression.

2. Press the Retrieve button again to requery.

3. In the edit field next to the Filter... button, enter // and hit <Return>.

Global Editing

Now, to change Browser to something else in all comments:

1. In the Change To edit field, enter, e.g., MyBrowser.

Take a look at the Preview field below the integrated Source Editor, the code line
(highlighted in the Files — Matches List) is shown as it would appear after modification.
You can use the Next button at the bottom of the tool to look at each line as it would
appear after being changed.

2. To change all commented occurrences of Browser to MyBrowser, press the Change
All button.

3. In the dialog that appears, press Yes.

Remember we checked in all files in Checking in files — page 25, now we have to check out
the files that we want to change - i.e., make them writable.

4. In the Locking Status dialog that appears, press the Select All button below the Read
Only files list and press Check Out.

5. In the Multiple Check Out dialog that appears, press Exclusive Lock.

You’ll notice that the Read Only files list in the Locking Status dialog is now empty.

6. In the Locking Status dialog, press OK.

All occurrences of Browser are changed to MyBrowser. You can verify this by
pressing the Retrieve button again to requery.

Undoing global changes

Although the changes you made above are harmless, knowing how to undo global changes
is not a bad idea. There are two possibilities to undo the changes you have just made:

n From the menu choose Edit > Undo Change All

n Use the Diff/Merge tool to track the changes and merge the differences

Although the first possibility is easier, we will choose the second possibility to undo
changes and to introduce the Diff/Merge tool in the next chapter.
54 SNiFF+

Ja

Global Find and Replace
Review
In this chapter you:

n looked for lines in your source files containing a given set of characters

n globally edited text in the Retriever

What’s next

n Close all tools except for the Launch Pad.

n In the Launch Pad, choose Tools > Project Editor.

The Project Editor appears. You will be using the Project Editor in the next part, so leave it
open.
va Tutorial 55

Chapter 5 Textual search with the Retriever Global Find and Replace
56 SNiFF+

Ja
6Differences between versions of files

This chapter is about using the Diff/Merge tool to:

n track changes between files

n to merge differences between versions of files

Opening the Diff/Merge tool
n From the Visibility drop-down in the Project Editor, select Writable.

Only the Writable files are displayed.

n In the Project List, <CTRL>click on BackOffice.java, BODeal.java and
BrowserNode.java.

These files are now highlighted.

n Choose Context menu > Show Differences...

n In the dialog that appears, press Ok.
va Tutorial 57

Chapter 6 Differences between versions of files Differences between two file versions
The Diff/Merge tool appears.

Remember the files in which you changed all occurrences of Browser to MyBrowser
(Global Editing — page 54), these files are now displayed in the File List.

Differences between two file versions
In the above illustration, you can see the differences between the WORK and the HEAD
version (the latest version of the file in the Repository) of BackOffice.java. The differ-
ence in the comment in the two file versions is shown to the left and the right of the Merge
button.

1. Press the Merge button (<) to merge the differences between the two file versions.

2. Choose File > Save to save the changes.

The Differences List is now empty.

3. Drag the layout handle to the left to increase the width of the File List.

4. Highlight BODeal.java in the File List.

You can see the difference between the two file versions.

5. Follow steps 1 and 2 above to merge the differences and now do the same for
BrowserNode.java.

File List:

Merge button

Differences List:
line numbers and
symbols
58 SNiFF+

Ja

Differences between two file versions
Review
This was the last of the SNiFF+ browsing tools to be introduced in this tutorial.
In this part of the SNiFF+J Java Tutorial you were introduced to the following browsing tools:

n The Symbol Browser

n The Hierarchy Browser

n The Class Browser

n The Cross Referencer

n The Retriever

n The Diff/Merge tool

What’s next

n Close all tools except for the Launch Pad and the Project Editor.

n From the Visibility drop-down in the Project Editor, select Writable + Read Only.

The next part introduces you to:

n Setting up the SNiFF+ build system

n Tools used for editing, compiling and debugging Java code with SNiFF+.
va Tutorial 59

Chapter 6 Differences between versions of files Differences between two file versions
60 SNiFF+

Part IV
Edit/Compile/Debug

Ja
1SNiFF+ Java Build System

This chapter is about

n What SNiFF+ needs to know — page 63

n Setting Java Make — page 64

n Compiling the application — page 65

n Running the application — page 66

Assumptions
We assume you have completed the steps as outlined under

n Preparing the Environment — page 11

n Setting your Preferences — page 12

n Project Setup — page 14

The following are not necessary for successful compilation, but we also assume that you
have completed the steps as outlined under

n Creating a project for the JDK sources — page 20

n Adding the JDK projects to your project — page 23

n Saving a Project Tree view — page 24

What SNiFF+ needs to know
n The root directory where source code packages start. You have already set this in the

Project Setup Wizard (page 16) by accepting the default.

n The name and project location of the class implementing the main method.
va Tutorial 63

Chapter 1 SNiFF+ Java Build System Setting Java Make
Setting Java Make
The name of the application class is BackOfficeApplication. This class is in the
backoffice.shared project.

In the Project Editor

In order to set the Java make attributes, we must first check out backoffice.shared.

1. In the Project Tree, checkmark the checkbox next to backoffice.shared.

2. In the File List, select backoffice.shared.

3. Choose File > Check Out...

4. In the Check Out dialog that appears, press Exclusive Lock.

5. In the Reload Project Structure dialog, press Yes.

6. In the Project Tree, double-click on backoffice.shared (the name, not the check-
box).

The Project Attributes dialog opens.

In the Project Attributes dialog

1. Under the Build Options node, select Project Targets.

2. In the Java tab, enter BackOfficeApplication in the Application Class field.

3. Press Ok to close and apply the Project Attributes.
64 SNiFF+

Ja

Compiling the application
4. Press Yes in the Update Makefiles dialog that appears.

In the Project Editor

You have now set all the necessary Make attribute, and it might be a good idea to save the
Project.

n In the Project Tree, the icon warns you that the backoffice.shared project has
changed. Make sure backoffice.shared is highlighted, then choose

Project > Save backoffice.shared.

Compiling the application

In the Project Editor

Note that SNiFF+ needs to know where to start Make execution. You tell SNiFF+ this by
highlighting the appropriate project. In the example project, Make execution starts in
backoffice.shared
where you specified the Java target. So:

1. In the Project Tree, make sure backoffice.shared is highlighted.

2. Choose Target > Make > BackOfficeAppliation to compile the application.

A Shell Tool appears, after compilation it should look similar to the following:

On successful compilation, the byte-code .class files are generated to
<sniff_java>/pwe_1/OfficeApp/Classes/
Remember you specified this attribute during project setup (In the “Create New SNiFF+
Project” page — page 16).
va Tutorial 65

Chapter 1 SNiFF+ Java Build System Running the application
Troubleshooting

n If compiler errors are reported in the shell, something may have gone wrong with the
setup of the projects Java Make attributes. Try going through the steps in this tutorial
again, carefully check them, compare screenshots, and re-compile.

n Make sure your PATH environment variable points to

<your_jdk_installation_dir>/bin

n On Windows NT: Problems can be caused by a CLASSPATH environment variable that
does not conform to the upper case conventions (e.g., an application may set an environ-
ment variable as ClassPath). If this is the case, set a single environment variable,
CLASSPATH, to point to all the paths in an existing CLASSPATH as well as any varia-
tions thereof, such as ClassPath.

Running the application

In the Project Editor

1. Make sure that backoffice.shared is highlighted (the project containing the appli-
cation class) in the Project Tree.

2. Choose Target > Run BackOfficeApplication.sh.

The compilation of a Java Program does not result in an executable. SNiFF+ hides this
fact by generating a start-up shell script. This is why the targets have the ending “.sh”.
The Program Arguments dialog appears:

3. Press Ok.

The application is started and appears on your screen:

4. Close the application by choosing File > Exit in the application window.

5. Close the Shell Tool.
66 SNiFF+

Ja

Running the application
Review
In this chapter you

n set the Java Make attributes in the Project Attributes dialog

n compiled the application

n tested the application
va Tutorial 67

Chapter 1 SNiFF+ Java Build System Running the application
68 SNiFF+

Ja
2Editing and Compiling

This chapter is about

n Checking out and opening a file — page 69

n Compilation errors — page 70

Checking out and opening a file
Remember, you are now working with a version controlled project. You checked in all your
source files, so now they are read-only. To be able to edit a file, it first has to be checked out.

In the Project Editor

We will check out and edit the file BackOfficeApplication.java

1. In the Project Tree, make sure that backoffice.shared is checkmarked.

2. In the File List, highlight BackOfficeApplication.java and right-click to choose

Context menu > Check Out BackOfficeApplication.java...
The Check Out dialog appears.

By default, the HEAD version is suggested, which at this time is still the same as the INIT
version. With repeated editing, the content will obviously change over time.

3. To get a writable version of the file, press Exclusive Lock (the other two lock buttons are
relevant only in team projects).

Notice that, in the Project Editor’s File List, the file name now appears in bold typeface.
This indicates that it is writable.

4. To open BackOfficeApplication.java double-click on it in the Project Editor’s
File List.

The file is opened in the Source Editor.
va Tutorial 69

Chapter 2 Editing and Compiling Compilation errors
Compilation errors
Now, we’ll edit the file so as to induce a compilation error. After attempting to compile, the
error will be reported in the Shell tool. From the error message, you can go straight to the
point in the source code where the error was found.

1. In the Source Editor’s Symbol List (on the right), click on main (me) — the (me) stands
for ’method’.

The editor positions to main.

2. To comment out the line with the main method, click into it and choose Edit > Comment.

Note that you can comment out any number of lines by highlighting them and choosing
this menu item.

3. For the changes to take effect, choose File > Save.

4. To compile the file, choose Target > Make File BackOfficeApplication.class.
70 SNiFF+

Ja

Compilation errors
A Shell Tool appears and SNiFF+ tries to compile the modified file.
The error is reported in the Shell Tool in the form file:line: error, followed by the
actual line.

In the Shell tool

n To see the error, click on the reported error (highlighted in the illustration) and choose

Edit > Show Error.

The Source Editor positions to detected error, and the affected line is highlighted.

In the Source Editor

To uncomment the line that induced the error:

1. Click into the line you commented out earlier and choose Edit > Uncomment.

2. For the changes to take effect, choose File > Save.

3. Choose Target > Make File BackOfficeApplication.class again to re-compile.

n Close the Source Editor and the Shell tool to avoid screen cluttering.

Review
In this chapter you

n checked out a file to get a writable version

n edited a file

n compiled the file

n found and fixed a compilation error
va Tutorial 71

Chapter 2 Editing and Compiling Compilation errors
72 SNiFF+

Ja
3Debugging

In this introduction to the sniffjdb debugger, you will see how to:

n set the SNiFF+ Java debugger (sniffjdb) in your Preferences

n set breakpoints

n watch variables

n watch threads

n make run-time changes to a simple variable and watch the results

Setting the debugger in the Preferences
You need to tell SNiFF+ that you will be using the SNiFF+ debugger for Java, sniffjdb. To set
sniffjdb as your preferred debugger:

n From any open SNiFF+ tool, choose Tools > Preferences...

In the Preferences

1. Select the Platform node.

2. In the Platform view, highlight the platform, which is selected in the Default Platform drop-
down, in the platform list.

3. Press the Set Writable button.

This makes a writable copy, you can later always revert to the default settings.

4. Select the Debugger tab.

In the Debugger view

1. From the Adapter drop-down, choose sniffjdb(Java).

2. Press Ok to close the dialog.
va Tutorial 73

Chapter 3 Debugging The debugger command line
The debugger command line
After starting the debugger, you will set two breakpoints and watch what happens to a vari-
able between the first and the second breakpoint.

In the Project Editor

To start the debugger:

1. In the Project Tree, make sure that backoffice.shared (the project with the target
classes) is highlighted. If it isn’t, click on its name to highlight it.

2. Choose Target > Debug... > BackOfficeApplication.sh

The debugger command line shell opens.

In the Debugger

n For a summary of command line commands, type help at the command line prompt,
(sniffjdb).

Note that many of these commands can also be posted from the Source Editor.

In the Project Editor

1. You will be setting breakpoints in a source file, BackOfficeApplication-
Frame.java, which is part of backoffice.shared, so make sure that backof-
fice.shared is checkmarked in the Project Editor’s Project Tree.
74 SNiFF+

Ja

Setting Breakpoints
2. To open the file, double click on the BackOfficeApplicationFrame.java file in
the File List.

The file is opened in the Source Editor and, because you are in debug mode, a row of
buttons for the most commonly needed debug commands has been added below the tool
bar.

Setting Breakpoints

In the above illustration the two breakpoints have already been set. To set these breakpoints:

1. Choose Edit > Go to line...

The Goto dialog appears.

2. To go to the line for the first breakpoint, type 90 in the Goto dialog and press Go to.

You are positioned at line 90 in the file.

3. To set the breakpoint, press Break At.
va Tutorial 75

Chapter 3 Debugging The Variable Viewer
4. To set the second breakpoint, choose Edit > Go to line..., type 101 in the Goto dialog
and press Go to.

You are positioned at line 101 in the file.

5. To set the breakpoint, press Break At.

Look at the code lines immediately preceding our two breakpoints. You can see that in each
case constraint.gridheight has been assigned a value (1 and then 4).
After stopping the application at the first breakpoint, we will take a look at the variable’s run-
time value, then stop at the next breakpoint and use the Variable Viewer to verify that this
value has been changed.

The Variable Viewer

In the Source Editor

1. Press Run.

The Program Arguments dialog appears. Press Ok, and the application starts and then
stops at the first breakpoint.

2. Double-click on constraint in the line preceding the breakpoint to highlight it.

3. To view constraint, press Print.

The constraint object is displayed in the Variable Viewer.

In the Variable Viewer

n Expand the node to see the member variables by clicking on the node next to Object
constraint.

As you can see, constraint.gridheight has the value 1, as expected.
76 SNiFF+

Ja

The Threads Viewer
n Back in the Source Editor, to continue the execution of the application, press Cont.

The application stops at the next breakpoint.

n In the Variable Viewer, choose View > Update.

The Variable Viewer now shows the new value of constraint.gridheight to be 4,
the value at the previous breakpoint [1] is also shown.

The Threads Viewer
The application is now stopped at the second breakpoint. Now, let the application run its
course to start-up before taking a look at the threads.

In the Source Editor

1. Press Cont.

The application window appears in the top left-hand corner of your screen. Check to see
that it isn’t hidden by any other windows.

2. Close the Source Editor to get a less cluttered screen.

In the Variable Viewer

n To start the Threads Viewer, choose Tools > Threadsview.

You can also start the Threads Viewer from the Debugger Command Line window, by
typing vt (short for viewthreads) at the prompt.

In the Threads Viewer

The first line in the Threadgroups column is highlighted. This means you see only the infor-
mation that applies to this thread group.

1. To see all the threads, highlight each threadgroup by clicking on it.

2. To see only the threads specific to the application itself, deselect all the highlighted items
in the Threadgroups column, except the last one, by clicking on them.
va Tutorial 77

Chapter 3 Debugging The Threads Viewer
You now see the threads generated by the application itself.

Watching a thread

Make sure you can see both the Threads Viewer and the Back Office System window on
your screen.
In the Threads column of the Threads Viewer, there are only 3 items at present (this may
vary, depending on your operating system).
In the Back Office System window, there is a button on the left called Start. This button starts
a timer thread, which increments the date by the number of days set on the right. And this is
the new thread you will start.

1. In the Back Office System window, press Start.

The time, as can be seen above the button, starts incrementing by one day per second.

2. To update the Threads column in the Threads Viewer, press the Threads button at the
top of the Threads column.

A new item is added to the list: Thread-2 cond. waiting (the name of the thread
and its condition, in this case: waiting).
Note that you can also choose an automatic update option from the Threads Viewer’s
View menu.

Testing run-time changes in variables

You can change the contents of simple variables and test the resulting changes while the
program is running in the debug mode. We will test changes in the time increment value of
the simulated clock.

1. In the Threads column, highlight the new thread that appeared when you started the
timer thread.

2. In the Stackframes column, highlight the first item.

The local variables of the SimulationClock class appear in the last column of the Threads
Viewer.

Press
these
buttons
to update
the
columns
78 SNiFF+

Ja

The Threads Viewer
3. To look at these variables, double-click on the item in the last column.

In the Variable Viewer

We will use the Variable Viewer to do a run-time test of a new value for the time increment,
so please make sure you can see both the Variable Viewer and the Back Office System
window.

1. In the Variable Viewer, expand the node of the object.

You can now see, among other things, the variable:
private long increment = 86400000

2. Double-click on this variable.

The variable value appears highlighted in the Variable Field at the bottom of the tool. The
value represents one day. If you add a zero to this number, you will have the value for 10
days.

3. Click into the Variable field and add a zero to the value, then hit <Return>.
va Tutorial 79

Chapter 3 Debugging The Threads Viewer
Take a look at the Back Office System window. The time value in the Back Office System
window is now incremented by 10 days, instead of 1.
Note that this value is not persistent, and applies only for this debugging session.

Closing the debugger

To close the debugger, choose Tools > Close Tool from its menu.

Review
This was the last chapter of the edit/compile/debug part. In this introduction to the sniffjdb
debugger, you learnt how to:

n set the SNiFF+ Java debugger (sniffjdb) in your Preferences

n set breakpoints

n watch variables

n watch threads

n make run-time changes to a simple variable and watch the results

Variable field
80 SNiFF+

Ja

The Threads Viewer
What’s next

Later in the tutorial, you will create a new working environment for a new team member.
Since your team member needs access to the most current source code, you must check in
the files you’ve modified. To do so:

In the Project Editor

1. Choose View > Select Project Set > MySources.

2. In the File Status drop-down, choose Writable.

Only writable files in the project set are displayed.

3. Choose File > Select All and then File > Check In.

In the Check In dialog

1. In the Change Set field, enter a name for the change set e.g., second_file_set.

2. In the Comment field, enter a comment e.g., modified files.

3. Press Ok.

The files in the File List are no longer in bold typeface. This means that they are now read-
only.

4. Close all tools except for the Launch Pad.
va Tutorial 81

Chapter 3 Debugging The Threads Viewer
82 SNiFF+

Ja
4Freezing the Project

All your working environments are now up-to-date, your source files are compilable, and you
have a stable version of your byte-code. In this chapter, you will learn how to create a “virtual
snapshot” of the project (or, to be exact, of its source files). You do this in SNiFF+ by associ-
ating the current state (configuration) of all project source files with a single symbolic name.
The process of creating a single configuration and associating it with a symbolic name is
called “freezing a configuration”.
You can freeze configurations in the Configuration Manager. You can also use this tool to
view the lists of configurations of your projects and compare two configurations with each
other. To learn more about the Configuration Manager, please refer to the User’s Guide and
the Reference Guide.
This chapter is about:

n freezing a project

n looking at a file’s history information

Freezing the project
n From any open SNiFF+ tool, choose Tools > Configuration Manager.
va Tutorial 83

Chapter 4 Freezing the Project Freezing the project
In the Configuration Manager

1. In the Configuration List, select the HEAD configuration.

The project’s configuration information is loaded into the Configuration Manager.
Your Configuration Manager should look something like the following:

2. Choose the Configuration > Freeze Head....

The Freeze Head dialog appears.

3. Enter a name for the new configuration in the Configuration field of the dialog (e.g.
OfficeApp_V1.0) and press Ok.

The Configuration List is now updated to include the newly created configuration.

 These files
are part of the
HEAD
configuration
84 SNiFF+

Ja

Looking at the history of a file
Looking at the history of a file
We will now take a look at the history of one of the project files in the Project Editor.

n In the Configuration Manager, choose Tools > Project Editor.

In the Project Editor

1. In the File List, highlight BackOfficeApplication.java.

2. Select the History check box at the bottom of the tool.

A File History dialog appears:

In the Symbols view, the Version Tree of the selected file is displayed. Since only one
version of the project files has been checked in so far, the Version Tree only displays this
version (INIT).
INIT is used by SNiFF+ to refer to the initial version of a file in the Repository. The
version number of the INIT version of a file is always 1.1. The latest version on the
main trunk or branch of a file’s version tree is called HEAD. In this example, the HEAD and
INIT versions of the file will naturally be the same.
A circle next to the file’s version in the Version Tree indicates that the version is part of a
configuration. The configuration name comes after the circle, followed by the version
number.

3. Press the Close button to close the dialog.

File Version History. Contains the
Version Tree of the selected file

Selected file
va Tutorial 85

Chapter 4 Freezing the Project Looking at the history of a file
In the Launch Pad

n Close OfficeApp.shared by choosing Project > Close Project OfficeApp.shared.

Review
In this chapter you

n froze a stable version of the project in your PWE

n looked at a file’s history information
86 SNiFF+

Ja
5Adding new team members

This chapter is about

n Preparing the Environment

n Adding new working environments

n Initializing the new working environment

n Updating working environments

Preparing the Environment
n Copy the OfficeApp.shared root project from the <sniff_java>/pwe_1/

OfficeApp directory to the <sniff_java>/pwe_2/OfficeApp directory.

Adding new working environments
n To open the Working Environments tool from any tool, choose

Tools > Working Environments.

1. Click on RWE: repository to highlight it.

2. Choose Edit > New Private based on Repository.

The New Private based on Repository dialog appears.
va Tutorial 87

Chapter 5 Adding new team members Initializing the new working environment
In the New Private based on Repository dialog

1. In the Working Environment field, enter the name for the second working environment,
e.g., pwe_2.

2. Press the Directory... button to the right of the Root field.

3. Navigate to the <sniff_java>/pwe_2 directory and press Open and then Select.

4. In the Owner field, enter the User name for the new team member e.g., eric.

He is now the owner of the new working environment.

5. Press Ok.

In the Working Environments tool

n Double-click on eric PWE: pwe_2.

An empty Open Project dialog appears.

Initializing the new working environment

In the Open Project dialog

1. Press the Update List button to display all the projects in the Project List.

2. From the Project List, select OfficeApp.shared and press Open.

3. In the Open Project dialog that appears, press Yes.

4. In the dialog that appears, checkmark Repeat and press Check Out.

5. In the Check Out dialog that appears, checkmark Repeat and press No Lock.

6. In the Project File dialog that appears, checkmark Repeat and press Check Out.

The project’s contents and structure are displayed in the Project Editor. This working
environment is now ready for your new team member.

Updating working environments
When a team member checks out a file, the checked-out version is locked in the Repository,
and a local copy is made in the team member’s PWE. When a team member is satisfied with
changes he/she has made to a checked-out file (compilable!), he/she checks it back in. This
means that the new (checked-in) version replaces the older (checked-out) version in the
Repository. However the other PWE’s have the older version of the file and thus the working
environments are no longer consistent with each other and need to be synchronized.
Updates should be done on a regular (daily) basis, especially if you have a large develop-
ment team. To update working environments:

n In the Project Tree of the Project Editor, choose

Context menu > Select from All Projects.
88 SNiFF+

Ja

Updating working environments
n In the Project Editor, choose

Project > Synchronize Checkmarked Projects...

Review
In this part of the SNiFF+J Java Tutorial you were introduced to:

n Adding new working environments for team members

n Initializing the new working environment

n updating working environments
va Tutorial 89

Chapter 5 Adding new team members Updating working environments
90 SNiFF+

Part V
Technical Reference

Ja
1Introduction and Basic SNiFF+ Concepts

Introduction
The hands-on tutorial with example code shows you how to set up projects using the Project
Setup Wizard and introduces you to the various SNiFF+ tools.
This Technical Reference is intended as a reference to Java-specific aspects of using
SNiFF+. As such, you will not find much information relating to SNiFF+ in general; please
refer to the SNiFF+ User’s Guide and Reference Guide for more information in this respect.
All SNiFF+ documentation is available online under the Launch Pad’s Help(?) menu.

n This chapter introduces two basic SNiFF+ concepts, Projects and Working Environments,
and sketches a typical SNiFF+ Java development system.

n The following chapters look at source code directory structures and the implications for
project setup and updating in SNiFF+, as well as working environment and project set up
for Java projects.

n Further chapters cover various technical aspects such as compilation, execution, debug-
ging, the class path concept, Java IDL, JNI and RMI generation etc., all in the context of
SNiFF+. A reference description of the SNiFF+ Java debugger is also included.

n A chapter on upgrading issues looks at SNiFF+ backward compatability among different
SNiFF+ versions, as well as a few points regarding upgrading libraries (e.g. JDK).

n The manual closes on a description of how to get started with the Visaj GUI Builder inte-
gration. More information on SNiFF+ integration features, as well as on Visaj itself, is
available online in the Visaj Class Editor.
va Tutorial 93

Chapter 1 Introduction and Basic SNiFF+ Concepts SNiFF+ Java Shared Projects and Working Environments
SNiFF+ Java Shared Projects and Working Environments
This section very briefly introduces the SNiFF+ Project and Working Environment concepts
as they apply to Java software systems. For more detailed information about projects and
working environments, please refer to the User’s Guide.

Projects

Shared Projects

A SNiFF+ Shared Project is, as the name suggests, suitable for team development.
Team members must be able to share and access source code to make changes to files and/
or structure, regardless of what other team members are doing.
This means that the integrity of the project system as a whole needs to be maintained in
some way, which is why Shared Projects are always used in conjunction with Working Envi-
ronments and a configuration management and a version control (CMVC) tool.

Browsing-Only Projects

Browsing-only projects are quick and easy to set up, and require no further maintenance.
You would use this type of project for stable libraries (e.g., the JDK sources) that are not
subject to constant change, and where you do not require Make and dependency information
to be generated.
For Java software systems, you would typically add the JDK sources to your own sources as
a Browsing-Only subproject. This allows you to follow references and hierarchies all the way
back to the root.

Working Environments

For Java projects, you need only two types of Working Environment, a Repository and
Private Working Environments. These are described below, and how to go about setting
them up is summarized in the following chapter.

Repository Working Environment (RWE)

You and your team members access and modify a permanent data Repository using
commands provided by your underlying configuration management and version-control
(CMVC) tool. SNiFF+ provides an interface to your CMVC tool.
In the Java tutorial, we use RCS, the CMVC tool provided with the SNiFF+ package.

Private Working Environment (PWE)

Developers must be able to work in isolation from other team members. They need their own
workspaces where they can edit, compile and debug projects without interfering with the
work of other team members. Furthermore, they continually need to have access to their
software system’s most current source code base.
SNiFF+ supports this by allowing each member of a team to work in an isolated Private
Working Environment (PWE).
94 SNiFF+

Ja

Typical Java development system
You can go through the entire edit/compile/debug cycle in your PWE. In your PWE, you have
a read-only view to the shared source files located in your team’s Repository. When you
need to modify shared source files, you check out the necessary files from the Repository.
When you’re satisfied that the changes you’ve made are error free, you check the modified
files back into your Repository. The next time that your colleagues update (synchronize) their
PWEs, these changes are incorporated, and the shared source files once again reflect the
most current state of your software system.

Typical Java development system
The figure below illustrates a typical Java development system with SNiFF+. Each devel-
oper works in his/her Private Working Environment. Shared source code files are checked
out of the Repository for modification, then checked back in. Regular updates of the PWEs
ensure that the individual developers stay up-to-date.

The JDK sources (and other libraries) are added to the Shared (Root) Project as Browsing-
Only subprojects. These libraries are not version controlled, nor is it necessary to generate
Make information for these files.
How you would go about setting up this system is summarized in the following chapter. A
step-by-step demonstration using the Project Setup Wizard is included in the hands-on tuto-
rial example.

JDK sources

Repository with
Shared Projects

PWE 1

PWE 2

PWE 3

Developers check
source files in and
out for editing

Developers have a view to shared source files in
Shared Projects, and also to the JDK sources in a
Browsing-Only project that has been added as a
subproject.
va Tutorial 95

Chapter 1 Introduction and Basic SNiFF+ Concepts Typical Java development system
96 SNiFF+

Ja
2Java Working Environments and Projects

Introduction
The physical organization of your source code directories will affect how easy or compli-
cated you make things for yourself in terms of project setup and, later, update. It is therefore
worth looking at your existing source code directory structure before starting on setting up
projects. Basically, we recommend that you copy (if necessary) all source directories to one
common root directory, if at all possible. This directory should not contain code that is part of
named packages, so that the class path points to this directory. This directory will also hold
your SNiFF+ Root Project.
After looking at directory structures, the Working Environment and Project setup for Java are
summarized. The essential difference in Working Environment organization for Java, as
opposed to other programming languages, is that the Java compiler and interpreter can
produce inconsistent results if Working Environments are layered. This means that all Private
Working Environments should directly access the Repository.
There are a number of Project level settings which you may want/have to set either during
Project Setup or afterward. These settings are discussed in some detail in the following
chapter.
va Tutorial 97

Chapter 2 Java Working Environments and Projects Source code directory structure
Source code directory structure
The physical organization of your source code directories affects how you set up, and later
update your project system.
Essentially, we distinguish between two types of directory structures:

n code packages that have a common root, that is, the structure is homogenous or

n code packages that do not have a common root, that is, the structure is non-homoge-
nous

The first step is therefore to establish what type of directory/package structure you have.

Homogenous directory structures

We strongly recommend that you use this type of structure if possible.
Directory structures are “homogenous” if all source code packages start from a common root
directory.

This common root directory does not itself hold source code that is part of any named
package, it is simply a common relative starting point, and corresponds to the Java package
root. Remember that the Java language specification requires the package root to be one
directory level higher than the highest-level directory containing named packages.
The advantages of this type of project:

n You can create a project for the common root directory and have SNiFF+ generate the
subproject tree for all subprojects in one step.

n When you set the build options for the entire project structure, you set the root project as
the starting point for all source and generated byte-code packages. SNiFF+ can then gen-
erate the correct relative paths for all subprojects in one step.

n To synchronize all projects in a Working Environment, you just have to update the root
project, since SNiFF automatically updates all the subprojects.

n All paths are relative.

Common root
directory

Directory A

Directory B

Directory C

Subdirectory Subdirectory

Subdirectory
98 SNiFF+

Ja

Source code directory structure
Non-homogenous project structures

This type of project structure demands more complicated settings than the homogenous
project type described above.
Project structures are “non-homogenous” if related code packages start from different root
directories.

In the above illustration, A and B are homogenous, that is, the package starts from the same
root directory. This assumes that no named package code is contained in the root directory
The structure as a whole is, however, non-homogenous because the package scope of C
and subdirectories starts from a different root directory.
This has the following implications:

n Projects A and B can be treated as one homogenous project.

n Project C can be treated as one homogenous project.

In this structure, you would have to set up two SNiFF+ Projects. All settings have to be
repeated, and a one-step update of all projects is no longer possible.

Package Root of
A and B

Directory A

Directory B

Directory C

Subdirectory Subdirectory

SubdirectoryPackage Root of C
va Tutorial 99

Chapter 2 Java Working Environments and Projects Java Working Environments and Shared Project setup
Java Working Environments and Shared Project setup
The following is an abbreviated summary of Working Environment and Project setup. We
assume a homogenous directory structure as described above. The hands-on tutorial
example describes the procedure using the Project Setup Wizard in detail. For an overview
of general project setup procedures, please refer to the User’s Guide.

Working Environments set up

n For Shared Java Projects, always set up Private Working Environments (PWEs) that
directly access the Repository.

This is because equivalent packages that are entered separately in the class path (as is
the case in layered Working Environments) are not explicitly examined by the JDK tools
for each file. The first entry that is matched is cached and reused by the compiler and
interpreter. This may lead to inconsistent results if Working Environments are layered.

n If you already have SNiFF+ Java Projects in layered Working Environments (with an
SSWE and SOWE), please continue with Moving existing Working Environments — page
101.

SNiFF+ Java Projects from scratch

n Set up the Shared Project for your root directory in one PWE (see above) and allow
SNiFF+ to generate all subprojects. Then, create Browsing-Only Projects for the JDK
Sources and any other libraries where source code is available. Add these as subprojects
of any Shared Project in the first PWE. See also Adding source code library projects —
page 102.

n Make sure you have set all Project Attributes you want/need, either during or after project
setup. See also Java Project-Level Settings — page 103.
100 SNiFF+

Ja

Java Working Environments and Shared Project setup
n Copy the Project Description File (PDF) of the Root Project in the first PWE to the Work-
ing Environment root directory of each additional PWE. Then, open the root projects in
each PWE.

Moving existing Working Environments

n If you already have SNiFF+ Java Projects in layered Working Environments (with an
SSWE and SOWE), move your PWEs so that they directly accesses the Repository (in
the Working Environments tool, drag-and-drop them onto the Repository).

n Check out all files to each moved PWE, the SSWE and SOWE will be ignored.

Root Project

Subproject
Subproject

JDK sources
as an external
Browsing-Only
Project

Check in
Repository

 PWE 1

 PWE 2

 PWE 3

Copy PDF of
Root Project
here, then
open Project.

Copy PDF of
Root Project
here, then
open Project.

 Add >

Check out
va Tutorial 101

Chapter 2 Java Working Environments and Projects Adding source code library projects
Adding source code library projects
Typically, you would create a Browsing-Only Project for the JDK sources and then add this to
your root project. How to go about this is described in the Tutorial.
The procedure is the same for any source code library.
Note that you can add the subproject to any project in the tree, symbol information will be
available throughout.
See also Upgrading source code library projects (e.g. JDK) — page 132.

Multi-Language Projects
If you are using SNiFF+ Make Support, each directory should contain only Java files. It is not
possible to build a project correctly if source files in other programming languages are
located in the same directory. To avoid this problem, store these files in separate directories
and create separate projects for them.
102 SNiFF+

Ja
3Java Project-Level Settings

Introduction
This chapter concentrates on a description of Java-specific Project Attributes. After a note on
the File Types you would generally include in a SNiFF+ Java project, the focus is on build
features.
A few of the settings described here are necessary (e.g. location of targets), others are
optional, and may or may not be convenient for your particular needs.
The settings can generally be made during project setup and/or in the Project Attributes
dialog. Some settings can also be made by directly editing the Project Makefiles (see e.g.
Java IDL, JNI and RMI — page 115).

Project Attributes dialog
Many attributes can be set globally during Project Setup. For subsequent changes in global
attributes, it is easiest to checkmark all Projects and then choose Project > Attributes of
Checkmarked Projects... (after making sure the PDFs are writable).
All settings described here are made in the Project Attributes dialog.

File Types

Generally, you would include at least the following file types in a SNiFF+ Java project:

n Java — these are the Java source files (*.java)

n HTML — HTML files to embed applets

n Visaj_Project — project files for the integrated Visaj GUI builder.

Project Targets

This section describes each field in the Build Options > Project Targets > Java tab.

n If you have opened the Project Attributes dialog for multiple targets, make sure the correct
project for the corresponding target is selected in the Project List at the right of the dialog.

n For related technical information, see also Compilation, Compiler Options and Execution
— page 109.

n Because of changes in the behavior of the JDK appletviewer between JDK 1.1.x and JDK
1.2, alternative procedures are described below.

To avoid confusion, first check which JDK version you are using, then follow the steps
under the appropriate heading. Ignore everything under the non-applicable heading.
va Tutorial 103

Chapter 3 Java Project-Level Settings Project Attributes dialog
If you’re using JDK 1.1.x

If you’re using JDK 1.2, ignore everything below and continue with If you’re using JDK 1.2 —
page 105.

1. In the Application Class field, enter the name of the class implementing the main
method in the following form: classname.

2. In the Applet Class(es) field, enter the name(s) of the classes implementing an init
method in the following form: classname1 classname2 ... (use a space as separa-
tor). Note: These classes will only be generated if you enter a name for the HTML file
(see below).

3. In the HTML File field, enter the name for the HTML file that embeds the applet(s) in the
following form: filename.html (with extension). The file will be automatically gener-
ated in the selected project directory by SNiFF+.

4. In the Library (JAR) field, enter a name (with extension) for a library if you want to build
one. The library will be built at the package root to ensure correct package scope.

5. In the + JAR Filelist field, enter a list of files that you want archived e.g., *.html
*.class test.doc separated by blanks. A specific project directory path can also be
entered if you want to archive only a part of the project, e.g., utilities/*.class.
Note that the path must point into the project.

6. In the Target class(es) field enter the name(s) of individual classes you might want to
compile, e.g., to use as beans, in the following form: classname1 classname2 ...
(use a space as separator). The classes must be in the currently selected project.

If you have projects with classes that are not explicitly referenced by targets, enter their
names in this field to make sure that these files are also recompiled if they are out of date.

7. Your next step is to check the structural information for compilation.

Select Build Options > Build Structure > Java tab, and continue with Build Structure —
page 106.

Note

n For GUI entries, never use fully qualified class names. Simply
enter the class names without qualification or extension.

n Enter HTML file names and library files with extension.
104 SNiFF+

Ja

Project Attributes dialog
If you’re using JDK 1.2

If you’re using JDK 1.1.x, ignore everything below and continue with If you’re using JDK
1.1.x — page 104.

1. In the Application Class field, enter the name of the class implementing the main
method in the following form: classname.

2. Leave the Applet Class(es) field blank.

This feature does not work if you are using JDK 1.2. In this case, enter any applet classes
the Target class(es) field (see below). See also Upgrading from JDK 1.1.x to JDK 1.2.x
— page 132.

3. Leave the HTML File field blank.

This feature does not work if you are using JDK 1.2. See also Upgrading from JDK 1.1.x
to JDK 1.2.x — page 132.

4. In the Library (JAR) field, enter a name (with extension) for a library if you want to build
one. The library will be built at the package root to ensure correct package scope.

5. In the + JAR Filelist field, enter a list of files that you want archived e.g., *.html
*.class test.doc separated by blanks. A specific project directory path can also be
entered if you want archive only a part of the project, e.g., utilities/*.class. Note
that the path must point into the project.

6. In the Target class(es) field enter the name(s) of individual classes you might want to
compile, e.g., to use as beans, and also of applet classes (where init is implemented)
in the following form: classname1 classname2 ... (use a space as separator). The
classes must be in the currently selected project.

If you have projects with classes that are not explicitly referenced by targets, enter their
names in this field to make sure that these files are also recompiled if they are out of date.

7. Your next step is to check the default structural information for compilation.

Select Build Options > Build Structure > Java tab, and continue with Build Structure —
page 106.

Note

n For GUI entries, never use fully qualified class names. Simply
enter the class names without qualification or extension.

n Enter HTML file names and library files with extension.
va Tutorial 105

Chapter 3 Java Project-Level Settings Build Structure
Build Structure
This section describes the Java-specific fields in the Build Structure > Java tab in some
detail. Depending on your project structure and/or whether or not you want to accept the
defaults, some of the entries may simply allow customized enhancements. Others will be
necessary, again depending on your project structure. Note that you can use environment
variables in all fields.

n For more information on the class path concept as used by SNiFF+, please refer also to
Class Path — page 113.
106 SNiFF+

Ja

Build Structure
n Class Path to Libraries.

This setting is used to provide a list of absolute paths to library byte-code, zip or jar files
used in you project, if there is no source code available for them.
However, if the source code is available for the libraries, as is the case for the JDK library,
it is best to create SNiFF+ Projects for them and then add these as subprojects. There is
then no need to enter anything in the Classpath field for these projects.
The advantage of creating and adding subprojects is that you can then also correctly
browse inheritance relationships and cross-references etc.
You can also enter the class path to external source code packages that you have not
added to your SNiFF+ project as subprojects. This will allow correct compilation, but you
will not see any symbol information.
This applies also to libraries where no sources are available; SNiFF+ will recognize the
data types in such files, but not the symbol names.
If you use RMI (see also Java IDL, JNI and RMI — page 115), you have to enter the path
to the JDK class files (JDK 1.1.x: classes.zip; JDK 1.2: rt.jar) either in this field
or in the system CLASSPATH environment variable.

n Class Path to Source Package Root field.

This setting is the class path as you would enter it after -classpath. You can specify
this relative to the current project or, in the case of an absolute project, as an absolute
path.
The class path to the Source Package Root ends where the package begins. That is, it is
always one directory level higher than the highest-level directory containing code in
named packages. Bear this in mind especially also during Project Setup. Once the project
has been set up, this can be set relative to the project, as seen from the package (e.g. ..
or ../.. etc.)
If you specify the class path to the Source Package Root for a root project, it is generated
correctly for all sub-projects. For subsequent modifications, it is easiest to checkmark all
projects in the Project Editor and to choose Project > Attributes of Checkmarked
Projects. Then press the Generate button to the right of the field.

n Class Path to Byte-Code Package Root field.

By default, byte-code is generated to the same directories as the source code. If you
prefer to keep your source and byte-code separately, enter a root directory (relative or
absolute) where you would like your byte-code packages to start, then press the
Generate button. SNiFF+ will create the specified directory, and recreate the package
structure. Byte-code will be generated to this directory when you build your project.
If you simply enter a name for a directory, it will be created in the current project directory.
va Tutorial 107

Chapter 3 Java Project-Level Settings Build Structure
108 SNiFF+

Ja
4Compilation, Compiler Options and Execution

This chapter describes the SNiFF+ compilation concept for Java, followed by notes on
setting compiler options, and how to use a compiler of your choice (by default SNiFF+ uses
the JDK javac complier). The chapter closes with a note on the execution of Java applica-
tions in SNiFF+.

Compilation
SNiFF+ does not use the same compilation concept for Java as for other languages. Depen-
dency checking is not done by the Java compiler because it is handled differently on different
platforms as well as by different compilers.
Checking dependencies is done entirely by the sniffjmake wrapper application, this
wrapper calls the Java compiler without the dependency checking flag. All computing is done
in the wrapper, and the Java compiler only compiles the files obtained from the wrapper.
If you compile an individual file with the Target > Make > FileName.class command (or in a
Shell with gmake <Filename>), however, only this file is compiled. Referenced class files
are only compiled if they do not yet exist.
If you compile an application or applet (i.e., a target), the sniffjmake wrapper makes
sure that all referenced files are up-to-date, and passes a file list to the compiler for
(re)compilation if necessary.
The information needed by the sniffjmake wrapper is contained in the following file

<ProjectDirectory>/.sniffdir/.sniffjmake

Unfortunately, there is a bug in the JDK javac compilers (tested up to version 1.6). If the
source file is compiled more than once with the -depend flag set, a second byte-code file
per anonymous class is generated. For this reason the -depend flag is disabled in the
SNiFF+ standard distribution. If you have a compiler that does not have this bug, you can
enable the full dependency check as described under The -depend option — page 111.
Please note that you can only use this option with the Java compiler and not with the
sniffjmake wrapper since because checking is handled by the wrapper itself.
Because SNiFF+ delegates dependency checking to the sniffjmake wrapper, there is a
special case to be aware of. If you use classes that are dynamically loaded without being
explicitly referenced, specify these classes in the Project Attributes dialog as described
under Project Targets — page 103.
va Tutorial 109

Chapter 4 Compilation, Compiler Options and Execution Compiler options
Compiler options
In SNiFF+, compiler options and Make information are stored in a set of pre-configured
Makefiles in your <sniff_installation_dir>/make_support directory. These
include a:

n Language Makefile: general.java.mk

n Platform Makefile e.g.

i386-unknown-win32.mk or

sparc-sun-solaris4.1.mk

n A Project Makefile (named Makefile) is generated by SNiFF+ for each project and
stored in the corresponding project directories.

Settings at platform level

To set compiler options at the platform level, you need to edit your Platform Makefile in the
<sniff_installation_dir>/make_support directory. To get to the information
for Java, look for the following text block in your <platform>.mk file

#
java compiler

JAVAC = $(SNIFF_DIR)/BIN/sniffjavac.exe
JAVA_DEPEND_FLAG =

JFLAGS = -g
JAVA_INTERPRETER = java
JAVA_APPLET_VIEWER = appletviewer

Note

The general.java.mk file works for almost all compilers. If for
some reason you want your compiler to do the dependency checking
itself, or you cannot switch off dependency checking in your compil-
er, then use the additional Makefile called
general.javapure.mk.
110 SNiFF+

Ja

Compiler options
The -depend option

Note that you can only use this option with the Java compiler and not with the sniffjmake
wrapper since dependency checking is handled by the wrapper itself.
The following line in your <platform>.mk file

JAVA_DEPEND_FLAG =

is where you can set the -depend option.
The -depend option causes automatic recompilation of all class files on which source files
recursively depend. Without this option (default), only out-of-date files that are directly
depended on will be recompiled. Missing or out-of-date files only depended on by already
up-to-date class files are not (re-)compiled.
To set the option, change the above line to read:

JAVA_DEPEND_FLAG = -depend

Note that, if you set this option, the JDK Java compiler will report errors for already compiled
anonymous classes - and create new (additional) ones. Therefore, if you use this option, be
sure to delete the already compiled anonymous classes before each new build. Also, be
aware that your builds will be slower.

Debug information: the -g option

The -g option enables generation of debugging tables (default) and is set in the line:

JFLAGS = -g

If you want a release version of your software (no debug information), change the line to:

JFLAGS =

Other options

You can also set other options (see your compiler documentation) in the line

JFLAGS =

by leaving a space between each option you enter after the “=” sign.

Using a compiler other than the JDK javac compiler

The following line in your <platform>.mk file

JAVAC = javac

specifies the JDK javac compiler. Change this line to conform to:

JAVAC = <path_to_your_compiler_dir>/yourCompilerName
va Tutorial 111

Chapter 4 Compilation, Compiler Options and Execution Execution
Setting options at project level

Note that compiler options set at project level are valid only for the project and override those
set at the platform level. Overriding platform-specific settings is not recommended, as
Project Makefiles should remain platform-independent.
To add options for a particular project, look in the project’s Makefile for the line starting
with

#OTHER_JFLAGS =

Enter the required options (separated by a space) after the “=” sign and remove the “#” at the
beginning of the line.

Execution
Java byte-code is not compiled into executable files as is the case for most other program-
ming languages supported by SNiFF+. For this reason, two files per target are generated in
the target directory, namely <TargetName>.sh and <TargetName>.env.
These files are generated when you execute the Target > Make TargetName command and
are for internal use only.
112 SNiFF+

Ja
5Class Path

This chapter offers a description of central concepts relating to how Java projects are
handled in SNiFF+.
The class path and package concepts are used by SNIFF+ in the same way as they are used
by the JDK tools. Excerpts from the original JDK documentation are included below to clarify
this.
In the SNiFF+ Project Attributes dialog and the Project Setup Wizard, there are fields where
the class path to the Source Package Root and to the Byte-code Package Root can be
entered. The semantics are the same as in the class path as used by the JDK tools.
The class path in the Project Attributes can be entered as a relative path — as seen from the
package (e.g. .. or ../.. etc.) once the projects have been set up.
For more Java language-specific information, please refer also to the Sun Java documenta-
tion, available at:

http://java.sun.com/

Class path
JDK tools use the class path concept to find source and byte-code files during compilation,
execution and debugging etc. The same concept is used by the SNiFF+ Java parser.
SNiFF+ generates and sets this class path transparently for you, so that you do not have to
worry about this when you work on several parallel projects. You can specify a different class
path for each (sub)project. All the settings are therefore project-specific and can be set in the
Project Attributes dialog.

n Note: The class path always ends one directory level higher than the highest-level direc-
tory containing named package code.

The following excerpts from the original JDK documentation illustrate the class path concept
as it is used by the JDK tools. SNiFF+ uses this concept in exactly the way.

Synopsis [excerpt from original JDK documentation]

"The class path can be set using either the -classpath option with the a JDK tool (the
preferred method) or by setting the CLASSPATH environment variable.

C:> jdkTool -classpath path1;path2...

C:> set CLASSPATH=path1;path2...

Each class path ends with a file name or directory depending on what you are setting the
class path to:

n For a .zip or .jar file that contains .class files, the path ends with the name of the
.zip or .jar file.
va Tutorial 113

Chapter 5 Class Path Class path
n For .class files in an unnamed package, the path ends with the directory that contains
the .class files.

n For .class files in a named package, the path ends with the directory that contains the
"root" package (the first package in the full package name).

..."
(To restate the point, the class path always ends one directory level higher than the
highest-level directory containing named package code.)

Example on class path and package names [excerpt from original JDK
documentation]

"Java classes are organized into packages which are mapped to directories in the file
system. But, unlike the file system, whenever you specify a package name, you specify the
whole package name -- never part of it. For example, the package name for
java.awt.Button is always specified as java.awt."
For example, suppose you want the Java runtime to find a class named Cool.class in
the package utility.myapp.
If the path to that directory is

C:\java\MyClasses\utility\myapp

you would set the class path so that it contains

C:\java\MyClasses

To run that app, you could use the following JVM command:

C:> java -classpath C:\java\MyClasses utility.myapp.Cool

When the app runs, the JVM uses the class path settings to find any other classes defined in
the utility.myapp package that are used by the Cool class.
Note that the entire package name is specified in the command. It is not possible, for
example, to set the class path so it contains C:\java\MyClasses\utility and use
the command, java myapp.Cool. The class would not be found."

n The above excerpts illustrate the class path/package concepts as used by the JDK tools.
SNiFF+ uses these concepts in exactly the same way.

Troubleshooting

Bugs in the class path as used by SNiFF+ can be difficult to identify. The relevant information
about what SNiFF+ generates is in the following file

ProjectDirectory/.sniffdir/macros.incl

(search for SNIFF_JAVA_CLASSPATH)
114 SNiFF+

Ja
6Java IDL, JNI and RMI

This chapter outlines the necessary steps for generating

n Java files from IDL files

n Java native interfaces (JNI)

n remote method invocations (RMI)

Java IDL Generation
To generate Java files from IDL files, make sure your compiler and the appropriate flags are
set in <sniff_installation_dir>/make_support/general.java.mk
under the IDL section.
To generate Java files from IDL files, enter idltojava followed by by the input file names,
or enter gmake <filename>.idl.

JNI (Java Native Interface) Generation
The Java Native Interface generator can be called

n explicitly on the command line by entering gmake jni.

n automatically with each Java compiler make command.

If you want automatic JNI support, change the following line in the
<sniff_installation_dir>/make_support/general.java.mk file:

JNI_SUPPORT = 0

to

JNI_SUPPORT = 1

n To delete JNI generated files, enter gmake clean on the command line, or choose

Target > Make > clean if you are using SNiFF+ Make Support.

Caution

If the word "Native" appears in Javadoc comments (**/...*/),
the file containing this comment is also native compiled and an empty
file <classname>.h is created.
va Tutorial 115

Chapter 6 Java IDL, JNI and RMI RMI (Remote Method Invocation) Generation
RMI (Remote Method Invocation) Generation
This is a client/server stub/skeleton generator.

CLASSPATH

For rmic support, set the system CLASSPATH environment variable to point to:

n JDK 1.1.x: classes.zip (typically in <JDK_directory>/lib>

n JDK 1.2: rt.jar (typically in <JDK_directory>/jre/lib>

Makefiles

To define remote methods, open your project Makefiles

<project_directory>/Makefile

and add the names of the files containing remote methods to the
SNiFF_JAVA_RMI_FILES macro (use a space as separator).

RMI calls

n RMI can be called from the command line by entering gmake rmi.

n You can automatically call RMI with with each Java compiler make command.

In <sniff_installation_dir>/make_support/general.java.mk

change the following line

RMI_SUPPORT = 0

to

RMI_SUPPORT = 1

n Note that, if you use the gmake clean command (or choose Target > Make > clean,
using SNiFF+ Make Support) RMI generated files will also be deleted.
116 SNiFF+

Ja
7Symbol Information and Automated Updates

This chapter simply informs you that SNiFF+ Java projects should always be opened with
symbol information, and consequently the default in the script for unattended updates also
needs to be edited accordingly. A note on how certain symbols are represented in SNiFF+ for
Java is also included.

Opening Projects with Symbols
SNiFF+’s Make Support for Java uses symbol information. This is because more than one
class can be defined per file, whereas one byte-code file is generated for each defined class.
So be sure to always open Java projects with the With Symbols check box in the enabled
(default).

Representation of Java Symbols in SNiFF+

In SNiFF+, a static initializer method is called <static_init> and is treated like a class
method.
An instance initializer is called <init> and is treated like a final instance method.

Unattended Updates
SNiFF+’s Make Support for Java uses symbol information (see above). For unattended
unattended Working Environment updates with Java projects, open the file:
<your_sniff_installation_dir>/ws_support/updateWS.sh

n Change the following line

echo open_project \"$2\" WITHOUT_SYMBOLS NO_CACHE

to:

echo open_project \"$2\" NO_CACHE

n Change the following line:

$MAKE -i symbolic_link_to_dependencies_file

to:

#$MAKE -i symbolic_link_to_dependencies_file

n For more information about unattended updates, please refer to the User’s Guide.
va Tutorial 117

Chapter 7 Symbol Information and Automated Updates Unattended Updates
118 SNiFF+

Ja
8SniffJdb Debugger

The SNiFF+ debugger for Java, SniffJdb, implements 3 user interface tools

n the Debugger Command Line Shell

n the Variable Viewer

n the Threads Viewer

Debug commands can be entered at the command line, from the button bar in the source
editor (appears only when the debugger is started), and from the graphical tools’ menus.

To use the SniffJdb debugger ...
To use the SniffJdb you need to

1. Set SniffJdb as your preferred debugger in the SNiFF+ Preferences. This is described
under Setting the debugger in the Preferences — page 73.

2. Make sure that debugging tables are generated by the compiler (-g option). SNiFF+ is
delivered with this option set in the Platform Makefiles. How to set the debugging informa-
tion option is described under Debug information: the -g option — page 111.

3. If you start debugging from the Project Editor, make sure that the project containing the
relevant target is highlighted in the Project Tree.

The debugger command line
Commands include the jdb commands, enhanced by a subset of the gdb commands.
The quickest way to get an overview of the debugger command line commands is to

n type help at the prompt (sniffjdb) in the Debugger Command Line Shell.

All available commands are then listed in alphabetical order together with syntax and a
short description.

Functionality differences between sniffjdb and jdb

Added functionality

n vt - starts the graphical Threads Viewer.

n print [*] <id> | this - the print commands open the graphical Variable Viewer
and show the values of specified (member) fields. Information is not updated automati-
cally at each breakpoint. To update, choose the Variable Viewer’s View > Update.
va Tutorial 119

Chapter 8 SniffJdb Debugger The debugger command line
n display, undisplay - these accept the same syntax as the print commands.
The difference is that the information is automatically updated in the graphical Variable
Viewer every time a breakpoint is reached.

n step out - executes next until a breakpoint in another method is reached. Does not
trace execution.

n finish - executes next until a breakpoint in another method is reached. Traces exe-
cution.

n show - prints SniffJdb version number

n about - opens an About dialog

n extended break/clear syntax (see below)

Removed functionality

n use, list - these commands only make sense for a pure command line debugger.

Command Reference

Display

Automatic display

Command Description

print *<id> Print information about object pointed to.

locals Print values of parameter and local variables of the
current stack frame

memory Report memory usage.

print <id> Print value of specified variable.

print this Print local variables

Command Description

display Lists all display expressions.

display <id> Display value of the specified object.

display *<id> Display the object pointed to.

undisplay [*]<id> Stop displaying the specified object.
120 SNiFF+

Ja

The debugger command line
Breakpoints

Execution Control

Command Description

break [at] <class id>:<line>
stop [at] class id:line

Break and stop can be used as syn-
onyms.

break [at] <file name>:<line>
stop [at] <file name>:<line>

Set a breakpoint in the specified file at
the specified line. This command works
only if the public class of that file is al-
ready loaded (see load command).

break [in] <class id>:<method name>
stop [in] <class id>:<method name>

Set a breakpoint at the specified line in
the file where the specified class is de-
fined.

clear [at] <class id>:<line> Remove a breakpoint at the specified
line in the specified file.

clear [at] <file name>:<line> Remove a breakpoint at the specified
line in the file where the specified class
is defined.

clear [in] <class id>:<method name> Remove a breakpoint at the first line of
the specified method.

Command Description

cont Continue execution from breakpoint.

exit Terminate execution.

finish Execute next until a breakpoint in another method is reached.
Do not trace execution.

next Execute the next statement, step over methods.

run [<class>]
[args]

Start execution of a loaded Java class.

step Execute next statement, step into methods.

step out Execute next until a breakpoint in another method is reached.
Trace execution.

!! Repeat last command
va Tutorial 121

Chapter 8 SniffJdb Debugger The debugger command line
Exceptions

Other

Stack

Command Description

catch <exception class name> Break when the specified exception is thrown.

ignore <excception class name> Do not break when the specified exception is
thrown.

Command Description

gc Trigger garbage collection.

help List commands. For space reasons this listing
does not contain all possible ways to express
the same.

itrace [| on | off] Toggle method trace mode. Does not currently
work with sun.tools.debug.

load <class name> Load Java class.

trace [| on | off] Toggle instruction trace mode. Does not cur-
rently work with sun.tools.debug.

reload Reload the debugged class. Makes sense after
recompilation of source. Keeps breakpoints.

show [version] Print version information.

Command Description

bt [thread id | all]
backtrace [thread id | all]

Dump thread stack

where [thread id | all] Dump thread stack.

down [n frames] Move down thread stack.

frame <number> Move to the specified frame of thread stack.

up [n frames] Move up thread stack.
122 SNiFF+

Ja

The debugger command line
Remote Debugging

Symbolic information

Threads

Command Description

connect <hostname> <password> Connect debugger to a remote process. You
get the password on starting the application
with the debug option.

Command Description

classes List currently known classes.

methods <class id> List a class’s methods.

Command Description

vt Start Threads Viewer

viewthreads Start Threads Viewer

kill <thread(group) Kill a thread or threadgroup.

resume [thread id(s)] Resume threads (default: all).

suspend [thread id(s)] Suspend threads (default: all).

thread <thread id> Set default thread.

threadgroups Suspend threads (default: all).

threadgroup <name> Set current threadgroup.

threadgs List threads.
va Tutorial 123

Chapter 8 SniffJdb Debugger Debugging from the Source Editor
Debugging from the Source Editor
In debug mode, files loaded in the Source Editor are read-only and a button bar is added to
the tool.

n When you press one of these buttons, the corresponding command is executed in the
Debugger Command Line Shell.

n Object IDs are specified by highlighting the object names in the Source Editor.

n The Print *, Print, and this buttons show highlighted objects in the Variable Viewer.

Run Runs the application being debugged from scratch.

Cont Continues interrupted execution.

Step Single-steps into the next function/method.

Next Single-steps over the next function/method.

Break In Sets a break point at the first execution line of a selected method.

Break At Sets a breakpoint at the current cursor position.

Clear Clears the breakpoint in the current line. The cursor must be positioned
to a line with a breakpoint.

Print * Prints the value pointed to by the current selection. The selection must
evaluate to a valid pointer.

Print Prints the value of the current selection. The selection must evaluate to
a valid variable.

this Prints the local variables of the current object.

Stack Opens a Stack window and displays the current call stack

Up Goes one stack frame up in the call hierarchy. A reusable Source Editor
is automatically positioned at the source location of the new stack
frame.

Down Goes one stack frame down in the call hierarchy. A reusable Source Ed-
itor is automatically positioned at the source location of the new stack
frame.
124 SNiFF+

Ja

The Variable Viewer
The Variable Viewer
The Variable Viewer shows a specified variable, class or package in a tree.

To see variables or objects in the Variable Viewer at a breakpoint

n in the Source Editor (debug mode), highlight an object and press the Print * or the Print
button or

n in the Debugger Command Line Shell, type print <id> or type print* <id> or

n in the Debugger Command Line Shell, type display <id> to see variables displayed
and automatically updated at each breakpoint.

To see all the local variables in the Variable Viewer at a breakpoint

n in the Source Editor (debug mode), press the this button or

n in the Debugger Command Line Shell, type this

n By default, SNiFF+ reuses tools to prevent screen cluttering. To open another Variable
Viewer, you can freeze the already open tool by enabling Frozen.

n A shift-click on a tree-node zooms in on the selected variable.

n A click on a simple data-type makes this entry editable in the Variable field (this does not
work with array elements, and variables which are not in a record, a class, or an inter-
face). Editing can be cancelled by hitting <Esc>, or by clicking into another node.

Variable field
va Tutorial 125

Chapter 8 SniffJdb Debugger The Variable Viewer
The Variable Viewer menu

Tools

 > Close Tool: Closes this tool
 > Duplicate Tool: Sets this Variable Viewer to frozen and opens a new Variable Viewer
 > Threadsview: Opens a Threads Viewer
 > About SNiFF+ Jdb: Opens an About dialog

View

> Update: Updates the contents of the selected variable in the current view
> Show typed names on/off: Shows the selected variable with or without modifiers and
types. If no node is selected, the base node is shown
> List all classes: Shows all loaded classes
> Show source: Shows the source of the variable (the position of the breakpoint when
the Variable Viewer was opened)

Tree

> Expand one level: Expands all currently visible unexpanded nodes one level
> Collapse all: Collapses all expanded nodes

Node

> Show father: Shows the father of the currently shown variable (if it exists)
> Expand: Expands the selected node
> Collapse: Collapses the selected node
> Array size 5 - 50: Defines how arrays are subdivided on being opened

History

> 1-10: The last 10 variables shown by this Variable Viewer (the last entry is the currently
shown variable)
126 SNiFF+

Ja

The Variable Viewer
 The Variable Viewer icons

Simple data types

Integer types: - short, - int, long
Real numbers: - float, - double
Special: - boolean, - byte, - char

Expandible nodes (first icon: collapsed / second icon: expanded)

 , - record
 , - array (grayscale, color)
 , - part of an array (grayscale, color)
 , - class (black, red)
 , - interface (black, green)
 , - base node with current path (gray, red)

Non-expandible nodes

 - null pointer (in record, array, class or interface)
 - method, shown in classes
 - instance field, shown in classes, without data
 - error node or null pointer (local or static)

Other information

 , , ... icons are checkmarked if already shown at a higher level
 , ,... icons are marked with a red dot after a forced update if the value has changed.
va Tutorial 127

Chapter 8 SniffJdb Debugger The Threads Viewer
The Threads Viewer
The Threads Viewer shows the existing threadgroups, threads, stackframes and local vari-
ables.

To open the Threads Viewer:

n In the Debugger Command Line Shell, type vt or viewthreads

n In the Variable Viewer, choose Tools > Threadsview

The Threads Viewer consists of four lists:
Threadgroups: All existing threadgroups.
Threads: The threads in the highlighted threadgroup(s).
Stackframes: The stackframes from the highlighted thread.
Local/Argument-variables: Local variables in the highlighted stackframe. If no stackframe
is selected, the variables in the highlighted thread (i.e. from the top-most stackframe) are
listed.

n The button above each list forces an update of the corresponding list.

n By default, SNiFF+ reuses tools to prevent screen cluttering. To open a further Threads
Viewer, you can freeze the already open tool by enabling Frozen.

n If the selection in a list changes, the lists to the right are updated.

n A double-click on an item in the Threads or the Stackframes list opens the Source Editor
at the corresponding position in the source code (if available).

n A double-click on an item in the Local/Argument-variables list opens the Source Editor at
the corresponding position in the source code (if available).

Press these
buttons to
update the
columns
128 SNiFF+

Ja

The Threads Viewer
The Threads Viewer menu

Tools

> Duplicate Tool: Sets this Threads Viewer to frozen and opens a new Threads Viewer
> Close Tool: Closes this tool
> Variableview: Opens a Variable Viewer to show the selected variable
> About SNiFF+ Jdb...: Opens an About dialog

View

> Update: Updates all lists
> Auto-Update off: Turns off the automatic update of the lists
> Auto-Update (slow): Turns on the slow automatic update of the lists
> Auto-Update (fast): Turns on the fast automatic update of the lists
> Show variable: Opens a Variable Viewer with the selected variable
> Show source: Shows the source of the selected stackframe or thread

Threads

> Stop threadgroup(s): Stops the selected threadgroup(s)
> Suspend thread: Suspends the selected thread
> Resume thread: Resumes the selected thread
> Stop thread: Stops the selected thread
va Tutorial 129

Chapter 8 SniffJdb Debugger The Threads Viewer
130 SNiFF+

Ja
9Upgrade Issues

This chapter covers two different kinds of upgrading issues.

n The first section covers Upgrading SNiFF+ 2.x to 3.x — page 131.

n The second section covers Upgrading source code library projects (e.g. JDK) — page 132
(Browsing-Only Projects) that have been added to SNiFF+ Shared Projects. Upgrading
JDK versions is discussed as an example, but only as a general case as it applies to any
source code libraries.

Apart from a note on the changes in applet viewing, added because SNiFF+ supports
both JDK 1.1.x and JDK 1.2, you are referred to the JDK documentation for details about
JDK version changes.

n If your Java Projects are at present in layered Working Environments (PWE - SOWE -
SSWE - RW), this can lead to problems. Please refer to Working Environments set up —
page 100 for more information.

Upgrading SNiFF+ 2.x to 3.x
In Java projects set up in versions of SNiFF+ prior to 3.0, source code packages were rela-
tive to the Working Environment root. As of SNiFF+ 3.0, source code packages are relative
to the project root directory by default. To use existing Java projects with SNiFF+ 3.x, change
the settings accordingly in the Project Attributes.

Upgrading to SNiFF+ 3.1
To use your existing SNiFF+ Java projects with SNiFF+ 3.1 copy

<sniff_installation_dir>/config/template.java.Makefile

to each project directory and rename it to Makefile. That is, replace the existing project
Makefiles. Then, update Makefiles.

Note

If you have made changes in your old Makefiles, merge these changes
into the new Makefiles.
va Tutorial 131

Chapter 9 Upgrade Issues Upgrading source code library projects (e.g. JDK)
Upgrading source code library projects (e.g. JDK)
Here, the JDK sources are used as an example, but the procedure applies to any source
code library project that you have added to your own SNiFF+ Java projects.

n Upgrade your JDK version.

n Then create a SNiFF+ Browsing-Only Project for it.

n Add this to your own SNiFF+ Java Projects (replacing the old JDK project).

n Delete all old class files (Target > Make > clean).

n Rebuild all targets (Target > Make > all).

Upgrading from JDK 1.1.x to JDK 1.2.x
This section offers a few notes regarding upgrading of the JDK. For more information, please
refer to the JDK documentation.

Applet viewing with JDK 1.2

The JDK appletviewer behaviour has changed in JDK 1.2. To quote the JDK documentation:
"In JDK 1.2, appletviewer ignores your CLASSPATH environment setting (which it did
not ignore in 1.1)."
Because of this, the SNiFF+ feature for automatically generating an HTML file to embed and
view applets no longer works if you are using JDK 1.2.
If you are using JDK 1.2, write an HTML file to embed the applet and save this in the direc-
tory that contains the "root" package (the first package in the full package name). That is,
one directory level higher than the top-most directory containing named package code.

Command line length option (-c)

The -c (command line length) option for passing files to the javac compiler is set in

<sniff_install_dir>/make_support/general.java.mk

at 1280 bytes by default.
If the CLASSPATH is longer than the set length, compilation problems can occur.
For JDK 1.1.x tools (compiler), this option must be set, and can be increased if higher
values are supported by the shell used.
For JDK tools as of JDK 1.2 this option is not necessary, and is therefore best removed.
Problems caused by CLASSPATHS that are too long are thus avoided, and compilation is
faster without this option, because a filelist (without repeats) is passed to the compiler.
132 SNiFF+

Ja
10Visaj GUI Builder Integration

The Visaj integration with SNiFF+ allows you to combine Visaj’s graphical GUI design
features with SNiFF+’s source code engineering functionality. The symbol information and
inheritance relationships of Visaj generated source code can therefore be directly browsed
and edited in SNiFF+.

Installation

Requirements

n Integrating SNiFF+ with Visaj is only possible since SNiFF+ 3.1.

n You need JDK 1.1.3 or higher installed on your computer.

n JDK must be in your path.

Note

The Visaj Resource Bundle Editor, Image Editor and Project Window
are currently not part of the SNiFF+ Visaj integration.

Note

Once Visaj is selected as part of the SNiFF+ installation, it is automati-
cally installed on your computer. You need not install Visaj separately.

Note

You can download the JDK from

http://java.sun.com
va Tutorial 133

Chapter 10 Visaj GUI Builder Integration Adding Visaj projects to a SNiFF+ project
For JDK 1.2 users

We suggest that you do the following to improve overall performance.
In the SNiFF_DIR/bin/runvisaj.sh script, change:

javaw com.pacist.visaj.ClassAppLoader $SNIFF_DIR/Visaj
TakeFivePlugin "$1" "$2"

to

javaw -Djava2d.font.usePlatformFont=true
com.pacist.visaj.ClassAppLoader $SNIFF_DIR/Visaj
TakeFivePlugin "$1" "$2"

Selecting Visaj as part of your SNiFF+ Installation

n On Windows, Visaj is part of the Java package. To integrate SNiFF+ and Visaj, make
sure that you select the Java package as part of your SNiFF+ installation.

n On Unix, to integrate SNiFF+ and Visaj, make sure that you select the Visaj package as
part of your SNiFF+ installation.

n For more information on how to install SNiFF+, please refer to the SNiFF+ Installation
Guide for Windows/Unix.

Adding Visaj projects to a SNiFF+ project

Adding a new Visaj project

In the SNiFF+ Project Editor:

1. Make sure that the relevant SNiFF+ project is highlighted.

2. From the menu, choose either

Project > Add Visaj Project to Projectname, or choose Tools > Visaj

3. In the dialog that appears, enter a name for the new project and press Ok.

4. Choose Project > Save Projectname to save the modified project.

Adding an existing Visaj project

First, copy your Visaj project to your SNiFF+ project directory.
Then, in the SNiFF+ Project Editor:

1. Make sure that the relevant SNiFF+ project is selected in the Project Tree.

2. From the menu, choose Project > Add/Remove Files to/from Projectname.

3. In the Add/Remove Files dialog that appears, select the Visaj project file, press the Add
button, then press Ok.

4. Choose Project -> Save Projectname to save the modified project.
134 SNiFF+

Ja

Working with SNiFF+ in Visaj
Working with SNiFF+ in Visaj

Loading the Visaj project into the Visaj Class Editor

In any SNiFF+ tool, choose Tools > Visage
OR
In the SNiFF+ Project Editor, double-click on the Visaj project file

Java code generation

Java code is automatically generated and stored in your SNiFF+ project directory when you

n save a file in the Visaj Class Editor

n execute commands in the SNiFF+ menu of the Visaj Class Editor

n modify the properties of a class in the Visaj Class editor

Online documentation

The Visaj Class Editor’s Help menu provides more information on SNiFF+J Visaj integration
features, as well as on using Visaj.
va Tutorial 135

Chapter 10 Visaj GUI Builder Integration Working with SNiFF+ in Visaj
136 SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-1999 TakeFive Software GmbH.
All rights reserved.

sniff \’snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster’s Unabridged Third New International Dictionary

	Guidelines
	About this Manual
	Conventions
	Tool elements
	Typography
	Feedback and useful links

	Road Map
	The SNiFF+J Java Tutorial

	Project Setup
	Setting up a Java Project
	Preparing the Environment
	Setting your Preferences
	Project Setup

	The Project Editor
	Opening the Project Editor
	The Project Tree
	Creating a project for the JDK sources
	Adding the JDK projects to your project
	Saving a Project Tree view

	Checking in files
	Checking in the project files

	Browsing
	Browsing Symbols
	Opening the Symbol Browser
	The Symbol List
	Looking at an anonymous class
	Using filters
	Keyboard navigation in lists

	Understanding Class Hierarchies
	Opening the Hierarchy Browser
	Colors, typeface and frames

	Browsing class members
	Opening the Class Browser
	Filtering

	Code Dependencies and Impact Analysis
	Opening the Cross Referencer
	Component browsing – Has-A relationships
	Impact Analysis
	Navigating through the source code references
	Call graphing

	Textual search with the Retriever
	Opening the Retriever
	Global Find and Replace

	Differences between versions of files
	Opening the Diff/Merge tool
	Differences between two file versions

	Edit/Compile/Debug
	SNiFF+ Java Build System
	Assumptions
	What SNiFF+ needs to know
	Setting Java Make
	Compiling the application
	Running the application

	Editing and Compiling
	Checking out and opening a file
	Compilation errors

	Debugging
	Setting the debugger in the Preferences
	The debugger command line
	Setting Breakpoints
	The Variable Viewer
	The Threads Viewer

	Freezing the Project
	Freezing the project
	Looking at the history of a file

	Adding new team members
	Preparing the Environment
	Adding new working environments
	Initializing the new working environment
	Updating working environments

	Technical Reference
	Introduction and Basic SNiFF+ Concepts
	SNiFF+ Java Shared Projects and Working Environments
	Typical Java development system

	Java Working Environments and Projects
	Source code directory structure
	Java Working Environments and Shared Project setup
	Adding source code library projects
	Multi-Language Projects

	Java Project-Level Settings
	Project Attributes dialog
	Build Structure

	Compilation, Compiler Options and Execution
	Compilation
	Compiler options
	Execution

	Class Path
	Class path

	Java IDL, JNI and RMI
	Java IDL Generation
	JNI (Java Native Interface) Generation
	RMI (Remote Method Invocation) Generation

	Symbol Information and Automated Updates
	Opening Projects with Symbols
	Unattended Updates

	SniffJdb Debugger
	To use the SniffJdb debugger ...
	The debugger command line
	Debugging from the Source Editor
	The Variable Viewer
	The Threads Viewer

	Upgrade Issues
	Upgrading SNiFF+ 2.x to 3.x
	Upgrading to SNiFF+ 3.1
	Upgrading source code library projects (e.g. JDK)
	Upgrading from JDK 1.1.x to JDK 1.2.x

	Visaj GUI Builder Integration
	Installation
	Adding Visaj projects to a SNiFF+ project
	Working with SNiFF+ in Visaj

