Version 3.2 for Unix and Windows

Ada Tutorial

TakeFlve

oftware

AItgtdSylm Company

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

Copyright

Copyright © 1992-1999 TakeFive Software Inc.

All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:

Trademarks

Credits

Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.

Authors of the first version:

Walter Bischofberger (Sniff)

Erich Gamma (Sniffgdb)

Erich Gamma and André Weinand (ET++)

Table of Contents

Ada Tutorial

Creating a Single-User Project 5
Preparing the Environment 5
Creating a Private Working Environment 5
Creating @a NeW ProjecCt.o v vt e 6
Viewingtheresults 8
CONCIUSIONS et 8

Browsing Symbols 9
Using the Symbol Browser i 9
Ada entries in the Symbol Type drop-down. 11

Follow Cross References 14
Crossreferencing 14
Abbreviations used in Cross Referencer. 18

Browsing examples 19
Browsing Includes 19
Hierarchy BrowSing oot e 21
Using the Retriever e 22

Parser Options 24
Environment Parser Options 24
Project-specific Parser Options. 24

Building the Project’'s Executable 27
Setting up Make Support. 27
Building the projecttarget i 28

Table of Contents

SNiFF+

Ada Tutorial

Creating a Single-User Project

In this chapter, you will learn how to create a single-user project for the example code.
After Preparing the Environment you will create a Private Working Environment and then
create a single-user project.

Preparing the Environment

m Copy the directory

<your _sniff_installation_dir>/exanpl e/ ada/ di ner s, including subdi-
rectories, to a place where you have write permissions.

In the rest of this tutorial, we will use <di ner s> to refer to the complete path to this
directory.

m Start SNiFF+
The Launch Pad appears.

Creating a Private Working Environment

In this part, you will create a Private Working Environment (PWE) for using it with the
example code. As we do not want to share the example files with others, the PWE will not be
based on any Repository Working Environment (RWE). For the same reason, no CVMC tool
will be used.

m Choose Tools > Working Environments, (on UNIX, the Tools menu is represented by
an icon). The Working Environments Tool appears.

In the Working Environments Tool

1. Select the root (*) of the Working Environments Tree.

Ada Tutorial

Chapter 1 Creating a Single-User Project Creating a new project

2. Choose Context menu > New Private.
A dialog appears.

w» Working Environment - New Private

C:/hda_example/diners

[0k] concel| _hep |

Enter a name for your PWE - in the Working Environment field, for example AdaTest.
4. To select the Root of your PWE:

Press the Directory... button to navigate to <di ner s>, double-click on it and Press
Select.

5. Press OK.
The new PWE is created and highlighted.

Creating a new project

In this part you will create projects from the example code in your PWE.
1. Inthe Launch Pad choose Project > New Project... > With Defaults...
2. A Directory Dialog appears.

Navigate to <di ner s> and press Select.
The “Attributes of New Project” dialog appears.

In the “Attributes of New Project” dialog

1. Select the Generate Subproject Tree checkbox (if it isn’t already selected).

Using this checkbox, any subdirectories located in your project directory will be recur-
sively processed, and for all of them a sub-project will be generated.

2. Select the Build Options node.
3. Select the Use SNiFF+ Make Support checkbox.

4 SNiFF+

Ada Tutorial

Creating a new project

4. Select the File Types node.

The following file types should be included in our example project:
AdadX

Make

Project Description

To accomplish this:

From the File Types list select Ada9X (if there aren’t all File Types visible press the
Show All button).

Press the Add File Type button (note that Ada9X changed from italics to bold).
Press the Hide Unused button.
Select Header from the File Types list and press the Remove File Type button.

Select Implementation from the File Types list and press the Remove File Type but-
ton.

If you do not have Ada9X file type, you can create it at user level, or have the Workspace
Administrator create it at site level.

5. Select the Build System tab.
Press the File... button to navigate to
<your _sniff_installation_dir>/ make_support/general.ada. nk.

W Attributes of New Project

- dvanced
uild Options
- Dirgctives Project Description
- Project Targets

- Build Structure

- dvanced

- Parser

= ersion Control System

$SNIFF_DIHa’make_support.-"general.ada.mk
Nore> 7]

7. Press OK.

Chapter 1 Creating a Single-User Project Viewing the results

8. A dialog box appears—asking if the Cross Reference Info should be generated. Press the
Yes button.

Your project di ners.shared with two subprojects - room shared and
random generi c. shar ed - has just been created.

Viewing the results

The Project Editor on your screen should look like this:

¥ PE: diners.shared - skogler PWE:AdaTest [_ (O] x|

Toolz File Project |nfo Target Miew 7

e =

7| |4l Files | UseCache
Private + Shared j IWritabIe + Read Only j
Fiter [Fiters.. |

Source Files of diners_shared

File vl Project

@ diners.adb diners. shared

W diners.shared diners. shared

@ room.adb diners. shared

@ room.ads diners. shared

@ screen.adb diners. shared

@ screen.ads diners. shared

@ society_ads diners. shared

@ tef_adb diners. shared

@ test_cl.adb diners. shared

@ usze_of_import.adb diners. shared

@ windows. adb diners. shared

@ windows.ads diners. shared

| | |
I —_—

Projects I Full Tree < l

- Ml diners.zshared (]
I:‘ random_generic.shared [random_generic]
I:‘ room. shared [room]

™ Frozen [T Lockers [T History

Conclusions

You have just created a single-user project for browsing the Ada example project. Starting
with the next chapter, you will learn how to use the various browsing tools available in
SNiFF+. In the last chapter in this tutorial, you will set up SNiFF+'s Make Support for the
project and then build the project’s executable.

6 SNiFF+

Browsing Symbols

Using the Symbol Browser

Using the Symbol Browser

Symbol
Type

Ada Tutorial

In this chapter, you will learn how to use the Symbol Browser as a starting point for browsing
your project's code. The Symbol Browser allows you to browse all global symbols and
symbol members of a set of projects. It offers a wide range of possibilities for filtering infor-
mation.
The Symbol Browser consists of a list of symbols whose content is determined by the
Symbol Type and Modifiers drop-downs, the Project Tree settings, and the Filter field. The
Project Tree shows the project structure and makes it possible to select the projects whose
symbols are to be displayed. For detailed information about the Symbol Browser, please
refer to your SNiFF+ online documentation or the Reference Guide.

In the Project Editor, choose Tools > Symbol Browser. The Symbol Browser appears.

#g SB: diners_shared - skogler PWE: ... [Hi[=] [E3

Tool: |nfo Class Wiew History 7

EEE RS
7 [odaze -~
— Il 5yrmbols Elfermodtiers 4

j Fiter [I WholeWord Fitwe]

Symbols of diners.zshared

| Symbal vl Clag: =~
sh BEEP SCRI
:d BEEP SCRI
sd BORDERS N
st BORDERS Wi
sh CLEARSCREEN SCRI
sd CLEARSCREEN SCRI
P COLUMN FOSI
po CURRENT WINE
E] DIHERS
E] ERASETOEHDOFLIHE
po FIRST NI
td HEIGHT SEF!Iv
L1 R | _>|_I
—
Projects lm
diners.zshared (]
e random_generic.shared [random_generic]
L % room. shared [room] ¢

™ Frozen I Signature

Language drop-down
Modifiers drop-down

Filters... button

Symbol List

Project Tree

Chapter 2 Browsing Symbols Using the Symbol Browser

2. Take a look at the Language drop-down. The SNiFF+ Ada Parser is actually a Ada 95
parser that understands the Ada 83 subset of the language. For all Ada projects, the lan-
guage string displayed in the drop-down is Ada9X.

3. Since we are interested in browsing all three projects in the Project Tree, let's checkmark
them at this time. To checkmark all three projects quickly, right click anywhere in the
Project Tree and choose Context menu > Select from All Projects.

4. Look at the entries in the Symbol Type drop-down:

The following symbols are listed:
m const

® enum

®m enum item

m object

m package

m pkg object

m pkg subprog (body and def)
m record

m subprog (for functions, procedures and entries)
m typedef

5. Choose the various entries in the Symbol Type drop-down and see what happens. By
selecting the Signature check-box, you can see in which files the symbols appear. Also,
information about object types, subprogram parameters and return types will be dis-
played.

Note that as Ada is not case sensitive, all symbol names appear converted to upper case.
Also note that (non-package) objects and constants are not present in this project, result-
ing in an empty Symbol List when you select them. Named number TABLE_SIZE of pack-
age ROOM can be found among package objects, having the type _NamedNumber_.
Choose subprog def. All package subprograms defined inside package specifications in
the project are listed in the Symbol List.

Choose All Symbols.

6. Scroll down the list till you get to sd REPORT_STATE and double-click onit.

A Source Editor appears and the file r oom ads is loaded into it. As you have just found
out, double-clicking a symbol in the Symbol List opens a Source Editor and loads the file
in which the symbol appears. The cursor is automatically positioned to the symbol in the
file.

In the next chapter, we will use REPORT_STATE to show how you can perform cross refer-
encing in SNiFF+.

8 SNiFF+

Ada entries in the Symbol Type drop-down

Ada Tutorial

package

When you select this symbol type, packages defined in the project are listed in the Symbol
Browser's Symbol List. Also, task, task types and protected types are shown here. Enable
Signature button will list project and file names in which these entities are defined and will
prefix records as record and all other symbols as package.

Note

There are some different kind of Ada symbols, which appear under the
same category in SNiFF+. For example, SNiFF+'s package type corre-
sponds to packages, records, tasks, task types and protected types.
Similarly, subprog type corresponds to subprograms and exceptions. In
this tutorial, when we refer to one of these collective categories, we al-
ways refer to all Ada language constructs which are mapped to the same
collective category. For example, SNiFF+'s various capabilities that ap-
ply to packages also apply to task types and to all other constructs that
you can find in package of the Symbol Type drop-down.

enum

When you select this symbol type, enumeration types defined in the project are listed in the
Symbol List. In case of enumeration types defined in a package, enabling the Signature
checkbox will prefix those enums with the name of the enclosing package in the form
PACKAGE::ENUM. In the example project, for example, you can see PHIL::STATES
enumeration type. The project and the file name in which the definition occur, is also shown.
Double-clicking on the symbol will start a Source Editor and jump to the enumeration type
definition.

enum item

When you select this symbol type, all enumeration items defined in the project are listed in
the Symbol List. Enabling the Signature checkbox will show the enumeration type to which
this enumeration item belongs, in the form described above. In this case, the enumeration
item name appears in brackets. For example, You can see PHIL::STATES {EATING}.

subprog

When you select this symbol type, a list of all global procedures and functions defined in your
project is displayed in the Symbol List. Global here is used to refer subprograms which are
not defined inside package specifications, that is, subprograms declared outside packages
and subprograms that are defined inside package bodies, with no corresponding specifica-
tion in the package specification. These subprograms are local to the package body, and as
they are not visible from the package specification, are considered not to be a part of the

Chapter 2 Browsing Symbols Ada entries in the Symbol Type drop-down

package. Subprograms defined in package specifications are not listed here (you can find
them when you select pkg subprog def (or pkg subprog body) from the Symbol Type
drop-down).

To see the parameter and return types and of the subprograms, enable the Signature
button. You can see the return values in front of the function names. In case of procedures,
the return type is empty. Parameter types can be seen after the subprogram names enclosed
in parenthesis and separated by commas. If no parameters exist, you can see an empty
opening and closing parenthesis, for example, DINERS().

object

When you select this symbol type, all global objects and named numbers are displayed.
Enabling the Signature checkbox will show the object's type in front of its name. For nhamed
numbers, type _NamedNumber__is shown.

In our example project, no global objects are defined, so the symbol list is empty.

pkg subprog

When you select this symbol type, all package subprograms are listed. With Signature
disabled, you can see the package name in which the subprogram is specified after the
symbol name, for example, OPEN is followed by WINDOWS, meaning that OPEN is a
subprogram of package WINDOWS. Enabling Signature will display more detailed informa-
tion. First the return type is shown, followed by the symbol name prefixed with its package
name, and parameter types in parenthesis. Subprogram OPEN is now displayed as
WINDOW WINDOWS::OPEN (Position, Height, Width). As for global subprograms,
return type and/or parameter types may be empty.

You can see special subprograms in the Symbol List, which are not actually defined in the
project. Have a look at item ~RANDOM_GENERIC. There is no subprogram with this name
in any of the projects. This “subprogram” is generated by the parser for each package. It
always has the name of its package, prefixed with a tilde; it has no parameters and return
type. This generated subprogram corresponds to the package initialization statements in the
package body, which can be viewed as a kind of subprogram.

Double-click symbol ~-RANDOM_GENERIC in the Symbol Browser. A Source Editor comes
up, file random_generic.ads is loaded and the keyword PACKAGE is highlighted. This is the
synthesized position of the generated initialization procedure specification.

In the Source Editor, choose Show > Implementation of ~RANDOM_GENERIC. File
random_generic.adb is loaded and the keyword BEG N is highlighted. This is the synthe-
sized position of the body of the generated procedure.

All packages have the specification of the generated procedure. However, body of this
procedure exist only for those packages, which have package initialization. For example, if
you select and double-click ~SCREEN in the Symbol Browser, screen.ads will be loaded
and the keyword PACKAGE will be highlighted. But, as there is no package initialization for
package SCREEN, the Implementation of... option is disabled.

pkg object

When you select this symbol type, package objects are displayed. Symbols appear in the list
similarly to package subprograms, together with their defining package.

10 SNiFF+

Ada Tutorial

Ada entries in the Symbol Type drop-down

typedef

When you select this symbol type, type definitions, subtypes and derived types are shown.
Enumeration types are not displayed here (see enum). Enabling Signature lets you see
packages containing type definitions, and signatures can also be seen in parenthesis. For
example, you can see SCREEN::HEIGHT (_sub_INTEGER). This means that HEIGHT is
defined in package SCREEN and it is a subtype of INTEGER.

The following abbreviations are used in type signatures:

_sub_subtype

_der_derived-type
_acc_access-type
_IntegerType_integral-type (RANGE)
_RealType_real-type (DI G TS)
_RecordType_record-type

Array types has the signature ARRAY (#, ...) OF ..., where the number of hashmarks cor-
responds to the dimension of the array. In case of array of arrays, only the first set of
dimension is displayed. For example:

ARRAY (1..5) OF BOCL is displayed as ARRAY (#) OF BOOL,
ARRAY (1..5) OF STRING (1..20)isdisplayed as ARRAY (#) OF STRING.

Note that as records in Ada always belong to a type declaration, they appear twice, both
among typedefs and packages.

label

When you select this symbol type, all labels defined in the project are displayed in the
Symbol List window.

Note

Labels are only shown in the Symbol Type drop-down if they exist in the
project.

11

Chapter 3 Follow Cross References Cross referencing

Follow Cross References

In this chapter, you will learn how to use the Cross Referencer to follow references in your
source code.

With the Cross Referencer, you can answer questions like “What subprograms are called
from this function” or “Where this package is referred to by” or “Where this object’s value is
reassigned?”. The received cross-reference information can be filtered and refined in many
ways.

Note

m To avoid overwhelming the user with unimportant reference information, local refer-
ences are not displayed in SNiFF+. That is, if a symbol is referenced in the same
scope it was defined, it will not be shown in the Cross Referencer.

m As package subprograms and objects are considered as bearing the highest
importance, references to them are always displayed (even if local).

m References displayed in SNiFF+ can appear only in subprogram bodies. Refer-
ences in any other places are discarded.

Cross referencing

1. In the Source Editor, make sure that entry REPORT_STATE of task MAI TRE D is
selected in either the Symbol List or in the Text View. (Remember that as tasks are
mapped to packages and entries to package subprograms, it can be found under the pkg

12 SNiFF+

Cross referencing

subprog def in the Symbol Browser’s Symbol Type drop-down). Then, choose Info >
REPORT_STATE Refers-To.

The Cross Referencer appears. Entry REPORT_STATE is shown in it with all the sym-
bols it refers to (19 nodes). See also Abbreviations used in Cross Referencer — page 16.

<. CR: diners.shared - skogler PWE:AdaTest

Toolz Edit Show [nfo Class Wiew History 2

TYEaBYbER@AE« 5 ¢

Language IAdaSX J

Filters....

Depthl 1 Fioot Symbol

I ROOM-MAITRE_D:REPORT_STA

—|td SOCIETY::UNIQUE_DMNA_CODES [_st
[DOHE_EATING (ei) PHIL |
DYTHG (=i) PHIL
[EATIHG (=i) PHIL
GOT_OHE STICK (i) PHIL
GOT_OTHER STICK (ei) PH

— po SOCIETY:NAME_REGISTER]
s WINDOWS:TITLE
s WINDOWS:PUT |
p= WINDDWS::NEW_LINE [7]
i PHIL:THINKING
G
i PHIL:DONE_EATING

NAME REGISTER (po) S0CI
[LINE (ps) WINDOUS
PHIL. (pkj

PUT (ps) WINDOWS

I

s ROOM-MAITRE_D::REPORT_STATE

THIHKING {=i) PHIL
TITLE (ps) WINDOWS

m

T
-
)
T
i
>
=
=

ei PHIL::GOT_DNE_STICK| QUE DHR_CODES (td) 5| |
=i PHIL:GOT_OTHER_STICK| DOWS (pk) =
EE
Projects I Full Tree - l

pk PHIL [7 diners.shared [) =

pk WINDDWS [3

1 |

File: I room. adb - C:/Ada_example/diners

select
accept {Which Phil : in Society.Unique DNA Codes;
State 1 in Phil.%tates;
How_Long : im Natural := 0; —I
Which Meal : in Natural := 0} do
[T Frozen Modes: |19 Matches: |12 Cached Files: | 3

Ada Tutorial

Chapter 3 Follow Cross References Cross referencing

14

2. Limit the scope of the next query to packages. Press the Filters... button. Press the None
button under Types and then select the package (pk) checkbox.

w» Xref Filter

3. Now select ps MAITRE_D::REPORT_STATE in the Cross Referencer’'s Graph view and
press the Refers-To button in the Filter dialog.

You should now see a call tree similar to the following:

CR: diners.shared - skogler PWE:AdaTest

EotETy ROOM MAITRE_D::REFORT_ST&
bk PHIL [7 PHIL (pk]

ROOM-MATTRE D: :REPORT STA]
ik WINDOWS [3 — —

Full Tree

dinerz.shared []
z‘ random_generic. shared [f
rocm. shared

select

accept {Which_Fhil : in Society.Unique DNA Codes;
State : in Phil.3tates;
How_Long : in Natural := 0;
Which Meal : in Natural := 0] do

Ada Tutorial

4. Find package WINDOWS in the referenced symbols list.

Number 3 in brackets following the name means that there are 3 references in this entry
to package W NDOWEG.

5. Click on pk WINDOWS to highlight it. Choose Context menu > Show Reference. The

Source Editor highlights the first reference of package W NDOWE: it is an implicit refer-
ence through its subprogram Tl TLE.

6. In the Source Editor choose Show > Next Match to jump the position of the next refer-

ence.

7. Switch back to the Cross Referencer. Let's see what subprograms (both global and pack-

age) package W NDOWS is referred to by. The Filter dialog should still be open. Press the
None button and then select the subprog (s) and pkg subprog (ps) checkoxes. Press
the Referred-By button.

E: CR: diners_shared - skogler PWE:AdaTest
Toolz Edit Show [nfo Class Wiew History 2

TderBOb BB« F

Language [4dac <1 Fiters.. |Depth|1_ Root Symbl

[ROOM MAITRE_D-REPORT_
ORDERS (ps) WINDOWS
TOEHDOFLIHE (=)
CURSOR (ps) WINDOT

—|in RODM-MAITRE_D::"RO0OM-MAITRE_D ;I
s BOGAH-MAITRE D-FEFORT STATE fi5

ps WINDOWS::0PEN [2

= ERASETDENDOFLINE| [LINE (ps) WINDOWS
> ps WINDODWS::PUT OPEH (ps) WINDOWS

PHIL (pk)

bk WINDOWS [3] o
s WINDOWS-PUT [2

p= WINDDWS::NEW_LINE]|

s WINDOWS TITLE [5 Projects [yl Tree
= WINDDWS::BORDERS] /| diners.shared []

P z‘ random_generic. shared
[room.shared{room]

L= WINDDWS::MOVECURSOR]

Kl

File: I windows. ads - C: /Ada_example/diners

with Screen;

package s

—— manager for simple, nonoverlapping screen windows
—— Michael Feldman, The George Washington University
—— July, 1995

[T Frozen Modes: |14 Matches: | 0 Cached Files: I 3

There are 10 subprograms that refer to WNDOWS. One of them,
MAITRE_D::REPORT_STATE is in italic. This means that this reference is already dis-
played in the Cross Referencer.

8. Close the Cross Referencer, the Symbol Browser and Source Editor tools.

15

Chapter 3 Follow Cross References Abbreviations used in Cross Referencer

Abbreviations used in Cross Referencer

Symbol types that can be referred by a subprogram are listed in the following table. The
table also contains abbreviations for the symbol types used in the Cross Referencer.

Symbol Abbreviation
package pk

package object pv

package subprogram ps

object v
subprogram s
enumeration type declaration en

type declaration td

record re

undefined reference ud

Abbreviations for symbol types are also displayed in the Filter dialog.

Cross Referencing undefined symbols

Only SNiFF+ symbols (symbols residing in the Symbol Table and shown in the Symbol
Browser) can be cross referenced. These symbols must be defined in files in the Project
Tree. If a symbol is outside of the files of a given project and its subprojects, it is inaccessible
to SNiFF+, and will be displayed as undefined. Undefined references are always shown in
the Cross Referencer. An example is CALENDAR, which is, though WITH-ed and may be
available to the compiler, not included in the project.

16 SNiFF+

Browsing Includes

Browsing examples

In this chapter, you will learn how to browse a variety of Ada symbols, as well as follow
include statements in your source files.
Also the Hierarchy Browser and the Retriever are used in this chapter.

Browsing Includes

1. Inthe Project Editor, select the file phil.adb.
2. Choose Info > phil.adb Includes.

3. The Include Browser appears. You can see which files are explicitly or implicitly included
in this file.

£%31B: diners.shared - skogler PWE:AdaTest

phil. adb
phil_adb -»

3 phil.ads
phll.adh _ random_generic_ads
= — room.ads
society_ads

Full Tree |—

diners.zshared (]
z‘ random_generic. shared [f
raar. shares

with Society;
with Roon;

with Random Generic;
package hody Fhil is

Ada Tutorial

17

Chapter 4 Browsing examples Browsing Includes

18

. Select society.ads. Choose Context menu > Show Include Statement.

The Source Editor appears, and the statement W TH SQOCI ETY is highlighted. As you
can see, the parser kept track of in which source file was the package SOCI ETY defined.
As the source explicitly named the package through a W TH clause, this is an explicit
include.

Back in the Include Browser, select phil.ads and right-click to show its include statement.

In the Source Editor the statement PACKAGE BODY PHI L is highlighted. For semanti-
cally correct information, at this point the package specification must be read in, though it
was not specified with a W TH clause. This is called implicit include.

Back in the Include Browser, select random_generic.ads. Choose Contex menu >
Included By to see which other source files include this one.

You can see that two files include random_generic.ads: phil.adb and
random_generic.adb. phil.adb is displayed in italic, showing that this include relation-
ship is already displayed.

. Our interest is now on random_generic.adb. Select it and choose Context menu >

Start from random_generic.adb.

random_generic.adb becomes the root. Currently, only this file is displayed in the
Include Browser.

Let's see which files are included by random_generic.adb.

Two additional nodes are displayed: random_generic.ads and ADA.NUMER-
ICS.DISCRETE_RANDOM.

As the package ADA. NUVERI CS. DI SCRETE_RANDOM s not included in the project,
the parser was unable the locate the file in which it is defined. For this reason, instead of
the file name, the referenced package name was displayed in the Include Browser. Note
that the name of the package is in normal typeface, while file names that were found by
the parser, are bold.

. Close the Source Editor and Include Browser tools.

SNiFF+

Hierarchy Browsing

Hierarchy Browsing

1.

Ada Tutorial

In the Source Editor choose Tools > Hierarchy Browser.

All packages, records, protected types, tasks and task types are displayed in a tree.

'.-?-.. HB: diners_shared - skogler PWE:AdaTest

Tool: |nfo Class Wiew History 7

148BaBors|<alzl@a=an
Entire Hierarchy of diners.shared Classes
Language |Adad- | Filter CHOP -
guege foc> =]] CHORSTICK
PHIL
CHOP CHOP-STICK PHILMEAL_LENGTH
PHILMEAL_LENGTH PHIL-PHILOSOPHER
— PHIL-THINK_LENGTH
FHIL-PHILOSOPHER POSITION [re]
RaMDOM_GENERIC
PHIL-THINK_LENGTH -
= RaMDOM_GEMNERIC-ADASS_R&
POSITION [re) ROOM
ROOM-MAITRE_D
[RANDOM_GENERIC ——RANDOM_GENERIC-ADASS_RANDOM SCREEN -
[ROOM —{RODM-MAITRE_D | 4 | E
- et
[SCREEN |—{SCREEN-INT_IO | Projects [F i Tres -
SOCIETY diners.zshared (] -
WINDOW [re] z‘ random_generic. shared [f
wINDOWS [roam. shared {raom] hd
| | »
p—
File: |
™ Frozen Marked: I none Project: I none Mumber of nodes: I 17

Language constructs defined within another one, are displayed as a branch of their sur-
rounding construct. Double-click on CHOP.STICK to see that the protected type STI CK
is defined within package CHOP.

You can restrict displayed symbols to particular projects. In the Project Tree window of the

Hierarchy Browser select room.shared. Choose Context menu > Select From
room.shared only.

Now the display shows information only from that project.
Close the Hierarchy Browser and Source Editor tools

Note

See Parser Options — page 22 to see how hierarchy relationship display can be al-
tered by parser switches.

For embedded packages the parser generates unique symbol names for the con-
tained element. For example, in the above figure you can see protected type STI CK
appearing as CHOP. STl CK.

19

Chapter 4 Browsing examples Using the Retriever

Using the Retriever

The Retriever is a text filtering tool, allowing you to find fragments of text using regular
expressions in your source.

In the Source Editor choose Tools > Retriever.

Make sure that all projects are checkmarked in the Project Tree window of the Retriever.
Enter the word put right to the Retrieve button.

Checkmark Ignore Case and Whole Word.

Press Retrieve.

a > wnh e

A list of source lines appears. The word put is shown in bold.

Y RE: diners.shared - skogler PWE:AdaT est

B | | EE] | 0 |
_ |ﬂ room. adb - diners.shared

‘windows. Put [Phil_windows[Phil_Seatz[which_Phil).
windows, Put [Phil_\Windows[Phil_Seats[which_Phil]),
windows, Put [Phil_\Windows[Phil_Seats[which_Phil]),
windows, Put [Phil_\Windows[Phil_Seats[which_Phil]),
windows, Put [Phil_\Windows[Phil_Seats[which_Phil]),
windows, Put [Phil_\Windows[Phil_Seats[which_Phil]),
@ screen.adb - diners.shared
19 Test_|0.Put ltem => ASCILBEL):
24: Test_|0.Put [ltem => ASCILESC):
|— 25 Text_|0.Put [ltem => "[2)"):
diners.zshared (]
z‘ random_generic.shared [rando

o] room.shared room) when Phil.Breathing =»

Windows.Title (Phil Windows(Phil_Seats(Which Phil)),
Society.Name Register(Which Phil), '-'):
Uindows. (Phil Windows (Phil_Zeats(Which Phil)),
T =" & Integer'Image (T) & " 7
& "Breathing..."):
Windows.New_Line (Phil Windows (Phil Seats(Which Phil))):

when Phil.Thinking =»
Windows. Put (Phil Windows(Phil_Seatsz(Which Phil)),
T =" & Integer'Image (T) & " 7
& "Thimking"
& Integer'Image (How_Long) & 7 secomds. ™) ;
Windows.New_Line (Phil Windows (Phil Seats(Which Phil))):

‘windows. [Phil_windows[Phil_Seats[which_Phil).

6. Double-click any of the lines.

A Source Editor appears and the cursor is positioned to the word put .

20 SNiFF+

Ada Tutorial

7. Inthe Source Editor choose Show > Symbol(s) PUT....

The Choose Symbol dialog appears. The dialog appears whenever SNiFF+ finds more
than one symbol of the same name that matches a symbol request, or when multiple
matches are found after Show > Symbol(s) symbol... is executed.

8. In the Choose Symbol dialog, switch on the Show listing of files button. This enables
you to see the file names and projects in which the symbol appears.

9. Select the first entry and press the Definition button to jump to the procedure’s definition.

10. By following the steps outlined above, you can quickly jump to any symbol without have to
scan through your source code.

11. Close the Source Editor and Retriever tools.

21

Chapter 5 Parser Options Environment Parser Options

Parser Options

In this chapter, you will learn how to configure a number of parser options for parsing Ada
code.

The Ada Parser allows you configure certain parser options using environment variables,
some of them by Project Attributes; some options are affected by both. These options are
discussed in detail below.

Environment Parser Options

There are two environment variables that the Ada Parser reads. These environment vari-
ables has effect on all projects currently open in SNiFF+.

s SN FFADA CACHE

For improving performance of the parser, a symbol table cache is utilized. The number of
files in the cache can be limited by setting SNI FFADA _CACHE environment variable. If
not set, defaults to 1000.

Disabling the cache (setting SNI FFADA CACHE to 0) will increase parsing time by up to
500%, depending on the project size.

= SN FFADA _NOBASE

Ada package nesting is displayed in SNiFF+ as inheritance in the Hierarchy Browser by
default. If this variable is set, the default behavior is not displaying nesting information.
See project specific option - b+ and - b- which override the default behavior below.

Project-specific Parser Options

In the Project Editor click anywhere in the Project Tree and choose Context menu > Select
from All Projects. Then choose Project > Attributes of Checkmarked Projects.

22 SNiFF+

Project-specific Parser Options

m Under Build Options select the Directives node.

The Preprocessor Directive(s) field is available in this view. This field was originally
designed for entering preprocessing directives for C/C++ projects. Limited capabilities of
the C/C++ preprocessor is available in the Ada Parser (see -D options below). Also, this
field can be used to set project-specific parser options. Any of these options affects only
the project for which is set.

w» Project Attributes

E| General diners
: e Avanced
E| Build Options

random_generic
hen no platform able) room

Project Targets
Build Structure
Advanced
Parzer
= ersion Control System
File Types

Note

The Preprocessor Directive(s) field (containing parser options) is al-
ways evaluated, regardless of whether Preprocess before Source
Code Parsing checkbox (located in the Parser node) is selected or not.

Available options:
" -€

Log (syntax) errors in SNiFF+'s Log Window. It is recommended that this option is always
set.

Ada Tutorial 23

Chapter 5 Parser Options Project-specific Parser Options

24

m -nf

Ignore forward declarations.

When both forward declaration and complete declaration is found, both is displayed in the
Symbol Browser. Setting this option, only the complete declaration will be shown. If the
complete declaration can not be found, the forward declaration will be displayed, regard-
less of this option.

m -83

Ada 83 mode. In this mode, the Ada Parser does not recognize Ada95-specific keywords
as keywords, but treats them as identifiers. Using this option, you can parse Ada83 code,
which contain Ada95 reserved words as identifiers (in the default Ada95 mode, it would
be treated as syntax error). The keywords appearing only in Ada95 but not in Ada83 are:
ABSTRACT

ALI ASED

PROTECTED

REQUEUE

TAGGED

UNTI L

m -b+and-b-

With these options, you can override the default behavior of displaying nesting in the Hier-
archy Browser (see explanation for SNI FFADA NOBASE in Environment Variables sec-
tion above). - b- forces nesting information hiding, while - b+ forces nesting information
display.

m -Dident

The Ada Parser recognizes and processes #i f def , #i f ndef , #el se and #endi f
C preprocessor directives. For correct preprocessing, symbolic names (macros) must be
defined. - Ddirectives specified here will be passed to the parser’s preprocessor. Multiple
- D directives are allowed. #i f def nesting in the source code is allowed up to the nest-
ing depth of 20.

To set the -e option:

enter -e in the Preprocessor Directive(s) field.
Select the checkbox right to the field.

Press the Set for All button.

Press OK.

A dialog asking to update the makefiles appears. We will do this later so press No.

Save the whole project in the Launch Pad.

SNiFF+

Building

Setting up Make Support

the Project’s Executable

In this chapter, you will set up SNiFF+'s Make Support for the project and then build its
executable.

Setting

Note

In order to complete the last section in this chapter you must have a
GNAT Ada environment installed on your machine. SNiFF+'s Make Sup-
port creates search paths only for files which are actually in the project.
Standard included files (the GNAT RTL) are usually not added to the
SNiFF+ project, but must be available to GNAT when compiling and link-
ing.

An environment variable SNi FF_ ADAMAKE should be set to 1.

up Make Support

Generating search paths

1.

In the Project Tree of the Project Editor, make sure that all projects are checkmarked.
Choose Project > Attributes of Checkmarked Projects... to open the Project Attributes
dialog. In this dialog, you can look at and modify all the attributes of selected projects.

2. Select the Build Options - Directives node.

3. Select toggles left and right to the Generate... button.

You can use checkmarks to modify attributes of all projects simultaneously. With the
checkmarks off, you can set attributes of the project which is highlighted in the Project List
window on the right.

Press the Generate... button to generate the include paths for all projects. The project’s
include path information will then be displayed in the Include Directive(s) field (Ignore the
warnings in th Log Window).

Press Set for All to apply changes to all projects (Again ignore the warnings in the Log
window).

Press Ok to save the changes to the project attributes.

7. Two dialog boxes appear. Press No in both.

Setting up the main target for diners.shared

1.

Ada Tutorial

In the Project Tree of the Project Editor, double-click di ners. shar ed to open its
Project Attributes dialog.

25

Chapter 6 Building the Project’'s Executable Building the project target

2. In the Executable field of the Build Options-Project Targets node, enter a name for the
project’'s executable. Using GNAT, this name must match the name of the source file
which contains the project’'s main target (di ner s).

Please note that include path has already been generated.
4. Switch to the Build Options-Build Structure node.

5. Press the Generate... button next to the Recursive Make Dirs field at the bottom of the
view.

The executable is built using recursive Make rules. By pressing the Generate... button,
SNiFF+ generates the order of subprojects in which Make is executed.

Note

When using languages other than Ada, building an executable is
usually done by specifying all the object files needed to build it. For
this purpose, a project can have the Passed to Superproject at-
tribute, which specifies which object files are to be included in the
link.

In the GNAT Ada model, building the main target is performed by
ghat nake, based on generated . al i files. Usage of . al i files
obsoletes specifying object files to be passed to superproject. For all
Ada projects, you can leave this field empty.

Press Ok to save the changes to the project attributes.
7. A dialog—asking to update the makefiles appears—press Yes.
In the Launch Pad, save the changes made to the Project Description Files of

di ner s. shar ed and its subprojects.

Building the project target
You are now ready to build the executable. The steps outlined below are to be executed in
the Project Editor.

1. Choose Target -> Make... > diners to build all the object files and the main target in the
shared project.

A Shell opens, in which the sni f f nake di ner s command is executed. Upon comple-
tion, you should have an executable named di ner s in <di ner s>.

2. Run the executable if you want. To do so, enter di ner s in the Shell, or choose Target >
Run diners.

SNiFF+'s Shell does not have all the terminal capabilities which are required by di ner s.

26 SNiFF+

Ada Tutorial

3. Close the di ners. shar ed project

Note

Due to differences between the C/C++ and GNAT library models the
following specialities apply:

Within one project you can not mix Ada sources with other languag-
es.

GNAT has very strict file naming conventions. The project’'s execut-
able target must be named according to these rules; that is, if the
main file is 'diners.adb’, the executable must be named 'diners’.

gnatmake supports executable targets only. Any other kind (relink-
able object, library) must be made manually. As object sharing is not
supported, the only helping target that applies is

‘clean’.

During make you will receive warnings about overwriting targets (e.g.
Warning: overwriting rule ‘diners’), which is the normal behavior and
can be ignored.

This concludes the tutorial on browsing Ada code.

27

	Creating a Single-User Project
	Preparing the Environment
	Creating a Private Working Environment
	Creating a new project
	Viewing the results
	Conclusions

	Browsing Symbols
	Using the Symbol Browser
	Ada entries in the Symbol Type drop-down

	Follow Cross References
	Cross referencing
	Abbreviations used in Cross Referencer

	Browsing examples
	Browsing Includes
	Hierarchy Browsing
	Using the Retriever

	Parser Options
	Environment Parser Options
	Project-specific Parser Options

	Building the Project’s Executable
	Setting up Make Support
	Building the project target

