SNIiFF+

Version 3.2 for Unix and Windows

Symbol Table API

Take Five
oftware

AItgtdSylm Company

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

Copyright
Copyright © 1992-1999 TakeFive Software Inc.

All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does
not imply publication or disclosure.

Parts of SNiFF+:;
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.
Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.

Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits

The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of
Switzerland. Its development was considerably facilitated by the public domain application
framework ET++.

Authors of the first version:

Walter Bischofberger (Sniff)

Erich Gamma (Sniffgdb)

Erich Gamma and André Weinand (ET++)

Table of Contents

Symbol Table API 5
Introduction 5
How the SNiFF+ Symbol Table API queries the Symbol Table 5
List of queryable symbols in the Symbol Table 6
Using the SNiFF+ Symbol Table API 7
Limitations of the current release of the SNiFF+ Symbol Table API 7
Files that are part of the Symbol Table API. 7
Linking the Sample Program 8
Starting the Sample Program 8
Command Reference 9
S AIUP .« o e 9
Connectingto SNIFF+ 9
Closing @ Projecto e 10
Closing sniffapi server 10
Closing the connection i 11
Opening a project in @apiServer. e 11
Performing a qUery 12
Gettinga hasheditem 13
Interpreting the query result 14
Description of Queries 20
Hierarchyofaclass. i e 20
Query Full Hierarchy e e 20
GetrootClass . . . o 20
Get SUPEICIASSES ... oottt 21
Get SUDCIASSESo 21
Classesreferred byitem 21
Classesreferringtoitem e 21
Query formembers e 22
Findall symbols. 22
Find File. . ..o 22
Items, eProc and eMethodl referencesto 23
ltemsreferringtoanitem. i 23
Getversioninformation 23

Symbol Table API

Table of Contents

SNiFF+

Symbol Table API

Introduction

The SNiFF+ Symbol Table API allows you to access symbol information from the Symbol
Table of a project and to use this information for writing your own applications. For a defini-
tion of the Symbol Table, please refer to User’s Guide > Glossary . The functions for writing
your own applications are contained in the SNiFF+ Symbol Interface Library. These functions
have C linkage and are based on the idea that requests to the Symbol Table are performed
as queries.

How the SNiFF+ Symbol Table API queries the Symbol Table

Symbol Table API

The diagram on the following page indicates how queries to the Symbol Table are made via
the SNiFF+ Symbol Table API. A query goes through a number of stages (or layers), starting
from the programmer interface (Symbol Table API) and ending up at the Symbol Table.
Some of the important features of the query process are:

m Query operations are cached both at the interface level and at the Symbol Table level.
This results in reduced data traffic and faster query processing times.

m Data exchange between the Symbol Table API and the Symbol Table is managed by two
protocol layers.

m The Query Engine to the Symbol Table is optimized. This results in a quick availability of
query results.

Chapter 1 List of queryable symbols in the Symbol Table

| Synbel Table

SMiFF+ Zymbol Table

+

Query Engine

Optimized for quick avvailabiltiy of
query esults

Cache | Hash Table

Ferformed query operations
are cached

Dump Functions

Functions for decormposing the objects
into a byte steearn

+

‘ Protacel Layer

}7

.
Sockets
¥

Protocol for sending the
bytesteern on both sides

‘ Protacel Layer

}7

¥

Undump Functions

Functions for compounding the bte
stream

Hash Table | Cache

Ferformed query operations
are cached

Interface

Interface for programmer

List of queryable symbols in the Symbol Table

You can query the Symbol Table for the following symbols:

m Class scope:
m instance variable
m method definition
m method implementation
m template declaration strings
m superclasses
m subclasses
m references

m File scope:

m functions

m variables

m types

B enumerations
® macros

m includes

Other queryable items

m Version configuration symbols and references

SNiFF+

Limitations of the current release of the SNiFF+ Symbol Table API

Using the SNiFF+ Symbol Table API

Please refer to the Sample Interface Definition File (c_symTab_APl.h) and Sample
Source File (test.c) in <your_sniff_installation_directory>/symbol_AP| directory. The
file test.c gives detailed information about how to retrieve information from the Symbol
Table of a project. The file c_symTab_APIl.h contains declarations of functions and data
types that are contained in the SNiFF+ Symbol Interface Library.

Limitations of the current release of the SNiFF+ Symbol Table API

The current release of the SNiFF+ Symbol Table APl has some limitations associated with it.
These are:

m SNiFF+ must run on local machine as the ApiServer.
m When SNiFF+ runs in API mode, it is blocked for user interaction during the query.
m SNiFF+ must be running before a query can be run.

Files that are part of the Symbol Table API

Symbol Table API

The following files specific to the SNiFF+ Symbol Table API are created in your
$SNIFF_DIR/symbol_API and $SNIFF_DIR/bin directories:
In $SNIFF_DIR/symbol_API

» README README file

m c_symTab_APlLh Interface definition file

m test.c Sample source

m lib.<platform>/lib- SNiFF+ Symbol Interface Library plat-
SniffApi.a form-specific library

Chapter 2 Using the SNiFF+ Symbol Table API Linking the Sample Program

Linking the Sample Program

You will have to link the sample program to the SNiFF+ Symbol Interface Library.
Examples:
on SunOs:

gcc -0 test test.c libSniffApi.a -Im

on Solaris:

gcc -0 test test.c libSniffApi.a -Im -Isocket -Insl

on Windows:

cl -0 test.exe test.c libSniffApi.a wsock32.lib advapi32.lib

Starting the Sample Program

To start the Sample Program, do the following:

1. Start SNiFF+.

2. In the Launch Pad, select Tools > Working Environments
The Working Environments tool appears.

3. In the Working Environments tool, select the Working Environment that you will be work-
ing in.

4. Select Tools > Log .

5. Inthe Log tool that appears, make a note of the session number.

In a Command Shell
Navigate to the symbol_API directory.
On Windows , type
m test.exe -s< session_number> -p <project>
On Unix, type
m Jtest -s< session_number> -p <project>

<session_number> is the session number that you got from the Log tool, e.g., session2.
<project> is the absolute path to the project.

Note

DO NOT LEAVE ANY SPACES when typing -s followed by the session
number as well as -p followed by the absolute path to the project.

The test program then opens the project and dumps the current version of all files, dumps
the class hierarchy and prints the information about all classes to the Shell. For detalils,
please refer to the test.c file in your SNIFF_DIR/symbol_API directory.

8 SNiFF+

Startup

Command Reference

Please refer to the Sample Interface Definition File in
<your_sniff_installation_directory>/symbol_API/

directory for a description of the declarations of functions and data types that are contained
in the SNiFF+ Symbol Interface Library.

Startup

Function

void __si__module__init(void)
Description

must be called once at startup before any interface action is performed
Return Value

void

Parameter

void

Connecting to SNiFF+

Function
SNIFFACCESS si_open(char* session, char*host)

Description

opens a connection to a running SNiFF+

Return Value

SNIFFACCESS :must be given as a parameter for each access function

Symbol Table API

Chapter 3 Command Reference Closing a project

Parameter
char * host :string that gives the name of the machine where sniffapi is running.
When host is set to NULL, the local host is used. This parameter is
not yet implemented to run on a remote host
char * session :the SNiFF+ session represented in the SNiFF+ Log window. When
session is set to NULL, then session0 is assumed
Note

SNiFF+ must be up and running for the API connection to work.

Closing a project

Function
si_bool si_close_project (SNIFFACCESS,char* proj)

Description

closes a project

Return Value
si_bool tells if function code was successfully sent
Parameters

SNIFFACCESS :handle for the desired connection

char* proj :name of project to be closed

Closing sniffapi server

Function
si_bool si_quit(SNIFFACCESS)

10 SNiFF+

Description

closes sniffapi server

Return Value
si_bool itells if function code was successfully sent
Parameter

SNIFFACCESS :handle for the desired connection

Closing the connection

Closing the connection

Function
si_bool si_exit(SNiIFFACCESS)

Description

closes connection

Return Value
si_bool tells if function code was successfully sent
Parameter

SNIFFACCESS :handle for the desired connection

Opening a project in apiserver

Function
si_bool si_open_project SNIFFACCESS,char* proj

Description

opens project in apiserver

Symbol Table API

11

Chapter 3 Command Reference Performing a query

Return Value
si_bool itells if function code was successfully sent
Parameter

SNIFFACCESS :handle for the desired connection

char* proj :same name of project as in si_open

Performing a query

Function

si_Collection*si_Query (si_QType, si_Scope s, si_ltem* i)

Description

performs query

Return Value

pointer to :returned by query operation contains all of the si_Item's
si_Collection

Parameter
si_QType :type of query
si_Scope :scope to which the query is expanded
si_ltem sitem that the query is based on
Note

When si_QType is eQFindSym, you must set the second parameter
(si_Scope) to the type (si_Type) that you want the Symbol Table to
return.

Also, depending on your compiler, you may have to convert Si_Type
into Si_Scope (by means of an explicit cast).

The following is an example of such an explicit cast:

(si_Scope) eTFile

12 SNiFF+

Getting a hashed item

Getting a hashed item

Function

si_item* getHashed (si_item*)

Description
si_item*X :parameter
si_item*Y :return value

si_item*Y = getHashed(si_item*X)
To access next item in collection, use si_item*X. T o access data cached on the client

side, use si_item*Y. If you use si_item*Y -> next, you will access a different
collection.
Return Value
si_item* :the item from the cache
Parameter
si_item* :a cached item

Symbol Table API

13

Chapter 4 Interpreting the query result Getting a hashed item

Interpreting the query result

14

The results of your queries to the Symbol Table are data structures. The values of the
elements of the data structures depend on the nature of the query made to the Symbol
Table.

A general description of the elements is given followed by a description of the elements of
the data structures after each type of query to the Symbol Table.

General description of the data structure elements

General description of the elements of si_Item

m struct si_ltem*next

used in si_Collection
do not modify

m struct si_ltem*prev

used in si_Collection
do not modify

m si_uchar*name
name of the item (string)
m si_Type type
type of the item (one of si_Type's)
m Si_Resolve take
see the description of si_ Resolve below
m si_ulong _hash
do not modify

General description of the elements of si_Resolve
m Si_Ingredients*_incl
dynamically points to si_Ingredients if _hash ==
m Si_bool hash
if hash == 1, _incl is null
if _hash == 0, si_ltem is hashed. To get the value of the expanded pointer, call
getHashed(si_ltem*)

SNiFF+

Getting a hashed item

General description of the elements of si_Ingredients

m si_Collection*subltems

list sub items of this item

m si_Collection*subClass

list of sub classes for eTClass

m si_Collection*superClass

list of super classes for eTClass

m struct si_ltem*from

in special cases a hashed item where this item comes from (e.g., nested class)

si_Scope scope

scope of the item (one of si_Scope)

m si_ulongsPos

absolute start position in file

m si_ulongePos

absolute end position in file

m si_uchar* typeStr

type string as used in SNiFF+ (formatted string)

si_uchar* declStr

full string as appears in declaration (formatted string)

m si_Flagflags

flags of this item
use the is...(item) functions (e.g., isOverloaded(si_Item*)) to evaluate the
flags

m si_ulong_magic__cooky

do not modify

Description of the data structure elements when si_ltem is eTFile

Symbol Table API

Description of selected elements of si_ltem

struct si_ltem*next
empty

struct si_ltem*prev
empty
si_uchar*name
name of file

15

Chapter 4 Interpreting the query result Getting a hashed item

16

m si_Typetype
eTFile

Description of selected elements of si_Ingredients

m si_Collection *subltems

all items in this file
m si_uchar*typeStr

language string of file (e.g., Ansi C/C++)
m si_uchar*declStr

absolute path of file

Description of the data structure elements when si_Item is eTClass

Description of selected elements of si_ltem

m Si_uchar* name
name of the class

m si_Typetype
eTClass

Description of selected elements of si_Ingredients

m si_Collection*subltems

list of all items of eTClass
m si_Collection*subClass

list of sub classes of eTClass
m si_Collection*superClass

list of all super classes whose node is preceded by a node of type etScope, which has the
following structure:
Description of selected elements of si_Item

m si_uchar* name
visibility of the inheritance (e.g., public, protected, etc.)
m si_Type type

eTScope
Description of selected elements of si_Ingredients

m si_uchar* typeStr
scope string (e.g., in class B: public A::nested , “A” is the scope string)

SNiFF+

Getting a hashed item

m si_uchar* declStr

template argument list string (e.g., in class b: public A<X,Y,Z> XY, Z "isthe
argument list string)

m si_Flag flags

Note

If inheritance is virtual, the corresponding flag
(isVirtual(si_ltem*)) is set

m struct si_ltem *from

if scope is eSFile, *from is a null pointer.
if scope is eSClass, the class is nested, and *from is a hashed item to the class in which
eSClass is nested

m Si_Scope scope

eSFile or eSClass, see above

Description of the data structure elements when si_Item is a version
configuration
Description of selected elements of si_ltem:

m si_uchar* name
version of queried file
m si_Type type
eTHead, eTSymbolicName, eTBranch

Description of selected elements of si_Ingredients

m si_uchar* declStr

symbolic version string

Description of the data structure elements when si_Item is eTMethodD,
eTMethodl, or eTProc

Description of selected elements of si_ltem:
m Si_uchar* name
name
m Si_Type type
eTMethodD, eTMethodl, or eTProc

Symbol Table API

Chapter 4 Interpreting the query result

18

Getting a hashed item

Description of selected elements of si_Ingredients

There is a special node in this collection:
Description of selected elements of si_ltem
m si_uchar* name
“()"
m si_Type type
eTParam
Description of selected elements of si_Ingredients
m si_ulongsPos
starting position
m si_ulongePos

ending position
In the following example:

func| (arguments) |
the pipes (|) indicate the starting and ending positions
® si_ltem* from

In case the item is a eTMethodl, the from field is a pointer to the symbol
eTMethodD in SNiFF+. To get the full representation of eTMethodD , call the following
query:

si_Query(eQFindSym, eSGlobal, from);

Description of the data structure elements when si_Item is eTParam

Description of selected elements of si_Item:

®m si_uchar* name
name

m si_Type type
eTParam

Description of selected elements of si_Ingredients

There is a special item “()” representing the start and end position of the argument brackets
where the start and end position is stored in the sPos and ePos of the structure
si_ingredients.
Description of selected elements of si_Ingredients
m si_uchar* typeStr

full string as stored in SNiFF+
m Si_uchar* declStr

internal representation of the format character string used by SNiFF+

SNiFF+

Symbol Table API

Getting a hashed item

m si_Flag eFConst

for constant parameters

m si_Flag eFTemplate

for template parameters
m si_Flag eFDefault

for parameters that have a default value

For a description of the data structure elements of all other values of si_Item
please refer to General description of the data structure elements — page 14.

19

Chapter 5 Description of Queries Hierarchy of a class

Description of Queries

Hierarchy of a class
eQOO0Hierarchy

Description

Queries for the Hierarchy of one Item which is a class.
Example:

si_Collection*result=si_Query(eQOOHierarchy,eSGlobal,item);
Item is a class returned from a previous query.

Query Full Hierarchy
eQOOFullHierarchy

Description
Queries for the whole hierarchy in the loaded project.
Example:
si_Collection*result="si_Query(eQOOFullHierarchy,eSHierarchy,
0);

Get rootclass
eQOO0Getroot

Description

Get rootclass of Item, if NO_ITEM the root, or dummy root of hierarchy.
Example:

si_Collection*result=si_Query(eQOOGetroot, eSGlobal, item);
item is a class returned from a previous query.

20 SNiFF+

Get Superclasses

Get Superclasses

eQOO0GetSuper

Description

Get all Superclasses of Item, if NO_ITEM all superclasses found will be returned.
Example:

si_Collection*result=si_Query(eQOOGetSuper,eSGlobal,item);
item s a class returned from a previous query.

Get Subclasses

eQ0O0GetSub

Description

Get all Subclasses of Item.
Example:

si_Collection*result= si_Query(eQOOGetSub, eSGlobal, item);
item is a class returned from a previous query.

Classes referred by item

eQReferredBy

Description

Find all classes referred by Item.
Example:

si_Collection*result= si_Query(eQReferredBy, eSGlobal, item);
item is a method and procedure returned from a previous query.

Classes referring to item

Symbol Table API

eQReferresTo

21

Chapter 5 Description of Queries Query for members

Description
Find all classes referring to Item.
Example:
si_Collection*result="si_Query(eQReferresTo,eSGlobal,item);
item is a symbol returned from a previous query.

Query for members

eQMembers

Description
Queries for all Members of specified Item.
Example:
si_Collection*result="si_Query(eQMembers,eSGlobal,item);
item is a symbol returned from a previous query.

Find all symbols
eQFindSym

Description
Find all symbols in given scope.
Example:
si_Collection*result= si_Query(eQFindSym, eSGlobal, item);

item is an empty item where only the name and the type are replaced with that of the
symbol you want to search.

Find File
eQImplFiles

Description

Find all Items of type File in global scope.
Example:

si_Collection*result="si_Query(eQIlmplFiles, eSGlobal, 0);

22 SNiFF+

ltems, eProc and eMethodl references to

Iltems, eProc and eMethodl references to

eQReferencesTo

Description
Find all Items, an eProc or eMethod| references to.
Example:
si_Collection*result="si_Query(eQReferencesTo, eSGlobal,
item);
item is a method and procedure returned from a previous query.

Items referring to an item
eQReferencedBy

Description
Find all Items referring to an Item, not a supported and tested feature.
Example:
si_Collection*result= si_Query(eQReferencedBy, eSGlobal,
item);
item is a symbol returned from a previous query.

Get version information
eQFileVersionConfig

Description

Get version information for a file

Symbol Table API

23

Chapter 5 Description of Queries Get version information

Example:

si_ltem * req = si_cloneltem (fileltem);
req->name = version;

regq->type = type;

fileltem is an eTFile item from which you want to get the version
control information

version is the symbolic name of the version which you want to query
e.g., HEAD
type is either eTSymbolicName , eTHead or eTBranch

si_Collection*result= si_Query(eQFileVersionConfig, 0, req);

24 SNiFF+

	Symbol Table API
	Introduction
	How the SNiFF+ Symbol Table API queries the Symbol Table
	List of queryable symbols in the Symbol Table
	Using the SNiFF+ Symbol Table API
	Limitations of the current release of the SNiFF+ Symbol Table API
	Files that are part of the Symbol Table API
	Linking the Sample Program
	Starting the Sample Program

	Command Reference
	Startup
	Connecting to SNiFF+
	Closing a project
	Closing sniffapi server
	Closing the connection
	Opening a project in apiserver
	Performing a query
	Getting a hashed item

	Interpreting the query result
	Description of Queries
	Hierarchy of a class
	Query Full Hierarchy
	Get rootclass
	Get Superclasses
	Get Subclasses
	Classes referred by item
	Classes referring to item
	Query for members
	Find all symbols
	Find File
	Items, eProc and eMethodI references to
	Items referring to an item
	Get version information

