
Java Debugger —sniffjdijdb

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

SNiFF+ Java Debugger — sniffjdijdb

Overview
This paper relates to the new SNiFF+ Java debugger, sniffjdijdb. For information on
the sniffjdb debugger, also supplied in the SNiFF+ package, please refer to the SNiFF+
Java Tutorial.
� System Requirements

The new sniffjdijdb debugger is supported only on Windows and Solaris.
You have to use Java versions 1.2.x, that is, as of version 1.2.1.

� Two debuggers — page 4
Because of changes in the Sun Java debugger interface, SNiFF+ now provides 2 Java
debugger executables. Which executable is used depends on the JDK version you are
using and on your platform.

� Breakpoints — page 5
It is possible to store breakpoints persistently between sessions. Breakpoints are then
automatically set at the start of the next debugging session.

� Remote debugging of Java applications — page 5
This section applies only to JDK versions 1.2 or higher. "Remote" in this context means
using two separate Java Virtual Machines (JVM); one running the application being
debugged (or target JVM), and one running the debugging front end. Whether or not
these two JVMs are running on the same physical machine determines how you can
connect to the target JVM. Typical examples for remote debugging are servlets and RMI
applications.

� Other enhancements — page 6
In the Variable Viewer, it is now also possible to edit string objects and array members (if
these are simple data types) for on-the-fly tests.

� Command reference — page 7
All the commands described can at present only be entered at the debugger command
line. Only commands that are new, or that differ in functionality from those used in
sniffjdb are described.

� Troubleshooting — page 8
These are a few things you might need to be aware if you use sniffjdijdb.
3

SNiFF+ Java Debugger — sniffjdijdb
Two debuggers
Because of changes in the Sun Java debugger interface, SNiFF+ now provides 2 Java
debugger executables. Which executable is used depends on the JDK version you are using
and on your platform.
This is automatically detected by SNiFF+, but can also be overridden as described under
Overruling automatic debugger detection — page 4.

� sniffjdb

This debugger is used for all JDKs up to and including JDK 1.2.0, as well as for platforms
that the new Java Platform Debugger Architecture (JPDA) does not support (see below).
Please see the SNiFF+ Java Tutorial for more information on sniffjdb.

� sniffjdijdb

This debugger is based on the Sun Java Platform Debugger Architecture (JPDA),
available as of JDK 1.2.x releases, and at present supported only for Windows and Sun
Solaris.

� Note that, in the SNiFF+ Preferences and at the debugger command prompt you will see
only sniffjdb. To see which debugger is currently being used, type

about

at the debugger command prompt.

Overruling automatic debugger detection
To overrule automatic debugger selection, create an environment variable called

SNIFF_USE_JDK12

before starting SNiFF+.

� Set the environment variable to 1 (one), to force selection of sniffjdijdb.

� Set the environment variable to any other value, to force selection of sniffjdb.

� If the environment variable does not exist, SNiFF+ defaults to automatic debugger selec-
tion according to JDK version and supported platform.
4 SNiFF+

Breakpoints
Breakpoints
It is possible to store breakpoints persistently between sessions. Breakpoints are then auto-
matically set at the start of the next debugging session.
� Storage/deletion of breakpoints

File and line positions of breakpoints are stored in the application class root directory, in a
file called breakpoints.ini.
Breakpoint locations are saved to disk (or deleted) when you exit the target application
using the exit or detach commands.
If you end a debug session using the debugger’s Close Tool command (which also exits
the target application), breakpoints are not written to disk, and previously cleared
breakpoints are not deleted.

� Activated and inactive breakpoints
If breakpoints are set in source files, and the target class(es) are not loaded (e.g. JVM is
not running the application), breakpoints are generated as “inactive”. Once the relevant
classes have been loaded, the breakpoints are automatically activated.

� See also Command reference — page 7.

Remote debugging of Java applications
This section applies only to JDK versions 1.2 or higher. "Remote" in this context means using
two separate Java Virtual Machines (JVM); one running the application being debugged (or
target JVM), and one running the debugging front end. Whether or not these two JVMs are
running on the same physical machine determines how you can connect to the target JVM.
Typical examples for remote debugging are servlets and RMI applications.

Preparing the environment (Unix)
For remote debugging of a java application residing on a different machine, set the following
environment variables on the remote machine:

� SNIFF_DIR points ro the remote machine’s SNiFF+ installation

� PATH points to this $SNIFF_DIR/bin

� These environment variables must also be set in the .cshrc or equivalent file, because
they have to be automatically set at the remote login of the debugger.
5

SNiFF+ Java Debugger — sniffjdijdb
Socket connection
You would use this option for a connecting to a target JVM running on a remote machine.

� From the comand line, start the target application (HelloWorld) in debug mode as fol-
lows (the start command applies only to Windows):

[start] java -Xdebug -Xnoagent -Xrunjdwp:transport=
dt_socket,server=y,suspend=n -Djava.compiler=None
HelloWorld

A port number will be printed.
� The SNiFF+ Project with the application’s source code must be open.
� At the debugger command prompt, enter

connecthost <hostname> <port>

The <port> is obtained after starting the application as described above.

Shared memory connection
This option can be used for connection to a target JVM running locally.

� From the comand line, start the target application (HelloWorld) in debug mode as fol-
lows (the start command applies only to Windows):

[start] java -Xdebug -Xnoagent -Xrunjdwp:transport=
dt_shmem,server=y,address=mysharedmemory,
suspend=n -Djava.compiler=None HelloWorld

The parameter "mysharedmemory", above, can be any string, and is used to identify
the memory address.

� The SNiFF+ Project for the application’s source code must be open.
� At the debugger command prompt, enter

connectsharedmem mysharedmemory

The parameter "mysharedmemory", above must be the one you entered as
address when you started the application as described above.

Other enhancements
In the Variable Viewer, it is now also possible to edit string objects and array members (if
these are simple data types) for on-the-fly tests.
6 SNiFF+

Command reference
Command reference
All the commands described can at present only be entered at the debugger command line.
Only commands that are new, or that differ in functionality from those used in sniffjdb
are described.

Breakpoints
� breaks

Lists all internally registered breakpoints. If a class is not loaded, or the debugged JVM
isn't yet started, the breakpoints are printed as “inactive” breakpoints.

� clearall
Clears all breakpoints.

� break <FileName.java>:<LineNumber>
break <ClassName>:<LineNumber> in file <FileName.java>
Set a breakpoint in <Filename.java> at <LineNumber>.
These variants of the can be used where file and class names are not the same, or if there
are multiple classes in one file. The following variant can be used if file and class name
are the same:
break <ClassName>:<LineNumber>

� break in <ClassName>.<MethodName>
break in <ClassName>.<MethodName><MethodSignature>
Sets a breakpoint in the method <MethodName> of the class <ClassName>. The
<MethodSignature> can be used to resolve ambigueties in method names. Class
and file name have to be the same.

� Note: If the target JVM is not running, or the relevant class not loaded, an "inactive"
breakpoint is created. The breakpoint is "activated" as soon as the class is loaded.

� See also Troubleshooting — page 8 for caveats.

Remote Debugging
� connectHost <host> <port>

Connect to a remote (in the sense of a different machine) or local JVM by entering host
name and port number. See also Socket connection — page 6.

� connectSharedMem <shared memory name>
Connect to a local JVM by entering a shared memory name. See also Shared memory
connection — page 6.

� detach
Disconnects the debugger from a JVM running an application that is being debugged. The
target JVM itself is not shut down and the application continues normal execution.
7

SNiFF+ Java Debugger — sniffjdijdb
� exit [remoteshutdown]
The remoteshutdown paramater allows you to detach from a remote JVM and to exit
the debugger in one step.

Exceptions
� catch

The catch command without arguments breaks at all thrown exceptions. If an exception
class name is entered as an argument, all exceptions of the class, and its subclasses, are
caught.

� ignore
Ignores all thrown exceptions.

Execution
� runsuspended

Starts up and immediately suspends execution in the JVM.
� step [in | out | over]

Commands in parentheses are equivalents, as used also in sniffjdb.
step in (=step) — execute next statement, step into methods.
step over (=next) — execute the next statement, step over methods.
step out (=finish) — execute until a breakpoint in another method is reached.

Troubleshooting
These are a few things you might need to be aware if you use sniffjdijdb.
� breaks

The information in Breakpoints tab in the debugger may sometimes be inaccurate. If so,
use the breaks command to list the existing breakpoints.

� load <classname> / kill <thread(group)>
Make sure that the current thread (shown in the sniffjdijdb command prompt) is not
running, that is, the thread must be suspended at a breakpoint, step, or exception event.

� break/clear
Take care if you set a breakpoint when the corresponding class is not loaded. The
following workarounds are possible to ensure valid breakpoints.
� If you want to set a breakpoint at the start of a method, use Break at at the first line of

the method, or type the command directly at the sniffjdijdb command line.

� Caution: Constructors are named <init>, static initializers are named <clinit>.
The button Break in does not specify the names correctly.
8 SNiFF+

Troubleshooting
� If the class name differs from file name, enter

break <FileName.java>:<LineNumber>

instead of
break <ClassName>:<LineNumber>

This ensures that the breakpoint will be shown correctly in the source editor even if the
class is not loaded.
9

SNiFF+ Java Debugger — sniffjdijdb
10 SNiFF+

	Overview
	Two debuggers
	Breakpoints
	Remote debugging of Java applications
	Other enhancements
	Command reference
	Troubleshooting

