
User’s Guide

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

Table of Contents

Us
Part I Guidelines

About this Manual 3

Conventions. 3
Tool elements . 4
Typography . 5
Feedback and useful links . 5

SNiFF+J for Java 7

SNiFF + Basic Concepts 9

SNiFF+ Architecture . 10
Projects . 11
Working environments. 12
Make Support . 13
Versions and configurations . 14
Documentation building . 15
Source code parsing and symbol information 16
Cross reference subsytems. 17
Mix-and-match tool and control integration 18

Part II SNiFF+ Projects and Working Environments

Projects 23

Project directories and SNiFF+ generated files 23
The contents of a project . 24
Tracking dependencies in a project . 24
Project structures. 24
Project types . 25
Organizing project structures. 26
How you would create this SNiFF+ project structure. 27
What to do next . 28

Working Environments 29

What are working environments? . 29
What types of working environments are there? 30
Make Support and working environments . 30
Working environments and teams . 30
Shared access to your team Repository . 30
Shared and transparent access to team source code 30
Directories for platform-specific object code 31
er’s Guide

Table of Contents
Isolating individual work from the team. .31
Working on selected configurations of a team project32
Avoiding unnecessary builds in the PWE .32
How file sharing works .33
A closer look at file sharing. .34
Examples of using working environments .36

Part III Setting Up SNiFF+ Projects

Project Setup Overview 43

SNiFF+ Project Setup Wizard. .43
Project setup overview — procedures .44
Typical development situations. .46
Working with new project templates .47
Creating a template .47
Creating new projects using an existing template49
Specifying a Working Environment Configuration Directory51
Specifying a default working environment .52
Initializing team working environments .53
Initializing your team’s Repository .54
Initializing your team’s SOWE .55
Initializing a PWE .56

Setting Up Team Working Environments 57

Overview. .58
Step 1: Create root directories .58
Step 2: Set permissions for working environment files58
Step 3: Create and set up team working environments59

Creating Team Projects 63

Overview. .64
Step 1: Creating shared projects in the SSWE.64
Step 2: Initializing your team’s Repository .65
Step 3: Initializing your team’s SOWE .66
Step 4: Initializing your PWE .67
What you should do next .68
Method 1 — Working in your PWE .68
Method 2 — Working in your team’s SOWE.69

Part IV Setting Up the Build Process

Build and Make Support 73

Technical overview .74
SNiFF+ Makefiles and Make Support Files .77
SNiFF+

Us

Table of Contents
Project Makefile . 77
General Makefile . 80
Make Support Files . 80
Updating Make Support Files . 80
Language Makefiles . 81
Platform Makefile. 82
Specifying the targets of a project . 85
Exporting targets of a project. 85
Building targets recursively . 88
Setting up Make Support . 88
Building purify and quantify targets (Unix only) 100
Specifying platform-specific Make information 101
Language Makefiles — details . 103

Using Your Own Makefiles 105

Specifying Make attributes . 106
Make commands you can execute in SNiFF+. 109

Make Support changes from 3.0.x to 3.1 111

No support for VPATH. 112
Updating project Makefiles . 113
Reworked SNiFF+ Make-support files. 115
Use of pattern rules instead of suffix rules 116
MAKE_TARGET macro. 117

Part V Maintaining SNiFF+ Projects

Modifying SNiFF+ Projects 121

Opening Projects . 122
Saving projects . 124
Closing projects . 124
Deleting projects . 125
General procedures for modifying projects 126
Modifying multiple project attributes . 127
Project properties you can modify . 127
Adding and removing subprojects . 127
Adding and removing files . 129
Using the Group Project Attributes dialog . 131

Version Control 135

Technical overview . 136
Locking files during check-out . 137
Notation used when referring to file versions 137
Configurations . 138
er’s Guide

Table of Contents
Change sets .138
Branches .138
Situations for using SNiFF+’s branch support139
Default Configuration .140
Executing version control commands in SNiFF+141
Looking at file version history .144
Creating your own CMVC adaptor .146
Working with configurations .147
Looking at and merging differences between two file versions151
Showing the differences between change sets153
Showing and merging three way differences153
Specifying Default Configurations. .154

Updating Working Environments 157

Technical overview .158
The Working Environments Administrator .159
General guidelines for updating SSWEs and PWEs160
Updating within SNiFF+ .163
Updating outside of SNiFF+ .166
Unattended updates .167

Part VI Compiling and debugging

Preprocessing C/C++ Code in SNiFF+ 173

Preprocessing source code .174
Enabling full preprocessing. .174
Configuring the Parser with a configuration file178

Compiling and Debugging in SNiFF+ 185

Building a project’s targets .185
Running a project’s executable. .187
Debugging targets .187
SNiFF+ help targets .190

Introduction to Cross-Platform Development 193

Introduction. .193
How SNiFF+ supports cross-platform development193
Limitations. .193
Cross-platform development vs. remote compile & debug.195
Basic differences between Windows NT and Unix196

Setting Up Cross-Platform Development 199

Cross-platform setup — Unix side .199
Cross-platform setup — Windows side. .201
SNiFF+

Us

Table of Contents
Setting up the shared project on Windows 204

Remote Compile and Debug 207

Overview . 208
Requirements . 208
Scenarios. 209
Preparation . 210
Setting up remote compile and debug. 212

Part VII Cross Reference Subsystems

Cross Reference Information 219

Overview . 220
Extracting symbol information . 221
How the X-Ref subsystems work. 221
Location of generated X-Ref information. 225
Working Environments and cross referencing. 226
Selecting your preferred X-Ref technology 229

Part VIII Editor Integrations

Emacs Integration 233

Integration features . 233
How the Emacs integration works . 234
Integrating Emacs . 235
Working with Emacs and SNiFF+ . 237
Command Reference . 239

Vim Integration 243

Integration Features . 243
How the Vim integration works . 244
Integrating Vim . 244
Configuring the Vim integration . 245
Working with Vim and SNiFF+. 245
Command Reference . 247

Codewright Integration (Windows only) 251

Integration Features . 251
Integrating Codewright . 252
Working with Codewright and SNiFF+. 254
Command Reference . 255

MS Developer Studio Integration (Windows) 257

Integration Features . 257
er’s Guide

Table of Contents
Integrating MS Developer Studio .258
Working with MS Developer Studio and SNiFF+259
Menus. .261

Part IX ClearCase Integration

Integrating SNiFF+ with ClearCase 267

Integration overview .268
Setting up a SNiFF+ project with ClearCase268
Working with ClearCase in SNiFF+ .271
Advanced features .272

Part X Documenting Source Code

Documenting Your Source Code 279

Documentation Editor modes .280
Writing source code documentation .280
Jumping between the source code and documentation284
Changing the documentation status of a symbol285
Looking at the status of a symbols documentation.285
Updating documentation .286
Browsing documentation .289
Managing documentation together with source code289
Exporting documentation .289
Changing the layout of source documentation290
Creating documentation templates files .290

Part XI Glossary and Index

Glossary 303

Index 309
SNiFF+

Part I
Guidelines

1About this Manual

What this manual is
This manual is part of the SNiFF+ documentation set, which consists of:

� User’s Guide

� Reference Guide

� C++ Tutorial

� C Tutorial

� Java Tutorial

� Fortran Tutorial

� Quick Reference Guide

� Release Notes, Installation Guide and Application Papers

� Online documentation of the above in HTML, PostScript and PDF formats

Conventions

One basic term

� Symbol — any programming language construct such as a class, method, etc.

Two conventions: menu references

For clarity and to avoid undue verbosity, the phrase:
“Choose the MenuCommand from the MenuName” is presented as follows:

� Choose MenuName > MenuCommand .

A context menu that appears when you click the right mouse button is referred to as:
Context menu , and consequently:
“Choose a menu command from the context menu that appears when you click the right
mouse button” is presented as follows:

� Choose Context menu > MenuCommand
3

Chapter 1 About this Manual Tool elements
A note on Unix/Windows

The screenshots in this manual are all done on Windows NT. If you are working on Unix,
what you see on your screen may look slightly different.

When you start SNiFF+, the first tool that appears
is the Launch Pad. In this and other SNiFF+ tools,
the first item in the menu bar is for launching tools.

� On Windows, it is called Tools .

� On Unix , it is depicted by an Icon .

When we refer to this menu in order to launch
a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName .

� On Unix a “check box” looks like a “button” (Motif Look), and a “drop-down” looks like a
“pop-up”.

Tool elements

Choose Target > Make > all

Select / clear check box

Field

Tree

List

Select from drop-down
Highlight project

Checkmark project
4 SNiFF+

Typography
Typography

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

� SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

� SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

� Frequently Asked Questions

http://www.takefive.com/support/faq.html

� Customer Newsletter

http://www.takefive.com/news/customer_newsletter.html

Capitalized
Words

Names of tools, windows, dialogs and menus start with capital letters.
Examples: Symbol Browser, Tools menu, File dialog.

Italics Names of manuals and newly introduced terms are in italics.
Examples: User's Guide, the workspace concept.

Boldface and
Bold italics

Menu, field and button names and menu entries are printed in bold-
face. Placeholders for symbols, selections or other strings in menus
are in bold italics.
Example: From the menu, choose Show > Symbol(s) selection ...

Monospace Code examples and symbol, file and directory names, as well as user
entries are printed in monospace type.
Examples: .login , $PATH, class VObject . Type abc .

<Keys> Special keys are printed in monospace type with enclosing '< >'.
Examples: <CTRL>, <Return> , <Meta> .
5

Chapter 1 About this Manual Feedback and useful links
6 SNiFF+

R

2SNiFF+J for Java

This manual relates to SNiFF+ in general.

� For Java-specific issues, please refer to the SNiFF+ Java Tutorial. To open the Java
Tutorial online, choose Help(?) > Tutorials > Java from the Launch Pad’s menu.

� Please also refer to the Java Tutorial to find out how to get started with the Visaj GUI
Builder integration. SNiFF+ integration features are incorporated in the Visaj User’s
Guide under the Visaj Class Editor’s Help menu.
eference Guide 7

Chapter 2
8 SNiFF+

U

3SNiFF + Basic Concepts

What is SNiFF+?
SNiFF+ is an open and scalable programming environment for C, C++, Java, Fortran and
IDL. SNiFF+ supports the following development tasks:

� Code comprehension and browsing —SNiFF+ provides very powerful browsing and
cross referencing features. Powerful filtering and visualization techniques work even with
very large projects with many thousands of files, tens of thousands of symbols, and mil-
lions of lines of code. No compilation is necessary to extract the symbol information, as
SNiFF+ has its own fast and fault-tolerant parsers.

� Development —SNiFF+ provides strong development support. All changes in the code
are immediately reflected in all the browsing tools—no recompilation is necessary.

� Documentation building —SNiFF+ offers an integrated Documentation Editor that sup-
ports incremental and iterative documentation building. The hypertext-like linking provides
quick navigation between source code and documentation. The generated documentation
can be converted to other document publishing formats.

� Project and code management for teams —SNiFF+'s project and working environment
concepts allow for the organization of large projects and effective cooperation in teams.

� Version and configuration management —All files of any file type can be managed with
SNiFF+. Advanced tools facilitate the management of versions of files and configurations
of projects.

� Build support —SNiFF+’s Make Support allows you to set up and activate your build pro-
cesses using SNiFF+’s GUI. It provides automatic support for multi-platform development
and works with compilers, linkers, archivers and other build tools of your choice. Further-
more, it provides (recursive) make rules for C/C++, Java, IDL and FORTRAN. Using these
rules, you can completely regulate the make process (e.g., by choosing the order in which
your targets are built).

� Debugging support —SNiFF+ provides interfaces to a wide range of debuggers under a
consistent user interface that tightly integrates debugging tasks with browsing tasks.

� Tool and control integration —Together with adaptors to external tools like compilers,
debuggers and version and configuration tools, the sniffaccess interface provides a
flexible means for integrating SNiFF+ with third-party tools.
ser’s Guide 9

Chapter 3 SNiFF + Basic Concepts SNiFF+ Architecture
SNiFF+ Architecture

The SNiFF+ environment

The SNiFF+ environment consists of several tools and processes. The common data source
for all tools is the Symbol table, which is held in memory but is persistent between sessions.
10 SNiFF+

Us

Projects
Projects

What is a project?

A project is the main structuring element in SNiFF+ for grouping together files and directo-
ries on your file system that logically belong together. You create projects in SNiFF+ to:

� browse, edit and compile a group of files and then run and debug their end products (e.g.,
executables and libraries)

� browse external libraries that another SNiFF+ project uses

� make a set of files, such as #include files, available to other SNiFF+ projects

Tracking dependencies in a project

If you use SNiFF+’s Make Support, SNiFF+ tracks dependencies among source files in the
project. During a build, only those source files that need recompiling are recompiled. As a
result, you can add or remove include files in a project without having to worry about which
files need to be recompiled. Before each build, just tell SNiFF+ to update a project’s depen-
dency information and other Make-related information.

Project types

SNiFF+ distinguishes between two different project types: shared and absolute. The
following table outlines the differences between these two project types:

For detailed information

Please refer to Projects — page 23.

Project Type PDF Default
extension

Can project files
be shared among
developers?

Project attributes refer to
files and subprojects using:

Shared *.shared yes paths relative to a root direc-
tory

Absolute
(Browsing-Only)

*.proj no absolute path names
er’s Guide 11

Chapter 3 SNiFF + Basic Concepts Working environments
Working environments

What are working environments?

Working environments are physical directories on your file system in which SNiFF+ shared
projects reside. In SNiFF+, you open shared projects by first specifying in which working
environment you work.

Working environments and teams

Working environments enable:

� shared access to your team data Repository

� shared and transparent access to team source code

� shared access to platform-specific object code

� individual team members to work in isolation from the rest of the team

� individual team members to work on selected configurations of a team project

Working environments and single users

Single users can also benefit from using working environments:

� Working environments are easily movable.

� Working environments enable you to always know which projects you are working on.

� By using a Repository Working Environment, you can maintain one directory for your data
Repository and another for your workspace.

� Just like with teams, single users can use working environments for single-platform or
multi-platform development.

For detailed information

Please refer to Working Environments — page 29.
12 SNiFF+

Us

Make Support
Make Support
SNiFF+’s Make Support allows you to set up and activate your build processes using
SNiFF+’s GUI. It provides automatic support for multi-platform development and works with
compilers, linkers, archivers and other build tools of your choice. Furthermore, it provides
(recursive) make rules for C/C++, Java, IDL and FORTRAN. Using these rules, you can
completely regulate the make process (e.g., by choosing the order in which your targets are
built).
SNiFF+’s Make Support uses data generated by SNiFF+, such as include path and depen-
dencies information, to generate Make Support Files. Make Support Files, together with the
different types of Makefiles provided with SNiFF+, act as an interface between SNiFF+ and
Make.

Features

SNiFF+’s Make Support:

� is based on standard Unix make tools

� comes with its own Makefiles

� is fully integrated with working environments to build targets across multiple shared work-
ing environments

� automatically generates make support files that contain data about include paths and
dependencies lists for shared projects

� automatically provides make rules for recursively building a project’s target

� maintains your build system by automatically updating make support files

� can be used with your choice of compilers, debuggers, linkers and archivers

Make Support and working environments

SNiFF+’s Make Support maintains information about dependencies and include directives
across working environment boundaries and supplies this information to your Make utility
and compiler. Although you could maintain this information in your own makefiles, we
strongly recommend that you use SNiFF+’s Make Support instead.

Using your own makefiles

In SNiFF+ you can use your own Makefiles, however we strongly recommend that you use
the Makefiles provided with SNiFF+’s Make Support for building the targets of your projects.
It is also possible for each subproject to use your own Makefiles or the Makefiles provided by
SNiFF+. For more information, see Using Your Own Makefiles — page 105.

For detailed information

For details about SNiFF+’s Make Support, please refer to Build and Make Support — page
73.
er’s Guide 13

Chapter 3 SNiFF + Basic Concepts Versions and configurations
Versions and configurations
Support of configuration management and version control (CMVC) is an integral part of
SNiFF+. The following features for handling versions and configurations are available:

Features

SNiFF+’s CMVC support comes with the following features:

� Checking out files from your Repository with either exclusive lock, concurrent lock, or no
lock.

� Looking at a file’s history and seeing which files in a project are locked by which people.

� Working with configurations - selected file versions grouped together under the same
symbolic name.

� Working with change sets - a set of files checked in at the same time under the same
symbolic name to the files.

� Working in branches of a file’s version tree.

� Displaying two-way and three-way differences and merging versions, branches, change
sets and configurations.

� Associating comments, dates and modifier information with versions, change sets, and
configurations.

� Choosing a Default Configuration for a working environment.

Available CMVC interfaces in SNiFF+

SNiFF+ provides an open and customizable interface to file and command-based version
and configuration management tools. Please read the Release Notes to find out which inter-
faces are available.

For detailed information

For details about SNiFF+’s Version Control and Configuration Management features, please
refer to Maintaining SNiFF+ Projects — page 119.

Note

SNiFF+’s CMVC features provide the functionality available in the
RCS version control system. If you use a tool other than RCS,
please be aware that your tool may not support all of the functionality
available in SNiFF+.
14 SNiFF+

Us

Documentation building
Documentation building
SNiFF+ comes with a set of tools that allow you to incrementally and iteratively document
your source code.
SNiFF+ uses your source code’s symbol information to generate documentation frames out
of a set of configurable templates. You can then fill out these frames during the process of
documenting your source code.

What can I document?

You can document any or all of the symbols in your source code. You can select the types of
symbols that you want to document in your Preferences.

Browsing and editing documentation

You can browse and edit documentation using SNiFF+’s Documentation Editor. The Docu-
mentation Editor behaves much like a hypertext browser that you can use for navigating
between source code and its documentation.

Customizing and creating documentation templates

When you document symbols in your source code, SNiFF+ uses documentation template
files to generate documentation frames for each symbol. There is one documentation
template file for each type of symbol. You can customize the template files that come with
SNiFF+, or you can create new ones.
There are two ways in which you can customize documentation template files:

� by using HTML tags for layout

� by using macros to extract information from SNiFF+’s Symbol Table and comments from
your source files

Version-controlling documentation

Documentation files can be version-controlled in the same way as the other files in your soft-
ware system.

Exporting documentation

You can export your documentation in two different formats: MIF (Maker Interchange Format
of FrameMaker ) and HTML. When you export your documentation as MIF files, you also
have the option of creating a book file for the individual MIF files.

For detailed information

For details about documenting your source code in SNiFF+, please refer to Documenting
Source Code — page 277.
er’s Guide 15

Chapter 3 SNiFF + Basic Concepts Source code parsing and symbol information
Source code parsing and symbol information

SNiFF+ parsing technology

SNiFF+ uses its own parsers for parsing C/C++, Java, Fortran, CORBA IDL, Tcl and Python
source code. No compilation is necessary in order to extract symbol information. The parser
is highly configurable and can optionally preprocess the source code.
The SNiFF+ parsers are independent operating system processes that send a stream of
information about the symbols defined and declared in the source code to SNiFF+’s Symbol
Table. The symbol information is kept persistent on disk, so that parsing is done only once
for each file or again after a change. When you modify a source file and save it, the file is
immediately reparsed, and its symbol information is sent to the Symbol Table. All browsing
tools are also updated.
You can edit project files outside of SNiFF+ and still browse the latest symbols. SNiFF+
knows when a project file has been modified externally and reparses it the next time you
access the file.

Preprocessing C/C++ source code

By default, SNiFF+ does not preprocess source code. However you can preprocess source
code by doing the following:

� In the Project Editor, double-click on your project in the Project Tree to open the Project
Attributes dialog.

� In the Project Attributes dialog, select the Parser node.

� In the Parser view, select the Preprocess Source Code before Parsing checkbox.

� Press OK.

You can configure preprocessing in the Parser configuration file. For more information, see
Parser configuration file — page 178.
16 SNiFF+

Us

Cross reference subsytems
Cross reference subsytems
In addition to parsing symbol information, SNiFF+ also generates symbol cross reference
information from your source code.
SNiFF+ provides two alternative cross reference (X-Ref) subsystems for managing cross
reference information, either RAM-based cross referencing, or database-driven cross refer-
encing (available as of SNiFF+ 3.2).
In a nutshell, the RAM-based solution loads a set of indexed files to memory to
resolve X-Ref queries, whereas the DB-driven solution directly accesses a data-
base.
However, because X-Ref information is stored at Working Environment level
under DB-driven cross referencing, this technology has a number of implications
for Working Environments administration in team projects.
Which cross reference engine is used therefore determines not only how X-Ref
information is generated, stored, and subsequently accessed to resolve queries,
but also influences Project and Working Environment administration. As well as
performance and scalability.

For detailed information

For details about SNiFF+ cross reference subsystems and their implications, please refer to
Cross Reference Information — page 219.
er’s Guide 17

Chapter 3 SNiFF + Basic Concepts Mix-and-match tool and control integration
Mix-and-match tool and control integration

Introduction

SNiFF+ can be used with a variety of third-party tools. You can use SNiFF+ with your choice
of:

� editors

� compilers

� debuggers

� version and configuration management systems

Editing systems

SNiFF+ is integrated with a number of popular 3rd-party editors (see Editor Integrations —
page 231), as well as also the Visaj Java GUI builder.

Compilers and debuggers

Due to its compiler-independent architecture, SNiFF+ can interface to any compiler. Any C
debugger can debug code of any C compiler on the same platform as long as the memory
layout is the same. Because of name mangling and other issues, C++ debugging is
compiler-dependent.
Debugging systems that are not yet supported in SNiFF+ can be integrated with minimal
effort. The design of SNiFF+ factors out the commonalities of the debugging systems and
provides a flexible adaptor architecture. This guarantees that new debuggers can be incor-
porated relatively easy.
For a list of debuggers supported by SNiFF+, please refer to the Release Notes.

Version and configuration control systems

SNiFF+ has an open and adaptable command interface to any file- and command-based
third-party version and configuration control tool. The interface consists of approximately
forty commands and options to be set for a specific tool. Please refer to the Release Notes
for information on supplied tool adaptors.
18 SNiFF+

Us

Mix-and-match tool and control integration
Control integration with sniffaccess

Besides having tool integration features, SNiFF+ can be controlled externally.
The sniffaccess subsystem provides bidirectional control integration between SNiFF+
and external tools.
For example, SNiFF+ can be told to open a project, display a class in the inheritance hier-
archy, load a file into the Editor, or send a notification when a file is saved. Third-party tools
like CASE tools, GUI builders, and testing tools can be integrated via that interface. A
generic bridge to the HP Softbench BMS is provided with the package.
Please refer to the Release Notes for information on specific tools.
er’s Guide 19

Chapter 3 SNiFF + Basic Concepts Mix-and-match tool and control integration
20 SNiFF+

Part II
SNiFF+ Projects and

Working Environments

U

4Projects

What is a project?
A project is the main structuring element in SNiFF+ for grouping together files and directo-
ries on your file system that logically belong together. You create projects in SNiFF+ to:

� browse, edit and compile a group of files and then run and debug their end products (e.g.,
executables and libraries)

� browse external libraries that another SNiFF+ project uses

� make a set of files, such as #include files, available to other SNiFF+ projects

Project directories and SNiFF+ generated files
Generally, you create a project for existing source files. When you create the project, you
must specify the directory containing these source files. The directory you specify is referred
to as the project directory. Each project in SNiFF+ corresponds to a project directory on your
file system.
During project creation, SNiFF+ generates the following files and directories in a project
directory:

� Makefile —The project makefile. This file is generated when you choose to build your tar-
gets using SNiFF+’s Make Support.

� The Project Description File (PDF) —Each SNiFF+ project is described by a Project
Description File (PDF) that stores the structure, the list of files, and the attributes of the
project. SNiFF+ maintains a project’s PDF for you. These files have the extension .proj
and .shared .

� Project Generate Directory —This directory contains a number of files generated for the
project and maintained by SNiFF+. By default, this directory is called .sniffdir and is
located in the project directory.
ser’s Guide 23

Chapter 4 Projects The contents of a project
The contents of a project
Each SNiFF+ project contains the following:

� Your source files —You can include any type and number of source files in a project. For
example, a typical SNiFF+ project might have C++ implementation and header files, yacc
sources, documentation files and files of a third-party documentation tool like
FrameMaker.

� Makefile —Either your own or SNiFF+’s, depending on whether you use SNiFF+’s Make
Support or not.

� The Project Description File (PDF) —When you open a project, you are really telling
SNiFF+ to load the project’s PDF. When you modify a project’s structure in any way (e.g.,
by adding or removing files to the project), its PDF will be changed accordingly.

Tracking dependencies in a project
If you use SNiFF+’s Make Support, SNiFF+ tracks dependencies among source files in the
project. During a build, only those source files that need recompiling are recompiled. As a
result, you can add or remove include files in a project without having to worry about which
files need to be recompiled. Before each build, just tell SNiFF+ to update a project’s depen-
dency information and other make-related information.
If you don’t use SNiFF+’s Make Support, you must update your own makefiles to reflect any
changes in dependencies.

Project structures
You can include projects in other projects to create a hierarchical project structure. The
process of including a project is referred to in SNiFF+ as adding a subproject.
Some typical uses of hierarchical project structures are:

� Your source files are already in a hierarchical directory structure and you want to use this
same structure in SNiFF+.

� You have a project that builds a library. You want to make this library accessible to other
projects. To do so, you would add the library subproject to your other projects. If you use
SNiFF+’s Make Support, you can then set an attribute that tells SNiFF+ to automatically
link the library to the targets of your projects.

� Your project uses an external shared library to builds its targets. Source code for the
shared library is also available, and you would like to browse it. To do so, you would cre-
ate a project for the external source code and include it in your main project. So, when-
ever you open the main project, you can immediately browse the external source code as
well.

Note that SNiFF+’s Make Support also handles dependency tracking in project structures.
24 SNiFF+

Us

Project types
Project types
SNiFF+ distinguishes between two different project types: shared and absolute. The
following table outlines the differences between these two project types:

Shared projects

As the name suggests, shared projects are suitable for team development. Each team
member has access to a shared project and can make changes to its files and/or structure.
Shared projects are always used in conjunction with a configuration management and
version control (CMVC) tool of your choice.
Shared projects offer a great deal of flexibility. Since all references to files and subprojects
are relative to a root directory, you can easily move a shared project to another location on a
file system.

Absolute projects (Browsing-Only)

Absolute projects are most suitable for browsing code. It’s easy to set up an absolute project,
so it makes sense to use them if you just need to get your source code “into SNiFF+” for
browsing purposes. For any serious development work, use shared projects.

Project Type PDF Default
extension

Can files be
shared among
developers?

Project attributes refer to files
and subprojects using:

Shared *.shared yes paths relative to a root directory

Absolute
(Browsing-Only)

*.proj no absolute path names

Note

We strongly recommend that you work with shared projects, even if you
don’t work in a team. In our experience, most single-user development
work is incorporated into a team development environment sooner or
later. With shared projects, the transition from a single-user to a team
environment is much smoother than with absolute projects.
er’s Guide 25

Chapter 4 Projects Organizing project structures
Organizing project structures
Project structures in SNiFF+ need not map directly to file system structures. The following
figure illustrates this idea.

The file system structure

The left-hand side of the diagram shows an example file system structure. The directory
Root_Directory contains directories: filebrowser , et3 and lib . Each directory
corresponds to a SNiFF+ project of the same name. Project et3 contains the framework for
the GUI used by project filebrowser.
Notice that, in the file system, the et3 project directory contains three subdirectories:
LOOKS, PRINTERS and XSERVER. Each of these subdirectories also corresponds to a
SNiFF+ project of the same name.
Finally, the lib directory in the file system also corresponds to a SNiFF+ project of the
same name.

Note

Please note that the following figure gives just one example of how
project structures can be organized in SNiFF+. We’ll use this figure
again in the next chapter to illustrate other key SNiFF+ concepts.

File system structure. Project
directories filebrowser, et3 and
lib are at the same level in the
file system

SNiFF+ project structure. Project
et3.shared is a subproject of
project filebrowser.shared.
Project lib.shared is a subproject
of project PRINTERS.shared
26 SNiFF+

Us

How you would create this SNiFF+ project structure
The SNiFF+ project structure

The right-hand side of the diagram shows how this file system structure is mapped to a
SNiFF+ project structure. This structure has been chosen according to the following criteria:

1. Project PRINTERSuses the library target of project lib.shared to build its target. As
a result, project lib.shared needs to be a subproject of PRINTERS.shared .

2. Project et3 uses the targets of projects LOOKS.shared , PRINTERS.shared , and
XSERVER.shared to build its target. As a result, these three projects need to be sub-
projects of et3.shared .

3. Project filebrowser uses the targets of project directory et3.shared to build its
target. Therefore, et3.shared needs to be a subproject of filebrowser.shared .

As you can see, the project tree structure that you work with in SNiFF+ need not match the
project directory structure on your file system.

How you would create this SNiFF+ project structure
You may be wondering how you would create this project structure. Basically, the steps
involved are:

1. Create a SNiFF+ project for directory filebrowser .

2. Create SNiFF+ projects for the directory et3 and its subdirectories LOOKS, PRINTERS,
and XSERVER.

Note that, when you create a SNiFF+ project for the directory et3 , you can have SNiFF+
automatically create subprojects for its subdirectories as well.

3. Create a SNiFF+ project for directory lib .

There are now six SNiFF+ projects, each one corresponding to one of the six directories
under Root_Directory . The final steps are to add subprojects to PRINTERS.shared
and filebrowser.shared .

1. Add lib.shared to PRINTERS.shared .

2. Add et3.shared to filebrowser.shared .

Choosing which project to open

As we’ve already mentioned, each project in a SNiFF+ project structure is a complete
project. To work on a project, you first have to open it. Suppose you’ve got a project structure
like the one on page 26. You then have the following options:

� If you plan to modify and rebuild a single project, open only that project.

� If you plan to modify and then rebuild the et3 framework, open et3.shared . SNiFF+
will automatically open all its subprojects. You can then work on et3.shared and all its
subprojects.

� If you plan to modify and then rebuild the filebrowser project, open file-
browser.shared . SNiFF+ will automatically open all its subprojects. You can then
work on filebrowser.shared and all the subprojects it includes.
er’s Guide 27

Chapter 4 Projects What to do next
What to do next
If any of the following points apply to you, you will be working with SNiFF+ shared projects:

� You work in a team.

� You use a data Repository for version control purposes.

� You develop for multiple platforms.

� You work alone but will likely be sharing your work with others in the future.

Before learning how to set up shared projects, please read the next chapter (Working Envi-
ronments — page 29). The chapter introduces SNiFF+ Working Environments and discusses
its uses in both team and single-user development environments.
If you just need to get your source code “into SNiFF+” for browsing it, you will be working
with SNiFF+ absolute projects. Please read Project Setup Overview — page 43 next.
28 SNiFF+

U

5Working Environments

Introduction
This chapter discusses working environments and their role in day-to-day development work.

This chapter covers the following topics

� Working environments and team development

� Working environments and single-user development

Assumptions made in this chapter

� You have already read chapter Projects — page 23

Related SNiFF+ topics

� Setting up working environments — Setting Up Team Working Environments — page 57

� Creating shared projects — Creating Team Projects — page 63

What are working environments?
Working environments are physical directories on your file system in which SNiFF+ shared
projects reside. In SNiFF+, you open shared projects by first specifying in which working
environment you work.
You must use working environments:

� If you are a member of a development team that works on the same set of files, and you
do not use a third-party configuration management tool that furnishes a workspace model
of its own (such as ClearCase).

� If you develop software for multiple platforms (as a member of a development team or
alone).

� If you work alone on projects and plan to share them in the future.

You need not use working environments:

� If you are working with absolute projects.

� If you work alone on a project and don’t need to share your project with others, now or in
the future.

� If you already use a third-party configuration management tool such as ClearCase.
ser’s Guide 29

Chapter 5 Working Environments What types of working environments are there?
What types of working environments are there?
There are four types of working environments:

� Repository Working Environment

� Shared Source Working Environment

� Shared Object Working Environment

� Private Working Environment

These four types are discussed in detail in the rest of this chapter.

Make Support and working environments
SNiFF+’s Make Support maintains information about dependencies and include directives
across working environment boundaries and supplies this information to your make utility
and compiler. Although you could maintain this information in your own makefiles, we
strongly recommend that you use SNiFF+’s Make Support instead.
For details about Make Support, please refer to Build and Make Support — page 73.

Working environments and teams
Working environments are designed to be used in teams. In this section, you will learn how
working environments support team development. At the same time, you will also learn
about each working environment type and how the four types interact with each other.

Shared access to your team Repository
Your team members access and modify a permanent shared data Repository using
commands provided by your underlying configuration management and version-control
(CMVC) tool. SNiFF+ provides an interface to your CMVC tool. This interface needs to know
the location of your Repository. You provide this information by defining a Repository
Working Environment (RWE), which specifies the root directory of your Repository.

Shared and transparent access to team source code
SNiFF+ requires you to specify the root directory under which your team’s shared source
code is located. The files and directories under this root directory access your team’s Repos-
itory. At regular intervals, all these files and directories need to be updated to reflect the most
current state of your team’s software system. How this updating occurs is discussed later on.
When creating software systems from scratch, your team’s first job is to populate this root
directory with source code. For existing software systems, your team will already have such
a central location. In either case, once you have such a root directory, you have to tell
SNiFF+ where it is. You do this by defining a Shared Source Working Environment
(SSWE).
30 SNiFF+

Us

Directories for platform-specific object code
All team members see, or share, the latest version of your software system as reflected by
the source files in the SSWE. When browsing the source files, this view is read-only. When
editing source files, team members work on local copies of the shared source files they want
to modify—they never directly modify the shared source files in the SSWE. The view to all
other source files (those not being modified) remains read-only.
SNiFF+ also supports more complicated models of source code storage. You might, for
example, have multiple locations containing shared source code, with different team
members making modifications to the different shared source pools. A central location might
“pool together” the most current versions of the source code from the different shared source
pools. In this case, you can define multiple SSWEs. We’ll discuss different strategies for
using SSWEs later on.

Directories for platform-specific object code
Just like with shared source code, SNiFF+ also requires you to specify a central location for
your team’s shared object code. In SNiFF+, you define a Shared Object Working Environ-
ment (SOWE), which specifies the root directory containing your shared object files.
SOWEs serve two purposes:

� To be shared repositories for your team’s most current and stable platform-specific object
code. During an update of a SOWE, source files in the SSWE are compiled and the result-
ing object code is stored in the SOWE.

� To speed up the build process in the PWEs that access them (see Isolating individual
work from the team — page 31).

Multi-platform development

Complex software projects often involve maintaining several configurations for several plat-
forms at the same time. SNiFF+ allows you to have several platform-specific directories for
organizing your team’s shared object code. For each platform-specific directory, you define a
SOWE. As is the case for a single SOWE, the object code in platform-specific SOWEs is
also derived from your team’s shared source code.

Isolating individual work from the team
Developers must be able to work in isolation from other team members. They need their own
workspaces in which they can edit, compile and debug projects without interfering with the
work of their team members. Furthermore, they continually need to have access to their soft-
ware system’s most current source code and object code base.
SNiFF+ supports this by allowing each member of a team to work in an isolated workspace.
In SNiFF+, you define a Private Working Environment (PWE) to specify the root directory of
each team member’s workspace.
You can go through the entire edit-compile-debug cycle in your PWE. When working in your
PWE, you have a read-only view to the shared source files located in your team’s SSWE.
When you need to modify shared source files, you check out the necessary files from your
team’s Repository. When you’re satisfied that the changes you’ve made are error-free, you
er’s Guide 31

Chapter 5 Working Environments Working on selected configurations of a team project
check the modified files back into your team’s Repository. The next time your team’s SSWE
is updated, these changes are incorporated, and the shared source files in the SSWE once
again reflect the most current state of your software system.

Working on selected configurations of a team project
Development teams are usually split up into groups of programmers who are responsible for
a particular aspect of a project. For example, after releasing a version of your software
product, you might choose to split your team into two sub-teams: one responsible for devel-
oping the product further (Team A), and another responsible for fixing the bugs found in the
product (Team B). In terms of the files maintained in your Repository, Team A would work on
the main (trunk) configuration of your software system, and Team B would work on a branch
configuration. At some time in the future, the most current versions of the two configurations
are merged with each other.
To assist project leaders in making sure that team members are working on the correct
configurations of a software system, working environments can specify a Default Configura-
tion. This is the configuration of your software system that your team members work on, and
is used as the default value for version control operations such as check-in and check-out.
Default Configurations and SNiFF+’s branch support are discussed in the Chapter Version
Control — page 135.

Avoiding unnecessary builds in the PWE
An essential aspect of shared object working environments (SOWEs) is avoiding unneces-
sary builds in PWEs that access them. When you build the targets of a project opened in
your PWE, only checked-out source files newer than their dependencies in the SOWE are
compiled. All other objects are taken from the SOWE. This can speed up builds in PWEs
considerably.
For example, suppose you’re working in your PWE on a project called Views.shared ,
whose target is an executable. The SOWE accessed by your PWE already has targets for
the project. Let’s further suppose that you’ve checked out and modified a single header file,
View.h , in your PWE.
Now, when you build the project’s executable in your PWE, View.o will be locally built in
your PWE, and SNiFF+ creates symbolic links to all other objects in the SOWE. As a result,
your local View.o will be linked with other shared object files to produce your executable.
32 SNiFF+

Us

How file sharing works
How file sharing works
SNiFF+ handles file sharing among working environments by requiring that all affected
working environments have the same project directory structure. This is not a restriction, but
rather the easiest way for file sharing to work. A SNiFF+ project’s Project Description File
stores, among other things, structural information about the project — information such as
the names of project files and their location relative to the project directory, and the names
and locations of any subprojects. When all working environments that share files have the
same project directory structure, SNiFF+ can easily find any project files or subprojects.
The project directory structure of the Shared Source Working Environment (SSWE) is the
basis for all other working environment project directory structures. SNiFF+ automatically
copies the SSWE’s project directory structure into your other working environments for you.
Note that SNiFF+ only copies the SSWE’s directory structure — and not contents.
The following diagram illustrates the idea of equivalent project directory structures:

Both SOWE and
PWEs access
the SSWE. Both
PWEs (PWE1
and PWE2) also
access the
SOWE
er’s Guide 33

Chapter 5 Working Environments A closer look at file sharing
The SOWE and two PWEs have the same project directory structure as the SSWE. When
the SOWE is updated, object code in its project directories is derived from source code in the
corresponding project directories of the SSWE. For example, object code in the SOWE’s
filebrowser project directory is generated from source code in the SSWE’s file-
browser project directory.
The two team members working in PWE1 and PWE2, respectively, share the source files in
the SSWE. When browsing source files, their view to the files is read-only. When editing
source files, they work on local, writable copies of the source files they’ve checked out from
the Repository. When compiling in their PWEs, object code is created locally from both
shared (read-only) source files and local (writable) source files.

A closer look at file sharing
Let’s look more closely at the SSWE, PWE1 and PWE2. Let’s suppose that the file-
browser project directory in the SSWE contains the following:

� The Project Description File filebrowser.shared

� The project makefile Makefile

� The following source files: BrowserDoc.C , BrowserItems.C , ChangeDirD-
iag.C and filebrowser.C

� The Project Generate Directory, which contains Make support files and other generated
files
34 SNiFF+

Us

A closer look at file sharing
The following figure shows the contents of the filebrowser project directory in the SSWE,
PWE1 and PWE2. Let’s assume that two developers named Jill and Peter own the PWEs.
Jill owns and works in PWE1. Peter owns and works in PWE2. Both Jill and Peter share
common source files located in the SSWE:

As the figure above shows, Jill has checked out only one file to the filebrowser project
directory in her PWE: BrowserItems.C . She has a read-only view to all other files.
Peter has checked out three files to the filebrowser project directory in his PWE: two
source files (BrowserDoc.C and filebrowser.C) and the Project Description File
(filebrowser.shared). He has a read-only view to all other files.

Note carefully in the figure that Jill has a read-only view to files checked out by Peter, and
Peter has a read-only view to files checked out by Jill. That is, while Jill is making changes to
her local copy of BrowserItems.C in her PWE, Peter can only browse the original copy
of the file located in the SSWE. And while Peter is making changes to his copies of
BrowserDoc.C and filebrowser.C and filebrowser.shared , Jill can only

Note

To make structural changes to a SNiFF+ project, you must check out the
project’s Project Description File! Examples of structural changes are
adding/removing project files and subprojects, and changing project at-
tributes (e.g., names of project targets).

Indicates a read-only file located in the SSWE

Indicates a local, writable file checked out in a PWE
er’s Guide 35

Chapter 5 Working Environments Examples of using working environments
browse the original copies of these files. This is an example of the exclusive file locking.
When one team member has checked out a file in his/her PWE, all other team members can
only browse this file.

Examples of using working environments
This section presents two different scenarios in which working environments are required.
Each scenario is followed by a description of how it can be realized using working environ-
ments. All scenarios assume that a Repository is used.

Team development with single SSWE and SOWE

The scenario — Your development team shares a common shared source and shared
object base. You check out files from the Repository using exclusive lock.
The solution — This is the “classic” scenario for using working environments. To realize this
scenario in SNiFF+, use one RWE, one SSWE, one SOWE and one PWE for each team
member.

Note

SNiFF+’s configuration management and version control (CMVC) inter-
faces provide for other file locking mechanisms as well. Your underlying
CMVC tool determines which mechanisms are available for you to use.
36 SNiFF+

Us

Examples of using working environments
The following diagram illustrates this:

Team development with multiple SSWEs and SOWEs

The scenario — A situation in which you might want to use multiple SSWEs and SOWEs is
when your development team is split into two teams—for example, into a library team that
owns and develops a library and an application team that uses and occasionally makes
changes to this library.
The library team’s SSWE (SSWE_Lib) would contain the latest configuration of the library.
The SSWE accessed by the application team (SSWE_Head) contains the most current
versions of the application team’s source files and less often updated, but more stable
configurations of the library.

Source files in SSWE updated with respect to a particular version of the
same files in the RWE

Object files in SOWE built during an update from source files in SSWE

Team members can only browse source files physically located in the
SSWE. Source files to be modified are checked out from the Repository
(RWE), resulting in local, writable versions of the files in the PWE.
Links to objects in the SOWE are created during a build in the PWE,
thus eliminating the need for unnecessary builds in the PWE

The latest archived versions of your team’s source files are stored in
the Repository (RWE)
er’s Guide 37

Chapter 5 Working Environments Examples of using working environments
The solution — This scenario can best be realized using one RWE, two SSWEs, two
SOWEs and one PWE for each team member in combination with SNiFF+’s branch support.
The following diagram illustrates how this works:

To implement this solution in SNiFF+, you must do two things:

� Specify the Default Configurations for the required working environments. Remember that
a working environment’s Default Configuration is used as the default value for version
control operations such as check-in and check-out.

� Use SNiFF+’s branch support.

For details about SNiFF+’s version control features including branch support, please refer to
Version Control — page 135. Here, we use branch support as it relates to Default Configura-
tions.

Application
team’s SOWE
and PWEs

Library team’s
SOWE and
PWEs

SSWE_Head
contains the
most current
versions of the
application
team’s source
files and a stable
version of the
source code
libraries

SSWE_Lib
contains the
most current
versions of
both the
application
team’s source
files and the
source code
libraries

Each version
controlled file’s
version tree
contains a
trunk and a
branch. The
most current
versions of the
library team’s
files are
located on the
branch. All
others are on
the trunk
38 SNiFF+

Us

Examples of using working environments
For SSWE_Head

For the SSWE labelled SSWE_Headin the diagram, you would specify its Default Configura-
tion to be HEAD. The symbolic name HEADis used by many version control systems (e.g.,
RCS) to refer to most current version of a file in the trunk (main branch) of a file’s revision
tree. You would also specify HEADas the Default Configuration for the application team’s
SOWE and PWEs.

For SSWE_Lib

For the SSWE labelled SSWE_Lib in the diagram, you would specify two Default Configura-
tions. The first one is the name of the version tree branch on which the library is developed,
say Lib . The second one is HEAD.

How SNiFF+ uses the Default Configurations

When the library team updates its working environments, all source files are updated to the
latest version on branch Lib , if this branch exists. Of course, this branch exists for the
library team’s source files, but not for the application team’s source files. So, in the library
team’s working environments, library source files are updated to Lib, and application source
files are updated to HEAD.
When the latest versions of the files on branch Lib have reached a pre-defined level of
stability, they are checked into the Repository as HEAD. This is normally done by a selected
member of the team, and usually from the SSWE (SSWE_Lib). Consequently, the next time
members of the application team update their working environments, they will have access to
the latest versions of both their files and those of the library team.
In summary, the application team works most of the time with stable, but not necessarily
current, versions of the source libraries maintained by the library team. It has access to the
latest version only after library source files have been checked into the Repository as the
HEAD versions of their respective version trees.

Working environments and single users

Single users can also benefit from using working environments:

� Working environments are easily movable.

� By using a Repository Working Environment, you can maintain one directory for your data
Repository and another for your workspace.

� Just like with teams, single users can use working environments for single-platform or
multi-platform development.

Single-platform development

For single-platform development, the following working environments are needed:

� Repository Working Environment for data Repository

� Private Working Environment for source code
er’s Guide 39

Chapter 5 Working Environments Examples of using working environments
Multi-platform development

For multiple-platform development, the following working environments are needed:

� Repository Working Environment for data Repository

� Shared Source Working Environment for source code

� one Shared Object Working Environment for each target platform

� one Private Working Environment for each developer
40 SNiFF+

Part III
Setting Up SNiFF+

Projects

U

6Project Setup Overview

Introduction
Setting up projects in SNiFF+ can be as simple or as complicated as you want it to be. This
is because SNiFF+ offers you a great deal of flexibility during the setup process.
When you create a new project, you can start off by specifying a minimum number of project
attributes and then specify the rest after setup, or you can specify as much as you want right
away.
In the rest of this chapter, and for that matter of this Guide, we assume that you always want
to start with the basics and move onto the complicated stuff afterwards. Therefore, we don’t
consider setting up project attributes such as Make and preprocessor directives to be part of
the regular project setup process. Instead, we first describe how to set up projects without
these attributes and then point you to other Parts of this Guide that cover them.

Abbreviations and shortcuts used in this chapter

RWE — Repository Working Environment
SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment

SNiFF+ Project Setup Wizard
You can set up projects and working environment using SNiFF+’s Project Setup Wizard. The
Project Setup Wizard can be used to set up projects for the following development situations:

� single-platform development in teams

� multi-platform development in teams

� single-user, single-platform development

� single-user, multi-platform development

� single-user, browsing-only

The Project Setup Wizard can also be used for the following tasks:

� adding new working environments

� creating new projects in an existing working environment.
ser’s Guide 43

Chapter 6 Project Setup Overview Project setup overview — procedures
Project setup overview — procedures

For team projects, the following steps should be completed by the Working Environments
Administrator (described on page 159).
Here is our recommended procedure for starting out with a new project:

1. Determine your development situation.

2. If you need working environments, create and specify a Working Environment Configu-
ration Directory.

3. Create the project.

4. Specify a default working environment if necessary.

5. Initialize new team working environments if necessary.

6. Set up Make Support.

Step 1: Your development situation

� Determine your development situation. For a quick overview of the type of project and
working environments you will need, please refer to Typical development situations —
page 46.

Step 2: The Working Environment Configuration Directory

SNiFF+ stores and maintains working environment files in a Working Environment Configu-
ration Directory. By default, this directory is:

$SNIFF_DIR/workingenvs

� If you intend to use this directory, you will first have to set permissions for the working
environment files stored in it. To do so, please refer to Using the default Working Environ-
ment Configuration Directory — page 51.

� If you intend to use another directory, please refer to Using a different Working Environ-
ment Configuration Directory — page 51.

Step 3: Create the project

� Set up the appropriate SNiFF+ project and/or working environments for your development
situation. Then, in the Launch Pad:

� To create the project using the Project Setup Wizard, choose Project > New
Project... > with Wizard... .

� To create the project using default values taken from your Preferences, choose

Java Projects

Note that the project setup described here does not apply to Java
projects. Please refer to the SNiFF+ Java Tutorial for details about
setting up Java projects.
44 SNiFF+

Us

Project setup overview — procedures
Project > New Project... > with Defaults... . For a detailed example of how to use this
option for multi-user development projects, refer to Creating Team Projects — page
63.

� To create the project using templates, refer to Working with new project templates —
page 47.

We recommend that novice and intermediate SNiFF+ users use the Project Setup Wizard.
More advanced users, and particularly Working Environment Administrators, may be inter-
ested in creating projects using either defaults or templates.

Step 4: Specify a default working environment

Your default working environment is the working environment in which you normally work.
For individual developers working in teams or alone, this will generally be a PWE. For a
Working Environments Administrator, this will usually be either the team’s SSWE or SOWE.
Setting a default working environment has two advantages:

� You can open projects more quickly, since you won’t have to first select the working envi-
ronment in which you work. SNiFF+ will use the default working environment.

� SNiFF+ warns you if you try to open projects in a working environment that isn’t your
default working environment.

To specify a default working environment, please refer to Specifying a default working envi-
ronment — page 52.

Step 5: Initialize team working environments

The goal of initializing team working environments is to be able to share files between all the
working environments your team uses.

� To initialize working environments, please refer to Initializing team working environments
— page 53.

� To first learn how file sharing between working environments works, please read How file
sharing works — page 33.

Note

In a real world situation, it may not matter to you whether your source
code is initially compilable. However, before creating a new SNiFF+
project from scratch, we recommend that you verify that your source files
are compilable. Then, when you set up Make Support for the project, you
will know that any compile-time errors must be a result of improperly set
Make attributes.
er’s Guide 45

Chapter 6 Project Setup Overview Typical development situations
Step 6: Set up Make Support

You can build targets in SNiFF+ using either SNiFF+’s Make Support or your own Makefiles.
In a team development environment, we strongly recommend using SNiFF+’s Make Support.

� For details about Make Support, please refer to Build and Make Support — page 73.

� For details about using your own Makefiles in SNiFF+, please refer to Using Your Own
Makefiles — page 105.

Typical development situations
Note that we recommend that your Working Environments Administrator sets up all team
projects and working environments.

Single-platform development in teams

Type of setup in Project Setup Wizard: Standard
Required SNiFF+ project type: Shared
Required working environments: RWE, SSWE, one SOWE, and one PWE for each team
member

Multi-platform development in teams

Type of setup in Project Setup Wizard: Standard
Required SNiFF+ project type: Shared
Required working environments: RWE, SSWE, one SOWE for each target platform, and one
PWE for each team member

Single-user, single-platform development with external data Repository

Type of setup in Project Setup Wizard: Standard
Required SNiFF+ project type: Absolute or Shared (Shared recommended)
Required working environments (for Shared projects only): RWE for Repository, PWE

Single-user, multi-platform development

Type of setup in Project Setup Wizard: Standard
Required SNiFF+ project type: Shared
Required working environments: RWE, SSWE for source code, one SOWE for each target
platform

Single-user, browsing-only

Type of setup in Project Setup Wizard: Browsing-only
Required SNiFF+ project type: Absolute
Required working environments: None
46 SNiFF+

Us

Working with new project templates
Working with new project templates
New project templates allow you to quickly create a new SNiFF+ project using the attributes
of an existing project stored in a special template file. Template files have the extension
.ptmpl and behave in many ways like a project’s Project Description File (PDF).
When you tell SNiFF+ that you want to create a new project using a template, SNiFF+ first
asks you to select the template you want to use, then the project directory containing the
source files of the new project. An Attributes of a New Project dialog then appears, and the
attributes stored in the selected template file are loaded into the various fields and boxes of
the dialog. You can change any of these attributes or leave them as they are.

Creating a template
There are two ways of creating templates:

� By saving an existing SNiFF+ project as a template file

� By creating a new project using the Attributes of a New Project dialog and default values
from your Preferences

Creating a template using an existing SNiFF+ project

1. Open the project for which you want to create a template.

2. In the Project Editor, double-click on the root project in the Project Tree.

The Project Attributes dialog appears.

3. In the General view, select the As Template radio button and press OK.

The Project Template dialog appears. You will now name the template file and store it onto
disk.

4. In the Template File field, enter a name for the new template file. By default, its extension
will be .ptmpl .

5. In the Description field, enter a description for the new template file.

Entering a description lets you easily distinguish between a list of template files later on.

6. By default, template files are stored in your <sniff_installation_dir>/con-
fig/project directory. To select a different template file directory, press the Change
Directory button at the top of the dialog and use the Directory dialog that appears.

When you are done, press the Save button to save the template file to disk.

Note

A template file is created for the current project only. No template
files are created for any subprojects that the current project may
have.
er’s Guide 47

Chapter 6 Project Setup Overview Creating a template
Creating a template using the Project Attributes dialog

1. In the Launch Pad, choose Project > New Project... > with Defaults... .

The Directory dialog appears.

2. Press the Select button. The directory that you choose in this dialog is unimportant.

The Attributes of a New Project dialog appears.

3. Navigate to the General view and, under Save Current Project Attribute Settings ,
choose the As Template radio button.

4. Set all other attributes in the Attributes of a New Project dialog according to your needs.
When you are done, press the Ok button.

The Project Template dialog appears. You will now name the new template file and store it
onto disk.

5. In the Template File field, enter a name for the new template file. By default, its extension
will be .ptmpl .

6. In the Description field, enter a description for the new template file.

Entering a description lets you easily distinguish between a list of template files later on.

7. By default, template files are stored in your <sniff_installation_dir>/con-
fig/project directory. To select a different template file directory, press the Change
Directory button at the top of the dialog and use the Directory dialog that appears.

8. When you are done, press the Save button to save the template file to disk.
48 SNiFF+

Us

Creating new projects using an existing template
Creating new projects using an existing template
To create a new SNiFF+ project using an existing template:

1. In the Launch Pad, choose Project > New Project... > with Template... .

The Project Template dialog appears.

2. The default template file directory is your <sniff_installation_dir>/config/
project directory. To select a different template file directory, press the Change Direc-
tory button and use the Directory dialog that appears.

3. Choose a template from the list of available template files.

The name of the selected template appears in the Template File field. Its description
appears in the Description field.

4. In the Project Directory field, enter the root directory of the new project. To navigate to
the correct directory, press the Change Directory button and use the Directory dialog that
appears.

5. Press the Ok button.

The Attributes of a New Project dialog appears. The attributes stored in the selected
template are used for the various fields and boxes in the dialog. Note that some of the
attributes in the dialog have no corresponding attributes in templates. In such cases,
default values are taken from your Preferences.

6. When you have set all the attributes in the Attributes of a New Project dialog to your satis-
faction, press the Ok button.

SNiFF+ will now create the new project and all its subprojects (if it has any). When
SNiFF+ is finished, it opens the new project and displays its structure and contents in the
Project Editor. The attributes of the project and its subprojects will correspond to those
stored in the template.

Note

If the root directory of the new project is physically located in a
SNiFF+ working environment, the new project will be a shared
project by default. Then, to open this project, you must open it in
this working environment, or in another working environment that
accesses this working environment.
You may, however, choose to make the new project an absolute
project, meaning that you can open it independently of a working
environment. To do so, in the General view, File Type drop-down,
choose Absolute . Please note that the Relative option is for back-
ward compatibility only.
er’s Guide 49

Chapter 6 Project Setup Overview Creating new projects using an existing template
Editing templates

You can edit template files in the same way that you edit a SNiFF+ project’s attributes. For
information on editing project attributes, please refer to Reference Guide — Project
Attributes. To edit a template file:

� In the Launch Pad, choose Project > New Project... > with Template... .

The Project Template Dialog appears.

In the Project Template Dialog

1. Press the Change Directory... button to the right of the Directory field.

2. In the Directory Name dialog that appears, navigate to the directory in which the tem-
plate file is stored and press the Select button.

3. Highlight the template file in the main view.

The name and description of the template file is automatically entered in the Template
File and Description fields.

4. Enter any path in the Project Directory field and press Ok.

The Attributes of New Project dialog appears.

In the Attributes of New Project dialog

1. Modify the attributes according to your needs.

2. In the General view, under Save Current Project Attribute Settings , select As Tem-
plate .

3. Press the Ok button to apply your changes.

The Project Template Dialog appears.

In the Project Template Dialog

Saving the template file using the same name:

� Follow the first 3 steps in the Project Template Dialog above and press Save.

The template file is now saved under the same name as the template file you modified.
Saving the template file using a different name:

1. Press the Change Directory... button to the right of the Directory field.

2. In the Directory Name dialog that appears, navigate to the directory in which you want to
save the template file and press Select .

3. In the Template File field, enter a name for the template file.

4. In the Description field, enter a description of the template file.

5. Press Save.

The template file is now saved under a different name.
50 SNiFF+

Us

Specifying a Working Environment Configuration Directory
Specifying a Working Environment Configuration Directory
The $SNIFF_DIR/workingenvs directory is the default Working Environment Configu-
ration Directory. There are three reasons for not using this directory:

� Normally, not everyone in your development team may have write permission for the
$SNIFF_DIR/workingenvs directory.

� To make it easier to manage working environments and the projects that you open in
them, we recommend that you store the Working Environment Configuration Directory
directory under the same root directory as the corresponding working environments.

� You may want to keep your SNiFF+ installation in its original state without ever modifying
it.

Using the default Working Environment Configuration Directory

In order for your team members to work with shared projects in working environments, read
and write permissions must be properly set for a number of files and directories maintained
by SNiFF+.

1. Make sure that all members have read and write permissions for the following files and
directories:

� $SNIFF_DIR/workingenvs/

� $SNIFF_DIR/workingenvs/.WEProjectCache/

� $SNIFF_DIR/workingenvs/WorkingEnvData.sniff

2. Make sure that only the Working Environments Administrator has write permissions for
the following files:

� $SNIFF_DIR/workingenvs/WorkingEnvUser.sniff

� $SNIFF_DIR/SitePrefs.sniff

Using a different Working Environment Configuration Directory

To specify the Working Environment Configuration Directory:

In the Shell or Command Prompt

1. Create a directory called e.g. workingenvs . From now on, we will refer to the full path
to this directory as:

<workingenvs>

2. Start SNiFF+.

The Launch Pad appears.

In SNiFF+

1. Open your Preferences by choosing Tools > Preferences... in any open tool.

2. Under the Tools node, select Working Environments .
er’s Guide 51

Chapter 6 Project Setup Overview Specifying a default working environment
3. In the Working Environment Config. Directory field, enter the path to the workin-
genvs directory you just created. Press Ok to save and apply the changes.

SNiFF+ will now create a number of files in <workingenvs> . These files will hold your
working environment information.

In the Shell or Command Prompt

In order for your team members to work with projects in working environments, read and
write permissions must be properly set for the files in the Working Environment Configuration
Directory.

1. Make sure that all members have read and write permissions for the following files and
directories:

� <workingenvs>

� workingenvs> /.WEProjectCache/

� workingenvs> /WorkingEnvData.sniff

2. Make sure that only the Working Environments Administrator has write permissions for
the following files:

� workingenvs> /WorkingEnvUser.sniff

� $SNIFF_DIR/SitePrefs.sniff

Specifying a default working environment
You can specify your default working environment either in your Preferences or directly in the
Working Environment tool. Here, we show you how to do so in your Preferences.

1. Ask your Working Environments Administrator the name and location of your Working
Environment Configuration Directory. You will specify this directory in the Working Envi-
ronment Config. Directory field of your Preferences.

See also Specifying a Working Environment Configuration Directory — page 51.

2. Choose Tools > Preferences... from any open SNiFF+ tool.

The Preferences dialog appears.

3. Under the Tools node, select Working Environments .

4. In the Working Environment Config. Directory field, specify the Working Environment
Configuration Directory.

5. In the Default Working Environments State field, enter the name of the working envi-
ronment in which you normally work.

6. Press Ok to save and apply the changes.

You can now open projects directly from the Launch Pad without first specifying your
working environment, since SNiFF+ will use your default working environment.
52 SNiFF+

Us

Initializing team working environments
Initializing team working environments
In a team development situation, your Working Environments Administrator should initialize
the RWE and all shared working environments. Each team member can then initialize his/her
own PWE.
If you followed the project setup instructions, your team’s shared source code is located in
your SSWE, and you created a SNiFF+ project (and possibly subprojects) for the source
code. To review the setup instructions, please refer to Project setup overview — procedures
— page 44.
Now, in order for file sharing between your team’s working environments to work, all working
environments need to have the same project directory structure. That is, assuming that the
SSWE contains the new project directory structure, the

� RWE,

� SOWEs and PWEs

must also have this structure.
The process of copying the SSWE project directory structure is referred to as initializing
working environments.
Initializing a working environment is an easy process:

� To initialize an RWE, simply check in files for the first time from the SSWE.

� To initialize SOWEs and PWEs, simply open a project in them for the first time. SNiFF+
then alerts you that it can’t find the necessary project directories and waits for your confir-
mation before creating them.

For details about version control in SNiFF+, please refer to Version Control — page 135.

Important

When you open a project structure (projects that include subprojects) for the
first time, you can tell SNiFF+ to copy all necessary project directories at the
same time during initialization. We therefore recommend that you open the
root project of all the projects in the SSWE.

If you don’t open the root project, you will have to repeat the initialization pro-
cedure for all projects you haven’t yet opened in your working environment.

We also recommend using the root project when updating your working envi-
ronments later on. In this case, they are referred to as workspace projects.
To learn about workspace projects, please refer to Workspace projects —
page 162.
er’s Guide 53

Chapter 6 Project Setup Overview Initializing your team’s Repository
Initializing your team’s Repository
To initialize your team’s Repository, you check in your team’s source files for the first time
from the SSWE. As a result of this initial check-in, your team’s Repository will have the same
directory structure as the SSWE. For each project directory, SNiFF+ creates a subdirectory
named after your underlying version control tool (e.g. RCS). Version control information for
the files in the project are then stored in this directory.
Checking in project files for the first time is the first step in version-controlling your SNiFF+
projects. We recommend that you version control at least the following types of files:

� Project Description Files (PDFs)

� source and source code documentation files

� Makefiles (only if you don’t use SNiFF+’s Make Support)

Initializing your team’s Repository — procedures

1. Open the root project in your team’s SSWE. Then, complete the remaining steps in the
Project Editor.

(To open the root project, please refer to Opening the root project in a working
environment — page 56.)

2. In the Project Tree, checkmark all projects by right-clicking anywhere in the Project Tree,
and then choosing Context menu > Select From All Projects .

3. Press the Filters... button.

The Filters dialog appears. You will now filter out SNiFF+’s Makefiles from the Project
Editor’s File List.

4. In the FileTypes tab, clear the Make check box and press Ok.

SNiFF+’s Makefiles are generated and maintained by SNiFF+, so there’s no reason to
version control them.

5. Choose File > Select All .

6. Choose File > Check In... .

An alert dialog appears informing you that SNiFF+ could not find a Repository directory
for the Project in the Repository Working Environment (RWE). This dialog will reappear
for each new Repository directory, unless you enable Repeat .

7. Enable Repeat and press Yes to create the necessary Repository directories for the
project.

The Check In dialog appears.

8. In this dialog, press the Ok button to check in an initial version of the shared project.

SNiFF+ will now create the SSWE’s directory structure in the RWE. Your team’s files will
be checked in to your Repository during the process. This may take some time,
depending on the number of files you’re checking in. After the check-in process is over, all
files shown in your Project Editor’s File List will be read-only.

9. Close the shared project in the SSWE.
54 SNiFF+

Us

Initializing your team’s SOWE
Initializing your team’s SOWE
For single-platform development, complete the following steps once. For multi-platform
development, complete the following steps for each target platform.

1. Open the root project in the SOWE for the target platform. Then, complete the remaining
steps in the Project Editor.

(To open the root project, please refer to Opening the root project in a working
environment — page 56.)
SNiFF+ informs you that it cannot find the directories of the shared project in the SOWE
root directory (they haven’t been created yet). You will now have SNiFF+ copy the SSWE
project directory structure in the SOWE.

2. Enable Repeat and press Create Directory . This will save you from having to press Cre-
ate Directory for each new project directory.

SNiFF+ will now incrementally create the project directories. When done, the SOWE root
directory contains the same project directory structure as the SSWE.
SNiFF+ also creates a Project Makefile in each project directory. On Unix, the Project
Makefile will be a symbolic link to the corresponding Project Makefile in the SSWE. On
Windows NT/95, a local copy is made instead.
When the generation process is over, SNiFF+ automatically opens the project in the
SOWE.

3. Close the shared project in the SOWE.

Your SOWE is now initialized for the project.

4. Complete the above steps for all additional target platforms.

When you are done, the next step is to initialize each team member’s PWE. Basically, you
will go through the same procedure for each PWE as you just did for your team’s SOWEs.
er’s Guide 55

Chapter 6 Project Setup Overview Initializing a PWE
Initializing a PWE
The goal of this step is create the SSWE project directory structure in your PWE. SNiFF+
does this for you when you open the shared project in your PWE for the first time.

1. Open the root project in your team’s PWE. Then, complete the remaining steps in the
Project Editor.

(To open the root project, please refer to Opening the root project in a working
environment — page 56.)
SNiFF+ informs you that it cannot find the directories of the shared project in the PWE
root directory (they haven’t been created yet). You will now have SNiFF+ copy the SSWE
project directory structure into the PWE.

2. Enable Repeat and press Create Directory . This will save you from having to press Cre-
ate Directory for each new project directory.

SNiFF+ will now incrementally create the project directories. When done, the PWE root
directory contains the same project directory structure as the SSWE.
SNiFF+ also creates a Project Makefile in each project directory. On Unix, the Project
Makefile will be a symbolic link to the corresponding Project Makefile in the SSWE. On
Windows NT/95, a local copy is made instead.
When the generation process is over, SNiFF+ automatically opens the project in the
PWE.

3. Close the shared project in the PWE.

Your PWE is now initialized for the project.

Opening the root project in a working environment

1. Open the Working Environments tool.

2. In the WorkingEnvs Tree, double-click on the working environment in which you want to
open the root project. For multi-platform development, double-click on the SOWE for the
target platform.

The Open Project dialog appears.

3. If the Project List is initially empty, press the Update List button to display all the projects
that can be opened in the SOWE.

A dialog appears asking you whether SNiFF+ should also look in any accessed working
environments for projects that can be opened.

4. Press Yes.

5. Double-click on your shared project to open it.
56 SNiFF+

U

7Setting Up Team Working Environments

Introduction
In this chapter, you will learn how to manually set up working environments for your team
projects. This chapter covers the setup procedure for all languages except for Java. To learn
how to set up working environments for your team Java projects, please refer to the SNiFF+
Java Tutorial.

Assumptions made in this chapter

� You are not using SNiFF+’s Project Setup Wizard

� You have read Project Setup Overview — page 43

� Your team’s shared source code is compilable

� You are the Working Environments Administrator for your team

� You want to create and use a Repository for version control purposes

� You are creating working environments from scratch and are not adding or modifying
existing working environments

� You develop either for a single platform or for multiple platforms

Related SNiFF+ topics

� Creating shared projects in working environments — Creating Team Projects — page 63

� Configuration management and version control in SNiFF+ — Version Control — page 135

� How to use the Working Environments tool — Working Environments — page 239

Abbreviations and shortcuts used in this chapter

RWE — Repository Working Environment
SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
$SNIFF_DIR — path to your SNiFF+ installation directory
ser’s Guide 57

Chapter 7 Setting Up Team Working Environments Overview
Overview
Setting up working environments consists of the following numbered steps:

1. Creating working environment root directories on your file system and setting permissions
for them

2. Setting permissions for working environment files created and maintained by SNiFF+

3. Creating and setting up your team’s working environments

Step 1: Create root directories
1. On your file system, create root directories for the RWE and SOWE. Also create a root

directory for each PWE needed by your team.

2. If you want SNiFF+ to create shared projects in your team’s current shared source file
directory, use this directory as the root directory of your team’s SSWE.

3. If you first want to create a new directory and copy the current set of your source files and
directories into it, do so now. Use this new directory as the root directory of your team’s
SSWE.

In the rest of this chapter, we will often use the following notation when referring to your
working environment root directories:

� <RWE_root_directory> — RWE root directory

� <SSWE_root_directory> — SSWE root directory

� <SOWE_root_directory> — SOWE root directory

� <PWE_root_directory> — PWE root directory

4. Give all members of your team read-only permissions for the SSWE and SOWE root
directories.

5. Give all members of your development team write permissions for the RWE root directory.

Write permission for the RWE is necessary for performing version-control operations on
files in your Repository.

Step 2: Set permissions for working environment files
For your team members to work with shared projects in working environments, read and
write permissions must be properly set for a number of files and directories maintained by
SNiFF+.

1. Make sure that all members have read and write permissions for the following files and
directories:

� $SNIFF_DIR/workingenvs/

� $SNIFF_DIR/workingenvs/.WEProjectCache/

� $SNIFF_DIR/workingenvs/WorkingEnvData.sniff
58 SNiFF+

Us

Step 3: Create and set up team working environments
2. Make sure that only the Working Environments Administrator has write permissions for
the following files:

� $SNIFF_DIR/workingenvs/WorkingEnvUser.sniff

� $SNIFF_DIR/SitePrefs.sniff

Step 3: Create and set up team working environments
1. Launch SNiFF+.

2. In SNiFF+’s Launch Pad, choose Tools > Working Environments .

3. The main view of the Working Environments tool appears.

4. In the Working Environments tool, choose Utils... > User Permissions... .

The Users dialog appears.

Permissions field

Select all check boxes to give
yourself permission to create
all four kinds of working
environments
er’s Guide 59

Chapter 7 Setting Up Team Working Environments Step 3: Create and set up team working environments
5. Check whether your username appears in the Users List. If it doesn’t, add it to the list by
pressing the Add command. In the New User dialog that appears, enter your username
and press Ok.

Your username should appear highlighted in Users List.

6. Under Permissions , select all check boxes to give yourself permission to create all four
kinds of working environments.

7. Now, add the username of your team members in the New User dialog.

8. For each team member, select the Can Create PWE check box to give the team member
permission to create his/her own PWE.

9. Press OK to return to the main view of the Working Environments tool.

Create and set up the RWE

1. In the WorkingEnvs Tree, select the asterisk (*).

2. Choose Edit > New Repository .

The Working Environment - New Repository dialog appears.

3. In the Working Environment field, enter a name for the RWE.

4. Enter the root directory of your Repository in the Root field. If you want to use the Direc-
tory dialog to select the root directory, press the Directory... button.

5. Press OK to return to the main view of the Working Environments tool.

You have just finished defining your team’s RWE.

Note

On Unix and Windows NT/95, username refers to the name that
you use to log onto your machine. SNiFF+ needs it for handling
permissions correctly.
60 SNiFF+

Us

Step 3: Create and set up team working environments
Create and set up the SSWE

1. In the WorkingEnvs Tree, select the RWE you just defined.

2. Choose Edit > New Shared Source based on Repository .

The Working Environment - New Shared Source based on Repository dialog appears.

3. In the Working Environment field, enter a name for the SSWE.

4. Enter the root directory of the SSWE in the Root field. If you want to use the Directory dia-
log to select the root directory, press the Directory... button.

5. Press OK to return to the main view of the Working Environments tool.

Create and set up the SOWE

For single-platform development, complete the following steps once. For multi-platform
development, complete the following steps for each target platform.

1. In the WorkingEnvs Tree, select the SSWE you just defined.

2. Choose the Edit > New Shared Object based on SSWE .

The Working Environment - New Shared Object based on SSWE dialog appears.

3. In the Working Environment field, enter a name for the SOWE.

4. Enter the root directory of the SOWE in the Root field. If you want to use the Directory dia-
log to select the root directory, press the Directory... button.

5. If you have multi-platform shared projects, you will need subdirectories under the SOWE
root directory for each target platform. To create platform specific subdirectories (if neces-
sary), enter $PLATFORMat the end of the SOWE root directory in the Root field.

On Unix
The PLATFORMenvironment variable is set automatically each time you start SNiFF+.
On Windows
The PLATFORMenvironment variable is not set automatically. You must set the
PLATFORMenvironment variable manually before using it. To do so, please refer to the
Windows online help.
This will enable SNiFF+’s working environment update mechanism to find the appropriate
subdirectory of the SOWE root directory for each target platform.

6. Press OK to return to the main view of the Working Environments tool.
er’s Guide 61

Chapter 7 Setting Up Team Working Environments Step 3: Create and set up team working environments
Create and set up PWEs

When a new team member joins your development team, a Private Working Environment
must be created and set up for him/her. Although each member may complete the following
steps, we recommend that the Working Environments Administrator do so. In more compli-
cated development environments, only the Working Environments Administrator will know
enough about a team’s projects to decide where a new PWE fits into the overall scheme of
things.

1. In the WorkingEnvs Tree, select the SOWE defined in the previous section.

2. Choose Edit > New Private based on SOWE .

The Working Environment - New Private based on SOWE dialog appears.

3. In the Working Environment field, enter a name for the PWE.

4. Enter the root directory of the PWE in the Root field. If you want to use the Directory dia-
log to select the root directory, press the Directory... button.

5. Press OK to return to the main view of the Working Environments tool.

6. Save your working environments information by choosing File > Save .
62 SNiFF+

U

8Creating Team Projects

Introduction
In this chapter, you will learn how to create shared SNiFF+ projects for a development team
situation. This chapter covers the setup procedure for all languages except for Java. To
learn how to set up shared Java projects, please refer to the SNiFF+ Java Tutorial.

This chapter covers the following topics

� Create shared projects for each directory in your team’s Shared Source Working Environ-
ment

� Initialize a new team Repository

� Initialize your team’s Shared Object Working Environment

� Initialize each team member’s Private Working Environment

Assumptions made in this chapter

� You are not using SNiFF+’s Project Setup Wizard

� You have read Project Setup Overview — page 43

� Your team’s shared source code is compilable

� You have already set up your team’s working environments

� You are the Working Environments Administrator for your team

� You have set up a Private Working Environment for yourself

Related SNiFF+ topics

� Setting up Make Support for team development — Build and Make Support — page 73

� Configuration management and version control in SNiFF+ — Version Control — page 135

Abbreviations used in this chapter

RWE — Repository Working Environment
SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
PDF — Project Description File
ser’s Guide 63

Chapter 8 Creating Team Projects Overview
Overview
Creating shared team projects consists of the following steps:

1. Creating shared projects for each directory in your team’s SSWE

2. Initializing your Repository

3. Initializing your team’s SOWE and then performing an initial build in it

4. Initializing each team member’s PWE

Step 1: Creating shared projects in the SSWE
1. In the Working Environments tool, select your team’s SSWE and choose File > New

Project... >With Defaults... .

The Directory dialog appears.

2. In the Directory dialog, select the root directory of the SSWE and press the Select button.

The Attributes of a New Project dialog appears. In the dialog, you will set the most
important project attributes needed for creating a new project.

3. Select the General node and look at the File Name field. By default, the project name is
the same as the project directory name. You can change the project name at this point if
you want.

4. If you use a Make System other than the SNiFF+ Make System, select the Build Options
node and in the Make Command field enter the command that you use to call Make.

5. Select the Version Control System node and select your underlying CMVC tool from the
VCS Tool drop-down menu.

6. Select the File Types node and make sure the file types you need are loaded. Create
new file types if necessary. For details on how to create new file types, please refer to
page 133.

7. Press the Ok button to begin creating the shared project.

SNiFF+ will now create the new project and all its subprojects. When SNiFF+ is finished,
it opens the new project in the SSWE (where you set up the project) and displays its
structure and contents in the Project Editor.

Note

The setup procedure described here does not cover setting up
SNiFF+’s Make Support. Before building your team projects, we
strongly recommend that you read chapter Build and Make Support
— page 73.
64 SNiFF+

Us

Step 2: Initializing your team’s Repository
Step 2: Initializing your team’s Repository
The next step is to initialize your team’s Repository. You do this by checking in your source
files for the first time from the SSWE. As a result of this initial check-in, your team’s Reposi-
tory will have the same directory structure as the SSWE. For each project directory, SNiFF+
creates a subdirectory named after your underlying version control tool (e.g. RCS). Version
control information for the files in the project are then stored in this directory.
To check in the entire project, do the following in the Project Editor:

1. Checkmark all the projects in the Project Tree.

2. Press the Filters... button.

The Filters... dialog appears.

3. In the File Types tab, clear the Make check box to filter out SNiFF+’s Makefiles from the
Project Editor’s File List (we assume you are using SNiFF+’s Make Support).

SNiFF+’s Make Support files are generated and maintained by SNiFF+, so there’s no
reason to version control them.

4. Press the OK button to apply changes and to close the Filters... dialog.

5. Choose File > Select all .

All the files in the File List are now selected.

6. Choose File > Check In... .

SNiFF+ informs you that it cannot find the directory structure of the SSWE in the
Repository (it hasn’t been created yet). You will now tell SNiFF+ to copy the SSWE project
directory structure into the Repository.

7. Enable Repeat and press Yes. This will save you from having to press Yes for each new
project directory.

The Check In dialog appears.

8. In this dialog, press the Ok button to check in an initial version of the shared project.

SNiFF+ will now create the SSWE’s directory structure in the RWE. Your team’s files will
be checked in to your Repository during the process. This may take some time,
depending on the number of files you’re checking in. After the check-in process is over, all
files shown in your Project Editor’s File List will be read-only.

9. In the Launch Pad, select the project and choose Project > Close Project to close the
shared project in the SSWE.
er’s Guide 65

Chapter 8 Creating Team Projects Step 3: Initializing your team’s SOWE
Step 3: Initializing your team’s SOWE
The goal of this step is create the SSWE directory structure in the SOWE. SNiFF+ does this
for you when you open the shared project in the SOWE for the first time.
For single-platform development, complete the following steps once. For multi-platform
development, complete the following steps for each target platform.

1. Open the Working Environments tool.

2. Double-click on your team’s SOWE in the hierarchy of available working environments.
For multi-platform development, double-click on the SOWE for the target platform.

The Open Project dialog appears.

3. If the Project List is initially empty, press the Update List button to display all the projects
that can be opened in the SOWE.

A dialog appears asking you whether SNiFF+ should also look in any accessed working
environments for projects that can be opened in the SOWE. Here, the SOWE accesses
the SSWE, so pressing Yes will display also the projects in the SSWE.

4. Press Yes.

5. Select the root shared project (all other projects are its subprojects) and press Open .

SNiFF+ informs you that it cannot find the directories of the shared project in the SOWE
root directory (they haven’t been created yet). You will now have SNiFF+ copy the SSWE
project directory structure into the SOWE.

6. Enable Repeat and press Create Directory . This will save you from having to press Cre-
ate Directory for each new project directory.

SNiFF+ will now incrementally create the project directories. When done, the SOWE root
directory contains the same project directory structure as the SSWE.
SNiFF+ also creates a Project Makefile in each project directory. On Unix, the Project
Makefile will be a symbolic link to the corresponding Project Makefile in the SSWE. On
Windows NT/95, a local copy is made instead.
When SNiFF+ is finished, it opens the new project in the SOWE and displays its structure
and contents in the Project Editor.

7. In the Launch Pad, select the shared project and then choose Project > Close Project to
close the shared project in the SOWE.

Your SOWE is now set up. The next step is to initialize each team member’s PWE.
Basically, you will go through the same procedure for each PWE as you just did for the
SOWE.
66 SNiFF+

Us

Step 4: Initializing your PWE
Step 4: Initializing your PWE
The goal of this step is create the SSWE directory structure in your PWE. SNiFF+ does this
for you when you open the shared project in the PWE for the first time.
\

1. Open the Working Environments tool.

2. Double-click on your PWE in the hierarchy of available working environments.

The Open Project dialog appears.

3. If the Project List is initially empty, press the Update List button to display all the projects
that can be opened in the PWE.

A dialog appears asking you whether SNiFF+ should also look in any accessed working
environments for projects that can be opened in the PWE. Here, the PWE accesses the
SOWE and the SSWE, so pressing Yes will display also the projects in both of these
working environments.

4. Press Yes.

5. Select the root shared project (all other projects are its subprojects) and press Open .

SNiFF+ informs you that it cannot find the directories of the shared project in the PWE
root directory (they haven’t been created yet). You will now have SNiFF+ copy the SSWE
project directory structure into the PWE.

6. Enable Repeat and press Create Directory . This will save you from having to press Cre-
ate Directory for each new project directory.

SNiFF+ will now incrementally create the project directories. When done, the PWE root
directory contains the same project directory structure as the SSWE.
SNiFF+ also creates a Project Makefile in each project directory. On Unix, the Project
Makefile will be a symbolic link to the corresponding Project Makefile in the SSWE. On
Windows NT/95, a local copy is made instead.
When SNiFF+ is finished, it opens the new project in the PWE and displays its structure
and contents in the Project Editor.

7. In the Launch Pad, select the shared project and then choose Project > Close Project to
close the shared project in the PWE.

Your PWE is now set up. This completes the setup procedure for your shared team
projects.

Note

For now, you should complete the following steps only for your PWE. After reading
and following the steps outlined in the next and last section (What you should do next
— page 68), go through test steps again for your team members’ PWEs.
er’s Guide 67

Chapter 8 Creating Team Projects What you should do next
What you should do next
The next tasks that you, the Working Environments Administrator for your team, should
complete are:

1. Set up SNiFF+’s Make Support for your shared project (covered in Build and Make Sup-
port — page 73).

2. Build the targets of your shared project to check whether you set everything up properly.
Note that we assume that your shared source files are compilable, so any compiler errors
that might occur during the build process are a result of improperly set Make attributes.

In the rest of this chapter, we suggest two ways of doing this.

Method 1 — Working in your PWE
You can set up Make Support in your PWE and then locally build the targets of your project.

Advantage

You would use SNiFF+’s team support as it is intended to be used:

Procedure

1. Check out files that you want to modify in your PWE—Setting up Make Support for a
project means setting the project’s Make attributes. These attributes, like all other project
attributes, are stored in the project’s PDF. As part of the shared project setup process, you
should check in PDFs along with your other files, so you need to check them out before
modifying them.

2. Set up Make Support for the shared project in your PWE.

3. Test the modifications by building the targets of your project in your PWE.

4. If the build is successful, check in the modified PDFs. If the build is unsuccessful, correct
any mistakes in your Make attributes and then rebuild the targets.

5. Update your team’s SSWE and SOWE. By updating the SSWE, your changes will be
available to the rest of your team. By updating the SOWE, the targets of your project will
be successfully build in it.
68 SNiFF+

Us

Method 2 — Working in your team’s SOWE
Method 2 — Working in your team’s SOWE
You can set up Make Support in your SOWE and then build the targets of your project in it.

Advantage

It’s generally faster than Method 1, since you have to update only one working environment
(your team’s SSWE).

Disadvantage (On Windows NT/95 only)

You must first check in your shared source files from the SSWE before opening the shared
project in the SOWE. If you don’t do this and later open the shared project in a PWE, the
permissions for your Project Makefiles will be improperly set, and local builds in the PWE will
fail.

Procedure

You can work in the SOWE just like you would in a PWE:

1. Check out your PDFs in the SOWE.

2. Set up Make Support and build the targets of your project in the SOWE.

3. If the build is successful, check in the modified PDFs. If the build is unsuccessful, correct
any mistakes in your Make attributes and then rebuild the targets.

4. Update your team’s SSWE. By updating the SSWE, your changes will be available to the
rest of your team.
er’s Guide 69

Chapter 8 Creating Team Projects Method 2 — Working in your team’s SOWE
70 SNiFF+

Part IV
Setting Up the Build

Process

U

9Build and Make Support

Introduction
In this chapter, you will learn how to set up SNiFF+’s Make Support for your projects. This
chapter covers the setup procedure for all languages except for Java. To learn how to set up
Make Support for your Java projects, please refer to the SNiFF+ Java Tutorial.

This chapter covers the following topics

� How SNiFF+’s Make Support works

� How to set up SNiFF+’s Make Support for your projects

Assumptions made in this chapter

� You intend to use SNiFF+’s Makefiles and Make Support Files for regulating builds

� You know how to set up working environments and shared projects

� You use a version control tool

Related SNiFF+ topics

� Executing SNiFF+ commands for building, running and debugging targets — Compiling
and Debugging in SNiFF+ — page 185.

� Using your own Makefiles in SNiFF+ — Using Your Own Makefiles — page 105

Abbreviations and shortcuts used in this chapter

SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
$SNIFF_DIR — path to your SNiFF+ installation directory

Note

You must use SNiFF+’s Make Support if you work in a team environment
and use working environments.
ser’s Guide 73

Chapter 9 Build and Make Support Technical overview
Technical overview
The primary reason for the interdicting an automated Makefile generation feature in SNiFF+
was to "make" projects more manageable and easier to maintain from a build perspective.
When new files or targets are added to a project, developers typically don't want to be
involved in the modification of Makefiles because Makefiles tend to be very complex and
changing Makefiles could have wide ranging side-effects on the overall system.

SNiFF+ knows which source files belong to a project and extracts include dependencies for
browsing purposes. Hence, SNiFF+ could easily use its symbol database together with
generic rules about how to build executables, libraries, etc. to generate Makefiles. SNiFF+
can derive file dependencies of source and header files, generate include paths for header
files that are part of the project structure, and automatically update Makefiles when new files
are added to a project.

Each time a SNiFF+ project is created, a project Makefile is created from a Makefile
template, template.Makefile , located in the $SNIFF_DIR/config directory. This
Makefile includes Make Support files, e.g. macros.incl . As a matter of fact, SNiFF+
never modifies the project Makefile itself, SNiFF+ only updates the Make Support files.
These Make Support files located in a subdirectory of each project called .sniffdir ,
should not be modified by the user. The general makefiles, general.mk ,
general. <language> .mk and <platform> .mk are located in the $SNIFF_DIR/
make_support directory.

Features

SNiFF+’s Make Support:

� comes with its own Makefiles

� is based on standard Unix Make tools

� is fully integrated with working environments to build targets across multiple shared work-
ing environments

� automatically generates Make Support Files that contain data about include paths and
dependencies lists for shared projects

� automatically provides Make rules for recursively building a project’s target

� provides automatic support for multi-platform development and works with compilers, link-
ers, archivers and other build tools of your choice

� maintains your build system by automatically updating Make Support Files

Note for Windows users

In the following section, there are several references to symbolic links.
Windows does not, however, support symbolic links. So, wherever
symbolic links are created by SNiFF+ on Unix, local copies are made
on Windows. Therefore, if you are working on Windows, please read
all references to "symbolic links" as "local copies" in the following.
74 SNiFF+

Us

Technical overview
� supports multiple programming languages, e.g., C/C++, IDL, Java, Fortran, etc.

� supports multiple targets, e.g., executables, static and shared libraries, DLL’s, applets,
etc.

Specifying your compiler

SNiFF+ does not have its own compiler. To compile in SNiFF+, you must have a compiler
installed on your computer. By default, the following compiler is specified in your Platform
Makefile:

� On Unix

The gnu compiler

� On Windows

Microsoft Developer Studio
If you use any other compiler to compile SNiFF+ projects, please specify it in your Platform
Makefile. For information about Platform Makefiles, see Platform Makefile — page 82. The
Platform Makefile then uses dependency and include path information from your Project
Makefile. For information about Project Makefiles, see Project Makefile — page 77. In addi-
tion, make sure that your PATHenvironment variable points to the compiler you are using.

Building targets when using team working environments

If you use SNiFF+’s working environments with your team software development projects,
you must use SNiFF+'s Make Support in its entirety (i.e., including Makefiles and Make
Support Files) for building your object files and targets.
SNiFF+’s Make Support allows you to take full advantage of working environments by
providing a mechanism for automatically sharing source and object files between members
of a team. As a result, it is not possible to use "normal" Makefiles with shared working envi-
ronments.

Sharing source files

SNiFF+ uses an internal sharing mechanism for source files. This mechanism allows SNiFF+
to know exactly which project source files are shared (only found in shared working environ-
ments) and which are checked out to a PWE (contained in local project directories).
However, this internal sharing mechanism is not supported by standard Make implementa-
tions, which expect that all source files needed to build the object files for the local target are
also located in the local directory. If this is not the case, SNiFF+ creates symbolic links in
your PWE to shared source files in your team’s SSWE where appropriate. These symbolic
links are automatically created when you open a project in your PWE or when needed.
er’s Guide 75

Chapter 9 Build and Make Support Technical overview
When you check out a shared source file to your PWE, SNiFF+ removes the symbolic link
and then makes a local copy of the file.

Sharing object files

SNiFF+ also creates symbolic links in your PWE to shared object files and targets in your
team’s SOWE. This is done by means of a special help target, symbolic_links .
Before compiling source files and building targets locally in your PWE, we recommend that
you first build (run) symbolic_links . This will reduce disk space and speed up compilation
time by eliminating unnecessary recompilation and relinking.
To find out how to build symbolic_links , please refer to Building the help targets — page
191.
When you build targets in your PWE, SNiFF+’s Make Support first checks whether any
object files need to be rebuilt or whether any targets need to be relinked. If so, SNiFF+
removes it and then rebuilds it (same principle applies to a target that needs to be relinked).

Note

Project Makefiles in a PWE are always symbolic links to those in the
accessed SSWE, since Make assumes that Makefiles are stored in
local directories.
76 SNiFF+

Us

SNiFF+ Makefiles and Make Support Files
SNiFF+ Makefiles and Make Support Files
Your SNiFF+ installation comes with a number of standard Makefiles that are used by
SNiFF+’s Make Support to communicate with Make. Basically, there are four types of Make-
files: General, Language, Platform and Project. These Makefiles, as well as how they interact
with each other, are described in the following diagram:

Project Makefile
A Project Makefile (from now on: Makefile) is a generic Makefile template that SNiFF+ auto-
matically generates and adds to a newly created project. This Makefile is located in the
project directory. Makefiles define macros which are used by SNiFF+’s Make Support for
building project targets. These macros, in turn, are expanded to the values of other macros
defined in Make Support Files. There are macro definitions, e.g., for:

� the targets built in the project

� the components needed to build the targets

� dependency information

� include path information

Macro definitions are automatically maintained by SNiFF+. The values of the macros used in
the Makefile are taken from the Build Options view of the Project Attributes dialog.
For details about the macros defined in a Makefile, please refer directly to a project’s Make-
file. Make Support Files are discussed on page 80.

includes

Language MakefilePlatform Makefilemacros.incl
dependecies.incl

Make Support Files

include.incl
Make Support File

Project Makefile

Project-specific data:
project targets,
include directives,
dependencies

Includes Language
Makefiles needed for
building the targets
of a project

General Makefile

Defines macros and
help target rules
used by SNiFF+’s
Make Support

Define macros gen-
erated from project’s
make attributes. The
macros are expand-
ed in the Project
Makefile

Platform-specific in-
formation for build-
ing the targets of a
project: compilers,
linker, archiver,
flags, 3rd-party libs,
etc.

Defines language-
specific rules and
macros used for
building the targets
of a project

includes

includes includes includes
er’s Guide 77

Chapter 9 Build and Make Support Project Makefile
Configuring the Project Makefile (excluding Java)

For configuring Make Support for Java, please refer to the Technical Reference in the Java
tutorial. In general, it is unnecessary for you to modify a project’s Makefile. By modifying the
Project Makefile, you can extend or override all settings that you make in the SNiFF+ Project
Attributes. However, you should try to avoid such modifications wherever possible because
they are usually hard to migrate to new versions of SNiFF+.
All macros defined in a Platform Makefile can be overridden in the Project Makefile, but note
that this makes the current project platform dependent. Therefore, we discourage changing
any settings in the Project Makefile apart from the examples shown below.
In a project’s Makefile, you can also redefine the platform-independent flags and macros that
are set in the General Makefile. If you want to incorporate additional Make rules in a project’s
Makefile, you must do so after the code line that includes the General Makefile:

include $(SNIFF_DIR)/make_support/general.mk

Additional flags can be defined using macros containing the prefix OTHER_. Multiple addi-
tional flags are separated from each other by spaces.
.

Example Description

Include .sniffmake/macros.incl If you modified the Directory for Make
Support Files in your Project Attributes,
then you need to modify the line which in-
cludes macros.incl , all future lines
will be set correctly through the
$(SNIFF_MAKEDIR) macro. Note that
if you generally want to use a different di-
rectory for your SNiFF generated Make
Support files, you should change the
Makefile Template in $SNIFF_DIR/
config/template.Makefile .

SUB_LIBS = lib1 lib2 $(SNIFF_SUB_LIBS) If your executable depends on linking sub
libraries in a particular order, you may add
the libraries which should be linked first to
the SUB_LIBS macro. This can also be
used to force linking to shared libraries
which are produced by subprojects. By
default, SNiFF+’s Make Support doesn't
pass shared libraries to superprojects.

SUBDIRS = my_subdir $(SNIFF_SUBDIRS) Additional Recursive Make Subdirecto-
ries generated in the SNiFF Project At-
tributes will be overwritten when you press
the Generate button there. To make sure
that such subdirectories are persistent,
you may add them in your project Make-
file.
78 SNiFF+

Us

Project Makefile
OTHER_CLEANUP = "*.bak" "*~" Additional patterns that you would like to
remove if a make clean is issued

PURIFY_TARGET = \$(LINK_TARGET).purify By defining this macro, you activate the
purify rule of the global Make Support for
the current project.

OTHER_CXXFLAGS = $(CXX_DEBUGFLAG) Produce debugging information in this
project, even if the global options turn it
off. Using CXXFLAGS in the project
Makefile would overwrite the global set-
tings from the Platform Makefile.

OTHER_IDLFLAGS = -DmyLocalDef Use a specific Preprocessor definition
also for IDL. In general, all OTHER_XXX
macros are meant to hold such additional
switches which should be valid only in the
local project.

IDL_CFILE_TYPE_SPEC = C Build an IDL Client here. For details, see
IDL Setup in the User's Guide.

PRE_TARGETS = my_pretarget
\ $(SNIFF_PRETARGETS)

If one target needs to be compiled before
all other files in this project, add it to the
PRE_TARGETSmacro.

MAKEFILE = Makefile.server If your local Makefile has a different name,
you must set this macro in order for make
running in a sub-process to work correctly.
Note, that in order for Recursive Make to
work correctly, you also need a file named
Makefile in addition to your renamed one
(for details, see IDL Setup in the User's
Guide).

all :: additional_stuff
additional_stuff : x1.gen x2.gen
$(GENERATOR) $*

You can add local rules for additional stuff
to the all target if you use the double co-
lon. Your additional_stuff should
be defined as other target in the
SNiFF Project Attributes.
Note: if you define this rule before includ-
ing general.mk , it will be executed be-
fore your SNiFF+ main target, if you add
the all rule after including general.mk ,
it will be executed after the main target
and the subdirectories have been built.

Example Description
er’s Guide 79

Chapter 9 Build and Make Support General Makefile
General Makefile
The General Makefile is the $SNIFF_DIR/make_support/general.mk file.
Each SNiFF+ installation comes with a the General Makefile, which:

� defines a number of macros used by SNiFF+’s Make Support,

� specifies rules for building SNiFF+’s help targets,

� specifies rules for recursively building targets,

� includes the correct Platform Makefile for your target platform, and

� includes the include.incl Make Support File.

For details about the macros and rules defined in the General Makefile, please refer directly
to the file. For details about help targets, please refer to SNiFF+ help targets — page 190

Make Support Files
By default, Make Support Files are stored in the .sniffdir subdirectory of each SNiFF+
project directory. You can specify another directory in which SNiFF+ should store generated
Make Support files in your Project Attributes > Build Options > Advanced view, Other
directory field. Please note that this path must be relative since absolute paths aren’t
currently supported. Once you’ve specified another directory for Make Support files, you
must manually enter the path to this directory in your project Makefiles.
SNiFF+ uses a project’s Make information, such as include path and dependencies informa-
tion, to generate Make Support Files. The macros defined in Make Support Files are then
used by the different types of SNiFF+ Makefiles to build a project’s targets.
There are four Make Support Files:

� Dependencies file (dependencies.incl) — Lists all dependencies between source files
in the project.

� Macros file (macros.incl) — Contains e.g. target names, include path information and
linked libraries information for the project.

� Include file (include.incl) — Includes those Language Makefiles needed for building the
targets of a project.

� Platform Make Support file ($PLATFORM.incl) — Contains information about the path
to the redirection directories.

All Make Support Files except for Include file are automatically included by Project Make-
files. The Include file Make Support File is included by the General Makefile.
For details about the macros defined in Make Support Files, please refer directly to the files.

Updating Make Support Files
You should update a project’s Make Support Files after you’ve made any structural changes
to the project, or whenever you include additional files in its source files.
Note that SNiFF+ automatically updates the Macros Make Support File of a project when
you do one of the following:
80 SNiFF+

Us

Language Makefiles
� add or remove files to or from the project

� add or remove subprojects to or from the project

� Modify any Make attribute of the project.

Language Makefiles
SNiFF+’s Language Makefiles are located in your $SNIFF_DIR/make_support direc-
tory. For details about Language Makefiles, please refer to Language Makefiles — details —
page 103.
Language Makefiles define the language-specific macros and rules needed to build the
targets of a project. For details about the macros and rules, please refer directly to the
Language Makefiles.
Each language file type has an attribute called General Makefile , which specifies the
Language Makefile associated with the file type. SNiFF+’s Make Support uses this informa-
tion to automatically include the correct Language Makefile in the Include file Make Support
File.
You can use SNiFF+’s default settings for the Language Makefiles it provides, or you can
specify your own:

� You can associate more than one Language Makefile to a file type. For example, SNiFF+
associates both yacc and C Language Makefiles with the Yacc Source file type. So, when
you build targets from yacc source files, rules for compiling both yacc and C sources are
made available to your Make utility.

� Since all the rules and macros for a given language are contained in a single Language
Makefile, finding and adapting these rules to your exact environment is easy.

� You can write your own Language Makefiles and use them for all your SNiFF+ projects or
only for selected projects.

To learn how to specify your own Language Makefiles, please refer to Specifying Language
Makefiles: — page 103.

Note

SNiFF+’s Language Makefiles extensively use macros defined by SNiFF+’s Make
Support. Therefore, if you intend to create your own language-specific Make rules,
please use SNiFF+’s Language Makefiles as templates.
er’s Guide 81

Chapter 9 Build and Make Support Platform Makefile
Platform Makefile
SNiFF+ comes with a set of pre-configured Platform Makefiles for all platforms on which it
runs. These Makefiles are stored in your $SNIFF_DIR/make_support directory.
Platform Makefiles are included by the General Makefile and define macros for the various
build tools needed for each specific platform (e.g., compilers, linker, archiver, preprocessor).
The flags corresponding to these tools can also be defined in Platform Makefiles.
For details about which macros and flags can be set in Platform Makefiles, please refer
directly to the files.
82 SNiFF+

Us

Platform Makefile
Configuring the Platform Makefile

In your Platform Makefiles, you can redefine the macros and rules that are set in the General
Makefile for your particular platform, see below:

Example Description

CXX = CC Use the SparcWorks native compiler
on Solaris

SYSYPE = -DOS_SYSV -DOS_Solaris Preprocessor Defines that help
your sources to identify a platform --
you are free to choose these, they
will just be evaluated by the Prepro-
cessor in your Source Code

CXXFLAGS = -O -pte.cc Global C++ Compiler flags: Optimize
and use .cc as extension for tem-
plates

CXX_DEBUGFLAG = -g Define the debugging information flag
which is used on this particular plat-
form (for multi-platform use in the
Project Makefile)

LD_SHAREDFLAGS = -shared While GNU compilers use -G for pro-
ducing shared libraries, the Irix native
compiler uses -shared . Producing
shared libraries is generally rather
system dependent, so you might
need to change the corresponding
flags in your Platform Makefile to
make it work.

SOCKET_LIBS = -lsocket -lnsl These libs are typically only needed
on Solaris. By defining
SOCKET_LIBS in the Platform
Makefile, you can use
$(SOCKET_LIBS) as a platform-
dependent library to be linked to your
executables (+libraries
linked field in the Project At-
tributes).

MY_GLOBAL_LIB = -L/lib/mine -
lglob

By defining a macro for external addi-
tional libraries, you can use it as
$(MY_GLOBAL_LIB) in the
Project Attributes (similar to the
SOCKET_LIBS, see above)
er’s Guide 83

Chapter 9 Build and Make Support Platform Makefile
YACC_CFILE_SUFFIX = c
LEX_CFILE_SUFFIX = c
IDL_CFILE_SUFFIX = cpp

Change the suffix that is used for files
generated from the Yacc, Lex or IDL
precompiler. Note that you should
also change the SNiFF+ filetype for
… generated Implementation files
to use the suffix that you have
changed.

Example Description
84 SNiFF+

Us

Specifying the targets of a project
Specifying the targets of a project
SNiFF+’s Make Support provides rules in the General Makefile for building the following
types of targets in a project:

� executable

� relinkable object

� library

� object file (for the purposes of this section, all object files built in a project are collectively
considered to be a single target)

The following rules apply when specifying targets:

� Any number of object files may be built in a project.

� Of the other three target types—executable, relinkable object, library—only one of each
may be built in a project.

Each project has only one default target. If only one of the targets mentioned above is built
in a project, this target is the default target of the project. If several targets are built in a
project, the first target in the order—executable, relinkable object, library, object file—is the
default target of the project.
The default target of a project fulfills the following purposes:

� It is used as the default target for many of the commands available in the Target menu.

� Make builds the default target of the current project when you start a build without explic-
itly entering a target name, or when you execute make all in the Shell.

� By properly exporting default targets (see following pages), the structure of your projects
in SNiFF+ will be optimally suited for making full use of SNiFF+’s Make Support.

Exporting targets of a project
SNiFF+’s Make Support provides a mechanism for automatically linking the targets of a
project to its superproject. When you use this mechanism, SNiFF+ automatically enters and
maintains the necessary link commands in Project Makefiles, thus saving you from having to
do this yourself.
A project can export its target to its superproject. The superproject can then either link these
targets to its own targets during a build, or export them to its own superproject.
The following types of targets can be exported:

� relinkable object

� library

� object file (for the purposes of this section, all object files built in a project are collectively
considered to be a single target)

Although an exported target need not be the default project of a target, it is good practice that
it is.
The following examples show how exporting targets works:
er’s Guide 85

Chapter 9 Build and Make Support Exporting targets of a project
Example 1

The project prj.shared in the above illustration has two subprojects: libX.shared
and libY.shared . Library targets are built in both subprojects and are then exported
(passed) to prj.shared .
prj.shared imports (receives) the two library targets from its subprojects. These library
targets are linked to prj.shared ’s own target, demo.o (a relinkable object).

prj.shared

Project Make Attributes

Relinkable Object
Recursive Make Dirs
Received from Subproject

: demo.o
: libX libY
: libX/libX.a

libY/libY.a

libX.shared

Library Target
Pass to Superproject

:libX.a
:Library

libY.shared

: libY.a
: Library

Library Target
Pass To Superproject
86 SNiFF+

Us

Exporting targets of a project
Example 2

Now suppose prj.shared from Example 1 is itself a subproject of another project,
root.shared , in which the executable exec is built. prj.shared exports its relink-
able object and the two libraries exported from its subprojects to root.shared . This is
shown in the following illustration:

Several more export scenarios are possible in SNiFF+. These are explained in detail in the
section that covers Make Support setup later on in this chapter on page 88.

root.shared

Executable
Recursive Make Dirs
Received from Subproject

: exec
: prj
: prj/demo.o

Project Make Attributes

Passed to Superproject
Relinkable Target
Recursive Make Dirs
Received from Subproject

: demo.o
: demo.o
: libX libY
: libX/libX.a

libY/libY.a

prj.shared
er’s Guide 87

Chapter 9 Build and Make Support Building targets recursively
Building targets recursively
SNiFF+’s Make Support supports the use of recursive Make rules. Let’s use the first illustra-
tion from the previous section to show how SNiFF+ handles a recursive Make:

To recursively build a project’s target, choose the Make all command in the Target menu of
the Project Editor. SNiFF+ then opens a Shell tool and executes make all on the
command line. The targets of three projects are then built according to the steps in the above
illustration.

Setting up Make Support
In this section, you will learn how to set up Make Support for your projects. To set up Make
Support:

1. Start SNiFF+ and open the project for which you want to set up Make Support.

2. Check out the Project Description Files (PDFs) of all the projects for which you will be
building targets.

3. In the Project Tree, checkmark all the projects for which you will be building targets.

4. Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears.

5. Select the Build Options node.

:libY.a
:Library

Library Target
Pass To Superproject

make libY.a
� compile local object files
� build libY.a

cd..

Library Target
Pass to Superproject

:libX.a
:Library

make libX.a
� compile local object files
� build libX.a

cd..

prj.shared

Relinkable Object
Recursive Make Dirs
Received from Subproject

make all
cd libX

:demo.o
:libX libY
:libX/libX.a

libY/libY.a
cd libY link demo.o

compile local object files8
1

2

5 9

libX.shared

3

libY.shared

6

74
88 SNiFF+

Us

Setting up Make Support
Setting common Make attributes in the Group Project
Attributes dialog

You will now set those Make attributes which are the same for all the projects for which you
will be building targets. Basically, to set the attributes, you will perform the following tasks:

� Specify the command you want to use for calling your Make utility in SNiFF+.

� Generate include and dependencies information for the project and its subprojects.

Make attributes in the Group Project Attributes dialog are grouped into 5 main views. In the
rest of this section, you will set the attributes, one view at a time.

In the Build Options view

1. If you use SNiFF+’s Make Support, select the Use SNiFF+ Make Support checkbox.

2. If you use a Make System other than the SNiFF+ Make System, in the Make Command
field enter the command that you use to call Make.

This Make command will then be executed in SNiFF+’s Shell tool when you launch Make
in SNiFF+. If you use the SNiFF+ Make System, the default Make command is used.

3. Select the check box to the right of the Make Command field.

This attribute will now also apply to all projects checkmarked in the Project Tree.

4. Select the Directives node.

Enter
Make
command

1

Select this check box2
er’s Guide 89

Chapter 9 Build and Make Support Setting up Make Support
In the Directives view

Setting up the Include Directives

1. Generate include information by pressing the Generate button. Then, manually edit the
Include Directive(s) field by removing the include directives for all subdirectories that
your compiler can ignore during file searches.

As a rule, you should update your project’s include directives whenever you include new
files that aren’t in the path shown in the Include Directive(s) field.

1 Generate include information by
pressing the Generate button

Select this
check box

2

90 SNiFF+

Us

Setting up Make Support
2. Select the check boxes to the right of the Generate button.

3. Select the Advanced node.

Note

� When you press the Generate button SNiFF+ enters include direc-
tives for the project directory and all subproject directories in the
Include Directive(s) field. SNiFF+ does not check whether all the
directories listed in the field actually contain include files or not.

� Include files must be located in the project structure; otherwise,
SNiFF+ won’t take them into account when updating its Make Sup-
port Files. Paths to include files outside of the project structure
should be added in the Additional field.

� For a large project, we suggest that you make a backup of its
include directives. You can find a project’s include directives in the
macros.incl Make Support File in the .sniffdir subdirec-
tory of your project directory.
er’s Guide 91

Chapter 9 Build and Make Support Setting up Make Support
In the Advanced view

1. To optimize how SNiFF+ generates the project’s dependencies information, select the
Use Include Directives for Dependencies Generation check box (see Optimizing how
SNiFF+ determines dependencies — page 94 for details). Also select the check box to its
right.

2. Press the Set For All button to apply to all the projects checkmarked in the Project Tree.

3. Select the Parser node.

1
To optimize how SNiFF+
generates the project’s
dependencies information,
select these two check boxes

2
Press Set For All
to propagate
settings to all
projects

3
Press Ok
92 SNiFF+

Us

Setting up Make Support
In the Parser view

1. If you use <> instead of "" to include header files located in the project structure, select
the Use Standard Header Dependencies check box. Then, select the check box to its
right.

For example, select the check box if you use the following syntax:

#include <header_file.h>

SNiFF+ will then be able to generate the project’s include path information correctly. It
does so by treating the above include statement like the following:

#include "header_file.h"

2. Press the Set For All button to apply to all the projects checkmarked in the Project Tree.

3. Press the Ok button to apply the settings and to close the Group Project Attributes dialog.

Notice that the Project Tree indicates that all checkmarked projects are modified. We
recommend that you save all modified projects at this time.
er’s Guide 93

Chapter 9 Build and Make Support Setting up Make Support
Optimizing how SNiFF+ determines dependencies

To optimize SNiFF+’s include file search process during the generation of the project’s
dependencies.incl Make Support File, enable the Use Include Directives for
Dependencies Generation checkbox.
The following diagrams show how SNiFF+ finds include files based on the status of the
Use Include Directives for Dependences Generation checkbox.

Case 1

Suppose your project has a project structure like this one:

The header file bar.h is in two subprojects: in one that is listed in the Include
Directive(s) field and in one that isn’t.

� When the Use Include Directives for Dependencies Generation check box is
selected, SNiFF+ will search for bar.h in the subprojects that are listed in the
Include Directive(s) field.

� When the Use Include Directives for Dependencies Generation check box is not
selected, SNiFF+ will search for bar.h in the entire Project Tree. SNiFF+ will end the
search as soon as it (randomly) finds the first bar.h file.

Case 2

Another possible situation in which this checkbox plays an important role is described in
the following illustration.

The header file bar.h is in a subproject that isn’t listed in the Include Directive(s) field.

x

Project. The file foo.c includes the header file bar.h

Subproject. The “X” means that this project is listed in the
Include Directive(s) field

foo.c

bah.h

bah.h

This subproject isn’t listed in the Include Directive(s) field

x

Project. The file foo.c includes the header file bar.h

Subproject. The “X” means that this project is listed in the
Include Directive(s) field

foo.c

bah.h

SNiFF+ finds bar.h in a subproject that is not listed in the
Include Directive(s) field
94 SNiFF+

Us

Setting up Make Support
� When the Use Include Directives for Dependencies Generation check box is
selected, SNiFF+ will search for bar.h in the subprojects that are listed in the
Include Directive(s) field. Since it won’t be able to find bar.h in one of these sub-
projects, SNiFF+ will continue searching in the rest of the Project Tree until it finds the
header file. When SNiFF+ finds the header file, it will give you a warning message to
inform you that the Include Directive(s) field may no longer be up-to-date.

� When the Use Include Directives for Dependencies Generation check box is not
selected, SNiFF+ will search for bar.h in the entire Project Tree and will end the
search as soon as it finds the file.

Project-specific attributes in the Project Attributes dialog

You will now set those Make attributes which are specific to each project for which you will be
building targets.
Please complete the following steps for each project :

� In the Project Tree, double-click on the project for which you will be setting project-specific
Make attributes.

The Project Attributes dialog appears.

In the Project Attributes dialog

� Select the Project Targets node.

You will now set those Make attributes which are unique for each project. Basically, to set
the attributes, you will do the following:

� Enter the name(s) of the target(s) to be built in the project.

� Enter any external libraries or object files needed for building the project’s target.

� Generate directories for a recursive build (if used).

� Tell SNiFF+ whether targets built for the project are needed by the superproject.

In the rest of this section, you will set the attributes, one view at a time.
er’s Guide 95

Chapter 9 Build and Make Support Setting up Make Support
In the Project Targets view

1. Enter the name of the project’s default target.

� If the target is an executable, enter its name in the Executable field.

� If the target is an relinkable object, enter its name in the Relinkable Object field.

� If the target is a library object, enter its name in the Library field.

2. If external libraries or object files are required by the target (executable or relinkable
object), enter these in the Libraries Linked field. Use the exact command-line syntax as
required by the linker (e.g. -lm) on your platform.

3. If you want to build additional targets, enter their names in the Other field. Use a colon (:)
to separate target names.

Note that SNiFF+’s Make Support does not provide Make rules for building targets listed
in the Other field. You can write the rules for building these targets in the General
Makefile or in the project’s Makefile. However, if the same target is to be built in more than
one project, you should write the rule for building it in the General Makefile.

4. Select the Build Structure node.

For purify and quantify targets

You can enter purify and quantify targets in the Other field. For these two special
targets, SNiFF+ does provide Make rules. Please refer to Building purify and
quantify targets (Unix only) — page 100 for details.

2

1 Choose target
type and name

Link external
libraries and/or
object files?

3 Build
additional
targets?
96 SNiFF+

Us

Setting up Make Support
In the Build Structure view

1. From the Passed to Superproject drop-down menu, choose the type of target to be
exported to the superproject. The object of this type is then displayed in the Received
from Subprojects field in the superproject’s Make attributes.

For details about using the Passed to Superproject drop-down menu, please refer to
Using the Passed to Superproject drop-down — page 98.

2. To build your project’s target recursively, make sure that the order of subproject directories
listed in the Recursive Make Dir(s) field is correct.

SNiFF+ will build — in the order of listed subproject directories — the default target of
each of the subprojects during a recursive Make.

3. If there are any discrepancies, press the Generate... button next to the field.

SNiFF+ will regenerate the order of subproject directories.
IMPORTANT: SNiFF+ considers only those subprojects that use SNiFF+ Make Support
when generating the order of subprojects.
Also, once you have pressed the Generate... button for a project, the Recursive Make
Dir(s) field will be automatically updated whenever you add/remove subprojects.

Note

All targets imported to a project are displayed in the Received from
Subprojects field.

1

Export target
to super-
project?

Generate
directories for
recursive
build?

2 3
er’s Guide 97

Chapter 9 Build and Make Support Setting up Make Support
4. Press the Ok button to apply the Make attributes to the project.

5. Save the modified project.

Using the Passed to Superproject drop-down

There are five entries in the Passed to Superproject drop-down. Note that the selection in
the drop-down also determines whether any, some, or all of the objects of the project’s
subprojects are exported to its superproject.

Relinkable object

The relinkable object built in the project is exported to the superproject. Any targets imported
to the project from its subprojects are used to build the relinkable object.

Library

The library built in the project is exported to the superproject. Object files and relinkable
objects imported to the project from its subprojects are used to build the library. Any libraries
exported from subprojects are directly imported to the superproject.

proj.shared

superproj.shared

Relinkable object built in proj.shared
and exported to superproject.shared

Target built in subproj.shared
exported to proj.shared

exec

obj

relinkable obj

Project view Target view

subproj.shared

proj.shared

superproj.shared exec

obj

library

Project view Target view

subproj1.shared

subproj2.shared library

Library built in proj.shared exported to
superproj.shared

Target (not a library) built in
subproj1.shared exported to proj.shared

Library built in subproj2.shared and
exported to superproj.shared
98 SNiFF+

Us

Setting up Make Support
Object files + Received

Any library, relinkable object and/or executable targets built in the project are not exported to
the superproject.
The object files in the project (built from the source files in the project), plus the targets
exported from subprojects, are directly exported to the superproject.

Received targets

Targets imported to the project from its subprojects are used to build the project’s target.
Targets and object files built in the project are not exported to the superproject.
The targets imported to the project are also exported to the superproject.

None

Targets imported to the project from its subprojects are used to build the project’s target.
Targets and object files built in the project are not exportable.
This setting is appropriate when the project’s target is an executable.

proj.shared

superproj.shared exec

obj

Project view Target view

subproj.shared

Only object files built in proj.shared
exported to superproj.shared

obj

Target built in subproj.shared exported
to superproj.shared

proj.shared

superproj.shared

obj

Project view Target view

subproj.shared

objTarget built in subproj.shared exported
to proj.shared and to superproj.shared

exec

proj.shared

superproj.shared

obj

Project view Target view

subproj.shared

exec

Target built in subproj.shared exported
to proj.shared
er’s Guide 99

Chapter 9 Build and Make Support Building purify and quantify targets (Unix only)
Building purify and quantify targets (Unix only)
SNiFF+ provides rules in the General Makefile for preparing targets for further analysis with
Purify™ and Quantify™ from Rational Software. You can specify targets to be "purified" and
"quantified" in the Other field of the Project Targets view.

To build a purify target

1. Enter the target name, followed by .purify , in the Other field of the Project Targets
view. For example, to build a purify target for the executable filebrowser , you would
enter filebrowser.purify .

2. Remove the hash (#) in the following line in the project’s Makefile:

#PURIFY_TARGET=$(LINK_TARGET).purify

This activates SNiFF+’s Make rules for purifying targets.

3. Update the project’s Make Support Files.

4. Build the target. The project’s Make command (entered in the Make Command field of
the Build Options view) will be used for building the target.

To build a quantify target

1. Enter the target name, followed by .quantify , in the Other field of the Project Targets
view. For example, to build a quantify target for filebrowser , you would enter file-
browser.quantify .

2. Remove the hash (#) in the following line in the project’s Makefile:

#QUANTIFY_TARGET=$(LINK_TARGET).quantify

This activates SNiFF+’s Make rules for quantifying targets.

3. Update the project’s Make Support Files.

4. Build the target. The project’s Make command (entered in the Make Command field of
the Build Options view) will be used for building the target.

Once you’ve built your purify and quantify targets in SNiFF+, you can load them into Purify™
and Quantify™.
100 SNiFF+

Us

Specifying platform-specific Make information
Specifying platform-specific Make information
SNiFF+ comes with a set of pre-configured Platform Makefiles. The correct Platform Makefile
for your platform is automatically included by the General Makefile.
Your Platform Makefile contains macro definitions for the compilers, linkers, and archivers
used by your Make utility during builds.
As an example, here are the C, C++ and Fortran macro definitions with their default values
specified in the Platform Makefile for Solaris 2.x:

Language Macro definition Description

C/C++ CXX = gcc
CXXFLAGS = -g
OVERALL_OPTION_CXX = -c

LINK = $(CXX)

LD = ld -r
LDFLAGS =
AR = ar
ARFLAGS = rv

YACC = bison
YACCFLAGS = -yd

LEX = flex
LEXFLAGS =

C/C++ compiler
specifications

program for linking an execut-
able

programs for linking relocatable
object files

yacc compiler

lexical analysis generator

Fortran FC = f77
FFLAGS =
OVERALL_OPTION_FC = -c

Fortran compiler
specifications
er’s Guide 101

Chapter 9 Build and Make Support Specifying platform-specific Make information
Procedures for specifying platform-specific information

1. Determine your Platform Makefile using the following table:

(All Platform Makefiles are located in your $SNIFF_DIR/make_support directory.)

2. Make a backup of your Platform Makefile.

3. Edit the Platform Makefile by changing the values of the macro definitions for your lan-
guage (default values for C/C++/Fortran on Solaris 2.x given on Specifying platform-spe-
cific Make information — page 101).

4. Save the Platform Makefile.

The new values will be used the next time you build targets in SNiFF+.

Platform Platform Makefile

AIX 3.2 or newer rs6000-ibm-aix3.2.mk

AIX 4.2 or newer rs6000-ibm-aix4.2.mk

DEC-Unix 3.2C alpha-dec-osf3.0.mk

HP-UX 9.x pa_risc-hp-hpux9.0.mk

HP-UX 10.x or newer pa_risc-hp-hpux10.mk

Irix 5.3 mips-sgi-irix5.3.mk

Linux 2.x (SuSE 6.x or newer, RedHat
5.x, Debian 2.x)

i586-linux-glibc.mk

Linux 2.x (SuSE 5.3 or older, RedHat
4.x, Debian 1.x)

i586-linux-libc.mk

SCO 3.2 i386-unknown-sco3.2v4.2.mk

Sinix 5.42 mips-sni-sinix5.42.mk

Solaris 2.x sparc-sun-solaris2.3.mk

SunOS 4.1.3 sparc-sun-solaris4.1.mk

Unixware 2.1 i386-unknown-sysv4.2MP.mk

Unixware 7.x i386-unknown-unixware7.mk

Windows NT 4.0 i386-unknown-winnt4.mk

Windows 95/98 i386-unknown-win95.mk
102 SNiFF+

Us

Language Makefiles — details
Language Makefiles — details
SNiFF+’s Language Makefiles are located in your $SNIFF_DIR/make_support direc-
tory. In it, you’ll find the following Makefiles:

Specifying Language Makefiles:

1. To specify Language Makefiles for all new projects, choose Tools > Preferences... . To
specify Language Makefiles for an existing project, open the project’s Project Attributes
dialog.

2. Select the File Types node.

3. Select the appropriate file type in the File Types List. If you need to first create one:

� Select a file type in the File Types List whose attributes most closely match the new
file type’s attributes and press the New... button.

� In the dialog that appears, give the new file type a name and press the Ok button.

� Set the new file type’s attributes.

4. Select the new file type.

5. Select the Build System tab.

6. In the General Makefile field, enter the full path name of the Language Makefile for the
file type, for example:

$SNIFF_DIR/make_support/general.c.mk

or
Press the File... button and in the dialog that appears, navigate to the Language Makefile
and press Open .
When specifying multiple Makefiles, use spaces as delimiters.

7. Press the Ok button.

Language Makefile Description

general.link.mk Rules for executable, relinkable object and library targets

general.c.mk Rules for C, C++, pro*C/C++ compilers

general.fortran.mk Rules for Fortran compiler

general.idl.mk Rules for IDL compiler

general.java.mk Rules for Java compiler

general.ada.mk Rules for Ada compiler

general.yl.mk Rules for yacc and lex

general.ilog.mk Rules for ILog Broker preprocessor
er’s Guide 103

Chapter 9 Build and Make Support Language Makefiles — details
104 SNiFF+

U

10Using Your Own Makefiles

Introduction
Although we strongly encourage you to use SNiFF+’s Make Support and the makefiles that
are part of it, you may choose to use and maintain your own makefiles for building your
SNiFF+ projects.

This chapter covers the following topics

� Using your own makefiles in SNiFF+

� Setting Make attributes for building and running targets in SNiFF+

� Which Make commands you can execute in SNiFF+ when using your own makefiles

Assumptions made in this chapter

� You know how to work with SNiFF+ projects

Related SNiFF+ topics

� Executing SNiFF+ commands for building, running and debugging targets — Compiling
and Debugging in SNiFF+ — page 185

Note

You must use SNiFF+’s Make Support if you work in a team
environment and use working environments.
ser’s Guide 105

Chapter 10 Using Your Own Makefiles Specifying Make attributes
Specifying Make attributes
You can set a project’s Build attributes under the Build Options node of the Project
Attributes dialog. The default values used in this dialog are specified in your Preferences.
See also Build System — page 147.
Basically, you need to do the following things to use your own makefiles in SNiFF+:

� Tell SNiFF+ what your Make command is

� Tell SNiFF+ the names of your targets

To use your own makefiles:

1. Start SNiFF+ and open the project for which you want to set up Make Support.

2. Check out the Project Description Files (PDFs) of all the projects for which you will be
building targets.

3. In the Project Tree, checkmark all the projects for which you will be building targets.

4. Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears.

5. Select the Build Options node.
106 SNiFF+

Us

Specifying Make attributes
Project Attributes — Build Options

You will now set the Make attributes that are the same for all projects.

1. Enter your Make command in the Make Command field. Use the -f option to specify
your makefile’s name. For example:

make -f yourMakefile

This Make command will then be submitted to the Shell when you build targets in SNiFF+.

2. Select the check box to the right of the Make Command field.

This attribute will now also apply to all projects checkmarked in the Project Tree.

3. Press the Set All button to apply to all the projects checkmarked in the Project Tree.

4. Press the Ok button to apply the settings and to close the Group Project Attributes dialog.

Notice that the Project Tree indicates that all checkmarked projects are modified. We
recommend that you save all modified projects at this time.

1 2
Select this
check box

Enter your Make
command and use the -f
option
er’s Guide 107

Chapter 10 Using Your Own Makefiles Specifying Make attributes
Project-specific attributes in the Project Attributes dialog

You will now set those Make attributes which are specific to each project for which you will
be building targets. Please complete the following steps for each project :

1. In the Project Tree, double-click on the project for which you will be setting project-specific
Make attributes.

The Project Attributes dialog appears.

2. Select the Project Targets node.

3. Enter the name of the project’s default target (described below).

� If the target is an executable, enter its name in the Executable field.

� If the target is an relinkable object, enter its name in the Relinkable Object field.

� If the target is a library object, enter its name in the Library field.

4. If you want to build additional targets, enter their names in the Other field. Use a colon (:)
to separate target names.

5. Press the Ok button to apply the Make attributes to the project.

6. Save the modified project.

1 Choose
target type
and name

2 Build
additional
targets?
108 SNiFF+

Us

Make commands you can execute in SNiFF+
Specifying the targets of a project

The following types of targets may be specified in a project:

� executable

� relinkable object

� library

Each project has only one default target. SNiFF+ uses this target name as the default target
for the Make... command in the Target menu. If only one of the targets mentioned above is
specified in a project, this target is the default target of the project. If several targets are
specified in a project, the first target in the order—executable, relinkable object, library—is
the default target of the project. When no target is specified, object files are built.

Make commands you can execute in SNiFF+
When using your own makefiles, you can execute the following Make commands from
SNiFF+’s Target menu:

� Recursively Make default target

(The default target of the project is built using the recursive Make rules defined in your
makefile.)

� Make default target

(The default target of the project is built using the Make rules defined in your makefile.)

� Run target

� Debug target
er’s Guide 109

Chapter 10 Using Your Own Makefiles Make commands you can execute in SNiFF+
110 SNiFF+

U

11Make Support changes from 3.0.x to 3.1

Introduction
This chapter describes the differences between Make Support for SNiFF+ 3.1 and Make
Support for SNiFF+ 3.0. With the latest SNiFF+ version 3.1, we provide a new Make Support
concept, which has some fundamental changes in comparison to the former Make Support
concept. Because of this, the new Make Support is faster and more user friendly.

This chapter covers the following topics

� No support for VPATH

� Updating project Makefiles

� Reworked SNiFF+ Make-support files

� Use of pattern rules instead of suffix rules

� MAKE_TARGET macro

Assumptions made in this chapter

� You intend to use SNiFF+’s Makefiles and Make Support Files for regulating builds.

Related SNiFF+ topics

� Setting up SNiFF+’s Make Support for your projects — Build and Make Support — page
73.

� Using your own Makefiles in SNiFF+ — Using Your Own Makefiles — page 105.

Abbreviations and shortcuts used in this chapter

SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
$SNIFF_DIR — path to your SNiFF+ installation directory

Note

Especially customers who upgrade from 3.0x (or earlier versions) to
3.1 should read this chapter carefully.
ser’s Guide 111

Chapter 11 Make Support changes from 3.0.x to 3.1 No support for VPATH
No support for VPATH
In 3.0x VPATHwas used to search for the source files in a given list of directories.

Consequences

� no gmake check_vpath anymore

� no VPATHsearch during the Make run. Make looks for the dependencies of files in
VPATH, checks the PWE and the SSWE. This is not necessary since source files are
linked or copied on Windows.

� all VPATHrelated flags and macros e.g.,

VPATH, VINCLUDE, INHIBIT_LOCAL_INCLUDES, etc.,

are removed from the SNiFF+ Makefiles.

Reasons why VPATH is not supported anymore

The VPATHmacro is not used in the new Make Support because of its limitations listed
below.

� not all compilers support the INHIBIT_LOCAL_INCLUDES flag

� inconsistencies because dependencies may be incorrectly resolved

� builds take longer

Dummy rule for check_vpath

� Since all customers who use 3.0x or an earlier version have the default make command

gmake check_vpath;gmake

stored either in the Project Attributes or in the Platform definitions, each time Make is
called the following error message will appear:

check_vpath: rule not found

� We have added a ”dummy check_vpath rule” to avoid that error. Now,

check_vpath not required anymore

is printed out (the message is printed out only for the project root directory).
112 SNiFF+

Us

Updating project Makefiles
Updating project Makefiles
The SNiFF+ Make Support has been modified and is no longer compatible with the Project
Makefiles of earlier versions so you will need to update the Makefiles. To update project
Makefiles, do the following:

In the SiteMenus.sniff file

The SiteMenus.sniff file is in the SNIFF_DIR/config/ directory.

� Open SiteMenus.sniff in an editor.

� Under

Patch Makefiles for New MakeSupport

uncomment the following lines:
>Makefiles
shell "Update Makefile(s) for New Makesupport" "echo
Updating File %f; sh $SNIFF_DIR/make_support/
UpdateMakefile.sh %f"

or

In the UserMenus.sniff file

The UserMenus.sniff file is in the %SNIFF_DIR%\Profiles\< Username>\
directory on Windows, and in your $HOME/.sniffrc/ directory on Unix.

� Open UserMenus.sniff in an editor.

Note

For upgrading Java projects, please refer to the technical reference in
the Java tutorial.

Note for Windows users

In the following section, there are several references to symbolic links.
Windows does not, however, support symbolic links. So, wherever
symbolic links are created by SNiFF+ on Unix, local copies are made
on Windows. Therefore, if you are working on Windows, please read
all references to "symbolic links" as "local copies" in the following.
er’s Guide 113

Chapter 11 Make Support changes from 3.0.x to 3.1 Updating project Makefiles
� Copy the following lines from SiteMenus.sniff to UserMenus.sniff :

#Patch Makefiles for New MakeSupport
#>Makefiles
shell "Update Makefile(s) for New Makesupport" "echo
Updating File %f; sh $SNIFF_DIR/make_support/
UpdateMakefile.sh %f"

� In UserMenus.sniff , under

Patch Makefiles for New MakeSupport

uncomment the following lines:
>Makefiles
shell "Update Makefile(s) for New Makesupport" "echo
Updating File %f; sh $SNIFF_DIR/make_support/
UpdateMakefile.sh %f"

In the Project Editor

1. Load the project created with an earlier SNiFF+ version.

2. In the Filter dialog, File Types view, make sure that Makefiles are selected.

3. In the File List, select all Makefiles.

4. If the Makefiles are read-only, check them out by choosing File > Check Out .

5. Choose Makefiles > Update Makefiles for New Makesupport .

This command runs a script which removes the following lines from the selected
Makefiles:

include $(SNIFF_MAKEDIR)/$(SNIFF_VPATH_INCL)

include $(SNIFF_MAKEDIR)/$(SNIFF_OFILES_INCL)

include $(SNIFF_MAKEDIR)/vpath.incl

include $(SNIFF_MAKEDIR)/ofiles.incl

Also replaces:
INCLUDE = $(SNIFF_INCLUDE) <other includes> with
SNIFF_INCLUDE += <other includes>
and inserts
SHARED LIB_TARGET

6. It is necessary to remove these lines since the vpath.incl and ofiles.incl files
are no longer generated by the new Make Support, so trying to include them would result
in an error.
114 SNiFF+

Us

Reworked SNiFF+ Make-support files
Reworked SNiFF+ Make-support files
1. vpath.incl is not needed anymore

2. ofiles.incl not needed anymore -> OFILES macro is now in macros.incl

3. Drop of unnecessary macros from macros.incl

List of dropped macros

Why we dropped all macros for Java

All macros for Java are dropped, because the Make Support for Java and the ”default Make
Support” are split up. Now, within a Java project only ”Java macros” are generated.

Dropped macros Reason why dropped

SNIFF_OFILES_INCL ofiles.incl not generated anymore

SNIFF_VPATH_INCL vpath.incl not generated anymore

SNIFF_ShSWS_2 only needed for check_vpath

SNIFF_OBJ_VPATH only needed for check_vpath

SNIFF_PrOBJD only for Java

SNIFF_ShOBJD1 ---”---

SNIFF_ShOBJD2 ---”---

SNIFF_ShOBJD3 ---”---

SNIFF_ShOBJD4 ---”---

SNIFF_ShOBJD5 ---”---

SNIFF_ShOBJD6 ---”---

SNIFF_VCS Repository rules are dropped

SNIFF_REPOSITORY_DIR ---”---

SNIFF_FILES + all
corresponding types
(SNIFF_Header_DIR,
SNIFF_Header_FILES,...)

only needed for ”link rules”, but that is exactly what
SNiFF+ does now.
For your own make rules, SNIFF_FILES can be gen-
erated by setting the environment variable
SNIFF_FILES_NEEDED to 1

SNIFF_LIBS Backward compatible macro for SNiFF+ 2.1 or older

SUB_RELINK_OFILES Backward compatible macro for SNiFF+ 2.1 or older

IMPLEMENTATION_DIR

DVPATH_DELIMITER Backward compatible macro for SNiFF+ 2.1 or older
er’s Guide 115

Chapter 11 Make Support changes from 3.0.x to 3.1 Use of pattern rules instead of suffix rules
Use of pattern rules instead of suffix rules
There is no need for Suffixes any more. This speeds up make since no implicit rules are
called.

Advantages of pattern rules

� More powerful and flexible than suffix rules

� Possible to add dependencies. For instance, ofiles depend on the Makefiles so ofiles are
automatically generated when Makefiles are modified.

Example of a Suffix rule

� .c.o: matches a file test.o to test.c

The disadvantage of suffix rules is that you can’t specify any prefixes or letters at the end of
a filename. You also can’t specify directories.

Example of Pattern rules

Use of suffixes:

� %.o : %win.c matches a file test.o to testwin.c

Matches object files in a subdirectory:

� $(OBJECT_DIR)/%.o : %win.c matches a object file test.o in a subdir to
testwin.c

Redirection of object files to the subdir can be done without VPATH.

Note

Pattern rules and suffix rules cannot be used together to build inher-
ence chains! So if you have self-defined suffix rules, you will need to
rewrite these suffix rules to pattern rules.
116 SNiFF+

Us

MAKE_TARGET macro
MAKE_TARGET macro
The script sniffMakeTarget.sh has been removed from the $SNiFF_DIR/bin
directory. This script checked for a link to the SOWE and removed it. This is now done by the
MAKE_TARGETmacro.
You have only to add the following line before your compiler call within the make rule:
TARGET=$@; TARGET_TYPE="C++ object"; $(MAKE_TARGET);\

TARGET is the current target to be built (usual this is $@)

TARGET_TYPE is the string that is echoed when the target is built

MAKE_TARGET removes the target or its symbolic link before it is built
er’s Guide 117

Chapter 11 Make Support changes from 3.0.x to 3.1 MAKE_TARGET macro
118 SNiFF+

Part V
Maintaining SNiFF+

Projects

U

12Modifying SNiFF+ Projects

Introduction
The main focus of this chapter is modifying projects. However, basic tasks such as opening,
saving, closing and deleting projects are also described.

This chapter covers the following topics

� How to open, save, close and delete projects

� General procedures for modifying projects

� General procedures for modifying multiple projects

� How to add and remove subprojects to and from existing projects

� How to add and remove files to and from existing projects

SNiFF+ concepts you should already know

� SNiFF+ projects

Related SNiFF+ topics not discussed in this chapter

� Version control and configuration management — Version Control — page 135

� Working environments

� Project Attributes dialog — Reference Guide — Project Attributes — page 163

Abbreviations and shortcuts used in this chapter

� PWE — Private Working Environment

� PDF — Project Description File
ser’s Guide 121

Chapter 12 Modifying SNiFF+ Projects Opening Projects
Opening Projects
If you are opening a shared team project for the first time in your working environment,
please read Initializing team working environments — page 53.
You can open shared projects and absolute (browsing-only) projects from the Launch Pad.
You can also open shared projects from the Working Environments tool.
For shared projects:

� To open a shared project in your own Private Working Environment(s), use the Launch
Pad’s Working Environments tab.

� To open a shared project in the default working environment, use the Launch Pad’s Work-
ing Environments tab or the Project menu.

� To open a shared project in any other working environment use the Working Environ-
ments tool.

Opening a shared project in a Private Working Environment

To open a shared project in your own Private Working Environment (PWE):

1. In the Launch Pad, select the Working Environments tab.

The Launch Pad displays the PWEs owned by you.

2. Double-click on the PWE in which you want to open the project.

The Projects dialog appears.

3. When you open the Projects dialog for the first time, the Project List is empty. Press the
Update List button.

SNiFF+ scans the current working environment’s directory structure and lists all the
project description files (PDFs) in it.

4. Select the PDF of the project that you want to open.

5. If you do not want to parse the project when you open it, disable the With Symbols but-
ton.

You would disable the With Symbols button if:

� you only want to view or modify the project’s structure and aren’t interested in brows-
ing its source files

� you only want to execute version control operations on the project’s files

Loading a project with symbol information takes longer, since all the source files in the
project will be parsed.

Note

In the Working Environments Tool (and the Launch Pad’s Working Environments tab),
you can choose from a list of available projects. In the Launch Pad, you have to know
the exact location and the name of the project you want to open.
122 SNiFF+

Us

Opening Projects
6. If you do not want to use cached project information when opening the project, clear the
Use Cache check box.

You would clear the Use Cache check box if someone has made modifications to the
project (including repository files) outside SNiFF+, and you want to get the latest project
information or if your previous SNiFF+ was unexpectedly terminated.
Loading a project without the cache takes longer, since SNiFF+ will create the cache
information while loading the project.

7. Press the Open button to open the selected project.

A new Project Editor appears, in which the loaded project is the root project in the
Project Tree.

Opening shared projects from the Working Environments
tool

To open a project from the Working Environments tool:

1. Choose Tools > Working Environments in any open SNiFF+ tool.

The Working Environments tool appears.

2. Double-click on the working environment in which you want to open the project.

The Projects dialog appears.

3. Open the Project. For details about the Projects dialog, please refer to page 122.

Double-click a working environment
to open projects in it.

Selected working environment
er’s Guide 123

Chapter 12 Modifying SNiFF+ Projects Saving projects
Opening projects from the Project Editor

When opening projects from the Project Editor, you can only open those that are displayed in
the Project Tree of any open Project Editor on your screen.
To open projects from the Project Editor:

1. Make sure that the Project Description file type is visible in the Project List of the Project
Editor. If it isn’t, press Filters... and, in the FileTypes tab, select Project Description and
press Ok.

2. In the File List, double-click the PDF of the project that you want to open.

A new Project Editor appears, in which the newly opened project is the root project in the
Project Tree.

Saving projects
You can save a project either in the Project Editor or in the Launch Pad. To save a project:

1. Select the Project.

2. Choose Project > Save Project .

Saving projects with subprojects

If the project contains subprojects that have been modified, a dialog appears asking you
whether you want to save the subprojects as well.

Closing projects
You can close a project either in the Launch Pad or in the Project Editor. If the project has
been modified, you will be asked if you’d like to save the changes.
To close a project:

1. Select the project.

2. Choose either:

In the Launch Pad
Project > Close Project < Project >
or In the Project Editor
Project > Close Project .

Upon closing a project, SNiFF+:

� saves the current symbol information of the project’s source files to disk

� removes all project related information like the project structure, the attributes of a project
and symbol information from memory

� saves SNiFF+’s current window state for future SNiFF+ sessions
124 SNiFF+

Us

Deleting projects
Deleting projects
To delete a project, you will first have to open it in SNiFF+. Then delete it in the Launch Pad.
In the Launch Pad:

1. Select the project.

2. Choose Project > Delete Project < Project >.

A dialog appears asking you if you want to delete SNiFF+ related files, directories and the
project description file of the project.

3. Select the Repeat check box to delete all subprojects at the same time.

4. Press the Delete button.

The following types of SNiFF+ files are deleted:

� project description files

� window state files

� symbol information files

� all other SNiFF+ generated files and directories

The following types of files are not deleted:

� all source files

� makefiles

� all other non-SNiFF+ files
er’s Guide 125

Chapter 12 Modifying SNiFF+ Projects General procedures for modifying projects
General procedures for modifying projects
You can modify projects in the Project Editor. Note that the project’s PDF must be writable.
To modify a project:

1. Check out the project’s PDF by selecting it in the File List of the Project Editor and then
choose File > Check Out... .

The Check out dialog appears, in which you can select the file version to check out. See
also Checking out a version of a file — page 141.

2. If you want to modify the last version of the project’s PDF, press the Exclusive Lock but-
ton. If you want to modify another version of the PDF, select that version and then press
the Exclusive Lock button.

An alert dialog appears, in which you are asked whether the project structure should be
reloaded or not.

3. Press the Yes button to reload the project structure.

4. In the Project Editor’s Project Tree, double-click on the project you want to modify.

The Project Attributes dialog appears.

5. Modify the project according to your needs. As a result of modifying the project’s
attributes, you may have to add or remove files or subprojects to or from the project. In the
next section, you will learn how to do so.

6. Save the project.

If you’ve modified any of the project’s Make attributes, the project’s Make Support Files
will be regenerated.

7. If you’ve included new SNiFF+ file types in the project, you must manually add these files
to the project. To do so complete the following steps in the Project Editor:

(i) make sure that the project is selected in the Project Tree
(ii) choose the Add/Remove Files to/from < Project >... command from the Project menu
and then add the new files. For details about adding files, please refer to Adding and
removing files — page 129.

8. We suggest that you test the modifications to the project by building the project in your
Private Working Environment before you check in the changes.

9. Once you have tested your changes, you can check in the project’s PDF and any new
files added to the project.

Your modifications will be seen by your team members after the next update of your
team’s working environments.
The above mentioned process is described in the following illustration:
126 SNiFF+

Us

Modifying multiple project attributes
Modifying multiple project attributes
You can modify the attributes of multiple projects in the Project Editor. Note that the PDFs of
the projects you want to modify must be writable.
To modify the attributes of multiple projects at the same time:

1. In the Project Tree, checkmark all the projects whose attributes you want to modify.

2. Check out the PDFs of the checkmarked projects.

3. Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears. See also Using the Group Project Attributes
dialog — page 131

Project properties you can modify
You can do any of the following to modify a project:

� add and remove files to and from the project — for a detailed description, see Adding and
removing files — page 129

� add and remove subprojects to and from the project — for a detailed description, see Add-
ing and removing subprojects — page 127

� modify project attributes using the Project Attributes dialog

Adding and removing subprojects
You can add and remove subprojects in the Project Editor. Note that the Project Description
File (PDF) of the project must be writable (checked out). Please note that for shared projects,
the projects must be in the same working environment.

Adding a subproject to a project

1. Choose Tools > Project Editor in any open SNiFF+ tool.

2. In the Project Tree, select the project that you want to add a subproject to.

3. Choose Project > Add Subproject to < Project >....

This command is only enabled if the PDF is writable (checked out).
A Subproject File dialog appears. This dialog is similar to the Project File dialog.

4. Select the PDF of the subproject to be added.

5. Press the Open button.

The selected project in the Project Tree is now the superproject of the subproject you just
added.

6. Save the project.

When you add a subproject to a project:

� the subproject is opened and its project structure and symbol information are loaded into
memory
er’s Guide 127

Chapter 12 Modifying SNiFF+ Projects Adding and removing subprojects
� a reference to the subproject is made in the project’s project description file (PDF)

Removing a subproject from a project

1. In the Project Tree, select the subproject that you want to remove.

2. Choose Project > Remove Subproject < Subproject >....

3. Save the project.

When you remove a subproject from a project:

� the subproject is closed and the project structure and symbol information are removed
from memory

� the reference to the subproject is removed from the project’s PDF and the project
becomes modified

Note

You cannot add a subproject more than once to the same superproject.

Note

You cannot delete a project’s PDF or any of the files of the subproject by
issuing the Remove Subproject < Subproject >... command.
128 SNiFF+

Us

Adding and removing files
Adding and removing files
IMPORTANT: If you have created new source files that are needed for building a project’s
targets, you must add them to the project. You must also add new source files to the project
in order to browse their symbols.
You can add and remove files to and from projects in the Project Editor. Note that the PDF of
the project that you add (remove) files to (from) must be writable.

1. Choose Tools > Project Editor in any open SNiFF+ tool.

2. To add or remove files, choose Project > Add/Remove Files to/from < Project >....

The Add/Remove Files dialog appears.

3. Select the file(s) to be added/removed.

4. To add selected file(s) to the project, press the Add button.

When you add a file to a project:

� the file is parsed and is added to the list of files in the project’s PDF

� the file’s symbol information is sent to the Symbol Table and can be browsed in
SNiFF+

File types drop down list:
allows the filtering of the lists
to display only one file type

File List:
multiple selections possible.
A selection can be extended
by pressing <SHIFT> and
selecting entries. All entries
of a list can be selected by
pressing the All button
er’s Guide 129

Chapter 12 Modifying SNiFF+ Projects Adding and removing files
� the file is available for Make Support

� the project has been modified

5. To remove the selected file(s) from the current project, press the Remove button.

When you remove a file from a project:

� the file is removed from the list of files in the project’s PDF

� symbol information for this file is removed from memory

� the project has been modified

6. Save the project.

Adding Make Support Files to a project

To add Make Support files to a group of projects:

In the Project Editor

1. Check out the PDFs of all the projects you want to modify.

2. In the Project Tree, checkmark these projects.

3. Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears. To learn how to use this dialog, please refer
to Using the Group Project Attributes dialog — page 131.

In the Group Project Attributes dialog

1. Select the File Types node.

2. Press the Show All button.

The File Types List now shows the complete list of file types defined in your Preferences.

3. Select Make Support in the File Types List and press the Add File Type button.

4. Under Merge Options, select the Add checkbox.

5. Press the Set All button.

The attributes you’ve modified now apply to all the projects checkmarked in the Project
Tree. SNiFF+ now indicates that these projects have been modified.

6. Press OK to close the Group Project Attributes dialog.

In the Project Editor

� Save all modified projects.

Note

The file is only removed from the SNiFF+ project, but not physically
deleted.
130 SNiFF+

Us

Using the Group Project Attributes dialog
Using the Group Project Attributes dialog
The Group Attributes dialog is an expanded Project Attributes dialog that lets you set the
project attributes of multiple projects listed in the Project Editor’s Project Tree. In this section,
you will learn how to use the Group Attributes dialog.

1. Start SNiFF+ and open the root project of all the projects whose attributes you want to
modify.

After the project is loaded, you should see the project and its subprojects in the Project
Tree of the Project Editor.

2. Check out the Project Description Files (PDFs) of all the projects whose attributes you
want to modify.

3. In the Project Tree, checkmark these projects.

4. Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears. The projects checkmarked in the Project
Editor are listed in hierarchical order in the dialog’s Project List.

5. Notice that the topmost project in the Project List is selected. In the Group Attributes dia-
log, you modify the attributes of the project selected in the Project List and apply these
attributes to the other projects.

6. If you want to select another project in the Project List, do so now.

Setting attributes in the Group Project Attributes dialog

Like the Project Attributes dialog, the Group Project Attributes dialog groups project
attributes into 5 main views:

� General

� Build Options

� Parser

� Version Control System

� File Types
er’s Guide 131

Chapter 12 Modifying SNiFF+ Projects Using the Group Project Attributes dialog
Here’s what the General view looks like:

To set all project attributes except for File Types attributes

1. Select the appropriate node.

2. Decide which attributes you want to set and apply to all the projects in the Project List.

3. Set these attributes. To apply the settings to all the projects, for each attribute you set,
select the Global Attribute check box to its right.

4. Press the Set All button.

The attributes now apply to all the projects checkmarked in the Project Tree. SNiFF+ now
indicates that these projects have been modified.

5. To modify other project attributes, select the appropriate node and complete the same
steps as above in that view.

6. Press Ok to close the Group Project Attributes dialog.

7. Save all modified projects.

Global Attribute check
boxes:
Select to apply
corresponding attribute
to all projects in the
Project List

Project List
displays all
projects
checkmarked
in the Project
Editor’s
Project Tree

Enable to make all
attribute boxes
globally effective
for all projects in
Project Tree
(applies to all views)
132 SNiFF+

Us

Using the Group Project Attributes dialog
To set File Types attributes

1. Select the File Types node.

2. If you want to add an existing file type to all projects in the Project List:

� Press the Show All button.

� In the File Types List, select the file type that you want to add. File types that aren’t
already part of the project appear in italics.

� Press the Add File Type button.

� Select the Add check box.

3. If you want to create a new file type and add it to all the projects in the Project List:

� Select a file type in the File Types List whose attributes most closely match the new
file type’s attributes and press the New... button.

� In the dialog that appears, give the new file type a name and press the Ok button.

� Set the new file type’s attributes.

� Select the Add check box.

4. If you want to delete an existing file type from all the projects in the Project List:

� Select the file type in the File Types List.

� Select the Delete check box.

5. If you want to modify the attributes of the same file type in all the projects in the Project
List:

� Select the file type in the File Types List.

Merge options (Replace, Add, Delete) apply the attributes of
the current file type to all projects in the Project List
er’s Guide 133

Chapter 12 Modifying SNiFF+ Projects Using the Group Project Attributes dialog
� Modify the file type’s attributes.

� Select the Replace check box to apply the file type’s attribute to all the projects in the
Project List.

6. Press the Set All button.

The attributes you’ve modified now apply to all the projects checkmarked in the Project
Tree. SNiFF+ now indicates that these projects have been modified.

7. Press Ok to close the Group Project Attributes dialog.

8. Save all modified projects.
134 SNiFF+

U

13Version Control

Introduction
Support of configuration management and version control (CMVC) is an integral part of
SNiFF+. In this chapter, you will learn how to use SNiFF+’s CMVC support for version
controlling your projects.

This chapter covers the following topics

� Execute version control commands in SNiFF+

� Look at a file’s history and locking information

� Work with configurations

� Look at and merge differences between files

Assumptions made in this chapter

� You know how to work with working environments and shared projects

� You understand the purpose of version controlling software

� You use a Repository and have the necessary write permissions for accessing it

Abbreviations and shortcuts used in this chapter

SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
ser’s Guide 135

Chapter 13 Version Control Technical overview
Technical overview
SNiFF+’s CMVC support provides the functionality available in the RCS version control
system. If you use a tool other than RCS, please be aware that your tool may not support all
of the functionality available in SNiFF+.

Features

SNiFF+’s CMVC support comes with the following features:

� Checking out files from your Repository with either exclusive lock, concurrent lock, or no
lock.

� Looking at a file’s history and seeing which files in a project are locked by which people.

� Working with configurations - selected file versions grouped together under the same
symbolic name.

� Working with change sets - a set of files checked in at the same time under the same
symbolic name to the files.

� Working in branches of a file’s version tree.

� Displaying two-way and three-way differences and merging versions, branches, change
sets and configurations.

� Associating comments, dates and modifier information with versions, change sets, and
configurations.

� Choosing a Default Configuration for a working environment.

Your Repository

SNiFF+ only manages the structure of your Repository, but does not access the Repository’s
files directly — the access is delegated to your underlying version control tool.

Differences between SCCS and RCS support

SNiFF+’s support for the creation and management of branches differs for SCCS and RCS.
Please note the following differences in SNiFF+’s functionality when using SCCS for version
control:

� With SCCS, you cannot associate a symbolic name to the latest version of a file on a
branch.

� With RCS, you create branches when you check in a file version. With SCCS, you create
branches during check-out.

Working environments and version control

In team projects, each team member works in a Private Working Environment (PWE). All
version control commands performed by team members are then naturally executed in the
PWE. Your Working Environments Administrator, however, is also the owner of your team’s
Shared Source Working Environment (SSWE). While maintaining your team projects, he/she
may also perform version control commands in the SSWE.
136 SNiFF+

Us

Locking files during check-out
In the rest of this chapter, you will read phrases like:

� "the working environment you are currently in", or

� "in your working environment", or

� "in the working environment".

If you are a team member, these phrases refer to your PWE. If you are your team’s Working
Environments Administrator, these phrases refer to your team’s SSWE.

Locking files during check-out
SNiFF+ supports three mechanisms for locking files during a check-out:

� Exclusive Lock —Creates a local, writable copy of the file version in the working environ-
ment. Your version control tool puts an exclusive lock on the selected version. No other
team member can check out the file while you have an exclusive lock on it. When you are
done making modifications to the file and testing the changes, you check in the file,
thereby removing your exclusive lock on it.

� Concurrent Lock —Creates a local, writable copy of the file version in the working envi-
ronment. Your version control tool puts a lock on the version in such a way that others can
also lock the same version. You and any number of your team members can check out
and then modify a file with concurrent lock. After modification and testing, a merge of all
the concurrently locked files must be performed, and the merged version must be locked
and then checked in.

For systems like RCS that do not support concurrent locking, no locking mechanism is
used.

� No Lock —Creates a local, read-only copy of the file version in the working environment.
Your version control tool does not put a lock on the version.

Notation used when referring to file versions
SNiFF+ uses the following notation when referring to different versions of a file:

� version tree — A graphical presentation of a file’s "evolution" from one version to
another.

� INIT — The symbolic name given to the initial checked-in version of a version controlled
file. The version number of the initial version is 1.1 .

� HEAD — The symbolic name given to the latest checked-in version of a version controlled
file. On a branch, the latest version is given the symbolic name
HEAD_<branch_name> , where <branch_name> is the symbolic name of the
branch.
er’s Guide 137

Chapter 13 Version Control Configurations
Here’s an example of a file’s version tree containing both INIT and HEADversions.

Configurations
At special times during the software development process, you might want to create a
“virtual snapshot” of your software system. You do this in SNiFF+ by assigning a selected
version of all the files in your software system the same symbolic name. In SNiFF+, the set
of all file versions having the same symbolic name is referred to as a configuration, and the
symbolic name assigned to the set is its configuration name. The process of creating a
single configuration and associating it with a symbolic name is called freezing a configura-
tion.
Note that INIT and HEADare two special configurations used by SNiFF+.

� INIT is the configuration name of the initial checked-in version of all version controlled
files in your Repository.

� HEADis the configuration name of the latest checked-in version of all version controlled
files in your Repository.

Change sets
You can check in a set of files at the same time and assign this set a symbolic name. The set
of files is referred to as a change set, and the symbolic name assigned to the set is its
change set name.

Branches
SNiFF+ supports the use of branches in a version controlled file’s version tree. Branches
occur in a version tree when you create new versions of a file from the middle instead of the
end of the tree. Basically, SNiFF+ allows you to perform the same operations on branches
that you can perform on the main trunk of a version tree. These include:

� Creating branches at any point in a file’s version tree. This includes creating a branch at a
file version already on a branch.

� Freezing the latest version of all files in a particular branch and assigning a configuration
name to the set.

1.4 is the latest version of the file

1.2.1.2 is the latest version on the
branch created at version 1.2.
138 SNiFF+

Us

Situations for using SNiFF+’s branch support
� Comparing branch configurations with other configurations (either on the main trunk or on
a branch).

You can also merge a branch version of a file back into the main trunk of the file’s version
tree.

Situations for using SNiFF+’s branch support
We strongly recommend that your Working Environments Administrator create and imple-
ment policies for working in branches. While branch support offers great opportunities, there
is an inherent danger in allowing team members to create branches on their own.
You might choose to use SNiFF+’s branch support for one of the following situations:

� Parallel development — Stable versions of your software system are maintained in the
main trunk of your files’ version tree. Your team may also be working on alternative or
experimental development approaches — which could be carried out on branches.

� Temporary fixes and/or customization — You may be asked by a customer to develop
a site-specific version of your software system. You don’t want this work to affect the main
development work on the software system. You could create a temporary branch for the
customization, and then reintegrate this branch with the main trunk at a later, opportune
time.

� Conflicting updates — A member of your team might have an exclusive lock on a file
that you also need to modify. You could do one of the following:

� Break his/her exclusive lock. This really isn’t a good choice.

� Check out the same file version with a concurrent lock. This results in a local, writable
copy of the file in your PWE. After making and testing your modifications, you can cre-
ate a branch and check the file in on the branch. Your work can then be merged with
the work of your team member at a later time.

Note

In SNiFF+, you can create branches:
� during check-out when using SCCS
� during check-in when using all other version control systems
er’s Guide 139

Chapter 13 Version Control Default Configuration
Default Configuration
Each working environment specifies its own Default Configuration. When you open a SNiFF+
project in a working environment, SNiFF+ uses its Default Configuration:

� for setting the default value when you choose one of the various version control com-
mands (e.g., check-out and check-in).

� when updating files in the working environment to the most current versions available in
the Repository. A file is updated with respect to the Default Configuration in the file’s ver-
sion tree.

To better understand the idea of a Default Configuration, let’s suppose you work on a
software system with files having the same version tree we looked at on page 137:

You work on the main “trunk” of the tree and check out and check in files on the trunk. A
member in your team works on the branch of the tree created at version 1.2 . As a result,
the Default Configuration for your PWE would be HEAD, and the Default Configuration for
your team member’s PWE would be HEAD_branch .
IMPORTANT: Actually, in this example, your team member should specify two Default
Configurations for his/her PWE. The next section discusses why.

Using multiple Default Configurations

Not all version controlled files in your Repository will have the same version tree. During
normal development, files will often be created and checked into the Repository. Now, if the
Default Configuration for your PWE is on a branch and you try to perform version control
operations on a file that doesn’t have this branch, your version control tool will complain.
To get around this problem, SNiFF+ allows you to specify multiple Default Configurations for
a single working environment. If SNiFF+ can’t perform a version control operation using the
first specified Default Configuration, it will try to perform the operation using the next speci-
fied Default Configuration, and so on, until it is successful.

Note

SNiFF+ automatically sets the Default Configuration for a newly created working
environment to HEAD. You can change this default behavior either while creating
a new working environment or afterwards.

1.4 is the latest version of the file

1.2.1.2 is the latest version on the branch
created at version 1.2.
140 SNiFF+

Us

Executing version control commands in SNiFF+
Going back to the example in the last section, your team member could specify two Default
Configurations for his/her PWE. The first one would be HEAD_branch , and the second
could be HEAD.

Executing version control commands in SNiFF+
The following version control operations are described in this section:

� Checking out a version of a file

� Locking a file version

� Checking in files

� Unlocking a version of a file

� Deleting a version of a file

� Replacing the comments of a file version

Checking out a version of a file

You can check out a version of a file in the Project Editor, the Source Editor, Documentation
Editor, the Configuration Manager, or the Diff/Merge tool. Here, we will use the Project Editor.

1. In the Project Editor, select the file in the File List and choose File > Check Out... .

The Check Out dialog appears.

2. To check out the file, enter its version number in the Version field or, if the version is part
of a configuration, select the configuration name from the list of available configurations.

Note

To learn how to specify the Default Configuration(s) for a working envi-
ronment, please refer to Specifying Default Configurations — page 154.

Note

You can check out more than one file at a time by selecting them (by
holding down <SHIFT> and clicking on the file names with the left
mouse button) and then choosing the File > Check Out... command
in the Project Editor.

List of available
configurations

HEAD is the
default
version
er’s Guide 141

Chapter 13 Version Control Executing version control commands in SNiFF+
3. Choose a locking mechanism. See also Locking files during check-out — page 137.

Locking a file version

You can lock a version of a file in the Project Editor, the Source Editor, Documentation Editor,
or the Diff/Merge tool. Note that you can only check in files that are locked by you.
To lock a file version:

1. In the Project Editor, select the file and then choose File > Lock... command.

The Lock dialog appears.

2. Enter the version you want to lock in the Version field or, if the version is part of a config-
uration, select the configuration name from the list of available configurations.

3. Press Ok.

You now have a local, writable copy of the file version in your working environment. Your
version control tools puts an exclusive lock on this version.

SCCS Version Control

If you want to create a new branch and check in the new file ver-
sion(s) on this branch, select the New Branch check box.

A field appears where you can enter the name of the new branch.
Enter the name of the new branch. Note that SNiFF+ automatically
prefixes the new branch’s name with HEAD_.

List of available configurations
142 SNiFF+

Us

Executing version control commands in SNiFF+
Checking in files

You can check in a version of a file in the Project Editor, the Source Editor, Documentation
Editor, or the Diff/Merge tool. Here, we will use the Project Editor.

1. In the Project Editor, select the file(s) in the File List and then choose File > Check In... .

A Check In dialog appears.

2. If you want to create a new branch and check in the new file version(s) on this branch,
select the New Branch check box.

A field appears in which you can enter the name of the new branch.

3. Enter the name of the new branch. Note that SNiFF+ automatically prefixes the new
branch’s name with HEAD_.

4. Enter a version number or configuration name in the Version field. The new branch starts
at this point in each checked-in file’s version tree. The checked-in file will be the first ver-
sion on the new branch.

For the SCCS version control system, you have to create branches in the Check Out
dialog.

5. If you want to check in multiple files using a change set, enter the name of the change set
in the Change Set field.

6. If you want to see whether the checked-in file is different from its latest version, select the
Check Difference check box.

7. Check in the file(s):

� To unlock the file(s) after the check-in, press Ok.

� To retain the lock on the file(s) after the check-in, press Retain Lock .

Version to be checked in (HEAD means latest)

Name of the change set to be associated with the file that
you are checking in (optional)

Descriptive text for the version that you are
checking in

Select to compare the working file to the latest version
(HEAD). A warning is given if there are no differences

A field appears when you select New Branch
er’s Guide 143

Chapter 13 Version Control Looking at file version history
Unlocking a version of a file

You can unlock a version of a file in the Project Editor, the Source Editor, Documentation
Editor, or the Diff/Merge tool. Here, we will use the Project Editor.
To unlock a file version:

1. In the Project Editor, select the file and then choose File > Unlock... .

2. In the Unlock dialog that appears, enter the version you want to unlock in the Version
field and press Ok.

Your version control tool removes your exclusive lock on the file version.

Deleting a version of a file

You can delete a version of a file in the Project Editor or in the Configuration Manager. Here,
we will use the Project Editor.
To delete a file version:

1. In the Project Editor, select the file and then choose File > Delete Version... .

2. In the Delete Version dialog that appears, enter the version you want to delete in the Ver-
sion field and press Ok.

The version you entered is deleted from the file’s version tree. Your version control tool
readjusts version numbers in the version tree accordingly.

Replacing the comments of a file version

You can replace the comments of version of a file in the Project Editor or in the Configuration
Manager. To do so:

1. Select the file version in either the Project’s Editor History View or the Configuration Man-
ager’s File List.

2. Choose File > Replace Comment... .

3. In the Replace Comment dialog that appears, change the file version’s comments and
then press the Replace button.

Looking at file version history
To look at the history of a file:

1. Use the Project Editor’s filters and Project Tree to select the files whose history informa-
tion you want to view.

2. Select the History check box in the Project Editor.

Three new views are added to the Project Editor:

� Symbols View — Displays all versions of the file as stored and maintained by your
version control tool in the file’s version tree. All file versions are displayed in the Ver-
sion Tree of the Symbols View, along with detailed information about each version.

� History View — Displays the history of the file version selected in the Symbols View.

� Description View — Description about the file selected in the File List. To enter or
144 SNiFF+

Us

Looking at file version history
modify a file’s description, the file must be writable.

Symbols View

The symbols and text in the Version Tree of the Symbols view give you details about the
versions of the selected file.
Five different symbols are possible in the Version Tree of the Symbols view:

Symbol This symbol means that the entry is...

a single unnamed version

a new file version without a change

a new branch of a version

a change set

a configuration name

Description view of the selected file.
The description is stored in the CMVC
tool

History view of the selected file stored
in your version control tool

Version of file:
double-clicking it opens a dialog for
browsing or modifying comments

Symbols view with file version tree
er’s Guide 145

Chapter 13 Version Control Creating your own CMVC adaptor
Displaying locking information

To load and display locking information:

1. Use the Project Editor’s filters and Project Tree to select the files whose locking informa-
tion you want to view.

2. Select the Lockers check box in the Project Editor.

The File List is expanded to show file locking information.

Filtering the File List according to locking state

You can filter the File List according to a file’s locking state. To do so, choose one of the
following entries from the File Status pop-up menu:

� All Files — Displays all files regardless of their locking state.

� Modified — A Files Compared to dialog appears. Files different from the version you
enter in this dialog are displayed.

� Unchanged — A Files Compared to dialog appears. Only those files that have not
changed from the version you enter in this dialog are displayed.

� Own — Displays only those files locked by you.

� Own modified — A Files Compared to dialog appears. Files locked by you that are
different from the version you enter in this dialog are displayed.

� Locked — Displays only locked files.

� Not Locked — Displays only unlocked files in the File List.

� Filtered... — Multiple entries are selected in the Filters dialog. Selecting the Fil-
tered... entry itself opens the Filters dialog.

Creating your own CMVC adaptor
SNiFF+’s version control and configuration management (CMVC) functionality is provided via
a consistent user interface that sits on top of an abstract CMVC interface. In this sense,
SNiFF+ does not implement any version storage functionality itself; it delegates all actions
via this CMVC interface to a CMVC tool like RCS or CVS, which is responsible for the actual
repository management. The interface consists of about 40 commands that can be easily
mapped to any specific CMVC.
CMVC adaptors should only be created by experienced users of the version tool and Unix.
However, it is a one-time task since SNiFF+ only needs to be adapted once to a new CMVC.
You can use any scripting language e.g., Bourne Shell, Python, TCL, etc. to create your own
adaptor. For information on how to do so, please get in touch with your TakeFive Sales
contact.

Name of the version control tool
Locked version number

Owner of the lock
146 SNiFF+

Us

Working with configurations
Working with configurations
You use SNiFF+’s Configuration Manager to work with configurations of your software
system. This section covers

� Looking at configurations

� Comparing two configurations

� Checking out a configuration

� Freezing configurations

� Renaming configurations

� Deleting configurations

For details about the Configuration Manager’s user interface, please refer to the Reference
Guide.

Looking at configurations

1. Open the SNiFF+ project whose configuration information you want to view.

2. Choose Tools > Configuration Manager .

The Configuration Manager appears. Complete the remaining steps in this section in this
tool.

3. In the Configuration Manager’s Project Tree, checkmark the projects that you want to
view.

4. Press the Update button to load the configuration information for the checkmarked
projects.

When the update process is over, you should see a list of configurations for the
checkmarked projects in the Configuration List.
er’s Guide 147

Chapter 13 Version Control Working with configurations
5. To look at the details of a particular configuration, select it in the Configuration List.

The Configuration Manager now displays all the files that are part of the selected
configuration.

Comparing two configurations

To see what differences exist between two configurations of your software system:

1. Select one of the two configurations in the Configuration List.

2. Select the other configuration in the Compared To List.

SNiFF+ displays the differences between the two configurations in the Change List. Icons
in the Change List indicate the nature of the difference. Online, use the Configuration
Managers Help(?) > Quick menu for a description of the various icons, or see the
Reference Guide.

3. You can look more closely at any change sets in the Change List. To do so, select the
change set. SNiFF+ displays the files in the selected change set in the File List.
148 SNiFF+

Us

Working with configurations
Checking out a configuration

You can check out a complete configuration of your software system in your working environ-
ment. To so do:

1. Select the configuration you want to check out in the Configuration List.

2. Choose Configuration > Check Out < Configuration >....

A Check Out Configuration dialog appears, in which you can specify how you want your
version control tool to lock the configuration.

3. Choose a locking mechanism (see page Locking files during check-out — page 137 for a
description).

Freezing configurations

You can freeze either the latest version of selected files in your software system or the
Default Configuration for the working environment you are currently in.

Freezing the latest version of your software system

When you freeze the latest version of your software system, you create a new configuration
that consists of the latest (HEAD) version of all your version controlled files.
To freeze the latest version:

1. If you have a single root SNiFF+ project for your software system, open this project.

2. Open the Configuration Manager.

3. Select HEAD in the Configuration list.

4. Choose Configuration > Freeze Head... .

A Freeze Configuration dialog appears.

5. Enter the name of the new configuration in the Configuration field and press Ok. Note
that if you enter an existing configuration name, the original configuration will be deleted.

The new frozen configuration will appear in the Configuration List as the newest configura-
tion below the HEADconfiguration.

Force a freeze even if the configuration name is already used

Name of new frozen configuration
er’s Guide 149

Chapter 13 Version Control Working with configurations
Freezing a Default Configuration

You can freeze the Default Configuration in the working environment you are currently in.
When you freeze the Default Configuration, you create a new configuration that consists of
all the files that are part of the Default Configuration.
To freeze the Default Configuration:

1. If you have a single root SNiFF+ project for your software system, open this project.

2. Open the Configuration Manager.

3. Choose Configuration > Freeze Default Configuration... .

A Freeze Default Configuration dialog appears.

4. Enter the name of the new configuration in the Configuration field and press Ok. Note
that if you enter an existing configuration name, the original configuration will be deleted.

The new frozen configuration appears in the Configuration List.

Renaming configurations

To rename a configuration:

1. Select the configuration in the Configuration List.

2. Choose Configuration > Rename Configuration Name....

The Rename Configuration dialog appears.

3. Choose the new name for the configuration and press Ok.

SNiFF+ renames the configuration in all the projects checkmarked in the Configuration
Manager’s Project Tree.

Deleting configurations

To delete a configuration:

1. Select the configuration in the Configuration List.

2. Choose Configuration > Delete Configuration Name....

The Delete Configuration dialog appears and asks you to confirm the deletion.

3. Press Ok.

SNiFF+ requests your version control tool to delete the configuration name from your
Repository. Note that your version control tool will not delete any files that are associated
with the deleted configuration.
150 SNiFF+

Us

Looking at and merging differences between two file versions
Looking at and merging differences between two file versions
In this section, you will learn how you can use the Diff/Merge tool to show and merge differ-
ences between files and versions of files.
You can open a Diff/Merge tool in the Project Editor, the Source Editor, or the Configuration
Manager. For a detailed description of the Diff/Merge tool, please refer to Reference Guide
—Diff/Merge tool.

Comparing file versions

You can look at the differences between two versions of a file in the Project Editor, the
Source Editor, Documentation Editor, the Diff/Merge tool, or the Configuration Manager.
Here, we will use the Project Editor.
To look at the differences between two versions of a file:

1. Choose File > Show Differences... .

The Differences dialog appears

2. In the Version Left field, enter one of the file versions to compare. Use the radio buttons if
applicable (see below).

3. In the Version Right field, enter the other file version to compare. Use the radio buttons if
applicable (see below).

4. Press Ok.

SNiFF+ opens a Diff/Merge tool, in which the differences between both file versions are
displayed. The Diff/Merge tool is shown on page 152.

Radio buttons

WORK—Refers to the version of the file you "see" in the working environment. This can
either be a writable, local copy or the read-only original located in the shared working envi-
ronment (usually the SSWE).
SHARED—Refers to the version of the file currently located in the shared working environ-
ment accessed by the working environment you are currently in. Usually, you are in your
PWE, so the accessed shared working environment is your team’s SSWE.

These two radio buttons show either
the default configuration or the file
version selected in the Project
Editor’s History View
er’s Guide 151

Chapter 13 Version Control Looking at and merging differences between two file versions
Default Configuration or File Version (here HEAD)—If a file version is selected in the
Project’s Editor History View, this radio button displays the version number. Otherwise, it
displays the Default Configuration of the working environment you are currently in. Default
Configurations are discussed on Default Configuration — page 140.

Comparing file versions in the Diff/Merge tool

A Diff/Merge tool appears when you compare two file versions using the Show Differ-
ences... command from the File menu.

You can also use the Diff/Merge tool for editing files. In the figure above, the working file (file
version WORK) is writable, so you can edit it and merge differences into it.

Note

If you select the SHARED radio button for the Version Right field, you
must select WORK for the Version Left field.
152 SNiFF+

Us

Showing the differences between change sets
Showing the differences between change sets
You can use to Diff/Merge tool to view differences between versions of files in a change set
and previous versions of the same files. To do so:

1. Select a change set in the Configuration Manager and choose Differences > Show Dif-
ferences... .

A Show Differences dialog appears, in which you can select the type of differences (two-
way or three-way) that you want to see.

2. Press the 2-Way button. (For three-way differences please refer to Showing and merging
three way differences — page 153.)

A Diff/Merge tool appears. Differences between files in the change set and previous
versions are shown in the tool.

3. The File List displays the files in the change set. By clicking on a file in the list, you can
look at the changes between it and its previous version.

Showing and merging three way differences
You can also use the Diff/Merge tool to look at three-way differences between files and file
versions. One situation where this might come in handy is when you want to merge branch
file versions and configurations back into the "main trunk" of a file’s version tree.
As an example of viewing/merging three-way differences between versions that are on two
different branches, let us assume that a source file called MoneyTransaction.C has the
following version tree:

The latest version on the main trunk is called HEAD. The latest version on the branch is
called HEAD_C. Version 1.2 is the common ancestor of both versions.
Now, you can view the three-way differences between the latest version on the main trunk
(1.5), the latest version on the branch (1.2.1.3) and the ancestor (1.2). To do so:
er’s Guide 153

Chapter 13 Version Control Specifying Default Configurations
1. Open the project that contains the configurations you are interested in.

2. Open the Configuration Manager and press the Update button to load your project’s con-
figuration information into the Configuration Manager.

3. Select HEADin the Configuration List and HEAD_Cin the Compared To List.

The Change List displays all the changes made on the main trunk and the branch since
the ancestor version.

4. From the Change type drop-down menu above the Change List, choose different
branches .

The Change List displays only those version controlled files that have a branch at version
1.2 in their version trees.

5. From the Change List, select the file whose three-way differences you are interested in.

6. If you just want to look at the three-way differences, choose Configuration > Show 3-
Way Differences .

A Diff/Merge tool appears, in which the three-way differences are displayed.

7. If you want to merge differences, choose Differences > Merge Differences ... command
and press the 3-Way Merge button.

A dialog appears and asks you whether you want to check out the file selected in the
Change List.

8. If you have already checked out the file, press No. Otherwise, press Yes.

A Diff/Merge tool appears, in which the three-way differences are displayed.

Specifying Default Configurations

Default Configurations may be specified for SSWEs and PWEs, either during their creation
or afterwards. Note that an SOWE inherits the Default Configurations of the SSWE that it
accesses.
To specify Default Configurations for a working environment:

1. Make sure you have the appropriate write permissions for modifying working environ-
ments.

2. Start SNiFF+ and open the Working Environments tool.

Note

We strongly recommend that your Working Environments Administrator
specify the Default Configurations for your team’s working environments.
154 SNiFF+

Us

Specifying Default Configurations
In the Working Environments tool

1. In the Working Environments tool, select the working environment for which you want to
specify Default Configurations.

2. Choose Edit > Modify... .

The Working Environment - Modify dialog appears.

3. In the Version Control Configuration(s) field, specify the Default Configurations for the
working environment:

� To specify HEADas the default, either leave the field blank or enter HEAD.

� To specify a non-HEADconfiguration as the default, enter the configuration name.

� To specify the HEAD version of a branch as the default, enter
HEAD_<branch_name> .

� Use a colon (:) to separate multiple Default Configurations. For example, to specify
both HEADand HEAD_branch01 as Default Configurations, you would enter:

HEAD_branch01:HEAD

4. When you are done, press Ok to return to the main window of the Working Environments
tool.

5. Save the modifications to your working environments.
er’s Guide 155

Chapter 13 Version Control Specifying Default Configurations
156 SNiFF+

U

14Updating Working Environments

Introduction
SNiFF+ provides a powerful updating mechanism for your working environments that
ensures that all members in your development team are working on the latest, most stable
version of your software system.

This chapter covers the following topics

� Why working environments need to be updated

� What happens to projects and files in working environments during an update

� How to update working environments in SNiFF+

� How to update working environments from the Shell

� How to run unattended updates from the Shell

Assumptions made in this chapter

� Your team’s Working Environments Administrator has already set up Make Support for
your projects

Related SNiFF+ topics

� Configuration management and version control in SNiFF+ — Version Control — page 135

� sniffaccess (used to drive unattended working environment updates, see Reference
Guide — Sniffaccess — page 259.)

Abbreviations and shortcuts used in this chapter

RWE — Repository Working Environment
SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
$SNIFF_DIR — SNiFF+ installation directory
ser’s Guide 157

Chapter 14 Updating Working Environments Technical overview
Technical overview

Why working environments need to be updated

During a day's work, you and your team members check out files and go through the edit/
compile/debug cycle in your PWEs. Some of the modifications that you make to checked-out
files and other files are checked in during the day. Consequently, the latest versions of your
source files will be spread over several working environments, and your team won’t be
working with a consistent set of up-to-date files the next day unless something is done about
it. This is where SNiFF+’s updating mechanism for working environments comes into the
picture.
SNiFF+ provides a mechanism for updating both shared working environments (SSWEs and
SOWEs) and PWEs. The following diagram summarizes how working environments slowly
“lose sync” with each other and how updating them corrects this situation:
158 SNiFF+

Us

The Working Environments Administrator
As the diagram suggests, updates and builds of shared working environments should be
done at times when no developers are working. This usually means either overnight or over
the weekend. Your team members can update their PWEs at any time. However, the best
time to do so is immediately after the shared working environments you access have been
updated.

Unattended updates of working environments

Many development organizations use scripts for unattended software updates and builds
each night. Such nightly updates and builds verify that your team’s object code is still build-
able and consistent the next time team members open projects in their PWEs.
SNiFF+ comes with an administrative script that help you manage and integrate the work
that your team members perform in their respective PWEs. This scripts, as well as both
manual and unattended updates, are discussed later on in this chapter.

The Working Environments Administrator
Working environment updates do not always work according to plan. A number of things can
go wrong, such as:

� builds during updates don’t deliver the desired results because team members have
checked in buggy source files

� updates terminate suddenly because of hardware problems

� unattended updates don’t take place because of a bug in the update script

To handle these and any other update-related problems that may occur, we strongly recom-
mend that you appoint a Working Environments Administrator. In addition to making sure
that updates function properly, he/she could also be responsible for:

� creating new working environments

� creating and enforcing guidelines regarding how shared files should be checked out and
checked in

� keeping shared working environments clean of obsolete files and directories

� maintaining your team’s Repository
er’s Guide 159

Chapter 14 Updating Working Environments General guidelines for updating SSWEs and PWEs
General guidelines for updating SSWEs and PWEs
The updating procedure for both SSWEs and PWEs is very similar. When updating both
types of working environments, we strongly suggest that you follow these general guidelines:
(The updating instructions later on in the chapter are based on these guidelines.)

� Whenever you update a working environment, also update any other working environ-
ment that accesses it. First update the topmost working environment (the one that doesn’t
access any other one and is accessed by all others) and work "downwards". For example,
suppose your team uses one SSWE, one SOWE and several PWEs. You would first
update the SSWE (both SOWE and PWEs access it), then the SOWE (the PWEs access
it) and finally the PWEs.

� When updating a working environment, compare all local, read-only files in it, or in any
accessed working environment, to the latest version in the Repository. If the latest version
in the Repository is newer, check it out in the working environment being updated.

� When updating a Private Working Environment, remove all read-only files in it. Do nothing
to local, writable files (checked-out usually).

Rollback in case of unsuccessful builds in the SOWE

Builds in a SOWE are not always successful, especially if one of your team members has
checked in files without first testing them locally. To avoid such a situation, we recommend
that you implement a rollback mechanism that restores your SSWEs and SOWE to their
status before the update. The only implication for the team in such a case is that they will
continue to work with the same version as they did before the unsuccessful update. Your
Working Environments Administrator can then investigate the problem and fix it without
disrupting your team’s development work. Of course, implementing a rollback mechanism in
your updating procedure means that you will have to make a backup of your SSWEs and
SOWE before starting the update.
160 SNiFF+

Us

General guidelines for updating SSWEs and PWEs
Model for updating shared working environments

Here’s how an updating and build process with a rollback mechanism might look like for your
team’s shared working environments:
er’s Guide 161

Chapter 14 Updating Working Environments General guidelines for updating SSWEs and PWEs
Workspace projects

To make it easier to update working environments, we recommend that you set up a work-
space project as a root project of all other projects in a working environment. Workspace
projects have two main advantages:

� To update all the projects in a working environment, you just have to update the work-
space project, since SNiFF+ automatically updates all its subprojects for you.

� Unattended automatic nightly updates and builds are easier if there is a single workspace
project for a working environment.

You should create workspace projects before you begin updating working environments for
the first time. To create a workspace project for a working environment that already contains
SNiFF+ projects:

1. Open the Working Environments tool and select the working environment for which you
want to create the workspace project.

2. Choose File > New Project... > with Defaults... .

3. Select the root directory of the working environment as the project directory.

A Project Attributes dialog for a new project is opened.

4. Select the General node.

5. Give the project a name that clearly describes it (e.g., workspace.shared).

6. Clear the Generate Subproject Tree check box, since you do not want to create SNiFF+
projects for the entire project tree again.

7. Press the Ok button to create the workspace project.

SNiFF+ will now generate the workspace project and its associated files. A Progress
dialog appears to inform you of the generation process. When the generation process is
over, SNiFF+ automatically opens the new project and displays its structure in a Project
Editor.

8. Manually add all root projects of the working environment as subprojects by choosing
Project > Add subproject... in the Project Editor for each project you want to add.
162 SNiFF+

Us

Updating within SNiFF+
Updating within SNiFF+
In this section, you will learn how to update your working environments. Working environ-
ments are to be updated in the following order:

� SSWEs

� SOWEs

� PWEs

Your Working Environment Administrator should be responsible for updating the shared
working environments. PWEs may either be updated by the Working Environment Adminis-
trator, or by their respective owners.
Please complete the steps outlined in this section in a SNiFF+ session.

Updating your team’s SSWE

� Open the workspace project of the SSWE. If there is no workspace project for the working
environment, create one. See also Workspace projects — page 162

In the Project Editor

1. Checkmark all the projects in the Project Tree.

2. Choose Project > Synchronize Checkmarked Projects... .

All files in the working environment are synchronized to the newest version.

3. Choose Target > Update Makefiles... .

Make support files are regenerated for all projects in the working environment.

4. To update configuration management information (optional), choose

Tools > Configuration Manager .
Configuration management information for all modified projects in the PWE is updated
and stored on disk. For unmodified projects, shared information is used.

5. Close the Configuration Manager. To update cross-reference information (optional), open
any tool where you can see symbols. Now choose Info > Referred-By .

Cross referencing tables for all modified projects in the PWE are updated and stored on
disk. For unmodified projects, shared information is used.
er’s Guide 163

Chapter 14 Updating Working Environments Updating within SNiFF+
Updating your team’s SOWE

Please complete the following steps for each target platform for which you want to update
the SOWE.

In a Shell or Command Prompt

1. Change to the SOWE root directory and execute the following command on the command
line:

gmake -i sniffclean

All symbol table, cross-reference files etc. are deleted in the working environment.

In the Launch Pad or Working Environments tool

� Open the root project of the SOWE. We suggest that you open the project without sym-
bols since this is faster.

If there is no root project for the working environment, create one. See also Workspace
projects — page 162

In the Project Editor

1. Checkmark all the projects in the Project Tree.

2. Choose Project > Synchronize Checkmarked Projects... .

All files in the working environment are synchronized to the newest version.

3. In the Project Editor, choose Target > Update Makefiles... .

4. In the Update Makefiles dialog that appears, clear the Generate Dependencies File
check box and press Yes.

Make support files are regenerated for all projects in the working environment.

In a Shell or Command Prompt

In the SOWE root directory, execute the following commands on the command line:

� gmake -i symbolic_link_to_dependencies_file

Creates symbolic links to the dependencies file in the Shared Source Working
Environment.

� gmake -i CHECK_UPDATE=0

Make is started for each project in the SOWE. The targets of the project are built
recursively.
164 SNiFF+

Us

Updating within SNiFF+
Updating your team’s PWEs

Complete the following steps to update a PWE:

� Open the workspace project of the PWE. If there is no workspace project for the working
environment, create one. See also Workspace projects — page 162

In a Shell or Command Prompt

� In the PWE root directory, execute the following command on the command line:

gmake -i clean

Object files, targets and core files are removed from the working environment.

In the Project Editor

1. Checkmark all the projects in the Project Tree.

2. Choose Project > Synchronize Checkmarked Projects... .

All files in the working environment are synchronized to the newest version.

3. In the Project Editor, choose Target > Update Makefiles... .

Make support files are regenerated for all projects in the working environment.

4. To update configuration management information (optional), choose

Tools > Configuration Manager .
Configuration management information for all modified projects in the PWE is updated
and stored on disk. For unmodified projects, shared information is used.

5. Close the Configuration Manager. To update cross-reference information (optional), open
any tool where you can see symbols. Now choose Info > Referred-By .

Cross referencing tables for all modified projects in the PWE are updated and stored on
disk. For unmodified projects, shared information is used.

In a Shell or Command Prompt

1. In the PWE root directory, execute the following command on the command line:

gmake -i symbolic_links

Symbolic links are created to object files in the SOWE and Makefiles in the SSWE. On
Windows NT/95, local copies are made instead.

2. Execute the following command on the command line:

gmake -i CHECK_UPDATE=0

Make is started for each project in the PWE. The targets of the project are built
recursively.
er’s Guide 165

Chapter 14 Updating Working Environments Updating outside of SNiFF+
Updating outside of SNiFF+
In this section, you will learn how to update your working environments outside of an active
SNiFF+ session on both Unix and Windows using an update and build script
(updateWS.sh) provided with your SNiFF+ installation. This script starts SNiFF+ in batch
mode (driven via sniffaccess) and calls other tools like Make.
The update and build script is located in your $SNIFF_DIR/ws_support directory. Note
that it can also be used for unattended updates of your working environments.

� On Unix, you can perform external updates from any Shell.

� On Windows, you can perform unattended updates from the Command Prompt.

Update procedures

Working environments are to be updated in the following order:

� SSWEs

� SOWEs

� PWEs

Your Working Environment Administrator should be responsible for updating the shared
working environments. PWEs may be updated either by the Working Environment Adminis-
trator, or by their respective owners.
After an update is over, SNiFF+ creates a log file with a summary report in the updated
working environment’s root directory. This summary report will also be automatically sent to
you by email.
.

How to

1. Change to the Working Environment root directory you want to update.

2. Call the script (all in one line)

� On Unix:

sh $SNIFF_DIR/ws_support/updateWS.sh
<WorkingEnvironmentName> <project> [SSWE | SOWE | PWE]

� In the Windows Command Prompt

sh %SNIFF_DIR%\ws_support\updateWS.sh
<WorkingEnvironmentName> <project> [SSWE | SOWE | PWE]

On Windows

To automatically receive summary reports, a mail program with a command-line inter-
face is necessary. An example of such a tool is Postmail, a shareware program avail-
able in the public domain.
166 SNiFF+

Us

Unattended updates
Unattended updates
In this section, you will learn how to run unattended updates of your working environments
using the same script discussed under Updating outside of SNiFF+ — page 166.

� On Unix, unattended updates are run using cron .

� On Windows NT, unattended updates are performed using at . On Windows 95, you will
need a utility for delayed command execution.

Unattended updates should be performed in the same order as regular updates:

� first your SSWEs

� than your SOWEs

� and finally your PWEs

Your Working Environment Administrator should be responsible for unattended updates.

How SNiFF+ handles project structure changes during an unattended
update

Your team members can modify the structure of a project in a PWE by checking out and
modifying the project’s project description file (PDF). When the modified PDF is checked in
again, the project in the other working environments used by your team are structurally out of
date. Its structure must be updated during an update of the working environments. The
following is an overview of the possible changes and how SNiFF+ in batch-mode reacts to
these structural project changes while updating a working environment:

� A PDF has been modified — Any structural change to a project requires a modification
to its PDF. When you open a project, SNiFF+ checks whether its PDF is up to date,
checks out the latest version if necessary, and then opens it.

� Files have been removed from a project — If files have been removed from a project,
SNiFF+ does not delete them. It is the responsibility of the owner of the working environ-
ment to remove obsolete files. For a listing of potentially obsolete files in a working envi-
ronment, you can use the Check Obsolete Files command in the Project Editor or the
sniffaccess command.

� Files have been added to a project — If files have been added to a project, these files
need to be checked out in your team’s SSWE. When SNiFF+ opens a project, it checks
out those files specified in the project’s PDF that aren’t present in the working environ-
ment.

� New subprojects have been added to a project — If a new subproject has been added
to a project, the directory for this subproject needs to be created, and its PDF and the
other files in the project need to be checked out. When SNiFF+ opens a project and it can-
not find the PDF of a subproject, it creates the project directory and tries to check out the
PDF and then to open it. Then the files of the new subproject are checked out if neces-
sary.
er’s Guide 167

Chapter 14 Updating Working Environments Unattended updates
� Subprojects have been removed from a project — If a subproject has been removed
from a project, SNiFF+ does not delete it. It is the responsibility of the owner of the work-
ing environment to remove obsolete files. For a listing of potentially obsolete files in a
working environment, you can use the Check Obsolete Files command in the Project
Editor or the sniffaccess command.

Examples of executing the update script on Unix

Here are some examples of how you would execute the update script:

� Shared Source Working Environment

00 02 * * * cd /shared_src; $SNIFF_DIR/ws_support/
updateWS.sh <WorkingEnvironmentName> <project> SSWE

� Shared Object Working Environment

00 03 * * * cd /shared_obj; $SNIFF_DIR/ws_support/
updateWS.sh <WorkingEnvironmentName> <project> SOWE

� Private Working Environment

00 04 * * * cd /private; $SNIFF_DIR/ws_support/updateWS.sh

<WorkingEnvironmentName> <project> PWE

In the examples above, the commands are executed at 2, 3 and 4 o’clock in the morning,
respectively.

Note

For a description of the parameters, refer to Parameters used with the
update script — page 169.
168 SNiFF+

Us

Unattended updates
Parameters used with the update script

Running SNiFF+ without display (batch mode)

You can start a SNiFF+ session without a display.
SNiFF+ runs without a display when the SNIFF_BATCHenvironment variable is set to 1. In
the SNiFF+ update script, this is set by default. To manually set the variable:
On Unix:

1. Open a shell.

2. In a shell, set the SNIFF_BATCHenvironment variable to 1:

setenv SNIFF_BATCH 1

On Windows:

1. Open a Command Prompt.

2. In the Command Prompt, set the SNIFF_BATCHenvironment variable to 1:

set SNIFF_BATCH=1

Parameter Description

<WorkingEnvironmentName> Refers to the working environment whose projects
are to be updated. Enter the full name of the work-
ing environment, (including the PWE owner’s
username if there is one), as it appears in the
Working Environments Tree. Examples:
“SSWE:GA_teamSSWE”
“SOWE:GA_teamSOWE”
“Bob PWE:BobPWE” (username included)
“PWE:BobPWE” (username not included)

<project> Refers to the specific project that is to be updated.
A project is specified by the project directory (as it
appears in the Project Directory field in the
Project Attributes dialog), followed by the project’s
PDF, e.g.,
COMPLEX/complex/complex.shared

[SSWE|SOWE|PWE] Enter one of the three options to specify the type of
working environment to be updated.
SSWE— Shared Source Working Environment
SOWE— Shared Object Working Environment
PWE— Private Working Environment
er’s Guide 169

Chapter 14 Updating Working Environments Unattended updates
170 SNiFF+

Part VI
Compiling and

debugging

U

15Preprocessing C/C++ Code in SNiFF+

Introduction
This chapter covers preprocessing C/C++ code in SNiFF+.

This chapter covers the following topics

� Enable full preprocessing

� Configure SNiFF+’s C/C++ Parser with a configuration file

SNiFF+ concepts you should already know

� SNiFF+ projects

Abbreviations used in this chapter

� Parser—SNiFF+’s C/C++ Parser

� PDF—Project Description File

For browsing WinAPI and /or MFC code

Please refer to the readme.wri file in your %SNIFF_DIR%directory.
ser’s Guide 173

Chapter 15 Preprocessing C/C++ Code in SNiFF+ Preprocessing source code
Preprocessing source code
By default, SNiFF+'s C/C++ Parser does not expand preprocessor macros when it parses
source files. This approach has the advantage of speed, but occasionally some preprocessor
macros confuse the Parser.
For example, macros that make the non-preprocessed source code syntactically incorrect
confuse the Parser and may result in incomplete symbolic information. Such macros are
called non-syntactic macros.
SNiFF+ provides several mechanisms to solve these kinds of problems:

� Full preprocessing of the project — If your code heavily uses non-syntactic macros, we
recommend that you preprocess it. You can enable preprocessing for a single SNiFF+
project, or for a project structures.

� Configuring the Parser — You can configure the Parser to selectively preprocess your
source code.

Enabling full preprocessing
You should enable full preprocessing if your code heavily uses non-syntactic macros and you
don’t want to configure the Parser.
To enable full preprocessing:

1. In any open SNiFF+ tool, choose Tools > Project Editor to open the Project Editor.

In the Project Tree, checkmark the projects for which you want to enable full preprocess-
ing.

2. Check out the PDFs of the checkmarked projects.

3. Choose Project > Attributes of Checkmarked Projects... .

4. Select the Parser node.

Note

SNiFF+'s C/C++ Parser handles preprocessor options (e.g., -Idir ,
-I- , -nostdinc) in accordance with ANSI standards.
174 SNiFF+

Us

Enabling full preprocessing
In the Group Project Attributes dialog

� Select the Parser node.

In the Parser View

1. Select the Preprocess Source Code before Parsing check box.

2. Select the check box to the right of the above, this will make the attribute applicable to all
Projects in the list on the right.

3. Press the Set for All button.
er’s Guide 175

Chapter 15 Preprocessing C/C++ Code in SNiFF+ Enabling full preprocessing
4. Select the Directives node.

In the Directives view

1. Specify preprocessor directives.

Specifying the "-L" option for selective preprocessing
If you have an include file that defines problematic macros, you can just process this file
using the "-L" option.

� Enter -L<include_file> in the Preprocessor Directive(s) field.

The preprocessor loads and expands include_file only. No other include files are
processed.

Note

The syntax used by cpp applies to this field (-Dmacro-spec or
-Umacro-spec directives separated by blanks).
176 SNiFF+

Us

Enabling full preprocessing
Specifying multiple "-L" options

1. Enter -L"foo.h" -L<include/bar.h> in the Preprocessor Directive(s) field.

This includes and expands the macros defined in the two files foo.h and include/
bar.h in all files of the project as if the files were included with the normal #include
statement. No other include files are processed, even if the source files contain
#include statements.

2. To apply the settings in the Preprocessor Directive(s) field to all checkmarked projects,
select the check box to its right.

3. Press the Set For All button.

The attributes now apply to all the projects checkmarked in the Project Tree.

4. Press the OK button to close the Group Project Attributes dialog.

In the Project Editor

1. Save all modified projects.

2. In order for full processing to take effect, you must also reparse the projects that you just
modified. In the Project Tree, make sure the projects for which you’ve enabled full prepro-
cessing are still checkmarked.

3. Choose Project > Force Reparse .

Include path used by preprocessor

SNiff+ supplies the same include directives used by your compiler to your preprocessor.

Speeding up preprocessing by caching

When preprocessing is enabled, parsing takes longer since all include files are parsed and
macros are expanded. To speed up this process, SNiFF+ has an intelligent include file
caching mechanism that only loads and parses an include file once.

Advantages of the caching mechanism

� Whenever an include file is referenced a second time, the symbols and macros are taken
directly from the cache.

� After a file has been successfully preprocessed and parsed, its symbol information is
stored persistently.

� Like non-preprocessed files, preprocessed files are only reparsed when they are modi-
fied.

Note

Once a file has been preprocessed and its symbolic information
stored to disk, SNiFF+ loads it just as quickly as a non-preprocessed
file’s symbolic information.
er’s Guide 177

Chapter 15 Preprocessing C/C++ Code in SNiFF+ Configuring the Parser with a configuration file
Configuring the Parser with a configuration file
For every project, you can specify a file containing directives for the Parser. See also Parser
configuration file — page 178 Here, we assume that you are using the same configuration
file for multiple projects.

Specifying the location of your Parser configuration file

1. In any open SNiFF+ tool, choose Tools > Project Editor to open the Project Editor.

In the Project Tree, checkmark the projects for which you you will be using the Parser
configuration file.

2. Check out the PDFs of the checkmarked projects.

3. Choose Project > Attributes of Checkmarked Projects... .

4. Select the Parser node.

In the Parser view

1. Specify the location of the Parser configuration file in the Parser Configuration File(s)
field.

2. Select check box to the right of the Parser Configuration File(s) field, this will make the
attribute applicable to all Projects in the list on the right..

3. Press the Set for All button.

4. Press the OK button to close the Group Project Attributes dialog.

In the Project Editor

1. Save all modified projects.

2. In order for your changes to take effect, you must also reparse the projects that you just
modified. In the Project Tree, make sure the projects for which you’ve enabled full prepro-
cessing are still checkmarked.

3. Choose Project > Force Reparse .

Parser configuration file

The Parser configuration file contains special configuration instructions for the Parser. The
location of the file is specified by the Parser Configuration File(s) attribute in the Parser
view of the Project Attributes and the Preferences.
The Parser considers the configuration file both when preprocessing is enabled and when it
is disabled. If preprocessing is enabled, the directives in the configuration file are evaluated
and executed after preprocessing.
178 SNiFF+

Us

Configuring the Parser with a configuration file
Parser directives and modifiers

The configuration file can contain the following directives: (The expressions in square
brackets ([]) are modifiers you can use with directives, see Modifiers — page 180 for
details.)

Directives Description

ignore string string [leading]
[trailing] [anywhere] [whole]

The Parser ignores words that
match string in the source code. If
no option is specified only whole
words are matched.

ignore from string1 to string2
[exclusive] [instring] [incomment]
[leading] [trailing] [anywere]

The Parser ignores anything be-
tween the two strings.

ignore line string [begin] [instring]
[incomment] [leading] [trailing]
[anywere]

The Parser ignores lines that con-
tain string.

define symbol The Parser resolves #ifdef and
#if directives containing symbol.

undefine symbol The Parser resolves #ifndef ,
#if ! defined and else
branches of #if directives con-
taining symbol.

Note

All preprocessor directives (e.g., -I , -L , -U) except for -D can also be
used in the Parser configuration file. cpp syntax applies to all directives.
er’s Guide 179

Chapter 15 Preprocessing C/C++ Code in SNiFF+ Configuring the Parser with a configuration file
In addition to any ASCII character, string can contain \n , \t and \nnn , where \nnn is an
octal number. The following table describes the modifiers you can use:

Modifiers Description

[leading] Means that string identifies a leading part of a word.

[trailing] Means that string identifies a trailing part of a word.

[anywere] Means that string is matched anywhere in a word.

[whole] Causes the Parser to ignore the whole word, even if just a part of the
word is matched by string.
Note: In order to use this modifier, you also have to use the [anyw-
ere] modifier.

[exclusive] Means that string2 is not ignored. If the option is not present, the
Parser ignores everything between string1 and string2, inclusively.

[instring] Means that the Parser also looks for string in strings delimited by
quotes (" or ').

[incomment] Means that the Parser also looks for string in comments delimited by
// or /*...*/ .

[begin] Causes the Parser to ignore only lines beginning with string. If this op-
tion is not present, the location of string is not important.

Example ignore strings file

#

ignore string VIRTUAL # for NIHCL

ignore string _C_ARG1 # for the License project

ignore from EXEC to ; # ignore all embedded SQL state-
ments

define UNIX # resolve ifdefs for UNIX
180 SNiFF+

Us

Configuring the Parser with a configuration file
Examples — Parser configuration

Strings, lines and constructs to be ignored by the Parser

The Parser can be configured to ignore strings, anything between two strings and lines
containing a certain string.

Example of ignoring strings

The VIRTUAL macro is used in the NIH class library in class definitions like this:

clas s A : pu blic VIRTUAL B

{ ... };

The VIRTUAL string confuses the Parser since the C++ syntax requires that a class name
must follow the keyword public .
To solve the above problem without doing full preprocessing:

� Tell the Parser to ignore the VIRTUAL string:

ignore string VIRTUAL

IMPORTANT: All affected projects must be reparsed after the configuration file has been
changed.

Resolving #ifdef and #if directives

Some class libraries use the preprocessor directives #ifdef or #if to modify the code in
a way that confuses the Parser. In such cases the Parser configuration file allows you to
selectively resolve #ifdef or #if directives without doing full preprocessing.

Scenario 1: resolving different class definitions for the same class

#ifdef UNIX

class someClass : unixBaseClass

#else

class someClass : otherBaseClass

#endif

{ ... };

Since SNiFF+ normally parses the file without resolving #ifdef statements, it reads two
class definition headers and just one actual definition.
To solve this problem, you have two possibilities:

� add the following line to the Parser configuration file:

define UNIX

This tells the Parser to ignore the line between the #else and the #endif directives.
er’s Guide 181

Chapter 15 Preprocessing C/C++ Code in SNiFF+ Configuring the Parser with a configuration file
� add the following line to the Parser configuration file:

undefine UNIX

The Parser will ignore the line between #ifdef and #else .

Scenario 2: resolving unbalanced braces

#ifdef HUGE_INT

for (int i=0; i<MAXVAL; i++) {

#else

for (long i=0; i<MAXVAL; i++) {

#endif

... }

Since SNiFF+ normally parses files without resolving #ifdef statements, it reads two
opening and only one closing brace.
To solve this problem, you have two possibilities:

� add the following line to the Parser configuration file:

define HUGE_INT

� remove the opening brace from the two for lines and put it after the #endif directive.

Scenario 3: resolving complex #if directives

#if defined (UNIX) || defined (VMS)

class someClass : unixBaseClass

#else

class someClass : otherBaseClass

#endif

{ ... };

The expression after the #if directive will be evaluated only if it contains the || , &&, !
(logical negation), defined operator and parentheses for grouping. If the expression
contains other operators or a defined operator with an identifier that does not appear in
the Parser configuration file, the #if is not resolved (i.e., both branches are parsed).
For example, assuming that your configuration file contains the following:

define AAA

undefine BBB

Then:

� AAAis defined

� BBBis not defined

� CCCis neither defined nor undefined
182 SNiFF+

Us

Configuring the Parser with a configuration file
in the preprocessor call. Then, from the following source code, only a, d,e and f will appear
in the Symbol Table.

#if defined(AAA)

int a;

#else

int b;

#endif

#if defined(AAA) && defined(BBB)

int c;

#else

int d;

#endif

#if defined(CCC)

int e;

#else

int f;

#endif
er’s Guide 183

Chapter 15 Preprocessing C/C++ Code in SNiFF+ Configuring the Parser with a configuration file
184 SNiFF+

U

16Compiling and Debugging in SNiFF+

Introduction
This chapter covers how to compile and debug in SNiFF+.

This chapter covers the following topics

� Build a project’s targets

� Run and debug executables

� Use special SNiFF+ help targets

Assumptions made in this chapter

� If you use SNiFF+’s Make Support, your Working Environments Administrator has already
set it up for your projects.

� If you don’t use SNiFF+’s Make Support (you use your own Makefiles), you have already
read Using Your Own Makefiles — page 105

Related SNiFF+ topics

� Setting up Make Support — Build and Make Support — page 73

Abbreviations and shortcuts used in this chapter

SSWE — Shared Source Working Environment
SOWE — Shared Object Working Environment
PWE — Private Working Environment
$SNIFF_DIR — path to your SNiFF+ installation directory

Building a project’s targets
This section only applies if you use SNiFF+’s Make Support. If you use your own Makefiles,
please refer to Using Your Own Makefiles — page 105.

Note

By default, debugging information is generated for targets compiled in SNiFF+. To
turn off this default behavior, please refer to Specifying platform-specific Make infor-
mation — page 101.
ser’s Guide 185

Chapter 16 Compiling and Debugging in SNiFF+ Building a project’s targets
You can build targets in the Project Editor, the Source Editor and the Shell. Here, the Project
Editor is used. To build the project’s targets:

1. Open the project whose target(s) you want to build.

2. Update Make Support Files:

� Choose the Update Makefiles... command from the Target menu.

� Press the OK button in the dialog that appears to update the project’s dependencies
information.

SNiFF+ generates or updates the Make Support Files of all projects checkmarked in the
Project Tree.

3. If you work in a PWE that accesses an SOWE, choose the Make > symbolic_links com-
mand from the Target menu.

SNiFF+ creates symbolic links in your PWE to object files and targets in the SOWE (for
details, please refer to Sharing object files — page 76).

4. In the Project Tree, select the project whose target(s) you want to build.

5. Choose the appropriate Make command from the Target menu:

� To build the default target of the project, choose the Make default target command.

� To recursively build the default target of the project and each of its subprojects,
choose the Make all command.

Results

You should see the following results, depending on which command you executed.

� For both commands:

When your Make utility is called in a project directory, it checks the project’s default target
against its dependencies. Any dependencies that need recompiling are recompiled, and
the default target is then built.

� If you chose the Make default target command:

SNiFF+ opens a Shell tool and executes the project’s Make command on the command
line.

� If you chose the Make all command:

SNiFF+ opens a Shell tool and executes make all on the command line.
SNiFF+’s General Makefile defines rules for building the all target. Basically, SNiFF+
recursively executes the Make default target command in the project directory and each
subproject directory listed in the Recursive Make Dirs field of the project’s Make
attributes. To see an example of how this works, please refer to Building targets
recursively — page 88.

Trouble Shooting

The following trouble shooting tips may come in handy:
186 SNiFF+

Us

Running a project’s executable
� If the Make Target command is disabled:

You have forgotten to enter the name of the project’s default target while setting up Make
Support. For details, please refer to Setting up Make Support — page 88.

� Your Make utility outputs an error message similar to the following:

$SNIFF_DIR/make_support/.mk no such file or directory

where $SNIFF_DIR is your sniff installation directory.
The PLATFORMenvironment variable is not set. Set this variable to the value returned by
the sniff_arch program, restart SNiFF+ and try again. Here’s an example of how you
would set the variable in the C-shell:

setenv PLATFORM ‘ sniff_arch ‘

Running a project’s executable
To run an executable:

1. Choose the Run target command in the Target menu.

A Program Arguments dialog appears.

2. Enter any arguments for the executable and press OK.

SNiFF+ then opens a Shell tool and runs the target.

Debugging targets
On Windows NT/95 , you can use the Java Debugger and the MSDevStudio integration for
debugging.
On Unix , do the following:

Choosing a debugger adaptor

To choose a debugger adaptor:

1. Choose the Preferences command from any open SNiFF+ tool.

The Preferences dialog appears.

2. Select the Platform node.

In the Platform view

1. From the Platform list, select the platform on which you debug.

2. Select the Debugger tab.

The Platform Settings dialog appears.

3. From the Adaptor drop-down menu, choose the debugger adaptor for your debugger.

4. Press Ok to apply and save your Preferences.
er’s Guide 187

Chapter 16 Compiling and Debugging in SNiFF+ Debugging targets
Debugging

To debug targets:

1. Choose the Debug target command in the Target menu of the Project Editor, Source Edi-
tor or the Shell.

You should notice two things:

� The Debugger dialog appears. For details, please refer to Debugger (Unix and Java)
— page 75.

� The Source Editor is now in debugging mode and a button bar with the most common
debugger commands appears in it.

2. Execute debug commands. Either type in debug commands on the Debugger’s command
prompt or use the button bar in the Source Editor or select the commands in the Debug-
ger.

Some useful debugging commands

Setting a breakpoint

� Choose the line in the Source Editor where you want to set a breakpoint.

� Press the Break At button.

A small stop sign at the beginning of the line indicates the breakpoint.

Displaying values

� Select a variable by double-clicking on it in the Source Editor.

� Press the Print button.

The Debugger displays the current value of the variable.

Single-stepping

There are two possibilities for single-stepping:

� Next steps over functions and methods.

� Step steps into functions and methods.

Note

If the Debug target command is not enabled, either the target name
is not specified in the project’s Make attributes or the executable
does not exist in the project directory.
188 SNiFF+

Us

Debugging targets
Showing the call hierarchy

� Press the Stack button in the Source Editor or select the Callstack tab in the Debugger.

The call chain is displayed.

Quitting the Debugger

� Choose Close Tool from the Tools menu.

The Debugger closes. The button line with debugging commands is removed from the
Source Editor after the Debugger quits.

Source Editor in debugging mode

When the Source Editor is in debugging mode, all files loaded in it are read-only and a row of
new buttons is added to the tool.

Command Description

Run Runs the application being debugged from scratch.

Cont Continues interrupted execution.

Step Single-steps into the next function/method.

Next Single-steps over the next function/method.

Break In Sets a break point at the first execution line of a selected function/method.

Break At Sets a breakpoint at the current cursor position.

Clear Clears the breakpoint in the current line. The cursor must be positioned to
a line with a breakpoint.

Print * Prints the value pointed to by the current selection. The selection must
evaluate to a valid pointer.

Print Prints the value of the current selection. The selection must evaluate to a
valid variable.

this Prints the value of the current object.

Stack Displays the current call stack.

Up Goes one stack frame up in the call hierarchy. A reusable Source Editor is
automatically positioned at the source location of the new stack frame.

Down Goes one stack frame down in the call hierarchy. A reusable Source Edi-
tor is automatically positioned at the source location of the new stack
frame.
er’s Guide 189

Chapter 16 Compiling and Debugging in SNiFF+ SNiFF+ help targets
SNiFF+ help targets
This section only applies if you use SNiFF+’s Make Support. If you use your own Makefiles,
please refer to Using Your Own Makefiles — page 105.

Your SNiFF+ installation’s General Makefile defines rules for building a number of special
targets known as help targets. These targets are used by SNiFF+ in a number of situations,
such as when you build targets using Make Support and update your working environments.
Note that you can view a complete listing of all help targets by:

� choosing Target > Make > help during a SNiFF+ session, or by

� browsing the General Makefile ($SNIFF_DIR/make_support/general.mk) .

In this section, you will learn how to use some of SNiFF+’s help targets for cleaning up your
working environments and making symbolic links (on Unix only).

Cleaning up working environments with help targets

Here’s a list of the help targets you can use for cleaning up working environments:

� clean_targets —Removes all (non-Java) targets in the current project directory and all
recursive subproject directories.

� clean_objects —Removes all (non-Java) objects in the current project directory and all
recursive subproject directories.

� clean —Removes all object files, Java class files and targets in the current project direc-
tory and all recursive subproject directories.

� sniffclean —Removes all SNiFF+ symbolic information files (*.symtab) in the
.sniffdir directory of the current project directory and all recursive subproject direc-
tories.

� clean_state —Removes all SNiFF+ state files (*.state*) in the .sniffdir directory
of the current project directory and all recursive subproject directories.

� clean_backup —Removes all backup files created by SNiFF+ in the current project direc-
tory and all recursive subproject directories.

Note

All the help targets listed here work recursively. That is, when you build
one of the help targets in a project, the target is also built in each of the
recursive subprojects listed for the project in the Recursive Make Dir(s)
field in the Build Options > Build Structure view of the Project At-
tributes dialog.
190 SNiFF+

Us

SNiFF+ help targets
Creating symbolic links (local copies) with help targets

Here’s a list of the help targets you can use for creating symbolic links. Note that all these
targets are built in the current project directory and all recursive subproject directories in the
current working environment, so directories above it are not affected:

� symbolic_links —Recursively creates symbolic links to object files and targets in the
SOWE accessed by the current working environment. Also creates symbolic links to
Makefiles in the SSWE accessed by the current working environment.

� symbolic_links_to_dependencies_files —Just for use in the SOWE. Use when you
want to open projects in the SOWE without symbol information. Creates symbolic links to
dependencies files in the SSWE.

Building the help targets

To build help targets, please complete the following steps:

1. Open the project for which you want to build help targets.

2. Update Make Support Files:

3. Choose the Update Makefiles... command from the Target menu.

4. Press the OK button in the dialog that appears to update the project’s dependencies infor-
mation.

SNiFF+ generates or updates the Make Support Files of all projects checkmarked in the
Project Tree.

5. Use SNiFF+’s Target > Make... walking menu to build the following targets:

� symbolic_links

� clean_targets

� clean

� help

6. To build the other targets, open a SNiFF+ Shell tool and execute the following:

� On Unix: gmake <help_target_name>

� On Windows NT/95: sniffmake <help_target_name>

On Windows

Symbolic links are not supported. As a result, SNiFF+ creates local copies
instead of symbolic links. If disk space is an issue, please use the above
help targets with care.
er’s Guide 191

Chapter 16 Compiling and Debugging in SNiFF+ SNiFF+ help targets
192 SNiFF+

U

17Introduction to Cross-Platform Development

Introduction
This chapter covers how to use SNiFF+ for multi-platform development on Unix and
Windows NT/95 systems. It is assumed that readers of this chapter are already familiar with
creating and working with SNiFF+ Projects and Working Environments.

How SNiFF+ supports cross-platform development
SNiFF+ supports cross-platform development by:

� supporting consistent working environments on Windows and Unix

� making it possible to administrate your projects on just one platform

� providing consistent source code administration using a central repository and the same
CMVC tools on all platforms

� correctly processing carriage-return symbols (Unix LF, Windows CRLF) on the given plat-
form. No conversion is made when saving a file on one platform and opening it on
another.

� using a single make concept on both platforms

� differentiating between Unix *.c (C files) and *.C (C++ files) on Windows

� simulating Unix symbolic links by means of file copy on Windows

� separating platform-specific source code and objects (by using working environments)

Limitations
Please be aware of the following limitations when working with multi-platform projects with
SNiFF+:

� the same RCS version must be used on both platforms (Package includes RCS 5.7 for
Windows/Unix)

� when naming files on Windows, be aware that Unix distinguishes between upper and
lower case
ser’s Guide 193

Chapter 17 Introduction to Cross-Platform Development Limitations
� shared object working environments are not supported on Windows

� When using an adaptor other than the RCS_CROSS adaptor, all Window usernames
must be mapped to a single Unix user (e.g. rcsadmin) in order to access an RCS
repository located on Unix. Thus we suggest that you use the RCS_CROSS adaptor. The
RCS_CROSS adaptor extends the functionality of the RCS adaptor and sets the affected
repository files to writable for the user and the group when you execute commands that
modify the Repository files.

Note

When developing software for 2 or more platforms, shared multi-plat-
form source files located in a shared source working environment
should not contain any platform-specific system calls (via an API)!
On Windows more so than on Unix, names of standard libraries (e.g.,
standard C++ classes) do not necessarily conform to a standard naming
convention. Furthermore, naming conventions are strongly compiler-de-
pendent (on Windows).
If you use standard libraries that have different names for different target
platforms, adapt your platform-specific Makefiles accordingly.
194 SNiFF+

Us

Cross-platform development vs. remote compile & debug
Cross-platform development vs. remote compile & debug

Cross-platform development

� Setup for multiple target platforms is possible.

� All program sources can be shared.

� Cross-platform setup relates to setting up the working environment tree. For an example
of a working environment tree, see Example Working Environments Tree — page 204.

Remote compile and debug

� Compiling and debugging on a different target platform is possible.

� Program sources can be shared.

� Remote compile and debug relates to setting up one working environment in which you
can compile and debug remotely.

� You can combine the cross platform development concept and the remote compile and
debug concept to use one or more of the working environments in the working environ-
ment hierarchy to compile and debug remotely.

See also Remote Compile and Debug — page 207.
er’s Guide 195

Chapter 17 Introduction to Cross-Platform Development Basic differences between Windows NT and Unix
Basic differences between Windows NT and Unix
Here’s a list of basic differences you should be aware of during cross-platform development
on Windows and Unix:

Difference Windows Unix

Datasystem: Pathnames

� Directory separator
� Relative declaration
� Absolute declaration

Concept of diskdrive con-
ventions
� \
� ..\dir1\src
� d:\dir1\dir2\src

File systems would be mount-
ed from ‘/’
� /
� ../dir1/src
� /usr/lib/bin

Datasystems: Symbolic
Links

unknown available

Datasystems:
Networkaccess

� no standard NFS sup-
port

� uses LAN Manger for
Networkaccess (de facto
standard)

� Addressing of network
resources via UNC

� uses NFS for Networkac-
cess (de facto standard)

� no standard LAN Manager
support

� no special addressing, all
resources are added in the
filesystem

Datasystem:
Case Sensitivity

no yes

Datasystem:
valid datanames

� FAT (Dos): no use of " &
* + , / : ; < = > ? [] \ ^ |

� VFAT (Win95): no use of
" & * / : < > ? \ ^ |

� NTFS (NT): no use of "
* / : < > ? \ |

All symbols except of "/" can
be used in the datanames

Datasystem:
Data access

� NTFS: access list
� FAT: read – only bit
� VFAT: read – only bit

Access control per UserID /
GroupID

Order of data expansion � Objectfiles: .obj
� Libraries: .lib
� C source files: .c
� C++ source files: .cpp

� Objectfiles: .o
� Libraries: .a
� C source files: .c
� C++ source files: .C
196 SNiFF+

Us

Basic differences between Windows NT and Unix
The Shell tool in SNiFF+ is a Unix shell which uses only Unix conventions.

User ID’s � Windows NT users
"worldwide" unique User
ID’s

� Windows NT: User ID’s
are given by the system.

� Use of a User ID over
the network is only pos-
sible with a Domain Con-
troller (NT Server)

� There exists no suitable
User ID concept under
Windows 95

� Unix uses numerical values
for User ID’s and Group ID’s

� ID’s can be provided by the
administrator

� User ID’s can be used uni-
formly in the entire network

Difference Windows Unix
er’s Guide 197

Chapter 17 Introduction to Cross-Platform Development Basic differences between Windows NT and Unix
198 SNiFF+

U

18Setting Up Cross-Platform Development

Setup assumptions
We assume the following scenario for describing how to configure SNiFF+ for cross-platform
development:

� Files, shared working environments and the Repository are all located on a Unix machine.
You develop your cross-platform projects on Windows machines that access this Unix
machine.

� There are four developers: 2 work on Windows and the other 2 on Unix. All developers
have their own Private Working Environments.

� The cross-platform project consists of the root directory complex and two subdirecto-
ries, complexlib and iolib .

Cross-platform setup — Unix side
This section goes through the steps that you must complete on Unix for configuring SNiFF+
for cross-platform development.

Initial remarks

As part of this step-by-step guide, we will first create the directory structure for the SNiFF+
cross-platform project on a Unix machine. Note that this directory must be made accessible
to Windows machine(s) via NFS or LanManager.

Working environment structure

In the steps that follow, we assume that the directory

/Projects/work/cross

contains the individual root directories of the repository working environment (RWE), shared
source working environment (SSWE) and shared object working environment (SOWE)

/Projects/work/cross/rwe

/Projects/work/cross/sswe

/Projects/work/cross/sowe

The root directory of each individual private working environment (PWE) is assumed to be

$HOME/Project1/cross
ser’s Guide 199

Chapter 18 Setting Up Cross-Platform Development Cross-platform setup — Unix side
The environment variable $HOMErefers to the home directories of the individual users (two
on Unix, the other two on Windows). Assuming that all user home directories are located
under /Users on Unix and D:\Users on Windows:

HOME = /Users/user1

HOME = /Users/user2

HOME = D:\Users\user3

HOME = D:\Users\user4

Project source files

The source files of the COMPLEX project are in the SSWE root directory.

Summary of the directory structure

Here’s a summary of the directory structure we’ll be working with:

/Projects/work/cross

/rwe

/sowe

/sswe

/complex

/iolib

/complexlib

Each developer’s private working environment root directory is:

$HOME/Project1/cross

$HOMEis set to each individual’s home directory.

Setting necessary variables, links and permissions

We are now ready to set the variables, links and permissions necessary on the Unix side for
cross-platform development.

� Start a shell (e.g, bash , csh)

In the shell

1. Set an environment variable named WS_CROSSto /Projects/work/cross .
Remember that /Projects/work/cross contains the individual root directories of
the RWE, SSWE and SOWE.

By setting an environment variable to /Projects/work/cross , you can use it to
refer to the directory on both Windows and Unix without having to change any project and
working environment attributes.

2. Launch SNiFF+.
200 SNiFF+

Us

Cross-platform setup — Windows side
In SNiFF+

1. Choose Tools > Preferences... in any open SNiFF+ tool.

The Preferences dialog appears.

2. Select the Tools > Working Environments node.

3. Enter $WS_CROSSin the Working Environment Config. Directory field.

Your working environment files will be stored in the directory specified by $WS_CROSS.

4. Select the Platform node.

5. Select the Make Support tab, make sure that the Make command in the Make Com-
mand field is set correctly.

6. Quit SNiFF+.

Cross-platform setup — Windows side
This section goes through the steps that you must complete on Windows for configuring
SNiFF+ for cross-platform development.

Initial remarks

No team directories need to be created on the Windows side, since all project-relevant files
are located on a Unix machine (in this example, the name of the machine is BRUTUS). The
only required directory is

Project1/cross

This directory should be created in each team member’s home directory.
Note that standard Windows UNC notation (e.g., \\brutus\Projects) cannot be used
when specifying directories in SNiFF+. As a result, network resources must be mapped to a
network drive. In this example, we assume that \\brutus\Projects is mapped to the F
drive.

Note

For the Make command to be executed, the Make Command field in
the Build Options view of the Project Attributes dialog must be
empty.
er’s Guide 201

Chapter 18 Setting Up Cross-Platform Development Cross-platform setup — Windows side
Setting necessary variables and links

We are now ready to set the variables and links necessary on the Windows side for cross-
platform development.

In the shell

1. Set an environment variable called WS_CROSSto the root of your shared working envi-
ronments on Unix. In this example, WS_CROSSwould be set to:

F:\Projects\work\cross

(Remember that /Projects/work/cross contains the individual root directories of
the RWE, SSWE and SOWE.)
An environment variable called WS_CROSSis now set on both Unix and Windows to the
same directory (which is physically located on the Unix side).

2. For each user, set an environment variable called HOME. In this example HOMEfor
user1 would be set to HOME=D:\Users\user1 . For user2 , HOME would be set to
HOME=D:\Users\user2 .

(Remember that all home directories on Windows in this example are located in the
D:\Users\ directory.)

3. Launch SNiFF+.

In SNiFF+

1. Choose Tools > Preferences... in any open SNiFF+ tool.

The Preferences dialog appears.

2. Select the Tools > Working Environments node.

3. Enter $WS_CROSSin the Working Environment Config. Directory field.

Your working environment files will be stored in the directory specified by $WS_CROSS.

4. Quit SNiFF+.

The necessary attributes have now been set on both Unix and Windows. The next step is
to set up the working environments necessary for cross-platform projects. To ensure that
the project directories for the cross-platform project have the correct permissions, we
recommend that you perform this setup on the Unix side.
202 SNiFF+

Us

Cross-platform setup — Windows side
Setting up the working environments

How to set up working environments is covered in the language-specific tutorials supplied
with your SNiFF+ package. This section only covers those steps needed for cross-platform
development. For instructions on how to define working environments and specify their root
directories, please refer to the tutorial for your language.
The following steps should be completed by your Working Environments Administrator
(WEAdmin).

� Launch SNiFF+.

In SNiFF+

1. Open the Working Environment tool by choosing Tools > Working Environments .

The Working Environment tool appears.

2. Choose Utils > User Permissions... .

The Users dialog appears.

3. Give yourself (the WEAdmin) permission to create all four types of working environments.

4. Create your working environments.

In the shell

� Set group read/write permissions for the Unix directory $WS_CROSS/.WEProject-
Cache

chmod g+w $WS_CROSS/.WEProjectCache

This directory is generated when you press the Update List button in the Projects dialog
of the Working Environments tool.
er’s Guide 203

Chapter 18 Setting Up Cross-Platform Development Setting up the shared project on Windows
Example Working Environments Tree

In this document, the working environment root directories are:

� On Unix, for the RWE, SSWE and SOWE:

/Projects/work/cross/rwe

/Projects/work/cross/sswe

/Projects/work/cross/sowe

� On Unix, for the PWEs of user1 and user2 :

/Users/user1/project1/cross

/Users/user2/project1/cross

� On Windows, for the PWEs of user3 and user4 :

D:\Users\user3\project1\cross

D:\Users\user4\project1\cross

Based on this information, the Working Environments Tree for this example would be:

Setting up the shared project on Windows
This section only covers those new project attributes needed for cross-platform develop-
ment.

In the Working Environment tool

1. Select the Shared Source Working Environment in which you want to create the cross-
platform project.

2. Choose File > New Project > with Defaults... .

The Directory dialog appears.

3. In the Directory dialog, navigate to and select the directory

$WS_CROSS/sswe

The Attributes of a New Project dialog appears.

RWE: Unix_REPOSITORY (Directory $WS_CROSS/rwe)
SSWE: Unix_SSWE (Directory $WS_CROSS/sswe)

SOWE: Unix_SOWE (Directory $WS_CROSS/sowe)
PWE: PWE_Unix_user1 (Directory $HOME/Project1/cross ; Owner user1)
PWE: PWE_Unix_user2 (Directory $HOME/Project1/cross ; Owner user2)
PWE: PWE_Windows_user3 (Directory $HOME/Project1/cross ; Owner user3)
PWE: PWE_Windows_user4 (Directory $HOME/Project1/cross ; Owner user4)
204 SNiFF+

Us

Setting up the shared project on Windows
In the Attributes of a New Project dialog

1. Select the Version Control System node.

2. From VCS Tool drop-down menu, choose RCS_CROSS.

We suggest that you use the RCS_CROSS adaptor because, unlike other adaptors, it
sets the affected repository files to writable for the user and the group when you execute
commands that modify the Repository.

3. Set all other new project attributes as needed and then press Ok to start generating the
project.

If you use standard libraries that have different names for different target platforms, do not
enter these libraries in the Libraries Linked field when specifying your project targets.
Instead, adapt your platform-specific Makefiles. To do so:

In your platform specific Makefile

Modify the following lines:

platform specific library

OS_LIBS =

to

platform specific library

OS_LIBS = -L < path to your library>
er’s Guide 205

Chapter 18 Setting Up Cross-Platform Development Setting up the shared project on Windows
206 SNiFF+

U

19Remote Compile and Debug

Introduction
SNiFF+ supports remote compiling and debugging, allowing programmers in multi-platform
environments to develop on the platform of their choice (Windows NT, Windows 95 and all
major Unix platforms) and transparently compile, debug and execute commands on a remote
Unix machine.

This chapter covers the following topics

� How to compile and debug remotely

Assumptions made in this chapter

� If you use SNiFF+’s Make Support, your Working Environments Administrator has already
set it up for your projects.

� If you don’t use SNiFF+’s Make Support (you use your own Makefiles), you have already
read Using Your Own Makefiles — page 105

Related SNiFF+ topics

� Compiling and debugging — Compiling and Debugging in SNiFF+ — page 185
ser’s Guide 207

Chapter 19 Remote Compile and Debug Overview
Overview
To remote compile and debug, you must select a target platform and specify the platform
settings for it, i.e., target machine name, user name, sniff installation directory on the target
platform (if applicable) in the Platform view of your Preferences. You can also specify other
general platform settings if need be. These settings are stored in the following directory:

� On Unix:

$HOME/.sniffrc/Preferences/Platforms/<Platform_name>.sniff

� On Windows:

%SNiFF_DIR%\Profiles\<Username>\Preferences\Platforms\<Plat
form_name>

.sniff

So for each target platform, for which you define platform settings, a new file is created.
Next, in the Working Environments tool, you will assign a target platform to each Private
Working Environment or Shared Object Working Environment. If you don’t assign a target
platform to a particular working environment, the default platform will be used. Information
about which working environment is assigned to which platform is stored in:

� <your_sniff_installation_directory>/workingenvs/WorkingEnv-
Data.sniff

Thus when you open a project in a working environment and compile it, SNiFF+ uses the
information in the platform settings to compile and debug. This makes it possible for you to
compile and debug locally or remotely as desired.

Requirements

Licensing

To compile and debug remotely, you need a SNiFF_EVAL License or a SNiFF_CROSS
license. You can check to see if you have one of these licenses by choosing Help(?) >
Licenses... in the Launch Pad.

SNiFF+ Installation

There are two possibilities:

� If SNiFF+ is available for the target and host platform, we recommend that you install both
SNiFF+ executables in a common directory that is mounted on the host platform. The ver-
sion of SNiFF+ installed on the target platform must be platform specific, i.e., if your target
platform is Solaris, SNiFF+ for Solaris must be installed. This is recommended when you
use SNiFF+’s Make Support or when you want to make nightly updates or for any other
administrative work on the target platform. These tasks are much faster when done on the
target platform.

� If SNiFF+ is not available for the target platform, install it on the host platform. By doing
so, you won’t be able to use SNiFF+’s Make Support, make nightly updates, or do any
other administrative work on the target platform.
208 SNiFF+

Us

Scenarios
Scenarios

Unix - Unix

When developing on a host Unix machine and compiling and debugging on a remote Unix
machine, please note:

� The rlogin tool, provided with the Unix operating system, is used.

� The debugger script remote_debug.sh , is located in $SNIFF_DIR/bin directory.
When you start the debugger remotely, this script is copied to the working environment
root directory and is later used to start the debugger. You can set other debugger com-
mands/parameters in the original script.

To access your working environments from both the host and the target machine, you can
either mount directories or you can create symbolic links to access the working environment
root directory so that it looks the same from both machines.

Windows - Unix

When developing on a host Windows machine and compiling and debugging on a remote
Unix machine, please note:

� The rlogin tool is delivered with SNiFF_EVAL and SNiFF_CROSSand has been
adapted for remote compiling and debugging. Thus remote compile and debug is only
supported by SNiFF+ if the supplied rlogin is used on Windows.
er’s Guide 209

Chapter 19 Remote Compile and Debug Preparation
� The debugger script remote_debug.sh , is located in %SNIFF_DIR%\bin directory.
When you start the debugger remotely, this script is copied to the working environment
root directory and is later used to start the debugger. You can set other debugger com-
mands/parameters in the original script.

We require that all working environments are located on the Unix machine and are acces-
sible on Windows. For details, please refer to Cross-platform setup — Windows side — page
201. By doing so, nightly updates, administrative work like updating, and using SNiFF+’s
Make Support on the target machine are much faster.

Preparation

Make Command for Remote Compiling

For existing projects

Where you set your Make command depends on the following:

� Only if the Make command is the same for all target platforms, can you specify it in the
Project Attributes dialog. The information is stored in the Project Description File (PDF),
which overwrites the Make command specified in the Platform Settings.

� If you want to compile on target machines that require different Make commands, you
specify these in your Platform Settings and therefore the Make command field in the
Project Attributes dialog must be empty.

For new projects

� We recommend that you leave the Make command field empty in the Build Options view
of the Project Attributes dialog. This allows you the flexibility of compiling on target
machines that require different Make commands. The same conditions for existing
projects apply for new projects. See also For existing projects above.
210 SNiFF+

Us

Preparation
Password and rhost settings

For remote compiling and debugging, make sure that the name of your host machine is spec-
ified in one of the following files:

� .rhosts file. This file is in your home directory.

� /etc/hosts.equiv . Since this file applies to the entire system and contains the
names of all hosts that are allowed or denied access to a remote host, it is checked first.

When is the default platform setting used

The Default Platform setting specified in the Platform view of the Preferences is used when:

� the platform setting in the working environment where you will open your project is set to
<default> .

� you open absolute projects.

Caution

Generally avoid any setting that requires manual input when logging
in to a remote host.

Note

You can only remote compile and debug absolute projects if both
your host machine and target machine are Unix machines and when
the path to the project is the same from both machines.
er’s Guide 211

Chapter 19 Remote Compile and Debug Setting up remote compile and debug
Setting up remote compile and debug

Specifying the platform settings

To compile and debug remotely you must specify the platform specific settings in the Prefer-
ences. To do so:

� Choose Tools > Preferences... .

The Preferences tool opens.

Specific Settings for remote compile and debug

1. In the Platform List, select a target platform or create a new one.

2. Select the Remote Settings tab.

3. In the Host field, enter the name of the target machine.

4. By default, the number of seconds reserved for Remote Shell Script Execution is speci-
fied. If the scripts need more time to execute, increase the number of seconds in the Wait
_ Seconds for Shell to Become Ready field or vice-versa.

Platform
List
212 SNiFF+

Us

Setting up remote compile and debug
5. By default, the local user name is used for remote connections. If you will login to the tar-
get machine using a different user name, enter this user name in the User Name field.

6. If you are using SNiFF+’s Make Support, in the Remote Host SNIFF_DIR field, enter the
directory where SNiFF+ is installed on the target machine.

General settings for compiling and debugging

1. Select the Debugger tab.

2. In the Debugger view, choose a debugger adaptor from the Adaptor drop-down.

SNiFF+ automatically fills in the Executable and Prompt fields. Modify these fields if
necessary.

3. Select the Make Support tab.

4. The SNiFF+ platform settings, the Make command and the Platform Makefile are
already defined. If you use a different Make system and/or Platform Makefile, enter the
appropriate settings in the Make Command field and/or Platform Makefile field. For new
platforms, enter the appropriate platform settings.

5. Press OK to apply the settings and to close the Preferences.

Specifying a different remote Shell executable

By default, SNiFF+ is configured to use rlogin for remote compilation.
If you want to use a different remote Shell executable on Unix:

1. In the Preferences, under the Tools node select the Shell view.

2. In the Local Executable for Remote Shell field, enter the name of the Shell executable.

3. Press OK to close the Preferences.

Note

Entries in the User Name field are case sensitive.

On Windows

We do not recommend Windows users changing the rlogin.exe en-
try in the Local Executable for Remote Shell field because this rlogin
entry has been especially adapted for remote compile and debug.
er’s Guide 213

Chapter 19 Remote Compile and Debug Setting up remote compile and debug
Assigning platforms to SNiFF+ working environments

You can assign platforms to Shared Object Working Environments (SOWEs) and to
Private Working Environments (PWEs), because Make can only be started in these
working environments.

� Choose Tools > Working Environments .

The Working Environments tool opens.

Assigning a platform to a new working environment

1. In the Working Environments tool, select the Shared Source Working Environment
(SSWE) or the root node if you want to create a PWE.

2. Choose Edit > New Shared Object or Edit > New Private . A dialog opens.

3. In the Working Environment field, enter the name of the working environment.

4. In the Root field, specify the root of the working environment as you would access it from
the host machine.
214 SNiFF+

Us

Setting up remote compile and debug
5. In the Root on Remote Host field, specify the root of the working environment as you
would access it from the target machine.

In a Unix — Unix work situation, you can create symbolic links to access the working
environment root directory so that it looks the same from both machines. In this case,
leave the Root on Remote Host field blank.

6. In the Platform drop down, select the remote platform.

7. Press Ok to close the New Private / New Shared Object dialog.

8. In the Working Environments tool, choose File > Save to save the changes to the Working
Environments.

Caution

Do not use any environment variables or any shell metacharacters to
specify the path name.

Note

Root on Remote Host is disabled when you don’t have a
SNiFF_CROSSor a SNiFF_EVAL license, please refer to Licensing
— page 208.
er’s Guide 215

Chapter 19 Remote Compile and Debug Setting up remote compile and debug
Assigning a platform to an existing working environment

You can assign a platform to your Private Working Environment and to the Shared Object
Working Environment.

1. Select a working environment and choose Context menu > Modify... .

The Modify dialog appears.

2. In the Root field of the Modify dialog, specify the root of the working environment as you
would access it from the machine that you are currently working on.

3. In the Root on Remote Host field, specify the root of the working environment as you
would access it from the target machine.

In a Unix — Unix work situation, you can create symbolic links to access the working
environment root directory so that it looks the same from both machines. In this case,
leave the Root on Remote Host field blank.

4. In the Platform drop down, select the remote platform.

5. Press Ok to close the Modify dialog.

6. In the Working Environments tool, choose File > Save to save the changes to the Work-
ing Environments.

Invoking Remote Compile and Debug

Now that you have set all the relevant settings for remote compile and debug, you can go
ahead and open your project, either in your Private Working Environment or in the Shared
Object Working Environment. Before compiling, remember to update Makefiles. When you
compile and debug the project, SNiFF+ uses the information in the Platform view of the Pref-
erences. This allows you to compile and debug remotely using the commands in the Project
Editor’s Target menu.

Caution

Don’t use any environment variables or any shell metacharacters to
specify the path name.

Note

Root on Remote Host is disabled when you don’t have a
SNiFF_CROSSor a SNIFF_EVAL license, please refer to Licensing
— page 208
216 SNiFF+

Part VII
Cross Reference

Subsystems

U

20Cross Reference Information

Introduction
Cross reference (X-Ref) information describes where a certain construct is used (or is
referred to) and which other constructs it in turn uses (or refers to).
SNiFF+ provides two alternative X-Ref subsystems for managing cross reference informa-
tion, either RAM-based cross referencing, or database-driven cross referencing (available as
of SNiFF+ 3.2, and also known as Rapid Reference Technology™). This chapter aims at
describing and contrasting these two systems (referred to in the following as RAM-based and
DB-driven).
In a nutshell, the RAM-based solution loads a set of indexed files to memory to resolve X-Ref
queries, whereas the DB-driven solution directly accesses a database.
However, because X-Ref information is stored at Working Environment level under DB-
driven cross referencing, this technology has a number of implications for Working Environ-
ments administration in team projects.
Which cross reference engine is used therefore determines not only how X-Ref information is
generated, stored, and subsequently accessed to resolve queries, but also influences Project
and Working Environment administration. As well as performance and scalability.
Furthermore, the procedure for managing cross reference information differs between C/C++
and other languages, e.g. Java.
All these factors are outlined in the following.
ser’s Guide 219

Chapter 20 Cross Reference Information Overview
Overview
Each of the points introduced in this overview are discussed in more detail later on.
As mentioned already, the process of generating cross reference information in SNiFF+
differs depending on the programming language being parsed.
In the following, we distinguish between C/C++ and Java , whereby the procedure for Java is
analogous for all other non-C/C++ languages supported in SNiFF+.
The following topics are discussed

� Extracting symbol information — page 221

How and when parsing is triggered for extracting symbol information is independent of
programming language and X-Ref technology, but what happens during parsing is not.

� How the X-Ref subsystems work — page 221

The available X-Ref technologies (RAM-based and DB-driven) are contrasted in the
context of C/C++ and of Java/other languages, respectively. This should give you an
understanding of the internal procedures involved.

� Location of generated X-Ref information — page 225

Where and how X-Ref information is stored depends solely on the X-Ref technology used
(not on the programming language).

� Working Environments and cross referencing — page 226

Because the X-Ref databases are maintained at Working Environment level and shared
across Working Environment boundaries, there are a number of points to be aware of.
These include database access control (locking) and database maintenance.

� Selecting your preferred X-Ref technology — page 229

How to select your preferred X-Ref technology is described at the end of the chapter — by
which time you should have a fair understanding of the issues involved.
220 SNiFF+

Us

Extracting symbol information
Extracting symbol information
Initially, all symbol information is extracted from source code files by the appropriate
language-specific parser. Parsing is triggered

� during project setup

� when modified source files are saved

� when files are checked in/out

� by the user (menu command: Project > Force Reparse)

� when projects are opened if the symbol table is not available

All extracted structural symbol information is written to the symbol table (*.symtab files).
How cross reference information is generated depends both on the technology used to drive
cross referencing, as well as on the language being parsed. This is described in the following
section.

How the X-Ref subsystems work
This section uses two tables to describe how the X-Ref subsystems used by SNiFF+ work.
RAM-based and DB-driven cross reference management is contrasted, first in the context of
C/C++, then of Java/all other non-C/C++ languages, respectively.
Note that the tables do not describe user interaction , each column simply outlines what
SNiFF+ does at each stage. Each table is followed by a summary of the immediate implica-
tions.
er’s Guide 221

Chapter 20 Cross Reference Information How the X-Ref subsystems work
RAM-based versus DB-driven cross referencing in C/C++

The following table is divided into three rows, each representing a stage in the cross refer-
ence management cycle. These stages are

� Parsing

How parsing is triggered is described under Extracting symbol information — page 221.
The table includes only X-Ref related information.

� Generating

While the first step in the X-Ref process takes place during parsing, the following steps
can be triggered either on demand immediately after project setup, or using the menu
command: Project > Update Cross Ref Info . If the procedure is not invoked by the user,
it is automatically started when the first Referred-By query is issued after a (re-)parse.

� Querying

Note that, if source files have been modified, or if structural changes have been made to
projects, both the “Generating” and “Querying” stages are triggered to incrementally
update X-Ref information when you issue your first subsequent Referred-By query.

Stage RAM-Based DB-Driven

Parsing � Generate temporary lexical
analysis files (*.lex files), one
for each source file parsed.
These files contain fuzzy
descriptions of what is refer-
enced where, and are saved to
disk to be used as input for later
generation of cross reference
information.

� Same as RAM-based.

Generating � Interpret the lex files in the
context of the symbol table.

� Resolve the fuzzy descriptions
in lex files and write informa-
tion to actual cross reference
files (*.ref files); these are
needed for Referred-By queries.

� Create/update indexes
(*.index files). A global index
is written per project.

� Save ref and index files to
disk.

� Delete lex files.

� Interpret the lex files in the
context of the symbol table.

� Resolve the fuzzy descriptions
in lex files in memory.

� Interpret and save resolved X-
Ref information to database.

� Delete lex files.
222 SNiFF+

Us

How the X-Ref subsystems work
Summary

� For C/C++ files, there is no difference in the parsing stage.

Differences are language-specific — compare following table.

� During the generation stage, procedures differ.

Under the RAM-based system, ref files are written to disk and indexes have to be
created and written to disk.
Under the DB-driven system, no ref or index files need be written to disk, but the lex
file information needs to be interpreted so that the database can handle it, and then this
has to be written to the database.
Result : When all the X-Ref information has to be generated for large software systems
(project setup / forced reparse), the generation time is noticeably longer under the DB-
driven system. For incremental updates (after file/project modifications, regular/nightly
updates), the generation time differences will generally be negligible.

� Major differences are apparent at the querying stage.

Under the RAM-based system, the index(es) and all necessary ref files have to be
loaded. Depending on the size of the project and nature of the query (and the what is
queried in which order), this can be time and memory consuming.
Under the DB-driven system, the database is directly queried, resulting in constantly fast
queries and negligible additional resource consumption — regardless of how complex the
query. The first Referred-By query after file/project modifications takes longer under both
technologies because incremental differences have to be processed before queries are
resolved.

Querying � First query after file/project mod-
ifications: apply “Generating”
stage (above) to increment.

� Load index and necessary ref
files to memory.

� Resolve query and display
results.

� First query after file/project mod-
ifications: apply “Generating”
stage (above) to increment.

� Query database and display
results.

Stage RAM-Based DB-Driven
er’s Guide 223

Chapter 20 Cross Reference Information How the X-Ref subsystems work
RAM-based versus DB-driven cross referencing in Java

The following table is divided into two rows, each representing a stage in the cross reference
cycle. These stages are

� Parsing and Generating

How parsing is triggered is described under Extracting symbol information — page 221.
The table includes only X-Ref related information. For Java and other non-C/C++
languages, all X-Ref information is generated during parsing. This means that, to force an
update of X-Ref information, you need to use the Force Reparse menu command (the
Update Cross Reference Info command has no effect in non-C/C++ languages).

� Querying

By the time a query is issued, all X-Ref information has already been generated.

Summary

� Under the RAM-based system, ref files are written to disk and indexes have to be cre-
ated and written to disk during Parsing.

Under the DB-driven system, no ref or index files need be written to disk, but the X-
Ref information extracted by the parser has to be interpreted so that the database can
handle it, and then the information has to be written to the database.
Result : When all the X-Ref information has to be generated for large software systems
(project setup / forced reparse), the generation time is noticeably longer under the DB-
driven system. For incremental updates (after file/project modifications, regular/nightly
updates), the generation time differences will generally be negligible.

Stage RAM-Based DB-Driven

Parsing and
Generating

� Generate cross reference files
(*.ref files).

� Create/update ref file
indexes (*.index files). A
global index is written per
project.

� Save ref and index files to
disk.

� Interpret X-Ref information in
memory.

� Write X-Ref information
directly to database.

Querying � Load index(es) and necessary
ref files to memory.

� Resolve query and display
results.

� Query database and display
results.
224 SNiFF+

Us

Location of generated X-Ref information
� Major differences are apparent in the querying stage.

Under the RAM-based system, the index(es) and all necessary ref files have to be
loaded. Depending on the size of the project and nature of the query (and the what is
queried in which order), this can be time and memory consuming.
Under the DB-driven system, the database is directly queried, resulting in constantly fast
queries and negligible additional resource consumption — regardless of how complex the
query.

Location of generated X-Ref information
Where and how X-Ref information is stored depends solely on the X-Ref technology used
(not on the programming language).

� Notice that, under DB-driven cross referencing, X-Ref information is stored at Working
Environment level. The implications of this are discussed in the following section.

Project Type RAM-Based X-Ref DB-Driven X-Ref

Shared Default : In each Project root di-
rectory.
Options : Can be stored any-
where in your file system.

Always in a subdirectory
(.sniffdb) at the root of each
Working Environment.
Note that only one database is cre-
ated per Working Environment, and
all database files are stored in
.sniffdb .

Absolute
(Browsing-
Only)

Default : In each Project root di-
rectory.
Options : Can be stored any-
where in your file system.

If absolute projects are opened in a
Working Environment, the X-Ref
info is generated to the (existing)
database for that Working Environ-
ment (under .sniffdb).
If opened outside of a Working Envi-
ronment, the X-Ref information is
written to a database (under
.sniffdb) in a Default Working
Environment for Absolute Projects,
which can be set in your Preferenc-
es.
er’s Guide 225

Chapter 20 Cross Reference Information Working Environments and cross referencing
Working Environments and cross referencing
After a brief note on RAM-based cross referencing, this section concentrates on issues
relating to DB-driven cross referencing and Working Environments — page 226.

� Regardless of which X-Ref technology you use, mixing X-Ref technologies within a
Working Environment hierarchy does not work. This is because different files are used by
each system, as shown under How the X-Ref subsystems work — page 221.

RAM-based cross referencing

Under RAM-based cross referencing, there are no special implications as far as Working
Environments are concerned. This is because the X-Ref information files are maintained at
project level.
When files are checked out/in they are reparsed, and the procedure for generating X-Ref
information as described for this technology under How the X-Ref subsystems work — page
221 is set in motion when queries are issued. As a result, multiple access is not a problem
under RAM-based cross referencing.

DB-driven cross referencing and Working Environments

X-Ref databases are maintained at Working Environment level. Although only one X-Ref
database is created per Working Environment, information sharing has to work across
Working Environment boundaries. This implies that some sort of mechanism for controlling
Read and Write access to database files has to implemented.

X-Ref database access control

Note that “accessing an X-Ref database” effectively means “opening Projects (with symbol
information) in a given Working Environment, and thereby accessing the X-Ref database for
that Working Environment and higher-level (Shared) Working Environments”.
In the following, a number of points relating to database access control are listed, together
with examples as they affect team development.

� Write access is absolutely exclusive within a Working Environment .

This means that if an X-Ref database is opened for writing, no other SNIFF+ session can
access the database (neither for reading, nor for writing). In other words, Projects cannot
be opened with symbol information in that Working Environment by other SNiFF+
sessions.
Example:
For day-to-day development work, you will generally open Projects (with symbol
information) in your Private Working Environment. Because you will want any changes
you make to be reflected also in the cross-reference information, you need Write access
to the X-Ref database for that Working Environment. Which is not a problem. A problem
will only arises if and when another SNiFF+ session tries to open Projects (with symbols)
in that same Working Environment.
226 SNiFF+

Us

Working Environments and cross referencing
� Write access is hierarchically absolutely exclusive .

Write access in a higher-level Working Environment (e.g. SSWE) also blocks all (Read
and Write) X-Ref database access in all lower-level Working Environments (e.g. PWEs).
To put it another way, if Projects are opened in a (Shared) Working Environment with
Write access, no lower-level (Private) Working Environment can then access the
database system of the hierarchy in any way. This means that all Working Environments
lower down in the hierarchy are blocked in terms of symbol information.
Example:
What happens when the SSWE needs to be updated? Updating a Working Environment
means, among other things, Write access to its X-Ref database. And Write access is
“hierarchically absolutely exclusive”, that is, all Projects open (with symbol information) in
lower-level Working Environments have to be closed. Please refer also to Write access to
an X-Ref database that is already opened in Read mode. — page 227.

� If a higher-level Working Environment has a Write lock, it is only possible to open Projects
without symbol information (that is, without any X-Ref database access) in lower-level
Working Environments.

� Multiple Read access is possible.

Any number of SNiFF+ sessions can access a given Working Environment’s X-Ref
database in Read mode — as long as it is not already being accessed in Write mode
(see earlier).
Example:
Generally, each user will have Projects opened (with symbols) in Private Working
Environments, that is, with Write access to the PWE’s X-Ref database. And all users will
have Read access to the Shared Source Working Environment’s X-Ref database.

� Write access to an X-Ref database that is already opened in Read mode.

Not only is Write access hierarchically absolutely exclusive (see earlier), it also allows you
to take priority over existing Read access locks. That is, if an X-Ref database is open in
Read mode by other SNiFF+ sessions, and you attempt a Write access, you are given
two options, a Remote Shutdown option and a Break Lock option.
The Remote Shutdown option saves and closes all Projects in other SNiFF+ sessions
with Read access to the database in question. Note that Remote Shutdown starts
execution after a 30 second delay.
The Break Lock breaks existing locks. This option is not recommended as
inconsistencies are inevitable.
Example :
An unattended nightly update of the SSWE is started, and Write access is therefore
required for the SSWE’s X-Ref database. But one or more team members still have active
SNiFF+ sessions with Projects opened in Private Working Environments that access the
SSWE. These open sessions therefore have Read access to the SSWE X-Ref database.
Rather than abort the update, all open files and Projects can be saved and closed using
the Remote Shutdown option. The update then proceeds normally.
er’s Guide 227

Chapter 20 Cross Reference Information Working Environments and cross referencing
� Accessing an X-Ref database that is already opened in Write mode?

You can’t. Neither in Read mode, nor in Write mode. At least not without breaking the lock
on the database. This is not to be recommended, and should only be used in exceptional
circumstances.
Example :
None. Do not use the Break Lock option, unless you are certain that this lock is invalid.
Even if SNiFF+ terminates unexpectedly, exit handlers should be able to remove existing
locks.

Where locking information is maintained

Locking information is maintained in a subdirectory of your Working Environments Config-
uration Directory (you set this in your Preferences) called .snifflock . A subdirectory is
created for each lockable Working Environment, this subdirectory takes the name of the
Working Environment for which the locking information is maintained. All current Read
access locks are stored directly in this subdirectory. Each of these subdirectories can have
another subdirectory called lock . Any existing Write access lock on the Working Environ-
ment is stored in the lock subdirectory.
Lock file names have the following syntax:

lock. machinename. PID

If an attempt is made to access locked databases, files are created called

try. machinename. PID

These files are used by SNiFF+ to identify requests for X-Ref database access.

Maintenance of X-Ref databases

If, for some reason, databases become corrupt, SNiFF+ may be able to repair them. If the
databases are irreparably damaged, they can be recreated from scratch by deleting the
corrupt database files (see also Location of generated X-Ref information — page 225) and
issuing a Force Reparse command.
The information in the X-Ref database is cumulative, that is X-Ref information for every
project ever opened in a given Working Environment is stored in that Working Environment’s
database. The X-Ref information for any given project will only be removed from the data-
base when the Project is deleted using the Delete Project command.
228 SNiFF+

Us

Selecting your preferred X-Ref technology
Synchronizing Working Environments

The correct order for updating/synchronizing Working Environments should always be
maintained to avoid inconsistencies. This is

� Shared Source Working Environment (SSWE)

� Shared Object Working Environment (SOWE)

� Private Working Environment (PWE)

Again: Whenever a higher-level Working Environment (e.g. SSWE) is updated, all lower-
level Working Environments (e.g. PWEs) accessing it should (must) be subsequently
updated.
This holds especially for DB-driven cross referencing. Apart from all other possible
inconsistencies caused by out-of-sync Working Environments, cross reference
information will also be inconsistent because, for performance reasons, internal database
objects are shared among Working Environments.

Selecting your preferred X-Ref technology
� You set your preferred cross reference system at user-level, that is, in your SNiFF+ Pref-

erences.

� If you decide to use the DB-driven X-Ref technology, be aware of the implications as
described under Working Environments and cross referencing — page 226

� If you decide to use the RAM-based X-Ref technology, there is not much else you have to
take into consideration. The only thing you need to remember is that you can not mix dif-
ferent X-Ref technologies within a Working Environment hierarchy.
er’s Guide 229

Chapter 20 Cross Reference Information Selecting your preferred X-Ref technology
230 SNiFF+

Part VIII
Editor Integrations

U

21Emacs Integration

Introduction
You can use the Emacs editor for editing source code in SNiFF+. This chapter covers the
basics of the integration.

This chapter covers the following topics

� Integrate SNiFF+ with Emacs

� Work with the integration

Assumptions made in this chapter

� You are an experienced Emacs user

Integration features
The following integration features are available:

� Emacs can be used for all editing requests

� SNiFF+ recognizes and updates all browsers when a file is saved in Emacs

� SNiFF+ commands can be issued directly from Emacs

Note

Emacs is not supplied as part of the product package.
ser’s Guide 233

Chapter 21 Emacs Integration How the Emacs integration works
How the Emacs integration works
Emacs need not be changed to work in the SNiFF+ environment. An Emacs-Lisp configura-
tion file supplied with the SNiFF+ distribution tells Emacs how to:

� define a SNiFF+ mode

� communicate with SNiFF+

� define keyboard bindings and a pull-down menu for available SNiFF+ commands

This file is called sniff-mode.el and is located in your $SNIFF_DIR/config direc-
tory. To use the file, simply load it into Emacs. Once the file is loaded, a new SNiFF+ mode is
available in Emacs. Then, execute the function sniff-connect to connect Emacs to
your current SNiFF+ session.
You also have to tell SNiFF+ to use Emacs as the main editor. When you do so, SNiFF+
uses Emacs for displaying and editing source code.
234 SNiFF+

Us

Integrating Emacs
User interface examples

The following figure shows Emacs connected to SNiFF+:

Integrating Emacs

Prerequisites

� SNiFF+ installed at your site

� GNU Emacs (version 19 or later) or XEmacs (formerly Lucid Emacs) installed at your site

� The sniff-mode.el file (part of the SNiFF+ package)

Setting Emacs as your preferred editor

1. Start SNiFF+.

2. Choose Tools > Preferences in any open SNiFF+ tool.

Emacs in
SNiFF+
mode
er’s Guide 235

Chapter 21 Emacs Integration Integrating Emacs
In the Preferences dialog

1. Select the Tools > Source Editor node.

2. From the Current Editor drop-down, choose Emacs/Vim .

3. Press Ok.

SNiFF+ will now use Emacs for all editing requests.

Switching Emacs to SNiFF+ mode

� Add the following line to your .emacs file

(load "$SNIFF_DIR/config/sniff-mode")

This causes Emacs to load the sniff-mode.el configuration file at start-up.

Connecting Emacs to SNiFF+

� To connect Emacs to a running SNiFF+ session, type:

M-x sniff-connect

Note that you can have only one Emacs-SNiFF+ connection active at a given time.

4. To force Emacs to disconnect from SNiFF+, type:

M-x sniff-disconnect
Note that Emacs automatically disconnects when you end a current SNiFF+ session.

Note

You can avoid the path specification by copying sniff-mode.el
to the directory for site-wide Emacs-Lisp files:

cp $SNIFF_DIR/config/sniff-mode.el /usr/local/
lib/emacs/site-lisp

After you have done this, your .emacs file entry would look like this:

(load "sniff-mode")

Note

You could also add this command to your .emacs file. Then, your
.emacs would look like this:

(load "$SNIFF_DIR/config/sniff-mode")
(sniff-connect)
236 SNiFF+

Us

Working with Emacs and SNiFF+
Working with Emacs and SNiFF+
Once a connection between SNiFF+ and Emacs is established, SNiFF+ uses Emacs for all
requests to show or edit source code. Emacs also can send queries to SNiFF+.
When you issue an editing request in SNiFF+ and Emacs is not connected to SNiFF+, you
are asked whether you want to switch off the Emacs mode and use the Source Editor.

Positioning Emacs from SNiFF+

The Emacs integration offers many of the navigation features available in the Source Editor.
For example, by double-clicking on a symbol in any SNiFF+ browser, Emacs loads the corre-
sponding source file and positions the cursor at the appropriate location.

Changing key bindings and Sniff menu entries

The Emacs-SNiFF+ key bindings and the Sniff menu are defined in:

$SNIFF_DIR/config/sniff-mode.el

You can change the SNiFF+ key bindings as for any other Emacs key bindings. The same is
true for the Sniff menu.

Configuring symbol highlighting

Emacs can use different fonts. SNiFF+ uses this feature to highlight symbols in source code.
As a result, Emacs is able to mimic the Source Editor’s symbol highlighting behavior.

� To enable symbol highlighting, enter the following line in your .emacs file:

(setq sniff-want-fonts 1)

� To switch off symbol highlighting, enter the following line in your .emacs file:

(setq sniff-want-fonts nil)

The default font table for the highlighting is defined in the sniff-mode.el file. You can
change any value in the default font table by setting variables in your .emacs file after
sniff-mode.el is loaded. For example, the following line in your .emacs file would tell
Emacs to use bold typeface for constants:

(aset sniff-font-table 10 'bold)
er’s Guide 237

Chapter 21 Emacs Integration Working with Emacs and SNiFF+
Please see the sniff-mode.el file for a full description of table entries.

Using the Sniff menu

Most of the commands described in Command Reference — page 239 are available in the
Sniff menu in Emacs. The following illustration shows the menu:

Switching a non-SNiFF+ buffer to SNiFF+ mode

When a file is loaded in Emacs from SNiFF+, this buffer is automatically in SNiFF+ mode.
When you load a file manually (with the Emacs Load file command), you can switch the
buffer to SNiFF+ mode with the following command:

M-x sniff-mode

After the command is executed, all SNiFF+ key bindings are available and symbols are high-
lighted.

Note

If you have enabled symbol highlighting, but the feature doesn’t work, this means that your
Emacs might use a font that does not supply the necessary typefaces. The courier font
family normally supplies all necessary typefaces. To use this family, add the following X
resource to your .Xdefaults file:

emacs.font: -*-courier-medium-r-normal--*-120-75-75-*-*-*-*
238 SNiFF+

Us

Command Reference
Command Reference
All of the SNiFF+ commands that are important when editing source code are also available
in Emacs. To accomplish this, a few keys have been bound to functions that communicate
with SNiFF+. The functions and the key bindings are defined in:

$SNIFF_DIR/config/sniff-mode.el

Generally all commands (except toggle declaration/definition, edit overridden method and
find next match) read the argument string (or symbol) from the minibuffer, whereby the string
around the point is inserted as a default. (In Emacs nomenclature, the cursor position is
called point.)
The following commands and bindings are available:

SNiFF+ command What happens Emacs key binding

Show Symbol(s)... Shows the declaration or im-
plementation of symbol. If
symbol is ambiguous, a dia-
log opens with a list of valid
alternatives

C-c C-g
sniff-goto-symbol

Show Baseclass Of... Shows the declaration of the
base class of the currently
selected class. This entry is
enabled when the cursor is
positioned in the scope of a
class that has a base class.

C-c C-s
sniff-superclass

Show Overidden Method Shows the overridden meth-
od of the closest base class
that defines method into a
Source Editor.

C-c C-o
sniff-overridden

Toggle Declaration/
Implementation

Shows the declaration/imple-
mentation of method

C-c C-e
sniff-toggle

Browse Class... Shows the members of class
in the Class Browser

C-c C-b
sniff-browse-class

Show In Entire Hierarchy... Opens a Hierarchy Browser
and loads the entire class
graph. class is highlighted in
the Hierarchy Browser

C-c C-h
sniff-hierarchy

Show Relatives In
Hierarchy...

Opens a Hierarchy Browser
and loads the graph of the
base and derived classes.
class is highlighted in the Hi-
erarchy Browser

C-c M-C-h
sniff-restr-hier
er’s Guide 239

Chapter 21 Emacs Integration Command Reference
Retrieve From This File... Searches for a string in the
current file using the Retriev-
er.

C-c C-r
sniff-retrieve

Retrieve From This
Project...

Searches for a string in the
current project using the Re-
triever.

sniff-retrieve-
proj

Retrieve From All
Projects...

Searches for a string in all
projects using the Retriever. sniff-retrieve

-allprojs

Retrieve (Using Retriever
Settings)

Searches for a string using
the current Retriever set-
tings.

C-c M-C-r
sniff-retrieve-
next

Find Symbols Matching... Opens a Symbol Browser to
search for symbols that
match selection as a whole
word.

C-c C-f
sniff-find-symbol

Symbol Refers-to... Opens a Cross Referencer
and starts a Refers-To query
on symbol. The settings of
this Cross Referencer’s Xref
Filter are used for the query
parameters.

C-c C-x
sniff-xref-to

Symbol Referred-by.. Opens a Cross Referencer
and starts a refers-by query
on symbol. The settings of
this Cross Referencer’s Xref
Filter are used for the query
parameters.

C-c M-C-x
sniff-xref-by

Symbol Refers-to
Components...

Opens a Cross Referencer
and starts a query for show-
ing all symbols (classes and
structures) that are compo-
nents of symbol. If the cur-
rent selection is a member of
a class/structure, the class/
structure is taken for this
query.

C-c C-c
sniff-xref-has

SNiFF+ command (cont.) What happens Emacs key binding
240 SNiFF+

Us

Command Reference
Symbol Referred-by as
Component...

Opens a Cross Referencer
and starts a query for show-
ing all symbols that have
symbol as a component.
Note that you can also query
primitive C data types with
this command.

C-c M-C-c
sniff-xref-used by

Show Documentation Of... Opens a Documentation Edi-
tor and positions it to the
documentation of symbol.
An alert message appears if
no documentation file exists
for either the entire file or for
symbol. You then have the
option of creating a docu-
mentation file

C-c C-d
sniff-show-docu

Generate Documentation
For...

If the cursor is positioned on
a symbol, you are asked if
you would like to generate
documenation for the symbol
or for the file, if not docu-
mentation is generated for
the file.

C-c M-C-d
sniff-gen-docu

Save w/o Reparse SNiFF+ saves the current file
without reparsing it.

sniff-writebuffer

Reparse... SNiFF+ reparses the current
file and updates the Symbol
Table.

sniff-reparse

Connect Establishes connection with
SNiFF+. Make sure that
SNiFF+ is in Emacs mode.

sniff-connect

Disconnect Disconnects from SNiFF+.
You can reconnect at any
time with :sniff con-
nect.

sniff-disconnect

SNiFF+ command (cont.) What happens Emacs key binding
er’s Guide 241

Chapter 21 Emacs Integration Command Reference
242 SNiFF+

U

22Vim Integration

Introduction
You can use the Vim editor for editing source code in SNiFF+. This chapter covers the basics
of the integration.

This chapter covers the following topics

� Integrate SNiFF+ with Vim

� Work with the integration

Assumptions made in this chapter

� You are an experienced vi user

Integration Features
This integration is based on Vim 5.x, which is almost fully compatible to vi but provides a
variety of additional features (e.g., multiple buffers, syntax highlighting, etc.). The following
integration features are available:

� Vim can be used for all editing requests.

� SNiFF+ recognizes and updates all browsers when a file is saved in Vim.

� SNiFF+ commands can be issued directly from Vim.
ser’s Guide 243

Chapter 22 Vim Integration How the Vim integration works
How the Vim integration works
Vim must be compiled with the sniff option enabled to work in the SNiFF+ environment. The
SNiFF+ product package includes a pre-compiled version with this option enabled.
Start Vim in an environment where the SNIFF_DIR environment variable is correctly set.
Then, enter :sniff connect to connect Vim to your current SNiFF+ session. You also
need to set Vim as your preferred editor.

Integrating Vim

Prerequisites

� SNiFF+ installed at your site.

� Vim 5.x with sniff support installed at your site.

� the sniff.vim file (part of the SNiFF+ package).

Setting Vim as your preferred editor

1. Start SNiFF+.

2. Choose Tools > Preferences in any open SNiFF+ tool.

In the Preferences dialog

1. Select the Tools > Source Editor node.

2. From the Current Editor drop-down, choose Emacs/Vim .

3. Press Ok.

SNiFF+ will now use Vim for all editing requests.

Connecting Vim to SNiFF+

� Set the environment variable $VIM to $SNIFF_DIR/config/vim .

IMPORTANT: This environment variable must be set to use Vim’s online help and syntax
highlighting.

� Start Vim.

Note

You can have only one Vim-SNiFF+ connection active at a given time.
244 SNiFF+

Us

Configuring the Vim integration
� Enter the following command in Vim:

:sniff connect

The following message appears:

Connecting to SNiFF+ ... Done

Configuring the Vim integration

Connection at start-up

1. Check if the initialization file with the name .vimrc exists in your home directory (~/
.vimrc), if not create it.

2. Insert the following line in the .vimrc file:

sniff connect

Vim connects to SNiFF+ immediately at start-up and will execute the commands
contained in the .vimrc file at start-up.

Key mappings

� The key mappings are defined in the sniff.vim file. This file is sourced each time you
connect to SNiFF+. You can change these mappings to suit your needs. By default Vim
looks for this file in the $SNIFF_DIR/config directory. However it is possible to
define another search path. Insert the following into the .vimrc file before the line that
contains sniff connect :

let sniff_mappings = ’<where-your-sniff-mappings-are>’

Merging from vi to Vim

� If you have a .exrc file (for use with your standard vi editor) that you would like to use
with Vim, add the following command to the .vimrc file

source ~/.exrc

� If you want Vim to have the same ’look and feel’ as vi, enter the following command:

:set compatible

Working with Vim and SNiFF+
Once a connection between SNiFF+ and Vim is established, SNiFF+ uses Vim for all
requests to display or edit source code.

Note

If the above message does not appear, check to see if the above steps (1 to 5) have
been done properly.
er’s Guide 245

Chapter 22 Vim Integration Working with Vim and SNiFF+
Positioning Vim from SNiFF+

By double-clicking on a symbol in any SNiFF+ browser, Vim loads the corresponding source
file and positions the cursor at the appropriate location.

Buffers in Vim

Vim can hold several buffers at once. To work with buffers, use the following commands:

For details about buffers in Vim, refer to Vim’s online help using the following command:

:help buffer

Additional features

Syntax highlighting

Vim is capable of syntax highlighting for a variety of languages and formats.
To enable syntax highlighting, issue the following command:

:syntax on

To disable syntax highlighting, issue the following command:

:syntax off

IMPORTANT: Set the environment variable $VIM to $SNIFF_DIR/config/vim . This
environment variable must be set to use Vim’s online help and syntax highlighting.

Online help

Vim provides online documentation for all available commands and features. To view on-line
help, enter the following command:

:help [keyword]

If you would like to know more about the differences between vi and Vim, enter the following
command in Vim:

:help vi_diff

IMPORTANT: Set the environment variable $VIM to $SNIFF_DIR/config/vim . This
environment variable must be set to use Vim’s online help and syntax highlighting.

Command Description

:ls Prints a list of currently loaded buffers

:b[uffer] <name>
or
:b[uffer] <number>

Switches to the buffer specified by the filename or the num-
ber (as listed by ls)
246 SNiFF+

Us

Command Reference
Command Reference
All of the SNiFF+ commands that are important when editing source code are also available
in Vim. To accomplish this, a new Vim command has been added to communicate with
SNiFF+:

:sniff request [symbol]

For ease of use, key mappings (shortcuts) are predefined. These allow fast queries without
typing long command names. Shortcut commands always act on the symbol under the
current cursor position.
The key mappings are defined in:

$SNIFF_DIR/configi/sniff.vim

The following commands are available:

Vim Command Description Shortcut

:sniff connect Establishes connection with SNiFF+.
Make sure that SNiFF+ is in Vim
mode.

sc

:sniff disconnect Disconnects from SNiFF+.
You can reconnect at any time with
:sniff connect.

sq

:sniff toggle Toggles between the implementation
and definition of the symbol.

st

:sniff superclass If the symbol is a class, and the class
has at least one superclass, Vim is
positioned to the declaration of the su-
perclass. If the class has more than
one superclass, a Choose Symbol di-
alog appears, offering all possible
choices.

ss

:sniff overridden If the cursor is positioned inside a
method, Vim positions to the overrid-
den method if it exists.

so

:sniff retrieve-file Searches for a string in the current file
using the Retriever.

srf

:sniff retrieve-project Searches for a string in the current
project using the Retriever.

srp

:sniff retrieve-all-
projects

Searches for a string in all projects
using the Retriever.

srP
er’s Guide 247

Chapter 22 Vim Integration Command Reference
:sniff retrieve-next Searches for a string using the current
Retriever settings.

sR

:sniff goto-symbol Vim goes to the declaration or imple-
mentation of the symbol. If more than
one symbol match, a Choose Symbol
dialog opens offering all possible
choices.

sg

:sniff find-symbol Loads the symbol into a Symbol
Browser.

sf

:sniff browse-class Loads the class - its interface and hi-
erarchy - into a Class Browser.

sb

:sniff hierarchy Loads the class under the cursor into
a Hierarchy Browser and positions to
the class in the full hierarchy.

sh

:sniff restr_hier Loads the class into a Hierarchy
Browser and shows only related
classes.

sH

:sniff xref-to Opens a Cross Referencer and starts
a refers-to query on the symbol. If
more than one symbol match, a
Choose Symbol dialog appears.

sxt

:sniff xref-by Opens a Cross Referencer and starts
a refers-by query on the symbol. If
more than one symbol match, a
Choose Symbol dialog is opened.

sxb

:sniff xref-has Opens a Cross Referencer and starts
a query for showing all classes and
structures that are components of the
symbol. The symbol must be a class
or structure. If more than one symbol
match, a Choose Symbol dialog is
opened.

sxh

:sniff xref-used-by Opens a Cross Referencer and starts
a query for showing all symbols that
have the current symbol as a compo-
nent. The symbol must be a valid
type. If more than one symbol match,
a Choose Symbol dialog is opened.

sxu

Vim Command Description Shortcut
248 SNiFF+

Us

Command Reference
:sniff show-docu Loads the documentation of the sym-
bol into a Documentation Editor.

sd

:sniff gen-docu Opens the Documentation Synchroni-
zation dialog.

sD

Vim Command Description Shortcut
er’s Guide 249

Chapter 22 Vim Integration Command Reference
250 SNiFF+

U

23Codewright Integration (Windows only)

Introduction
You can use the Codewright editor for editing source code in SNiFF+. This chapter covers
the basics of the integration.

This chapter covers the following topics

� Integrate SNiFF+ with Codewright

� Work with the integration

Assumptions made in this chapter

� You are an experienced Codewright user

Integration Features
This integration is based on Codewright 5.0. The following integration features are available:

� Codewright can be used for all editing requests made in SNiFF+.

� SNiFF+ recognizes and updates all browsers when a file is saved in Codewright.

� SNiFF+ commands can be issued directly from Codewright.

A dll file supplied with the SNiFF+ distribution tells Codewright how to communicate with
SNiFF+. This file is called cwsniff.dll and is located in your %SNIFF_DIR%\inte-
grations\codewright-5.0 directory.
ser’s Guide 251

Chapter 23 Codewright Integration (Windows only) Integrating Codewright
Integrating Codewright

Prerequisites

� SNiFF+ installed at your site.

� Codewright 5.0 installed at your site.

� For SNiFF+ to communicate with Codewright and vice-versa, the following file is needed

Connecting Codewright to SNiFF+

To connect Codewright to SNiFF+, complete the following steps

1. Copy the cwsniff.dll file from

%SNIFF_DIR%\integrations\codewright-5.0 to C:\codewright

2. Make a backup of your old C:\codewright\cwright.ini file.

3. Copy the cwright.ini file from

%SNIFF_DIR%\integrations\codewright-5.0 to C:\codewright

4. If you want, merge your old cwright.ini file with the one supplied by us. See also
Merging the old cwright.ini file with the new cwright.ini file — page 253

5. Make sure SNiFF+ can start Codewright by setting your PATH environment variable to:

PATH=%PATH%;C:\codewright

File Description

cwsniff.dll Distributed together with SNiFF+ and implements functions
that send commands from Codewright to SNiFF+. This file is
in %SNIFF_DIR%\integrations\codewright-5.0

Note

We assume that you installed Codewright in the following directory:
C:\codewright

Note

You can have only one Codewright-SNiFF+ connection active at a
given time.
252 SNiFF+

Us

Integrating Codewright
Setting Codewright as your preferred editor

1. Start SNiFF+.

2. Choose Tools > Preferences in any open SNiFF+ tool.

In the Preferences dialog

1. Select the Tools > Source Editor node.

2. From the Current Editor drop-down, choose Codewright .

3. Press Ok.

SNiFF+ will now use Codewright for all editing requests.

Merging the old cwright.ini file with the new cwright.ini file

If you have already customized Codewright and don’t want to lose the changes, merge the
old cwright.ini file with the new one. To do so:

� Copy the lines that differ and paste them into the appropriate sections.

To simplify the merging process, lines relevant to the Codewright integration with SNiFF+
are "blocked" by special comment lines. This makes it easier to find the lines that
Codewright needs to be able to communicate with SNiFF+.
These lines are enclosed in the following comment lines:

BEGIN_SNIFF_SPECIFIC

END_SNIFF_SPECIFIC

Note

Comments inside the SNiFF+ specific blocks explain problems
which you might encounter when merging.
er’s Guide 253

Chapter 23 Codewright Integration (Windows only) Working with Codewright and SNiFF+
Working with Codewright and SNiFF+
Once a connection between SNiFF+ and Codewright is established, SNiFF+ uses Code-
wright for all requests to display or edit source code.

Starting the Codewright Editor from SNiFF+

There are two possibilities to start the Codewright Editor from SNiFF+:

� Select the Editor command from the Tools menu in any open SNiFF+ tool.

� Double-click on a file in the File List in the Project Editor.

The Codewright Editor appears.

Positioning Codewright from SNiFF+

By double-clicking on a symbol in any SNiFF+ browser, Codewright loads the corresponding
source file and positions the cursor at the appropriate location.
254 SNiFF+

Us

Command Reference
Command Reference
Many menu commands correspond to the standard SNiFF+ menu items. (All commands act
on the symbol under the current cursor position.) For a description of these menu items,
please see the Reference Guide, Common Menus — page 13. Additional commands are
described in the following table:

Command Description

Reparse File SNiFF+ reparses the current file and updates
the Symbol Table

Save Without Reparse SNiFF+ saves the current file without repars-
ing it

Toggle Declaration/Implementation Toggles between the implementation and def-
inition of a symbol
er’s Guide 255

Chapter 23 Codewright Integration (Windows only) Command Reference
256 SNiFF+

U

24MS Developer Studio Integration (Windows)

Introduction
You can use MS Developer Studio (5.0 or 6.0) for editing and debugging source code in
SNiFF+. This chapter covers the basics of the integration.

This chapter covers the following topics

� Integrate SNiFF+ with MS Developer Studio

� Work with the integration

Assumptions made in this chapter

� You are an experienced MS Developer Studio user

Integration Features
The following integration features are available:

� MS Developer Studio can be used for all editing requests made in SNiFF+.

� SNiFF+ recognizes and updates all browsers when a file is saved in MS Developer Stu-
dio.

� SNiFF+ commands can be issued directly from MS Developer Studio.

� Custom menus can be maintained for both the SNiFF+ integrated mode and the native
MS Developer Studio mode.

� The native MS Developer Studio debugger is used for debugging.
ser’s Guide 257

Chapter 24 MS Developer Studio Integration (Windows) Integrating MS Developer Studio
Integrating MS Developer Studio

Prerequisites

� SNiFF+ 3.0 or later is installed at your site.

� MS Developer Studio 5.0 or 6.0 is installed at your site.

Connecting MS Developer Studio

To use the MS Developer Studio editor and debugger in SNiFF+

1. Make sure MS Developer Studio is closed.

2. In your SNiFF+ for Windows program group, click MSDev Connection to open the Install
SNiFF+ Add-In dialog.

3. Select the Install SNiFF+ Add-In option.

4. Select the Microsoft Developer Studio 5.0 check box.

5. To save the current MS Developer Studio settings for your next native mode session,
select the Save Current MS Developer Studio Native Layout check box.

Disconnecting MS Developer Studio

To disconnect the MS Developer Studio editor and debugger from SNiFF+

1. Make sure MS Developer Studio is closed.

2. In your SNiFF+ for Windows program group, click MSDev Connection to open the Install
SNiFF+ Add-In dialog.

3. Select the Uninstall SNiFF+ Add-In option.

4. Select the Microsoft Developer Studio 5.0 check box.

Connecting: Disconnecting:
258 SNiFF+

Us

Working with MS Developer Studio and SNiFF+
5. To save the current MS Developer Studio settings for your next SNiFF+ mode session,
select the Save Current MS Developer Studio for SNiFF+ Layout check box.

Switching between modes

We recommend that you disconnect MS Developer Studio from SNiFF+ before working on
non-SNiFF+ projects. Before you work on SNiFF+ projects, reconnect MS Developer Studio.
Custom settings can be maintained for both modes, so that switching between modes is
quick and painless (see above).
Note that (custom) layout and toolbar etc. settings are separately saved to the Registry, and
not merged. When you first open DevStudio, default settings are used. You change the
layout to suit your needs at any time, the new layout is saved for the SNiFF+ mode when you
close MS Developer Studio.

Working with MS Developer Studio and SNiFF+
� Make sure that you have connected MS Developer Studio to SNiFF+ as described under

Connecting MS Developer Studio — page 258.

Setting MS Developer Studio as your preferred editor

1. Start SNiFF+.

2. Choose Tools > Preferences in any open SNiFF+ tool.

In the Preferences dialog

1. Select the Tools > Source Editor node.

2. From the Current Editor drop-down, choose MS DevStudio 5.0 (DDE) .

3. Press Ok.

SNiFF+ will now use MS Developer Studio for all editing requests.

� If you disconnect MS Developer Studio, don’t forget to reset your preferences.
er’s Guide 259

Chapter 24 MS Developer Studio Integration (Windows) Working with MS Developer Studio and SNiFF+
Opening the MS Developer Studio editor from SNiFF+

To start the MS Developer Studio editor from SNiFF+ you can

� Double-click on a file in the File List in the Project Editor. This opens the selected file
positioned at the first line.

� Double-click on a symbol in any SNiFF+ browsing tool. This opens the file where the
selected symbol is declared and positions to the declaration.

� Select the Source Editor command from the Tools menu in any open SNiFF+ tool.
This opens an empty editor.

Editing

The MS Developer Studio functionality is maintained unchanged under the familiar File , Edit
and View menus. Please refer to your MS Developer Studio documentation for details.

Building

Compile and build commands are under the SNiFF+ Build/VCS menu. Commands are
executed in the SNiFF+ Shell tool. Please see the SNiFF+ Build/VCS menu — page 261 for
a description of the available commands.

Debugging

Debug commands are under the SNiFF+ Build/VCS menu. The functionality is the same as
in the native MS Developer Studio mode.

SNiFF+ versioning

SNiFF+ version controlling commands are under the SNiFF+ Build/VCS menu. Please see
the SNiFF+ Build/VCS menu — page 261 for details.

SNiFF+ browsing

SNiFF+ browsing and cross-file navigation commands are under the SNiFF+ Browsing
menu.
260 SNiFF+

Us

Menus
Menus
Note that native MS Developer Studio commands are not described here.

SNiFF+ Build/VCS menu

All the commands in this menu apply to the currently opened file.

SNiFF+ Build/VCS command Description

Compile File Compiles the loaded file.

Build Project Target Builds the project the loaded file is part of, unless oth-
erwise set with the Custom Build... command.

Custom Build... Calls up a dialog where you can select and order tar-
gets. Requires the executable as Workspace.

Debug Starts debugging the currently loaded project. This en-
try is only enabled when you have entered the target
name in the Make view of the Project Attributes dialog
and the target is executable.

Check Out... Checks current file out of the Repository.

Check In... Checks current file in to the Repository.

Lock File... Locks current file in the Repository.

Unlock File... Unlocks current file in the Repository.

Show History... Shows file history.

Show Differences... Shows file version differences.
er’s Guide 261

Chapter 24 MS Developer Studio Integration (Windows) Menus
SNiFF+ Info menu

Info menu command Description

Retrieve Selection from File Retrieves all occurrences of Selection from the cur-
rent file.

Retrieve Selection from Project Retrieves all occurrences of Selection from the
project to which the current file belongs.

Retrieve Selection from All
Projects

Retrieves all occurrences of Selection from all
projects in the Project Tree.

Symbol Refers To Opens a Cross Referencer and starts a Refers-To
query on Symbol.

Symbol Referred By Opens a Cross Referencer and starts a Referred-By
query on Symbol.

Symbol Refers To Components Opens a Cross Referencer to show all symbols (class-
es and structures) that are components of symbol. If
the current selection is a member of a class/structure,
the class/structure is taken for this query.

Symbol Referred By As
Component

Opens a Cross Referencer to show all symbols that
have symbol as a component. Note that you can also
query primitive C data types with this command.

Find Symbols Matching
Selection

Opens a Symbol Browser to display symbols that
match the name of Selection.

Find Symbols Containing
Selection

Opens a Symbol Browser to display symbols that con-
tain Selection.

File Includes Opens an Include Browser and shows the files that the
current file includes.

File Included By Opens an Include Browser and shows the files that the
current file is included by.

Reparse File SNiFF+ reparses the current file and updates the
Symbol Table.

Show Documentation Opens a Documentation Editor and positions it to the
documentation of Symbol. An alert message appears
if no documentation file exists for either the entire file
or for Symbol.

Documentation Synchronizer... Opens the Documentation Synchronizer.
262 SNiFF+

Us

Menus
SNiFF+ Browsing menu

Class menu command Description

Browse Class Loads class into a Class Browser.

Show Class Relatives Opens a Hierarchy Browser and loads the graph of the
base and derived classes.Class is highlighted in the
Hierarchy Browser

Show Class in Entire Hierarchy Opens a Hierarchy Browser and loads the entire class
graph. Class is highlighted in the Hierarchy Browser.

Base Class Shows the declaration of the immediate base class of
the class where the cursor is currently positioned.

Overridden Shows the overridden method of the closest base
class that uses the selected method.

Toggles Header/Implementation
File

Shows the corresponding header/implementation file.
er’s Guide 263

Chapter 24 MS Developer Studio Integration (Windows) Menus
264 SNiFF+

Part IX
ClearCase Integration

U

25Integrating SNiFF+ with ClearCase

Introduction
ClearCase from Rational Software, is a high-end software configuration management tool
that is used by software development teams working in either the Unix or Windows NT envi-
ronment. ClearCase provides comprehensive configuration management features, including
version control, workspace management, build management and process control. Both text-
based and graphical interfaces are available.
With the ClearCase integration with SNiFF+, you can perform ClearCase operations on your
SNiFF+ projects and their source files using SNiFF+’s CMVC interface.

This chapter covers the following topics

� Set up a SNiFF+ project with ClearCase

� Work with ClearCase in SNiFF+

� Customize ClearCase update features

� Set your Make command in SNiFF+

Assumptions made in this chapter

� You are an experienced ClearCase user

� Your ClearCase administrator has already set up at least one VOB and a View that
accesses the VOB

� You are setting up a SNiFF+ project in your View
ser’s Guide 267

Chapter 25 Integrating SNiFF+ with ClearCase Integration overview
Integration overview

How ClearCase VOBs and Views are realized in SNiFF+

ClearCase VOBs (Versioned Object Bases) contain all public ClearCase data. This data can
either be shared object or shared source data. ClearCase Views are private storage areas
that access VOBs. The contents of a VOB can only be “seen” through a private View that
accesses it.
In SNiFF+, ClearCase Views correspond to Private Working Environments (PWEs). There is
no SNiFF+ equivalent to a VOB.
To view and work with the elements (source files and directories) of a VOB, you first have to
create a PWE for the View with which you access the VOB. Then, you can open SNiFF+
projects in the PWE that contain the files you’re interested in. If the projects don’t exist, you
first have to create them.
(Creating projects for ClearCase are discussed under Setting up a SNiFF+ project with
ClearCase — page 268.)

How builds are performed in SNiFF+

You can use both standard Make and clearmake for building object files in your PWE. The
appropriate Make command can be set in the Project Attributes dialog.
Shared Object Working Environments are also unnecessary when using clearmake ,
because clearmake ’s wink-in feature handles how object files (ClearCase DOs) are shared
between views.

Setting up a SNiFF+ project with ClearCase
In this section, you will learn how to set up a SNiFF+ project in your ClearCase View. But
before setting up a SNiFF+ project, you will have to prepare your ClearCase environment:

1. Make sure that all the files for which you want to create the project are already under the
control of ClearCase. In order words, the files should already be elements of a VOB.

2. Make sure that there is a View that accesses the VOB. In the following, it is assumed that
you are the owner of this View.

3. Set your View.

� On Unix — In a shell, enter the command cleartool setview your_view.

� On Windows — The View becomes active as soon as it is mapped to a drive.
268 SNiFF+

Us

Setting up a SNiFF+ project with ClearCase
4. On Windows — The SHELL environment variable must be modified to use forward
slashes in the Make Support file. To do so, open the file

%SNIFF_DIR%\make_support\i386-unknown-win32.mk

and edit the line:

SHELL = sh

to read — using FORWARD slashes:

SHELL = path/to/directory/holding/sh.exe

(By default, sh.exe is in SNIFF_DIR/bin)

Launching the Project Setup Wizard

You’re now ready to create the project. You’ll do so in the Project Setup Wizard.

1. Start SNiFF+ if you haven’t already done so.

2. To start the Project Setup Wizard, in the Launch Pad, choose Project > New Project >
with Wizard... .

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

� Accept the default selection, Standard Setup, and press Next .

The “Select development task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the title bar of the Wizard.

In the “Select development task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

This tutorial is for single-user/single platform development using ClearCase as the underlying
CMVC tool, so:

1. Accept the first two defaults (No/No) in the Page.

2. Select ClearCase as your version control tool.

3. Press Next .

In the “Select file types” page

� Select the file types that you want to be included in the project and press Next .

Note that, after project setup, you can add new standard file types (like the ones in the
“Additional File Types Column”), or create and add your own.
er’s Guide 269

Chapter 25 Integrating SNiFF+ with ClearCase Setting up a SNiFF+ project with ClearCase
In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory. This direc-
tory must be set to the mounting point of the VOB.
For example, suppose you have defined the VOB first_vob. Furthermore, your View, called
your_view, accesses first_vob. Then, the mounting point of the VOB is, for example:

� On Unix — ~your_home_dir/first_vob

� On Windows — F:\first_vob , where F is the drive letter associated with your_view

To specify your PWE root directory:

1. Press Browse , and in the Directory dialog, navigate to the mounting point of the VOB and
then press Select .

2. In the PWE name field, enter a name for the PWE, e.g., myClearcaseView .

Notice that your username is entered next to the enabled Owner button. SNiFF+ needs your
username to correctly handle permissions. Being the owner of the PWE means that you are
the only one who is allowed to modify the working environment’s attributes.

3. Press Next .

In the “Create New SNiFF+ Project” page

SNiFF+ has set your Project root directory to the mounting point of the VOB. The project
has the same name as the VOB, with the extension .shared .

1. If you intend to create the project in another directory, navigate to the Project root direc-
tory by pressing the Browse button.

The name of the project is entered in the Project name field with the extension
.shared .

2. If SNiFF+ should automatically create subprojects in the subdirectories of the Project
root directory , make sure that the Create Subprojects is selected.

3. Press Next .

In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ project and the PWE.

� Press Finish .

SNiFF+ will now create the new project and all its subprojects. When SNiFF+ is finished, it
opens the new project and displays its structure and contents in the Project Editor.

Note

If you intend to change ClearCase Views during a single SNiFF+
session, please read Changing Views in current SNiFF+ session —
page 272 before continuing.
270 SNiFF+

Us

Working with ClearCase in SNiFF+
Working with ClearCase in SNiFF+

Accessing ClearCase commands using the ClearCase custom menu

A custom menu called ClearCase is available in SNiFF+’s Project Editor. With it, you can
invoke ClearCase commands to do such things as:

� listing versions

� listing checkouts

� listing history

� displaying version tree

Activating the ClearCase custom menu

The ClearCase custom menu is predefined for the Project Editor in the site-wide custom
menu file SiteMenus.sniff.

� On Unix — SiteMenus.sniff is located in $SNIFF_DIR/config/

� On Windows NT — SiteMenus.sniff is located in %SNIFF_DIR%\config\

By default, the ClearCase custom menu is disabled. To enable it:

1. Open SiteMenus.sniff in an editor.

2. Search for the following line in the PROJECT EDITOR section of the file:

ClearCase Menus

3. Starting with the next line, remove all leading hash (#) characters from it and the following
lines in the PROJECT EDITOR section of the file.

4. Save SiteMenus.sniff .

The ClearCase custom menu will be accessible the next time you start SNiFF+. If required,
additional commands can easily be added on to the custom menu. For details, please refer
to Reference Guide — Custom menus — page 283.

Changing View’s config spec in current SNiFF+ session

You can change a View’s config spec in ClearCase while working on projects opened in the
corresponding PWE. You can then use the ClearCase custom menu in SNiFF+ for viewing
the config specs and starting the appropriate ClearCase GUI for your platform (xclear-
case or cleardetails).
Note that changing your View’s config spec may result in a change in the project structure
that you can “see” through the View. Therefore, in order for the View and its corresponding
SNiFF+ PWE to reflect the most current information as defined in its config spec, reload all
current projects opened in the PWE.
You can reload projects using the command Project > Reload Project > In Current
Working Environment in either the Project Editor or the Launch Pad.
er’s Guide 271

Chapter 25 Integrating SNiFF+ with ClearCase Advanced features
Changing Views in current SNiFF+ session

In ClearCase, you may want to access data visible in other Views. SNiFF+ allows you to
change your ClearCase View during a single session.
Changing a ClearCase View corresponds to reloading the current project in the working envi-
ronment that corresponds to the new View.
To change Views during a single SNiFF+ session, we recommend that the root directories of
the PWEs that you create for the Views point to the view-extended full pathname of the
View. By using extended pathnames, you can use other Views active on your host without
first having to “set” them.
For example, suppose three Views — your_view , bill and john — are active, and:

� /vobs/design/src/msg.c specifies the version of an element selected by your
View

� /view/bill/vobs/design/src/msg.c specifies the version of the same ele-
ment selected by the View bill

� /view/john/vobs/design/src/msg.c specifies the version of the same ele-
ment selected by the View john

Furthermore, suppose the current project is open in the PWE corresponding to View bill ,
and you want to change the View to john . To do so, just reload the project in the PWE that
corresponds to john .
To reload projects in another working environment, use the command Project > Reload
Project > In Other Working Environment in either the Project Editor or the Launch Pad.

Advanced features

Notifying SNiFF+ of files checked-in with ClearCase

When a file is checked in with ClearCase, all Views which are configured to display the latest
version of the file are immediately updated. If the file is part of a loaded SNiFF+ project,
ClearCase and SNiFF+ can be configured so that the modification is notified to SNiFF+
To enable the automatic updating of the checked-in file’s symbol information, the ClearCase
trigger concept is used. Triggers can be defined to fire at specific events.
To notify SNiFF+ when files are checked-in with ClearCase, we need to define a trigger that
fires on every checkin operation performed on any VOB that is used together with SNiFF+.
In this section, you will learn how to define such a trigger.
The trigger that you define will execute a script that stores all checkin events in an Update
Log File accessible to all running SNiFF+ processes. The path of the Update Log File is
system dependent and will have to be set in the SitePrefs.sniff file.
Every SNiFF+ process that has at least one opened ClearCase project will have to check the
Update Log File. When SNiFF+ finds a new entry that pertains to a file currently loaded in a
Project Editor, it will reparse the file and thereby update its symbol information.
272 SNiFF+

Us

Advanced features
Defining the trigger

The follow instructions are for defining the trigger on a Unix platform.

1. Choose the location of the Update Log File and make sure that the location is accessible
from the whole network. Otherwise SNiFF+ cannot update symbol information automati-
cally.

2. In SNiFF+, open the Preferences dialog and navigate to the Version Control System
node.

3. Select ClearCase and press the More Options... button.

4. In the Advanced dialog that appears, select the Enable Automatic Update check box.

5. In the Update Log File field, specify the location of the Update Log File.

6. In the Update Interval field, enter a value (in seconds) for the update timer.

SNiFF+’s update timer determines how often SNiFF+ checks the Update Log File.

7. If you want to be informed when SNiFF+ checks the Update Log File, make sure that the
Show Confirmation dialog check box is selected.

When SNiFF+ checks the Update Log File, a dialog will appear with a list of all the files
checked-in since the last check of the log file.

8. Define a trigger for every VOB used together with SNiFF+. To look at a sample trigger,
refer to Sample trigger — page 273.

Sample trigger

To define a trigger, you need to have the necessary permissions to modify a VOB. Generally,
either only VOB owner or your ClearCase administrator will have the needed permissions.
For detailed information about permissions, please refer to your ClearCase manuals.
To define a trigger:

1. Change to the VOB directory (here, we assume the VOB is already mounted):

cd /vobs/hello_prj

Note

The Update Log File that stores the checkin events must be writable by
all developers. This is because the trigger script will run with the user
id of the user performing the checkin operation. Also, the Update Log
File will grow line by line with every checkin operation, so we recom-
mend that you delete it regularly (and preferably outside usual working
times).
er’s Guide 273

Chapter 25 Integrating SNiFF+ with ClearCase Advanced features
2. Define the trigger type.

for ClearCase Release 3.x

cleartool mktrtype -element -all \

-postop checkin \

-eltype text_file \

-exec "$SNIFF_DIR/bin/sniff_ClearCase_notify.sh
<logfile_fullpath>" \

-c 'SNiFF+ checkin notification trigger' \

sniff_notify_trigger

for ClearCase Release 2.x

cleartool mktrtype -element -global \

-postop checkin \

-eltype text_file \

-exec "$SNIFF_DIR/bin/sniff_ClearCase_notify.sh
<logfile_fullpath>" \

-c 'SNiFF+ checkin notification trigger' \

sniff_notify_trigger

This command defines a trigger for all elements of type text_file in our example VOB. The
type text_file is predefined by ClearCase. If there are other element types that should fire
a trigger at checkin , simply add them to the -eltype option above as a comma-
separated list. More options to this command are described in the manual page of the
mktrtype subcommand.

3. Repeat the above steps for all VOBs that are in use with SNiFF+

Setting your Make command

Both standard Make and clearmake can be used for building object files. The appropriate
Make command can be set in the Project Attributes dialog.

� To set clearmake as your Make command, please refer to Setting clearmake as your
Make command — page 275.

� To use SNiFF+’s Make Support with ClearCase and a standard Make utility, please refer
to Build and Make Support — page 73.

� To use your own Makefiles and a standard Make utility, please refer to Using Your Own
Makefiles — page 105.

SNiFF+’s shared object workspace feature is also unnecessary when using clearmake .
clearmake can handle the sharing of object files (DO derived objects) between views. This is
done by selecting the wink-in feature.
274 SNiFF+

Us

Advanced features
Setting clearmake as your Make command

To use your own makefiles:

1. Start SNiFF+ and open the root project for which you want to set clearmake as your Make
command.

2. Check out the Project Description Files (PDFs) of all the projects.

3. In the Project Tree, checkmark all the projects.

4. Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears.

5. Select the Build Options node.

You will now set the Make attributes that are the same for all projects.

In the Group Project Attributes dialog

1. Enter your command that you use to run clearmake in the Make Command field. For
example:

clearmake <options>

This command will then be submitted to the Shell when you execute the Target > Make
default target command.

2. Select the check box to the right of the Make Command field.

3. Press the Set for All button to apply this attribute to all the projects checkmarked in the
Project Tree.

4. Press the Ok button to apply the settings and to close the Group Project Attributes dialog.

5. Save the modified project.
er’s Guide 275

Chapter 25 Integrating SNiFF+ with ClearCase Advanced features
276 SNiFF+

Part X
Documenting Source

Code

U

26Documenting Your Source Code

Introduction
You can document your source code with SNiFF+’s Documentation Editor. In this chapter,
you will learn how to do so.

This chapter covers the following topics

� Write and browse source code documentation

� Manage source code documentation

� Export source code documentation

� Modify the appearance of source code documentation

Assumptions made in this chapter

� You know how to browse and edit source code in SNiFF+

� You know how to work with SNiFF+ file types

Related SNiFF+ topics

� Specifying your SNiFF+ Preferences — Reference Guide — Preferences — page 123

� Using the Documentation Editor — Reference Guide — Documentation Editor — page 89

� Using the Documentation Synchronization dialog — Reference Guide — Documentation
Synchronizer — page 93
ser’s Guide 279

Chapter 26 Documenting Your Source Code Documentation Editor modes
Documentation Editor modes
The Documentation Editor operates in one of two modes:

� Editing mode (read/write) —Mode of operation for documenting a software project.
When the Documentation Editor is in this mode, you can generate documentation files out
of your source code.

� Browsing mode (read-only) —Usual mode of operation for simply browsing documenta-
tion files. When the Documentation Editor is in browsing mode, no changes can be made
to existing documentation, and obsolete documentation will not be displayed.

You can set the operating mode of the Documentation Editor in your Preferences.

Writing source code documentation
This section covers the steps you must complete in order to document your source code.
These steps are:

1. Switch the Documentation Editor to editing mode

2. Add the Documentation file type to project

3. Determine which symbols are to be documented

Once you have completed these first three steps for a project, you generally do not have to
repeat them.

1. Generate a documentation file from your source code.

2. Edit the documentation frames in the generated documentation file

Step 1: Switch to editing mode

To switch the Documentation Editor to editing mode, please complete the following steps:

1. Choose Preferences... from the Tools menu.

The Preferences dialog appears.

2. Select the Documentation Editor node.

The Documentation Editor view appears.

3. Under Document Creation , clear the Use Read-Only Mode check box.

4. Press Ok to apply and close your Preferences.

You can now generate and modify documentation.
280 SNiFF+

Us

Writing source code documentation
Step 2: Add the Documentation file type to project

The next step is to add the Documentation file type to your project. Documentation files
created by SNiFF+ are associated with this file type. If the file type is not part of a project and
you try to generate documentation files for the project, you will receive a warning message
from SNiFF+.
To add the Documentation file type:

1. Open the Project Attributes dialog of the project for which you want to create documenta-
tion files.

2. Select the File Types node.

3. Press the Show All button.

4. Select the Documentation file type from the File Types list and press the Add File Type
button.

The file type will now be part of the project.

5. Press the Ok button to add the file type to the project.

6. Save the project.

Step 3: Determine which symbols to document

You can generate documentation frames for every symbol that is contained in your source
files. However, you may not always want to do this.
You can select the symbol types to be documented in the Preferences dialog. Documentation
frames will then be generated for these symbol types only. Note that your settings affect the
documentation generation process only—they do not affect existing documentation.
To select the symbol types to be documented, please complete the following steps:

1. Choose Preferences... from the Tools menu.

The Preferences dialog appears.

2. Select the Documentation Editor node.

The Documentation Editor view appears.

3. Under Documentable Symbol , for each symbol type that you want to document, select
the symbol type and then select the Documentable check box.

4. Apply and close your Preferences dialog by pressing the Ok button.

The next time you generate documentation, only documentation frames for the symbol
types that you just selected will be generated.

Note

To add the Documentation file type to multiple projects at the same
time, use the Group Project Attributes dialog. For details, please re-
fer to Using the Group Project Attributes dialog — page 131.
er’s Guide 281

Chapter 26 Documenting Your Source Code Writing source code documentation
Step 4: Generate a documentation file

Once the Documentation Editor is in editing mode, you can generate a documentation file
from your source code. To generate a documentation file, you need to:

1. Open the source file for which you want to generate a documentation file.

Note that the documentation file that you are generating contains documentable symbols
taken from both the implementation file and its corresponding header file.

2. To generate documentation frames for all the (documentable) symbols in the file, position
the text cursor outside the scope of any symbol (for example, at the beginning of the file).

(Later on, you can generate documentation frames for any symbol types that are
undocumentable at this time. To do so, make these symbol types documentable (in your
Preferences) and then synchronize the documentation file with its source file. The
synchronization process is described later in this chapter.)

3. Choose the Show Documentation of File < file> command from the Info menu.

You will then get a message asking you whether you want to generate a documentation
file for the source file.
282 SNiFF+

Us

Writing source code documentation
4. Press the Yes button to generate the documentation file.

The newly generated documentation file is loaded into a Documentation Editor.

The documentation file consists of a series of documentation frames, one for each
documentable symbol in the corresponding source and header files. These
documentation frames come from standard documentation template files that are stored
in $SNIFF_DIR/config/docu .

Step 5: Edit the documentation frames

The documentation frames that you’ve just generated contain information taken from docu-
mentation templates files. There is one documentation frame for each symbol that is listed in
the Symbol List of the Documentation Editor.

Note

You can also create documentation files in the Documentation
Synchronizer.

Symbol name

Documentation
frame read in
from standard
template files
stored in
$SNIFF_DIR/
config/docu
er’s Guide 283

Chapter 26 Documenting Your Source Code Jumping between the source code and documentation
A symbol's documentation starts with the symbol name and symbol signature (if it has
one). The actual documentation of the symbol follows in the documentation body, which is
split into a series of sections. Each section begins with a section identifier. Its section text
follows on the next line.

You can change the contents of only the section text field. As a result, if you decide to
change the layout of the documentation frames, please make sure that the section text fields
are distinguishable from the other fields of a documentation frame.
You can apply the standard editing functions (Cut, Copy, Paste, etc.) to entire documenta-
tion frames, to a section of a documentation frame, or to the section text of a section.
For a description of the various commands that are available in the Edit menu of the Docu-
mentation Editor, please refer to Reference Guide — Edit menu — page 16.

Jumping between the source code and documentation
During the process of documenting a symbol, it may be necessary for you to jump to either
its definition or implementation. You can do this by selecting the Symbol(s) symbol
command in the Show menu of the Documentation Editor. The Choose Symbol dialog
appears. You can then jump to either the symbol’s definition or implementation from this
dialog.
When you are in the source or header file, you can jump back to the corresponding docu-
mentation file by selecting the symbol and then choosing the Show Documentation of
symbol command in the Info menu of the Source Editor.

Section

Section
text

Section
identifier
284 SNiFF+

Us

Changing the documentation status of a symbol
Changing the documentation status of a symbol
A symbol’s documentation can be in one of three possible states: undocumented, partially
documented, or (fully) documented. Initially, the documentation status of a symbol is undocu-
mented.
You alone are responsible for determining what the documentation status of a symbol is.
SNiFF+ doesn’t automatically change the status when you have made changes to a symbol’s
documentation.
To change the documentation status of a symbol, choose one of the commands that are
available in the Status menu of the Documentation Editor.

Looking at the status of a symbols documentation
In addition to monitoring the documentation status of individual symbols in your source files,
you may also want to look at the documentation status of entire source files and projects.
You can do so in the Documentation Synchronization dialog. You can open this dialog by
choosing the Documentation Synchronizer... command in the Documentation Editor’s Info
menu.
Your source files and projects can be in one of four possible documentation states — empty,
undocumented, partially documented and fully documented. The following table summarizes
these states:

Source Files Projects

Empty file :
This source file doesn’t have a correspond-
ing documentation file.

Empty project :
None of the source files in the project has a
corresponding documentation file.

Undocumented file :
All symbols in the corresponding documen-
tation file are undocumented.

Undocumented project :
Project contains at least one source file that
contains only empty documentation frames.

Partially documented file :
At least one symbol in the corresponding
documentation file is either partially docu-
mented or fully documented.

Partially documented project :
Project contains at least one source file that
is either partially documented or fully docu-
mented.

Fully documented file :
All symbols in the corresponding documen-
tation file are fully documented.

Fully documented project :
All source files in the project are fully docu-
mented.
er’s Guide 285

Chapter 26 Documenting Your Source Code Updating documentation
Updating documentation
You should update your documentation files whenever you have:

� added symbols to source files

� renamed symbols in source files

� deleted symbols from source files

� moved symbols from one source file to another that is either in the same project or a dif-
ferent one

To update your documentation file, choose Documentation Synchronizer... in the Docu-
mentation Editor’s Info menu. The Documentation Synchronization dialog appears.
(For a detailed description of the Documentation Synchronization dialog, please refer to
Reference Guide — Documentation Synchronizer — page 93. In this section, we will just
discuss the update process.)
286 SNiFF+

Us

Updating documentation
Updating documentation — procedures

(Unless otherwise stated, all the commands referred to below are to be executed in the
Documentation Synchronization dialog.)

A symbol is added to the source code

When you add a symbol to one of your source files, you will have to generate a documenta-
tion frame for it in the source file’s corresponding documentation file.

� Select the source file from the File List and then choose the Synchronize Documenta-
tion of Selected Files command from the Synchronize menu.

SNiFF+ generates a documentation frame for the symbol in the corresponding
documentation file of the selected source file.

A symbol is renamed in the source code

When you rename a symbol in a source file, you will have to generate a new documentation
frame for the renamed symbol in the source file’s corresponding documentation file.
The original symbol no longer exists in SNiFF+’s Symbol Table. As a result, it becomes obso-
lete when you synchronize the source file with its corresponding documentation file.
You can then paste the contents of the original (now obsolete) symbol’s documentation frame
into the newly generated documentation frame and then delete the obsolete symbol’s docu-
mentation frame from the documentation file.

1. To generate a new documentation frame for the renamed symbol and make the original
symbol obsolete, select the source file from the File List and then choose the Synchro-
nize Documentation of Selected Files command from the Synchronize menu.

A documentation frame is generated for the renamed symbol in the source file’s
corresponding documentation file.
The original (now obsolete) symbol is displayed in italics in the Documentation Editor and
in the Documentation Synchronization dialog.

2. To copy the contents of the original (now obsolete) symbol’s documentation frame into the
newly generated documentation frame, select the obsolete symbol from the Symbol List
and then choose the Matching Symbols for Obsolete Symbol command from the Syn-
chronize menu.

Alternatively, you can use the Copy and Paste commands in the Edit menu.

3. To delete the obsolete symbol’s documentation frame from the documentation file, select
the obsolete symbol from the Symbol List and then choose the Delete command from the
Edit menu.

A symbol is deleted from the source code

A symbol that is deleted from your source code no longer exists in SNiFF+’s Symbol Table.
As a result, it becomes obsolete when you update the source file’s corresponding documen-
tation file.
er’s Guide 287

Chapter 26 Documenting Your Source Code Updating documentation
1. To make the deleted symbol obsolete, select the source file from the File List and then
choose the Synchronize Documentation of Selected Files command from the Syn-
chronize menu.

The deleted (now obsolete) symbol is displayed in italics in the Documentation Editor and
in the Documentation Synchronization dialog.

2. To delete the obsolete symbol’s documentation frame from the documentation file, select
the obsolete symbol from the Symbol List and then choose the Delete command from the
Edit menu.

The obsolete symbol’s documentation frame disappears from the documentation file.

Symbols are moved to another file

You can move symbols and their documentation from one file to another. These files can be
in the same project or in two different ones.
You can move documentation from one documentation file to another by using the Copy and
Paste commands in the Edit menu. But before you can do this, you will have to generate a
documentation frame for the symbol in the new source file’s corresponding documentation
file.
After you have moved the documentation, you can delete the symbol’s documentation frame
in the original documentation file.

1. To generate a documentation frame for the moved symbol in its new source file’s corre-
sponding documentation file, select the new source file from the File List and then choose
the Synchronize Documentation of Selected Files command from the Synchronize
menu.

A documentation frame is generated for the moved symbol in the new source file’s
corresponding documentation file.

2. To move documentation from the original documentation file to the new documentation
file:

3. Select the original source file from the File List and then the moved symbol from the Sym-
bol List.

4. Choose the Copy command from the Edit menu.

5. Select the new documentation file from the File List and then the moved symbol from the
Symbol List.

6. Choose the Paste command from the Edit menu.

The documentation for the moved symbol now exists in both the original documentation
file and in the new documentation file.

7. To delete the symbol’s documentation frame in the original documentation file:

8. Select the original source file from the File List and then the moved symbol from the Sym-
bol List.

9. Choose the Delete command from the Edit menu.

The symbol’s documentation frame disappears from the original documentation file.
288 SNiFF+

Us

Browsing documentation
Browsing documentation
Once you have finished documenting your source code, you can make the documentation
readable but not editable by switching the mode of the Documentation Editor to Read Only .
When the Documentation Editor is in this mode, it can only be used for browsing documenta-
tion.

Switching the Documentation Editor to browsing mode

To switch the Documentation Editor to browsing mode, please complete the following steps:

1. Choose Preferences... from the Tools menu.

The Preferences dialog appears.

2. Select the Documentation Editor node.

The Documentation Editor view appears.

3. Under Document Creation , select the Use Read-Only Mode check box.

4. Press Ok to apply and close your Preferences.

You can now only browse your documentation.

Browsing a symbol’s documentation

You can browse a symbol’s documentation in any tool that displays symbolic information.
To browse the documentation of a documented symbol, select the symbol and then choose
the Show Documentation of symbol command from the Info menu. The symbol’s docu-
mentation is then loaded into a Documentation Editor.

Managing documentation together with source code
You can manage your documentation files in the same way as the other files of your projects.
Documentation files, like all other project files, are associated with a file type. The file type
describes the various attributes of files of a particular type, including where these files are
located (relative to the project directory).
You should store your project documentation files in a subdirectory of the project directory
and version control them in the same way as your other version controlled files. You can then
keep your documentation up-to-date by checking them in and out along with their corre-
sponding source files, regardless of version or configuration.

Exporting documentation
You can export your documentation in two different formats: MIF (Maker Interchange Format)
and HTML.
Please refer to Reference Guide — Export menu — page 98 for instructions on how to export
your documentation files.
er’s Guide 289

Chapter 26 Documenting Your Source Code Changing the layout of source documentation
Changing the layout of source documentation

Adapting documentation templates

The layout of a symbol’s documentation frame is determined by a set of customizable docu-
mentation template files. There is one documentation template file for each type of symbol in
your source code.
SNiFF+ comes with a set of standard documentation template files (stored in
$SNIFF_DIR/config/docu). You can either use these files for generating the docu-
mentation frames for your symbols, or you can create your documentation template files.
See also Creating documentation templates files — page 290.

Modifying the appearance of documentation in SNiFF+

You can modify the appearance of the documentation that you see in the Documentation
Editor. For example, you can change the fonts or font sizes that are used in documentation
frames. Note that these changes do not affect your documentation template files—they only
affect the layout of a symbol’s documentation in the Documentation Editor.
See also Reference Guide — Documentation Editor view — page 140.

Creating documentation templates files

Introduction

When you document symbols in your source code, SNiFF+ uses documentation template
files to generate documentation frames for each symbol. There is one documentation
template file for each type of symbol.
To create documentation template files, complete these steps:

1. Customize an existing template file or create a new one.

2. Name it.

3. Determine where to store it in your file system.

4. Specify its location in SNiFF+.

Step 1: Customize documentation template files

There are two ways in which you can customize documentation template files:

� by using HTML tags for layout

� by using macros to extract information from SNiFF+’s Symbol Table and comments from
your source files

In this section, you will find out which HTML tags are recognized by SNiFF+ and which
macros you can use for extracting symbolic information and comments.
290 SNiFF+

Us

Creating documentation templates files
Using HTML tags in documentation template files

SNiFF+’s Documentation Editor recognizes the following HTML tags:
(In the following list, only the starting tags are shown.)

<p>

<sub>, <sup>

<code>

, <i>, , <cite>,

<h1> ... <h6>

<center>

<plaintex>

<pre>

<dt>

<dd>

<body>

<html>

<!--

Note that you can use other HTML tags in your documentation template files as well. You
may want to do so if you plan to browse your documentation template files with an HTML
browser. SNiFF+ will ignore any HTML tags that are not listed above.

Maintaining formatting (newline) in HTML

Use the <pre> tag to maintain formatting (newline) in HTML. For example:

<pre><SNiFFINSERT CODE=”@FIRST_COMMENT@”></pre>

(The macro used in this example is described below.)

Using macros in documentation template files

You can use the macros listed in the following table to incorporate information from SNiFF+’s
Symbol Table into your documentation. Please note that macro expansion only works when
the Use Parser Comments for Syntax Highlighting checkbox in the Project Attributes >
Parser view is selected.
Each macro is associated with a particular program scope (see table). If you set the macro in
an incorrect scope, SNiFF+ will not be able to expand the macro, and you will get an error
message when trying to generate documentation frames.
For example, suppose you want to list the base classes of each class in your source code.
You would use the @BASE_CLASS_LIST@macro to do so. Since this macro has a class
scope, you would have to set this macro in the documentation template file used for docu-
er’s Guide 291

Chapter 26 Documenting Your Source Code Creating documentation templates files
menting classes. Then, whenever documentation frames are generated for classes in your
source code, the @BASE_CLASS_LIST@macro is expanded in each documentation frame.
See also Step 2: Name your documentation template file — page 295.
Macros that have a symbol scope can be set in any documentation template file.
(To see how to set macros in documentation template files, please refer to the example
template file on page 298)
.

Macro Scope Description

@BASE_CLASS_LIST@ class Comma-separated list of the base
classes of the class.

@BASE_CLASS_FULL_LIST@ class Numbered list of the base classes of
the class.

@CLASSES_IN_FILE@ file List of all classes in the documenta-
tion file’s corresponding source file(s).
Note that this macro can only be set
in the Header.dtmpl template file
(located in $SNIFF_DIR/con-
fig/docu).

@COMMENT_BEFORE_DEF@ symbol Extract the comments that precede
the definition of the symbol in the
source file.
Note that the characters / and * are
not extracted from the comment text.

@COMMENT_AFTER_DEF@ symbol Extract the first comment lines that
follow the definition of the symbol in
the source file. Code lines are allowed
between the definition of the symbol
and the first comment lines.
Note that the characters / and * are
not extracted from the comment text.
Note:
We recommend not using both the
@COMMENT_BEFORE_DEF@ and
@COMMENT_AFTER_DEF@macros for
the same symbol, since comments
following the symbol’s definition may
belong to the next symbol’s definition.
To avoid this ambiguity, always place
comment lines either before or after a
symbol’s definition and use the appro-
priate macro to extract them.
292 SNiFF+

Us

Creating documentation templates files
@COMMENT_BEFORE_DEF_
FROM(X)TO(Y)@

symbol Extract all comments that precede the
definition of the symbol and are be-
tween the user-defined tags X and Y.
These tags must be alphanumeric
and part of the comment that is being
extracted.
Note that the characters / and * are
not extracted from the comment text.

@COMMENT_AFTER_DEF_
FROM(X)TO(Y)@

symbol Extract all comments that follow the
definition of the symbol and are be-
tween the user-defined tags X and Y.
These tags must be alphanumeric
and part of the comment that is being
extracted.
Note that the characters / and * are
not extracted from the comment text.
Note:
See the note in the description of the
@COMMENT_AFTER_DEF@macro.

@DER_CLASS_LIST@ class Comma-separated list of the derived
classes of the class.

@DER_CLASS_FULL_LIST@ class Numbered list of the derived classes
of the class.

@ENUM_LIST@ enumeration Comma-separated list of the enumer-
ation items of the enumeration.

@ENUM_FULL_LIST@ enumeration Numbered list of the enumeration
items of the enumeration.

@FIRST_COMMENT@ file Extract the first comment lines in the
source file. These comment lines
must be the first non-empty lines in
the file.
Note that the characters / and * are
not extracted from the comment text.
Note that this macro can only be set
in the Header.dtmpl template file
(located in $SNIFF_DIR/con-
fig/docu).

@INSTVAR_LIST@ class Comma-separated list of the instance
variables in the class.

Macro Scope Description
er’s Guide 293

Chapter 26 Documenting Your Source Code Creating documentation templates files
@INSTVAR_FULL_LIST@ class Numbered list of the instance vari-
ables in the class. The signatures of
the variables are included in the list.

@METHOD_LIST@ class Comma-separated list of the methods
defined in the class.

@METHOD_FULL_LIST@ class Numbered list of the methods defined
in the class. The signatures of the
methods are included in the list.

@PARAM_LIST@ method or
function

List of parameter types of a function
or method.

@PARAM_LIST_WITH_
NAME@

method or
function

List of parameter types and parame-
ter names of a function or method.

@RET_VAL@ method or
function

Return value of the function or meth-
od.

@SNIFF_DATE@ file SNiFF+ version date.

@SNIFF_VERSION@ file SNiFF+ version number.

@SYMBOL_MEMBEROF@ class Class name of the symbol.

@SYMBOL_NAME@ symbol Name of the symbol.

@SYMBOL_TYPE@ symbol Type of the symbol (e.g., instance
variable, global variable).

@TYPE_LIST@ class Comma-separated list of typedefs in
the class.

@TYPE_FULL_LIST@ class Numbered list of typedefs in the class.
The signatures of the typedefs are in-
cluded in the list.

Macro Scope Description
294 SNiFF+

Us

Creating documentation templates files
Step 2: Name your documentation template file

There are two points to keep in mind when naming documentation template files:

� Template files must have the same names as the symbol types for which they are
designed.

� The names of symbol types are hard-coded in SNiFF+.

For example, suppose you have created and want to name a template file for subroutines in
FORTRAN. In SNiFF+, the symbol type for subroutines is subroutine , and you would
therefore name the template file subroutine.dtmpl (all template files have the exten-
sion dtmpl). The following table lists the names that you must use for your C/C++,
FORTRAN, IDL, Java and Ada documentation template files.

The last column in the table lists the names of the default template files used for the listed
symbol types. SNiFF+ uses the default template files if it can’t find your template files. See
also How SNiFF+ searches for documentation template files — page 297.

C/C++ FORTRAN IDL Java Ada Default template file/
symbol type

macro –– macro –– –– Macro

enum –– enum –– enum Enumeration

typedef –– –– –– typedef TypeDef

variable variable –– –– object GlobalVariable

function subroutine –– –– subprog GlobalFunction

class common_block interface class package Class

struct block struct interface record Struct

inst_var –– attribute field pkg object InstanceVariable

methodDef method method method pkg sub-
prog def

Method

union union union –– –– Union
er’s Guide 295

Chapter 26 Documenting Your Source Code Creating documentation templates files
Step 3: Determine where to store template files

You have two options for storing your documentation template files:

� If you want to use a template file for all of your SNiFF+ projects, store it in any directory in
your file system.

� If you want to make a template file project-specific, store it in the project directory of a
SNiFF+ project and then add it to the project. The template file is then valid for this project
only.

For details about storing and specifying the location of template files, please refer to Step 4:
Specify the location of template files — page 296.

Step 4: Specify the location of template files

For template files stored in a template directory

1. Create a template directory and use the following table to name its language-specific sub-
directories:

If your language is not listed in the above table, launch SNiFF+. Then,

2. Load a project that contains source files in the language you want to document.

3. Create a language-specific subdirectory and name it according to the name used in the
Language drop down in the Symbol Browser, Hierarchy Browser and in the Cross Refer-
encer.

4. Store your template file in the appropriate language-specific subdirectory.

5. Enter the template directory’s path in the Template Directory field in the Documentation
Editor view of the Preferences dialog.

For template files stored in a project directory

1. Store the template file in the <project>/docu/dtmpl directory. <project> is the
name of project directory in the shared source working environment where the project’s
source files are stored.

2. Make sure that the Document Template file type has been loaded into the project. If it
hasn’t, load it into the project.

3. Add the documentation template file to the project (by choosing the Add/Remove Files
to/from <project>... command from the Project menu of the Project Editor).

C/C+ FORTRAN IDL Java Ada

Ansi_C/C++

(Create a directory called
Ansi_C and, in it, a subdi-
rectory called C++).

FORTRAN_77 IDL Java Ada9X
296 SNiFF+

Us

Creating documentation templates files
How SNiFF+ searches for documentation template files

When you document a particular symbol in your source code, SNiFF+ searches for the
appropriate documentation template file in three directories:

� If the Document Template file type is part of the current project, SNiFF+ first searches for
the template file in the directory specified by the file type’s Directory attribute (default
value is /docu/tmpl).

� If the file isn’t found, SNiFF+ continues searching for it in the template directory specified
in the Template Directory field in the Documentation Editor view of the Preferences
dialog.

� If the template file isn’t found, SNiFF+ continues searching for it in the default directory
($SNIFF_DIR/config/docu). This directory contains default documentation tem-
plate files. If SNiFF+ cannot find the appropriate template file for the symbol you are doc-
umenting, it will use the Default.dtmpl default template file.

To illustrate this procedure, let’s use the following figure with three different scenarios:

Directory
structure for C/
C++ source files.
<project> is the
root directory of
the current
project

Template
directory
contains
template files for
C/C++ and IDL

(Directory C++ is
a subdirectory of
Ansi_C)

For a full list of
default template
files, see page
295
er’s Guide 297

Chapter 26 Documenting Your Source Code Creating documentation templates files
Scenario 1

You want to document a C++ source file that contains classes, enums and methods. SNiFF+
will use the following template files to create documentation frames:

� class.dtmpl located in <project>/docu/dtmpl

� enum.dtmpl located in the <template_directory>/Ansi_C/C++/dtmpl

� Method.dtmpl located in $SNIFF_DIR/config/docu

Scenario 2

You want to document an IDL file that contains interfaces and methods. SNiFF+ will use the
following template files to create documentation frames:

� interface.dtmpl located in <template_directory>/IDL

� method.dtmpl located in <template_directory>/IDL

Scenario 3

You want to document a FORTRAN file that contains common blocks and methods. SNiFF+
will use the following template files to create documentation frames:

� Class.dtmpl located in $SNIFF_DIR/config/docu

� Method.dtmpl located in $SNIFF_DIR/config/docu

Sample documentation template file

Description

<SNiFFSYMBOL TYPE="Class" NAME=" "
SSTATUS="new" DSTATUS="empty"
ATTRIBS="true">

All documentation template files
must begin with this header informa-
tion. This is used for internal man-
agement of documentation frames.
Do not modify any of its attributes.

<SNiFFSECT SNAME=”Symbol Name”> The definition of a Section in the
symbol’s documentation frame is
contained between the start tag
(code to the left) and
</SNiFFSECT> .
This particular Section is called
Symbol Name. It tells SNiFF+ to
insert the name of the symbol at the
top of the documentation frame.
Do not modify a Section’s start tag.
298 SNiFF+

Us

Creating documentation templates files
<center>
<h2>

You can change or add HTML tags
in any Sections as desired.

<SNiFFINSERT CODE=”@SYMBOL_NAME@”> SNiFF+ macro directive that tells
SNiFF+ to expand the macro
@SYMBOL_NAME@.
The expanded macro is then insert-
ed after the directive’s end tag.
Macros can be set anywhere after a
template file’s header information.

</h2>
</center>
</SNiFFSECT>

<SNiFFSECT SNAME=”Symbol Sign”>
<center>
<h4>
<SNiFFINSERT CODE=”@RET_VAL@”>
<SNiFFINSERT
CODE=”@SYMBOL_MEMBEROF@”>::
<SNiFFINSERT CODE=”@SYMBOL_NAME@”>(
<SNiFFINSERT CODE=”@PARAM_LIST@”>)
</h4>
</center>
</SNiFFSECT>

This particular Section is called
Symbol Sign. It tells SNiFF+ to insert
the signature of the symbol right be-
low its name.
Do not modify any of the attributes in
this Section’s definition.
HTML tags are used for layout.

<SNiFFSECT SNAME=”Parameters”>

<h4> Parameters:
<SNiFFINSERT
CODE=”@PARAM_LIST@”>
</h4>

This Section is the first one in the
documentation frame that contains
editable text (see below).
The Section Identifier for this Sec-
tion is Parameters.
Note that you can modify the name
of this section (given by SNAMEat-
tribute). In general, you can modify
the SNAMEattribute for all sections
except for Symbol Name and Sym-
bol Sign.

<SNiFFSECTT>
<pre>XXXXX_Parameters </pre>
</SNiFFSECTT>

The definition of the Section Text
field of a Section is contained be-
tween <SNiFFSECTT> and
</SNiFFSECTT>.
Text contained in the Section Text
field is editable in the Documenta-
tion Editor.

Description
er’s Guide 299

Chapter 26 Documenting Your Source Code Creating documentation templates files
</SNiFFSECT>

</SNiFFSYMBOL> All documentation template files
must end with this end tag.

Description
300 SNiFF+

Part XI
Glossary and Index

Glossary

Absolute Project is a project that is set up outside of a Working Environment. SNiFF+
therefore references these projects using an absolute path.
Adaptor is the specific implementation of a SNiFF+ interface. For example, the generic
CMVC interface of SNiFF+ has adaptors for CMVC tools. The SNiFF+ debugger interface
has adaptors for debuggers (gdb, dbx, etc.).

Branches occur in a version tree when you create new versions of a file from the middle
instead of the end of the tree. Basically, SNiFF+ allows you to perform the same operations
on branches that you can perform on the main trunk of a version tree.

Browser is a tool that is used for viewing (and not editing) data only. SNiFF+ offers several
browsers like the Symbol Browser, the Class Browser and the Hierarchy Browser. The infor-
mation displayed in browsers can be filtered in several ways.

Build is the process of creating the targets of a project. The build steps are usually
described in makefiles which are executed by programs like Make. A build can involve trans-
lations of source files and the construction of binary files by compilers, linkers and other
tools.

Check-in is the process of checking in a working file from a working environment, thereby
creating a new version of the file in the Repository. A complete project can be also checked
in. Typically, after a file has been checked in, locks made on the file are removed from the
Repository. A file check-in can be associated with a change set. Note that SNiFF+ doesn’t
check in files itself. It delegates the operation to your underlying CMVC tool (by means of
CMVC adaptors).

Check-out is the process of creating an editable working file in the working environment
from a specific version of the file in the Repository. Depending on what actions are planned
with the file, a lock of that file in the Repository is set. A check-out can be associated with a
change set. SNiFF+ delegates the actual check out operation to your underlying CMVC tool
(by means of CMVC adaptors).

CMVC is the abbreviation for configuration management and version control.

Concurrent lock is a lock that, unlike an exclusive lock, does not prevent others from
locking the same version of a file. Versions that are concurrently locked must be merged
back into the Repository.

Configuration is a coherent and consistent state of a system or project. A configuration has
a name and refers to specific versions of files in the Repository. Typically, a configuration is a
buildable state of a system.

Configuration management is the process of controlling and administrating the compo-
nents of configurations. Configuration management includes the freezing (baselining) of
configurations.
303

Default Configuration is the version of your software system that you work on. You can
set your Default Configuration when you define your working environments. SNiFF+ uses
your Default Configuration for the default value when you choose one of the various version
control commands (e.g., checking out file versions, locking/unlocking file versions), and
during the updating of Shared Source and Private Working Environments. Source files are
made up-to-date with respect to the Default Configuration.
By default, the HEADversion of your software system is the Default Configuration for your
Private Working Environment.

Dependency as used in Make is a relationship between two files that says that one file
must be updated or rebuilt when the other one changes. In the Makefile, a dependency is a
word listed after the colon ':' on the same line as a target. Source-level dependencies can be
extracted from source code and are typically stored in dependency files. SNiFF+ generates
dependency files that are included by Makefiles as part of its Make Support feature. Build-
order dependencies must always be specified explicitly.

Derived file is a file that can be generated (derived) from another file. A typical example of
a derived file is an object file that is generated from a source file after compilation.

Documentation template is a file that describes the structure and content of documenta-
tion frames. Each documented symbol type has its own documentation template. When
documentation for a symbol is generated, SNiFF+ creates a documentation frame for the
symbol. You can customize documentation templates.

Documentation frames are created when you tell SNiFF+ to document a symbol in your
source code. Empty documentation frames represent the initial, undocumented state of a
symbol’s documentation. The structure and content of documentation frames are described
by documentation templates.

Editor is a tool that is used for both viewing and changing data. SNiFF+ offers a number of
editors (e.g., Source Editor and Project Editor). Tools that just show, but do not modify data,
are called browsers.

Exclusive lock is set on a version in the Repository when a file is checked out for modifica-
tion. Each version can have only one exclusive lock, thus preventing other developers from
modifying the same version.

File is a component of a project. Each file is associated with a file type.

File type is associated with a file and determines several attributes of the file. Every file of a
SNiFF+ project has a file type. SNiFF+ comes with a set of predefined file types, but there
can be any number of file types in a project. Examples of file types are C++ implementation,
C++ header, makefile, yacc source, shell script, etc. A file’s file type determines how SNiFF+
treats the file and what operations may be performed on the file.

Freezing a configuration is the process of creating a “virtual snapshot” of the system (or,
to be exact, of its source files) at special times during the software development process.
You do this in SNiFF+ by associating the current state (configuration) of all project source
files with a single symbolic name. The process of creating a single configuration and associ-
ating it with a symbolic name is called “freezing a configuration”.
304 SNiFF+

HEAD is the latest version on the trunk or branch of a file’s version tree.

History reflects all the different versions of a file and is stored in the Repository file.

Inheritance is a directed relationship between two classes in which one class inherits the
attributes of another classes. In single inheritance, a class inherits from only one class.
Multiple inheritance means that a class inherits from several classes.

INIT is used by SNiFF+ as name to refer to the initial version of a file in the Repository. The
INIT version is created when a file is checked into the Repository for the first time.

Interfaces are intermediaries between two components or tools or between the user and the
machine. SNiFF+ uses interfaces to interact with the outside world and external tools. A
SNiFF+ interface can have multiple specific implementations. called adaptors. For example,
the generic CMVC interface of SNiFF+ has adaptors for CMVC tools. The SNiFF+ debugger
interface has adaptors for debuggers like gdb and dbx.

Lock is a mechanism that controls access to versions of files in the Repository. SNiFF+
distinguishes between exclusive locks (only one developer can modify a specific version)
and concurrent locks (multiple developers can simultaneously modify the same version).

Locking is the process of setting locks.

Main branch is the starting branch of a file's version tree. Unless otherwise specified by
your default version control configuration, the main branch is the default branch for CMVC
operations.

Make is the program that reads Makefiles and drives the building process. SNiFF+ inte-
grates a wide range of different Make implementations.

Makefile is a text file read by Make programs that describes the building of targets. A Make-
file contains source-level dependencies and build-order dependencies. As part of its Make
Support feature, SNiFF+ generates Make Support Files that contain both kinds dependency
information.

Make macro is a variable in a Makefile which can be assigned a string value. The value can
be set in the Makefile itself, on the command line or by setting an environment variable with
the same name. SNiFF+ uses Make macros to separate general, platform-specific, project-
specific, and team-specific information. A coherent, generic and extendable set of Make
macros is part of SNiFF+'s Make Support feature.

Make Support File is either generated out of the project's source code or supplied with the
SNiFF+ package. Make Support Files contain the following information: generic Make rules,
source-level dependencies, build-order dependencies, project-specific macros and platform-
specific macros.

Merge is the process of combining the contents of two or more files into a single file. Typi-
cally, the files involved in a merge are versions of a single Repository file. A merge can be
done automatically, but often requires manual intervention to resolve conflicts. SNiFF+'sDiff/
Merge tool is used for merging files.
305

Object file is a derived file that is generated from source code after a build. SNiFF+ main-
tains a list of all object files for a project and generates a make support file containing this
list.

Shared Object Working Environment is a working environment that, in contrast to a
source working environment, stores only platform-specific files. Typically, a Shared Object
Working Environment stores all object files of a project. A Shared Object Working Environ-
ment always accesses a corresponding Shared Source Working Environment. As a result, it
must also have the same directory structure as the common (accessed) part of the corre-
sponding Shared Source Working Environment.

Obsolete file is a file that is located in a project's directory but is not part of any SNiFF+
project. Obsolete files are generated by continuous development and changes to the project
structure and should be deleted from time to time in order to keep a project's working envi-
ronment clean. SNiFF+ Make Support feature offers mechanisms for finding and deleting
obsolete files.

Owner is a developer that owns a file or a working environment.

PDF see Project description file (PDF) .

Platform is the combination of architecture, vendor and operating system. SNiFF+ executes
on all supported platforms. Object working environments are platform-specific. The targets of
SNiFF+ projects can be platform-specific. SNiFF+ executes the sniff_arch script to
determine which platform its running on.

Preferences are the customizable attributes of SNiFF+. SNiFF+ supports user-level and
site-level preferences. Most preferences can be edited with the Preferences dialog.

Private Working Environment (PWE) is a directory tree that contains the projects and
working files of a single developer. A Private Working Environment is accessible and
changeable by only one developer. All check-in and check-out operations work with files in
the Private Working Environment. A Private Working Environment must have the same direc-
tory structure as the common (accessed) part of the corresponding Shared Source Working
Environment.

Projects consists of files, attributes and subprojects. A project is the main organizational
element in SNiFF+ and is described by a Project Description File (PDF). Project hierarchies
can be built by adding one project to another project, thus creating a superproject-subproject
relationship between the two projects.

Project Description File (PDF) is the file that describes a project's attributes, structure
and contents. A PDF is a structured ASCII file that is created, saved and opened by SNiFF+.
PDFs can also be generated with the sniff_genproj batch program.

Project history is the set of all configurations of a project.

PWE see Private Working Environment (PWE) .

RCS is a widely used revision control system that is licensed under the GNU public license.
SNiFF+ integrates RCS as an underlying version control tool and also supplies it with the
package.
306 SNiFF+

Repository contains all Repository files of version-controlled projects. The Repository is
typically directly accessed only by the managing CMVC tool and usually stores the different
versions in an optimized delta format to save space.

Repository file is the file in the Repository that saves all the complete version tree of a file.

Root directory see Working environment root directory .

SCCS is the widely used source code control system that is supplied with most Unix imple-
mentations. SNiFF+ integrates SCCS as an underlying version control tool.

Shared file is a source file that is shared among the members of a development team.
Shared files are located in a Shared Source Working Environment.

Shared working environment (SWE) is a directory tree that contains the files (source or
object) shared in a team. Shared working environments are accessed (shared) among
several developers in a team. There are two types of shared working environments: Shared
Source and Shared Object.

Shared Source Working Environment (SSWE) is a shared working environment that
contains source files only. Typically the platform-specific files are contained in a corre-
sponding Shared Object Working Environment.

SOWE see Shared Object Working Environment (SOWE).

SSWE see Shared source working environment (SSWE).

Symbol is a named language construct in the source code.

Symbol information is extracted from the source files of a project. A project’s symbolic
information is stored in a Symbol Table, which is saved to disk and transparently managed by
SNiFF+.

Symbol Table is the information base that contains information about the declaration, defi-
nition and use of named program elements such as classes, methods, variables and func-
tions of a project. Each project has its own Symbol Table that is generated and maintained by
the appropriate language parser. Symbol Tables are kept in memory and are persistently
stored to disk.

Symbolic link is a symbolic reference to a file in the Unix file system. In contrast to hard
links, symbolic links can span different file systems.

Target is the result of a build process. SNiFF+ allows multiple targets to be built in a single
project.

Team is a group of software developers working together on a set of projects and sharing a
set of common working environments.

Update is the process of checking out all new HEADversions of projects in a working envi-
ronment. Typically, updates are done automatically overnight and are followed by automatic
builds of all Shared Object Working Environments and Private Working Environments.

VCS is the abbreviation for version control system.
307

Version is a particular revision and an element of the version tree of a file. A version is
created by checking in a working file. The version of a file that you check out is your working
file.

Version control is the process of managing and administrating versions of files. The
Project Editor in SNiFF+ is the main tool for version control.

Version tree is the hierarchical structure in which all versions of a file are organized. A
version tree has one main trunk and can have several branches. The version tree is typically
stored in a Repository file.

Working file is a file that has been checked out of the Repository in a working environment
(usually in a Private Working Environment). A working file can be directly accessed. Each
working file has a corresponding Repository file.

Working Environment is a directory tree that contains projects and working files. SNiFF+
distinguished between private and shared working environments. A shared working environ-
ment is accessed among several developers in a team and is overridden by their Private
Working Environments. Shared working environments can be split into Shared Source and
Shared Object Working Environments in order to separate platform-independent from plat-
form-dependent files. Shared working environments can override other shared working envi-
ronments, resulting in multiple levels of overriding working environments. The common part
of overridden and overriding working environments must have the same directory structure.

Working Environments Administrator is the person who is responsible for the setup,
administration and maintenance of working environments. An administrator is informed of the
results of automatic updates and builds. Typically, shared working environments are adminis-
trated by experienced developers with a thorough understanding of all projects that reside in
a working environment.

Working Environment root directory is the root directory of a working environment. All
root projects that are located in the working environment are subdirectories of the working
environment root directory. If many projects need to be managed in a working environment,
groups of projects can be located in subdirectories of the working environment root directory.
308 SNiFF+

Index
A
Absolute Projects 303
Adaptor 303
Adding new source files 129
Architecture of SNiFF+ 10
Archiver, and specifying for Make Support 101
Attributes, modifying project 126

B
Bean 7
Branches 138, 303

creating for RCS 143
creating for SCCS during check-out 141
definition of 138

Browser 303
Browsing documentation 289
Build 303
Building 73

help targets 191
see also Make Support
specifying purify and quantify targets 100
targets 185
trouble shooting 186
using own Makefiles with SNiFF+ 105

Building targets recursively 88

C
Change sets 138

definition of 138
showing differences 153

Change sets, creating 143
Check-in 303
Checking in files 143
Checking out a file 141
Check-out 303
ClearCase integration 267

changing config spec 271
changing View in SNiFF+ 272
ClearCase custom menu 271
introduction 267
notifying SNiFF+ of checkin 272

CM
Co

Co
d

Co
S

Co
Co
Co
Co
Co

Co

Co

Cr
Cr
Cr
User’s Guide
overview 268
setting Make command for use 274
setting up SNiFF+ project for 268
working with 271

VC 303
dewright integration 251

features 251
menus 255
setting up 252
working with 254
mments, and extracting for source
ocumentation 291
mpilers, and specifying for Make
upport 101
mpiling, remote 207
ncurrent lock 303
nfiguration 303
nfiguration management 303
nfiguration Manager

freezing (baselining) configurations 149
nfigurations 147

checking out 149
comparing 148
creating 149
definition of 138
deleting 150
freezing 149
freezing Default Configuration 150
freezing HEAD 149
looking at 147
renaming 150
nfiguring the Parser 178

examples 181
with a configuration file 178
eating configurations 149
eating workspace projects 162
oss Reference subsystems 219
and synchronizing (updating) Working

Environments 229
corrupt X-Ref database 228
DB-driven cross referencing and Working

Environments 226
extracting symbol information 221
how the X-Ref subsystems work 221
location of generated X-Ref information 225
maintenance of X-Ref databases 228
overview 220
309

Index
RAM-based vs DB-driven X-ref in Java 224
RAM-based vs. DB-driven X-Ref in C/C++ 222
selecting 229
storage of generated files 225
where locking information is maintained 228
working environments and cross referencing 226
X-Ref database access control 226

Cross-platform development 193
introduction 193
limitations of 193
setting up 199
setting up projects for 204
Unix setup 199
Unix-Windows differences 196
Windows setup 201

D
Debugging 187

choosing an adaptor 187
remote 207
Source Editor in debugging mode 189
targets 187
useful debugging commands 188

Default Configuration 304
Default Configurations 140

definition of 140
specifying 154

Default target 85
Default working environment 45

specifying 52
define directive, using 181
Deleting a file version 144
Dependency 304
Derived file 304
Diff/Merge tool

comparing file versions with 152
merging three-way differences 153
showing change set differences 153

Disabling Make Support 106
Documentation 279

adding file type to project 281
browsing in read-only mode 289
changing a symbol’s documentation status 285
creating template files, see Documentation

templates
exporting 289
extracting comments 291

Do

Do
p

Do
Do
Do

Do
Do

Do
D

E
Ed
Ed
Ed
Ed

S
Ed
Em

Ex
Ex
310
file type 281
jumping between code and documentation 284
looking at symbol’s status 285
managing together with source code 289
updating, see Updating documentation
writing, see Writing source documentation
cumentation Editor

changing a symbol’s documentation
status 285

editing documentation 283
switching to editing mode 280
switching to read-only mode 289
cumentation file type, adding to
roject 281
cumentation frames 304
cumentation frames, editing 283
cumentation Synchronization Dialog 287

looking at documentation status 285
updating documentation 286
cumentation template 304
cumentation templates 290

creating 290
determining where to store 296
naming template files 295
sample template file 298
specifying location 296
using HTML tags in 291
using macros for customizing 291
using macros for extracting comments 291
cumenting source code, see
ocumentation

itor 304
itor integrations, Codewright 251
itor integrations, Emacs 233
itor integrations, MS Developer
tudio 257

itor integrations, Vim 243
acs integration 233

features 233
menus 239
setting up 235
working with 237
clusive lock 304
porting documentation 289
SNiFF+

Index
Exporting targets 85
Extracting comments for source

documentation 291

F
File 304
File history, looking at 144
File type 304
File Types

adding 133
creating new 133

Freezing a configuration 149, 304

G
General Makefile 80
Generated files

.sniffdir 23
Makefiles 23
PDF 23

Generating documentation files 282
Group Project Attributes dialog

using the dialog 131
GUI Builder 7

H
HEAD 305
HEAD configuration of project, freezing 149
Help Targets 190

building 191
definition 190
useful help targets 190

Hierarchical project structures 24
History 305

I
ignore directive, using 181
Include directives for preprocessing 177
Inheritance 305
INIT 305
Integration, VisaJ 7
Interfaces 305
is 307

J
JAR 7

Ja

L
La

Lin
Lin
Lo
Lo
Lo
Lo

M
Ma
Ma

Ma
Ma

Ma
Ma

Ma
Ma
User’s Guide
va 7

nguage Makefiles 81
specifying 103
ker, and specifying for Make Support 101
king targets, see Exporting targets
ck 305
cking 305
cking a file 142
cking information, displaying 146

in branch 305
ke 73, 305

see also Make Support
ke macro 305
ke Support 73

also see Debugging
also see Setting up Make Support
and recursive Make 88
and symbolic_links 76
and VPATH 75
basic concepts 13
building targets 185
disabling 106
exporting targets 85
General Makefile 80
help targets 191
Language Makefiles 81
Make Support Files 80
Platform Makefile 82
Project Makefiles 77
target types 85
technical overview 74
updating Make Support Files 80
using own Makefiles with SNiFF+ 105
ke Support File 305
ke Support Files 80

adding to project 130
updating 80
kefile 305
kefiles 77

General Makefile 80
Language Makefiles 81
Platform Makefile 82
Project Makefile 77
311

Index
SNiFF+ Makefiles structure 77
using own with SNiFF+ 105

Merge 305
Merging 151

file versions 151
showing change set differences 153
three-way differences 153

MFC 173
Modifying projects 126

adding and removing files 129
adding Make Support Files 130
adding subprojects 127
also see Group Project Attributes dialog
general procedures 126
removing subprojects 128

MS Developer Studio integration 257
features 257
menus 261
setting up 258
working with 259

O
Object file 306
Obsolete file 306
Owner 306

P
Parser configuration file 178

example directives 178
modifiers 180
specifying the location of 178

Parsing 173
browsing MFC code 173
browsing WinAPI code 173

PDF 306
Platform 306
Platform Makefile 82

customizing 101
for your platform 102

Preferences 306
Preprocessing 173

configuring the Parser 178
full preprocessing 174
ignoring strings 181
overview 174
parser configuration file 178
selective #ifdef resolution 181

Pr
P

Pr
Pr
Pr

Pr
Pr

Pr
Pr

Pr
Pr
Pr
Pr
Pr
312
source code 174
eprocessing source code, see

reprocessing
eprocessing, and include directives 177
eprocessor macros 174
ivate Working Environment 31
initializing 56
manual setup 62
unattended updates of 167
updating in SNiFF+ 165
wizard setup 43
ivate Working Environment (PWE) 306
oject attributes
modifying 126
oject description file (PDF) 306
oject Editor
adding and removing files 129
adding subprojects 127
displaying locking information 146
looking at file history 144
removing subprojects 127
oject history 306
oject setup overview 43
oject Setup Wizard 43
oject structures 24
ojects 23, 306
adding and removing files 129
adding documentation file type 281
adding Make Support Files 130
adding subprojects 127
also see Modifying projects
and Make Support 73
and tracking dependencies 24
basic concepts 11
building targets 185
closing 124
default target 85
deleting 125
generated files 23
help targets 190
manual team setup 63
opening 122
organizing project structures 26
project directories 23
project structures 24
removing subprojects 128
saving 124
SNiFF+

Index
setup overview 43
setup procedures 44
Setup Wizard 43
types of 25
using own Makefiles with SNiFF+ 105
workspace projects for updating 162

Purify and quantify Make support 100
PWE 306
PWE see Private Working Environment

(PWE) 306

R
Rapid Reference Technology™ 219
RCS, see Version Control
Recursively building targets 88
Remote compiling 207

invoking 216
overview 208
preparing 210
scenarios 209
setting up 212

Remote debugging 207
invoking 216
overview 208
preparing 210
scenarios 209
setting up 212

Replacing version control comments 144
Repository 307
Repository file 307
Repository Working Environment 30

initializing 54
manual setup 60
wizard setup 43

Resolving complex #if directives 182
#ifdef and #if directives 182

Resolving preprocessor directives 181
#ifdef and #if directives 181
different class definitions 181
unbalanced braces 181

Rollback, during unsuccessful builds 160
Root directory 307
Running an executable 187
Running SNiFF+ without display 169

S
Sa
SC

c
SC

S
sc

E
Se

Sh
Sh

Sh

Sh

Sh
(

Sh
Sh

d
Si
SN
SN
User’s Guide
mba 205
CS, and creating new branch during
heck-out 141
CS, and functionality differences in
NiFF+ 136

ript,update/synchronize Working
nvironments

tting up Make Support 88
also see Make Support
and no VPATH support 89
exporting targets for linking 97
generating directories list for recursive

Make 97
generating include directives 90
specifying external libraries for builds 96
specifying Make command 89
specifying platform-specific 101
specifying purify and quantify targets 100
specifying targets 96
ared file 307
ared Object Working Environment 31,
306

initializing 55
manual setup 61
unattended updates of 167
unsuccessful builds in 160
updating in SNiFF+ 164
wizard setup 43
ared Projects 25

manual team setup 63
suggestions after manual setup 68
ared Source Working Environment 30

manual setup 61
manually creating projects in 64
unattended updates of 167
updating in SNiFF+ 163
wizard setup 43
ared Source Working Environment
SSWE) 307
ared working environment (SWE) 307
owing and merging three-way
ifferences 153

ngle-user development 39
iFF+ architecture 10
iFF+J 7
313

Index
SNIFF_BATCH 169
Source code documentation, see Documentation
Source Editor

in debugging mode 189
Source files, and adding to projects 129
SOWE 307
Specifying Default Configurations 154
SSWE 307
Subprojects 24

adding 127
removing 128

Symbol 307
Symbol information 307
Symbol Table 307
Symbolic information 16

basic concepts 16
Symbolic link 307
symbolic_links , and sharing object files 76
Symbols 286

browsing documentation 289
changing documentation status 285
jumping between code and documentation 284
looking at documentation status 285
selecting symbol types to document 281
updating documentation 286

T
Targets 307

building help targets 191
building projects 185
building purified and quantified 100
specifying for Make Support 96
types of 85

Team 307
Team development 30
Team Projects, see Shared Projects
Templates, for new projects 47

creating 47
editing 50
using with new projects 49

Three-way diffeences, showing and
merging 153

Tool integration, basic concepts 18

U
Unattended updates 167

un
Un
Up
up
Up

Up

Up

Up

Us

V
VC
Ve
Ve
314
and project structure changes 167
and SNIFF_BATCH 169
concept 159
cron script examples 168
define directive, using 182
locking a file version 144
date 307
dateWS.sh
dating documentation 286

of a deleted symbol 287
of a moved symbol 288
of a new symbol 287
of a renamed symbol 287
dating in SNiFF+ 163

Private Working Environment 165
Shared Object Working Environment 164
Shared Source Working Environment 163
dating outside SNiFF+ 166

and SNIFF_BATCH 169
dating Working Environments 157

in SNiFF+, see Updating in SNiFF+
outside SNiFF+, see Updating outside SNiFF+
process model 161
reasons for updating 158
technical overview 158
unattended updates, see Unattended updates
unsuccessful builds 160
without Xserver host 169
Working Environments Administrator 159
Workspace projects 162
ing own Makefiles 105

S 307
rsion 308
rsion Control 135

and branches 138
and Repository 136
and Working Environments 136
basic concepts 14
checking in files 143
checking out a file 141
configurations, see Configurations
creating change sets 143
creating new branch 143
creating new branch for SCCS 141
Default Configurations 140
SNiFF+

Index
deleting a file version 144
differences between SCCS and RCS support 136
displaying locking information 146
file locking mechanisms 137
HEAD 137
INIT 137
initial check-in 54
locking a file 142
looking at file history 144
merging files, see Merging
of documentation 289
replacing comments 144
specifying Default Configurations 154
technical overview 136
unlocking a file version 144
version tree 137

Version control 308
Version tree 308
Vim integration 243

configuring 245
features 243
how it works 244
menus 247
setting up 244
working with 245

VisaJ 7
VPATH macro

and Make 75
and sharing source files 75
platforms supported on 89

VPATH macro 75

W
WinAPI 173
Working Environment 308
Working Environment Configuration

Directory 51
Working Environment root directory 308
Working Environments 29

and Default Configurations 32
and file permissions 58
and file sharing 33
and Make Support 13, 30, 73
and single users 39
and symbolic_links 76
and team support 30
and VPATH 75

W
W

W
W
W

User’s Guide
basic concepts 12
cleaning up 190
examples of using 36
initializing 53
manual team setup 57
permissions for creating 59
see also Updating Working Environments
specifying a Configuration Directory 51
specifying default 52
specifying Default Configurations 154
types of 30
when to use 29
workspace projects for updating 162
orking Environments Administrator 308
orking Environments tool
opening shared projects 123
orking file 308
orkspace projects 162
riting source documentation 280
adding Documentation file type 281
Documentation Editor in editing mode 280
editing 283
generating 282
selecting symbol types to document 281
315

Index
316
 SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-1999 TakeFive Software GmbH.
All rights reserved.

sniff \'snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster's Unabridged Third New International Dictionary

	Guidelines
	About this Manual
	Conventions
	Tool elements
	Typography
	Feedback and useful links

	SNiFF+J for Java
	SNiFF + Basic Concepts
	SNiFF+ Architecture
	Projects
	Working environments
	Make Support
	Versions and configurations
	Documentation building
	Source code parsing and symbol information
	Cross reference subsytems
	Mix-and-match tool and control integration

	SNiFF+ Projects and Working Environments
	Projects
	Project directories and SNiFF+ generated files
	The contents of a project
	Tracking dependencies in a project
	Project structures
	Project types
	Organizing project structures
	How you would create this SNiFF+ project structure
	What to do next

	Working Environments
	What are working environments?
	What types of working environments are there?
	Make Support and working environments
	Working environments and teams
	Shared access to your team Repository
	Shared and transparent access to team source code
	Directories for platform-specific object code
	Isolating individual work from the team
	Working on selected configurations of a team project
	Avoiding unnecessary builds in the PWE
	How file sharing works
	A closer look at file sharing
	Examples of using working environments

	Setting Up SNiFF+ Projects
	Project Setup Overview
	SNiFF+ Project Setup Wizard
	Project setup overview — procedures
	Typical development situations
	Working with new project templates
	Creating a template
	Creating new projects using an existing template
	Specifying a Working Environment Configuration Directory
	Specifying a default working environment
	Initializing team working environments
	Initializing your team’s Repository
	Initializing your team’s SOWE
	Initializing a PWE

	Setting Up Team Working Environments
	Overview
	Step 1: Create root directories
	Step 2: Set permissions for working environment files
	Step 3: Create and set up team working environments

	Creating Team Projects
	Overview
	Step 1: Creating shared projects in the SSWE
	Step 2: Initializing your team’s Repository
	Step 3: Initializing your team’s SOWE
	Step 4: Initializing your PWE
	What you should do next
	Method 1 — Working in your PWE
	Method 2 — Working in your team’s SOWE

	Setting Up the Build Process
	Build and Make Support
	Technical overview
	SNiFF+ Makefiles and Make Support Files
	Project Makefile
	General Makefile
	Make Support Files
	Updating Make Support Files
	Language Makefiles
	Platform Makefile
	Specifying the targets of a project
	Exporting targets of a project
	Building targets recursively
	Setting up Make Support
	Building purify and quantify targets (Unix only)
	Specifying platform-specific Make information
	Language Makefiles — details

	Using Your Own Makefiles
	Specifying Make attributes
	Make commands you can execute in SNiFF+

	Make Support changes from 3.0.x to 3.1
	No support for VPATH
	Updating project Makefiles
	Reworked SNiFF+ Make-support files
	Use of pattern rules instead of suffix rules
	MAKE_TARGET macro

	Maintaining SNiFF+ Projects
	Modifying SNiFF+ Projects
	Opening Projects
	Saving projects
	Closing projects
	Deleting projects
	General procedures for modifying projects
	Modifying multiple project attributes
	Project properties you can modify
	Adding and removing subprojects
	Adding and removing files
	Using the Group Project Attributes dialog

	Version Control
	Technical overview
	Locking files during check-out
	Notation used when referring to file versions
	Configurations
	Change sets
	Branches
	Situations for using SNiFF+’s branch support
	Default Configuration
	Executing version control commands in SNiFF+
	Looking at file version history
	Creating your own CMVC adaptor
	Working with configurations
	Looking at and merging differences between two file versions
	Showing the differences between change sets
	Showing and merging three way differences
	Specifying Default Configurations

	Updating Working Environments
	Technical overview
	The Working Environments Administrator
	General guidelines for updating SSWEs and PWEs
	Updating within SNiFF+
	Updating outside of SNiFF+
	Unattended updates

	Compiling and debugging
	Preprocessing C/C++ Code in SNiFF+
	Preprocessing source code
	Enabling full preprocessing
	Configuring the Parser with a configuration file

	Compiling and Debugging in SNiFF+
	Building a project’s targets
	Running a project’s executable
	Debugging targets
	SNiFF+ help targets

	Introduction to Cross-Platform Development
	Introduction
	How SNiFF+ supports cross-platform development
	Limitations
	Cross-platform development vs. remote compile & debug
	Basic differences between Windows NT and Unix

	Setting Up Cross-Platform Development
	Cross-platform setup — Unix side
	Cross-platform setup — Windows side
	Setting up the shared project on Windows

	Remote Compile and Debug
	Overview
	Requirements
	Scenarios
	Preparation
	Setting up remote compile and debug

	Cross Reference Subsystems
	Cross Reference Information
	Overview
	Extracting symbol information
	How the X-Ref subsystems work
	Location of generated X-Ref information
	Working Environments and cross referencing
	Selecting your preferred X-Ref technology

	Editor Integrations
	Emacs Integration
	Integration features
	How the Emacs integration works
	Integrating Emacs
	Working with Emacs and SNiFF+
	Command Reference

	Vim Integration
	Integration Features
	How the Vim integration works
	Integrating Vim
	Configuring the Vim integration
	Working with Vim and SNiFF+
	Command Reference

	Codewright Integration (Windows only)
	Integration Features
	Integrating Codewright
	Working with Codewright and SNiFF+
	Command Reference

	MS Developer Studio Integration (Windows)
	Integration Features
	Integrating MS Developer Studio
	Working with MS Developer Studio and SNiFF+
	Menus

	ClearCase Integration
	Integrating SNiFF+ with ClearCase
	Integration overview
	Setting up a SNiFF+ project with ClearCase
	Working with ClearCase in SNiFF+
	Advanced features

	Documenting Source Code
	Documenting Your Source Code
	Documentation Editor modes
	Writing source code documentation
	Jumping between the source code and documentation
	Changing the documentation status of a symbol
	Looking at the status of a symbols documentation
	Updating documentation
	Browsing documentation
	Managing documentation together with source code
	Exporting documentation
	Changing the layout of source documentation
	Creating documentation templates files

	Glossary and Index
	Glossary
	Index

