DSP/BIOS TextConf
User’s Guide

Literature Number: SPRU007C
November 2002

Q’ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to Tl's terms and conditions of sale supplied
at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with Tl's standard warranty. Testing and other quality control techniques
are used to the extent TI deems necessary to support this warranty. Except where mandated
by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl components. To minimize the risks
associated with customer products and applications, customers should provide adequate
design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under
any Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to
any combination, machine, or process in which Tl products or services are used. Information
published by Tl regarding third party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations,
and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters
stated by Tl for that product or service voids all express and any implied warranties for the
associated Tl product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

Preface

Read This First

About This Manual

DSP/BIOS gives developers of mainstream applications on Texas
Instruments TMS320 DSP devices the ability to develop embedded real-time
software. DSP/BIOS provides a small firmware real-time library and easy-to-
use tools for real-time tracing and analysis.

This book is intended as an addendum to the TMS320 DSP/BIOS User’s
Guide. In addition, the TMS320 DSP/BIOS API Reference Guide for your
platform provides reference information about DSP/BIOS modules and
properties discussed in this book.

Notational Conventions

This document uses the following conventions:

1 Program listings, program examples, and interactive displays are shown
in @ special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use abold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

([Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

[<ccs_base_dir> indicates the directory in which Code Composer Studio
was installed.

Trademarks

Trademarks

Licences

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
Tl, XDS, Code Composer, Code Composer Studio, Probe Point, Code
Explorer, DSP/BIOS, RTDX, Online DSP Lab, TMS320, TMS320C54x,
TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C5000,
and TMS320C6000.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Solaris and SunOS are trademarks or registered trademarks of Sun
Microsystems, Inc.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

The tconf command-line utility uses the Rhino open-source implementation
of JavaScript. This is available at http://www.mozilla.org/rhino. The source
code used by the tconf utility is available in the js.jar Java archive included
with the utility. For licensing information about this JavaScript
implementation, please see http://www.mozilla.org/MPL.

Contents

DSP/BIOS TextConf Overview it e e et et e aaaaannnns 141
This chapter compares the two methods for configuring DSP/BIOS programs and provides details
about using DSP/BIOS TextConf.

1.1 DSP/BIOS Configuration Methods 1-2
1.2 An Overview of DSP/BIOS TextConf 1-6
1.3 Using DSP/BIOS TextConf for New Applications. 1-10
14 Migrating Applications to DSP/BIOS TextConf. 1-15
1.5 JavaScript Language Highlights. 1-17
1.6 Command-Line Utility Reference 1-39
1.7 Example Scripts 1-43
DSP/BIOS TextConf Reference ittt eiaaeennnn 21
This chapter provides reference information about the Target Content Object Model.

2.1 Target Content Object Model Reference i .. 2-2
2.2 DSP/BIOS Module and Instance Property Names 2-34
2.3 CSL Module and Instance Property Names 2-34

Vi

Figures

DSP/BIOS Configuration Methodscccoiiiiiiiiiiiiiie e 1-3
Target Content Object Model (TCOM)........uuuiiiiiiiiie e a e 1-7
File Flow for DSP/BIOS TeXICONT.......cuueiiiiiiiieiie et 1-10
File Flow for DSP/BIOS TextConf Debuggingccuveiiiiiiiiiiiiiiie e 1-12
Rhino GUI Debugger WINAOWuuiiiiiieeieiiiic e 1-14
File Flow for cdbemp ULtyooooiiiieee e 1-15
Target Content Object Model (TCOM)........coiiiiiiiiiiii e 2-2

Tables

1-1 Comparison of Portable Configuration Methods ... 1-31
2-1 Target Content Object Model SUMMAIYc..vviiiiiiiiicc e 2-2
2-2 Config Class SUMMAIYuuiiiiiiiiiiie et e e e e e e e e e e e e e e e e e e s e e st s e e aeeaaaeaeas 2-4
2-3 Board Class SUMMAIYeiiiiiiiie e 2-8
2-4 CPU Class SUMMEAIYuuuiiiiiiiiiie e e e ettt e e e e e e s e e st eeeeaaeseeeasesanrssraneaeaaaaeaeas 2-13
2-5 Program Class SUMMAIYc.coiiiiiiiiiiiiiieie et e e e e e e e e e e e e e e e e s re e ereaaeaeaeaaaan 2-18
2-6 MEMOrY Class SUMIMAIY......ccoii ittt e e e e e e e enees 2-25
2-7 EXtern Class SUMMAIYcoooiiiiiiiiiiiieeee e e e e e e e e s e e et e e e e e e e e e sasennrenes 2-27
2-8 Module Class SUMMAIYcoiiiiiiiiiiieie e e e e e e e e e e e e e et rreeaaaaeeeaseannnnnes 2-28
2-9 INStance Class SUMMAIYc.oooiiiiiiiiii et 2-31
2-10 ‘C54x DMA Configuration Instance—DMA ... 2-35
2-11 ‘C54x DMA Resource Instance—HDMAuiiiiiii e 2-36
2-12 ’C54x HDMA Pre-Created Instance Names............uuiieiiiiiieiiiiieiieeeeeeeeeeeeeeean 2-36
2-13 ‘C54x GPIO Configuration Instance—GPIOcccoiiiiiiiii e, 2-37
2-14 ‘C54x MCBSP Configuration Instance—MCBSP............cooiiiiiiiiiiiciiiieieeeeee e 2-37
2-15 ‘C54x MCBSP Resource Instance—HMCBSP ..., 2-38
2-16 'C54x HMCBSP Pre-Created Instance Names..........cccoooveieee e 2-38
2-17 ‘C54x PLL Configuration InStance—PLL ..o 2-39
2-18 ‘C54x PLL Resource Instance—HPLLouuuiiiiiiiiiiieeeeeeee e, 2-39
2-19 ’C54x HPLL Pre-Created Instance Namesccccieiiiiiiiie e 2-39
2-20 ‘C54x Timer Configuration Instance—TIMERcccciiiiiiiiii e 2-39
2-21 ‘C54x Timer Resource Instance—HTIMER ..., 2-39
2-22 'C54x HTIMER Pre-Created Instance Namescccceoviiiiiiiiiiiie e 2-40
2-23 ‘C54x WDTIMER Configuration Instance—WDTIM........c.cccooiiiiiiiiiiiiiiiiieeee s 2-40
2-24 ‘C54x WDTIMER Resource Instance—HWDTIMcccoooeiiiiiiiiieee, 2-40
2-25 'C54x HWDTIM Pre-Created Instance Namesccccoeevviiiieeiiiiiiee e 2-40
2-26 ‘C55x CHIP Configuration Instance—CHIPccviiiiiiiiii e, 2-40
2-27 ‘C55x DMA Configuration Instance—DMA ..ot 2-41
2-28 ‘C55x DMA Resource Module—HDMAoiiiiieee e 2-42
2-29 ‘C55x DMA Resource Instance—HDMAoooi i 2-42

Tables

2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68

'C55x HDMA Pre-Created Instance NamEsccoooviiiiiiiiiiiieecee e 2-42
‘C55x EMIF Configuration Instance—EMIF ..., 2-42
‘C55x EMIF Resource Instance—HEMIF ... 2-43
'C55x HEMIF Pre-Created Instance Names............coooviiiiiiiiiiiecie e 2-43
‘C55x GPIO Configuration InStance—GPIOccooiiiiiiiiiiiie e 2-44
‘C55x MCBSP Configuration Instance—MCBSPccocccviiiiiiiiieeeeee e, 2-44
‘C55x MCBSP Resource Instance—HMCBSP............cccovviiiiiieiieceeee e, 2-45
"C55x HMCBSP Pre-Created Instance Names ..., 2-45
‘C55x PLL Configuration INStanCe—PLLccooiiiiiiiiiiiiieee e, 2-46
‘C55x PLL Resource INStance—HPLL ..., 2-46
"C55x HPLL Pre-Created Instance Names...............oooooiiiiiiiiiicceeeeeee e, 2-46
‘C55x PWR Configuration InStance—PWRcooiiiiiiiiiieeee e 2-46
‘C55x Real Time Clock Configuration Instance—RTC ..o, 2-47
‘C55x Real Time Clock Resource Instance—RTCRES ... 2-48
'C55x RTCRES Pre-Created Instance Namescccvvvveeeiiieii i, 2-48
‘C55x Timer Configuration Instance—TIMER ..o, 2-48
‘C55x Timer Resource Instance—HTIMER ... 2-48
'C55x HTIMER Pre-Created Instance Namescccvvveeiiiiiii e 2-48
'C55x USBRES Pre-Created Instance Namesooooviiiiiiiiiiiiicciece e 2-49
‘C55x WDTIMER Configuration Instance—WDTIM ..., 2-49
‘C55x WDTIMER Resource Instance—HWDTIM..........ccooiiiiiiiiiiiiicieeeeeee e 2-49
‘C6000 DMA Global Register Module—GDMAoooiiiiiiiiiee e 2-49
‘C6000 DMA Global Register Instance—GDMA ...t 2-50
‘C6000 DMA Configuration InstanCe—DMAcooi i 2-51
‘C6000 DMA Resource Instance—HDMA ..., 2-51
'C6000 HDMA Pre-Created Instance Names ..., 2-51
‘C6000 EDMA Configuration Instance—EDMA ..., 2-52
‘C6000 EDMA Resource Instance—HEDMA ..., 2-52
'C6000 HEDMA Pre-Created Instance Names..............c.oooiiiiiiiiiiiiiiicccecceee e, 2-53
‘C6000 Parameter RAM Table Entry Instance—EdmaTableccoceeeeviieiiiniinnnns 2-54
‘C6000 EMIF Configuration Instance—EMIF ..., 2-54
‘C6000 EMIF Resource Instance—HEMIF ..., 2-55
‘C6000 EMIFA Configuration Instance—EMIFA ..., 2-55
‘C6000 EMIFA Resource Instance—HEMIFA ..., 2-56
‘C6000 EMIFB Configuration Instance—EMIFB............ccccooiiiiiiiiie e 2-56
‘C6000 EMIFB Resource Instance—HEMIFBcccvveiiiiiiiiiiccceeee e 2-56
‘C6000 CSL Extern Declaration Module—ExternDecl...............ooovviiiiiiiiiiiiiiiieieieeeeeene, 2-57
‘C6000 CSL Extern Declaration Instance—ExternDecl.............ccccvvviiiiiiiiiiciieiiineeeeeen. 2-57
‘C6000 MCBSP Configuration Instance—MCBSPcovviieiiiiiicccieeee e, 2-57

Tables

2-69 ‘C6000 MCBSP Resource Instance—HMCBSPcooiiiiiiiiiiiiceeeeee e, 2-57
2-70 ’C6000 HMCBSP Pre-Created Instance Names..........ceeeeeeeiiiiieeiiiiiiiiieeeeeeeeeev 2-58
2-71 ‘C6000 TCP Base Parameters—TCPBP ..ot 2-58
2-72 ‘C6000 TCP Configuration Instance—TCPBPccccvvveeiiiiiicee e, 2-58
2-73 ‘C6000 TCP Resource Instance—HTCPo.oviiiiiiiiiicicieeeeee e 2-59
2-74 ‘C6000 TIMER Configuration Instance—TIMER............ccccccooiiiiiiiiiiie e, 2-59
2-75 ‘C6000 TIMER Resource Instance—HTIMERccooviiiiiiiiiiiieee e, 2-59
2-76 ’C6000 HTIMER Pre-Created Instance Namescceeeeieeiiiiiiiiiiiiiiieeeeeeeeeeevev, 2-59
2-77 ‘C6000 VCP Base Parameters—VCPBP...........oocoo et 2-60
2-78 ‘C6000 VCP Configuration Instance—VCPBPcccceiiiiiiiiiiiic e 2-60
2-79 ‘C6000 VCP Resource INsStance—HVCP.........oouvmiiicccciiieiee e, 2-60
2-80 ‘C6000 XBUS Configuration Instance—XBUScccoiiiiiiie e 2-61
2-81 ‘C6000 XBUS Resource Instance—HXBUS ..., 2-61

Chapter 1

DSP/BIOS TextConf Overview

This chapter compares the two methods for configuring DSP/BIOS programs and provides details
about using DSP/BIOS TextConf.

Topic Page
1.1 DSP/BIOS Configuration Methods 1-2
1.2 An Overview of DSP/BIOS TextConf 1-6
1.3 Using DSP/BIOS TextConf for New Applications 1-10
1.4 Migrating Applications to DSP/BIOS TextConf................ 1-15
1.5 JavaScript Language Highlights 1-17
1.6 Command-Line Utility Reference........................... 1-39
1.7 Example Scripts.ttt it et e, 1-43

1-1

DSP/BIOS Configuration Methods

1.1 DSP/BIOS Configuration Methods

DSP/BIOS allows you to create and configure static objects for use by the
DSP/BIOS API as part of your application design. DSP/BIOS provides
the following methods of configuring your applications at design-time:

[DSP/BIOS Configuration Tool (graphical configuration). The
DSP/BIOS Configuration Tool is supported in Code Composer Studio
only for Microsoft Windows. Graphical configuration is described in
the DSP/BIOS User's Guide and in the online help for the DSP/BIOS
Configuration Tool.

4 DSP/BIOS TextConf (text-based configuration). For this method,
you use a text editor to write DSP/BIOS TextConf scripts. Command-
line utilities run and generate these scripts. The scripts use the
standard ECMAScript language (also known as JavaScript) and can
be edited and manipulated as you would ordinary source code. The
utilities are supported for Microsoft Windows and UNIX. This type of
configuration is described in this document.

Both configuration methods generate source, header, and linker
command files to be compiled and linked with your application.

The DSP/BIOS API also supports dynamic creation of objects at run-
time. Such objects are more flexible but increase performance overhead
and code size.

Design-time configuration provides the following benefits over run-time
configuration:

[Improves run-time performance by reducing the time your program
spends performing system setup.

1 Reduces program size by eliminating run-time code required to
dynamically create and configure objects. For a typical module, the
functions to create and delete objects make up 50% of the code in
the module.

([Optimizes internal data structures.

[Detects errors earlier by validating object properties before program
compilation.

[Automatically sets a variety of properties that are dependent on other
properties. This helps ensure that your configuration is valid.

[Provides object names the DSP/BIOS Analysis Tools can show at
run-time. Objects created at run-time are either not shown or have
generated names.

1-2

Figure 1-1.

DSP/BIOS Configuration Methods

As the following diagram shows, both the DSP/BIOS Configuration Tool
and DSP/BIOS TextConf generate a CDB (Configuration Data Base) file
and source, header, and linker command files. The generated files in
these processes are shown in gray. See Section 1.2.3, Configuration File
Types, page 1-8 for a description of these generated files.

DSP/BIOS Configuration Methods

IS B

System
Instrumentation save file
Scheduling
Synchronization
Input/Output

Chip Support Library

CcDB
Template

S SR = s e A

run script
Text Editor Wi.th tconf
CcCDB DSP/BIOS TextConf Script utility

prog.load (CDB template) ;
add objects
change properties
..more. ..
prog.gen("filename") ;

Template

CDB File

Linker) .) . Configuration | | Configuration
Command Configuration | | Configuration AEeem AEeem
File . . Source Header
(*cfg.cmd) (Fefg-h) (*efg_c.c) (*cfg.s#) (*cfg.hit#)

C Header C Source

Both configuration methods use the same CDB template files. DSP/BIOS
TextConf scripts are typically very short, because they define only the
differences between the template objects and the objects used by the
application. In contrast, CDB files define every object and property, even
those defined in the template.

Both configuration methods allow you to set properties for both
DSP/BIOS and Chip Support Library (CSL) modules. For information
about DSP/BIOS module properties, see the TMS320 DSP/BIOS API
Reference Guide for your platform. For information about CSL module
properties, see the appropriate CSL documentation.

Both configuration methods have advantages in certain development
environments. You can use either configuration method alone, or you can
switch between these methods to perform tasks in the environment best
suited to each task.

DSP/BIOS TextConf Overview 1-3

DSP/BIOS Configuration Methods

1.1.1 Why Use Graphical Configuration?

Using the DSP/BIOS Configuration Tool provides the following
advantages over DSP/BIOS TextConf:

@ The Windows Explorer-like interface makes it easy to see a list of the
available properties for each module and its objects.

[You are prevented from making a number of errors through drop-
down lists of valid values and through disabled commands and fields.

[Syntax errors cannot occur when generating configuration files.

1 You do not need to learn an additional scripting language.

1.1.2 Why Use DSP/BIOS TextConf?

Using DSP/BIOS TextConf provides the following advantages over the
DSP/BIOS Configuration Tool graphical interface:

4 Supported on both UNIX and Windows. (Graphical configuration is
not supported on UNIX.)

1 Supports a single configuration for systems containing multiple
boards, processors, or programs.

1 Uses the standard (ECMA-262) JavaScript language, which is C-like
in syntax. As a result, design-time and run-time object creation
statements are similar.

1 DSP/BIOS uses scripts as source files. These are much smaller and
easier to examine and maintain than the CDB files created by the
DSP/BIOS Configuration Tool. With DSP/BIOS TextConf, the CDB
files are still created, but they are not the original source files.

1 Makes it easy to see which target-specific template was used as a
starting point.

1 Separates application-specific settings from other configuration
settings, such as target-specific settings and ROM application
settings. This makes it easy to port applications and modules to other
target boards and platforms. It also makes it easier to maintain
applications because you can quickly see which settings are made
for target-specific reasons and which are made for application-
specific reasons.

1 Separates application-specific settings from DSP/BIOS configuration
settings. This simplifies moving to a newer (or older) version of Code
Composer Studio. In some cases, customers had to re-configure
applications manually in order to upgrade when only the graphical
configuration method was available.

DSP/BIOS Configuration Methods

Allows you to modularize settings you use in all applications from
application-specific settings. For example, if your applications all run
on a target with minimal memory, all applications can include a single
file that minimizes the DSP/BIOS memory footprint.

Enables use of standard code editing tools. For example, text-based
configuration makes it easier to merge changes from multiple
developers, compare configurations used by multiple applications,
cut and paste between program configurations, and perform
repetitive tasks such as creating several similar objects.

Supports branching, looping, and other programming constructs
within a configuration procedure.

Allows you to ensure that symbol definitions in the configuration and
program sources always match. You can do this by defining variables
for use in scripts and generating a C header file from the script to be
included by the program source code.

DSP/BIOS TextConf Overview 1-5

An Overview of DSP/BIOS TextConf

1.2

1-6

An Overview of DSP/BIOS TextConf

DSP/BIOS TextConf scripts contain statements in the JavaScript
language. These statements are executed to perform design-time
application configuration.

1.21 An Example TextConf Script

The CDB file for the hello application is about 500 KB. Examining this
configuration with the DSP/BIOS Configuration Tool would involve
browsing through each individual module and object. In contrast, the
equivalent TextConf script contains only a few lines, because it defines
only differences between template objects and the objects used by the
application.

For example, the following statements are the TextConf script for a
DSK6211 version of the Hello World example:

utils.loadPlatform("Dsk6211") ;
utils.getProgObjs (prog) ;

var trace = LOG.create("trace");
trace.buflLen = 32;
LOG system.buflLen = 128;

if (config.hasReportedError == false) {
prog.gen ("myApp") ;

else {
print ("An error has occurred.");

This script loads a target-specific CDB file containing the target type,
MEM objects and HWI objects and more. Loading this file is equivalent to
choosing a template with the DSP/BIOS Configuration Tool. Since this is
a separate statement, it is easy to make later changes to the target for
the application.

The script also creates a LOG object called "trace" and sets the buffer
length of two LOG objects.

After creating objects and setting properties, the script calls the
prog.gen() method to generate both a CDB file and source, header, and
linker command files to be used when compiling and linking the
application.

An Overview of DSP/BIOS TextConf

1.2.2 The Target Content Object Model (TCOM)

Modern scripting languages separate the language syntax from the
object model. This division is true of such languages as VBScript,
JavaScript, and TCL. The major benefit of this division is that the script
language can be standardized independently from its application domain.

Object models typically define a single top-level object designed to allow
navigation via an object hierarchy to all other objects. For example, in a
web browser, the object model is called the Document Object Model
(DOM) and the top-level object is the "window".

For DSP/BIOS TextConf, the object model is called the Target Content
Object Model (TCOM) and the top-level object is the Config object.

The DOM model cannot be used with DSP/BIOS TextConf, and the
TCOM cannot be used in a web page.

As with the DOM, the TCOM is a hierarchy of “container” objects. These
container objects may contain zero or more child objects. For example,
within each Program object, there is a Module container that contains an
array of Module objects.

The TCOM object hierarchy is shown in the following diagram.

Figure 1-2. Target Content Object Model (TCOM)

Config

Board

Memory

D = object
represents
hardware

Cpu
P | |- object
represents
Memory|l| Program software

The top-level Config object contains the entire configuration. Each object
class has methods and properties. The entire object tree can be
navigated by JavaScript statements.

DSP/BIOS TextConf Overview 1-7

An Overview of DSP/BIOS TextConf

1-8

Notice that a configuration can contain multiple Board objects, Boards
can contain multiple Cpu objects, and Cpu objects can contain multiple
Program objects. This extends the graphical configuration object tree,
which supports only one board, cpu, and program per configuration.

Several methods are provides for populating the hardware and software
portions of the object model. If you have a single Board, Cpu, and
Program, you can also use the utils.getProgObjs() method to define
global variables for all objects, which allows you to reference individual
objects by name without using the full object hierarchy notation.

See Section 2.1, Target Content Object Model Reference, page 2-2 for a
list of the properties and methods of each of these object classes.

1.2.3 Configuration File Types

The following file types are source files for DSP/BIOS TextConf:

[filename.tcf. TextConf File (TCF) containing a DSP/BIOS TextConf
script. If you follow certain optional conventions when naming this
file, properties that define your board and CPU type are set
automatically. See Section 1.5.7, Configuration Coding Guidelines,
page 1-29 for details about these conventions.

@ *.tci. TextConf Include (TCI) file. A script file included by the main *.tcf
file or by another *.tci file. A different file extension is used for
included files to support different handling of the main script and
included scripts by program build utilities, such as gmake.

[*.tcp. TextConf Platform (TCP) file. A script file that acts as a starting
point for applications by setting up target-specific objects. It defines
the hardware-related TCOM objects and loads a configuration
template. Typical TCF scripts begin by using the utils.loadPlatform()
method to load a TCP script. TCP scripts are provided with
DSP/BIOS TextConf for a number of common platforms.

[target.cdb. Configuration template files; also called a "seed files."
For example, evm62.cdb. These files are provided with DSP/BIOS as
starting points for configuring applications for various targets. They
can be loaded into a script with the prod.load() method or by loading
a platform (*.tcp) file.

[tconfini.tcf. DSP/BIOS TextConf startup file. See Section 1.5.9.1,
Startup Script Actions, page 1-35 for more information.

[tconflocal.tci. Optional customizable startup file. See Section
1.5.9.1, Startup Script Actions, page 1-35 for more information.

An Overview of DSP/BIOS TextConf

The following files are generated by the DSP/BIOS Configuration Tool,
the DSP/BIOS TextConf prog.gen() method, and the gconfgen
command-line utility. In these filenames, "##" is a 2-digit target instruction
set architecture (ISA—such as 55 or 64). It is generally recommended
(but not required) that "program" should match the target program output
filename in a Code Composer Studio project.

[program.cdb. Configuration Data Base (CDB) file. Stores
configuration settings for use by the DSP/BIOS Configuration Tool
graphical interface and by the DSP/BIOS Real-Time Analysis Tools.

1 programcfg_c.c. Source file to define DSP/BIOS and Chip Support
Library (CSL) structures and properties.

[programcfg.h. Includes DSP/BIOS module header files and
declares external variables for objects in the configuration file.

4 programcfg.s##. Assembly language source file for DSP/BIOS
settings.

1 programcfg.h#f#. Assembly language header file included by
hellocfg.s##.

1 programcfg.cmd. Linker command file.

In Code Composer Studio for Windows, you only need to add the
generated CDB file and linker command file to your project.

1.2.4 Command-Line Utilities

The following command-line utilities are used with DSP/BIOS TextConf.
For details about the command line syntax for these utilities, see Section
1.6, Command-Line Utility Reference, page 1-39.

a tconf. Runs DSP/BIOS TextConf scripts in one of three execution
modes.

1 cdbcmp. Compares one CDB file to the CDB template used to
create it or compares two CDB files. Generates a DSP/BIOS
TextConf script as output.

4 gconfgen. Generates source, header, and linker command files from
a CDB file.

On Solaris, the tconf and cdbcmp utilities are installed in the
<ccs_base_dir>/bin/utilities/tconf directory. On Windows, they are
installed in the <ccs_base_dir>\bin\utilities\tconf folder. You may want to
add this folder to your PATH variable so that you can run command-line
utilities without specifying the full path to the utility each time.

The gconfgen utility is installed in <ccs_base_dir>/plugins/bios on Solaris
and in <ccs_base_dir>\plugins\bios on Windows.

DSP/BIOS TextConf Overview 1-9

Using DSP/BIOS TextConf for New Applications

1.3 Using DSP/BIOS TextConf for New Applications

As the following diagram shows, typical DSP/BIOS TextConf scripts
begin by loading a CDB template, contain statements that add objects
and change properties, and then generate files to be used in building the
application.

Figure 1-3. File Flow for DSP/BIOS TextConf

Text Editor
CDB DSP/BIOS TextConf Script . .
Template utils.loadPlatform("template") ; run SC”PF with
add objects tconf utility
change properties
. .more. .. nf
prog.gen("filename") ; ——P tC.O.
Utility

Configuration
Assembly
Header
(*cfg.h##)

Linker Configuration

Configuration
CDB File || c°mMMand || ¢ gource || ASsembly

Configuration

File Source © [eacr

(*cfg.cmd) (*efg_c.c) (*cfg.st#) ("efg-h)

D = generated or provided file

D = edited file

Use the procedures described in the following sections to write, test, and
run DSP/BIOS TextConf scripts. If you have existing CDB files that you
want to convert to scripts, see Section 1.4, Migrating Applications to
DSP/BIOS TextConf, page 1-15.

utils.getProgObjs(pro
g);

Using DSP/BIOS TextConf for New Applications

1.3.1 Creating a Script for a New Application

To write a DSP/BIOS TextConf script from scratch, follow these steps:

1)

5)

Create a text file with an extension of .tcf.

If you follow certain optional conventions when naming this file,
properties that define your board and CPU type are set automatically.
See Section 1.5.7, Configuration Coding Guidelines, page 1-29 for
details about these conventions.

Type the following line as the first statement in the file, where
Platform matches the name of a *.tcp file that defines objects for
your hardware platform. TCP scripts are provided with DSP/BIOS
TextConf for a number of common platforms. You can create a
custom TCP file if you are using custom hardware. Tl supplies
platform files for most boards supported in Code Composer Studio.
These are located in tconfiinclude. See Section 1.5.10, Creating a
Platform File, page 1-37 for creating platform files.

utils.loadPlatform("Platform") ;

If your application will contain only one Board, Cpu, and Program,
type the following statement. This method creates global variables
that simplify references to Module and Instance objects.

Type the following line as the last statement in the file. It is generally
recommended (but not required) that program should match the
filename of your target output file. The prog.gen() method generates
the appropriate CDB, source, header, and linker command files for
use in building your application.

prog.gen ("program") ;

Add additional script statements to the file between the statements
you typed in steps 3 and 4.

The method used to specifying the platform in this script is best for simple
situations in which you are not testing programs on multiple platforms or
expecting to port programs to other platforms. For more sophisticated
ways to connect programs and platforms, see Section 1.5.8, Specifying
the Hardware Platform, page 1-30.

DSP/BIOS TextConf Overview 1-11

Using DSP/BIOS TextConf for New Applications

1.3.2 Debugging DSP/BIOS TextConf Scripts

As with other types of program development, creating a DSP/BIOS
TextConf script is an iterative process. You edit the script with a text editor
and test it with the tconf utility. As a result of testing, you may edit the
script again.

Figure 1-4. File Flow for DSP/BIOS TextConf Debugging

D = generated or provided file

tconfini.tcf
File D - edited file

v

Text
Editor

)

program.tcf
File

> tc.o-nf ||
Utility

CcDB
Template

The tconf utility provides three operation modes: the interactive
debugging shell (Section 1.3.3, Using the Interactive Debugging Shell,
page 1-12), the GUI debugger (Section 1.3.4, Using the GUI Debugger,
page 1-14), and command-line mode (Section 1.6.1, tconf Ultility, page 1-
39). In any mode, if the script uses the prog.gen() method, the CDB,
source, header, and linker command files are generated for use in
building your application files. If the script uses the prog.save() method,
only the CDB file is generated.

1.3.3 Using the Interactive Debugging Shell

The tconf utility provides an interactive JavaScript debugging shell. You
enter the interactive shell if you use the tconf command without
specifying a script or using the —g option.

The command-line syntax for the interactive debugging shell is as
follows:

tconf [-Dname=value] [-js <jsshell opts>]

Using DSP/BIOS TextConf for New Applications

You can run a script from the interactive shell using the built-in load()
method. For example:

% tcont
je> load("foo.tcf")

For each line or group of lines that constitutes a complete expression,
complete statement, or complete statement block, the debugging shell
displays the result on the next line.

For example, a portion of a debugging session might look like the
following. (In this example, the target platform is the DSK6211.)

[}

% tconf

js> utils.loadPlatform("Dsk6211")
js> board 0 = config.boards() [0];
[object Board:board 0]

js> board 0.cpus() [0] .attrs.cpuCore
6200

js> prog instanceof Program

true

You can also print the value of an expression using the print() method:

js> textvar = “hello world”;
js> print(textvar);

To load the contents of a script file into the JavaScript environment, use
a command like the following:

load("filename.tci") ;

Any statements in the loaded file that are not contained within a function
run when the file is loaded. Functions in the loaded file become available
for execution by other statements.

To exit from the interactive shell, type quit or press CTRL+C. The quit
command cannot be executed in a DSP/BIOS TextConf script; it is only
available in the interactive shell.

The keywords quit and exit are reserved for future use in DSP/BIOS
TextConf.

DSP/BIOS TextConf Overview 1-13

Using DSP/BIOS TextConf for New Applications

1.3.4 Using the GUI Debugger

Rhino is an open-source implementation of JavaScript written entirely in
Java (http://www.mozilla.org/rhino). It is installed on your workstation or
PC along with the DSP/BIOS TextConf software.

Then, you can enter the Rhino debugger using the following command:

tconf -g

In the Rhino environment, you can use File->Run to run a script file.
Output from the print() statement is displayed in the JavaScript Console
window. You can Step Into and Step Over script functions. This debugger
also allows you to watch variables, evaluate arbitrary expressions, and
view the current context for the "this" variable and local variables.

Figure 1-5. Rhino GUI Debugger Window

[23 Rhino JavaScript Debugger Hi=] E3
File Edit Debug Window
|Gu||5ten Into ||5ten Cwer ||5’ten Dut|

demo_evmbG2cfo.tcl JavaScript Console

alnject Program:demo_evm6Z] loading CDE

* confiquration files necessary to bu e

* for the EVMcZ platform.

*

*! Fewizion History

printiprog + " loading CDE file ...
utilz. loadl3eed|"evnes. cdb™) ;
ldc:printiprog + ™ loaded.™);

© Context: |“demo_evm62cfg.ct™, line 14 v % SWl.instances(] =l
[object Instance:ENL swi],[object I
Mame | . Value matance: PED_swi]
g gggm :ﬂgg:g: gggéﬁ;ﬂ;--" % SWI.instance("FRD_swi”).priority; [0
. 2 &
B CLK [object Module:CLK] R [
(P ccoiciic Lednicet Cmfior e mndfie = >

| tnis |Locals |Watch | Evaluate |

Thread: Thread[main,5,main]

Migrating Applications to DSP/BIOS TextConf

1.4 Migrating Applications to DSP/BIOS TextConf

If you have existing CDB files that you want to convert to scripts, use the
procedures in this section. Use the procedures described in Section 1.3,
Using DSP/BIOS TextConf for New Applications, page 1-10 to write, test,
and run DSP/BIOS TextConf scripts.

1.41 Creating a DSP/BIOS TextConf Script from a CDB File

If you have an existing CDB file, you can convert that file to a DSP/BIOS
TextConf script using a command like the following:

cdbcmp demo.cdb > demo.tcft

This command finds the original CDB template used to create the
demo.cdb file. It compares the demo.cdb file to the template and creates
a script with statements to load the template file and to define objects and
properties that are different from those in the template.

Figure 1-6. File Flow for cdbcmp Utility

cDB
Template

. tcf File
CDB File - Cdb_c_mp —® prog.load (CDB template) ;
Utility add instances
change property values
DSP/BIOS T .
Configuration prog.save (file.cdb) ;

Tool 0

Note: Order Dependencies in Generated Scripts

Some object classes have order dependencies, and you may need to
modify the sequence of statements in the output script to get the script
to run without errors. For example, an object may be referenced in a
statement before it is created. Such errors are usually fairly easy to
diagnose based on the JavaScript error and a visual inspection of the
script. To correct such errors, move the statement that creates the
object before the statement that references the object.

DSP/BIOS TextConf Overview 1-15

Migrating Applications to DSP/BIOS TextConf

1.4.2 Comparing Configurations

To view changes made between two versions of a CDB file or to compare
CDB files for two applications, use a command like the following:

cdbemp vl/demo.cdb v2/demo.cdb

This command compares the two CDB file and creates a script with
statements that would convert the first configuration to the second.

1.4.3 Merging Configurations

To merge changes to CDB files made by two developers, use commands
like the following:

cdbcmp a/demo.cdb > demo_a.tcf
cdbcmp b/demo.cdb > demo b.tcf
sdiff -o demo.tcf demo a.tcf demo b.tcf

These commands create two script files that define differences between
the configurations and their templates. The sdiff UNIX command (and
similar commands on UNIX and other platforms) allows you to merge the
statements in the two DSP/BIOS TextConf script files without including
duplications.

For example, configurations may need to be merged if one developer is
working on a driver while another is working on thread scheduling.

JavaScript Language Highlights

1.5 JavaScript Language Highlights

This document does not provide details on the syntax of the JavaScript
language. However, several concepts are important when using
JavaScript for DSP/BIOS TextConf. This section provides an overview of
such concepts. See Section 1.5.11, JavaScript and Java References,
page 1-38 for JavaScript reference sources.

1.5.1 JavaScript Language Overview

JavaScript syntax, operators, and flow-control statements are similar to
those in the C language. C programmers can easily read JavaScript. It
includes if, else, switch, break, for, while, do, and return statements.

JavaScript is a loosely-typed language. Variables in JavaScript are more
flexible than variables in C or Java. Variables do not need to be explicitly
declared, and the same variable can alternately store any data type.
These types are number, string, Boolean value, array, object, function
(which is actually an object itself), and null. Operators automatically
convert values between data types as necessary.

Variables can be local to a function or global to the entire JavaScript
environment. Variable and object names may not contain spaces or
punctuation other than "_" or "$". In addition, variable and object names
can include numbers but must not begin with a number.

JavaScript does not have pointers and does not deal with memory
addresses.

1.5.2 Common Misconceptions About JavaScript

If you've used JavaScript before, you have probably added scripts to a
web page. It's important to clear up misconceptions some programmers
may have about JavaScript when used outside the context of web pages:

[JavaScript is a general-purpose, cross-platform programming
language. While it was developed for use in web-browsers, it has a
number of features that make it useful for application configuration. It
is easy to learn and use, the syntax is similar to C, it is object-
oriented, and it is widely documented.

[JavaScript is standardized. The language is also called ECMAScript,
and the ECMA-262 standard defines the language (see
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM). The basic
syntax and semantics of the language are stable and standardized.

[When you use JavaScript in a web page, the objects you use are
defined by the Document Object Model (DOM). These objects

DSP/BIOS TextConf Overview 1-17

JavaScript Language Highlights

include window, document, form, and image. The DOM is not part of
the JavaScript standard; nor is the DOM part of DSP/BIOS TextConf.

[Other object models can be defined for use with JavaScript. Instead
of the DOM, DSP/BIOS provides the Target Content Object Model
(TCOM), with object classes that include Board, Cpu, and Module.

[JavaScript is not a part of Java. These are two different languages
that have similar names for historical marketing reasons. However,
DSP/BIOS TextConf does allow scripts to call Java functions to
provide file services. JavaScript itself does not provide file services
for security reasons on web browsers.

1 DSP/BIOS runs JavaScript only on the host PC or UNIX machine.
JavaScript code is never run on the target DSP.

1.5.3 Objects and Properties in JavaScript

JavaScript is object-oriented. The object model is separate from the
JavaScript language, but object handling syntax is part of the language.

Objects have properties to define their characteristics. Such properties
are actually variables local to the object. You access properties using the
dot (.) notation. For example, use config.hasReportedError to refer
to the hasReportedError property of the Config object.

Objects also have methods that define actions the object can perform.
Methods are also accessed using the dot notation. For example,
config.destroy () deletes the Config object. Such methods are
actually functions that are local to the object.

The Target Content Object Model (TCOM) defines object classes that
contain an array of zero or more objects. For example, within each Board
object, there is a cpu container that contains an array of Cpu objects. You
can use the bracket ([]) notation or the name of an object to reference
an individual object. For example, these notations all reference the
endian property of a Cpu object:

config.boards () [0] .cpus () [0] .endian
config.boards () ["board 0"].cpus() ["cpu 0"] .endian

If global variables have been declared for board_0 and cpu_0, then the
following additional expressions reference the same property:

board 0.cpus() [0] .endian
board 0.cpus() ["cpu 0"] .endian
cpu_0.endian

JavaScript Language Highlights

You can use the utils.getProgObjs() method to create global variables
that reference all Module and Instance objects after you load a
configuration from a CDB file. This simplifies object references as shown
by the following references to the LOG_system instance:

[Full reference path:

config.boards () [0] .cpus () [0] .programs () [0] .module ("LOG") .instance ("LOG_system")

1 Reference path using the prog variable automatically created to
reference the first Program object:

prog.module ("LOG") .instance ("LOG_system")

1 Reference path set up using a second parameter with the
utils.getProgObjs() method.

gvars = {};
utils.getProgObjs (prog, gvars) ;
gvars.LOG system

[Reference path set up using the utils.getProgObjs() method with no
second parameter.

utils.getProgObjs (prog) ;
LOG_system

Most code examples in this document assume that the
utils.getProgObjs() method was used with no second parameter to create
global variables for all Module and Instance objects.

Many methods expect an object as a parameter or return an object.
When an object is assigned to a variable, that variable internally contains
a reference to the object. Objects are not copied when they are assigned;
they are stored in one place and referenced by variables. Thus, if multiple
variables reference an object, changes to the object made via one
variable affect the same object when referenced by another variable.

Some methods return an array of objects. Standard array properties,
such as length, can be used with arrays of objects. For example, this
statement gets the number of objects in the TSK.instances() array:

numtasks = TSK.instances () .length

These statements create a string listing the names of all Module objects:
list = "";

modules = prog.modules() ;

for (i = 0; i < modules.length; i++) {
list += modules[i] .name + " ";
}

DSP/BIOS TextConf Overview 1-19

JavaScript Language Highlights

1-20

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods, such as join(), sort(), and
reverse(), to sort lists of objects. For example, this statement sets a
variable to an array of Instance objects with their names in ASCII order:

alphatasks = TSK.instances() .sort ()

1.5.3.1 Module and Instance Property Names

Normally, all objects in a class have the same set of properties. However,
each type of Module and Instance object has a different set of properties.
Therefore, DSP/BIOS TextConf handles the properties of Module and
Instance objects differently than those of other object classes.

In the DSP/BIOS Configuration Tool, the Property dialogs display these
properties. Each field in these dialogs is mapped to a property name for
use in DSP/BIOS TextConf scripts. The names are listed in Section 2.2,
DSP/BIOS Module and Instance Property Names, page 2-34.

You can set and get these property values as you would with properties
of other object classes. For example, the following statement sets the
size of the LOG_system buffer. (The following examples assume the
utils.getProgObjs() method was used to create global variables for all
Module and Instance objects.)

LOG_system.buflLen = 16;

In general, property names of Module objects are in all uppercase letters.
For example, "MEM.STACKSIZE". Property names of Instance objects
begin with a lowercase word. Subsequent words have their first letter
capitalized. For example, "TSK _idle.stackSize".

1.5.3.2 Property Types

Section 2.2, DSP/BIOS Module and Instance Property Names, page 2-
34 lists the type of value expected for each property and identifies
properties used only for certain DSP platforms. Most types are
automatically converted to and from the corresponding JavaScript type.

4 Arg. Arg properties hold arguments to pass to program functions.

4 Bool. CDB files store Boolean (true/false) values as 1 for true and 0
for false. JavaScript handles both Boolean and integer values. You
may use JavaScript to assign either a true value or an integer 1 value
to a Boolean Module or Instance property in order to set it to true. Do
not set a Boolean value to the quoted string "true" or "false".

For example, both of these statements disable use of the CLK
manager to drive the PRD tick:

JavaScript Language Highlights

PRD.USECLK
PRD.USECLK

0;
false;

@ Enumint. Enumerated integer properties accept a set of valid integer
values. These values are displayed in a drop-down list in the
DSP/BIOS Configuration Tool.

[EnumsString. Enumerated string properties accept a set of valid
string values. These values are displayed in a drop-down list in the
DSP/BIOS Configuration Tool.

1 Int16. Integer properties hold 16-bit unsigned integer values. The
value range accepted for a property may have additional limits.

[Extern. Properties that hold function names use the Extern type. In
order to provide a function label, use an Extern object (for "external
declaration") in JavaScript. All Extern objects within a Program object
must have unique names.

Extern objects may be defined as asm, C, or C++ language symbols.
The default language is C.

For example, the following statements create Extern objects for
program functions or get the specified object if it already exists. They
assign the object to the specified property.

task0.fxn = prog.extern ("audioFxn", "C");
SYS.ABORTFXN = prog.extern("error") ;

1 Int32. Long integer properties hold 32-bit unsigned integer values.
The value range accepted for a property may have additional limits.

1 Numeric. Numeric properties hold either 32-bit signed or unsigned
values or decimal values, as appropriate to the property. When
comparing non-integer values, use sufficient digits after the decimal
point to match the actual value stored as a Numeric value. For
example, if the value of myFloat is 3.456789, the following
comparison would evaluate as false:

if (myFloat == 3.4568) { /* FALSE */

}

[Reference. Properties that reference other objects contain an object
reference. For example, properties that specify a MEM segment
reference an Instance object contained by the MEM Module object.
The following statement gets a reference to a MEM Instance and
assigns it to the SWI Object Memory property:

SWI.OBJMEMSEG = MEM.instance ("EDATA") ;
([String. String properties hold text strings.

DSP/BIOS TextConf Overview 1-21

JavaScript Language Highlights

1-22

1.5.3.3 Namespace Management

A namespace is the context within which all variables must have unique
names. Program objects define a global namespace for all objects
contained within the Program object. As a result, all Module, Instance,
and Extern objects within a Program object must have unique names.

For example, if the first statement is performed, the second statement
fails because the name "audio" is already used.

prog.module ("SWI") .create ("audio") ; /* OK */
prog.module ("PIP") .create ("audio") ; /* fails */

Any object in a namespace can be retrieved by name. This simplifies
object lookup in scripts. For example, these statements look for an object
named "audio" and check to see whether it is an Instance object before
modifying a property.

In the following example, “instanceof” is a JavaScript operator that
returns true if the object is of the specified class. “Instance” is the name
of a class.

audio = prog.get ("audio") ;

if (audio instanceof Instance) {
audio.priority = 1;

}

1.5.4 Built-in Variable Arrays

DSP/BIOS TextConf provides several built-in arrays of variables that are
set automatically or based on options in the tconf command line. These
arrays are the environment[] array and the arguments|] array.

1.5.4.1 Environment Array Variables

DSP/BIOS TextConf creates an array called "environment" and
automatically defines a number of variables within that array. Additional
variables may be added to the array using the -D option on the tconf
command line. See Section 1.6.1, tconf Utility, page 1-39 for information
about command-line options.

These variables can be used by scripts to obtain information about file
names, file locations, and the hardware platform. For example, the
following statement gets the name of the script file passed to the tconf
utility on the command line.

myScript = environment ["config.scriptName"];

JavaScript Language Highlights

environment ["config.tiRoot"]. Contains the top-level directory
location of the Code Composer Studio installation. If the installation
directory can not be determined, this variable is not defined.

environment ["config.rootDir"]. Contains the directory location
of the executable file for the tconf utility. This location is typically
<ccs_base_dir>\bin\utilities\tconf. This variable is always defined.

environment ["config.scriptName"]. Contains the name of the
script passed to the tconf utility on the command line. This variable is
always defined. If no script was passed, this variable is set to an
empty string ("").

environment ["config.path"]. Contains the set of directories used
to locate DSP/BIOS TextConf components (including the tconf
executable, the necessary import files, and DLLs). This variable is
always defined. This path may be added to using the -p option on the
tconf command line.

environment ["config.importPath"]. This variable may be
defined as a search path using the -D option on the tconf command
line. If it is defined, the utils.importFile function uses the specified
search path to use to locate files. If this variable is not defined,
utils.importFile looks in the current directory. (In either case,
utils.importFile looks in the environment ["rootDir"]\include
directory after using the search path or the current directory.) For
example:

tconf -Dconfig.importPath=d:\myproject\include

environment ["config.compilerOpts"]. This variable may define
the compiler options used to build the program. The options that may
be specified are -me (big endian), -ml (large data model) and -mf (far
code model). If this variable is defined, it sets a corresponding
property of the Program object. For example, the following specifies
that the program is compiled in big-endian mode:

tconf -Dconfig.compilerOpts="-me"

environment ["config. arch 1. A variable of this format may be
defined using the -D option on the tconf command line, where arch
may be 28, 54, 55, 62, 64, or 67. If such a variable is defined, it
specifies the CPU architecture. Since the CPU is specified by the
variable name, the variable need not be set to a value. For example:

tconf -Dconfig. 54

environment ["config.platform"]. A variable of this format may
be defined using the -D option on the tconf command line. The
variable should be set to one of the valid board_types for the create()
method of the config object. If this variable is defined, it may be used

DSP/BIOS TextConf Overview 1-23

JavaScript Language Highlights

1-24

by the startup procedure to populate the hardware-related portion of
the object model. For example:

tconf -Dconfig.platform=Dsk6211

1.5.4.2 Argument Array Variables

DSP/BIOS TextConf creates an array called "arguments" and
automatically stores in it arguments passed to the script on the tconf
command line. These variables can be used to modify the behavior of a
script depending on the command line used to run it.

For example, suppose a command line like the following is used:

tconf myscript.tcf 4 2 1

The following statements could then be used in myscript.tcf to set
variables used when creating various DSP/BIOS objects:

numOfTasksToCreate = arguments[0];
numOfReaders arguments [1] ;
numOfWriters arguments [2] ;

1.5.5 File Interaction and I/0 Methods

DSP/BIOS TextConf provides the methods described in the following
sub-sections for working with script files, configuration files, other files,
and output to stdout.

Directory paths specified in JavaScript statements can use either "\" or
"/" as a directory separator.

1.5.5.1 Methods for Loading Scripts

A DSP/BIOS TextConf script can load another script file. When a script
file is loaded, any statements outside functions run, and the functions
defined in the loaded script are available to be called by the script that
loaded the file.

DSP/BIOS TextConf provides the following methods for loading script
files:

[load(). An extension to JavaScript that runs JavaScript statements in
any file. The file path and full filename must be specified. For

example:

load ("..\\..\\project\\includes\\file.tci");
or

load("../../project/includes/file.tci");

JavaScript Language Highlights

[utils.importFile(). A utility method that attempts to find and load the
specified file using a search path. For example:

utils.importFile ("minFootprint") ;

If you do not specify a file extension, this function looks for the
specified file with an extension of .tci. If the config.importPath
variable was defined using the -D option on the tconf command line,
utils.importFile() first looks in the directories in that search path. If the
config.importPath variable was not defined, utils.importFile() looks
first in the current directory. If the file is not found, utils.importFile()
then looks in the \include subdirectory of the directory that contains
the tconf executable.

[utils.loadArch(). A utility method that loads a CPU architecture file.
This utility is typically used within a platform definition file when
creating a Cpu object. For example:

/* Create new cpu object */
config.board("dsk5402") .create("cpu 0",
utils.loadArch("5402")) ;

[utils.loadPlatform(). A utility method that loads a platform definition
file (.tcp). Such platform definition files contain scripts that create the

Config, Board, and Cpu objects for the hardware platform. They also
load the CDB template file for that platform. For example:

utils.loadPlatform("Dsk6211") ;

This function looks for the specified file in the same locations as the
utils.importFile() method. A number of pre-defined platform definition
files are provided in the \include subdirectory of the directory that
contains the tconf executable. You can create custom platform
definition files by using the provided files as examples.

1.5.5.2 Methods for Working with CDB Files

DSP/BIOS TextConf provides these methods for working with CDB files.

[prog.load(). A method of Program objects. This method reads the
specified CDB file and populates the Target Content Object Model
with the modules and instances named in the CDB file. It assumes
the Config, Board, Cpu, and Program objects have already been
created. Provide a relative path to the file from the current directory
or the full path. For example:

prog.load("test/mytemplate.cdb") ;

DSP/BIOS TextConf Overview 1-25

JavaScript Language Highlights

Another way to load a CDB file is to use the utils.loadPlatform()
method described in Section 1.5.5.1, Methods for Loading Scripts,
page 1-24.

utils.findSeed(). A utility method that returns the full path of the
specified CDB file. This utility looks for the file in the
<ccs_base dir>\c##H#H\bios\include directories. If it cannot find the
file, it returns null. For example:

location = utils.findSeed("sim55.cdb") ;

utils.getProgObjs(). A utility method that creates a global variable
for every Module and Instance object in the specified Program object.
Using this method simplifies the syntax required to reference Module
and Instance objects. For example, the standard syntax to reference
the bufLen property of the LOG_system object is:

prog.module ("LOG") .instance ("LOG_system") .bufLen

The first parameter for this method is the Program object for which
you want to create variables. The second parameter is an optional
variable name to act as a container for the set of global variables. If
you omit the second parameter, the global variables are standalone
variables with no container.

For example, these statements show the simple case in which there
is one program object and the second parameter is omitted:

utils.getProgObijs (prog) ;
LOG_system.buflLen = 128;

If two Program objects are referenced by the prog 0 and prog_1
variables, you can use statements like the following:

vars0 = {};
varsl = {};
utils.getProgObjs (prog 0, varsoO) ;
utils.getProgObjs (prog 1, varsl);

512;
128;

vars0.LOG_system.bufLen
varsl.LOG_system.bufLen

Most code examples in this document assume that the
utils.getProgObjs() method was used with no second parameter to
create global variables for all Module and Instance objects.

1.5.5.3 Methods for File Manipulation

For security reasons, JavaScript does not provide any file services. In a

web browser, the lack of file services prevents most forms of file access
on your computer. In DSP/BIOS TextConf, file services are provided

1-26

JavaScript Language Highlights

through the Rhino JavaScript interpreter via LiveConnect. The
implementation provides unrestricted use of the java.io package.

Calls to the java.io library from a script look just like JavaScript function
calls. Only the function called is written in Java. For example, these
statements return the path to a file if it exists:

var file = new java.io.File(fileName) ;
if (file.exists()) {

return (file.getPath());
}

For documentation of the java.io package, see version 1.3.1 of the Java
2 SDK documentation at http://java.sun.com/j2se/1.3/docs. In particular,
see the java.io page at
http://java.sun.com/j2se/1.3/docs/api/javal/io/package-summary.html.

1.5.5.4 print() Method

The print() method is an extension to JavaScript that sends the result of
the expression passed to the method to the stdout location. Within the
Rhino environment, output from the print() statement is displayed in the
JavaScript Console window.

In this example, if any array of objects has been assigned to obj, these
statements print a list of the objects in the array.

for (var i in obj) {
print ("obj." + i + " = " + obj[i])

This example uses the print() method to get an array of Board objects and
print a list of all the Board objects:

boards = config.boards() ;

for (i = 0; i < boards.length; i++) {
print ("board[" + i + "] = " + board[i] .name) ;
}

1.5.6 Error Handling

Three levels of errors are reported by the host configuration objects.
From least to most significant, the levels are:

4 Warning. Probable but unconfirmed error, action completed.

Warnings are disabled by default, but can be enabled with the
config.warn() method or the —w command-line switch. Warnings are
written to the stderr location if they are enabled.

DSP/BIOS TextConf Overview 1-27

JavaScript Language Highlights

1-28

d Error. Confirmed error, action failed.

The error status of a script is tracked by the config.hasReportedError
property. Error messages are always written to the stderr location.

[Exception. Confirmed error, action failed, non-local return.

Scripts can throw exceptions. Exceptions thrown by a script or TCOM
object can be caught in a script. Uncaught exceptions cause a script
to terminate execution. Exceptions are always written to the stderr
location, even if they are caught by a script.

In the interactive debugging shell, stderr messages are shown as
separate lines without the js> command prompt. In the GUI debugger,
stderr messages are shown in the JavaScript Console window.

The exit status from the tconf utility is 0O (success) unless a script
specified on the command line could not be run (for example, because
the file was not found). If the script runs and results in errors, the tconf
exit status is non-zero.

1.5.6.1 More About Errors

If an error occurs, the config.hasReportedError property is set to true. A
script can check this property to determine whether one or more errors
has occurred. Error messages are always written to the stderr location.

The following example uses the config.hasReportedError property to
determine whether an output configuration file should be generated.

if (config.hasReportedError == false) {
prog.gen ("myApp") ;

else {
print ("An error has occurred.");

}
1.5.6.2 More About Exceptions

To throw an exception, scripts use the "throw" keyword. This example
throws an exception if the lowest-priority task is not the TSK_idle task.
The exception goes to stderr.

JavaScript Language Highlights

function increasingPri(a, b)

{
}

tasklist = prog.module ("TSK") .instances() ;
tasklist.sort (increasingPri) ;

return(a.priority - b.priority);

if (tasklist[0] .name != "TSK idle") {
throw new Error ("Idle task should be lowest priority!");
}

To catch an exception, a script can use a “try-catch” block. The syntax for
such a block is as follows:

try
// something that might throw an exception //
}

catch (e) f{
// e is the error object thrown //
}

For example, the following statements attempt to load a JavaScript file. If
the file does not exist, an exception is thrown. When the exception is
caught, a message is sent to stderr and the script continues executing. If
this script did not catch the exception, the script would terminate
execution when the exception occurred.

try {
fileName = prog.name + " test.tci";

load (fileName) ;

catch (e) {
throw new Error(e + "\nNo " + fileName + " file.");

}

1.5.7 Configuration Coding Guidelines

When using DSP/BIOS TextConf, we recommend using the following
coding conventions.

4 Name program-level scripts: program boardcfg.tct

where programis the name of the program, and board is the name
of the target board. This allows the tconfini.tcf startup script to
initialize the Board, Cpu, and Program objects correctly. For other
ways to define the platform, see Section 1.5.8, Specifying the
Hardware Platform, page 1-30.

[Use a file extension of . tci for scripts included by the main script.

DSP/BIOS TextConf Overview 1-29

JavaScript Language Highlights

1-30

A different file extension is recommended for included files to support
different handling of the main script and included scripts by program
build utilities, such as gmake.

[Split configuration scripts into pieces that match the modules. This
allows re-use of scripts wherever a module can be reused.
Conceptually, each module now includes configuration script(s).

[Name module-level scripts: mod. tci

where mod is the module name. This enables one module's script to
import another's with the load() method.

([Treat the main program as a module. Create a module-level script
called program.tci that imports other scripts as necessary. This
enables rapid porting to new boards by minimizing configuration
script changes.

[Split module-level scripts into platform-dependent and platform-
independent parts. This minimizes code duplication and simplifies
porting to new platforms. The platform-independent part should
include the appropriate platform dependent part. If no appropriate
platform-dependent part exists, throw a meaningful exception.

(4 Name platform-dependent scripts: mod _boardcfg.tci

This prevents file name collisions with other modules.

1.5.8 Specifying the Hardware Platform

To configure programs with DSP/BIOS TextConf, you define both the
hardware execution platform and the software components used in the
program. This section describes methods for "binding" the program and
the platform within DSP/BIOS TextConf scripts in portable ways. For
information on creating a platform definition file (*.tcp), see Section
1.5.10, Creating a Platform File, page 1-37.

In all but the simplest development environments, it is important to write
portable configuration scripts. Such scripts can be used without
modification to re-target a program for a different platform. For example,
an algorithm test may need to be run on both a simulator and a hardware
development board. Portability is especially valuable when maintaining
hundreds of tests in a regression test suite.

In order to create portable configuration scripts, you must separate the
platform specification (that is, initialization of hardware objects) from the
program's software configuration. Fortunately, DSP/BIOS TextConf
supports a number of common mechanisms for creating re-usable
configuration scripts. Such mechanisms include the ability to dynamically

JavaScript Language Highlights

load configuration scripts from other scripts, subroutines, environment
variables, and user-modifiable startup scripts.

Several methods of creating portable scripts are presented in this
section. Table 1-1 compares the advantages and disadvantages of each
method. To choose a method, determine how many programs need to be
maintained, how many platforms need to be supported, and whether
platforms must be supported simultaneously by the same program. Also
consider your build environment. Mature development environments
(with regression test suites, support for multiple hardware generations,
and multiple DSP programs) often use a combination of these methods.

Table 1-1. Comparison of Portable Configuration Methods

Resulting For For Large For Selected
Script is Simultaneous Suites of Platforms and
Platform Specification Method Portable Multi-Platform Programs Programs
Specifying the Platform in the Script, no yes no yes
page 1-31
Specifying the Platform on the Command yes no yes no
Line, page 1-32
Specifying Platform and Directory on the yes yes yes no
Command Line, page 1-33
Specifying the Platform in the Script File yes yes no yes

Name, page 1-33

1.5.8.1 Specifying the Platform in the Script

The most direct way to specify the execution platform is to explicitly
create the hardware-related objects within the configuration script itself.
For example, one can use statements like the following hellocfg.tcf
example to create the Config, Board, and Cpu objects within a
configuration script.

/* create platform-specific objects */
utils.loadPlatform("Dsk6211") ;

/* load platform-independent software config */
utils.importFile("hello.tci");

/* generate configuration files for the program */
prog.gen() ;

To port this configuration to a new execution platform, you would modify
the board name literals that appear in this script. More sophisticated

DSP/BIOS TextConf Overview 1-31

JavaScript Language Highlights

1-32

platforms, such as multi-processor platforms, may require more
extensive changes.

1.5.8.2 Specifying the Platform on the Command Line

While it is natural to expect to modify the configuration script when porting
to alternative execution platforms as described in Section 1.5.8.1,
Specifying the Platform in the Script, page 1-31, it may be inconvenient if
you change platforms frequently.

Suppose, for example, that you have more developers than physical
boards. To use a simulator as a alternative test platform, you would need
to create two configuration scripts or repeatedly edit the configuration
script to move between the simulator and real hardware. Creating two
nearly-identical scripts results in a code maintenance problem; one must
ensure that changes to one file are duplicated in the other. To avoid this
problem, you need to "parameterize" the configuration script to support
either platform. This allows all developers to use the same script.

The tconf utility allows you to specify the platform on the command line
by defining the config.platform environment variable. This variable is
available to the script executed in the environment array.

For example, to make the script in the previous section platform-
independent, the configuration script can be re-written as follows:

utils.loadPlatform(environment ["config.platform"]) ;
utils.importFile("hello.tci");
prog.gen() ;

Then, the following command line would generate the configuration for
the hello example for the Dsk6211 platform:

tconf -Dconfig.platform=Dsk6211 hellocfg.tcf

Because the hellocfg.tcf file no longer contains any hardware-specific
information, you only need to change the tconf command line to port the
example to an alternative platform.

This method makes it easy for multiple developers to use common
sources to build for different platforms. This method also works well when
a large number of programs need to run on a single platform. For
example, suppose a regression test suite consists of a large number of
programs that need to be re-targeted to a single execution platform. If the
build system for this test suite is parameterized to pass the platform name
to the tconf command lines, re-targeting the entire suite is as simple as
naming the target platform in the build command line.

JavaScript Language Highlights

1.5.8.3 Specifying Platform and Directory on the Command Line

Notice that hellocfg.tcf generates the configuration files in the current
working directory (typically the directory containing the .tcf file). Since the
names of the configuration files are derived from the configuration script
name, this script would overwrite the files for one platform with the files
for another platform if a build system ran the script twice with different
command line parameters.

To avoid overwriting files, a script can specify an output directory for the
configuration files based on the platform parameter passed to the script.
For example, the hellocfg.tcf configuration script can be re-written as
follows:

utils.loadPlatform(environment ["config.platform"]) ;
utils.importFile("hello.tci");
prog.gen (environment ["config.platform"] + "/

+ prog.name) ;

In this example, the generated configuration files are placed in a sub-
directory of the current working directory. Thus, a single build system can
generate configuration files for later execution on multiple platforms using
this single script.

Notice that the slash (/') character is used to separate the directory name
from the rest of the file name. Since this character works on both
Windows and UNIX platforms, the script above can be used on either
platform without modification.

1.5.8.4 Specifying the Platform in the Script File Name

The technique of specifying the platform with a command-line parameter
works well when all programs can run on the full set of platforms. If,
however, you maintain a collection of programs that can each be
executed on different a subset of platforms, it is natural to create scripts
with names that include both the program name and the platform name.
This makes it easy to identify which configuration files relate to a specific
platform and identify which platform can execute each generated
program. More importantly, it also provides a simple way to specify which
combinations of program and platform are valid.

The sample tconflocal.tci startup file examines the name of the
configuration script. If it is of the form program_platformcfg.tcf, where the
program name is program and the execution platform is specified as
platform. Thus, the following tconf command lines generate the files
necessary for the Dsk6211 and the C62x simulator platforms:

tconf hello dsk62llcfg.tct

DSP/BIOS TextConf Overview 1-33

JavaScript Language Highlights

1-34

tconf hello simé62xxcfg.tct

Note that, as with the command line method of determining the platform,
the configuration script does not need any hardware-specific settings. To
port to a new platform, you simply copy hellocfg.tcf to an appropriately
named file such as, hello_sim62xx.tcf.

| Note: Effects of utils.loadPlatform() on Startup Actions

The sample tconflocal.tci script does not load the CDB template for the
specified platform. You can use the utils.loadPlatform() method to both
initialize the TCOM object hierarchy and load the appropriate CDB
template for the specified platform. If you use the utils.loadPlatform()
the objects created by the startup script are overwritten.

By using different file names to specify the platform instead of using tconf
command line options, program build tools (such as make) can
automatically run tconf and build distinct executables for each valid
combination of program and platform. Thus, adding support for a new
platform requires no modifications to the makefiles, for instance.

This method works well when one must simultaneously support specific
combinations of programs and platforms. However, in the regression test
suite example above, this technique can be cumbersome. Adding a new
platform for a test suite means creating a new configuration script file for
every test.

Moreover, even if it were possible to run the test suite for each platform
in parallel, the time to build all tests for all platforms and the disk space
required might be prohibitively high. Thus, for pragmatic reasons, one
often sequentially builds, runs, and deletes the executables one platform
at a time. In this case, using the command line parameter method in
Section 1.5.8.3, Specifying Platform and Directory on the Command
Line, page 1-33 is preferable.

1.5.9 Platform Specification and the Startup Script

The platform-specification methods listed in Table 1-1 are all supported
by the sample tconflocal.tci file provided with DSP/BIOS TextConf. That
is, the tconflocal.tci file can initialize the TCOM hardware-related objects
if the platform is specified using any of these methods.

When the tconf utility starts, it runs the tconfini.tcf startup script prior to
the first line of any configuration script. This script performs necessary
startup activities and should not be modified. The script uses the

JavaScript Language Highlights

utils.importFile function to search for a tconflocal.tci file. If a file with this
name is found, this script is also run.

The startup script runs whenever you start the tconf utility. It runs in all
three tconf operation modes (command-line, interactive debugging, and
GUI debugging).

'Note: Effects of utils.loadPlatform() on Startup Actions

The sample tconflocal.tci script does not load the CDB template for the
specified platform. You can use the utils.loadPlatform() method to both
initialize the TCOM object hierarchy and load the appropriate CDB
template for the specified platform. If you use the utils.loadPlatform()
the objects created by the startup script are overwritten.

[

1.5.9.1 Startup Script Actions

The tconfini.tcf startup script performs the following actions:
1) Loads the Target Content Object Model classes and constructors.

2) Defines a special load() function used to load scripts from within the
tconfini.tcf file.

3) Loads the utils.tcf file, which contains a package of utility functions.

4) Loads the tconflocal.tci file if it exists on the search path. This file may
be customized to define the specific Config, Board, Cpu, and
Program objects needed by your application.

5) Ifitdoes not find a tconflocal.tci file, tconfini.tcf defines Config, Board,
Cpu, and Program objects with the names “config_ 0", “board_0”,
“cpu_0”, and “prog_0".

A sample version of the tconflocal.tci file is provided in the \include
subdirectory of the directory containing the tconf executable file. This file
performs the following actions. You can customize this file to meet your
needs.

1) Defines a Config object called “config_0" and defines the global
variable “config” to reference this object.

2) Attempts to determine the board type using the optional convention
described in Section 1.5.9.2, Optional Conventions for Initializing the
Object Model, page 1-36, and creates a Board object of that type. If
it cannot determine the type, it creates a generic Board object. In
either case, the Board object is called "board_0".

DSP/BIOS TextConf Overview 1-35

JavaScript Language Highlights

1-36

3)

Attempts to determine the CPU type and creates a Cpu object of that
type. If it cannot determine the type, it creates a generic Cpu object.
In either case, the Cpu object is called "cpu_0".

Attempts to determine the program name using the optional
convention described in Section 1.5.9.2, Optional Conventions for
Initializing the Object Model, page 1-36, and creates a Program
object with the program name. If it cannot determine the name, it
creates a generic Program object called "prog 0". It also sets
program properties based on the properties of the Cpu object.

1.5.9.2 Optional Conventions for Initializing the Object Model

If you follow the optional conventions described in this section when
naming your main .tcf script file and using the tconf command line,
properties that define your board and CPU are set automatically.

These optional conventions simplify property definition if your application
contains a single board, single CPU, and single program. They facilitate
easy application migration to another board and CPU.

4

Board type: You may use a -D option similar to the following on the
tconf command to specify the board type:

tconf -Dconfig.platform=Dsk6211 hellocfg.tcf

If you do not use the -D option to define config.platform, you can give
your main script file a name with the following form, where board is
the board type and program matches the target executable filename
created by Code Composer Studio:

[directory] program boardcfg.tct
For example, the following command line specifies a DSK62 board.

tconf demo dské62cfg.tct

The following board types are supported for this convention: dsk54,
dsk5416, dsk62, dsk67, evm54, evm55, evm62, sim54, sim55,
sim62, and sim64.

Program name: If a script is specified on the tconf command line, the
program name is the filename minus any cfg suffix and the file
extension. For example, if the command line is as follows, the
Program object is called "myapp_dsk62":

tconf myapp dské62cfg.tcft

Step 1:

Step 2:

Step 3:

Step 4:

JavaScript Language Highlights

1.5.10 Creating a Platform File

TextConf platform files (*.tcp) provide definitions for the hardware
execution platform. A platform file populates the hardware aspects of the
Target Content Object Model (TCOM). See Section 2.1.1, Target Content
Object Model Quick Reference, page 2-2 for details about the TCOM.

Platform files for boards supported by Code Composer Studio are
provided in the tconfiinclude directory. The file naming convention is
Boardname.tcp—for example, Dsk6711.tcp.

If you want to create a new platform file or understand the platform file for
your board, the following list describes the steps performed within a
platform file:

1) Create a comment heading and a tag line (for example,
IDESCRIPTION 54XX!) for tools that read and display the platform
files available for a given family of processors, such as 54xx. You
may also want to include a revision history section.

2) Create a top-level Config object.

3) Instantiate a Board object, giving it the name of the board; for
example, dsk5402.

4) Create a Cpu object by loading the CPU architecture definition; for
example, 5402. This brings in the Cpu attributes, including the on-
chip memory definitions and the DSP/BIOS hardware settings.

5) Define the external memory populated on the board.
6) Set the value for the clock oscillator on the board.

7) Set the PLL index. This is an index into an enumerated list of chip-
specific hardware/software PLL multiplication factors.

The following example shows a typical platform file. The step numbers
correspond to the items in the previous list.

/* ========Dgk5402.tcp======= */
/* IDESCRIPTION 54XX! */
/* Dsk5402 with 64K SRAM and 256K FLASH */

/* Create new config object */
config = new Config("config 0");

/* Create new board object */
config.create("dsk5402") ;

/* Create new cpu object */

config.board ("dsk5402") .create("cpu 0",
utils.loadArch("5402")) ;

DSP/BIOS TextConf Overview 1-37

JavaScript Language Highlights

1-38

Step 5:

Step 6:

Step 7:

/* Define external memory on board */
config.board ("dsk5402") .mem = [];

config.board ("dsk5402") .mem[0] = {

comment: "External Program Memory",
name: "EPROG",
space: "code",

base: 0x8000,
len: 0x7£80

}i

config.board ("dsk5402") .mem[1] = {
comment: "External Data Memory",
name: "EDATA",
space: "data",
base: 0x8000,
len: 0x8000

}i

/* Define clock oscillator value on board for
specified cpu in Mhz */
config.board("dsk5402") .cpu("cpu 0") .clockOscillator
= 20.0000;

/* Define PLL index value used to compute speed
of CPU */
config.board("dsk5402") .pllIndex = 2;

1.5.11 JavaScript and Java References

This document does not provide details on the syntax of the JavaScript
language or on the Java packages that can be used. For reference
information, we recommend the following sources:

[JavaScript, The Definitive Guide, 3rd Edition, David Flanagan;
O’Reilly 1998

1 ECMA-262 standard:
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

1 Rhino JavaScript interpreter: http://www.mozilla.org/rhino

(]

Java 2 SDK: http://java.sun.com/j2se/1.3/docs

d java.io package:
http://java.sun.com/j2se/1.3/docs/api/javal/io/package-summary.html

Command-Line Utility Reference

1.6 Command-Line Utility Reference

Syntax

Options

Description

The following command-line utilities manipulate DSP/BIOS TextConf and
CDB files. These utilities are supported on UNIX and Windows.

1.6.1 tconf Utility

tconf [-g] [-p <dir>] [-Dname=valuel]
[-js <js options ...>] [script [args ...]]
-g Invoke the graphical script debugging interface.
-p <dir> Add the specified directory to the search path used to

-Dname=value

script

args ...

-h

find files. The search path looks first in the current
directory, then in the directory containing the tconf
executable file, and then in any directory named using
the -p option. See Section 1.5.4.1, Environment Array
Variables, page 1-22 for information about how the
search path is used.

Define variables that can be examined in the script via
the global environment array. You can define multiple
variables by using the —D option multiple times. See
Section 1.5.4.1, Environment Array Variables, page 1-22
for details about the environment array.

Separate run-time options from JavaScript shell options.
JavaScript shell options include:

-W Enable warning reporting.
-ffile Run script in the specified file.
Specify a script to run.

Specify arguments to pass to the script via the global
arguments array. See Section 1.5.4.2, Argument Array
Variables, page 1-24 for details about the arguments
array.

Display command-line syntax.

tconf is a JavaScript execution utility. It can be used both for debugging
and to output a CDB file and configuration files used to build applications.

On Solaris, the tconf file is in <ccs_base_dir>/bin/utilities/tconf. On
Windows, tconf.exe is in <ccs_base_dir>\bin\utilities\tconf. You may want
to add this directory to your PATH variable so that you can run tconf
without specifying the full path to the utility each time.

DSP/BIOS TextConf Overview 1-39

Command-Line Utility Reference

For example, if the script or statement calls prog.gen ("myApp"), tconf
outputs a CDB file that corresponds to the script file or statements. It also
generates the configuration files normally generated when you save a
CDB file in the DSP/BIOS Configuration Tool.

For example, if the demo.tcf file contains the prog.gen ("demo") ;
statement, the following line generates a demo.cdb file and its associated
generated files.

tconf demo.tcft

The tconf utility provides three operation modes:

1 Command-line mode. If a script is listed on the command line, tconf

processes the script without entering a debugging environment. If the
script uses the prog.save() or prog.gen() method, configuration files
are generated as a result of running the script. This mode is used for
automated program build processes. The full command-line syntax
for this mode is:

tconf [-p <dir>] [-Dname=value] [-js <jsshell opts>]
script [args ...]

Interactive debugging shell. If no script is listed on the command
line, tconf enters interactive mode and reads and executes
statements you type at the j s> prompt. It echoes the results of print
statements and expressions to your terminal window.

tconf [-p <dir>] [-Dname=value] [-js <jsshell opts>]

See Section 1.3.3, Using the Interactive Debugging Shell, page 1-12
for information about using the interactive debugging shell.

[GUI debugger. If the —g option is used on the command line, tconf

opens the Rhino GUI debugger. Rhino is an open-source
implementation of JavaScript written entirely in Java
(http://www.mozilla.org/rhino). The full command-line syntax for the
GUI debugger is:

tconf -g [-p <dir>] [-Dname=value]
[-js <jsshell opts>] [script [args ...]1]

See Section 1.3.4, Using the GUI Debugger, page 1-14 for
information about using the Rhino debugger.

Examples This command line defines three global variables for use within tconf. The
third variable is defined as an empty string.

tconf -Dvarl=valuel -Dvar2=value2 -Dvar3

1-40

Syntax

Description

Syntax

Description

Command-Line Utility Reference

To access these variables within tconf, use the following expressions:

environment [“varl”]
environment [“var2”]
environment [“var3”]

1.6.2 cdbcmp Utility

cdbcmp projname.cdb > projname.tct
cdbcmp projl.cdb proj2.cdb > proj diffs.tcf

The cdbcmp utility either compares one CDB file to the CDB template
used to create it or compares two CDB files.

On Solaris, the cdbcmp.exe file is installed in the
<ccs_base_dir>/bin/utilities/tconf directory. On Windows, it is installed in
the <ccs_base_dir>\bin\utilities\tconf folder. You may want to add this
directory to your PATH variable so that you can run cdbcmp without
specifying the full path to the utility each time.

When used to compare a CDB file to its template, you do not need to
specify the template; cdbcmp finds the template automatically. The
cdbcmp utility generates a DSP/BIOS TextConf script that loads the
template file, modifies the configuration to match the CDB file, and saves
the resulting configuration as a CDB file.

When used to compare two CDB files, cdbcmp generates the script
commands necessary to convert the settings in the first CDB file to the
settings in the second CDB file. The cdbcmp utility generates a
DSP/BIOS TextConf script that loads the first CDB file, modifies the
configuration to match the second CDB file, and saves the resulting
configuration as a CDB file.

1.6.3 gconfgen Utility
gconfgen projname.cdb

This command line utility reads a CDB file and generates the
corresponding source, header, and linker command files. The CDB file
may have been created with the DSP/BIOS Configuration Tool or the
prog.gen() method in DSP/BIOS TextConf.

On Solaris, the gconfgen.exe file is installed in the
<ccs_base_dir>/plugins/bios directory. On Windows, it is installed in the
<ccs_base_dir>\plugins\bios folder.

If your DSP/BIOS TextConf script uses prog.gen(), you do not need to
use this utility to generate files. If your DSP/BIOS TextConf script uses

DSP/BIOS TextConf Overview 1-41

Command-Line Utility Reference

1-42

prog.save(), only the CDB file is created; you should use the gconfgen
utility to generate the corresponding files.

The gconfgen utility generates the following files:

programcfg_c.c
programcfg.h

programcfg.s##
programcfg.h##
programcfg.cmd

oooodod

See Section 1.2.3, Configuration File Types, page 1-8 for descriptions of
these files.

Only the program.cdb and programcfg.cmd files need to be added to your
Code Composer Studio project. The other files are then added
automatically or included by other files already in the project.

Example Scripts

1.7 Example Scripts

The following examples and the examples in Chapter Chapter 2, show a
variety of ways to use DSP/BIOS TextConf.

1.7.1 Minimizing Application Code Size

If you are implementing programs on a 'C5000 platform, you might add a
line like the following to all your applications to import a script you create
that sets properties that minimize the size of the target code:

utils.importFile ("minfootprint") ;

The following example script minimizes the code size footprint of a
DSP/BIOS application:

/* don't use TSK threads */
TSK.USETSK = 0;

/* remove all default use of heaps */
MEM.SEGZERO = MEM NULL;
MEM.MALLOCSEG = MEM NULL;

/* loop through all MEM objects and remove any heap */
var memObjs = MEM.instances() ;

for (var i = 0; i < memObjs.length; i++)
if (memObjs[i] != MEM NULL
&& memObjs[i] .createHeap == 1) ({

memObjs [i] .createHeap = 0;

}

/* remove SYS stuff */

SYS.TRACESIZE = 0;

/* bind abort to user-defined error function */
SYS.ABORTFXN = prog.extern("error") ;

/* bind exit and error to the same function */
SYS.EXITFXN = prog.extern("error") ;
SYS.ERRORFXN = prog.extern("error") ;

/* bind SYS putc to a fxn that does nothing */
SYS.PUTCFXN = prog.extern("FXN F nop") ;

DSP/BIOS TextConf Overview 1-43

Example Scripts

1-44

1.7.2 Mailbox Example

The following script configures the mbxtest tutorial example. One
advantage to using this script instead of the DSP/BIOS Configuration
Tool is that the NWRITERS variable makes it easy to run a number of
tests with different numbers of writer tasks.

utils.loadPlatform("Platform") ;
utils.getProgObjs (prog) ;

var NWRITERS
var PRIORITY

3; /* number of writers to test */
1; /* task priority in this test */

SYS.ABORTFXN = prog.decl ("UTL doAbort") ;
SYS.ERRORFXN prog.decl ("UTL_doError") ;
SYS.EXITFXN prog.decl ("UTL_halt") ;
SYS.PUTCFXN = prog.decl ("UTL_ doPutc") ;

var trace = LOG.create("trace");
trace.buflen = 256;
trace.logType = "circular";

LOG system.buflLen = 512;
LOG_system.logType = "fixed";

var reader0 = TSK.create("reader0O");
readerO.priority = PRIORITY;
reader0.fxn = prog.extern("reader") ;

for (1 = 0; 1 < NWRITERS; i++) {
var writer = TSK.create("writer" + 1i);
writer.priority = PRIORITY;
writer.fxn = prog.extern("writer");
writer.arg0 = 1i;

}

prog.gen() ;

Chapter 2

DSP/BIOS TextConf Reference

This chapter provides reference information about the Target Content Object Model.

Topic Page
2.1 Target Content Object Model Reference...................... 2-2
2.2 DSP/BIOS Module and Instance Property Names 2-34
2.3 CSL Module and Instance Property Names 2-34

21

Target Content Object Model Reference

21 Target Content Object Model Reference

The Target Content Object Model (TCOM) is a hierarchy of “container”
objects. These container objects may contain zero or more child objects.
For example, within each Module object, there is a container that
contains a set of Instance objects. The TCOM is shown in the following
diagram.

Figure 2-1. Target Content Object Model (TCOM)

Config

D = object

Board represents

- .
-Memory Cpu

D object

represents

Memory ||| Program software

21.1 Target Content Object Model Quick Reference
This table summarizes the methods and properties of the objects in the
Target Content Object Model. For details, see the sections on each class.

Table 2-1. Target Content Object Model Summary

Object Objects

Type Contained Methods Properties See Page
Config Board board() hasReportedError Page 24
boards() name
create()
destroy()
warn()
Board Cpu cpu() boardFamily Page 2-8
Memory cpus() boardRevision
create() config
destroy() mem[]
name
pllindex

2-2

Table 2-1.

Target Content Object Model Reference

Target Content Object Model Summary (Continued)

Object Objects
Type Contained Methods Properties See Page
Cpu Program create() board Page 2-13
Memory destroy() clockOscillator
program() endian
programs() id
mem[]
name
attrs.cpuCore
attrs.cpuFamily
attrs.cpuNumber
attrs.cpuCoreRevision
attrs.dataWordSize
attrs.minDataUnitSize
attrs.minProgUnitSize
Program Module extern() cpu Page 2-18
Extern externs() name
destroy() prog.build.target.model.codeModel
gen() prog.build.target.model.dataModel
get() prog.build.target.model.endian
load()
module()
modules()
save()
Memory -- none -- -- none -- comment Page 2-25
name
space
base
len
Extern -- hone -- -- none -- language Page 2-27
name
Module Instance create() -defined in CDB- Page 2-28
instance() name
instances() program
Instance --none -- destroy() -defined in CDB- Page 2-31
references() module
name

Note that the create() and destroy() methods act on different objects.
While the create() methods create a child object for the specified object,
the destroy() methods destroy the specified object itself.

DSP/BIOS TextConf Reference

Target Content Object Model Reference

21.2 Config Class

Table 2-2. Config Class Summary

board() Method

Syntax:
Parameters:
Returns:

Description:

boards() Method

Syntax:
Parameters:
Returns:

Description:

Object Type Contains Methods Properties
Config Board board() hasReportedError
boards() name
create()
destroy()
warn()

The Config object is the top-level container for an entire system
configuration. Each configuration has one and only one Config object.
The Config object has methods and properties for debugging, error
handling, and host configuration memory management.

A default Config object and a global variable called "config" are
automatically created by the startup script. Should you ever need to
create a Config object explicitly, use a statement similar to the following:

/* create global context for configuration scripts */
var config = new Config("config 0");

board("name")
name Name of object to get. Required.
object, or null if error occurs

The board() method returns the Board object specified by the name
parameter.

If there is no Board object with the specified name, board() returns null.

boards()
none
Array of all Board objects contained in the Config object

The boards() method gets an array of all the Boards contained within the
Config object.

Example:

create() Method

Syntax:

Parameters:

Returns:

Description:

Target Content Object Model Reference

/* get an array of all boards in config */
boards = config.boards() ;

/* print a list of the names of all boards in config */
for (i = 0; i < boards.length; i++) {

print ("board[" + 1 + "] = " + board[i] .name) ;
}

create("board_name" [, "board_type"])

board_name Required name for new Board object.

board_type Optional sub-type of board.
new Board object, or null if error occurs

The config.create() method creates a new Board object within the Config
object.

The sample tconflocal.tci script attempts to determine the board type and
creates a single Board object called "board_0". See Section 1.5.9.1,
Startup Script Actions, page 1-35 for details. You can use the create()
method to create additional Board objects.

The first parameter is the name to give the new Board object. The name
must be unique among the boards. This parameter is required.

The second parameter defines the sub-type of board to create. This
parameter is optional. If you provide a board_type that matches an
JavaScript constructor function that has been loaded, that constructor
runs to define properties for the Board object and to create the standard
Cpu object for the board.

Constructor files are currently provided in the
<ccs_base_dir>/bin/utilities/tconf/include directory (Solaris) or
<ccs_base_dir>\bin\utilities\tconflinclude folder (Windows) for the
following board_types: Dsk54, Dsk5416, Dsk62, Dsk67, Evm54, Evm55,
Evm62, Sim54, Sim55, Sim62, and Sim64. You must load the appropriate
constructor file before using the create() method in order for JavaScript
to find the function contained by the constructor file.

'Note: Platforms supported on Solaris

Code Composer Studio for Solaris supports only the ‘C55x and ‘C64x
platforms.
[

DSP/BIOS TextConf Reference 2-5

Target Content Object Model Reference

Examples:

destroy() Method

Syntax:
Parameters:
Returns:

Description:

Examples:

For example, you can create an Evm62 Board object with the following
statement:

utils.importFile ("Evm62") ;
board = config.create("board 0", "Evm62") ;

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.

/* create global context for configuration scripts */
var config = new Config("config 0");

/* create an EVM62 Board object within config */
utils.importFile ("Evm62") ;
board 0 = config.create("board 0", "Evm62") ;

/* create a generic Board object within config */
board 1 = config.create("board 1");

/* display number of DSPs on board 0 */
print (board 0 + " has " + board.cpus().length + " DSPs");

destroy()

none

true if successful; false if failed

The destroy() method destroys the specified Config object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

While you will probably not need to use the destroy() method when
writing configuration scripts from scratch, the destroy() method is often
needed in scripts created by the cdbcmp utility to compare two
configuration files.

/* Fails if config contains a board */
config.destroy () ;

/* So, destroy the previously created board */
board.destroy () ;

/* Succeeds if config is now empty and unreferenced */
config.destroy() ;

warn() Method

Syntax:
Parameters:
Returns:

Description:

Example:

hasReportedError
Property

Example:

name Property

Target Content Object Model Reference

warn()

true or false

Previous warning setting (true or false)

The warn() method enables and disables warnings.

Warnings are disabled by default, but can be enabled with the warn()
method or the —w command-line switch. See Section 1.5.6, Error
Handling, page 1-27 for information about warnings, errors, and
exceptions.

If you enable warnings, you will notice that the Rhino interpreter provides
a warning if the "var" keyword is omitted from a variable declaration. You
can ignore these messages. Omitting the "var" keyword is permitted by
the standard and is common practice in JavaScript.

In command-line mode, warnings are written to the stderr location. In the
interactive debugging shell, warnings are shown as separate lines
without the js> command prompt. In the GUI debugger, warnings are
shown in the JavaScript Console window.

config.warn (true) ;

The hasReportedError property contains a Boolean value that indicates
whether any error or exception has occurred during the current session.

This property is gettable only. It is initially set to false and becomes true
if an error or exception occurs. This property is never reset to false during
a session.

Warnings do not affect the value of this property.
if (config.hasReportedError == true) {
print ("Error has occurred");
The name property of an object holds the name of that object. This

property is gettable only. It is set when the object is created.

There is only one Config object, so its name is unique by definition.

DSP/BIOS TextConf Reference 2-7

Target Content Object Model Reference

2.1.3 Board Class

Table 2-3. Board Class Summary

cpu() Method

Syntax:
Parameters:
Returns:

Description:

cpus() Method

Syntax:
Parameters:
Returns:

Description:

2-8

Object Type Contains Methods Properties
Board Cpu cpu() boardFamily
Memory cpus() boardRevision
create() config
destroy() mem[]
name
pllindex

A configuration may contain one or more Board objects. Board objects
may contain one or more Cpu and Memory objects. Board objects have
properties for storing information about the board hardware used.

A default Board object is created by the startup script (see Section
1.5.9.1, Startup Script Actions, page 1-35). Additional Board objects can
be created with the config.create() method.

cpu("name")
name Name of object to get. Required.
object, or null if error occurs

The cpu() method returns the Cpu object specified by the name
parameter.

If there is no object with the specified name in the specified Board object,
cpu() returns null.

cpus()
none
Array of all Cpu objects contained in the specified Board object

The cpus() method gets an array of all the cpus contained within the
Board object.

Example:

create() Method

Syntax:

Parameters:

Returns:

Description:

Target Content Object Model Reference

/* get board containing this cpu */
var cpu = config.boards () [0] .cpus() [0];
var board = cpu.board;

/* get all cpus on this board */
var cpus = board.cpus() ;

create("cpu_name" [, "cpu_type"])

cpu_name Required name for new Cpu object.
cpu_type Optional sub-type of cpu.

new Cpu object, or null if error occurs

The create() method for a Board creates a new Cpu object within the
Board object.

The sample tconflocal.tci script attempts to determine the Cpu type and
creates a single Cpu object called "cpu_0". See Section 1.5.9.1, Startup
Script Actions, page 1-35 for details. You can use the create() method to
create additional Cpu objects.

The first parameter is the name to give the new Cpu object. The name
must be unique among the Cpu objects for this Board. This parameter is
required.

The second parameter defines the sub-type of cpu to create. This
parameter is optional. If you provide a cpu_type that matches an existing
JavaScript constructor function that has been loaded, that constructor
runs to define properties for the Cpu object.

Constructor files are currently provided in the
<ccs_base_dir>/bin/utilities/tconf/include directory (Solaris) or
<ccs_base_dir>\bin\utilities\tconflinclude folder (Windows) for the
following cpu_types: C54, C5401, C5402, C5416, C55, C62, C6201,
C6211, C64, C67, and C6711. You must load the appropriate constructor
file before using the create() method in order for JavaScript to find the
function contained by the constructor file.

'Note: Platforms supported on Solaris

Code Composer Studio for Solaris supports only the ‘C55x and ‘C64x
platforms.
L

DSP/BIOS TextConf Reference 2-9

Target Content Object Model Reference

Example:

destroy() Method

2-10

Syntax:
Parameters:
Returns:

Description:

Examples:

For example, you can create an C54 Cpu object with the following
statement:

utils.importFile("C54") ;
config.boards () [0] .create("cpu _O", "C54");

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.

/* create initial Board object under config */
board = config.create("board 0") ;

/* create a C54 Cpu object under board */
utils.importFile("C54")
board.create("cpu 0", "C54");

destroy()

none

true if successful; false if failed

The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

While you will probably not need to use the destroy() method when
writing configuration scripts from scratch, the destroy() method is often
needed in scripts created by the cdbcmp utility to compare two
configuration files.

/* Fails if config contains a board */
config.destroy () ;

/* So, destroy the previously created board */
board.destroy () ;

/* Succeeds if config is now empty and unreferenced */
config.destroy() ;

/* Two ways to destroy a board named EVM62 */
boards.EVM62.destroy ()
boards ["EVM62"] .destroy () ;

boardFamily Property

Example:

boardRevision
Property

config Property

mem[] Array Property

name Property

pllindex Property

Target Content Object Model Reference

The boardFamily property contains a string that identifies the type of
board. Example strings are “evm62”, “dsk54”, and "sim55".

This property is gettable only. It is set if the board_type argument to the
config.create() method matches a constructor function, and that
constructor function sets the boardFamily property.

/* load platform-dependent configuration info */

try {
utils.importFile("dss " + prog.cpu.board.boardFamily) ;

catch (e) {
throw new Error (e + "\nDSS doesn't support the '" +
prog.cpu.board.boardFamily + "' board");

}

The boardRevision property contains an optionally defined string that
identifies the board revision number. Example strings are "1.0" and "2.1".

This property is gettable only. It is set if the board_type argument to the
config.create() method matches a constructor function, and that
constructor function sets the boardRevision property.

The config property holds the Config object that contains the Board.

Since there is only one Config object, this Config object contains all
Boards in the configuration.

This property is gettable only. It is set when the Board object is created.

The mem([] array is used to access an array of Memory objects contained
by this Board object. For more information, see Section 2.1.6, Memory
Class, page 2-25.

The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Board objects must be unique.

The pllindex (lowercase PLL + "Index") specifies the bit patterns of the
clkmode pins on the board. This value is used to determine factors used
to calculate the speed of the CPU, which is important for several other
configuration properties. In addition, the clockOscillator property of the
Cpu object is used when calculating the speed of the CPU.

For example, the 'C5402 DSK has three clkmode pins. If they are set
(from left to right) as off, on, off, the bitmask would be 010 and the
resulting pllindex value is 2 (decimal).

DSP/BIOS TextConf Reference 2-11

Target Content Object Model Reference

/* Define PLL index value used to compute CPU speed */
config.board("dsk5402") .pllIndex = 2;

This property is typically set only in the platform file. The range of valid
values for the pllindex is as follows for different targets:

4 For C28: 0 to 31
1 ForCh4x:0to7
d ForC55:00r1
d For C6000: 0 to3

2-12

Table 2-4.

create() Method

Syntax:
Parameters:
Returns:

Description:

Target Content Object Model Reference

Cpu Class Summary

21.4 CpuClass
Object Type Contains Methods Properties
Cpu Program create() board
Memory destroy() clockOscillator
program() endian
programs() id
mem[]
name

attrs.cpuCore
attrs.cpuFamily
attrs.couNumber
attrs.cpuCoreRevision
attrs.dataWordSize
attrs.minDataUnitSize
attrs.minProgUnitSize

A Board object may contain one or more Cpu objects. Cpu objects may
contain one or more Program and one or more Memory objects. Cpu
objects have properties for storing information about the Cpu type and
memory handling behavior.

Configurations for multi-core DSPs should have a single Cpu object.
Configurations for boards with multiple DSPs should have multiple Cpu
objects.

A default Cpu object is created by the startup script (see Section 1.5.9.1,
Startup Script Actions, page 1-35). Additional Cpu objects can be created
with the create() method of a Board object.

create("prog_name"])
prog_name Required name for new Program object.
new Program object, or null if error occurs

The create() method for a Cpu object creates a new Program object
within the Cpu object.

The sample tconflocal.tci script attempts to determine the program name
and creates a single Program object. See Section 1.5.9.1, Startup Script
Actions, page 1-35 for details. You can use the create() method to create
additional Program objects.

DSP/BIOS TextConf Reference 2-13

Target Content Object Model Reference

The parameter is the name to give the new Program object. The name
must be unique among the Program objects for this Board and within the
Program object's namespace. This parameter is required.

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.

Example: /* create a C54 Cpu object for the board */
utils.importFile("C54") ;
config.boards () [0] .create("cpu_O", "C54");

/* create a Program object for the default Cpu */
config.boards () [0] .cpus () [0] .create ("myApp") ;

/* create "short-cut" for program config scripts */
var prog = config.boards () [0].cpus() [0] .programs () [0] ;

destroy() Method
Syntax: destroy()
Parameters: none
Returns: true if successful; false if failed
Description: The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

While you will probably not need to use the destroy() method when
writing configuration scripts from scratch, the destroy() method is often
needed in scripts created by the cdbcmp utility to compare two
configuration files.

Examples: config.boards ["EVM6201"] .cpus ["C6201"] .destroy () ;
program() Method
Syntax: program("name")
Parameters: name Name of Program object to get. Required.
Returns: object, or null if error occurs

Description: The program() method returns the Program object specified by the name
parameter.

2-14

programs() Method
Syntax:
Parameters:
Returns:

Description:

Example:

board Property

Examples:

clockOscillator
Property

Example:

endian Property

Target Content Object Model Reference

If there is no object with the specified name in the Cpu object, program()
returns null.

programs()
none
Array of all Program objects contained in the specified Cpu object

The programs() method gets an array of all the Program objects
contained within the specified Cpu object.

/* create "short-cut" for program config scripts */
var prog = config.boards () [0].cpus() [0] .programs () [0] ;

The board property holds the Board object that contains the Cpu object.
This property is gettable only. It is set when the Cpu object is created.
utils.importFile ("myApp " + prog.cpu.board.boardFamily) ;

function checkMIPS (cpu)
/* get board containing this cpu */
var board = cpu.board;
/* get all cpus on this board */
var cpus = board.cpus() ;
var MIPS = cpu.MIPS;

for (var i = 0; i < cpus.length; i++) {
/* check all cpus against cpu.MIPS */
if (cpus[i] .MIPS != MIPS) {
throw new Error ("All " + board.name +
" Cpus must run at the same rate.");

}

The clockOscillator property of an object holds the value of the clock
oscillator on the board in MHz. This property is typically set only in the
platform file. In addition, the pllindex property of the Board object is used
when calculating the speed of the CPU.

/* Define clock oscillator value for CPU in MHz */
config.board("dsk5402") .cpu("cpu 0") .clockOscillator
= 20.0000;

The endian property contains "big", "little", or undefined to indicate the
byte addressing model used by the board and CPU.

DSP/BIOS TextConf Reference 2-15

Target Content Object Model Reference

id Property

mem([] Array Property

name Property

attrs.cpuCore
Property

attrs.cpuFamily
Property

attrs.cpuNumber
Property

attrs.cpuCoreRevision
Property

2-16

The id property specifies a unique id for this particular CPU on the board.
This property is intended for future use.

The mem([] array is used to access an array of Memory objects contained
by this Cpu object. For more information, see Section 2.1.6, Memory
Class, page 2-25.

The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Cpu objects must be unique within the Board object that
contains them.

The attrs.cpuCore property contains the two-digit Cpu platform followed
by two zeros. Currently, it may be set to one of the following: 2800, 5400,
5500, 6200, 6400, or 6700.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.cpuCore property.

The attrs.cpuFamily property contains the single-digit prefix for the Cpu
platform followed by three zeros. Currently, it may be set to 2000, 5000,
or 6000.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.cpuFamily property.

The attrs.cpuNumber property contains the full four-digit number for the
Cpu platform. The attrs.cpuNumber is the cpu core number; it identifies
the core and a set of peripherals. Example values are 5416, 6201, and
6711. Together the attrs.cpouNumber and attrs.cpuCoreRevision uniquely
identify a specific part number.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.cpuNumber property.

The attrs.cpuCoreRevision property contains an optional revision
number of a particular Cpu part. Example values are 1.0, 2.1, and R2.
Together the attrs.cpouNumber and attrs.cpuCoreRevision uniquely
identify a specific part number.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.cpuCoreRevision property.

attrs.dataWordSize
Property

Example:

attrs.minDataUnitSize
Property

attrs.minProgUnitSize
Property

Target Content Object Model Reference

The attrs.dataWordSize property contains the size of a word (int) on this
Cpu in 8-bit units. On 'C5000 platforms, attrs.dataWordSize is two 8-bit
units. On 'C6000 platforms, attrs.dataWordSize is four 8-bit units.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.dataWordSize property.

In this example, the application's data frame size (FRAME_SIZE) is
measured in 16-bit samples. However, DSP/BIOS pipe objects
(DSS_rxPipe) have frame sizes measured in the platform-dependent
word size. So, the attrs.dataWordSize property (in 8-bit units) is used to
convert from the application's frame size to the DSP/BIOS frame size.

64 ; /* in 16-bit units */
prog.cpu.attrs.dataWordSize;
/* in 8-bit units */

var FRAME SIZE
var WORD SIZE

/* convert appl frame size to platform word size */
DSS rxPipe.framesize = (2 * FRAME SIZE) / WORD SIZE;
DSS_rxPipe.numframes = 2;

So, on 'C5000 platforms, DSS_rxPipe.framesize equals (2 * 64) / 2, or 64.
On 'C6000 platforms, DSS_rxPipe.framesize equals (2 * 64) / 4, or 32.

The attrs.minDataUnitSize property contains the size of the smallest
addressable data value (in 8-bit units). On 'C5000 platforms, the
attrs.minDataUnitSize is two 8-bit units. On 'C6000 platforms, the
attrs.minDataUnitSize is one 8-bit unit.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.minDataUnitSize property.

The attrs.minProgUnitSize property contains the size of the smallest
addressable program value (in 8-bit units). On 'C54x platforms, the
attrs.minProgUnitSize is two 8-bit units. On 'C55x platforms, the
attrs.minProgUnitSize is one 8-bit unit. On 'C6000 platforms, the
attrs.minProgUnitSize is one 8-bit unit.

This property is gettable only. It is set if the cpu_type argument to the
Board object's create() method matches a constructor function, and that
constructor function sets the attrs.minProgUnitSize property.

DSP/BIOS TextConf Reference 2-17

Target Content Object Model Reference

Table 2-5.

21.5 Program Class

Program Class Summary

create() Method

2-18

Description:

Object

Type Contains Methods Properties

Program Module extern() cpu

Extern externs() name

destroy() prog.build.target. model.codeModel
gen() prog.build.target.model.dataModel
get() prog.build.target.model.endian
load()
module()
modules()
save()

A Cpu object may contain one or more Program objects. Program objects
may contain one or more Module objects. Program objects may also
contain an array of Extern (external declaration) objects. Program objects
have properties for storing information about the program compilation
model.

Program objects also have methods for saving and loading CDB files.
Loading a CDB file defines Module and Instance objects in the JavaScript
environment. The create() method of a Program object cannot be used to
create Module objects. Saving a CDB file and its generated file allows the
settings made via DSP/BIOS TextConf to be linked with the program and
used with the DSP/BIOS Real-Time Analysis Tools.

A default Program object is created by the startup script (see Section
1.5.9.1, Startup Script Actions, page 1-35). This startup script also
creates a global variable called "prog" that references this object.
Additional Program objects can be created with the create() method of a
Cpu object.

Program objects define a namespace within which all objects must have
unique names. See Section 1.5.3.3, Namespace Management, page 1-
22 for details.

The only way to create a Module object is to load a CDB file with the
prog.load() or utils.loadPlatform() method. Do not use the create()
method of the Program object to create Module objects.

destroy() Method
Syntax:
Parameters:
Returns:

Description:

extern() Method
Syntax:

Parameters:

Returns:

Description:

Examples:

Target Content Object Model Reference

destroy()

none

true if successful; false if failed

The destroy() method destroys the specified object.

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

While you will probably not need to use the destroy() method when
writing configuration scripts from scratch, the destroy() method is often
needed in scripts created by the cdbcmp utility to compare two
configuration files.

extern("name", "language")

name Name of Extern object to create or get. Required.

language Optional language for which to declare this symbol
Extern object created or specified

In order to specify a function name as the value of a Module or Instance
property, you must create an Extern object (for "external declaration"). All
Extern objects within a Program object must have unique names.

If no Extern object exists with the specified name, the extern() method
creates and returns a new Extern object. If an Extern object already
exists with the specified name, the extern() method returns the object.

The optional language parameter allows you to specify whether the
symbol should be defined as an asm, C, or C++ symbol. If no language
is specified, the default is C.

You do not need to use an underscore prefix for the names of any Extern
objects you create.

myTask.fxn = prog.extern("myTaskFxn", "C");

mySwi.fxn = prog.extern ("mySwiFxn", "asm");
SYS.ABORTFXN = prog.extern("error") ;

DSP/BIOS TextConf Reference 2-19

Target Content Object Model Reference

externs() Method

Syntax:
Parameters:
Returns:

Description:

Example:

gen() Method

2-20

Syntax:
Parameters:
Returns:

Description:

externs()
none
Array of all Extern objects contained in the Program object

The externs() method gets an array of all the Extern objects contained
within the specified Program object.

The following statements print a list of the Extern objects contained by a
Program:

externs = prog.externs() ;
for (var i = 0; i < externs.length; i++)
print (externs [i] .name) ;

gen("prog_name");
prog_name Optional name of output application.
True if successful; false if not successful

After you have created a DSP/BIOS TextConf script, you must create a
CDB file and its generated files.

On Windows, you must also add the CDB file to your Code Composer
Studio project. Then, you can build your DSP/BIOS application with Code
Composer Studio. The CDB file also makes configuration information
available to the DSP/BIOS Real-Time Analysis Tools.

The gen() methods generates a CDB file and all of the files normally
generated when you save a CDB file with the DSP/BIOS Configuration
Tool or when you use the gconfgen utility. See Section 1.2.3,
Configuration File Types, page 1-8 for descriptions of the generated files.

Itis generally recommended (but not required) that the prog_name match
the output filename of your target program. For example, if your target
program executable is hello.exe, use the following statement:

prog.gen("hello") ;

The prog_name parameter can also specify a directory location to
contain the generated files.

Example:
get() Method
Syntax:
Parameters:
Returns:

Description:

Example:

Target Content Object Model Reference

If you omit the prog_name parameter, the default prog_name is the name
of the Program object.

If you specify a prog_name parameter, all generated files begin with that
prefix The "cfg" suffix is appended to the filename for all generated files,
and the appropriate file extensions all are added to all files.

Including the .CDB file extension in the prog_name parameter is optional.
The gen() method stores the files it creates in your current directory.

In contrast to the gen() method, the save() method saves only the CDB
file. It does not generate the other associated files.

prog.gen ("myAppl") ;

get("name")

name Name of object to get. Required.

object, or null if error occurs

The get() method returns the object specified by the name parameter.

The get() method can return any object in the namespace of the object
for which it is called. For example, you can use the get() method for a
Program object to get any Module (such as LOG), Instance object (such
as LOG_system), or Extern object. In contrast, the module() method can
return only Module objects and the instance() method can return only
Instance objects. For more information about namespaces, see Section
1.5.3.3, Namespace Management, page 1-22.

If there is no object with the specified name in the namespace of the
container whose get() method is used, get() returns null.

In this example, “instanceof” is a JavaScript operator that returns true if
the object is of the specified class. “Instance” is the name of a class.

/* lookup existing object named "audio" */
audio = prog.get ("audio") ;

/* if audio is an Instance object */

if (audio instanceof Instance) {
audio.priority = 1; /* set its priority */

DSP/BIOS TextConf Reference 2-21

Target Content Object Model Reference

load() Method

Syntax:
Parameters:
Returns:

Description:

Example:

module() Method

2-22

Syntax:
Parameters:
Returns:

Description:

load("cdb_file")
cdb_file Filename of CDB file to load objects from
void

The load() method reads a CDB file and populates the Target Content
Object Model with the Module, Instance, and Extern objects named in the
CDB file. This method assumes that Config, Board, Cpu, and Program
objects have been created and that prog is a global variable that
references the Program object.

The load() method does not create global variables to reference each
Module and Instance object. If you want such global variables to be
created, use the utils.getProgObjs() method, which is described in
Section 1.5.5.2, Methods for Working with CDB Files, page 1-25.

prog.load("evm62.cdb") ;

module("name")
name Name of Module object to get. Required.
object, or null if error occurs

The module() method returns the object specified by the name
parameter.

If there is no object with the specified name in the Program object,
module() returns null.

The get() method can return any object in the namespace of the Program
object for which it is called. For example, you can use the get() method
for a Program object to get any Module (such as LOG) or Instance object
(such as LOG_system). In contrast, the module() method can return only
Module objects. For more information about namespaces, see Section
1.56.3.3, Namespace Management, page 1-22.

modules() Method
Syntax:
Parameters:
Returns:

Description:

Example:

save() Method
Syntax:
Parameters:
Returns:

Description:

Example:

Target Content Object Model Reference

modules()
none
Array of all Module objects contained in the specified Program object

The modules() method gets an array of all the Module objects contained
within the specified Program object.

list = "n;
modules = prog.modules () ;

for (i = 0; i < modules.length; i++) {
list += modules[i] .name + " ";
}

save("prog_name");
prog_name Optional name of output CDB file.
True if successful; false if not successful

The save() method saves a CDB file that corresponds to the current
object model settings.

In contrast to the gen() method, the save() method saves only the CDB
file. It does not generate the other associated files.

Itis generally recommended (but not required) that the prog_name match
the output filename of your target program. For example, if your target
program executable is hello.exe, use the following statement:

prog.save ("hello") ;

If you omit the prog_name parameter, the default prog_name is the name
of the Program object. If you specify a prog_name parameter, the CDB
file uses that filename.

Including the .CDB file extension in the prog_name parameter is optional.
The save() method stores the CDB file in your current directory.

prog.save ("myAppl") ;

DSP/BIOS TextConf Reference 2-23

Target Content Object Model Reference

cpu Property

Example:

name Property

codeModel Property

Example:

dataModel Property

Example:

endian Property

Example:

2-24

The cpu property holds the Cpu object that contains the Program object.
This property is gettable only. It is set when the Program object is created.

if (prog.cpu.attrs.cpuFamily == "5000") {
/* C5000-specific statements */
}

The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created. Names of
Program objects must be unique within the Cpu object that contains
them.

The prog.build.target. model.codeModel property contains "near" or "far"
to indicate the code addressing model used by the program. On 'C6000
platforms, the value is always "far". On all other platforms, the default is
"near".

This property is set automatically if you use the utils.loadPlatform()
method. To set this property to "far", you may use the following —D option
on the tconf command line:

tconf -Dconfig.compilerOpts="-mf"
GBL.CALLMODEL = prog.build.target.model.codeModel;

The prog.build.target.model.dataModel property contains "small" or
"large" to indicate the data addressing model used by the program. The
default is "small" on all platforms.

This property is set automatically if you use the utils.loadPlatform()
method. To set this property to "large", you may use the following —-D
option on the tconf command line:

tconf -Dconfig.compilerOpts="-ml"
GBL.MEMORYMODEL = prog.build.target.model.dataModel;

The prog.build.target.model.endian property contains "little" or "big" to
indicate the byte addressing model used by the program. The default is
"little" on all platforms.

This property is set automatically if you use the utils.loadPlatform()
method. To set this property to "big", you may use the following —D option
on the tconf command line:

tconf -Dconfig.compilerOpts="-me"

GBL.ENDIANMODE = prog.build.target.model.endian;

Target Content Object Model Reference

21.6 Memory Class

Table 2-6. Memory Class Summary

base Property

comment Property

Object Type Contains Methods Properties

Memory -- none -- base
comment
len
name
space

A Board or Cpu object may contain one or more Memory objects.
Memory objects do not contain any objects. Memory objects represent
memory on the board or CPU.

There is no method to create a Memory object. Instead, Memory objects
are defined as elements in a mem[] array. For example:

/* Define external memory on board */
config.board ("dsk5402") .mem = [];

config.board ("dsk5402") .mem[0] = ({
comment: "External Program Memory",
name: "EPROG",
space: "code",
base: 0x8000,
len: 0x7£80

}i

config.board("dsk5402") .mem[1] = {
comment: "External Data Memory",
name: "EDATA",
space: "data",
base: 0x8000,
len: 0x8000

}i

There are also no methods to get the name or names of the Memory
objects contained by a Board or Cpu. Instead, a script should access the
mem([] array within a Board or Cpu object.

Memory objects are typically created only in a platform file (*.tcp).

The base property holds the location of the base of the memory segment.
It is typically specified using a hex value.

The comment property holds a text description about the memory
segment.

DSP/BIOS TextConf Reference 2-25

Target Content Object Model Reference

len Property

name Property

space Property

2-26

The len property holds the length of the memory segment. It is typically
specified using a hex value.

The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created. Names of
Memory objects must be unique within the Board or Cpu object that
contains them.

The space property specifies the type of memory space as a string. It
may be "code", "data", "code/data", or any other value appropriate for the
platform.

Target Content Object Model Reference

2.1.7 Extern Class

Table 2-7. Extern Class Summary

language Property

name Property

Object Type Contains Methods Properties
Extern -- none -- language
name

A Program object may contain one or more Extern objects. Extern objects
do not contain any objects.

Extern objects represent external declarations made in program code
that need to be referenced in the configuration. The following example
statements create Extern objects:

myTask.fxn = prog.extern("myTaskFxn", "C");
mySwi.fxn = prog.extern ("mySwiFxn", "asm");
SYS.ABORTFXN = prog.extern("error") ;

The extern() method of the Program object (see Section 2.1.5, Program
Class, page 2-18) creates a new Extern object only if none exists with the
specified name. If an Extern object already exists with the specified
name, the extern() method returns the object. The externs() method of
the Program object gets an array of all Extern objects contained within
the specified Program object.

The language property of an object identifies the language in which the
name is declared. It may be "C", "C++", or "asm". This property is gettable
only. It is set when the object is created. The default is "C".

The name property of an object holds the name of that object. An
underscore prefix is not needed for the names of any Extern objects. This
property is gettable only. It is set when the object is created. Names of
Extern objects must be unique within the Program object that contains
them.

DSP/BIOS TextConf Reference 2-27

Target Content Object Model Reference

Table 2-8.

2.1.8 Module Class

Module Class Summary

create() Method

2-28

Syntax:
Parameters:
Returns:

Description:

Object Type Contains Methods Properties

Module Instance create() defined in CDB
instance() name
instances() program

A Program object may contain one or more Module objects. Module
objects may contain one or more Instance objects. Module objects
represent a target module within a single program.

The only way to create a Module object is to load a CDB file with the
prog.load() or utils.loadPlatform() method. Do not use the create()
method of the Program object to create Module objects.

If the utils.getProgObjs() method has been called, a global variable is
defined for each Module object. For example, DSP/BIOS contains
modules named LOG, TSK, and MEM. These correspond to Module
objects named LOG, TSK, and MEM. The corresponding global
JavaScript variables are LOG, TSK, and MEM.

Module objects have properties that are specific to the type of module
and are defined within the CDB file that has been loaded.

The examples in this section assume that the utils.getProgObjs() method
was called (with the second parameter omitted) after a CDB file was
loaded.

create("instance_name"])
instance_name Required name for new Instance object.
new Instance object, or null if error occurs

The create() method for a Module creates a new Instance object within
the Module object.

The parameter is the name to give the new Instance object. The name
must be unique among the Module, Instance, and Extern objects for this
program. This parameter is required.

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods to get sorted lists of objects.

Examples:

instance() Method
Syntax:
Parameters:

Returns:

Description:

Example:
instances() Method
Syntax:
Parameters:
Returns:

Description:

Target Content Object Model Reference

inputPipe = PIP.create("input") ;
inputPipe.notifyWriterFxn = prog.extern ("writerFxn") ;
inputPipe.notifyWriterArg0 = 0;

inputPipe.bufAlign = 32;

tracelog = LOG.create("trace");
trace.buflen = 32;

instance("name")
name Name of object to get. Required.
object, or null if error occurs

The instance() method returns the Instance object specified by the name
parameter.

If there is no object with the specified name in the Module, instance()
returns null.

Note that while individual objects within any container object may be
referred to as "instances," there is also a specific object class called
"Instance," which is the child of the Module class. Thus, the instance()
method of the Module class returns an "Instance object." Because of the
potential for confusion, this document refers to individual objects that are
not of the "Instance" class as "objects," not as "object instances" or
"instances."

log = LOG.instance ("LOG_system") ;

instances()
none
Array of all objects contained within this object

The instances() method returns an array of all the Instance objects
contained in the Module object whose method is used. This allows scripts
to loop through all the instances.

Note that while individual objects within any container object may be
referred to as "instances," there is also a specific object class called
"Instance," which is the child of the Module class. Thus, the instances()
method of the Module class returns an array of "Instance objects."
Because of the potential for confusion, this document refers to individual

DSP/BIOS TextConf Reference 2-29

Target Content Object Model Reference

Example:

name Property

Example:

program Property

CDB Properties

2-30

Example:

objects that are not of the "Instance" class as "objects," not as "object
instances" or "instances."

/* loop through all MEM objects and remove any heaps */
var memObjs = MEM.instances () ;

for (var i = 0; i < memObjs.length; i++)
/* can't remove MEM NULL heap */
if (memObjs[i] != MEM NULL
&& memObjs[i] .createHeap == 1) {

memObjs [i] .createHeap = 0;
}
}

The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Module objects must be unique within the namespace of the
Program object that contains them. Program objects define a namespace
that includes all Extern, Module, and Instance objects contained by the
Program object. Extern, Module, and Instance objects within two different
Program objects can have duplicate names.

The names of Extern, Module, and Instance objects are the same as their
C identifiers.

/* assemble a list of the module names in prog */
list = "";
modules = prog.modules() ;
for (1 = 0; i1 < modules.length; i++) {
list += modules[i] .name + " ";
}

The program property holds the Program object that contains the Module
object. This property is gettable only. It is set when the Module object is
created.

Normally, all objects in a class have the same set of properties. However,
in a CDB file, each module and each instance type has a different set of
properties. Therefore, properties for Module and Instance objects are
handled differently than those of other object classes. For more details,
see Section 1.5.3.1, Module and Instance Property Names, page 1-20.

Each CDB field name is mapped to a property name. In general, the
properties of Module objects are in all uppercase letters. For example,
"MEM.STACKSIZE". The names are listed in Section 2.2, DSP/BIOS
Module and Instance Property Names, page 2-34. You can set and get
these property values as you would properties of other object classes.

GBL.CALLMODEL = prog.build.target.model.codeModel;
CLK.MICROSECONDS = 25000;

Target Content Object Model Reference

2.1.9 Instance Class

Table 2-9. Instance Class Summary

create() Method

destroy() Method

Syntax:
Parameters:
Returns:

Description:

Object Type Contains Methods Properties
Instance destroy() defined in CDB
references() module
name

A Module object may contain one or more Instance objects. Instance
objects do not contain any objects. Instance objects represent a single
target object.

Loading a CDB file defines Module and Instance objects in the JavaScript
environment. The create() method of a Module object can also be used
to create Instance objects.

Instance objects have properties that are specific to the type of module
that contains them and are defined within the CDB file that has been
loaded. All properties can be set, even those that are not writable in the
DSP/BIOS Configuration Tool. If setting a property fails because of a rule
defined in the CDB file for setting that property, an error is reported but
no exception is thrown.

Note that while individual objects within any container object may be
referred to as "instances," there is also a specific object class called
"Instance," which is the child of the Module class. Thus, the instances()
method of the Module class returns an array of "Instance objects."
Because of the potential for confusion, this document refers to individual
objects that are not of the "Instance" class as "objects," not as "object
instances" or "instances."

The examples in this section assume that the utils.getProgObjs() method
was called (with the second parameter omitted) after a CDB file was
loaded.

Instance objects cannot contain other objects, therefore the create()
method of an Instance object fails and returns an error.

destroy()
none
true if successful; false if failed

The destroy() method destroys the specified object.

DSP/BIOS TextConf Reference 2-31

Target Content Object Model Reference

references() Method
Syntax:
Parameters:
Returns:

Description:

Example:

module Property

Example:

name Property

2-32

This method fails and returns false if the object is either referenced by
another object or contains objects.

Notice that while the create() method creates an object one layer lower
in the hierarchy than the object whose method is used, the destroy()
method deletes the actual object whose method is used.

While you will probably not need to use the destroy() method when
writing configuration scripts from scratch, the destroy() method is often
needed in scripts created by the cdbcmp utility to compare two
configuration files.

references()
none
Array of all objects that directly reference this object

The references() method returns an array of objects that directly
reference the object whose method is used. Scripts can use the returned
array to attempt to delete referring objects or to display meaningful errors.

/* display list of all objects that reference IDATA */
refs = IDATA.references() ;
for (1 = 0; 1 < refs.length; i++) {
print (IDATA.name +
" is referenced by " + refs[i] .name) ;

}

The module property holds the Module object that contains the Instance
object. This property is gettable only. It is set when the Instance object is
created.

thread type = myThread.module.name;

The name property of an object holds the name of that object. This
property is gettable only. It is set when the object is created.

Names of Instance objects must be unique within the namespace of the
Program object that contains them. Program objects define a namespace
that includes all Extern, Module, and Instance objects contained by the
Program object. Extern, Module, and Instance objects within two different
Program objects can have duplicate names.

The names of Extern, Module, and Instance objects are the same as their
C identifiers.

Example:

CDB Properties

Example:

Target Content Object Model Reference

/* assemble a list of the module names in prog */
list = "v;
modules = prog.modules() ;
for (i = 0; i < modules.length; i++) {
list += modules[i] .name + " ";
}

Normally, all objects in a class have the same set of properties. However,
in a CDB file, each DSP/BIOS module and each instance type has a
different set of properties. Therefore, properties for Module and Instance
objects are handled differently than those of other object classes. For
more details, see Section 1.5.3.1, Module and Instance Property Names,
page 1-20.

Each CDB field name is mapped to a property name. In general,
properties of Instance objects begin with a lowercase word. Subsequent
words have their first letter capitalized. For example,
"TSK_idle.stackSize".

See the list in Section 2.2, DSP/BIOS Module and Instance Property
Names, page 2-34 of JavaScript names defined for the properties shown
in CDB files. You can set and get these property values as you would
properties of other object classes.

trace = LOG.create("trace") ;

trace.buflLen = 32;
trace.logType = "circular";

DSP/BIOS TextConf Reference 2-33

DSP/BIOS Module and Instance Property Names

2.2

23

2-34

DSP/BIOS Module and Instance Property Names

Refer to the following reference guides for lists of property names used
in DSP/BIOS TextConf scripts for DSP/BIOS Module and Instance

objects:

d TMS320C5000 DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU404E)

d TMS320C6000 DSP/BIOS Application Programming Interface
Reference Guide (literature number SPRU403E)

a TMS320C28x DSP/BIOS Application Programming Interface

Reference Guide (literature number SPRU625)

CSL Module and Instance Property Names

The tables in this section list the property names used in DSP/BIOS
TextConf scripts for Chip Support Library (CSL) objects.

4

The name shown after the dash (—) in each table title is the name to
use for the Module object in DSP/BIOS TextConf scripts. For
example, to create a MCBSP Configuration instance:

var mcbspCfg 0 = MCBSP.create ("mcbspCfgo") ;

The Description column shows the property field labels displayed in
the DSP/BIOS Configuration Tool for CSL objects.

The TextConf Name column shows the property names to use in
DSP/BIOS TextConf scripts to refer to these properties. You can set
and get these property values as you would properties of other object
classes. For example, the following statement sets the Open Handle
to McBSP property of a McBSP resource instance:

myMcBSP_0.mcbspHandleEnable = 1;

The Type column shows how the value is stored. For information
about the data types, see Section 1.5.3.1, Module and Instance
Property Names, page 1-20.

The names of any Instance objects that are pre-defined for a module
by the configuration templates are listed in a table after the properties
of that Instance type.

Refer to the CSL documentation for descriptions of these properties.

2.3.1

CSL Module and Instance Property Names

TMS320C54x Properties

Table 2-10. ‘C54x DMA Configuration Instance—DMA
Description TextConf Name Type
Channel Priority (0x0000 or 0x0001) dmaDmprecDprcAdv Numeric
Global Reload Register Usage in Autoinit Mode dmaAutoixAdv Numeric
(AUTOIX: 0x0000 or 0x0001)
Transfer Mode Control Register (DMMCR) dmaDmmcr Numeric
Sync Event and Frame Count Register (DMSFC) dmaDmsfc Numeric
Source Address Format dmaDmsrcFormatAdv EnumString
Source Address Register (DMSRC) - Numeric dmaDmsrcNumericAdv Numeric
Source Address Register (DMSRC) - Symbolic dmaDmsrcSymbolicAdv String
Destination Address Format dmaDmdstFormatAdv EnumString
Destination Address Register (DMDST) - Numeric dmaDmdstNumericAdv Numeric
Destination Address Register (DMDST) - Symbolic dmaDmdstSymbolicAdv String
Element Count Register (DMCTR) dmaDmctrAdv Numeric
Global Source Address Format dmaDmgsaFormatAdv EnumString
Global Source Address Reload Register (DMGSA) - Numeric dmaDmgsaNumericAdv ~ Numeric
Global Source Address Reload Register (DMGSA) - Symbolic dmaDmgsaSymbolicAdv String
Global Destination Address Format dmaDmgdaFormatAdv EnumString
Global Destination Address Reload Register (DMGDA) - Numeric ~ dmaDmgdaNumericAdv ~ Numeric
Global Destination Address Reload Register (DMGDA) - Symbolic dmaDmgdaSymbolicAdv ~ String
Global Element Count Reload Register (DMGCR) dmaDmgcrAdv Numeric
Global Frame Count Reload Register (DMGFR) dmaDmgfrAdv Numeric
Extended Source Data Page Register (DMSRCDP) - Numeric dmaDmsrcdpNumeric Numeric
Extended Source Data Page Register (DMSRCDP) - Symbolic dmadmsrcdpSymbolic String
Extended Destination Data Page Register (DMDSTDP) - Numeric ~ dmaDmdstdpNumeric Numeric
Extended Destination Data Page Register (DMDSTDP) - Symbolic dmaDmdstdpSymbolic String

DSP/BIOS TextConf Reference

2-35

CSL Module and Instance Property Names

Table 2-10. ‘C54x DMA Configuration Instance—DMA (Continued)
Description TextConf Name Type
Source Program Page Address Register (DMSRCP) - Numeric dmaDmsrcpNumeric Numeric
Source Program Page Address Register (DMSRCP) - Symbolic dmaDmsrcpSymbolic String
Destination Program Page Address Register (DMDSTP) - Numeric dmaDmdstpNumeric Numeric
Destination Program Page Address Register (DMDSTP) - dmaDmdstpSymbolic String
Symbolic
Element Address Index Register 0 (DMIDXO0) dmaDmidx0Adv Int16
Frame Address Index Register 0 (DMFRIO) dmaDmfri0Adv Int16
Element Address Index Register 1 (DMIDX1) dmaDmidx1Adv Int16
Frame Address Index Register 1 (DMFRI1) dmaDmfri1Adv Int16
Table 2-11. ‘C54x DMA Resource Instance—HDMA
Description TextConf Name Type
Open Handle to DMA dmaEnableHandle Bool
Specify Handle Name dmaHandleName String
Enable pre-initialization dmaEnablePrelnit Bool
Pre-initialize dmaPrelnit Reference
Table 2-12. 'C54x HDMA Pre-Created Instance Names
DMAO
DMA1
DMA2
DMA3
DMA4
DMA5

2-36

CSL Module and Instance Property Names

Table 2-13. ‘C54x GPIO Configuration Instance—GPIO

Description TextConf Name Type
Select IODIRO as 100 gpioloOdir EnumString
Select IODIR1 as 101 gpiolo1dir EnumString
Select IODIR2 as 102 gpiolo2dir EnumString
Select IODIR3 as 103 gpiolo3dir EnumString
Table 2-14. ‘C54x MCBSP Configuration Instance—MCBSP

Description TextConf Name Type
Serial Port Control Register 1 mcbspSpcr1 Numeric
Serial Port Control Register 2 mcbspSpcr2 Numeric
Receive Control Register 1 mcbspRcr1 Numeric
Receive Control Register 2 mcbspRcr2 Numeric
Transmit Control Register 1 mcbspXcr1 Numeric
Transmit Control Register 2 mcbspXcr2 Numeric
Sample Rate Generator Register 1 mcbspSrgr1 Numeric
Sample Rate Generator Register 2 mcbspSrgr2 Numeric
Multichannel Control Register 1 mcbspMcr1 Numeric
Multichannel Control Register 2 mcbspMcr2 Numeric
Pin Control Register mcbspPcr Numeric
Receive Channel Enable Register Partition A mcbspRceraAdv Numeric
Receive Channel Enable Register Partition B mcbspRcerbAdv Numeric
Receive Channel Enable Register Partition C mcbspRcercAdv Numeric
Receive Channel Enable Register Partition D mcbspRcerdAdv Numeric
Receive Channel Enable Register Partition E mcbspRcereAdv Numeric
Receive Channel Enable Register Partition F mcbspRcerfAdv Numeric
Receive Channel Enable Register Partition G mcbspRcergAdv Numeric

DSP/BIOS TextConf Reference

2-37

CSL Module and Instance Property Names

Table 2-14. ‘C54x MCBSP Configuration Instance—MCBSP (Continued)

Description TextConf Name Type

Receive Channel Enable Register Partition H mcbspRcerhAdv Numeric
Transmit Channel Enable Register Partition A mcbspXceraAdv Numeric
Transmit Channel Enable Register Partition B mcbspXcerbAdv Numeric
Transmit Channel Enable Register Partition C mcbspXcercAdv Numeric
Transmit Channel Enable Register Partition D mcbspXcerdAdv Numeric
Transmit Channel Enable Register Partition E mcbspXcereAdv Numeric
Transmit Channel Enable Register Partition F mcbspXcerfAdv Numeric
Transmit Channel Enable Register Partition G mcbspXcergAdv Numeric
Transmit Channel Enable Register Partition H mcbspXcerhAdv Numeric

Table 2-15. ‘C54x MCBSP Resource Instance—HMCBSP

Description TextConf Name Type
Open Handle to McBSP mcbspHandleEnable Bool
Specify Handle Name mcbspHandleName String
Enable pre-initialization mcbspEnablePrelnit Bool
Pre-initialize mcbspPrelnit Reference

Table 2-16. 'C54x HMCBSP Pre-Created Instance Names

McBSPO
McBSP1
McBSP2

2-38

CSL Module and Instance Property Names

Table 2-17. ‘C54x PLL Configuration Instance—PLL
Description TextConf Name Type
PLL Counter Value (PLLCOUNT) [0 - 255] plICIkmdPllcount Int16
PLL Multiplier plIPlimulRatio EnumString
PLL Multiplier (PLLMUL) plICIkmdPIlimul Enumint
CLKOUT Output Divide Factor pliDivideFactor EnumString
Table 2-18. ‘C54x PLL Resource Instance—HPLL
Description TextConf Name Type
Enable Configuration of PLL plIEnablePreinit Bool
Pre-initialize pliPrelnit Reference
Table 2-19. °'C54x HPLL Pre-Created Instance Names
PLLO
Table 2-20. ‘C54x Timer Configuration Instance—TIMER
Description TextConf Name Type
Timer Control Register timerTcr Numeric
Timer Period Register timerPrdAdv Numeric
Timer Secondary Control Register (TSCR) timerTscr Numeric
Table 2-21. ‘C54x Timer Resource Instance—HTIMER
Description TextConf Name Type
Open Handle to Timer timerHandleEnable Bool
Specify Handle Name timerHandleName String
Enable pre-initialization timerEnablePrelnit Bool
Pre-initialize timerPrelnit Reference

DSP/BIOS TextConf Reference

2-39

CSL Module and Instance Property Names

Table 2-22. ’'C54x HTIMER Pre-Created Instance Names

Timer0
Timer1

Table 2-23. ‘C54x WDTIMER Configuration Instance—WDTIM

Description TextConf Name Type
Timer Control Register wdtimerTcr Numeric
Timer Period Register wdtimerPrdAdv Numeric
Timer Secondary Control Register (TSCR) wdtimerTscr Numeric
Table 2-24. ‘C54x WDTIMER Resource Instance—HWDTIM
Description TextConf Name Type
Enable Configuration of Watchdog Timer wdtimerHandleEnable Bool
Pre-initialize wdtimerPrelnit Reference
Table 2-25. °'C54x HWDTIM Pre-Created Instance Names
WDTim0
2.3.2 TMS320C55x Properties
Table 2-26. ‘C55x CHIP Configuration Instance—CHIP
Description TextConf Name Type
Parallel Port Mode chipXbsrPPMode EnumString
Serial Port1 Mode chipXbsrSp1Mode EnumString
Serial Port 2 Mode chipXbsrSp2Mode EnumString

2-40

CSL Module and Instance Property Names

Table 2-27. ‘C55x DMA Configuration Instance—DMA
Description TextConf Name Type
Set Manually dmaSetManually Bool
Source Destination Register (CSDP) dmaCsdp Numeric
Control Register (CCR) dmaCcr Numeric
Interrupt Control Register (CICR) dmaCicr Numeric
Source Space dmaSrcSpaceAdv EnumString
Source Address Format dmaSrcAddrFormatAdv. EnumString
Lower Source Address (CSSA_L)- Numeric (Byte Address) dmaCssalNumeric Numeric
Lower Source Address (CSSA_L) - Symbolic (Byte Address) dmaCssalSymbolic String
Upper Source Address (CSSA_U) - Numeric (Byte Address) dmaCssauNumeric Numeric
Upper Source Address (CSSA_U) - Symbolic (Byte Address) dmaCssauSymbolic String
Destination Space dmaDstSpaceAdv EnumString
Destination Address Format dmaDstAddrFormatAdv.~ EnumString
Lower Destination Address (CDSA_L)- Numeric (Byte Address) dmaCdsalNumeric Numeric
Lower Destination Address (CDSA_L) - Symbolic (Byte Address) dmaCdsalSymbolic String
Upper Destination Address (CDSA_U) - Numeric (Byte Address) dmaCdsauNumeric Numeric
Upper Destination Address (CDSA_U) - Symbolic (Byte Address) dmaCdsauSymbolic String
Element Number (CEN) dmaCenAdv Numeric
Frame Number (CFN) dmaCfnAdv Numeric
Frame Index (CFI) dmaCfiAdv Numeric
Source Frame Index (CSFI) dmacCfiSrcAdv Numeric
Destination Frame Index (CDFI) dmaCfiDstAdv Numeric
Element Index (CEIl) dmaCeiAdv Numeric
Source Element Index (CSEI) dmaCeiSrcAdv Numeric
Destination Element Index (CDEI) dmaCeiDstAdv Numeric

DSP/BIOS TextConf Reference

2-41

CSL Module and Instance Property Names

Table 2-28. ‘C55x DMA Resource Module—HDMA

Description TextConf Name Type
PG1.0 Compatibility Mode Select dmaModeSelect EnumString
Generate Global DMA Configuration and Function Call dmaGenerateGlobalCall Bool
Set Manually dmaSetManually Bool
Global Control Register (GCR) dmaGcer Numeric
Enable DMA clocks during IDLE (AUTOGATE) dmaGcrAutogate Bool
Table 2-29. ‘C55x DMA Resource Instance—HDMA
Description TextConf Name Type
Open Handle to DMA dmaHandleEnable Bool
Specify Handle Name dmaHandleName String
Enable pre-initialization dmaEnablePrelnit Bool
Pre-initialize dmaPrelnit Reference
Table 2-30. ’'C55x HDMA Pre-Created Instance Names
DMAO
DMA1
DMA2
DMA3
DMA4
DMA5
Table 2-31. ‘C55x EMIF Configuration Instance—EMIF
Description TextConf Name Type
Configure Manually emifManuallConfigure Bool
Global Control Register emifGer Numeric
Global Reset Register emifGrr Numeric

2-42

CSL Module and Instance Property Names

Table 2-31. ‘C55x EMIF Configuration Instance—EMIF (Continued)

Description TextConf Name Type
CEO Space Control Register 1 emifCeOscr1 Numeric
CEO Space Control Register 2 emifCeOscr2 Numeric
CEO Space Control Register 3 emifCeOscr3 Numeric
CE1 Space Control Register 1 emifCe1scr1 Numeric
CE1 Space Control Register 2 emifCe1scr2 Numeric
CE1 Space Control Register 3 emifCe1scr3 Numeric
CE2 Space Control Register 1 emifCe2scr1 Numeric
CE2 Space Control Register 2 emifCe2scr2 Numeric
CE2 Space Control Register 3 emifCe2scr3 Numeric
CES3 Space Control Register 1 emifCe3scr1 Numeric
CE3 Space Control Register 2 emifCe3scr2 Numeric
CE3 Space Control Register 3 emifCe3scr3 Numeric
SDRAM Control Register 1 emifSdcr1 Numeric
SDRAM Period Register emifSdperiodAdv Numeric
SDRAM Initialization Register emifSdinitAdv Numeric
SDRAM Control Register 2 emifSdcr2 Numeric
Table 2-32. ‘C55x EMIF Resource Instance—HEMIF

Description TextConf Name Type
Enable pre-initialization emifEnablePrelnit Bool
Pre-initialize emifPrelnit Reference

Table 2-33. 'C55x HEMIF Pre-Created Instance Names

hEMIFO

DSP/BIOS TextConf Reference

2-43

CSL Module and Instance Property Names

Table 2-34. ‘C55x GPIO Configuration Instance—GPIO

Description TextConf Name Type
Configure Non-multiplexed GPIO gpioConfigure Bool
Select IODIRO0 as 100 gpioloQdir EnumString
Select IODIR1 as 101 gpiolo1dir EnumString
Select IODIR2 as 102 gpiolo2dir EnumString
Select IODIR3 as 103 gpiolo3dir EnumString
Select IODIR4 as 104 gpiolo4dir EnumString
Select IODIR5 as 105 gpiolo5dir EnumString
Select IODIR6 as 106 gpiolo6dir EnumString
Select IODIR7 as 107 gpiolo7dir EnumString
Table 2-35. ‘C55x MCBSP Configuration Instance—MCBSP
Description TextConf Name Type
Set Manually mcbspManualSet Bool
Serial Port Control Register 1 mcbspSpcr1 Numeric
Serial Port Control Register 2 mcbspSpcr2 Numeric
Receive Control Register 1 mcbspRcr1 Numeric
Receive Control Register 2 mcbspRcr2 Numeric
Transmit Control Register 1 mcbspXcr1 Numeric
Transmit Control Register 2 mcbspXcr2 Numeric
Sample Rate Generator Register 1 mcbspSrgr1 Numeric
Sample Rate Generator Register 2 mcbspSrgr2 Numeric
Multichannel Control Register 1 mcbspMcr1 Numeric
Multichannel Control Register 2 mcbspMcr2 Numeric
Pin Control Register mcbspPcr Numeric
Receive Channel Enable Register Partition A mcbspRceraAdv Numeric

2-44

CSL Module and Instance Property Names

Table 2-35. ‘C55x MCBSP Configuration Instance—MCBSP (Continued)

Description TextConf Name Type
Receive Channel Enable Register Partition B mcbspRcerbAdv Numeric
Receive Channel Enable Register Partition C mcbspRcercAdv Numeric
Receive Channel Enable Register Partition D mcbspRcerdAdv Numeric
Receive Channel Enable Register Partition E mcbspRcereAdv Numeric
Receive Channel Enable Register Partition F mcbspRcerfAdv Numeric
Receive Channel Enable Register Partition G mcbspRcergAdv Numeric
Receive Channel Enable Register Partition H mcbspRcerhAdv Numeric
Transmit Channel Enable Register Partition A mcbspXceraAdv Numeric
Transmit Channel Enable Register Partition B mcbspXcerbAdv Numeric
Transmit Channel Enable Register Partition C mcbspXcercAdv Numeric
Transmit Channel Enable Register Partition D mcbspXcerdAdv Numeric
Transmit Channel Enable Register Partition E mcbspXcereAdv Numeric
Transmit Channel Enable Register Partition F mcbspXcerfAdv Numeric
Transmit Channel Enable Register Partition G mcbspXcergAdv Numeric
Transmit Channel Enable Register Partition H mcbspXcerhAdv Numeric
Table 2-36. ‘C55x MCBSP Resource Instance—HMCBSP
Description TextConf Name Type
Open Handle to McBSP mcbspHandleEnable Bool
Specify Handle Name mcbspHandleName String
Enable pre-initialization mcbspEnablePrelnit Bool
Pre-initialize mcbspPrelnit Reference

Table 2-37. 'C55x HMCBSP Pre-Created Instance Names

hMCBSPO
hMCBSP1
hMCBSP2

DSP/BIOS TextConf Reference 2-45

CSL Module and Instance Property Names

Table 2-38. ‘C55x PLL Configuration Instance—PLL

Description TextConf Name Type
PLL Response After Idle (IAl) plIClkmdlai EnumString
Response to Loss of PLL Core Lock (IOB) plIClkmdlob EnumString
PLL Multiply Value (PLL_MULT) plICIkmdPIlimult Numeric
PLL Divide Value (PLL_DIV) plICIkmdPIidiv EnumString
Table 2-39. ‘C55x PLL Resource Instance—HPLL
Description TextConf Name Type
Enable Configuration of PLL plIEnablePrelnit Bool
Pre-initialize pliPrelnit Reference
Table 2-40. °'C55x HPLL Pre-Created Instance Names
PLLO
Table 2-41. ‘C55x PWR Configuration Instance—PWR
Description TextConf Name Type
Enable Pre-initialization pwrConfigPwr Bool
Clock Generator Disable pwrClockgenPwrDwnMode Bool
CACHE Disable pwrCachePwrDwnMode Bool
CPU Disable pwrCpuPwrDwnMode Bool
DMA Disable pwrDmaPwrDwnMode Bool
EMIF Disable pwrEmifPwrDwnMode Bool
McBsp 0 Disable pwrMcbspOPwrDwnMode Bool
McBsp 1 Disable pwrMcbsp1PwrDwnMode Bool
McBsp 2 Disable pwrMcbsp2PwrDwnMode Bool

2-46

CSL Module and Instance Property Names

Table 2-41. ‘C55x PWR Configuration Instance—PWR (Continued)

Description TextConf Name Type
Timer O Disable pwrTimerOPwrDwnMode Bool
Timer 1 Disable pwrTimer1PwrDwnMode Bool
I12C Disable pwrl2cPwrDwnMode Bool

Clockout Pin Disable pwrClockoutPwrDwnMode Bool

Disable CLKMEM pwrClkmemPwrDwnMode Bool

Oscillator Disable pwrOscPwrDwnMode Bool

Table 2-42. ‘C55x Real Time Clock Configuration Instance—RTC

Description TextConf Name Type

Set Manually rtcSetManually Bool

Seconds Register (RTCSEC) rtcRtcsecAdv Numeric
Seconds Alarm Register (RTCSECA) rtcRtcsecaAdv Numeric
Minutes Register (RTCMIN) rtcRtcminAdv Numeric
Minutes Alarm Register (RTCMINA) rtcRtcminaAdv Numeric
Hour Register (RTCHOUR) rtcRtchourAdv Numeric
Hour Alarm Register (RTCHOURA) rtcRtchouraAdv Numeric
Day of the Week Register (RTCDAYW) rtcRtcdaywAdv Numeric
Day of the Month Register (RTCDAYM) rtcRtcdaymAdv Numeric
Month Register (RTCMONTH) rtcRtcmonthAdv Numeric
Year Register (RTCYEAR) rtcRtcyearAdv Numeric
Periodic Interrupt Selection Register (RTCPINTR) rtcRtcpintrAdv Numeric
Interrupt Enable Register (RTCINTEN) rtcRtcintenAdv Numeric

DSP/BIOS TextConf Reference

2-47

CSL Module and Instance Property Names

Table 2-43. ‘C55x Real Time Clock Resource Instance—RTCRES

Description TextConf Name Type
Enable RTC Configuration rtcCfgEnable Bool
Pre-initialize rtcPrelnit Reference
Table 2-44. ’C55x RTCRES Pre-Created Instance Names
RTCO
Table 2-45. ‘C55x Timer Configuration Instance—TIMER
Description TextConf Name Type
Set Manually timerSetManually Bool
Timer Control Register (TCR) timerTcr Numeric
Timer Period Register (PRD) timerPrdAdv Numeric
Timer Prescalar Register (PRSC) timerPrsc Numeric
Table 2-46. ‘C55x Timer Resource Instance—HTIMER
Description TextConf Name Type
Open Handle to Timer timerHandleEnable Bool
Specify Handle Name timerHandleName String
Enable pre-initialization timerEnablePrelnit Bool
Pre-initialize timerPrelnit Reference

Table 2-47. ’'C55x HTIMER Pre-Created Instance Names

TIMERO
TIMER1

2-48

CSL Module and Instance Property Names

Table 2-48. 'C55x USBRES Pre-Created Instance Names
USBO

Table 2-49. ‘C55x WDTIMER Configuration Instance—WDTIM
Description TextConf Name Type
WD Timer Control Register (WDTCR) wdtimWdtcrAdv Numeric
WD Timer Period Register (WDPRD) wdtimWdprdAdv Numeric
WD Timer Secondary Control Register (WDTCR2) wdtimWdtcr2Adv Numeric

Table 2-50. ‘C55x WDTIMER Resource Instance—HWDTIM
Description TextConf Name Type
Enable Configuration of Watchdog Timer wdtimEnablePrelnit Bool
Pre-initialize wdtimPrelnit Reference

23.3 TMS320C6000 Properties

Table 2-51. ‘C6000 DMA Global Register Module—GDMA
Description TextConf Name Type
Pre-allocation Global Address Reload Register A DMA_PRE_ALLOC_GBLADDRA Bool
Pre-allocation Global Address Reload Register B DMA_PRE_ALLOC_GBLADDRB Bool
Pre-allocation Global Address Reload Register C DMA_PRE_ALLOC_GBLADDRC Bool
Pre-allocation Global Address Reload Register D DMA_PRE_ALLOC_GBLADDRD Bool
Pre-allocation Global Index Register A DMA_PRE_ALLOC_GBLIDXA Bool
Pre-allocation Global Index Register B DMA_PRE_ALLOC_GBLIDXB Bool
Pre-allocation Global Count Reload Register A DMA_PRE_ALLOC_GBLCNTA Bool
Pre-allocation Global Count Reload Register B DMA_PRE_ALLOC_GBLCNTB Bool

DSP/BIOS TextConf Reference

2-49

CSL Module and Instance Property Names

Table 2-51. ‘C6000 DMA Global Register Module—GDMA (Continued)

Description TextConf Name Type
DMA Global Register ID DMA_HANDLE_NAME String
Enable Pre-Initialization DMA_ENABLE_PRE_INIT Bool
Pre-Initialize with DMA_PRE_INIT Reference
Table 2-52. ‘C6000 DMA Global Register Instance—GDMA
Description TextConf Name Type
Global Address Reload Register A Format dmaGbladdrAFormatAdv EnumString
Reload Register A - Numeric dmaGbladdrANumericAdv Numeric
Reload Register A - Symbolic dmaGbladdrASymbolicAdv String
Global Address Reload Register B Format dmaGbladdrBFormatAdv EnumString
Reload Register B - Numeric dmaGbladdrBNumericAdv Numeric
Reload Register B - Symbolic dmaGbladdrBSymbolicAdv String
Global Address Reload Register C Format dmaGbladdrCFormatAdv EnumString
Reload Register C - Numeric dmaGbladdrCNumericAdv Numeric
Reload Register C - Symbolic dmaGbladdrCSymbolicAdv String
Global Address Reload Register D Format dmaGbladdrDFormatAdv EnumString
Reload Register D - Numeric dmaGbladdrDNumericAdv Numeric
Reload Register D - Symbolic dmaGbladdrDSymbolicAdv String
Global Index Register A dmaGblidxAAdv Numeric
Global Index Register B dmaGblidxBAdv Numeric
Global Count Reload Register A dmaGblcntAAdv Numeric
Global Count Reload Register B dmaGblcntBAdv Numeric

2-50

CSL Module and Instance Property Names

Table 2-53. ‘C6000 DMA Configuration Instance—DMA

Description TextConf Name Type
Primary Control Register dmaPrictl Numeric
Secondary Control Register dmaSecctl Numeric
Source Address Format dmaSrcAddrFormatAdv EnumString
Source Address - Numeric dmaSrcAddrNumericAdv Numeric
Destination Address Format dmaDstAddrFormatAdv EnumString
Destination Address - Numeric dmaDstAddrNumericAdv Numeric
Transfer Counter Format dmaXfrcntFormatAdv EnumString
Transfer Counter - Numeric dmaXfrent Numeric

Table 2-54. ‘C6000 DMA Resource Instance—HDMA

Description TextConf Name Type
Open DMA Channel dmaHandleEnable Bool
Handle dmaHandleName String
Enable Pre-Initialization dmaEnablePrelnit Bool
Pre-Initialize with dmaPrelnit Reference

Table 2-55. 'C6000 HDMA Pre-Created Instance Names

DMA_Channel0
DMA_Channel1
DMA_Channel2
DMA_Channel3

DSP/BIOS TextConf Reference 2-51

CSL Module and Instance Property Names

Table 2-56. ‘C6000 EDMA Configuration Instance—EDMA

Description TextConf Name Type
Option edmaOptions Numeric
Source Address Format edmaSrcAddrFormatAdv EnumString
Source Address - Numeric edmaSrcAddrNumericAdv Numeric
Transfer Counter Format edmaTransferCounterFormatAdv EnumString
Transfer Counter - Numeric edmaTransferCounterNumeric Numeric
Destination Address Format edmaDstAddrFormatAdv EnumString
Destination Address - Numeric edmaDstAddrNumericAdv Numeric
Index Format edmalndexFormatAdv EnumString
Index register - Numeric edmalndexNumeric Numeric
Element Count Reload and Link Address edmakEcridLinkAddr Numeric
Table 2-57. ‘C6000 EDMA Resource Instance—HEDMA
Description TextConf Name Type
Open EDMA Channel edmaHandleEnable Bool
Handle edmaHandleName String
Enable Pre-Initialization edmaEnablePrelnit Bool
Pre-Initialize with edmaPrelnit Reference
Enable Selected Channel edmaEnableChannel Bool

2-52

CSL Module and Instance Property Names

Table 2-58. 'C6000 HEDMA Pre-Created Instance Names

EDMA_Channel0_DSPINT
EDMA_Channel1_TINTO
EDMA_Channel2_TINT1
EDMA_Channel3_SDINT
EDMA_Channel4_EXTINT4_GPINT4
EDMA_Channel5_EXTINT5_GPINT5
EDMA_Channel6_EXTINT6_GPINT6
EDMA_Channel7_EXTINT7_GPINT7
EDMA_Channel8_TCC8 GPINTO
EDMA_Channel9_TCC9_GPINT1
EDMA_Channel10_TCC10_GPINT2
EDMA_Channel11_TCC11_GPINT3
EDMA_Channel12_XEVTO
EDMA_Channel13_REVTO
EDMA_Channel14_XEVT1
EDMA_Channel15_REVT1
EDMA_Channel16
EDMA_Channel17_XEVT2
EDMA_Channel18_REVT2
EDMA_Channel19_TINT2
EDMA_Channel20_SDINTB
EDMA_Channel21_PCI
EDMA_Channel22
EDMA_Channel23
EDMA_Channel24
EDMA_Channel25
EDMA_Channel26
EDMA_Channel27
EDMA_Channel28_VCPREVT
EDMA_Channel29 VCPXEVT
EDMA_Channel30_TCPREVT
EDMA_Channel31_TCPXEVT
EDMA_Channel32_UREVT
EDMA_Channel33
EDMA_Channel34
EDMA_Channel35
EDMA_Channel36
EDMA_Channel37
EDMA_Channel38
EDMA_Channel39
EDMA_Channel40_UXEVT
EDMA_Channel41
EDMA_Channel42

DSP/BIOS TextConf Reference 2-53

CSL Module and Instance Property Names

Table 2-58. ’'C6000 HEDMA Pre-Created Instance Names

EDMA_Channel43
EDMA_Channel44
EDMA_Channel45
EDMA_Channel46
EDMA_Channel47
EDMA_Channel48_GPINT8
EDMA_Channel49_GPINT9
EDMA_Channel50_GPINT10
EDMA_Channel51_GPINT11
EDMA_Channel52_GPINT12
EDMA_Channel53_GPINT13
EDMA_Channel54_GPINT 14
EDMA_Channel55_GPINT15
EDMA_Channel56
EDMA_Channel57
EDMA_Channel58
EDMA_Channel59
EDMA_Channel60
EDMA_Channel61
EDMA_Channel62
EDMA_Channel63

Table 2-59. ‘C6000 Parameter RAM Table Entry Instance—EdmaTable

Description TextConf Name Type
Allocate Parameter RAM Table edmaAllocPramTable Bool
Allocate Table Number edmaTableNumber Numeric
Enable Pre-Initialization edmaEnablePrelnit Bool
Pre-Initialize with edmaPrelnit Reference
Table 2-60. ‘C6000 EMIF Configuration Instance—EMIF

Description TextConf Name Type
Global Control Reg. (GBLCTL) emifGblctl Numeric
CEO Space Control Reg. (Cectl0) emifCectlO Numeric
CE1 Space Control Reg. (Cectl1) emifCectl1 Numeric
CE2 Space Control Reg. (Cectl2) emifCectl2 Numeric

2-54

CSL Module and Instance Property Names

Table 2-60. ‘C6000 EMIF Configuration Instance—EMIF (Continued)

Description TextConf Name Type

CE3 Space Control Reg. (Cectl3) emifCectl3 Numeric
SDRAM Control Reg.(SDCTL) emifSdctl Numeric
SDRAM Timing Reg.(SDTIM) emifSdtim Numeric
SDRAM Extended Reg.(SDEXT) emifSdext Numeric

Table 2-61. ‘C6000 EMIF Resource Instance—HEMIF

Description TextConf Name Type
Enable Pre-Initialization emifEnablePrelnit Bool
Pre-Initialize with emifPrelnit Reference

Table 2-62. ‘C6000 EMIFA Configuration Instance—EMIFA

Description TextConf Name Type

Global Control Reg. (GBLCTL) emifaGblctl Numeric
CEOQ Space Control Reg. (Cectl0) emifaCectlO Numeric
CE1 Space Control Reg. (Cectl1) emifaCectl1 Numeric
CE2 Space Control Reg. (Cectl2) emifaCectl2 Numeric
CE3 Space Control Reg. (Cectl3) emifaCect!3 Numeric
SDRAM Control Reg.(SDCTL) emifaSdctl Numeric
SDRAM Timing Reg.(SDTIM) emifaSdtim Numeric
SDRAM Extended Reg.(SDEXT) emifaSdext Numeric
CEO Space Secondary Control Reg. (Cesec0) emifaCesecO Numeric
CE1 Space Secondary Control Reg. (Cesec1) emifaCesec1 Numeric
CE2 Space Secondary Control Reg. (Cesec?2) emifaCesec?2 Numeric
CE3 Space Secondary Control Reg. (Cesec3) emifaCesec3 Numeric

DSP/BIOS TextConf Reference 2-55

CSL Module and Instance Property Names

Table 2-63. ‘C6000 EMIFA Resource Instance—HEMIFA

Description TextConf Name Type
Enable Pre-Initialization emifaEnablePrelnit Bool
Pre-Initialize with emifaPrelnit Reference
Table 2-64. ‘C6000 EMIFB Configuration Instance—EMIFB
Description TextConf Name Type
Global Control Reg. (GBLCTL) emifbGbilctl Numeric
CEOQ Space Control Reg. (Cectl0) emifbCectlO Numeric
CE1 Space Control Reg. (Cectl1) emifbCectl1 Numeric
CE2 Space Control Reg. (Cectl2) emifbCectl2 Numeric
CE3 Space Control Reg. (Cectl3) emifbCectl3 Numeric
SDRAM Control Reg.(SDCTL) emifbSdctl Numeric
SDRAM Timing Reg.(SDTIM) emifbSdtim Numeric
SDRAM Extended Reg.(SDEXT) emifbSdext Numeric
CEO Space Secondary Control Reg. (Cesec0) emifbCesec0 Numeric
CE1 Space Secondary Control Reg. (Cesec1) emifbCesec1 Numeric
CE2 Space Secondary Control Reg. (Cesec?2) emifbCesec?2 Numeric
CE3 Space Secondary Control Reg. (Cesec3) emifbCesec3 Numeric
Table 2-65. ‘C6000 EMIFB Resource Instance—HEMIFB

Description TextConf Name Type
Enable Pre-Initialization emifbEnablePrelnit Bool
Pre-Initialize with emifbPrelnit Reference

2-56

CSL Module and Instance Property Names

Table 2-66. ‘C6000 CSL Extern Declaration Module—ExternDecl/
Description TextConf Name Type
Enter header filename between quotes HEADER_FILENAME String
Table 2-67. ‘C6000 CSL Extern Declaration Instance—ExternDecl
Description TextConf Name Type
CSL Symbol Type (ex: Uint32) bufType String
Symbol Name (ex: BuffA) bufName String
Symbol Specification bufSpec EnumString
Table 2-68. ‘C6000 MCBSP Configuration Instance—MCBSP
Description TextConf Name Type
Serial Port Control Reg. (SPCR) mcbspSpcr Numeric
Receiver Control Reg. (RCR) mcbspRcr Numeric
Transmitter Control Reg. (XCR) mcbspXcr Numeric
Sample-Rate Generator Reg. (SRGR) mcbspSrgr Numeric
Multichannel Control Reg. (MCR) mcbspMcr Numeric
Receiver Channel Enable(RCER) mcbspRcer Numeric
Transmitter Channel Enable(XCER) mcbspXcer Numeric
Pin Control Reg. (PCR) mcbspPcr Numeric
Table 2-69. ‘C6000 MCBSP Resource Instance—HMCBSP
Description TextConf Name Type
Open MCBSP Port mcbspHandleEnable Bool
Handle mcbspHandleName String
Enable Pre-Initialization mcbspEnablePrelnit Bool
Pre-Initialize with mcbspPrelnit Reference

DSP/BIOS TextConf Reference

2-57

CSL Module and Instance Property Names

Table 2-70. 'C6000 HMCBSP Pre-Created Instance Names

Mcbsp_Port0
Mcbsp_Port1
Mcbsp_Port2

Table 2-71. ‘C6000 TCP Base Parameters—TCPBP

Description TextConf Name Type
Decoder Standard (3GPP/IS2000) tcpBaseParamStandard EnumString
Code Rate (RATE) tcpBaseParamRate EnumString
Frame length (FL) tcpBaseParamFramelLen Int16
Prolog Size (P) tcpBaseParamProlSize Int16
Maximum lteration (MAXIT) tcpBaseParamMaxIt Int16

Snr Threshold (SNR) tcpBaseParamSnrTh Int16
Output Paramters Read Flag (OUTF) tcpBaseParamOutFlag EnumString
Interleaver Write Flag (INTER) tcpBaseParaminterFlag EnumString

Table 2-72. ‘C6000 TCP Configuration Instance—TCPBP

Description TextConf Name Type

Input control register 0 (IC0O) tcplcO Numeric
Input control register 1 (IC1) tcplct Numeric
Input control register 2 (IC2) teplc2 Numeric
Input control register 3 (IC3) tcplc3 Numeric
Input control register 4 (IC4) tcplcd Numeric
Input control register 5 (IC5) tcplch Numeric

2-58

CSL Module and Instance Property Names

Table 2-73. ‘C6000 TCP Resource Instance—HTCP

Description TextConf Name Type
Enable Parameters Setting tcpEnableParams Bool
Pre-Initialize with tcpBaseParaminit Reference
Output TCP Params ConfigName (ex: tcpParam) tcpParamConfigName EnumString
Set TCP Params Values to the IC Config. Obj tcpSetParamEnable Bool
Enable Pre-Initialization tcpEnablePrelnit Bool
Pre-Initialize with tcpPrelnit Reference
Table 2-74. ‘C6000 TIMER Configuration Instance—TIMER
Description TextConf Name Type
Control Register (CTL) timerCtlAdv Numeric
Period Register (PRD) timerPrdAdv Numeric
Counter Register (CNT) timerCntAdv Numeric
Table 2-75. ‘C6000 TIMER Resource Instance—HTIMER
Description TextConf Name Type
Open Timer Device timerHandleEnable Bool
Handle timerHandleName String
Enable Pre-Initialization timerEnablePrelnit Bool
Pre-Initialize with timerPrelnit Reference

Table 2-76. 'C6000 HTIMER Pre-Created Instance Names

Timer_Device0
Timer_Device1
Timer_Device2

DSP/BIOS TextConf Reference 2-59

CSL Module and Instance Property Names

Table 2-77. ‘C6000 VCP Base Parameters—VCPBP

Description TextConf Name Type
Code Rate vcpBaseParamRate EnumString
Constraints Length vcpBaseParamConstrLen EnumString
Frame length (F) vcpBaseParamFramelen Int16
Yamamoto Threshold (YAMTH) vcpBaseParamYamth Int16
Max State Index Iteration (IMAXI) vcpBaseParamindexMaxlter Int16
Output Hard Decision (SDHD) vcpBaseParamDecisionType EnumString
Output Paramters Read Flag (OUTF) vcpBaseParamOutFlag EnumString

Table 2-78. ‘C6000 VCP Configuration Instance—VCPBP

Description TextConf Name Type

Input control register 0 (IC0O) veplcO Numeric
Input control register 1 (IC1) veplet Numeric
Input control register 2 (IC2) veplc2 Numeric
Input control register 3 (IC3) veplc3 Numeric
Input control register 4 (IC4) veplcd Numeric
Input control register 5 (IC5) veplch Numeric

Table 2-79. ‘C6000 VCP Resource Instance—HVCP

Description TextConf Name Type
Enable Parameters Setting vcpEnableParams Bool
Pre-Initialize with vcpBaseParaminit Reference
Output VCP Params ConfigName (ex: vcpParam) vcpParamConfigName EnumString
Set VCP Params Values to the IC Config. Obj vcpSetParamEnable Bool
Enable Pre-Initialization vcpEnablePrelnit Bool
Pre-Initialize with vepPrelnit Reference

2-60

CSL Module and Instance Property Names

Table 2-80. ‘C6000 XBUS Configuration Instance—XBUS

Description TextConf Name Type

Global Control Register(XBGC) xbusXbgc Numeric
XCEO Space Control Register(XCectl0) xbusXcectlO Numeric
XCE1 Space Control Register(XCectl1) xbusXcectl1 Numeric
XCE2 Space Control Register(XCectl2) xbusXcectl2 Numeric
XCE3 Space Control Register(XCectl3) xbusXcectl3 Numeric
XBUS HPI Control Register(XBHC) xbusXbhc Numeric
XBUS Internal Master Address Register(XBIMA) xbusXbimaAdv Numeric
XBUS External Address Register(XBEA) xbusXbeaAdv Numeric

Table 2-81. ‘C6000 XBUS Resource Instance—HXBUS

Description TextConf Name Type
Enable Pre-Initialization xbusEnablePrelnit Bool
Pre-Initialize with xbusPrelnit Reference

DSP/BIOS TextConf Reference 2-61

2-62

A

Arg data type 1-20
arguments array 1-24
array
arguments 1-24
environment 1-22
methods 1-20
of objects 1-18, 1-19
properties 1-19
assembly header file

1-9
assembly source file 1-9

B

base property

Memory object 2-25
big endian 2-15, 2-24
Board object 2-8

defined by startup script 1-35

initializing 1-36
board property

Cpu object 2-15
board() method

Config object 2-4
boardFamily property

Board object 2-11
boardRevision property

Board object 2-11
boards() method

Config object 2-4
Boolean values 1-20
bracket ([]) notation 1-18
branching 1-5
build mechanisms 1-31

C

C header file 1-9
C source file 1-9
Cb54x properties for CSL 2-35
C55x properties for CSL 2-40

Index

C6000 properties for CSL 2-49
catch keyword 1-29
catching exceptions 1-29
CDB file 1-3,1-8

comparing 1-41

generating project files 1-41, 2-20

loading 1-25, 2-22

migrating to TCF 1-15

saving 2-23

size 1-6
CDB properties

Instance object 2-33

Module object 2-30
cdbcmp utility 1-15, 1-41
CHIP properties

'C55x 2-40
Chip Support Library properties 2-34
clkmode pins 2-11
clockOscillator property

Cpu object 2-15
CMD file 1-9
code size

minimizing 1-43
codeModel property

Program object 2-24
command-line mode 1-40
command-line utilities 1-9, 1-39
comment property

Memory object 2-25
comparing configurations 1-16
comparison on floats 1-21
compilerOpts 1-23, 2-24
Config object 2-4

defined by startup script 1-35
config property

Board object 2-11
config.rootDir variable 1-23
config.scriptName variable 1-23
config.tiRoot variable 1-23
configuration methods 1-2
configurations

comparing 1-16

merging 1-16
containers 1-18

Index-1

Index

conventions
coding 1-29

object model initialization

Cpu object 2-13

defined by startup script
cpu property

Program object 2-24
CPU speed 2-11
cpu() method

Board object 2-8
cpuCore property

Cpu object 2-16
cpuCoreRevision property

Cpu object 2-16
cpuFamily property

Cpu object 2-16
cpuNumber property

Cpu object 2-16
cpus() method

Board object 2-8
create() method

Board object 2-9

Config object 2-5

Cpu object 2-13

Instance object 2-31

Module object 2-28

Program object 2-18
creating scripts 1-11

CSL Extern Declaration properties

'C6000 2-57
CSL properties 2-34

D

-D option 1-39, 1-40
data types 1-17, 1-20
Arg 1-20

Boolean 1-20
Enumint 1-21
EnumString 1-21
Extern 1-21

Int16 1-21

Int32 1-21
Numeric 1-21
Reference 1-21
String 1-21

word size 2-17
dataModel property
Program object 2-24
dataWordSize property
Cpu object 2-17
debugging 1-12
GUI debugger 1-14
interactive shell 1-12
decimal values 1-21

Index-2

1-36

1-35

dependencies

on objects
statement

design-time configuration

2-32

order 1-15

destroy() method

Board object

Config object 2-6
Cpu object 2-14

Instance o
Program o

DMA Global Register properties

bject 2

2-10

-31

bject 2-19
differences between configurations 1-16
directory path 1-24, 1-39

'C6000 2-49, 2-50
DMA properties
'C54x 2-35, 2-36
'C55x 2-41, 2-42
'C6000 2-51

Document Object Model (DOM)

documentation, other 1-38

dot (.) notation

DSP/BIOS

1-2

1-18

DSP/BIOS Configuration Tool
advantages 1-4
DSP/BIOS TextConf 1-3
advantages 1-4
for new applications 1-10
migrating existing applications 1-15

dynamic objects

E

ECMA-262

1-4, 11

EDMA properties
'C6000 2-52
EMIF properties
'C55x 2-42, 2-43
'C6000 2-54, 2-55, 2-56
endian property
Cpu object 2-15
Program object 2-24
enumerated data type 1-21
Enumint data type
EnumString data type 1-21
environment array 1-22, 1-39, 1-40

error handlin
errors 1-28

g 1-27

examples 1-43
hello world 1-6
minimizing code size 1-43

exceptions
catching
throwing

exit keyword

exit status

1-28
1-29
1-28
1-13
1-28

1-2

7

1-21

1-2

1-7, 1-17

1-2

exiting from tconf 1-13
Extern data type 1-21
Extern Declaration properties
'C6000 2-57
Extern object 1-21, 2-27
creating 2-19
extern() method
Program object 2-19
externs() method
Program object 2-20

F

family of CPU 2-16
far model 2-24

file services 1-18, 1-26
files

assembly header 1-9
assembly source 1-9
C header 1-9

C source 1-9

CDB 1-8, 1-15
CMD 1-9

naming 1-29
startup 1-8

TCF 1-8

TCl 1-8

TCP 1-8

template 1-8
findSeed() method 1-26
floating values 1-21
function names 1-21

G

geconfgen utility 1-41
gen() method 1-41
Program object 2-20
when to use 1-11
get() method

Program object 2-21

getProgObjs() method 1-8, 1-11, 1-26

global variables 1-18

on command line 1-39, 1-40
GPIO properties

'Ch4x 2-37

'C55x 2-44

graphical configuration 1-2
GUI debugger 1-14
command line 1-40
guidelines

coding 1-29

object model initialization 1-36

H

hardware specification 1-30

hasReportedError property
Config object 2-7

header files 1-9

hierarchy of objects 1-7

id property

Cpu object 2-16

importFile() method 1-25
importPath 1-23

include file 1-8

initializing the object model 1-36
Instance object 2-31

CDB properties 1-20
instance() method

Module object 2-29
instanceof operator 1-22
instances() method

Module object 2-29

Int16 data type 1-21

Int32 data type 1-21
interactive debugging shell 1-12
command line 1-40

J

Java 1-18
documentation 1-38
Rhino written in 1-14

java.io package 1-27

JavaScript 1-4
documentation 1-38
language issues 1-17
misconceptions 1-17
overview 1-17
Rhino interpreter 1-14

L

large model 2-24
len property
Memory object 2-26
linker command file 1-9
little endian 2-15, 2-24
LiveConnect 1-27
load() method 1-13, 1-24
Program object 2-22

Index

Index-3

Index

loadArch() method 1-25
loadPlatform() method 1-11, 1-25
long integer 1-21

looping 1-5

loosely-typed language 1-17

MCBSP properties
'Ch4x 2-37, 2-38
'C55x 2-44, 2-45
'C6000 2-57
Memory object 2-25
merging configurations 1-16
methods 1-18
Microsoft Windows
configuration methods 1-2
migration 1-4, 1-15
minDataUnitSize property
Cpu object 2-17
minProgUnitSize property
Cpu object 2-17
modularization 1-5, 1-30
Module object 2-28
CDB properties 1-20
module property
Instance object 2-32
module() method
Program object 2-22
modules() method
Program object 2-23
multiple boards 1-8
creating objects 2-5
multiple CPUs 1-8
creating objects 2-9
multiple programs 1-8
creating objects 2-13

N

name property

Board object 2-11
Config object 2-7
Cpu object 2-16
Extern object 2-27
Memory object 2-26
Module object 2-30
Program object 2-24
names

namespace 1-22
TCF file 1-29

TCl file 1-29
variables 1-17

Index-4

namespace 1-22
get() Method 2-21
naming conventions
files 1-29, 1-36
properties 1-20
near model 2-24
number of CPU 2-16
Numeric data type 1-21

O

object

as return value or parameter 1-19

hierarchy 1-7

model initialization 1-36
object-orientation 1-18
operation modes 1-12, 1-40
order dependencies 1-15
order of objects in array 1-20

P

Parameter RAM Table properties
'C6000 2-54

path 1-23

adding directory to 1-39
separators 1-24

PATH variable

running cdbcmp 1-41
running tconf 1-39

platform file 1-8

platform specification 1-30
platform-dependent scripts 1-30
platform-independent scripts 1-30
PLL properties

'Ch4x 2-39

'C55x 2-46

pllindex property

Board object 2-11

pointers 1-17

portable scripts 1-30

porting 1-4, 1-15

print() method 1-13, 1-27
Rhino GUI 1-14

Program object 2-18

defined by startup script 1-35
initializing 1-36

program() method

Cpu object 2-14
programs() method

Cpu object 2-15

project

adding filesto 1-9

properties 1-18

naming conventions 1-20

of Modules and Instances 1-20
PWR properties

'C55x 2-46

Q

quit command 1-13

R

Reference data type 1-21
references to objects 1-19
references() method
Instance object 2-32
reserved keywords 1-13
revision number of CPU 2-16
Rhino 1-14, 1-40
rootDir variable 1-23
RTC properties
'C55x 2-47
RTCRES properties
'C55x 2-48
running a script 1-39

S

save() method

Program object 2-23

script

creating 1-11

file 1-8

generating from CDB files 1-41
running 1-39

scripting languages 1-7
scriptName variable 1-23
scripts

portable 1-30

search path 1-39

seed file 1-8

small model 2-24

source files 1-9

space property

Memory object 2-26

speed of CPU 2-11

startup file 1-8
startup script 1-34
static objects 1-2
stderr location 1-28
stdout location 1-27
String data type 1-21

T

Index

Target Content Object Model (TCOM) 1-7, 1-18

class containers 1-18

diagram 1-7

quick reference 2-2

TCF file 1-8

creating from CDB 1-15

creating from scratch 1-11
generating from CDB file 1-41
naming 1-29, 1-36

TCl file 1-8

loading 1-24

naming 1-29

tconf utility 1-39

exit status 1-28

operation modes 1-12

tconfini.tcf file 1-8, 1-34

tconflocal.tci file 1-8, 1-35

TCP file 1-8

template file

differences from 1-15, 1-41
template files 1-8

testing 1-12

text-based configuration 1-2
TextConf 1-3

advantages 1-4

for new applications 1-10

migrating existing applications 1-15
throw keyword 1-29

throwing exceptions 1-28

TIMER properties

‘Ch4x 2-39

‘C55x 2-48

'C6000 2-58, 2-59, 2-60

tiRoot variable 1-23

TMS320C54x properties for CSL 2-35
TMS320C55x properties for CSL 2-40
TMS320C6000 properties for CSL 2-49
true/false values 1-20

try keyword 1-29

U

UNIX

configuration methods 1-2
USBRES properties

‘C55x 2-49

utilities 1-9

cdbcmp 1-41

gconfgen 1-41

tconf 1-39

utils.findSeed() method 1-26
utils.getProgObjs() method 1-8, 1-26

Index-5

Index

utils.importFile() method 1-25
utils.loadArch() method 1-25
utils.loadPlatform() method 1-25
utils.tcf file 1-35

methods provided 1-25, 1-26

\'

variable names 1-17
environment array 1-22
variable types 1-17, 1-20

W

warn() method 2-7

Index-6

warnings 1-27
enabling 1-39
WDTIMER properties
'C54x 2-40
‘C55x 2-49
Windows
configuration methods
word size 2-17
writing scripts 1-11

X

XBUS properties
'C6000 2-61

1-2

	DSP/BIOS TextConf User’s Guide
	Read This First
	About This Manual
	Notational Conventions
	Trademarks
	Licences

	Contents
	Figures
	Tables

	DSP/BIOS TextConf Overview
	1.1 DSP/BIOS Configuration Methods
	1.1.1 Why Use Graphical Configuration?
	1.1.2 Why Use DSP/BIOS TextConf?

	1.2 An Overview of DSP/BIOS TextConf
	1.2.1 An Example TextConf Script
	1.2.2 The Target Content Object Model (TCOM)
	1.2.3 Configuration File Types
	1.2.4 Command-Line Utilities

	1.3 Using DSP/BIOS TextConf for New Applications
	1.3.1 Creating a Script for a New Application
	1.3.2 Debugging DSP/BIOS TextConf Scripts
	1.3.3 Using the Interactive Debugging Shell
	1.3.4 Using the GUI Debugger

	1.4 Migrating Applications to DSP/BIOS TextConf
	1.4.1 Creating a DSP/BIOS TextConf Script from a CDB File
	1.4.2 Comparing Configurations
	1.4.3 Merging Configurations

	1.5 JavaScript Language Highlights
	1.5.1 JavaScript Language Overview
	1.5.2 Common Misconceptions About JavaScript
	1.5.3 Objects and Properties in JavaScript
	1.5.3.1 Module and Instance Property Names
	1.5.3.2 Property Types
	1.5.3.3 Namespace Management

	1.5.4 Built-in Variable Arrays
	1.5.4.1 Environment Array Variables
	1.5.4.2 Argument Array Variables

	1.5.5 File Interaction and I/O Methods
	1.5.5.1 Methods for Loading Scripts
	1.5.5.2 Methods for Working with CDB Files
	1.5.5.3 Methods for File Manipulation
	1.5.5.4 print() Method

	1.5.6 Error Handling
	1.5.6.1 More About Errors
	1.5.6.2 More About Exceptions

	1.5.7 Configuration Coding Guidelines
	1.5.8 Specifying the Hardware Platform
	1.5.8.1 Specifying the Platform in the Script
	1.5.8.2 Specifying the Platform on the Command Line
	1.5.8.3 Specifying Platform and Directory on the Command Line
	1.5.8.4 Specifying the Platform in the Script File Name

	1.5.9 Platform Specification and the Startup Script
	1.5.9.1 Startup Script Actions
	1.5.9.2 Optional Conventions for Initializing the Object Model

	1.5.10 Creating a Platform File
	1.5.11 JavaScript and Java References

	1.6 Command-Line Utility Reference
	1.6.1 tconf Utility
	1.6.2 cdbcmp Utility
	1.6.3 gconfgen Utility

	1.7 Example Scripts
	1.7.1 Minimizing Application Code Size
	1.7.2 Mailbox Example

	DSP/BIOS TextConf Reference
	2.1 Target Content Object Model Reference
	2.1.1 Target Content Object Model Quick Reference
	2.1.2 Config Class
	2.1.3 Board Class
	2.1.4 Cpu Class
	2.1.5 Program Class
	2.1.6 Memory Class
	2.1.7 Extern Class
	2.1.8 Module Class
	2.1.9 Instance Class

	2.2 DSP/BIOS Module and Instance Property Names
	2.3 CSL Module and Instance Property Names
	2.3.1 TMS320C54x Properties
	2.3.2 TMS320C55x Properties
	2.3.3 TMS320C6000 Properties

	Index

