SNIiFF+

Version 3.2 for Unix and Windows

Parser Development Kit

TakeFlve

oftware

AItgtdSy ems Company

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

Copyright
Copyright © 1992-1999 TakeFive Software Inc.

All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does
not imply publication or disclosure.

Parts of SNiFF+:;
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.
Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.

Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits

The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of
Switzerland. Its development was considerably facilitated by the public domain application
framework ET++.

Authors of the first version:

Walter Bischofberger (Sniff)

Erich Gamma (Sniffgdb)

Erich Gamma and André Weinand (ET++)

Table of Contents

SNiFF+ Parser Development Kit 5
Introduction 5
Basics 6

Creating and editing a .Isd file for non C/C++ language constructs 8

Editingthenew .Isdfile 8
Command Reference 10
Data Y PeS . . .ot 10
Jobdescription e 10
Data StrUCtUreS. oo e 12
Job control functions 15
Connectionto SNIFF+ i i 15
Getacompilejob 16
Terminate acompilejob. 17
Close connection to SNIFF+. i 18
SemantiC aCtionSot 18
ComMmMeENt . .. 20
Macro definition e 21
Include statement 22
Startclassdeclaration 23
Endclassdeclaration 24
Base classspecifier 26
Enumerator. 28
Enumerator item 29
Variable or member variable declaration 30
Function declaration/definition 31
Typedefinition e 34
Function parameter. 36
User-defined symbol. 38
Template argument. 39
Symbolreference 41
UtIEES . . oot 42
RESEl .. 42
Errormessageot e 43

SNiFF+ Parser Development Kit

Table of Contents

SNiFF+

SNiFF+ Parser Development Kit

Introduction

The SNiFF+ Parser Development Kit allows you to write parsers for SNiFF+ which either
replace or work in parallel with the default C/C++ parser. The APl comes in the form of a link-
able library. The functions in this library manage low-level communications with SNiFF+ and
provide an interface for sending information about semantic constructs extracted by the
parser. Although the terminology used by the functions is based on C/C++, the functions can
be used for writing a parser for any language which implements concepts compatible to
those in C/C++. The SNiFF+ Parser Development Kit contains functions with C linkage.

Who should be reading this document

This document should be read by anyone who intends to use the SNiFF+ Parser Develop-
ment Kit. It is assumed that readers of this document are familiar with SNiFF+ and its func-
tionality.

SNiFF+ version

You will need SNiFF+3.0 or newer to use the SNiFF+ Parser Development Kit with SNiFF+.
For SNiFF+ 3.2:

You need the latest SNiFF+ Parser Development Kit which is delivered with SNiFF+ 3.2, i.e.,
you cannot use the Parser Development Kit of SNiFF+ 3.0 or 3.1 with SNiFF+ 3.2. Recom-
pile your old parsers with the new Parser Development Kit in order to use your old parser.

Your Feedback

Your feedback is always welcome. If there are aspects of this document that are unclear to
you, or if you have any questions or comments concerning the SNiFF+ Parser Development
Kit, please contact us at one of the following e-mail addresses:
Europe:

sniff-support@takefive.co.at
USA:

sniff-support@takefive.com

SNiFF+ Parser Development Kit

Chapter 1 Basics

Basics

The ability to work with different parsers simultaneously makes SNiFF+ a truly multi-platform,
multi-language development environment. Either a single parser can be used for projects
which contain only source files of a specific language, or several parsers can be simulta-
neously employed for handling multi-language projects seamlessly. All project files can be
edited, browsed and managed within a consistent user interface, resulting in higher produc-
tivity and efficiency. Multiple parsers can run simultaneously, they directly connect to the
sniff core process.

shiff

ﬁarserAF’l GarserAFh GarserAFh
Qarseriﬂ_ Qarser#Qj Qarser#nj

Parsing is handled by SNiFF+ in the following way:

m When parsing a file, SNiFF+ loads the appropriate parser as specified by the settings in
the File Types view of the Project Attributes dialog window.

m SNiFF+ sends a request to the parser for each source file which needs to be parsed.
m The parser provides SNiFF+ with symbol information for the source file.

m The parser then waits for the next parsing request. It is deactivated by SNiFF+ on termi-
nation of its associated sniff process.

SNiFF+

Symbol types

The following symbol types and other language elements are currently available:

comment

include statement
member variable definition
global function definition
type definition

user-defined symbols

macro definition

class declaration

member function declaration and definition
global variable definition

enumerator definition

The parser also delivers information about global symbol references for function definitions.
This information is used by the Cross Referencer. Currently, symbol types must be mapped

to existing C/C++ symbol types.

SNiFF+ Parser Development Kit

Chapter 2 Creating and editing a .Isd file for non C/C++ language constructs Editing the new .Isd file

Creating and editing a .Isd file for non C/C++
language constructs

Creating the .Isd file

SNiFF+ reads the .Isd files in your $SNIFF_DIR/config/parser directory to find
out how it should name the language constructs that it comes across when parsing your
source files. You can edit these files to reflect the names and abbreviations of the language
constructs that your parsers will parse.

To do so, please complete the following steps (in the instructions and comments that follow,
the term “your language” is used to mean the language that your parser parses):

m Make a copy of $SNIFF_DIR/config/parser/template.lsd and rename it to
<name_of your_parser>.Isd

m (<name_of your_parser>.lsd should also be in
$SNIFF_DIR/config/parser)

m Load <name_of your_ parser>.Isd into an editor.

Editing the new .Isd file
Editing parameters

Caution!

The .Isd file contains parameters that are used by SNiFF+ to map the language constructs
in your language to those in C/C++. Before you begin modifying this part, there are a couple
of things that you should keep in mind:

m Do not delete any of the parameters or add new parameters.
m Do not change the order of the parameters.

m There are a number of parameters that begin with "res . Do not modify these parame-
ters.

m Do not modify the parameter "User Defined Symbol" :"UserDef" . This
parameter is used by SNiFF+ for your user-defined symbols. SNiFF+ automatically knows
what type of language construct a user-defined symbol is when your parser comes across
the user-defined symbol and calls the semantic action function User-defined sym-
bol .

8 SNiFF+

Editing the new .Isd file

m There is no limit to the length of names and abbreviations that you give to language con-
structs in your language. However, we suggest that you keep them short. Note that all
names and abbreviations must be alphanumeric strings (without any tabs or spaces sepa-
rating characters of a string).

Parameters
In the list of parameters, you can see the parameter that determines the name of the entry in
the Language drop-down menu (e.g., in the Symbol Browser) for your language:
"Language Name" :"Ansi C/C++"

m By default, the name of the entry in the Language drop-down menu is Ansi C/C++.
Change the name of this entry to the name of the your language.

m The remaining parameters in the parameter list refer to the names and abbreviations of
the language constructs in your language. Let’s look at one of these parameters:

"Enum" Menum”

m The string in quotes in the first column refers to the C/C++ language construct (here:
Enum. Do not modify this string

m The string in quotes in the second column specifies how the C/C++ language construct is
mapped to a language construct in your language. Replace this string with the name of a
language construct in your language.

® You may not need to use all of the parameters in the parameter list. For those parameters
that you do not need, replace the second string in quotes with --empty--

For example, when SNiFF+ comes across the following parameter, it will ignore it:
"Const" :"--empty--"

There are a number of parameters that begin with "Short of . These parameters specify
the abbreviated names of language constructs. For example, the abbreviated name of the C/
C++ language construct Enumis en, as specified in the following parameter:

"Short of Enum” :“en
Abbreviations of language constructs are used in the Cross Referencer tool.

m Select an abbreviation for those language constructs in your language that either refer-
ence or are referenced by other language constructs.

m Save the file. The parameters in the file will become effective the next time you launch
SNiFF+.

SNiFF+ Parser Development Kit

Chapter 3 Command Reference

Command Reference

Data types

This API Reference is subdivided into the following sections:

m Data types — page 10
m Job control functions — page 15

m Semantic actions — page 18

m Utilities — page 42

Data types
Job description
pi_job
SYNOPSIS
struct
{
char source_file_name;
pi_bool cpp_on;
char *cpp_define;
char *cpp_include;
char *parser_config_file;
char *generate_dir;
pi_bool no_generate;
pi_bool generate_only;
¥

10

SNiFF+

DESCRIPTION

Describes a compile job.

source_file_name
cpp_on
cpp_define
cpp_include
parser_config_file
generate_dir
no_generate

generate_only

full pathname of the source file to be parsed
preprocessor switch (see project attributes)
preprocessor defines (see project attributes)
preprocessor includes (see project attributes)
full pathname of the parser configuration file
SNiFF+ internal usage

SNiFF+ internal usage

SNiFF+ internal usage

Data types

The SNiFF+ Parser Development Kit fills in this data structure as per the current parsing

request.
See also pi_getjob — page 16

SNiFF+ Parser Development Kit

11

Chapter 3 Command Reference

12

Data Structures

pi_data

SYNOPSIS

struct

{

int
int
int
int
int
int
int
int
char
char
char
char
int

pi_id

from;

to;

from2;

to2;

argstart;
argend,;
ctorstart;
ctorend;
*name;
*type;
*classname;
*nameSpace;
flags;

related;

Data types

SNiFF+

DESCRIPTION

Data types

Describes a data structure. This data structure is used by all semantic action functions as a
parameter which describe the details of a symbol item. It has to be allocated and filled in by

the parser application.

from

to

from2

to2
argstart
argend
ctorstart
ctorend
name

type
classname
nameSpace
flags

related

offset relative to file begin
offset relative to file begin
offset relative to file begin
offset relative to file begin

not supported in this version
not supported in this version
not supported in this version
not supported in this version
see semantic actions for details
see semantic actions for details
see semantic actions for details
scope of symbol, see semantic actions for details
see semantic actions for details

NOT USED in this version

Please refer to the specific semantic action functions for a description of the data members

used by these functions.

See also all semantic action functions and the pi_reset() function

Flags used in pi_data.flags

PI_VIRTUAL
PI_ABSTRACT
PI_INLINE
PI_CONST

SNiFF+ Parser Development Kit

virtual function
pure virtual function
inline function

const variable or function

13

Chapter 3 Command Reference

14

PI_PRIVATE
PI_PUBLIC
PI_PROTECTED
PI_TEMPLATE
PI_FRIEND
PI_STATIC
PI_DEFAULT VAL
PI_FUNCTION
PI_VARIABLE
PI_MACRO
PI_TYPEDEF
PI_ENUM
PI_ENUM_ITEM
PI_CLASS
PI_STRUCT
PI_UNION
PI_DEFINITION
PI_DECLARATION
PI_READACCESS
PI_WRITEACCESS
PI_STDINCL
PI_FINAL

PI_SYNCHRONIZED

PI_NATIVE
PI_TRANSIENT
PI_VOLATILE

Data types

private member access or inheritance
public member access or inheritance
protected member access or inheritance
template class

friend class or function

static variable or function

function parameter has default value
function or member function

variable or member variable

macro definition

type definition

enumeration type

enumeration item

class declaration

structure declaration

union declaration

definition of a function or member function
declaration of a member function

read access to a variable or member variable
write access to a variable or member variable
if is standard <include> , else “include”
if symbol is final in JAVA

if symbol is synchronized in JAVA

if symbol is native in JAVA

if symbol is transient in JAVA

if symbol is volatile

SNiFF+

Job control functions

Return values of semantic action functions

P1_NOVALUE -1 default return value (void)
P1_BADID -2 illegal id in pi_data.related

Pl_NOJOB -3 semantic action called without active job

Job control functions

Connection to SNiFF+

pi_init
SYNOPSIS
pi_bool pi_init(pi_bool remoteParser, char *parserld);
PARAMETER
remoteParser: FALSE - The parser and SNiFF+ are running on the same
machine
TRUE - The parser is running on a different machine than
SNiFF+.
char *parserld: A string that identifies the parser to SNiFF+. It must be the base-
name of the parser executable without extension (e.g., for the
executable /usr/local/sniff/bin/myparser or
c:\coolstufimyparser.exe , the parserid is the string
myparser).

SNiFF+ Parser Development Kit

15

Chapter 3 Command Reference Job control functions

DESCRIPTION

Establishes a connection to SNiFF+. This function must be called once at parser start-up
time before all other API function calls.

RETURN VALUE

FALSE Connection to SNiFF+ successfully established

TRUE Cannot connect to SNiFF+

Get a compile job
pi_getjob

SYNOPSIS
pi_job *pi_getjob();
PARAMETER

None

DESCRIPTION

Get a new compile job. When SNiFF+ requests the parsing of a file, this function returns the
compile job. It waits for the next parsing request from SNiFF+ before returning a further

value.
RETURN VALUE
> NULL All details of a compile job. (see also description of struct pi_job
for details)
= NULL No more compile jobs. SNiFF+ requests the parser to exit.

16 SNiFF+

Job control functions

Terminate a compile job
pi_endjob()

SYNOPSIS
pi_bool pi_endjob(pi_job *job);
PARAMETER

pi_job *job Pointerto pi_job returned by previous pi_getjob() call.

DESCRIPTION

Terminate a compile job. This function must be called after parsing a file; e.qg., after calling
the last semantic action function.

RETURN VALUE

FALSE Job successfully terminated.

TRUE Error during termination. Caused by a SNiFF+/parser internal
synchronization error.

Note

pi_getjob() and pi_endjob() f unctions must be called alternately.

SNiFF+ Parser Development Kit 17

Chapter 3 Command Reference Semantic actions

Close connection to SNiFF+

pi_terminate

SYNOPSIS

pi_bool pi_terminate();

PARAMETER

None

DESCRIPTION

Close connection to SNiFF+. This function must be called before exiting the parser.

RETURN VALUE

FALSE Connection successfully closed

TRUE Error when closing connection. Caused by a SNiFF+/parser internal
synchronization error.

Semantic actions

Note

All functions return PI_NOVALUEIn this version. The data member,
pi_data.related ,is not used in this version.

18 SNiFF+

Semantic actions

Introduction
All fields in this section have the following structure
m Semantic action
m Synopsis
m Parameter
m C/C++ example
m SNiFF+ usage

each of the above is explained in more detail below.

SYNOPSIS

type of semantic action semantic action function
function:

PARAMETER

Relevant members of the pi_data structure pertaining to this function call. In the pages that
follow, the parameter list, {x | y | z}, is a “one of”, meaning one of the three options (separated
by the pipe symbol) must be declared. The parameter list, (x|y|z), prompts you to declare one
of the options when the semantic action function is called within a class scope, otherwise
none.

DESCRIPTION

Indicates when the function should be called. The description also includes:

C/C++ example

Given for each specific language construct (except Comment). Whenever this construct is
parsed, the semantic action function is called. Your parser should call this function if it recog-
nizes this or a similar language construct.

Each example is followed by a description of how SNiFF's Fuzzy Parser would parse it. For

example:
pi_data.from: points to first character of the name “foo ”
pi_data.to: points to last character of the name “foo ”
pi_data.name: “foo ”
pi_data.flags: Pl_CLASS

SNiFF+ Parser Development Kit

19

Chapter 3 Command Reference Semantic actions

SNiFF+ usage

If your parser recognizes this or a similar language construct, you should notice this in your
SNiFF+ application. Language constructs highlighted in the Source Editor are done so
between the coordinates pi_data.from and pi_data.to (found under PARAMETER), which are
character positions relative to the beginning of the file currently being parsed.

Comment

SYNOPSIS
pi_id pi_comment(pi_data *);

PARAMETER
pi_data.from: start comment
pi_data.to: end comment
pi_data.related: NOT USED (future use: bind comment

to any object)
DESCRIPTION

This function must be called whenever the parser detects a comment in the source file.
SNiFF+ usage:
highlighted in Source Editor

20

SNiFF+

Semantic actions

Macro definition

SYNOPSIS
pi_id pi_macro(pi_data *);
PARAMETER
pi_data.from: start macro name
pi_data.to: end macro name
pi_data.name: macro name
pi_data.type: macro value
DESCRIPTION
This function must be called whenever the parser detects a macro definition in the source
file.

C/C++ example
#define FLAG 0x01

SNiFF+ Fuzzy Parser action

Each example is followed by a description of how SNiFF+'s Fuzzy Parser would parse it.

For example:
pi_data.from: points to first character of the name “FLAG”
pi_data.to: points to last character of the name “FLAG”
pi_data.name: “FLAG”
pi_data.type: “0x01”

SNiFF+ usage

macro name highlighted in the Source Editor and shown in the Symbol Browser (as a macro)

SNiFF+ Parser Development Kit 21

Chapter 3 Command Reference Semantic actions

Include statement

SYNOPSIS
pi_id pi_include(pi_data *);

PARAMETER
pi_data.from: startof " " or < > include statement
pi_data.to: endof " " or < > include statement
pi_data.name: name of the file not including " " or < > delimiters
pi_data.flags: P1_STDINCL

DESCRIPTION

This function must be called whenever the parser detects an include statement in the source
file. Parameters pi_data.from and pi_data.to are needed for the SNiFF+ Include
Browser to function properly.

C/C++ example

#include <foo.h>

SNiFF+ Fuzzy Parser action

pi_data.from: points to “<“
pi_data.to: points to “>”
pi_data.name: “foo.h
pi_data.flags: P1_STDINCL

SNiFF+ usage

highlighted in the Source Editor, includes shown in Include Browser, dependency generation
for make support

22 SNiFF+

Semantic actions

Start class declaration

SYNOPSIS
pi_id pi_start_class(pi_data *);
PARAMETER
pi_data.from: start class name
pi_data.to: end class name
pi_data.name: class name
pi_data.flags: {PI_CLASS | PI_STRUCT | PI_UNION},
PI_TEMPLATE, PI_FRIEND
pi_data.related: pi_id of class nesting this class
Default: previous class non-terminated class declaration
pi_data.classname: full string of classname including scope e.g., X.Y.Z. Class
(The delimiter is a full stop)
pi_data.nameSpace: full scope of class e.g., X.Y.Z
DESCRIPTION

This function must be called whenever the parser detects a start class declaration in the
source file. When pi_start_class is called, a new class declaration scope is opened. All
subsequent calls to pi_function, pi_variable, pi_enum and pi_typdef indicate member decla-
rations of this class. The function pi_end_class() closes the class declaration scope. Class
declaration scopes can be nested.

C/C++ example

class foo { /*..*/ };

SNiFF+ Parser Development Kit 23

Chapter 3 Command Reference Semantic actions

SNiFF+ Fuzzy Parser action

pi_data.from: points to first character of the name “foo ”
pi_data.to: points to last character of the name “foo ”
pi_data.name: “foo "

pi_data.flags: Pl_CLASS

SNiFF+ usage

highlighted in Source Editor, listed in Symbol and Class Browsers, class hierarchy built in
Hierarchy Browser

Note

The base classes of this class can be specified by calling pi_base() im-
mediately after calling pi_start_class.

See also pi_end_class , pi_base , pi_function ,

pi_variable ,pi_enum , pi_typedef

End class declaration

SYNOPSIS

pi_id pi_end_class(pi_data *);

PARAMETER
pi_data.from: start position of the whole class declaration
pi_data.to: end position of the whole class declaration
pi_data.related: pi_id of class to be terminated
Default: previous class non-terminated class declara-
tion
DESCRIPTION
This function must be called whenever the parser detects an end class declaration in the
source file.

24

SNiFF+

C/C++ example

class foo { /*..*/ };

SNiFF+ Fuzzy Parser action

pi_data.from: points to the opening brace (after the
classname)

pi_data.to: points to the closing brace

pi_data.name: “foo ”

SNiFF+ usage

highlighted in Source Editor
See also pi_start_class

SNiFF+ Parser Development Kit

Semantic actions

25

Chapter 3 Command Reference Semantic actions

Base class specifier

SYNOPSIS
pi_id pi_base(pi_data *);
PARAMETER
pi_data.from: start base class name
pi_data.to: end base class name
pi_data.name: base class name, optionally including preceding scope spec-
ifiers separated by “?”
pi_data.flags: (PI_PUBLIC | PI_PROTECTED | PI_PRIVATE),
PI_VIRTUAL
pi_data.related: pi_id of class having this base class
Default: previous class non-terminated class declaration
pi_data.classname: full string of classname including scope e.g., X.Y.Z. Class
(The delimiter is a full stop)
pi_data.nameSpace: full scope of class e.g., X.Y.Z
DESCRIPTION

This function specifies one base class of the current class declaration. It must be called
whenever the parser detects a base class specifier in the source file.

C/C++ example

class X : public Base Class Of X { ... }

26

SNiFF+

Semantic actions

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “Base_Class_Of_X”
pi_data.to: points to end of “Base_Class_Of_X"
pi_data.name: “Base_Class_Of X"

pi_data.flags: Pl_PUBLIC

SNiFF+ usage

class hierarchy built in Hierarchy Browser, inheritance information shown in Class Browser

SNiFF+ Parser Development Kit

Note

The function pi_base() must be called immediately after calling
pi_start_class()
See also pi_start_class

27

Chapter 3 Command Reference Semantic actions

28

Enumerator
SYNOPSIS
pi_id pi_enum(pi_data *);
PARAMETER
pi_data.from: start enumerator name
pi_data.to: end enumerator name
pi_data.name: enumerator name
pi_data.flags: (PI_PUBLIC | PI_PROTECTED | PI_PRIVATE),
PI_STATIC
pi_data.related: pi_id of class including the enumerator as member
Default: previous class non-terminated or global scope if the
function is called outside of a class declaration
DESCRIPTION

This function must be called whenever the parser detects an enumerator in the source file.

C/C++ example

enum Boolean { false, true };

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “Boolean ”
pi_data.to: points to end of “Boolean ”
pi_data.name: “Boolean "

SNiFF+ usage
highlighted in Source Editor

SNiFF+

Semantic actions

Enumerator item

SYNOPSIS
pi_id pi_enum_item(pi_data *);
PARAMETER
pi_data.from: start enumerator item name
pi_data.to: end enumerator item name

pi_data.name:

pi_data.related:

DESCRIPTION

enumerator item name

pi_id of enumerator containing this item
Default: previous enumerator

This function must be called for each enumeration item of the enumerator.

C/C++ example

enum Boolean { false, true }; // “false” and *“true” are

/I enumeration items of Boolean

SNiFF+ Fuzzy Parser action

pi_data.from:

pi_data.to:

pi_data.name:

points to first character of the enumeration item (e.g.,
“false)

points to last character of the enumeration item (e.g.,
“false 7

e.g., “false ”

Note

pi_enum_item

SNiFF+ Parser Development Kit

must be called twice: both for “false” and “true”

29

Chapter 3 Command Reference Semantic actions

SNiFF+ usage

highlighted in Source Editor, listed in the Symbol Browser

Note

The function pi_enum_item() must be called immediately after
calling pi_enum()

Variable or member variable declaration

SYNOPSIS
pi_id pi_variable(pi_data *);
PARAMETER
pi_data.from: start variable name
pi_data.to: end variable name
pi_data.name: variable name
pi_data.flags: (PI_PUBLIC | PI_PROTECTED | PI_PRIVATE),
PI_STATIC, PI_CONST
pi_data.type: variable type
pi_data.related: pi_id of class including the variable as member
Default: previous class not terminated or global scope if no
non-terminated class found
DESCRIPTION

This function must be called whenever the parser detects a variable or member variable
declaration in the source file. The declared variable is a member variable if the function
pi_variable() is called inside a class declaration (between pi_start class() and
pi_end_class()).

C/C++ example

static char ch; // ch is a variable of data type char

30

SNiFF+

Semantic actions

SNiFF+ Fuzzy Parser action

pi_data.from: points to first character of “ch”
pi_data.to: points to last character of “ch”
pi_data.name: “ch”

pi_data.flags: PI_STATIC

pi_data.type: char

SNiFF+ usage
highlighted in Source Editor, listed in the Symbol Browser

Function declaration/definition

SYNOPSIS
pi_id pi_function(pi_data *);

PARAMETER
pi_data.from: start function name (including class

name if member function)

pi_data.to: end function name
pi_data.from2: start function implementation if inline
pi_data.to2: end function implementation in inline
pi_data.name: function name (exclusive class name)
pi_data.flags: {P1_DECLARATION |

PI_DEFINITION},

(PI_PUBLIC | PI_PROTECTED |
PI_PRIVATE), PI_STATIC,
PI_INLINE, PI_VIRTUAL,
PI_CONST, PI_TEMPLATE,
PI_FRIEND, PI_ABSTRACT

pi_data.type: return type

SNiFF+ Parser Development Kit 31

Chapter 3 Command Reference Semantic actions

32

pi_data.classname: class name if member function (required
only if PI_DEFINITION s set)

pi_data.nameSpace: full scope of class e.g., X.Y.Z

pi_data.related: pi_id of class including the function as
member

Default: previous class not terminated or
global scope if no non-terminated class
found

DESCRIPTION

This function must be called whenever the parser detects a function declaration/definition in
the source file. The declared function is a member function if the function pi_function() is

called inside a class declaration (between pi_start class() and
pi_end_class()) and PI_DECLARATION is set. If PI_DEFINITION is set,
pi_data.classname specifies the container class. If pi_data.classname is not

set and PI_DEFINITION is set, a global function definition is assumed.

C/C++ example

Example 1
int bar(in t){ ..}

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “bar ”

pi_data.to: points to end of “bar ”

pi_data.from2: points to the opening brace (following “bar)
pi_data.to2: points to the closing brace

pi_data.name: “bar ”

pi_data.flags: PI_DEFINITION

pi_data.type: int

pi_data.classname: NULL //default value

SNiFF+ usage
highlighted in Source Editor, listed in the Symbol Browser

SNiFF+

Semantic actions

Example 2
class bar
{ ...

get()
}

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “get "
pi_data.to: points to end of “get ”
pi_data.name: “get ”

pi_data.flags: PlI_DECLARATION
pi_data.classname: NULL; //default value

SNiFF+ usage

highlighted in Source Editor, listed in the Symbol and Class Browsers

Note

The pi_function call must be made between pi_start_class
and pi_end_class of “bar ”

Example 3:

bar::get()
{

SNiFF+ Parser Development Kit 33

Chapter 3 Command Reference Semantic actions

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “get ”
pi_data.to: points to end of “get ”
pi_data.name: “get ”

pi_data.flags: P1_DEFINITION
pi_data.classname: “bar ”

SNiFF+ usage

highlighted in Source Editor, listed in the Symbol and Class Browsers

Type definition

SYNOPSIS
pi_id pi_typedef(pi_data *);
PARAMETER
pi_data.from: start typedef name
pi_data.to: end typedef name
pi_data.name: typedef name
pi_data.flags: (PI_PUBLIC|PI_PROTECTED | PI_PRIVATE)
pi_data.type: type definition
pi_data.related: pi_id of class including the typedef as member
Default: previous class not terminated or global scope if no non-
terminated class found
DESCRIPTION

This function must be called whenever the parser detects a type definition in the source file.

C/C++ example

typedef char *string;

34 SNiFF+

Semantic actions

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “string
pi_data.to: points to end of “string "
pi_data.name: “string

pi_data.type: char*

SNiFF+ usage
highlighted in Source Editor

Note

The defined type is valid in a class scope if the function
pi_typedef() is called inside a class declaration (between
pi_start_class() and pi_end_class()).

SNiFF+ Parser Development Kit

Chapter 3 Command Reference Semantic actions

36

Function parameter

SYNOPSIS
pi_id pi_parameter(pi_data *);
PARAMETER
pi_data.from: start parameter name
pi_data.to: end parameter name
pi_data.name: parameter name
pi_data.flags: PlI_DEFAULT_VAL
pi_data.type: parameter type
pi_data.related: pi_id of function definition/declaration or reference
Default: previous function definition/declaration or reference
DESCRIPTION
This function must be called whenever the parser detects a function parameter in the source
file. The call of pi_function() must immediately be followed by calls of
pi_parameter() . The pi_comment() , pi_error_msg() and pi_reset()
functions are the only ones which may be called between pi_function() and
pi_parameter() calls. pi_function() can also be used to specify the current
parameter list of a function reference (see pi_reference() below).

SNiFF+

C/C++ example

int min(int v1, char v2) // vl and v2 are the function
/I parameters (arguments)

SNiFF+ Fuzzy Parser action

Semantic actions

pi_data.from: points to start of parameter name (e.g., v1)
pi_data.to: points to end of parameter name (e.g., V1)
pi_data.name: eg., “vl”

pi_data.type: e.g., int

Note

pi_parameter must be called twice: both for v1 and v2

SNiFF+ usage
highlighted in Source Editor

Note

pi_data.related is not used in this version!

SNiFF+ Parser Development Kit

37

Chapter 3 Command Reference Semantic actions

User-defined symbol

SYNOPSIS
pi_id pi_userdef(pi_data *);
PARAMETER
pi_data.from: start symbol name
pi_data.to: end symbol name
pi_data.name: symbol name
pi_data. type : type is the string that the Symbol Browser uses for the sym-
bol type in the Type drop-down. By using different values for
the pi_data.type parameter, you can create as many
user-defined symbol types in SNIFF+ as you want. Note that
you can also have multiple symbols with the same
pi_data.type parameter. In this case, you will see all of
these symbols in the Symbol List of the Symbol Browser
when you choose type from the Type drop-down.
pi_data.related: not supported!
Default: previous function definition/declaration or reference
DESCRIPTION

This symbol allows you to create new entries in the SNiFF+ Symbol Table.

SNiFF+ usage

highlighted in Source Editor, listed in Symbol Browser

Note

pi_data.related is not used in this version!

38

SNiFF+

Semantic actions

Template argument

SYNOPSIS
pi_id pi_template_argument(pi_data *);
PARAMETER
pi_data.from: start argument name
pi_data.to: end argument name
pi_data.name: argument name
pi_data.related: pi_id of class definition or function defini-
tion/declaration or parameter having this
template argument
Default: previous class definition or func-
tion definition/declaration or parameter
DESCRIPTION
This function must be called whenever the parser detects a template argument in the source
file.

SNiFF+ Parser Development Kit

Chapter 3 Command Reference

40

C/C++ example

template <class Type> [/ class Type is the argument
/I (parameter) of the template

SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “class Type ”
pi_data.to: points to end of “class Type
pi_data.name: “class Type "~

SNiFF+ usage
highlighted in Source Editor

Note

This function is not implemented in any of the API versions.

Semantic actions

SNiFF+

Semantic actions

Symbol reference

SYNOPSIS
pi_id pi_reference(pi_data *);
PARAMETER
pi_data.from: start position of the symbol reference relative to the
pi_data.from position of the related (previous)
pi_function() call
pi_data.name: name of the symbol referred
pi_data.classname: class name if the symbol is class member
pi_data.nameSpace: only if symbol is a class member, full scope of class e.g.,
XY.zZ
pi_data.flags: {PI_FUNCTION | PI_VARIABLE | PI_MACRO |
PI_TYPEDEF | PI_ENUM | PI_ENUM_ITEM |
PI_STRUCT | PI_CLASS}, PI_READACCESS,
PI_WRITEACCESS
pi_data.related: pi_id of function definition or declaration referring to the
symbolDefault: previous function definition/declaration
DESCRIPTION

This function must be called whenever the parser detects a function which refers to a
symbol, e.g. function call, variable access, macro usage, et cetera. The references are used
by the Cross Referencer tool. The flags PI_READACCESS and PI_WRITEACCESS must be
set if the referred symbol is a variable (PI_VARIABLE). The function pi_reference() must be
called immediately after the function definition, which consists of a call to pi_function() where
the PI_DEFINITION flag is set, optionally followed by pi_parameter() calls. In case of a func-
tion reference (PI_FUNCTION is set), the actual parameter list can be specified. This can be
done by calling pi_parameter() immediately after calling pi_reference().

C/C++ example

foo()

{
bar();

}

SNiFF+ Parser Development Kit

Chapter 3 Command Reference Utilities
SNiFF+ Fuzzy Parser action

pi_data.from: points to start of “bar ”

pi_data.name: “bar "

pi_data.flags PI_FUNCTION

SNiFF+ usage

shown in Xref tool

Note

If the referenced function is a member of a class, it must also be declared in the
project (call of pi_function() (PI_DECLARATION)). Otherwise, SNiFF+ cannot show
references made to this member function.

Utilities
Reset
SYNOPSIS
void pi_reset(pi_data *);
DESCRIPTION

Initializes the pi_data structure. This function must be called before setting data members
of the pi_data structure. The function does *NOT* free memory pointed by the members
on pi_data , but the pointers will be set to NULL

Caution

Only change the value of those data members that you want to send to
SNiFF+. Do not change the value of the other data members!

42

SNiFF+

Utilities

Error message

SYNOPSIS
pi_bool pi_error_msg(char *);

DESCRIPTION

Send an error message to SNiFF+. The messages appear in the Log window after calling
pi_endjob() . The sequence @Bn the message toggles boldface printing.
Note:

You can indicate the type of error message being displayed in the Log window by using one
of the following four letters as the first letter of the error message:

Letter Description
W Warning

F Fatal error

E Error

I Information

If you use one of these four letters, it's corresponding description appears in the Log window
before the name of the message sender. If you do not use one of these four letters, the string
“Message from” appears instead.

SNiFF+ Parser Development Kit 43

Chapter 3 Command Reference Utilities

44 SNiFF+

	SNiFF+ Parser Development Kit
	Introduction
	Basics
	Creating and editing a .lsd file for non C/C++ language constructs
	Editing the new .lsd file

	Command Reference
	Data types
	Job description
	Data Structures

	Job control functions
	Connection to SNiFF+
	Get a compile job
	Terminate a compile job
	Close connection to SNiFF+

	Semantic actions
	Comment
	Macro definition
	Include statement
	Start class declaration
	End class declaration
	Base class specifier
	Enumerator
	Enumerator item
	Variable or member variable declaration
	Function declaration/definition
	Type definition
	Function parameter
	User-defined symbol
	Template argument
	Symbol reference

	Utilities
	Reset
	Error message

