
ÿþýüýûúùø÷üþýöûõÿþýüýûúùø÷üþýöûõÿþýüýûúùø÷üþýöûõÿþýüýûúùø÷üþýöûõ

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

Table of Contents

Fo
About this Manual 1

Conventions. 1
Tool elements . 2
Typography . 3
Feedback and useful links . 3

Road Map 5

The SNiFF+ Fortran Tutorial . 5

Creating a Single-User Project 7

Creating the single-user project. 7
Examining the results . 10
Conclusions . 10

Using the Symbol Browser 11

Using the Symbol Browser . 12

Using the Cross Referencer 15

Performing function body cross referencing 16
Abbreviations used in the Cross Referencer 18

Browsing Examples 21

Browsing global variables . 21
Browsing label references . 22
Browsing statement functions . 23
Browsing includes . 24
Browsing parameters. 25

Parser Options 29

File include option . 29
Displaying syntax errors in the SNiFF+ Log tool 32
Changing the tabulator size for fixed source form 33
Changing the line length for fixed source form 33
Changing case sensitivity mode for symbols. 34

Building the Project’s Executable 35

Setting up Make Support . 35
Building the project target . 36
rtran Tutorial

Table of Contents
Browsing a Fortran 90 Project 37

Creating a single-user project. .37
Browsing modules .39
Fortran 90 entries in the Symbol Browser’s Type drop-down.41
Browsing derived types. .42
Browsing named DO statements .42
SNiFF+

1About this Manual

What this manual is
This manual is part of the SNiFF+ documentation set, which consists of:

� User’s Guide

� Reference Guide

� C++ Tutorial

� C Tutorial

� Java Tutorial

� Fortran Tutorial

� Quick Reference Guide

� Release Notes, Installation Guide and Application Papers

� Online documentation of the above in HTML, PostScript and PDF formats

Conventions

One basic term

� Symbol — any programming language construct such as a class, method, etc.

Two conventions: menu references

For clarity and to avoid undue verbosity, the phrase:
“Choose the MenuCommand from the MenuName” is presented as follows:

� Choose MenuName > MenuCommand .

A context menu that appears when you click the right mouse button is referred to as:
Context menu , and consequently:
“Choose a menu command from the context menu that appears when you click the right
mouse button” is presented as follows:

� Choose Context menu > MenuCommand
1

Chapter 1 About this Manual Tool elements
A note on Unix/Windows

The screenshots in this manual are all done on Windows NT. If you are working on Unix,
what you see on your screen may look slightly different.

When you start SNiFF+, the first tool that appears
is the Launch Pad. In this and other SNiFF+ tools,
the first item in the menu bar is for launching tools.

� On Windows, it is called Tools .

� On Unix , it is depicted by an Icon .

When we refer to this menu in order to launch
a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName .

� On Unix a “check box” looks like a “button” (Motif Look), and a “drop-down” looks like a
“pop-up”.

Tool elements

Choose Target > Make > all

Select / clear check box

Field

Tree

List

Select from drop-down
Highlight project

Checkmark project
2 SNiFF+

Typography
Typography

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

� SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

� SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

� Frequently Asked Questions

http://www.takefive.com/support/faq.html

� Customer Newsletter

http://www.takefive.com/news/customer_newsletter.html

Capitalized
Words

Names of tools, windows, dialogs and menus start with capital letters.
Examples: Symbol Browser, Tools menu, File dialog.

Italics Names of manuals and newly introduced terms are in italics.
Examples: User's Guide, the workspace concept.

Boldface and
Bold italics

Menu, field and button names and menu entries are printed in bold-
face. Placeholders for symbols, selections or other strings in menus
are in bold italics.
Example: From the menu, choose Show > Symbol(s) selection ...

Monospace Code examples and symbol, file and directory names, as well as user
entries are printed in monospace type.
Examples: .login , $PATH, class VObject . Type abc .

<Keys> Special keys are printed in monospace type with enclosing '< >'.
Examples: <CTRL>, <Return> , <Meta> .
3

Chapter 1 About this Manual Feedback and useful links
4 SNiFF+

Fo
2Road Map

Introduction
This manual introduces the SNiFF+ solution for Fortran development and is centered around
a two-part tutorial.

What this manual is not

This manual is not an exhaustive guide to SNiFF+, nor will it teach you Fortran.

The SNiFF+ Fortran Tutorial
There are seven chapters in this tutorial. Each chapter covers a task that you will routinely
perform when working with single-user Fortran projects.
In the first six chapters, you will create and work with a single-user project in SNiFF+ based
on a Fortran77 example called EVCLID, which is a program for making complex geometric
calculations. In the last chapter, you will learn how to use SNiFF+ to browse Fortran90 exten-
sions made to Fortran77.
Here is a description of the seven chapters:

� Task 1. Creating a Single-User Project—In this chapter, you will learn how to create a sin-
gle-user project for the EVCLID project.

� Task 2. Using the Symbol Browser—In this chapter, you will learn how to use the Symbol
Browser as a starting point for browsing your project’s code.

� Task 3. Using the Cross Referencer—In this chapter, you will learn how to use the Cross
Referencer to follow references in your source code.

� Task 4. Browsing Examples—In this chapter, you will learn how to browse a variety of dif-
ferent Fortran 77 symbol types, as well as follow include statements in your source files.

� Task 5. Parser Options—In this chapter, you will learn how configure a number of parser
options for parsing FORTRAN77 and 90 code.

� Task 6. Building the Project’s Executable—In this chapter, you will set up SNiFF+’s Make
Support for the EVCLID project and then build its executable.

� Task 7. Browsing a Fortran 90 Project—As in Task 1, you will create a single-user SNiFF+
project for the Fortran 90 example code provided with your SNiFF+ installation.

Note

Please note that a Log Window, displaying SNiFF+ error and control mes-
sages, may appear at several stages throughout this tutorial.
rtran Tutorial 5

Chapter 2 Road Map The SNiFF+ Fortran Tutorial
6 SNiFF+

Fo
3Creating a Single-User Project

We assume you have successfully installed SNiFF+, and know how to start it. If not, please
refer to the Installation Guide.
If you didn’t select the “Other Packages” option (for Fortran) during the SNiFF+ installation
process, start the SNiFF+ installation again and select only this option.

Goals of this chapter
In this chapter, you will learn how to use SNiFF+’s Project Setup Wizard to create a single-
user project for the example code.

Creating the single-user project
� To start the Project Setup Wizard, in the Launch Pad, choose Project > New Project >

with Wizard... .

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ project.

� Accept the default selection, Standard Setup, and press Next .

The “Select development task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the upper left corner of the Wizard.

In the “Select development task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

This tutorial is for single-user/single platform development without CMVC, so:

� accept the defaults (No/No/None) and press Next .

In the “Select file types” page

� Select Fortran77 and press Next .

SNiFF+ will automatically include all the necessary file types needed for working with
Fortran77 in the new project. Note that, after project setup, you can add new standard file
types (like the ones in the “Additional File Types Column”), or create and add your own.
rtran Tutorial 7

Chapter 3 Creating a Single-User Project Creating the single-user project
In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory, which is
the directory that contains your source code.

1. Press Browse , and in the Directory dialog, navigate to the root directory of the example
code, which is:

<sniff_installation_dir>/example/fortran

2. Double-click on Fortran and then press Select .

3. In the PWE name field, type a name for the PWE, e.g., Fortran .

Notice that your username is entered next to the enabled Owner button. SNiFF+ needs your
username to correctly handle permissions. Being the owner of the PWE means that you are
the only one who is allowed to modify the working environment’s attributes.

1. Press Next .

In the “Create new SNiFF+ Project” page

SNiFF+ has set your Project root directory to fortran , which is the root directory of your
source code. The project has the default name fortran .
Also by default Create Subprojects is enabled, which is correct.

� Select the Use SNiFF+’s Makefiles checkbox and press Next .
8 SNiFF+

Fo

Creating the single-user project
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ project and required working
environments.

� Make sure that your Project Setup Summary page is similar the following. If it isn’t, please
go back to the beginning of the Wizard and start again.

� Press Finish .

SNiFF+ will now generate the single-user project and its associated files.

� In the dialog that appears asking if you want to generate cross reference information,
press No.

Cross Reference information will be automatically generated when we open the Cross
Referencer later on.
When the generation process is over, SNiFF+ automatically opens the new project and
displays its project structure in a Project Editor.
rtran Tutorial 9

Chapter 3 Creating a Single-User Project Examining the results
Examining the results
The Project Editor on your screen should look something like this:

Conclusions
You have just created a single-user project for browsing the Fortran 77 project. Starting with
the next chapter, you will learn how to use the various browsing tools available in SNiFF+. In
the last chapter in this tutorial, you will set up SNiFF+’s Make Support for the project and
then build the project’s executable.
10 SNiFF+

Fo
4Using the Symbol Browser

Goals of this chapter
In this chapter, you will learn how to use the Symbol Browser as a starting point for browsing
your project’s code. The Symbol Browser allows you to browse all global symbols and
symbol members of a set of projects. It offers a wide range of possibilities for filtering infor-
mation.
The Symbol Browser consists of a list of symbols whose content is determined by the
Symbols and Modifiers drop-down menus, the Project Tree settings, and the Filter field.
The Project Tree shows the project structure and makes it possible to select the projects
whose symbols are to be displayed. For detailed information about the Symbol Browser,
please refer to your SNiFF+ online or documentation or the Reference Guide.
rtran Tutorial 11

Chapter 4 Using the Symbol Browser Using the Symbol Browser
Using the Symbol Browser
1. In the Launch Pad, choose Tools > Symbol Browser .

The Symbol Browser appears.

2. Take a look at the Language drop-down menu. The SNiFF+ Fortran Parser is actually a
Fortran 90 parser that understands the Fortran 77 subset of the language. For Fortran 77
projects, the language string displayed in the drop-down menu is Fortran 90 Fixed .
“Fixed” refers to the fixed input format in Fortran 77 as opposed to the “free” input format
supported in Fortran 90.

3. Let’s look at the symbols in all the projects in the Project Tree. To do so, right-click any-
where in the Project Tree and choose Context menu > Select From All Projects .

4. Choose the various entries in the Symbols drop-down menu and see what happens. By
selecting the Signature check box, you can see in which files the symbols appear. Also,
information about data types, modules, dummy arguments and return types will be dis-
played.

Note that modules and derived types are not present in this project (since they are Fortran
90 data types), resulting in an empty Symbol List when you select them.
12 SNiFF+

Fo

Using the Symbol Browser
5. From the Symbols drop-down, choose subprogram .

Now all subprograms in the project are listed in the Symbol List.
EVCLID is the main program unit of the project and the starting point from which all other
function calls take place.

6. Double-click on EVCLID.

A Source Editor appears and the main program file evclid.f is loaded into it. As you
have just found out, double-clicking a symbol in the Symbol List opens a Source Editor
and loads the file in which the symbol appears. The cursor is automatically positioned to
the symbol in the file.

7. Back in the Symbol Browser, in the Symbol List, double-click on DGECOM.

The Source Editor now shows the definition of subroutine DGECOMin evclid2.f . In
the next chapter, we will use DGECOMto show how you can perform function body cross
referencing in SNiFF+.
rtran Tutorial 13

Chapter 4 Using the Symbol Browser Using the Symbol Browser
14 SNiFF+

Fo
5Using the Cross Referencer

Introduction
In this chapter, you will learn how to use the Cross Referencer to follow references in your
source code.
Basically, there are three different ways of following references:

� Function body cross referencing

� Component analyzing

� Interface cross referencing

When browsing FORTRAN 77 code, only function body cross referencing is possible in
Cross Referencer. This is because component analyzing and interface cross referencing are
based on data structures not implemented in FORTRAN 77. However, these data structures
are implemented in FORTRAN 90. As a result, all three ways of following references can be
performed when browsing your FORTRAN 90 code.

Function body cross referencing

With function body cross referencing, you can find out which symbols are referred to by
subprograms (subroutines and functions) and module subprograms. You can also find out
which subprograms refer to a particular symbol.
To start method body cross referencing, use the Symbol Browser to select a particular
subprogram and choose Info > Subprogram Refers-To... . A Cross Referencer appears with
cross referencing information for the selected subprogram.
To find out which subprograms refer to a particular symbol, use the Symbol Browser to select
the symbol and then choose Info > Symbol Referred-By... .

Component analyzing

Modules and derived types can contain components. By doing component analyzing with the
Cross Referencer, you can answer questions like “What are the components (variables or
parameters) of a module or the components of a derived type displayed to level 5” or “What
modules or derived types have INTEGERvariables/components?”.
To do component analyzing, use the Symbol Browser to select a module or a derived type
and choose Info > Symbol Refers-To Components (Since there aren’t any modules or
derived types in this example, you won’t get a result - try this command out with your own
examples).
rtran Tutorial 15

Chapter 5 Using the Cross Referencer Performing function body cross referencing
Interface cross referencing

You can do interface cross referencing modules; that is, you can cross reference all symbol
types that are part of a module’s interface (i.e., return values or dummy argument types). You
can also display all types that use another type in their interface. Questions like: “Who
returns a CHARACTERtype?” or “What are the return and dummy argument types of this
module?” can be answered.
To do interface cross referencing, start the Cross Referencer and switch on interface cross
referencing by enabling the Interface (PR) check-box in the Filter dialog.

Performing function body cross referencing
1. In the Source Editor, make sure that subroutine DGECOMis selected in either the Symbol

List or in the Text View. Then, choose Info > DGECOM Refers-To .

A Cross Referencer appears. Subroutine DGECOMis shown in with all the symbols it
refers to (77 nodes). For a description of the abbreviations used in the Cross Referencer,
please refer to Abbreviations used in the Cross Referencer — page 18.

Symbol List

Forward
reference

Graph
view
16 SNiFF+

Fo

Performing function body cross referencing
2. Let’s see which subroutines and functions are called by those which DGECOMcalls. To do
so, first enter 3 in the Depth field. Then, press the Filters... button.

The Filter dialog appears.

3. Limit the scope of the next query to subroutines and functions by pressing the None but-
ton under Types and then clicking on the subprogram (s) check box.

4. Now, with s DGECOM selected in the Cross Referencer’s Graph view, press the Refers
To button in the Filter dialog.

You should now see a call tree similar to the following:
rtran Tutorial 17

Chapter 5 Using the Cross Referencer Abbreviations used in the Cross Referencer
5. Reset the Depth field to 1 and press Return.

6. Close the Cross Referencer and Source Editor tools.

Abbreviations used in the Cross Referencer
Symbol types that can be referred by a subprogram are listed in the following table. The
table also contains abbreviations for the symbol types used in the Cross Referencer.

Abbreviations for symbol types are also displayed in the Filter dialog.

Symbol Abbreviation

module mo

module variable or module parameter mv

module subprogram ms

subprogram
(main program units, functions and sub-
routines)

s

COMMON variable cv

parameter pa

statement function sf

label lb

derived type dt

C data type it

r56 bo

F90 data types it

user defined
(User-defined symbols are block data,
common blocks and named control
statements. They cannot be referred to
or referred by in the Cross Referencer.)

de
18 SNiFF+

Fo

Abbreviations used in the Cross Referencer
Cross Referencing undefined symbols

Not only SNiFF+ symbols (symbols residing in the Symbol Table and shown in the Symbol
Browser) can be cross referenced, but also some local constructs and intrinsic functions.
SNiFF+ treats these constructs as undefined symbols because they can’t be found in the
Symbol Table. Undefined symbols have the abbreviation ud . Further information about each
construct is given by additional abbreviations that follow ud . The following table lists the
undefined symbols:

A result variable (rv) may be the name of a function itself or the result variable given by the
RESULTkeyword in the function definition.

Undefined symbol Abbreviation

local variable ud lv

dummy argument ud da

result variable ud rv

local parameter ud pa

intrinsic function or subroutine ud if
rtran Tutorial 19

Chapter 5 Using the Cross Referencer Abbreviations used in the Cross Referencer
20 SNiFF+

Fo
6Browsing Examples

Goals of this chapter
In this chapter, you will learn how to browse a variety of different Fortran 77 symbol types, as
well as follow include statements in your source files.

Browsing global variables
1. In the Symbol Browser, from the Symbols drop-down, choose COMMON variable.

2. Select the Signatures check box.

All common variables defined in the project, their types and in which files they are defined
are now displayed in the Symbol List.

3. Notice that there are two entries in the Symbol List that begin with

cv DOUBLE PRECISION(:,:) DFV:AV

Both entries refer to the double precision variable AV, which is defined in common block
DFV. In the first entry, the common block is defined in the file comdopr.inc . In the
second entry, it is defined in the file evclid1.f .

4. Select the entry in which the common block is defined in evclid1.f .

5. Choose Info > DFV:AV Referred-By .

The Cross Referencer appears. In the Graph view, you should see the subroutines and
functions that refer to the common variable AV.

6. Let’s jump to positions in the subroutine IGECOMwhere AV is referred to. Select IGE-
COMin the Graph view and press <SHIFT>- double click.

The Source Editor appears and the file evclid1.f is loaded into it. The cursor is
positioned to the first position in IGECOM where AV is referred to (in line 582).

7. Let’s jump to the other references to AV in the subroutine. Choose Show > Next Match .
The cursor should now be in line 623.

8. Choose the command a second time. The cursor is now in line 774.

3 references in subroutine IGECOM

2 references in subroutine ROTSEA
rtran Tutorial 21

Chapter 6 Browsing Examples Browsing label references
9. Choose the command a third time. The cursor is now in line 1058. Notice that we’re no
longer in subroutine IGECOM, but in ROTSEA.

10. Close the Source Editor and Cross Referencer.

Browsing label references
1. In the Symbol Browser, from the Symbols drop-down, choose label .

All labels defined in the project are now displayed in the Symbol List.

2. Select IGECOM:1030 from the Symbol List. This entry is for label 1030 defined in the
subroutine IGECOMin file evclid1.f .

3. Choose Info > IGECOM:1030 Referred-By .

The Cross Referencer appears. There are 5 references to the label 1030 , all in
subroutine IGECOM.

4. Let’s jump to positions in the subroutine IGECOMwhere label 1030 is referred to. Select
IGECOM:1030 in the Graph view and press <SHIFT>- double click.

The Source Editor appears and the file evclid1.f is loaded into it. The cursor is
positioned at the definition of label 1030 (in line 1034).

5. Let’s jump to the first reference of 1030 in the subroutine. Choose Show > Next Match .
The cursor should now be in line 387.

6. Go to line 388. If you want, use the Go To Line... command is available in the Edit menu.

Line 388 is a GOTO statement to label 80 . Let’s go to label 80 in the file.

7. Position the cursor in 80 or select 80 by double-clicking it. Then, choose Show > Sym-
bol(s) 80... .

The Choose Symbol dialog appears. The dialog appears whenever SNiFF+ finds more
than one symbol of the same name that matches a symbol request, or when multiple
matches are found after the Show > Symbol(s) symbol... is command is used.

8. In the Choose Symbol dialog, select the Show listing of files check box. This enables
you to see the file names and projects in which the symbol appears.

9. Select the Scan only included files check box.

Only one entry is displayed in the dialog. This entry refers to the position in file
evclid1.f where label 80 is defined.

10. Select the entry and press the Definition button to jump to the label’s definition.

11. Note that the label’s definition is in line 317. By following the steps outlined above, you
can quickly jump to a label’s definition without have to scan through your source code.

12. Close all the open tools except for the Launch Pad and Symbol Browser.
22 SNiFF+

Fo

Browsing statement functions
Browsing statement functions
1. In the Symbol Browser, from the Symbols drop-down, choose statement fct. (macro) .

One statement function is defined in the project. The statement function DLT is defined in
the subroutine FGRHS.

2. Double-click the entry in the Symbol List to jump to the statement function’s definition.

A Source Editor appears and is positioned to line 1351 in the file evclid1.f .

3. Choose Info > FGRHS:DLT Referred-By to see if any other subprograms refer to this
statement function.

The Cross Referencer appears. As you can see, DLT is referred to by subroutine FGRHS
in four different places.

4. If you want, select FGRHSin the Graph view and press <SHIFT>- double click to jump to
the first reference to the statement function in the subroutine.

5. Close all open tools except for the Launch Pad and the Symbol Browser.
rtran Tutorial 23

Chapter 6 Browsing Examples Browsing includes
Browsing includes
1. Use the Launch Pad to open the Project Editor. In the Project Editor, make sure that all

projects in the Project Tree are checkmarked and select file evclid.f in the File List.

2. Then, choose Info > evclid.f Includes .

The Include Browser appears. The Include Browser graphically displays include
references between files in your projects.

3. Let’s see which other files include common.inc .

In the Graph view, select common.inc and choose Info > Included-By .
The Graph view now also displays the files that include common.inc .

4. Close the Include Browser.

Graph
view

Italics means the file is already displayed
in the Graph view
24 SNiFF+

Fo

Browsing parameters
Browsing parameters
1. In the Symbol Browser, from the Symbols drop-down, choose parameter .

One parameter is defined in the project. The parameter BOHR is defined in the include
file para.inc .

2. Let’s see how often the parameter BOHRappears in the project. Select the entry in the
Symbol List and choose Info > Retrieve BOHR From All Projects .

The Retriever appears. The Retriever (like a super-grep in Unix) starts a full text search
over all files in projects checkmarked in the Project Tree. Information provided with a list
of matches consist of the corresponding source file, the string that was matched, and the
source line containing the match.
According to it, the string “BOHR” does not appear in any of the projects. However, we
know that this cannot be the case.
rtran Tutorial 25

Chapter 6 Browsing Examples Browsing parameters
3. In the Retriever, select the Ignore Case check box and press the Retrieve button.

Two matches have been found, and the Retriever now displays them properly.

By default, SNiFF+ displays all Fortran symbol names in uppercase, regardless of how
the symbols are written in your source code. As a result, when searching for a particular
symbol in the Retriever, SNiFF+ may not be able to find matches to symbols written in
lowercase in your code, as was just demonstrated above. You have two options for
dealing with this problem:

� If case-sensitivity only matters to you when using the Retriever, select the Ignore
Case check box before starting a query.

� If you want all of SNiFF+’s browsing tools to display symbol names in lowercase, or in
the same way as written in the source code, you can set a special parser option to do
this. See also Parser Options — page 29.

4. In the Retriever, double-click the first entry displayed in the File Matches list to jump to the
line in the source code where SNiFF+ found a match (in file evclid3.f).

A Source Editor appears and is positioned to line 524 in evclid3.f .
26 SNiFF+

Fo

Browsing parameters
5. Leave the Source Editor open and close all other tools except for the Launch Pad and
Project Editor. Do not change the position of the cursor in the Source Editor. In the next
chapter, we will continue from this point.
rtran Tutorial 27

Chapter 6 Browsing Examples Browsing parameters
28 SNiFF+

Fo
7Parser Options

Goals of this chapter
In this chapter, you will learn how to configure a number of parser options for parsing
FORTRAN 77 and 90 code.
The Fortran Parser allows you configure certain parser options. These options are described
below. In the general, to configure these options for a given project:

� Open the Project Attributes dialog, or the Group Project Attributes dialog for configuring
parser options for multiple projects at the same time.

� Select the Build Options - Directives node.

The Preprocessor Directive(s) field is available in this view. This field was originally
used for entering preprocessing directives for C/C++ projects. Since such directives are
not needed for Fortran projects, we can use the field to specify parser options.

File include option
When the file include option is configured, SNiFF+ also resolves Fortran include statements
found in a project’s source files. As a result, parsing will be slower (since additional files must
be parsed). On the other hand, more exact cross referencing information is delivered by the
parser to SNiFF+’s Symbol Table and consequently to the various browsing tools.

Browsing with file include option switched off

To demonstrate how the file include option works, let’s first see what happens when this
option is NOT configured.

1. In the Source Editor’s Symbol List, click GSCCOMto position the cursor to subroutine’s
definition.

2. Choose Info > GSCCOM Refers-To to see which symbols are referred to by the subrou-
tine.

The Cross Referencer appears.
rtran Tutorial 29

Chapter 7 Parser Options File include option
3. Scroll down the Cross Referencer’s Graph view or the Symbol List until you come to a ref-
erence to the symbol BOHR.

As we know from last chapter, BOHRis a parameter defined in para.inc and referred
to by subroutine GSCCOMin the file evclid3.f . However, both the Graph view and the
Symbol List tell us that BOHRis an undefined local variable. See also Abbreviations used
in the Cross Referencer — page 18:

Explanation
Since the file include option is not configured, no persistent cross reference information
about BOHRwas stored when the parser parsed evclid3.f and para.inc . As a
result, SNiFF+ treats the two occurrences of BOHRin the project as independent of each
other.
In evclid3.f , BOHR was implicitly declared a local variable during parsing since no
definition of it was found. In para.inc ., BOHRwas correctly declared as a parameter.

Browsing with file include option switched on

To switch on the file include option and browse the project:

1. In the Project Editor, make sure that all three projects in the Project Tree are check-
marked and choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears. You can use this dialog to modify the
attributes of all the projects checkmarked in the Project Tree at one time.

2. Select the Parser node.
30 SNiFF+

Fo

File include option
3. In the Parser view, select the Preprocess Source Code before Parsing check box. Also
select the check box directly to its right.

Clicking on the Preprocess Source Code before Parsing check box activates the file
include option. Clicking on the check box to its right activates this option for all the
checkmarked projects.
The Group Project Attributes dialog on your screen should now look like this:

4. Press the Set for All button to apply the settings to the checkmarked projects.

5. From the Build Options node, select Directives .

6. Click on the check box to the right of the Generate button and press the Set for All button
to apply the setting to the checkmarked projects.

This generates the include paths for the checkmarked projects. The include path will be
entered into the Include Directive(s) field next to the Generate button.

7. Press the Ok button to apply the settings.

A dialog appears, in which you are asked whether Makefiles should be updated.

8. Press No, as you will be updating Makefiles at a later time in this tutorial.

In the Project Tree of the Project Editor, all the projects are now indicated as being
modified.

9. Use the Launch Pad to save Fortran.shared and its subprojects.
rtran Tutorial 31

Chapter 7 Parser Options Displaying syntax errors in the SNiFF+ Log tool
10. In the Project Editor, choose Project > Force Reparse to reparse all project files. In the
dialog that appears, press Yes to confirm the force reparse.

In general, it is unnecessary to execute this command to reparse your project files, since
SNiFF+ itself reparses your project files when changes have been made to them.

11. Now, perform steps 1 through 3 from the section Browsing with file include option
switched off — page 29. When you are done, BOHR should be listed as a parameter in
the Cross Referencer:

We recommend that you switch on the parser include option when you create new SNiFF+
projects for your Fortran source code. This will guarantee that cross referencing information
is exact. However, please be aware that parsing will take longer as a result.

Displaying syntax errors in the SNiFF+ Log tool
The Fortran Parser exactly parses correct programs. Note that the Parser can also provide
symbol information to SNiFF+ for incomplete or non-compilable programs. However, symbol
information obtained from such programs may lead to inconsistencies in the way symbols
are displayed and highlighted in SNiFF+.
You can have SNiFF+ report any syntax errors it comes across when parsing Fortran source
files. These errors are displayed in the Log tool. When you parse new files or reparse
already-parsed files, the Log tool displays messages about possible syntax errors, warnings
and information about which files were parsed and how the syntax errors were handled.
These messages include a position field which indicates the line and column in the parsed
source file which resulted in the error. By correcting any syntax errors that the Parser comes
across, and then reparsing the files in question, you can guarantee that SNiFF+ receives
accurate symbol information.
To see how the syntax error option works, let’s first set it:

1. In the Project Editor, choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears.

2. Select the Build Options - Directives node.

3. In the Directives view, enter -e in the Preprocessor Directive(s) field. Also click on the
check box directly to the right of the field.

This switches on the syntax error option for all the projects.

Note

The file include option does not affect the functionality of the Include
Browser. Includes are always shown in the Include Browser regard-
less of the state of the Preprocess Source Code before Parsing check
box.
32 SNiFF+

Fo

Changing the tabulator size for fixed source form
4. Press the Set for All button to apply the settings.

5. Press Ok to apply the changes to all the projects.

Now let’s introduce a syntax error into an error-free file and see what happens:

1. Load the file evclid3.f into a Source Editor and position the cursor to line 1621 of the
file. This line contains the following code:

double precision function abv(v1)

2. Introduce the syntax error by changing line 1621 to the following:

double precision functio abv(v1)

3. Open the Log tool by choosing Tools > Log in any open tool.

4. Save evclid3.f . The file will now be reparsed.

5. Take a look at the Log tool. Look for the following message:

Error (sniff_fortran_fixed): C:/sniff31beta/example/fortran/
routines/../commons/common.inc(1621)c24: [RECURSIVE]FUNCTION name
expected

As you can see from this message, the Parser found the error which you just introduced.

6. Take a look at the Source Editor’s Symbol List. You should notice the following entry in it:

FUNCTIOABV (s)

This entry is obviously a result of the syntax error in line 1621.

7. Take a look at the Info menu. You should be able to notice other inconsistencies that are
due to line 1621.

8. Fix the syntax error in line 1621 and resave (reparse) file evclid3.f . Notice that no
errors are reported in the Log tool. Furthermore, the Source Editor’s Symbol List no longer
contains the entry FUNCTIOABV (f) .

Changing the tabulator size for fixed source form
Using tab characters in your fixed source form code may result in parsing errors, depending
on the size of the tab. The default tab length is 4 blanks. If you want to change this default,
enter -tnn in the Preprocessor Directive(s) field. nn stands for the new tab length.
For example, if you enter -t5 in Preprocessor Directive(s) field, the parser will treat tab
characters in your fixed source code file like 5 blanks spaces.

Changing the line length for fixed source form
You might also want to use a different line length than the default for your fixed source code
files. The default line length is 160 characters a line. Characters beginning on column 73 to
the end of a line are treated as comments.
To change the default line length, enter -lnnn in Preprocessor Directive(s) field. nnn
stands for the new line length (e.g., -l132 sets the default line length to 132 characters).
rtran Tutorial 33

Chapter 7 Parser Options Changing case sensitivity mode for symbols
Changing case sensitivity mode for symbols
By default, SNiFF+ displays all Fortran symbol names in uppercase, regardless of how the
symbols appear in your source code. SNiFF+ can also display symbol names in lowercase,
or in the same way as written in the source code.
You can set SNiFF+’s case sensitivity mode by entering -cx in the Preprocessor Direc-
tive(s) field. x stands for one of three modi:

� u uppercase letters (default)

� l lowercase letters

� s use original typing from source code

Note

� If you enter -cx in the Preprocessor Directive(s) field, you
will have to use the name of a symbol as it appears in your
source code to refer to the symbol in SNiFF+ (e.g., when
searching for a particular symbol from the Retriever).

� The options entered in the Preprocessor Directive(s) field
must be separated by blanks. Each option begins with a -
character. The options can be entered in any order.
34 SNiFF+

Fo
8Building the Project’s Executable

Goals of this chapter
In this chapter, you will set up SNiFF+’s Make Support for the project and then build its
executable.

Setting up Make Support

Setting up Make Support for routines.shared

1. In the Project Tree of the Project Editor, double-click routines.shared to open its
Project Attributes dialog. In this dialog, you can look at and modify all the attributes of a
particular project.

2. Under the Build Options node, select Project Targets .

3. Press the Generate button next to the Include Directive(s) field to generate the include
paths for the project.

4. Under the Build Options node, select Build Structure .

5. From the Passed to Superproject drop-down, choose Object Files + Received .

You can use the Passed to Superproject drop-down menu to export the object files built
in the project to its superproject. These object files are then used to build the targets of the
superproject.

6. Press Ok to save the changes to the project attributes.

A dialog appears, in which you are asked whether Makefiles should be updated.

7. Press No. You will update Makefiles in the next sections.

Setting up Make Support for Fortran.shared

1. In the Project Tree of the Project Editor, double-click Fortran.shared to open its
Project Attributes dialog.

2. From the Build Options node, select Project Targets .

3. In the Executable , enter a name for the project’s executable (e.g., evclid).

4. Press the Generate button next to the Include Directive(s) field to generate the include
paths for the project.

Note

In order to complete the last section in this chapter, Building the project
target, you must have a Fortran compiler installed on your machine!
rtran Tutorial 35

Chapter 8 Building the Project’s Executable Building the project target
5. Select the Build Structure node.

6. Press the Generate button.

SNiFF+ enters the names of the project’s subprojects in the Recursive Make Dir(s) field.
The executable is built using recursive Make rules. By pressing the Generate button,
SNiFF+ generates the order of subprojects in which Make is executed.

7. Press Ok to save the changes to the project attributes.

A dialog appears, in which you are asked whether Makefiles should be updated.

8. Press No. You will update Makefiles in the next sections.

9. In the Launch Pad, save the changes made to the Project Description Files of For-
tran.shared and its subprojects.

Building the project target
You are now ready to build the executable. The steps outlined below are to be executed in
the Project Editor.

1. Make sure that all the projects in the Project Tree are checkmarked. If they are not, right-
click anywhere in the Project Tree and choose Context menu > Select from All
Projects .

2. Choose Target > Update Makefiles to generate the Make Support Files for all the
projects.

3. Choose the Target > Make > Make all to build all the object files and targets in the shared
project.

A Shell opens, in which the make all command is executed. Upon completion, you
should have an executable named evclid in:

$SNIFF_DIR/example/fortran

4. Run the executable if you want. To do so, enter evclid in the Shell, or choose Target >
Run evclid .

5. Close the Fortran.shared project.

This concludes the tutorial on browsing Fortran 77 code. The next and last tutorial in this
Guide covers SNiFF+’s Fortran 90 browsing features.

Note

No object files are created in subproject commons.shared . As a re-
sult, there is no need to set up Make Support for the project. Note that
SNiFF+ automatically sets up most of the relevant Make Support at-
tributes of a project during its creation. These default values (and all oth-
er project-specific default values) can be set in your Preferences.
36 SNiFF+

Fo
9Browsing a Fortran 90 Project

Goals of this chapter
In this chapter you will learn how to browse Fortran 90 extensions made to the Fortran 77
standard.

Creating a single-user project
(For an explanation of the steps below, please refer to Creating a Single-User Project —
page 7.)

� To start the Project Setup Wizard, in the Launch Pad, choose Project > New Project >
with Wizard... .

In the Project Setup Wizard

� Accept the default selection, Standard Setup, and press Next .

In the “Select development task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

� Accept the defaults (No/No/None) and press Next .

In the “Select file types” page

� Select Fortran 90 and press Next .

In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory, which is
the directory that contains your source code.

1. Press Browse , and in the Directory dialog, navigate to the root directory of the example
code, which is:

<sniff_installation_dir>/example/fortran90

2. Double-click on fortran90 and then press Select .

3. In the PWE name field, type a name for the PWE, e.g., Fortran90 .

4. Press Next .
rtran Tutorial 37

Chapter 9 Browsing a Fortran 90 Project Creating a single-user project
In the “Create New SNiFF+ Project” page

� Select the Use SNiFF+’s Makefiles checkbox and press Next .

In the “Project Setup Summary” page

� Press Finish .

SNiFF+ will now generate the single-user project and its associated files.

� In the dialog that appears asking if you want to generate cross reference information,
press No.

Cross Reference information will be automatically generated when we open the Cross
Referencer later on.
When the generation process is over, SNiFF+ automatically opens the new project and
displays its project structure in a Project Editor.

� Make sure that fortran90.shared and its subproject

HPF_Fortran_Library.shared

are checkmarked in the Project Tree. If not, checkmark both of them.
The Project Editor on your screen should look like this:
38 SNiFF+

Fo

Browsing modules
Browsing modules
1. In the Launch Pad, choose Tools > Symbol Browser .

The Symbol Browser appears.

2. Checkmark both projects in the Symbol Browser’s Project Tree.

3. Choose the various entries in the Symbols drop-down menu. By selecting the Signature
check box, you can see in which files the symbols appear. Also, information about data
types, modules, dummy arguments (called parameters in other languages) and return
types will be displayed.

For a description of these (and additional) Fortran 90 language constructs that the Fortran
Parser can parse, refer to Fortran 90 entries in the Symbol Browser’s Type drop-down —
page 41.

4. Notice that there are no common variables in the Fortran90.shared project. How-
ever, the project contains modules, derived types and named DO statements.

(To differentiate between modules and derived types, select the Signature check box and
from the Symbols drop-down menu, choose module .)

5. Select the module ENVIRONMENTand double-click it to jump to its definition in the
source code.

The Source Editor appears and is positioned to the definition of ENVIRONMENT(in line
48 of file pp.f90).

6. Let’s look at the components that ENVIRONMENTrefers to. Choose Info > ENVIRON-
MENT Refers-To Components .

A Cross Referencer appears. In the Graph view, you should see the different types of
components that are referred to in ENVIRONMENT.

7. Let’s now browse another module in the project. In the Symbol Browser, select the mod-
ule HPF_SORTand double-click it to jump to its definition in the source code.

The Source Editor appears and is positioned to the definition of HPF_SORT(in line 1 of
file Sort.f90). This module contains variables, subprograms and generic functions.
Some of the symbols in the module have restricted read/write access, as you can see
from the keyword private .

H means “Has” and is used
for components
rtran Tutorial 39

Chapter 9 Browsing a Fortran 90 Project Browsing modules
8. Let’s take a closer look at the members of module HPF_SORT. In the Source Editor,
choose Class > Browse HPF_SORT .

The Class Browser appears and displays the members of the module. The Class Browser
lets you browse modules and derived types. It provides a wide range of filtering
possibilities based on the inheritance, visibility and type of components.

9. Try out the various drop-downs and buttons. If you want, select and double-click a mem-
ber to look at its definition in module HPF_SORT.
40 SNiFF+

Fo

Fortran 90 entries in the Symbol Browser’s Type drop-down
Fortran 90 entries in the Symbol Browser’s Type drop-down

module

When you select this symbol type, you can see all modules and derived types defined in your
project. If the Signature button is enabled, you can differ between modules and derived
types.
Modules and derived types can be analyzed more closely in the Class Browser. You can also
do component analyzing with these two symbol types. You can also perform interface cross
referencing with modules.

module variable

When you select this symbol type, a list of all variables and parameters defined in modules
and of all components of derived types is displayed. To see their types, enable the Signature
button. The name of the enclosing module or derived type is then prefixed to the variable,
parameter or component name, separated by a double colon (“::”). When the Signature
button is disabled, the name of the module or derived type is postfixed, separated by
whitespaces.

module subprogram

When you select this symbol type, all subprograms defined at top level inside of modules are
listed. This includes not only functions and subroutines, but also generic functions. When-
ever an interface defined in a module is given a name, this name is handled as a module
subprogram symbol. As a result, it is possible to resolve the correct references in the Cross
Referencer when a generic function is invoked.
Just like module variables, module subprograms can also be prefixed with their module
scope. Furthermore, the same conventions that apply to subprograms (with respect to return
values and dummy argument types) also apply to module subprograms.

named control statements

Lists all named control statements (IF, CASE, DO) defined in your project.
rtran Tutorial 41

Chapter 9 Browsing a Fortran 90 Project Browsing derived types
Browsing derived types
1. In the Symbol Browser, from the Symbols drop-down, choose derived type .

2. In the Symbol List, select the derived type ROMANand then double-click it to jump to its
definition.

The Source Editor appears and is positioned to the definition of ROMAN(in line 7 of file
roman_numerals.f90).

3. Notice that ROMANis a derived type of the module roman_numerals .

4. If you want, browse this derived type further in the Class Browser and Cross Referencer.

� To see which subprograms refer to ROMAN, choose Info > ROMAN Referred-By .

� To see which components are referred to by ROMAN, choose Info > ROMAN Refers-
To Components .

� To look at the members of ROMAN, choose Class > Browse ROMAN .

Browsing named DO statements
1. In the Symbol Browser, from the Symbols drop-down, choose named DO statement .

All named DO statement defined in the project are now displayed in the Symbol List.

2. In the Symbol List, select BSEARCHand double-click it to jump to its definition in the
source code.

The Source Editor appears and is positioned to the definition of BSEARCH(in line 3072
of file iso1539-2_mod.f90).

3. Look at line 3074 of the current file. Notice that this line contains the exit statement EXIT
BSEARCH. Let’s jump from this statement to the definition of BSEARCH.

4. Position the cursor in line 3074 in BSEARCHor select BSEARCHby double-clicking it.
Then, choose Show > Symbol(s) BSEARCH... .

The cursor is once again positioned to definition of BSEARCHin line 3072. As you can
see, using the Show > Symbol(s) command is a quick way to jump to a named DO
statement’s definition.

Conclusion
This concludes the tutorial on browsing Fortran 90 code. This also concludes the manual.
For a detailed explanation of the various features in SNiFF+, please refer to the User’s
Guide and Reference Guide.

� In the Launch Pad, close the Fortran90.shared project. Then, quit SNiFF+.
42 SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-1999 TakeFive Software GmbH.
All rights reserved.

sniff \'snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster's Unabridged Third New International Dictionary

	About this Manual
	Conventions
	Tool elements
	Typography
	Feedback and useful links

	Road Map
	The SNiFF+ Fortran Tutorial

	Creating a Single-User Project
	Creating the single-user project
	Examining the results
	Conclusions

	Using the Symbol Browser
	Using the Symbol Browser

	Using the Cross Referencer
	Performing function body cross referencing
	Abbreviations used in the Cross Referencer

	Browsing Examples
	Browsing global variables
	Browsing label references
	Browsing statement functions
	Browsing includes
	Browsing parameters

	Parser Options
	File include option
	Displaying syntax errors in the SNiFF+ Log tool
	Changing the tabulator size for fixed source form
	Changing the line length for fixed source form
	Changing case sensitivity mode for symbols

	Building the Project’s Executable
	Setting up Make Support
	Building the project target

	Browsing a Fortran 90 Project
	Creating a single-user project
	Browsing modules
	Fortran 90 entries in the Symbol Browser’s Type drop-down
	Browsing derived types
	Browsing named DO statements

