
ÿþþýüûúùø÷öõ

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

Table of Contents

C+
Part I Guidelines

About this Manual 3

Conventions. 3
Tool elements . 4
Typography . 5
Feedback and useful links . 5

Road Map 7

The SNiFF+ C++ Tutorial . 7

Part II Browsing

Opening the filebrowser project 13

Browsing Symbols 17

Opening the Symbol Browser . 17
Restricting information in Symbol List . 18
Symbol Type drop-down . 19
Displaying signatures of symbols . 19
Keyboard navigation in Lists . 20
Studying the symbol definition. 21

Understanding Class Hierarchies 23

Opening the Hierarchy Browser . 23
Inheritance relationships of all classes . 24
Hiding the classes of a subproject. 25
Class hierarchy of an individual class . 25

Browsing class members 27

Opening the Class Browser. 27
Elements of a class . 28
Interface of a class . 29
Tracking implementations of methods. 30
Going to the method implementation. 31

Component and Interface browsing 33

Opening the Cross Referencer . 33
Component Browsing (Has-a relationship) . 34
Interface Browsing. 35
+ Tutorial

Table of Contents
The SNiFF+ Editor 37

Going to a variable’s definition .39
Symbols with the same name. .40

Textual search with the Retriever 41

Opening the Retriever. .41
Finding out where a symbol is assigned a value43
Retrieving a string from all projects .44
Where is a symbol allocated on the heap?. .44

Code Dependencies and Impact analysis 47

Opening the Cross Referencer .47
Code Dependencies .48
Impact Analysis: Studying function calls. .50

Understanding Include Dependencies 51

Opening the Include Browser .51
Files included by a particular file. .52
Files that include a particular file .53

Browsing Documentation 55

Opening the Documentation Editor. .55
Viewing documentation of a class .57
Review .58

Part III Version Controlling

File history and locking information 61

Checking whether RCS is in your path (Unix Only)61
Opening the Project Editor .62
File’s history information .62
Displaying locking information .63

Configuration Management 65

Opening the Configuration Manager .65
Looking at configurations .65
Comparing two configurations .67

Differences between versions of files 69

Opening the Diff/Merge Tool .69
Differences between two file versions .70
Review .71
SNiFF+

C+

Table of Contents
Part IV Browsing-Only Project Setup

Setting up Browsing-Only Projects 75

The Project Setup Wizard for browsing only 75

Part V Edit/Compile/Debug

Single-User Project Setup 79

Preparing the Environment . 79
Single-user Project Setup Wizard . 79
Viewing the results . 82

SNiFF+ Build Support 83

Setting up the build system . 83
Building the executable . 85
Running the executable. 87
Opening and editing the file (Windows only) 88
Testing the changes (Windows only). 88

Debugging (Unix only) 89

Setting Breakpoints . 91
Running the executable. 91
Single-stepping . 92
Displaying values. 92
Editing the file . 92
Testing the changes . 93

Global Editing with the Retriever 95

Opening the Retriever . 95
Filtering . 96
Global Editing . 97
Undoing global changes . 98

Part VI Team Setup

Key Concepts 101

Shared projects . 101
Working environments. 102

Multi-User Project Setup 105

Preparing the Environment . 105
Multi-user Project Setup Wizard . 106
Viewing the results . 110
+ Tutorial

Table of Contents
Setting up the build system in the SSWE 111

Setting up the build system. .111

Checking In the project from the SSWE 115

Checking in the project .115
Looking at the history of a file .118

First Build in the SOWE 121

Opening the shared project in the SOWE. .121
Building the executable. .124

Part VII Developing in a team

Working in the PWE 129

Opening the shared project in the PWE .129
Check out and check in .131
Adding a new file to a project .133
Removing files from a project .134

Part VIII Team Maintenance

Updating Working Environments 139

Updating the SSWE .139
Updating the SOWE .140
Updating the PWE .141

Freezing the Project in the SSWE 143

Freezing the project .143
Concluding remarks .145
SNiFF+

Part I
Guidelines

1About this Manual

What this manual is
This manual is part of the SNiFF+ documentation set, which consists of:

� User’s Guide

� Reference Guide

� C++ Tutorial

� C Tutorial

� Java Tutorial

� Fortran Tutorial

� Quick Reference Guide

� Release Notes, Installation Guide and Application Papers

� Online documentation of the above in HTML, PostScript and PDF formats

Conventions

One basic term

� Symbol — any programming language construct such as a class, method, etc.

Two conventions: menu references

For clarity and to avoid undue verbosity, the phrase:
“Choose the MenuCommand from the MenuName” is presented as follows:

� Choose MenuName > MenuCommand .

A context menu that appears when you click the right mouse button is referred to as:
Context menu , and consequently:
“Choose a menu command from the context menu that appears when you click the right
mouse button” is presented as follows:

� Choose Context menu > MenuCommand
3

Chapter 1 About this Manual Tool elements
A note on Unix/Windows

The screenshots in this manual are all done on Windows NT. If you are working on Unix,
what you see on your screen may look slightly different.

When you start SNiFF+, the first tool that appears
is the Launch Pad. In this and other SNiFF+ tools,
the first item in the menu bar is for launching tools.

� On Windows, it is called Tools .

� On Unix , it is depicted by an Icon .

When we refer to this menu in order to launch
a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName .

� On Unix a “check box” looks like a “button” (Motif Look), and a “drop-down” looks like a
“pop-up”.

Tool elements

Choose Target > Make > all

Select / clear check box

Field

Tree

List

Select from drop-down
Highlight project

Checkmark project
4 SNiFF+

Typography
Typography

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

� SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

� SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

� Frequently Asked Questions

http://www.takefive.com/support/faq.html

� Customer Newsletter

http://www.takefive.com/news/customer_newsletter.html

Capitalized
Words

Names of tools, windows, dialogs and menus start with capital letters.
Examples: Symbol Browser, Tools menu, File dialog.

Italics Names of manuals and newly introduced terms are in italics.
Examples: User's Guide, the workspace concept.

Boldface and
Bold italics

Menu, field and button names and menu entries are printed in bold-
face. Placeholders for symbols, selections or other strings in menus
are in bold italics.
Example: From the menu, choose Show > Symbol(s) selection ...

Monospace Code examples and symbol, file and directory names, as well as user
entries are printed in monospace type.
Examples: .login , $PATH, class VObject . Type abc .

<Keys> Special keys are printed in monospace type with enclosing '< >'.
Examples: <CTRL>, <Return> , <Meta> .
5

Chapter 1 About this Manual Feedback and useful links
6 SNiFF+

C

2Road Map

Introduction
This manual introduces the SNiFF+ solution for C++ development and is centered around 7
tutorials. Each of the tutorials focuses on different SNiFF+ tools, tasks and concepts.
Although each consecutive tutorial and chapter is in itself more or less modular, it is assumed
that you are familiar with what has gone on before.
You will be using two different C++ example codes in this manual. The C++ example code
called filebrowser , used in the Browsing and Version Controlling Tutorials, is based on
the ET++ public domain class library, whose source is part of the SNiFF+ software distribu-
tion. ET++ is an object-oriented application framework developed by the University of Zurich
and the UBILAB of the Union Bank of Switzerland. For the other tutorials you will be using
the C++ code called complex , which is also provided with your SNiFF+ installation.

What this manual is not

This manual is not an exhaustive guide to SNiFF+, nor will it teach you C++.

The SNiFF+ C++ Tutorial
The SNiFF+ C++ Tutorial consists of the following parts:

� Browsing — page 11

� Version Controlling — page 59

� Browsing-Only Project Setup — page 73

� Edit/Compile/Debug — page 77

� Team Setup — page 99

� Developing in a team — page 127

� Team Maintenance — page 137

Note

Please note that a Log Window, displaying SNiFF+ error and control mes-
sages, may appear at several stages throughout this tutorial.
++ Tutorial 7

Chapter 2 Road Map The SNiFF+ C++ Tutorial
Browsing

This tutorial is for you if

� you are a new SNiFF+ user

� you want to quickly learn how to use SNiFF+ for browsing C++ code

Version Controlling

This tutorial is for you if

� you need SNiFF+ and RCS (included in the SNiFF+ package) for configuration manage-
ment and version controlling (CMVC)

Browsing-Only Project Setup

This tutorial is for you if

� you need to set up your own browsing-only project

Edit/Compile/Debug

This tutorial is for you if

� you want to use SNiFF+ in single-user/single-platform C++ development

� you want to learn about building C++ executables

� you want an introduction to the tools used in the C++ edit/compile/debug cycle

Note that this tutorial introduces concepts and tools used in developing, irrespective of
whether you are working alone or as part of a team.

Team Setup

This tutorial is for you if

� you have done the previous tutorials or

� you are familiar with SNiFF+ and

� you need SNiFF+ in a multi-user and/or a multi-platform work situation

� you need SNiFF+ and RCS (included in the SNiFF+ package) for configuration manage-
ment and version controlling (CMVC)

� you are responsible for setting up projects and working environments in a multi-user/
multi-platform work situation (Working Environments Administrator).

Developing in a team

This tutorial is for you if

� you have done the previous tutorials or

� you are familiar with SNiFF+ and

� you work in a team and use RCS for version controlling and configuration management.
Note that the Edit/Compile/Debug cycle is described in the Edit/Compile/Debug tutorial
8 SNiFF+

C+

The SNiFF+ C++ Tutorial
Team Project Maintenance

This tutorial is for you if

� you are responsible for maintaining projects and working environments in a multi-user/
multi-platform work situation (Working Environments Administrator).
+ Tutorial 9

Chapter 2 Road Map The SNiFF+ C++ Tutorial
10 SNiFF+

Part II
Browsing

C

1Opening the filebrowser project

In this chapter, you will

� learn how to open a project in a SNiFF+ Working Environment.

We assume you have successfully installed SNiFF+, and know how to start it. If not, please
refer to the Installation Guide.

� Start SNiFF+.

The Launch Pad appears.

1. In the Launch Pad, choose Tools > Working Environments .

The Working Environments tool opens.

2. In the Working Environments tool, double-click on:

adm PWE: Filebrowser Example .
The Open Project dialog opens.
++ Tutorial 13

Chapter 1 Opening the filebrowser project
3. In the Open Project dialog, press the Update List button to display the projects in the
Project List.

Project List
14 SNiFF+

C+
4. From the Project List, select filebrowser.shared and press Open .

SNiFF+ parses all the symbol files in the project and loads the project with symbol
information.
After the project is opened, SNiFF+ displays the project’s structure and contents in a
Project Editor, which should look like the one illustrated below.
A project is the main structuring element in SNiFF+ for grouping together files and
directories on your file system that logically belong together. The Project Editor will be
discussed in more detail in the Edit/Compile/Debug part of this tutorial.
+ Tutorial 15

Chapter 1 Opening the filebrowser project
16 SNiFF+

C

2Browsing Symbols

The Symbol Browser displays all the symbols used in the source files of a project. Symbols
can be filtered according to symbol type and other criteria. In SNiFF+, a symbol is any C++
language construct such as a class, method, function, etc.
In this chapter you will:

� find out which symbols are defined in the project

� look at which file or project a symbol belongs to

� navigate to a particular symbol

� go to the definition of a symbol

Opening the Symbol Browser
To open the Symbol Browser:

� In the Project Editor, choose Tools > Symbol Browser.
++ Tutorial 17

Chapter 2 Browsing Symbols Restricting information in Symbol List
A Symbol Browser is opened listing all the classes in the filebrowser project. Note that the
content of the Symbol List in the Symbol Browser is determined by the Symbol Type drop
down, Modifier drop-down, filters, the Project Tree and a regular expression matching the
names of the symbols.

� In the Project Editor, choose Tools > Close Tool to close the Project Editor.

Restricting information in Symbol List
To look at only those classes defined in a given project, e.g. filebrowser.shared:

1. In the Project Tree, highlight filebrowser.shared by clicking on its name.

2. Right-click anywhere in the Project Tree, and choose

Context menu > Select from filebrowser.shared Only .

3. In the Symbol Type drop-down, scroll up the list and select class .

Now the Symbol List contains all the classes defined in the project
filebrowser.shared , as you can see there are 11 symbols defined.

Symbol List

Project Tree

Select this check box to display
the signature of the symbols

Symbol
Type

Modifiers drop-down

Filters... button
18 SNiFF+

C+

Symbol Type drop-down
To look at which classes are defined in et3.shared and its subprojects:

1. In the Project Tree, click on the ‘-’ sign to the left of et3.shared to collapse the
node.

You can now view and manipulate et3.shared and its subprojects as a single project.

2. Highlight et3.shared .

3. Choose Context menu > Select From et3.shared Only.

Because class is displayed in the Symbol Type drop-down, all classes which are defined
in et3.shared and its subprojects are displayed in the Symbol List.

4. Click on the ‘+’ sign to the left of et3.shared to expand the node.

Symbol Type drop-down
The Symbol Browser can show symbols of different types and macros.

Besides classes, you can look at functions, friends, variables, typedefs, etc. Methods can
also be shown. (The list of methods can get very long because it is a flat view of all methods
of all classes if not further constrained.)

� Try to show the functions, macros, typedefs, etc., of et3.shared by selecting different
types from the Symbol Type drop-down .

Displaying signatures of symbols
Currently you see only the names of the various types. By selecting the Signature check box
in the status line of the Symbol Browser, you can display the complete signature of the listed
symbols.

� Choose class from the Symbol Type drop-down.

� Select the Signature check box, and then drag the side of the window outward until you
can see the whole text line in the Symbol List.

The Symbol List now shows the following information:
symbolType symbolName fileName projectName.shared

� fileName.C is the name of the file where the symbol is implemented

� fileName.h is the name of the file where the symbol is defined

� projectName.shared is the name of the project containing this file

Notice that class ActionButton is defined in file Buttons.h and is contained in
et3.shared .
+ Tutorial 19

Chapter 2 Browsing Symbols Keyboard navigation in Lists
Keyboard navigation in Lists
In each list of any SNiFF+ tool, you can quickly navigate to entries by clicking into the list,
then typing the name of the entry you wish to find. Each consecutive keystroke immediately
causes the list to position to the next matched entry.
To find the class Button in the Symbol List:

1. In the Project Tree, choose Context menu > Select From All Projects .

2. From the Symbol Type drop-down, select class (by default All Symbols is selected).

3. In the Modifier drop-down, make sure All Modifiers is selected.

4. Click into the Symbol List.

5. Press the key.

The list is positioned to the first entry that starts with an ‘b’ .

6. Press the <u> key.

As you can see, the class Button is highlighted because it is matched by the ‘bu’ you
entered.

Notes on keyboard navigation

� You can restart searches by pressing <ESC>.

� If the pressed key does not match any entry, you will be warned by a beep.

� The cursor keys can also be used for navigating in a list.

� Pressing <Return> on a highlighted entry in a list has the same effect as double click-
ing that entry, i.e., the highlighted symbol definition will be loaded into a Source Editor.
20 SNiFF+

C+

Studying the symbol definition
Studying the symbol definition
Each symbol in the Symbol List is defined somewhere in your source code. The quickest way
to get to a symbol definition is to double-click on the symbol name in the Symbol Browser.

1. In the Symbol Browser, double-click on cl Button .

A Source Editor opens, the source file Buttons.h is loaded and the class Button is
highlighted.

2. In the Source Editor, choose Tools > Close Tool to close the Source Editor. The Source
Editor is discussed onThe SNiFF+ Editor — page 37.
+ Tutorial 21

Chapter 2 Browsing Symbols Studying the symbol definition
22 SNiFF+

C

3Understanding Class Hierarchies

You will now learn more about Top-Down Browsing with SNiFF+. Top-Down browsing is
useful when you have a symbol, e.g., a class, and want to learn more about its details —
where and in what context it is used. Figuratively speaking, you are coming from a more
distant view of your system and are browsing down to the source code (bottom) and greater
detail. You will study this type of browsing with the class Button . During the following step
by step tour, you will start with the Hierarchy Browser and learn more about the Class
Browser, Source Editor and Cross Referencer.

The Hierarchy Browser is a tool where you can view the inheritance relationships of all
classes in a project or group of projects. Thus, loading all classes into the Hierarchy Browser
allows you to get a good overview of the complete class hierarchy. You can also restrict this
information by viewing only a class and its relatives.
This chapter is about

� looking at the inheritance relationships of all classes

� viewing the class hierarchy of an individual class

Opening the Hierarchy Browser
Make sure that Button is highlighted in the Symbol List of the Symbol Browser.

� Choose Class > Show Button in Entire Hierarchy .

The Hierarchy Browser opens.
++ Tutorial 23

Chapter 3 Understanding Class Hierarchies Inheritance relationships of all classes
� Close the Symbol Browser.

Inheritance relationships of all classes
In the illustration above, the complete class graph is displayed in the Hierarchy view, and the
class Button is highlighted. You can see the definition of Button in the Code view.

� Scroll around to get an overview of the class hierarchy and the inheritance path of the
class Button .

Note

Although we use only single inheritance in our examples, SNiFF+’s
tools also support multiple inheritance.

Class List:
Alphabetical list
of displayed
classes

Code view

Project of
selected class

Project Tree

Hierarchy
view
24 SNiFF+

C+

Hiding the classes of a subproject
Hiding the classes of a subproject
You may want to look at the minimal graph of the inheritance hierarchy of only one project,
hiding those classes that don’t belong to the selected project. To do so:

� In the Project Tree, highlight filebrowser.shared and choose

Context menu > Select from filebrowser.shared Only .
Only the classes of filebrowser.shared are displayed. With the exception of those
classes that are needed to draw a minimal tree, all other classes are hidden. Classes not
part of the checkmarked project are grayed out. This view also gives you a very good
overview on how the filebrowser project depends on et3.shared in terms of
inheritance.

Class hierarchy of an individual class
So far we’ve looked at an overview of the complete class hierarchy. Let’s now take a look at
the superclasses and subclasses of an individual class. To see the superclasses and
subclasses (i.e. only the immediate relatives) of class Button :

1. Right-click anywhere in the Project Tree.
+ Tutorial 25

Chapter 3 Understanding Class Hierarchies Class hierarchy of an individual class
2. Choose Context menu > Select from All Projects .

All the projects in the Project Tree are now checkmarked, and so all the classes of all the
projects are now displayed in the Hierarchy view.

3. Make sure that Button is selected in the Hierarchy view.

4. Right-click in the Hierarchy view and choose

Context menu > Show Button Relatives
The Hierarchy view now displays only the relatives of Button .

As you can see, only the superclasses and subclasses of Button are shown. All other
classes are hidden. This gives you a better picture of the inheritance of ActionButton
and related classes.
26 SNiFF+

C

4Browsing class members

The Class Browser browses through the locally defined and inherited members of a class. It
provides many filtering possibilities based on inheritance, visibility and type of the members.
In this chapter you will learn more about

� elements of a class

� interface of a class

� what overrides a certain method

Opening the Class Browser
To open the Class Browser with information on class Button :

� Make sure that Button is selected in the Hierarchy Browser. If it isn’t, click into the Class
List and type b. The focus is set to Button .
++ Tutorial 27

Chapter 4 Browsing class members Elements of a class
� Choose Context menu > Browse Button .

The Class Browser opens.

� Close the Hierarchy Browser.

Elements of a class
As you can see in the above illustration, the symbols of Button are listed, because only
Button is selected.
The Class Browser lists the elements of the current class identified by the element name and
the name of the class defining the element. The icons in front of the name show the
attributes of the member. To find out what the icons mean, choose Help(?) > Quick Ref .
To look at the virtual methods of class Button :

1. From the Symbol Type drop-down, choose method .

2. From the Modifiers drop-down, choose virtual .

All virtual methods of class Button are displayed in the Member List.

Filters button

Member
List

Inheritance
Tree

Icons show
visibility and
other
attributes

Modifiers
drop-downSymbol Type

drop-down
28 SNiFF+

C+

Interface of a class
3. Select the Signature check box in the status line.

The signature of each member is also listed.
The Member List is no longer sorted alphabetically. The members are now sorted in the
same order as they appear in the declaration of the class (file order).

Interface of a class
To look at the interface of Button:

1. From the Modifiers drop-down, choose All Modifiers .

All methods of class Button are displayed in the Member List.

2. In the Inheritance view, choose Context menu > Select from All Classes .

3. Clear the Signature check box to get a less cluttered view of the Member List.

You now have a completely flat view of the class Button , including all overridden
methods. Each entry in the list shows the method name and the class defining the method
so you can see what overrides what. For example, the method At is defined in VObject
and overridden in CompositeVObject .
A completely flat view of the class is not always useful. Sometimes you want to see just
the interface of the current class, hiding all the methods that are overridden.

4. In the Inheritance view, make sure Button is highlighted and choose

Context menu > Select from Button only .

5. Clear the Overridden checkbox.

Now, only the client interface of the loaded class is visible.
+ Tutorial 29

Chapter 4 Browsing class members Tracking implementations of methods
Tracking implementations of methods
Let’s now see what overrides the method Getminsize . SNiFF+ makes it possible for you
to do this by combining the Class Browser and the Hierarchy Browser.

1. In the Inheritance Tree, choose Context menu > Select from All Classes .

2. Set the various attributes of the Class Browser as follows:

Symbol Type drop-down: method
Modifiers drop-down: override
Visibility: All
Overridden check box: selected
You now have all the members that override methods defined in a superclass, as well as
all the methods that are overridden in a subclass. As you can see, method GetMinSize
is defined in VObject and is overridden in Button .

3. In the Member List, highlight the method GetMinSize which is overridden in Button .
30 SNiFF+

C+

Going to the method implementation
4. From the menu, choose Class > Mark Relatives Defining GetMinSize .

The Hierarchy Browser is opened and all classes related to Button are loaded. All
classes displayed (marked) in boldface override the method GetMinSize .

� Close the Class Browser.

Going to the method implementation
By selecting boldfaced classes in the Hierarchy browser, you can view the source code of the
overridden methods.

1. Select Button if it isn’t already selected.

2. Choose Class > Edit Button::GetMinSize .

A Source Editor is opened, class Button is loaded and the Source Editor is positioned
at the method implementation.

3. Close the Source Editor.
+ Tutorial 31

Chapter 4 Browsing class members Going to the method implementation
32 SNiFF+

C

5Component and Interface browsing

In SNiFF+, the Cross Referencer provides symbol cross reference information. All different
kinds of cross references are displayed. In addition, it provides a component view (has-a
hierarchy) of classes and structures.
In this chapter you will learn more about

� symbol types used as components of a given symbol

� all the symbols that refer to a given symbol

� symbol types used in symbol interfaces (parameters, returns)

In this chapter, we will browse components and interfaces of class PullDownButton .

Opening the Cross Referencer
1. In the Hierarchy Browser, choose Class > Show Button in Entire Hierarchy .

2. Click into the Hierarchy Browser’s Class List and type ‘menub’.

Class MenuBar is now highlighted in the Hierarchy view.

3. Choose Context menu > Class MenuBar Refers To Components .
++ Tutorial 33

Chapter 5 Component and Interface browsing Component Browsing (Has-a relationship)
The Cross Referencer appears.

� Close the Hierarchy Browser.

Component Browsing (Has-a relationship)
As you can see in the illustration above, the components of the class MenuBar are
displayed. The second entry in the newly created tree should be the following:
cl MenuBa r > H cl VObject
This means that: the class MenuBar Has class VObject.
You may also want to know where VObject is a component:

1. Select class VObject in the created component hierarchy.

2. In the Graph view, choose Context menu > VObject Referred-By .

This may take a little time if it is the first Referred-By query in the project.
The subtree of class VObject now shows all classes that have VObject as a
component.

3. Now hide the subnodes of MenuBar by selecting it in the Graph view and choosing Con-
text menu > Hide Subnodes of MenuBar .

Forward
references

Root symbol

Symbol type
34 SNiFF+

C+

Interface Browsing
Interface Browsing
You now want to look at the number and type of all symbols MenuBar uses as a parameter
or return value.

1. Choose View > Filter... .

The Xref Filter dialog appears. Please make sure that only the Components (H)
checkbox and the Types checkboxes are checkmarked.

2. In the Xref Filter dialog, select the Interface (PR) check box.

P stands for parameter type and R stands for return type. The (H) after Components
stands for “Has a”.
+ Tutorial 35

Chapter 5 Component and Interface browsing Interface Browsing
3. Press the Refers-To button.

In the illustration below, you can see the type and number of all symbols that MenuBar
uses as a parameter or return value.

4. Double-click on the class MenuBar .

A Source Editor is opened and is positioned at the declaration of class MenuBar .

5. Close the Cross Referencer.
36 SNiFF+

C

6The SNiFF+ Editor

We will now learn more about Bottom-Up Browsing with SNiFF+. This kind of browsing is
useful when you start from the source code looking at a symbol, e.g., a variable, and you
would like to know more about its declaration and definition. Figuratively speaking, you are
coming from a special-usage context (source code, therefore bottom) and are browsing up to
its declaration (higher view). In the following step-by-step tour, you’ll start with the Source
Editor and learn about the Retriever, more about the Cross Referencer and about the Include
Browser.

The integrated Source Editor is mouse- and menu-driven. It understands C++ syntax,
provides browsing support and automatically highlights structurally important information,
such as class names, method names and comments. When a source file is modified and
saved, its symbol information is immediately updated.
In this chapter you will:

� go to a variable’s definition

� get more information about the class where the variable is defined

� find out if there are more symbols with the same name as the selected symbol
++ Tutorial 37

Chapter 6 The SNiFF+ Editor
Continuing from the last chapter, the Source Editor is positioned at the definition of class
MenuBar .

We will now use the History menu to go to the method GetMinSize (implemented in
ActionButton).

1. Click on the History menu.

What you see in the menu are all the locations you visited in the source code during the
browsing session.

2. Choose History > Buttons (cl) - et3.shared .

The Buttons.h file is now loaded in the Source Editor.

3. Choose ActionButton from the Class drop-down.

4. Highlight GetMinSize in the Symbol List.
38 SNiFF+

C+

Going to a variable’s definition
5. Choose Show > Implementation of GetMinSize .

The Buttons.C file is loaded into the Source Editor.

6. Study the method. Note that variable gLook is used for a method call.

Going to a variable’s definition
You now want to get information about the declaration and definition of gLook . To do so:

1. Double-click on the symbol gLook in the Source Editor’s main view.

gLook is now highlighted.

2. Choose Show > Symbol(s) gLook...

SNiFF+ positions the Source Editor to the definition of gLook.
As you can see the global variable gLook is declared to be a pointer of type Look . In
class Look (Look.h) it is referenced as an external variable.

You may now want more information about class Look .

1. Double-click on Look in the Source Editor’s main view.

Look is now highlighted.

2. Choose Class > Browse Look .

The Class Browser opens.
+ Tutorial 39

Chapter 6 The SNiFF+ Editor Symbols with the same name
3. Remember, earlier on you selected overridden in the Modifiers drop-down. To see all
methods, make sure All modifiers is selected in this drop-down.

4. Double-click on method DrawHighlight to load its source code into the Source Edi-
tor.

5. Close the Class Browser.

Symbols with the same name
1. Double-click on DrawHighlight in the Source Editor’s main view.

Now only the method DrawHighlight is highlighted.

2. Choose Show > Symbol(s) DrawHighlight... .

SNiFF+ opens the Choose Symbol - DrawHighlight dialog presenting the choices. The
Choose Symbol dialog opens when there is more than one symbol called
DrawHighlight . If there is only one symbol called DrawHighlight , the Source
Editor is positioned at its implementation.

You have six symbols matching DrawHighlight .
You may now want to see only those symbols that are defined or implemented in the file
Look.C and in all header files which are included by Look.C .

� Select the Scan only included files check box.

Now only one entry is shown.

� Double-click on void Look::DrawHighlight (Rectangle &).

The symbol is loaded into the Source Editor.
In this chapter you started from ActionButton::GetMinSize and browsed the
variable gLook . You then learned more about the class Look , which uses gLook .You
then looked at methods which are implemented in Look, e.g. DrawHighlight .
In the next chapter you’ll find out where else in your source code gLook is used by using
the Retriever, a tool that lets you to query the entire project structure.
40 SNiFF+

C

7Textual search with the Retriever

The Retriever is a fast source code retrieval tool with filtering. It can be used to find out
where a certain string is used in the source code. It lists all occurrences of strings matching a
regular expression in a set of projects. A semantic filter can then be applied to the matches.
The Retriever also allows you to globally find and replace strings in code lines, and to edit
code in the integrated Source Editor.
This chapter is about using the Retriever to:

� find every line in your source files containing a given string

� find out where the string is assigned a value

� find out where a string is allocated on a heap

Opening the Retriever
To open the Retriever:

1. Highlight Look (mi) in the Symbol List.

The Source Editor is positioned at the implementation of Look .

2. Scroll up to Look *gLook and double-click on gLook .

gLook is now highlighted.
++ Tutorial 41

Chapter 7 Textual search with the Retriever Opening the Retriever
3. Choose Info > Retrieve gLook From All Projects .

A progress bar appears indicating that all files are being indexed. The next progress bar
shows the progress of the retrieval.
The Retriever opens.

4. Close the Source Editor.

When the Retriever first appears after being asked to retrieve the string “gLook ” from all
projects, notice that:

� Above the Files — Matches List, you are informed that 76 matches were found in 24
source files. Each match is listed (in bold print) in its source line context.

� The Ignore Case check box is not selected - this means that the search is case-sensitive.

� The Whole Word check box is not selected - this means that the compound words with
gLook as a substring are also retrieved.

� All the projects in the Project Tree are selected. This is because you opened the Retriever
with the command: Info > Retrieve gLook From All Projects .
42 SNiFF+

C+

Finding out where a symbol is assigned a value
Finding out where a symbol is assigned a value
You may now want to restrict the list to places where gLook is assigned a value.

1. Press the Filter... button.

The Find and Replace Filters dialog appears.

2. Select assignment from the regular expression list.

3. Press Ok.

As you can see in the Files — Matches List, there are two locations in your project where
gLook is assigned a value.

The Retriever uses a two-stage filtering process:

� First all lines matching the search string are extracted.

� Then the list is once more restricted using regular expressions (in this case a regular
expression representing the syntax of an assignment).

You can look at the source code of the matches in the Code Display:

� Click on a match.

The Code Display is positioned at the source code of the selected match. If the file that
you are browsing is writable, then you can also edit the source code in the Code Display.
+ Tutorial 43

Chapter 7 Textual search with the Retriever Retrieving a string from all projects
Retrieving a string from all projects
The Retriever is a very powerful tool for formulating fuzzy queries.
Let’s try this out by getting information about menu handling. To do so:

1. Select the Ignore Case check box.

The search is now no longer case-sensitive.

2. Delete the filter in the Filter field.

3. In the Retrieve field type menu, then press Retrieve .

As you can see, there are 1358 matches.

Let’s further restrict the search using the assignment filter:

1. Press the Filter... button.

The Find and Replace Filters dialog appears.

2. Select assignment from the regular expression list.

3. Press Ok.

Notice that there are 72 matches in the project, where a variable called menu (or similar)
is assigned a value.

Where is a symbol allocated on the heap?
Let’s find out where menu (or similar) is allocated on the heap. To do so:

1. Press the Filter... button.

The Find and Replace Filters dialog appears.

2. Select new from the regular expression list.

3. Press Ok.

Notice there are 99 matches in the Filebrowser project where menu (or similar) has been
allocated. Each match is displayed as a separate line in the Retriever, even if two
matches are located in the same source line.
To look at the source code of one of the matches in the Source Editor:

� double-click on the first entry in the Retriever.

The Source Editor opens and is positioned at the reference of the selected entry.

Note

For the first query an index is generated for the checkmarked
projects, subsequent queries are then much faster.
44 SNiFF+

C+

Where is a symbol allocated on the heap?
� Close the Retriever.

Although the Retriever can help you search for strings in your source code, it can only
provide limited cross reference information. In the next chapter you will be working with
the Cross Referencer to get more cross reference information about Menu.
+ Tutorial 45

Chapter 7 Textual search with the Retriever Where is a symbol allocated on the heap?
46 SNiFF+

C

8Code Dependencies and Impact analysis

This chapter is about using the Cross Referencer to:

� look at code dependencies

� look at where functions and methods are called

Opening the Cross Referencer
To open the Cross Referencer:

1. In the Source Editor, choose Info > Menu Refers-To .

The Choose Symbol - Menu dialog appears.

2. Double-click on the first entry.

The Cross Referencer opens.

3. Close the Source Editor.
++ Tutorial 47

Chapter 8 Code Dependencies and Impact analysis Code Dependencies
Code Dependencies
As you can see in the Graph view, Menu::Menu is taken as the root symbol and symbols it
refers to are displayed as its nodes. The Reference view shows all types that are referenced
by Menu::Menu , even classes.
Let’s filter the list to show only functions and methods. To do so:

1. In the Depth field enter <2> .

2. Press the Filters... button.

The Xref Filter dialog appears.

3. Press the None button at the top-right to deselect all types.

4. Select the method(me) and function(f) checkboxes.

5. Press Refers-To .
48 SNiFF+

C+

Code Dependencies
The function-call tree to the depth of 2 is shown. Only forward references to methods and
functions (in this case none) are displayed.
+ Tutorial 49

Chapter 8 Code Dependencies and Impact analysis Impact Analysis: Studying function calls
Impact Analysis: Studying function calls
You may want to see where me Object::ResetFlag is called:

1. Highlight me Object::ResetFlag in the newly created function-call tree.

2. Choose Context menu > ResetFlag Referred-By .

Scroll around. As you can see in the illustration below, the backward references of
me Object::ResetFlag are added to the graph. All methods that access this
method, as well as all methods that call these methods, are shown.

Let’s now quickly visit the locations that are displayed in the Cross Referencer. To do so:

1. <SHIFT> click on a method.

The Code view is positioned at the first reference to the method.

2. <SHIFT> double-click on a method.

A Source Editor appears, and the first reference is displayed in it.

3. Position the Source Editor and the Cross Referencer on your screen so that you can see
both.

4. In the Source Editor, choose Show > Next Match .

The Source Editor positions to the next reference and the Cross Referencer’s Graph view
is positioned at the next match.

5. To see all locations, repeat the previous step until there are no more matches.
50 SNiFF+

C

9Understanding Include Dependencies

The Include Browser graphically displays include references made in project source files. It
can be used to see which files are included by a particular file and vice-versa, as well as to
make sure that there are no redundant includes.
This chapter is about using the Include Browser to:

� find out which header files are included by a particular implementation file

� find out which implementation files include a particular header file

Opening the Include Browser
To open the Include Browser:

1. In the Cross Referencer, highlight the root symbol me Menu::Menu .

2. From the menu, choose Show > Implementation of Menu .

The Source Editor is positioned at the implementation of Menu.

3. In the Source Editor, choose Info > Menu.C Includes .
++ Tutorial 51

Chapter 9 Understanding Include Dependencies Files included by a particular file
The Include Browser opens.

4. Close the Source Editor and the Cross Referencer.

Files included by a particular file
As you can see in the above illustration, Menu.C includes ten header files. Let’s look at the
include statement of one of the header files. To do so:

1. Highlight Menu.h in the newly created tree.

2. Choose Context menu > Show Include Statement .

The Source Editor opens and is positioned at the include statement of Menu.h .

3. Close the Source Editor.
52 SNiFF+

C+

Files that include a particular file
Files that include a particular file
Let’s see which files include the header file Menu.h . To get this information:

1. In the Include Browser, make sure that Menu.h is highlighted in Graph view.

2. Choose Context menu > Included-By .

In the illustration below, you can see the files which include Menu.h .

Let’s now look at which projects these files belong to. To do so:

� Choose View > Show Project Name .

Scroll to the right of the Graph view. You can now see the file names as well as the
projects to which they belong.
+ Tutorial 53

Chapter 9 Understanding Include Dependencies Files that include a particular file
54 SNiFF+

C

10Browsing Documentation

The Documentation Editor supports the iterative and incremental generation, writing and
maintenance of source code documentation. You can use its hypertext-like browser to
quickly navigate between source and documentation. In addition, you can freely define the
structure and contents of the generated documentation.
In this chapter you learn how to:

� browse the documentation of a particular file.

� browse the documentation of a particular symbol.

Opening the Documentation Editor
To open the Documentation Editor:

� In any open SNiFF+ tool, choose Tools > Project Editor .

� Make sure that filebrowser.shared is checkmarked in the Project Tree.

� In the file list, double-click on BrowserView.d .
++ Tutorial 55

Chapter 10 Browsing Documentation Opening the Documentation Editor
The Documentation Editor opens.

As you can see, the documentation file BrowserView.d is loaded in the
Documentation Editor and the Documentation Editor is positioned to the beginning of the
documentation file. Clicking on the items in the Symbol List positions the Documentation
Editor to the respective symbol documentation. Note that the icons that precede the
symbols in the Symbol List indicate what their documentation status is.
To see what the icons indicate, choose Help(?) > Quick Ref .
56 SNiFF+

C+

Viewing documentation of a class
Viewing documentation of a class
You may now want to look at the documentation of the class BrowserView . To do so:

� In the Symbol List, click on BrowserView (cl) .

You now see the documentation frame for class BrowserView .

� Close the Documentation Editor.
+ Tutorial 57

Chapter 10 Browsing Documentation Review
Review
This was the last of the SNiFF+ browsing tools to be introduced in this tutorial.
In this part of the C++ Tutorial you were introduced to:

� Opening the project

� Top-Down browsing with the following tools

Symbol Browser
Hierarchy Browser
Class Browser
Cross Referencer

� Bottom-Up browsing with the following tools

Source Editor
Retriever
Cross Referencer
Include Browser
Documentation Editor

� In the tutorial we can only give you a few hints and tips to help you on your way. To get a
better understanding of the tools, we recommend experimenting. To really appreciate
what SNiFF+ can do for you, you really need to work with it.

How to set up your own Browsing-Only Projects

If you want to browse your own project, please refer to Setting up Browsing-Only Projects —
page 75.

What’s next

The only SNiFF+ tool that should now be open is the Launch Pad. We will continue using the
Filebrowser project in the version controlling part.

� The next part of this tutorial introduces you to Version Controlling
58 SNiFF+

Part III
Version Controlling

C

1File history and locking information

SNiFF+’s configuration management and version control (CMVC) support provides the func-
tionality available in the RCS version control system. This tutorial assumes that you are
using RCS. If you are using a different CMVC tool, please refer to the User’s Guide.
In this chapter you will look at:

� a file’s history information

� locking information

Checking whether RCS is in your path (Unix Only)
The filebrowser example comes with an RCS repository. This tutorial relies on RCS 5.7
which is supplied together with the SNiFF+ package and is installed from there.
To check whether the correct version of RCS is in your path:

1. Open a Unix shell.

2. Enter % rcs -V1 at the command prompt.

You will receive one of the following outputs:

� rcs error: -V1 out of range 3..5

This shows that the correct version of RCS is installed.

� rcs error: Unknown option: -V1

This shows that an old, unusable version of RCS is installed. If you get this output,
please install RCS 5.7 to execute the version control steps in the next chapter.
++ Tutorial 61

Chapter 1 File history and locking information Opening the Project Editor
Opening the Project Editor
� In the Launch Pad, highlight Filebrowser.shared .

� Choose Tools > Project Editor .

File’s history information
Lets look at the history information of filebrowser.C . To do so:

1. Highlight filebrowser.C in the File List of the Project Editor.

2. Select the History check box.
62 SNiFF+

C+

Displaying locking information
A History window appears to the right of the Project Editor. The History window contains
three views that show the history information of the selected file. To see a description of
the icons used, choose Help(?) > QuickRef .

All versions of filebrowser.C as stored and maintained by your version control tool
are displayed. In the History view, you can see the complete history of
filebrowser.C .
To see the history information of a particular version of filebrowser.C :

� Highlight HEAD 1.7 in the Configuration History view.

You can now only see the history record (stored and maintained by your version
control tool) of HEAD 1.7 in the File History view.

� Close the History window.

Displaying locking information
You may now want to see which files are locked. To do so:

1. Highlight filebrowser.shared in the Project Tree.

2. Choose Context menu > Select from filebrowser.shared Only.

3. In the Project Editor, select the Lockers check box.

In the File List, the Lockers column appears showing locking information.

File History view

Description view

Configuration History view
+ Tutorial 63

Chapter 1 File history and locking information Displaying locking information
4. Look at the file Preferences.C in the File List.

In the illustration below, you can see that the version control tool that is used is RCS, the
file is locked by Peter and the locked version number is 1.1

Version Control Tool

Locked file version
Owner of the lock
64 SNiFF+

C

2Configuration Management

The Configuration Manager gives a structural and file-based overview of the changes
between two configurations of a software system. Configurations are selected file versions
grouped together under the same symbolic name.
In this chapter you will:

� look at the configurations in filebrowser.shared

� compare two configurations

Opening the Configuration Manager
1. In the Project Editor, choose Tools > Configuration Manager .

The Configuration Manager opens.

2. Close the Project Editor.

Looking at configurations
You may now want to look at the configurations of filebrowser.shared . To do so:

1. Highlight filebrowser.shared in the Project Tree of the Configuration Manager.

2. Choose Context menu > Select from filebrowser.shared Only.

The configuration information for filebrowser.shared is shown in the
Configuration List.

3. Highlight HEADin the Configuration List.
++ Tutorial 65

Chapter 2 Configuration Management Looking at configurations
HEADis the symbolic name of the latest version of all files in a particular configuration.
The HEAD configuration thus reflects the current state of your software system. In the
illustration below, you can see all files that are part of HEAD.
66 SNiFF+

C+

Comparing two configurations
Comparing two configurations
Let’s view the changes that occured from the initial configuration (INIT) to the latest configu-
ration (HEAD) of filebrowser.shared :

1. Make sure that HEADis highlighted in the Configuration List.

2. Scroll down the Compared to List and highlight INIT .

As you can see, the differences between the two configurations are displayed in the
Change List. Icons in the Change List indicate the nature of the difference.
To see a description of the icons, choose Help(?) > QuickRef .

You may now want to look more closely at a change set in the Change List. To do so:

1. Choose change sets from the drop-down at the top-center of the tool.

Now only change sets are displayed in the Change List.

2. Highlight V2_2_changes_for_Windows_NT_port in the Change List.

The files of V2_2_changes_for_Windows_NT_port are now displayed in the File
+ Tutorial 67

Chapter 2 Configuration Management Comparing two configurations
68 SNiFF+

C

3Differences between versions of files

The Diff/Merge tool shows and merges differences between files and between versions of
files. It uses symbol information extracted from source files to highlight the location of the
differences. The Diff/Merge tool handles two- or three-way differences.
In this chapter you will:

� view the differences between versions of files

Opening the Diff/Merge Tool
1. In the Configuration Manager, make sure that the following are highlighted:

HEAD, INIT and V2_2_changes_for_Windows_NT_port .

2. Choose Differences > Show Differences...

A Show Differences Dialog appears, in which you can select the type of differences (two-
way or three-way) that you want to see.

3. Press the 2-Way button.
++ Tutorial 69

Chapter 3 Differences between versions of files Differences between two file versions
The Diff/Merge tool appears.

4. Close the Configuration Manager.

Differences between two file versions
In the above illustration, you can see the differences between BrowserDoc.C 1.4 (the
file in the change set V2_2_changes_for_Windows_NT_port) and its previous
version BrowserDoc.C 1.3 .

1. Drag the layout handle to the left to increase the width of the File List.

2. Highlight 220: DoFileIsAlreadyOpen (mi) BrowserDocument in the Dif-
ferences List.

In the two file versions, the difference in the method DoFileIsAlreadyOpen is
shown.

To look at the differences between the next file in the change set BrowserItems.C 1.3
and its previous version BrowserItems.C 1.2 :

� Highlight BrowserItems.C in the File List.

In the Differences List, you can see that there is one difference between the two versions
of BrowserItems.C .

� Close the Diff/Merge tool.
70 SNiFF+

C+

Review
Review
This was the last of the SNiFF+ version controlling and configuration management tools to
be introduced in this tutorial.
In this part of the C++ Tutorial you were introduced to:

� file history and locking information

� Configuration Manager

� Diff/Merge tool

Please note that this was only an introduction to these tools. To learn more about the version
control tools in SNiFF+, please refer to the User’s Guide.

What’s next

The only SNiFF+ tool that should now be open is the Launch Pad.

� The next part of this tutorial introduces you to Setting up Browsing-Only projects.
+ Tutorial 71

Chapter 3 Differences between versions of files Review
72 SNiFF+

Part IV
Browsing-Only Project

Setup

C

1Setting up Browsing-Only Projects

The Project Setup Wizard guides you through the process of setting up a browsing-only
project. SNiFF+’s Make Support is not available for browsing-only projects. In a real-world
situation you would use browsing-only projects, e.g., to browse libraries.
We assume that all your source code directories are under a single root directory (recom-
mended). We will use <your_source_root_directory > to refer to this directory.
In this chapter you will:

� set up your own project for browsing only

The Project Setup Wizard for browsing only
� To start the Project Setup Wizard, choose Project > New Project > with Wizard... in the

Launch Pad.

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

� Select Browsing-only Setup , and press Next .

The “Select file types” page appears.

In the “Select file types” page

� Select C/C++ and press Next .

Note that, after project setup, you can add new standard file types (like the ones in the
“Additional File Types Column”), or create and add your own.

In the “Specify project location and name” page

1. Press the Browse button next to the Source code root directory field and navigate to
<your_source_root_directory >.

2. Double-click on <your_source_root_directory > and press Select .

SNiFF+ sets the path and gives the project the same name as the value of the Source
code root directory field. By default, the Create Subprojects check box is selected in
the Wizard. This means that SNiFF+ will automatically create subprojects for all the
subdirectories of your project. Which is fine.

3. Press Next .

In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ C++ Project.
++ Tutorial 75

Chapter 1 Setting up Browsing-Only Projects The Project Setup Wizard for browsing only
1. Make sure that your Project Setup Summary page is similar to the following. Except for
the Project root directory and the project name, the rest should be the same. If it isn’t,
please go back to the beginning of the Wizard and start again.

If the information on the Project
Setup Summary page is similar
to that in the illustration:

2. Press Finish .

SNiFF+ will now create the
project and all its subprojects.

3. In the dialog that appears asking
if you want to generate cross reference information, press No.

Cross Reference information will be automatically generated when you open the Cross
Referencer.
When SNiFF+ is finished, it opens the new project and displays its structure and contents
in a Project Editor. You can now browse your own project, following the steps in the
browsing part of the C++ tutorial.

4. Close the new project that you have created.

What’s next
You won’t be using the filebrowser project in the tutorials to follow. You can either delete the
project, or, if you want to keep the project for later reference, just close it. Note that “deleting
a project” means that only the files generated by SNiFF+ are deleted, source code files
remain untouched.

� To delete the project:

In the Launch Pad, make sure that filebrowser.shared is highlighted and choose
Project > Delete Project filebrowser.shared .

� To close the project:

In the Launch Pad, make sure that filebrowser.shared is highlighted and press
Close Project filebrowser.shared .

The next tutorial introduces you to

� setting up a single user/single platform project for C++ development

� setting up the SNiFF+ build system

� tools used for editing, compiling and debugging C++ code with SNiFF

Please note that in the tutorials to come, you will be using the Complex code example.
76 SNiFF+

Part V
Edit/Compile/Debug

C

1Single-User Project Setup

This chapter is about

� using the Project Setup Wizard for setting up a SNiFF+ single-user/single-platform project
for development.

The Project Setup Wizard guides you through the process of setting up a single-user/single-
platform project without version controlling. Multi-user/multi-platform projects using RCS for
configuration management and version control (CMVC) are described in the next tutorial,
“Working in Teams”.

If you aren’t continuing on from the “Version Controlling” tutorial

We assume you have successfully installed SNiFF+, and know how to start it. If not, please
refer to the Installation Guide.

Preparing the Environment
� Copy the directory

<your_sniff_installation_dir>/example/c++/complex_dir

including subdirectories, to a place where you have write permissions.
In the rest of this tutorial, we will use <complex_dir> to refer to the complete path to
this directory.

� Start SNiFF+.

The Launch Pad appears.

Single-user Project Setup Wizard
� To start the Project Setup Wizard, choose Project > New Project > with Wizard... in the

Launch Pad. The Project Setup Wizard appears.

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

� Accept the default selection, Standard Setup , and press Next .

The “Select developmental task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the title bar of the Wizard.
++ Tutorial 79

Chapter 1 Single-User Project Setup Single-user Project Setup Wizard
In the “Select Developmental task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

This tutorial is for single-user / single platform development without CMVC, so:

� accept the defaults (No/No/None) and press Next .

In the “Select file types” page

� Select C/C++ and press Next .

Note that, after project setup, you can add new standard file types (like the ones in the
“Additional File Types Column”), or create and add your own.

In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory. A Private
Working Environment is simply the directory in which you work and where SNiFF+ adminis-
ters your project.

1. Press Browse , and in the Directory dialog, navigate to <complex_dir>/user , dou-
ble-click on it and then press Select .

2. In the PWE name field, enter a name for the PWE, e.g., complex private .

Notice that your user name is entered next to the selected Owner check box. SNiFF+
needs your user name to correctly handle permissions. Being the owner of the PWE
means that you are the only one who is allowed to modify its attributes.

3. Press Next .

In the “Create New SNiFF+ Project” page

You are asked to specify the root directory of the new project and to specify two other setup
attributes (described below).
SNiFF+ automatically enters the root of your PWE in the Project root directory field.

1. Modify the entry in the Project root directory field to specify the root directory of the new
project’s source code. This should be:

<complex_dir>/user/complex

2. Notice that the new project’s name has changed to complex . We suggest that you
accept this name. Also by default, Create Subprojects is enabled.

3. Select the Use SNiFF+’s Makefiles checkbox.

4. Press Next .
80 SNiFF+

C+

Single-user Project Setup Wizard
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ project and required Working
Environments.

� Make sure that your Project Setup Summary page is similar to the following. If it isn’t,
please go back to the beginning of the Wizard and start again.

� Press Finish .

SNiFF+ will now create the new complex project and all its subprojects.

� In the dialog that appears asking if you want to generate cross reference information,
press No.

When SNiFF+ is finished, it opens the new project and displays its structure and contents
in a Project Editor.
+ Tutorial 81

Chapter 1 Single-User Project Setup Viewing the results
Viewing the results
The Project Editor on your screen should look this.
82 SNiFF+

C

2SNiFF+ Build Support

This chapter is about:

� setting up the build system for a single-user project

� building the project’s executable

Setting up the build system

In the Project Editor

� In the Project Tree of the Project Editor, choose Context menu > Select From All
Projects to checkmark all projects.

� Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears. In this dialog, you can look at and modify the
project attributes of multiple projects. For a description of the dialog, please see
Reference Guide — Project Attributes.

In the Group Project Attributes dialog
++ Tutorial 83

Chapter 2 SNiFF+ Build Support Setting up the build system
Setting up Make Support for complexlib.shared

1. Highlight complexlib in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Library field of the of the Ansi C/C++ tab, enter complexlib.a . This will be the
name of the library built in this project.

4. Under the Build Options node, select Build Structure .

5. In the Build Structure view, choose Passed to Superproject drop-down > Library .

The project’s library is exported to complex.shared and is used to build the Complex
executable.

Setting up Make Support for iolib.shared

1. Highlight iolib in the Project List.

2. In the Build Structure view, choose Passed to Superproject drop-down > Object Files +
Received .

The project’s object file (iolib.o) is exported to complex.shared .

Setting up Make Support for complex.shared

1. Highlight complex in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Executable field of the Ansi C/C++ tab, enter complex (on Windows com-
plex.exe). This will be the name of the project’s executable.

4. On Unix only , enter -lstdc++ in the +Libraries Linked field (below the Executable field).

5. Under the Build Options node, select Build Structure .

6. In the Build Structure view, press the Generate button next to the Recursive Make Dir(s)
field.

The executable is built using recursive Make rules. By pressing the Generate button,
SNiFF+ generates the order of subprojects in which Make is executed.

Generating the include paths for all projects

1. Under the Build Options node, select Directives .

2. Select the checkbox to the right of the Generate button.

3. Press the Set for All button to generate the include paths for all projects in the Project
List.

4. Press Ok to apply the changes to the project attributes.

The icons in the Project Tree of the Project Editor warn you that the projects have been
modified.

5. A dialog appears asking you to update Makefiles. We will do this later so press No.
84 SNiFF+

C+

Building the executable
In the Launch Pad

To Save the changes made to complex.shared and its subprojects:

1. Select complex.shared in the Project List.

2. Choose Project > Save Project complex.shared .

3. In the Alert dialog that appears, press the Save All button.

Building the executable

In the Project Editor

Before building, make sure that the projects’ Make Support information is up-to-date. Make-
files should be updated whenever structural changes are made to the projects, or when
projects are first opened.

1. Choose Target > Update Makefiles... to generate the Make Support Files for all the
projects.

A dialog appears asking you whether the dependencies information should also be
updated.

2. Press Yes.

SNiFF+ generates the Make Support Files and stores them in the .sniffdir
subdirectory of each project directory.

Note

SNiFF+ doesn’t have its own compiler therefore you must have a compiler
installed on your computer to compile SNiFF+ projects. By default, the
gnu compiler is specified on Unix, and Microsoft Developer is specified on
Windows. If you are using another compiler, it must be specified in your
Platform Makefile. For more information, see User’s Guide — Build and
Make Support.
+ Tutorial 85

Chapter 2 SNiFF+ Build Support Building the executable
Make execution

SNiFF+ needs to know where to start the Make execution. You tell SNiFF+ this by selecting
the appropriate project. In the example project, Make execution starts in
complex.shared .

1. In the Project Tree, highlight complex.shared by clicking on its name.

2. Choose Target > Make > all to recursively build the executable.

A Shell Tool appears, in which the make all command is executed in each project
directory. At the end of the build it should look like this:

If compiler errors are reported in the shell at this stage, something went wrong with the
setup of the project’s Make attributes. We recommend that you go through the steps in
this tutorial again, carefully check them, compare screenshots, and try compiling again.
86 SNiFF+

C+

Running the executable
Running the executable

In the Project Editor

1. Make sure that complex.shared is highlighted in the Project Tree.

2. Choose Target > Run complex.exe .

The Program Arguments dialog appears:

3. Clear the Background Execution check box.

4. Press Ok.

The Shell Tool appears.

In the Shell Tool

The complex example outputs the numbers that you enter in the Shell Tool.

1. Enter some values and test to see if the output is correct. You’ll notice that it isn’t.

Obviously, there is an implementation error in one of the files in the project. To fix this
error:

� On Windows , you will modify the source file that contains the error. Ignore the next
chapter, Debugging (Unix only), and continue with Opening and editing the file (Win-
dows only) below.

� On Unix , you will use the Debugger to find the error. Skip the rest of this chapter and
go to the chapter Debugging (Unix only) — page 89.

2. Close the Shell tool.
+ Tutorial 87

Chapter 2 SNiFF+ Build Support Opening and editing the file (Windows only)
Opening and editing the file (Windows only)
After using the Project Editor to open a file in the Source Editor, you will edit the file by
correcting the implementation error that occurs in it.

In the Project Editor

1. In the Project Tree, make sure that complexlib.shared is checkmarked, so that you
see the files in the project.

2. In the File List, double-click on complex.C to open the file in the Source Editor.

In the Source Editor

1. Choose Edit > Go To Line...

2. In the Goto dialog that appears, type 26 and press the Go To button.

You are now positioned at the line in which the variable im is assigned the incorrect
value.

3. Fix the error by changing r to i .

4. For changes to take effect, choose File > Save .

Testing the changes (Windows only)
1. In the Source Editor, choose Target > Make File complex.o to compile the file.

A Shell tool opens and SNiFF+ compiles the file. After successful compilation, let’s build
and run the executable to see the effects of your modifications.

2. In the Source Editor, choose Target > Update Makefiles to generate the Make Support
Files for all the projects.

A dialog appears asking you whether the dependencies information should also be
updated.

3. Press Yes.

4. In the Project Editor, choose Target > Make > all to build the shared project’s executable.

The project’s Make command is recursively executed in the Shell tool. Upon completion,
you should have an executable named complex.exe in:
<complex_dir>/user/complex

5. Run the executable to assure yourself that it executes properly. To find out how to do so,
see Running the executable — page 87.

6. Close all open tools except the Source Editor and the Launch Pad.
88 SNiFF+

C

3Debugging (Unix only)

This chapter is about:

� using the SNiFF+ Debugger

SNiFF+ provides a graphical front-end to widely used debuggers such as gdb and dbx. It
provides a menu interface to most of the commands and interprets the debugger output
messages. The Source Editor is used to show the current stack frame. After starting the
Debugger, you will set a breakpoint and try and find out exactly where the error occurs.

In the Project Editor

� To start the Debugger, choose Target > Debug complex .

The Debugger command line shell opens.

On Windows NT/95

The project’s target is automatically loaded into Microsoft Developer Studio.
For a description of the debug commands in Microsoft Developer Studio,
please refer to the Microsoft product documentation.
++ Tutorial 89

Chapter 3 Debugging (Unix only)
In the Debugger Command Line Shell

� For a summary of debug commands, type help at the command line prompt.

Note that many of these commands can also be posted from the Source Editor.

In the Project Editor

� You will be setting a breakpoint in the source file, main.C . To open the file, double click
on it in the File List.

The file is opened in the Source Editor and, because you are in debug mode, a row of
buttons for the most commonly needed debug commands has been added below the tool
bar.

Note

If the Debugger doesn’t come up correctly, either gdb is not installed on
your system or the back-end has not been specified in the Debugger
preferences (for details, please refer to the Reference Guide).
90 SNiFF+

C+

Setting Breakpoints
Setting Breakpoints

In the above illustration the breakpoint has already been set.
To set this breakpoint:

1. Choose Edit > Go To line...

The Goto dialog appears.

2. To go to the line where you will set the breakpoint, type 14 in the Goto dialog and press
the Go to button.

You are now positioned at line 14 in the file.

3. To set the breakpoint, press Break At .

A small stop sign at the beginning of the line indicates the breakpoint.

Running the executable
1. Press Run .

A Program Arguments dialog appears.

2. Press Ok.
+ Tutorial 91

Chapter 3 Debugging (Unix only) Single-stepping
In the Debugger

� Enter some values for the real part and the imaginary part of the first number.

Since you set a breakpoint, the Debugger stops now and the Source Editor shows a small
right arrow to indicate the actual program counter.

Single-stepping
There are two possibilities for single-stepping:

� Next steps over functions and methods.

� Step steps into functions and methods.

In the Source Editor, press Next . You’ll notice that the program counter moves down to the
next source line.

Displaying values

In the Source Editor

1. Highlight a in line 14 by double-clicking on it.

2. Press Print .

The Debugger displays the value you entered for the real part (re) and the imaginary part
(im). Notice that the value for the imaginary part is incorrect.

3. In the Debugger, choose Tools > Close Tool .

The Debugger quits and the button bar with the debug commands is removed from the
Source Editor.

Editing the file
We’ll now edit the file where the error occurs.

1. Click on the method Set in line 14.

2. Choose Show > Symbol(s) Set...

The complex.C file is loaded and you are now positioned at the method
complex::Set . As you can see the variable im is assigned the incorrect value.

3. Fix the error by changing r to i .

4. For the changes to take effect, choose File > Save .
92 SNiFF+

C+

Testing the changes
Testing the changes
� In the Source Editor, choose Target > Make File complex.o to compile the file.

A Shell tool opens and SNiFF+ compiles the file. After successful compilation, let’s build
and run the executable to see the effects of your modifications.

In the Project Editor

1. Choose Target > Make > all to build the shared project’s executable.

The project’s Make command is recursively executed in the Shell tool. Upon completion,
you should have an executable named complex in:
<complex_dir>/user/complex

2. Run the executable to assure yourself that it executes properly.

3. Close all open tools except the Source Editor and the Launch Pad.
+ Tutorial 93

Chapter 3 Debugging (Unix only) Testing the changes
94 SNiFF+

C

4Global Editing with the Retriever

This chapter is about using the Retriever to:

� find every line in your source files containing a particular string

� re-filter search results to conform more closely to your needs

� effectively edit text in combination with the Source Editor

Opening the Retriever
This complex example is not as complex as the name suggests therefore we will change all
internal references from complex to simplex.

In the Source Editor

� Double-click on string complex .

complex is now highlighted.

� Choose Info > Retrieve complex From All Projects .
++ Tutorial 95

Chapter 4 Global Editing with the Retriever Filtering
The Retriever opens and displays all occurrences of the string complex . The search
string is in bold. As you can see, there are 14 matches in 4 files.
You could also open the Retriever from any tool by choosing Tools > Retriever

Filtering
You will notice that there are include statements in the above illustration and if you change
these, you won’t be able to compile the project. Lets now exclude all include references. By
doing so we won’t have to change any file names and can filter for symbols only. We will do
so by using regular expressions. Regular expressions (regex) are a powerful means to
specify patterns for filters and search strings in the various SNiFF+ tools, especially in the
Retriever. Basically, regular expressions are a system of matching character patterns. For
more information, please see Reference Guide — Regular Expressions.

� In the Retriever, press the Filter... button to open the Find and Replace Filters dialog.

Integrate
d Editor
96 SNiFF+

C+

Global Editing
In the Find and Replace Filters dialog

1. In the Name field, enter a name for the regular expression e.g., No Includes.

2. In the Retrieve field, enter !#include . An exclamation point at the beginning of a regu-
lar expression means “match everything except the following regex”.

Note that this is a SNiFF+ specific implementation and not usually part of the regular
expression syntax.

3. Press Ok to add the new regular expression to the Regular Expression List, to apply the
regular expression to the list of matches and to close the dialog.

As you can see, there are now only 12 matches in 3 files.

Global Editing
Now we will change all occurrences of complex (excluding include references) to
simplex .

1. In the Change To field, type simplex .

Take a look at the Preview field below the integrated Source Editor, the code line
(highlighted in the Files — Matches List) is shown as it would appear after modification.
You can use the Next button at the bottom of the tool to look at each line as it would
appear after being changed.

2. To change all occurrences of complex to simplex, press the Change All button (in the
lower right corner of the Retriever).

3. In the dialog that appears, press Yes.

All occurrences of complex are changed to simplex. You can verify this by pressing the
Retrieve button again to requery.
+ Tutorial 97

Chapter 4 Global Editing with the Retriever Undoing global changes
Undoing global changes
If you want to undo changes:

� If you want to undo changes, choose Edit > Undo Change All .

All changes that you’ve made are discarded. You can verify this by pressing the Retrieve
button again to requery.

What’s next

� Close the project. To do so:

In the Launch Pad

1. Select complex.shared - < Username> PWE:complex private .

2. Choose Project > Close Project complex.shared .

� The next part of this tutorial introduces you to Team Setup.
98 SNiFF+

Part VI
Team Setup

C

1Key Concepts

This chapter introduces 2 key concepts

� shared projects

� working environments

Although these concepts are not in themselves difficult, what follows in the hands-on tutorial
chapters may tend to get a little confusing if you don’t have a reasonable understanding of
what these things are and how they work.
For detailed information going beyond this very brief introduction, please refer to the User’s
Guide.

Shared projects
A shared project is, as the name suggests, suitable for team development. However it is
equally recommended for single-user work situations.
Shared projects offer a great deal of flexibility. Because all references to files and subprojects
are relative to a root directory, you can easily move a shared project to another location on a
file system.
Each team member can access a shared project and make changes to its files and/or struc-
ture, regardless of what other team members are doing.
This means that the integrity of the project system as a whole needs to be maintained in
some way, which is why shared projects are always used in conjunction with working envi-
ronments and a configuration management and version control (CMVC) tool.
It is strongly recommended that one person be appointed to administer this “maintenance
system”. In SNiFF+ this person is called the Working Environments Administrator. This tuto-
rial mainly covers the tasks performed by a Working Environments Administrator.

� From now on, shared projects are simply referred to as projects.

Note

This tutorial assumes that you will use RCS (included in the SNiFF+
package) for version controlling. Most other CMVC tools are also
supported by SNiFF+. Please refer to the Release Notes for details.
++ Tutorial 101

Chapter 1 Key Concepts Working environments
Working environments
SNiFF+ uses 4 different kinds of working environments:

� Repository Working Environment (RWE)

� Shared Source Working Environment (SSWE)

� Shared Object Working Environment (SOWE)

� Private Working Environment (PWE)

The RWE (Repository Working Environment)

Your team members access and modify a permanent shared data Repository using
commands provided by your underlying configuration management and version-control
(CMVC) tool.
SNiFF+ provides an interface to your CMVC tool. This interface needs to know the location
of your Repository.
You provide this information by defining a Repository Working Environment (RWE), which
specifies the root directory of your Repository.
In this tutorial, we will be using RCS, the CMVC tool provided with the SNiFF+ package.

The SSWE (Shared Source Working Environment)

SNiFF+ requires you to specify the root directory under which your team’s shared source
code is located. The files and directories under this root directory access your team’s Repos-
itory. At regular intervals, all these files and directories are updated to reflect the most current
state of your team’s software system.
When creating software systems from scratch, your team’s (Working Environments Adminis-
trator’s) first job is to populate this root directory with source code. For existing software
systems, your team will already have such a central location.
In either case, once you have such a root directory, you have to tell SNiFF+ where it is. You
do this by defining a Shared Source Working Environment (SSWE).
All team members see, or share, all the source files in the SSWE. When browsing the
source files, this view is read-only. When editing source files, team members work on local
copies of the shared source files they want to modify—they never directly modify the shared
source files in the SSWE. The view to all other source files remains read-only.

The SOWE (Shared Object Working Environment)

Just like with shared source code, SNiFF+ also requires you to specify a central location for
your team’s shared object files. In SNiFF+, you define one Shared Object Working Environ-
ment (SOWE), which specifies the root directory containing these files, for each target plat-
form.
SOWEs serve as shared repositories for your team’s most current and stable object code.
During an update of an SOWE, source files in the SSWE are compiled and the resulting
object code is stored in the SOWE.
An essential aspect of SOWEs is avoiding unnecessary builds in Private Working Environ-
ments (see below) that access them.
102 SNiFF+

C+

Working environments
The PWE (Private Working Environment)

Developers must be able to work in isolation from other team members. They need their own
workspaces in which they can edit, compile and debug projects without interfering with the
work of other team members. Furthermore, they continually need to have access to their
software system’s most current source code and object code base.
SNiFF+ supports this by allowing each member of a team to work in an isolated workspace.
In SNiFF+, you define a Private Working Environment (PWE) to specify the root directory of
each team member’s workspace.
You can go through the entire edit/compile/debug cycle in your PWE. In your PWE, you have
a read-only view to the shared source files located in your team’s SSWE. When you need to
modify shared source files, you check out the necessary files from your team’s Repository.
When you’re satisfied that the changes you’ve made are error-free, you check the modified
files back into your team’s Repository. The next time your team’s SSWE is updated, these
changes are incorporated, and the shared source files in the SSWE once again reflect the
most current state of your software system.
+ Tutorial 103

Chapter 1 Key Concepts Working environments
104 SNiFF+

C

2Multi-User Project Setup

This chapter is about

� using the Project Setup Wizard for setting up a SNiFF+ multi-user/multi-platform project
for development.

The Project Setup Wizard guides you through the process of setting up a multi-user/multi-
platform project with version controlling.

Preparing the Environment
� In the Edit / Compile / Debug tutorial, you copied the directory

<your_sniff_installation_dir>/example/c++/complex_dir,

including subdirectories, to a place where you have write permissions. If you haven’t done
so, please do so now. You should have the following directory structure:

In the rest of this tutorial, we will use <complex_dir> to refer to the complete path to
this directory.

Working environment information

pwe — This directory holds your own workspace, i.e., your Private Working Environment.
rwe — This directory holds your team’s shared data repository, i.e., your Repository Working
Environment.
sowe — This directory holds your team’s shared object code, i.e., your Shared Object
Working Environment.
sswe — This directory holds the source code your team shares, i.e., your Shared Source
Working Environment.
working_envs_config — This directory will hold the working environment files gener-
ated and maintained by SNiFF+.
++ Tutorial 105

Chapter 2 Multi-User Project Setup Multi-user Project Setup Wizard
Setting your Preferences

To set the working_envs_config directory as your preferred maintenance directory:

� In the Launch Pad, choose Tools > Preferences... to open the Preferences dialog.

In the Preferences dialog

1. Under the Tools node, select Working Environments .

2. In the Working Environments view, press Dir... next to the Working Environment Con-
fig. Directory field.

3. Navigate to the <complex_dir>/team/working_envs_config directory.

4. Double-click on the directory name and press Select .

5. Press Ok to apply the changes.

Multi-user Project Setup Wizard
� To start the Project Setup Wizard, choose Project > New Project > with Wizard... in the

Launch Pad.

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

� Accept the default selection, Standard Setup , and press Next .

The “Select developmental task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the title bar of the Wizard.

In the “Select developmental task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

This tutorial is for multi-user/multi platform development with configuration management and
version control (CMVC), so:

1. Select Yes for both Yes/No questions.

2. Choose RCS as the version control tool.

3. Press Next .

Note

This tutorial assumes that you will use RCS for version controlling.
Most other CMVC tools are also supported by SNiFF+. Please refer
to the Release Notes for details.
106 SNiFF+

C+

Multi-user Project Setup Wizard
In the “Select file types” page

� Select C/C++ and press Next .

SNiFF+ will automatically include all necessary file types needed for working with C/C++
source code in the new project. Note that, after project setup, you can add new standard
file types (like the ones in the “Additional File Types Column”), or create and add your
own.

In the “Specify Repository” page

You are asked to specify your Repository Working Environment (RWE). SNiFF+ uses the
RWE for version control administration. To specify the rwe directory:

1. Press Browse and, in the Directory dialog, navigate to:

<complex_dir>/teams/rwe

Double-click on the rwe directory, and then press Select .

2. In the RWE name field, type a name for the RWE, e.g., Complex Repository .

3. Press Next .

In the “Specify team source code location” page

You are asked for your Shared Source Working Environment (SSWE).

1. Press Browse and, in the Directory dialog, navigate to:

<complex_dir>/teams/sswe

Double-click on the sswe directory, and then press Select .

2. In the SSWE name field, type a name for the SSWE, e.g., Complex SSWE.

3. Press Next .

In the “Specify team object code location” page

You are asked to specify your Shared Object Working Environment (SOWE) root directory.

1. Press Browse and, in the Directory dialog, navigate to:

<complex_dir>/teams/sowe

Double-click on the sowe directory, and then press Select .

2. In the SOWE name field, type a name for the SOWE, e.g., Complex SOWE.

3. Press Next .

In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory.

1. Press Browse and, in the Directory dialog, navigate to:

<complex_dir>/teams/pwe

Double-click on the pwe directory, and then press Select .
+ Tutorial 107

Chapter 2 Multi-User Project Setup Multi-user Project Setup Wizard
2. In the PWE name field, type a name for the PWE, e.g., Complex PWE.

3. Notice that your user name is entered next to the selected Owner check box. SNiFF+
needs your user name to correctly handle permissions.

Being the owner of the PWE means that you are the only one who is allowed to modify the
working environment’s attributes.

4. Press Next .

In the “Additional team members?” page

You are asked whether any additional PWEs are needed. Since you are working alone
through this Tutorial, you don’t need to specify additional PWEs.

� Accept the default value and press Next .

In the “Additional target platforms?” page

You are asked whether any additional SOWEs are needed. Since the code in this Tutorial will
only be compiled for one platform, you don’t need to specify additional SOWEs.

� Accept the default value and press Next .

In the “Create new SNiFF+ Project” page

You are asked to specify the root directory of the new project. SNiFF+ automatically enters
the root of your SSWE in the Project root directory field, since your team’s shared source
code is located in it. Our project root directory is complex , so:

1. Press Browse and, in the Directory dialog, navigate to:

<complex_dir>/teams/sswe/complex

Double-click on the complex directory, and then press Select .
Notice that the new project’s name has changed to complex , which is the name we will
use throughout the tutorial. Also by default, Create Subprojects is enabled.

2. Select the Use SNiFF+’s Makefiles checkbox.

3. Press Next .
108 SNiFF+

C+

Multi-user Project Setup Wizard
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ project and required working
environments.

1. Make sure that your Project Setup Summary page is similar to the following. If it isn’t,
please go back to the beginning of the Wizard and start again:

2. Press Finish .

3. In the dialog that appears asking if you want to generate cross reference information,
press No.

SNiFF+ will now create the new complex project and all its subprojects. When SNiFF+
is finished, it opens the new project in the SSWE (where you set up the project) and
displays its structure and contents in the Project Editor.
+ Tutorial 109

Chapter 2 Multi-User Project Setup Viewing the results
Viewing the results
The Project Editor on your screen should look this.
110 SNiFF+

C

3Setting up the build system in the SSWE

This chapter is about

� setting up the build system in the Shared Source Working Environment (SSWE).

Although you don’t build your targets in the SSWE, you set the Make attributes here. Then,
when you later open the project in the SOWE and PWEs, you can build targets without first
having to modify the project’s Make attributes.

Setting up the build system

In the Project Editor

� In the Project Tree of the Project Editor, choose Context menu > Select From All
Projects to checkmark all projects.

� Choose Project > Attributes of Checkmarked Projects... .

The Group Project Attributes dialog appears. In this dialog, you can look at and modify the
project attributes of multiple projects. For a description of the dialog, please see the
Reference Guide.
++ Tutorial 111

Chapter 3 Setting up the build system in the SSWE Setting up the build system
In the Group Project Attributes dialog

Setting up Make Support for complexlib.shared

1. Highlight complexlib in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Library field of the of the Ansi C/C++ tab, enter complexlib.a . This will be the
name of the library built in this project.

4. Under the Build Options node, select Build Structure .

5. In the Build Structure view, choose Passed to Superproject drop-down > Library .

The project’s library is exported to complex.shared and is used to build the Complex
executable.

Setting up Make Support for iolib.shared

1. Highlight iolib in the Project List.

2. In the Build Structure view, choose Passed to Superproject drop-down > Object Files +
Received .

The project’s object file (iolib.o) is exported to complex.shared .
112 SNiFF+

C+

Setting up the build system
Setting up Make Support for complex.shared

1. Highlight complex in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Executable field of the Ansi C/C++ tab, enter complex (on Windows com-
plex.exe). This will be the name of the project’s executable.

4. On Unix only , enter -lstdc++ in the +Libraries Linked field (below the Executable field).

5. Under the Build Options node, select Build Structure .

6. In the Build Structure view, press the Generate button next to the Recursive Make Dir(s)
field.

The executable is built using recursive Make rules. By pressing the Generate button,
SNiFF+ generates the order of subprojects in which Make is executed.

Generating the include paths for all projects

1. Under the Build Options node, select Directives .

2. Select the checkbox to the right of the Generate button.

3. Press the Set for All button to generate the include paths for all projects in the Project
List.

4. Press Ok to apply the changes to the project attributes.

The icons in the Project Tree of the Project Editor warn you that the projects have been
modified.

5. A dialog appears asking you to update Makefiles. We will do this later so press No.

In the Launch Pad

To save the changes made to complex.shared and its subprojects:

1. Select complex.shared in the Project List.

2. Choose Project > Save Project complex.shared .

3. In the Alert dialog that appears, press the Save All button.

What’s next
You may think that the next step is to build the project’s executable in the SSWE. It isn’t. In
SNiFF+’s working environments concept, SSWEs contain only shared source code, and
SOWEs contain the objects and targets based on this code.
During project setup, you created a SNiFF+ project in the directory that contains your team’s
shared source code, i.e., in the SSWE. Once the project has been created, the only time you
open it in the SSWE is to update it. For any real development work, open the project in a
PWE.
So, the next step is to check in the project (its Project Description File) and its source files
into the Repository. When the process is over, all the files in the SSWE will be read-only.
+ Tutorial 113

Chapter 3 Setting up the build system in the SSWE Setting up the build system
Then, you can open the project in the SOWE and build the executable in it. For details, see
First Build in the SOWE — page 121.
114 SNiFF+

C

4Checking In the project from the SSWE

This chapter is about

� checking in project files from the SSWE

Checking in project files for the first time is the first step in version-controlling your SNiFF+
projects. We recommend that you version control at least the following types of files:

� Project Description Files (PDFs), i.e., *.shared files in our case.

� source files

� Makefiles (only if you don’t use SNiFF+’s Make Support)

Once files have been checked in, you can see their history and version tree information.
In a real world situation, it may not matter to you whether your team’s shared source code is
initially compilable. However, when creating new SNiFF+ team projects from scratch, we
recommend that you verify that your source files are compilable before checking them in for
the first time. Do not, however, perform builds in the SSWE. The SSWE should only contain
source files.

Checking in the project
To check the project in, complete the following steps:

In the Project Editor

1. In the Project Tree, checkmark all projects by right-clicking anywhere in the Project Tree,
and then choosing Context menu > Select From All Projects .

You now see all the files in all the projects.

2. Press the Filters... button.

The Filters... dialog appears.

3. In the File Types tab, clear the Make check box to filter out SNiFF+’s Makefiles from the
Project Editor’s File List (we assume you are using SNiFF+’s Make Support).

SNiFF+’s Make Support files are generated and maintained by SNiFF+, so there’s no
reason to version control them.

4. Press the OK button to apply changes and to close the Filters... dialog.

5. Choose File > Select All .
++ Tutorial 115

Chapter 4 Checking In the project from the SSWE Checking in the project
6. Choose File > Check In... .

SNiFF+ informs you that it cannot find
the directories of the shared project in
the RWE root directory (they haven’t
been created yet). You will now have
SNiFF+ initialize your RWE by copying
the SSWE project directory structure into
the RWE.
This dialog will reappear for each new
Repository directory, unless you select
the Repeat check box.

7. Select the Repeat checkbox and press Yes to create the necessary Repository directo-
ries for the project.

When SNiFF+ has finished initializing your RWE, the Check In dialog appears.

In the Check In dialog

You can use this dialog to check in versions of single or multiple files.When you have made
changes to multiple files, you can check in all the files at the same time and associate them
with a change set. By doing so, you can perform a variety of version-control operations on
all the files in a change set at the same time.
At this point, although we haven’t made any changes, we will make use of the Change Set
field to indicate that we are checking in the initial versions of all the files in the project.

1. Leave the Version field blank. SNiFF+ will automatically assign a version number (1.1)
and later increment it automatically.

2. In the Change Set field, enter a name for the change set, e.g.,

Initial_complex_file_set.

3. In the Comment field, enter a descriptive text, e.g, Original Complex Files .

4. Press Ok.
116 SNiFF+

C+

Checking in the project
In the Project Editor

When the check-in process is over, take a look at your Project Editor. You should notice the
following changes:

� The files in the File List are no longer in bold typeface. This means they are now read-
only.

� The icons in the Project Tree have also changed to indicate that the projects, too, are
read-only. You can verify this by comparing your screen to the illustration, see Viewing the
results — page 110.
+ Tutorial 117

Chapter 4 Checking In the project from the SSWE Looking at the history of a file
Looking at the history of a file
You can check to see whether the files were checked in properly by looking at their history.
Let’s look at the history of a file.

In the Project Editor

1. In the File List, highlight the file complex.C .

2. Select the History check box (at the bottom of the tool).

A new History window opens. For a discription of icons used, choose
Help(?) > Quick Ref .

Since only one version of the project files has been checked in so far, the Version Tree
only displays this version (1.1).
INIT is used by SNiFF+ to refer to the initial version of a file in the Repository. The
version number of the INIT version of a file is always 1.1 . The latest version on the
main trunk or branch of a file’s version tree is called HEAD. In this example, the HEADand
INIT versions of the file are naturally the same.

3. In the Project Editor, clear the History check box to close the History window.

Selected file
118 SNiFF+

C+

Looking at the history of a file
What’s next
The next step is to open the project in your SOWE.
Although you can open projects in more than one working environment at a time, this tends
to get confusing. We therefore suggest that you first close the project in the SSWE.

In the Launch Pad

To close the project in the SSWE:

1. Highlight complex.shared - SSWE:Complex SSWE .

You can see the name of the project and the working environment in which you opened it
by increasing the size of the Launch Pad.

2. Choose Project > Close Project complex.shared .
+ Tutorial 119

Chapter 4 Checking In the project from the SSWE Looking at the history of a file
120 SNiFF+

C

5First Build in the SOWE

This chapter is about

� Opening the shared project in the SOWE — When you first open the shared project in
the SOWE, SNiFF+ automatically will initialize the environment by copying the directory
structure found in the SSWE.

� Building and running the complex executable — A successful build verifies that you
have set the project’s Make attributes correctly. After the initial build you will have the tar-
gets for a stable running version of the project in your SOWE.

During the edit/compile/debug cycle, each developer should only build targets in his/her own
Private Working Environment (PWE). Builds in the SOWE should only take place during
regular updates of your team’s working environments (described in the “Team Maintenance”
tutorial). The initial build in the SOWE is in fact your first update of this working environment.

Opening the shared project in the SOWE
First, you need to tell SNiFF+ that you intend to work in the SOWE. You do this in the
Working Environments tool.

� In the Launch Pad, choose Tools > Working Environments .
++ Tutorial 121

Chapter 5 First Build in the SOWE Opening the shared project in the SOWE
In the Working Environments tool

1. To open a project in the SOWE, double-click on the SOWE entry in the Working Environ-
ments Tree. If you used the same names as we did, the full designation of the SOWE is:

SOWE:Complex SOWE

2. In the Open Project dialog that appears, press the Update List button to display all the
projects that can be opened in the SOWE.

A dialog appears asking you whether SNiFF+ should also look in any accessed working
environments for projects that can be opened in the SOWE. Here, the SOWE accesses
the SSWE, so pressing Yes will also display the projects in the SSWE.

3. Press Yes.
122 SNiFF+

C+

Opening the shared project in the SOWE
The Open Project dialog on your screen should now look like this.
For a description of the the dialog, move the mouse pointer over the dialog, and press the
<F1> key.

4. To open the root project and all its subprojects, double-click on complex.shared .

5. In the dialog that appears, press Yes.

SNiFF+ informs you that it cannot find the directories of the shared project in the SOWE
root directory (they haven’t been created yet). You will now have SNiFF+ initialize your
SOWE by copying the SSWE project directory structure into the SOWE.

6. Select the Repeat check box and then press Create Directory .

Selecting Repeat saves you from having to press Create Directory for each new project
directory.
When SNiFF+ has finished initializing your SOWE, the project is automatically opened in
it and displayed in the Project Editor.

7. Close the Working Environments tool.

Project List. Projects listed in
italics are located in the SSWE
+ Tutorial 123

Chapter 5 First Build in the SOWE Building the executable
Building the executable

In the Project Editor

Before building, make sure that the projects’ Make Support information is up-to-date. Make-
files should be updated whenever structural changes are made to the projects, or when
projects are first opened in a new working environment.

1. Make sure that all the projects in the Project Tree are checkmarked. If they are not, right-
click anywhere in the Project Tree and choose Context menu > Select From All
Projects . This command allows you to checkmark all projects in one step.

2. Choose Target > Update Makefiles... to generate the Make Support Files for all the
projects.

A dialog appears asking you whether the dependencies information should also be
updated.

3. Press Yes.

SNiFF+ generates the Make Support Files and stores them in the .sniffdir
subdirectory of each project directory.

4. Highlight complex.shared by clicking on its name.

SNiFF+ needs to know where to start Make execution. You tell SNiFF+ this by selecting
the appropriate project. In the example project, Make execution starts in
complex.shared .

5. Choose Target > Make > all to recursively build the executable.

A Shell opens, in which the make all command is recursively executed. Upon
completion, you should have an executable named complex (on Windows:
complex.exe) in:

<sniff_complex>/sowe/complex

6. Run the executable to assure yourself that it executes properly. To find out how to do so,
see Running the executable — page 87.

You’ll notice that the output is incorrect. This is due to an implementation error; however
this error can be safely ignored. (How to fix this error is shown in the Edit/Compile/Debug
tutorial).

Note

SNiFF+ doesn’t have its own compiler therefore you must have a compiler
installed on your computer to compile SNiFF+ projects. By default, the
gnu compiler is specified on Unix and Microsoft Developer is specified on
Windows. If you are using another compiler, it must be specified in your
Platform Makefile. For more information, see User’s Guide — Build and
Make Support.
124 SNiFF+

C+

Building the executable
What’s next
� Close the project in the SOWE. To do so:

In the Launch Pad

1. Select complex.shared - SOWE:Complex SOWE .

2. Choose Project > Close Project complex.shared .

� The next tutorial introduces you to Developing in a team.
+ Tutorial 125

Chapter 5 First Build in the SOWE Building the executable
126 SNiFF+

Part VII
Developing in a team

C

1Working in the PWE

In this chapter, you will go through the basic tasks when working in a PWE in a team context:

� opening the shared project in the PWE for the first time and letting SNiFF+ initialize it for
you

� checking out a shared source file and making a minor modification to it

� checking the modified file back in

� creating a file, adding it to, and removing it from a project

This tutorial does not cover the day to day development work or the various browsing tools.
For an introduction to the tools used in daily development work, see Edit/Compile/Debug —
page 77. For an introduction to the tools used for browsing, see Browsing — page 11.

Opening the shared project in the PWE
First, you need to tell SNiFF+ that you intend to work in the PWE. You do this in the Working
Environments tool.

� In the Launch Pad, choose Tools > Working Environments .

In the Working Environments Tool

1. To open a project in the PWE, double-click on the PWE entry in the Working Environ-
ments Tree. If you used the same names as we did, the full designation of the PWE is:

Username PWE:Complex PWE

2. In the Open Project dialog that appears, press the Update List button to display all the
projects that can be opened in the PWE.

3. In the dialog that appears, press Yes to confirm that shared workspace information should
also be used.

4. To open the root project and all its subprojects, double-click on complex.shared .

SNiFF+ informs you that it cannot access the directories of the shared project in the PWE
root directory (they haven’t been created yet). You will now have SNiFF+ copy the SSWE
project directory structure into the PWE.
++ Tutorial 129

Chapter 1 Working in the PWE Opening the shared project in the PWE
5. Select the Repeat check box and then press Create Directory .

Selecting Repeat saves you from having to press Create Directory for each new project
directory.
When SNiFF+ has finished initializing your PWE, the project is automatically opened in it
and displayed in the Project Editor.

6. Close the Working Environments tool.

In the Project Editor

Makefiles should be updated whenever structural changes are made to the projects, or when
projects are first opened in a new working environment.
Note that SNiFF+ needs to know where to start Make execution. You tell SNiFF+ this by
highlighting the appropriate project. In the example project, Make execution starts in
complex.shared . So:

1. In the Project Tree, highlight complex.shared by clicking on its name.

2. Choose Target > Update Makefiles .

A dialog appears asking you whether dependencies information should also be updated.

3. Press Yes.

4. To see all the files in the project structure, checkmark all projects by right-clicking any-
where in the Project Tree and choosing Context menu > Select From All Projects .

Notice that all the file names, except for Makefiles, are now italicized. This means that
you now have a read-only view to these files, which are physically still stored in the
SSWE.

5. To filter out SNiFF+’s Makefiles from the File List, press the Filters... button.

The Filters dialog opens.

On Windows

Warnings, stating that symbolic links are not supported and that a
copy is made instead, appear in the Log window. These can be safely
ignored.

On Windows

The read-only files are not italicized because they are local copies in
the PWE
130 SNiFF+

C+

Check out and check in
6. In the File Types tab, clear the Make checkbox.

7. Press Ok.

Generally, your Working Environments Administrator is responsible for setting up
SNiFF+’s Make Support. Therefore, you don’t need to see project Makefiles in your day-
to-day work. Also, SNiFF+’s Makefiles are generated and maintained by SNiFF+, so
there’s no reason to version control them.

Check out and check in
Remember that you checked in the project to the Repository from the SSWE, see Checking
In the project from the SSWE — page 115, so the view to the project files is read only. To
modify a file, you first need to check it out.

In the Project Editor

The file which you will modify is complex.C , which belongs to the
complexlib.shared project. To check out complex.C :

1. In the Project Tree, make sure that the complexlib.shared project is checkmarked,
so that you can see its files.

2. In the File List, highlight complex.C by clicking on it once.

3. Choose File > Check Out... .

HEAD is the latest
version of the file in
the Repository
+ Tutorial 131

Chapter 1 Working in the PWE Check out and check in
4. In the Check Out dialog, press Exclusive Lock .

In the File List, notice that complex.C is now displayed in bold typeface, which
indicates that it is writable.

5. Select the Lockers check box at the bottom of the Project Editor. This check box allows
you to see which users have locked which files.

If you scroll to the right of the File List, you will notice that the entry for complex.C now
looks similar to this:

6. Clear the Lockers check box.

7. To load the, now writable, complex.C file into the Source Editor, double-click on it in the
File List.

In the Source Editor

All we want to do here is to make a modification, so that a newer version of the file exists.

1. Enter a comment in the file.

Notice that the Source Editor now indicates that the file has been modified.

� On Unix, the icon in the upper-left corner of the Source Editor indicates that the file
has been modified.

� On Windows NT/95 , the write permissions of the loaded file and its status are indi-
cated in the title bar of the Source Editor.

2. Save complex.C by choosing File > Save .

3. Close the Source Editor.

Checking in the file

Once you are satisfied with the changes you have made to a file, you check it back in. The
rest of the team then has access to the modified file (after the shared working environments
have been updated - see next chapter).

� Note that “being satisfied with changes”, above, means that, at the very least, your code
is compilable. Do NOT check in untested, possibly uncompilable, code!

Since you only added a comment to the checked out file, it is safe to check it back in.

In the Project Editor

You can check in files either from the Project Editor or the Source Editor. Here, you will use
the Project Editor (the menu command is the same in both tools).

Owner of the exclusive lock

Checked-out file

Version control tool for the project
132 SNiFF+

C+

Adding a new file to a project
1. In the File List, make sure complex.C is highlighted. This is the file you checked out, as
you can see by the bold typeface.

2. Choose File > Check In... .

3. In the Check In dialog, enter a comment in the Comment field and press Ok.

You can leave the Version field blank, because SNiFF+ will automatically increment the
version number to 1.2. Also leave the Change Set field blank; this is usually only used for
multiple files.

4. To look at the history of complex.C , highlight the file in the File List and select the His-
tory check box at the bottom of the Project Editor.

Notice that the HEADversion of the file is now version 1.2 .
Take a look at the history of some of the other project files. Since you have not modified
those files since checking them in, their HEADversion is still 1.1 .

5. Clear the History check box.

Adding a new file to a project
In the course of your day-to-day development work you will often create new source files.
These files must be included in the project they logically belong to. SNiFF+ will do this for
you by modifying the Project Description File (PDF) accordingly. But first you have to check
out the PDF to make it writable.

In the Project Editor

You will add a new file to the complex.shared project. To first get an uncluttered view of
the project, and then check out its PDF:

1. In the Project tree, highlight the complex.shared project, right-click and choose Con-
text menu > Select from complex.shared only .

2. In the File List, highlight the complex.shared file (the PDF).

3. Choose File > Check Out... .

4. In the Check Out dialog, press Exclusive Lock .

5. In the dialog that appears to warn you about project structure changes (you are checking
out a PDF), press Yes.

In the File List, notice that complex.shared is now displayed in bold typeface, which
indicates that it is writable.

Note

Notice that the file name no longer appears in bold typeface because
it is now read-only.
+ Tutorial 133

Chapter 1 Working in the PWE Removing files from a project
Creating and adding the new file

Once you have checked out the PDF:

1. In the Project Tree, make sure that complex.shared is highlighted.

You highlight the project so that SNiFF+ knows which project you intend to modify.

2. Choose Project > Add New File to complex.shared...

3. In the New File dialog that appears, enter the name of the file you want to create, e.g.
Test.C.

4. Press Ok.

The new file is added to the File List, and the icon next to complex.shared in the
Project Tree changes to warn you that the project structure has changed.

5. Choose Project > Save complex.shared .

The icon in the Project Tree has changed again; it indicates that the project is writable (the
PDF is still checked out). The project information has now been saved, and will be used in
your PWE only. As soon as you want to make the file you added available to the rest of
the team, check in the PDF again (don’t check it in yet).

Removing files from a project
When you remove a file from a project, the file is not physically deleted; SNiFF+ simply edits
the PDF, which means it must be writable (checked out).

In the Project Editor

The complex.shared PDF should still be checked out (bold typeface).

1. In the Project Tree, make sure the complex.shared project is highlighted so that
SNiFF+ knows which project you intend to modify.

2. Choose Project > Add/Remove Files to/from complex.shared...

Note

SNiFF+ will only allow you to add file types that you have specified as
being part of the project. During project setup, see In the “Select file
types” page — page 107, you specified the C/C++ file types. To find
out how to add new file types to a project, please refer to the User’s
Guide.
134 SNiFF+

C+

Removing files from a project
In the Add/Remove Files dialog

1. Double-click on Test.C.

The file is removed from the project, but is still physically stored in the directory. Files in
the project directory can later be easily added to the project again using this dialog.

2. Press Ok.

In the Project Editor

The Test.C file no longer appears in the File List, and the icon in the Project Tree warns
you that the project has been modified.

1. To save the changes you made, choose Project > Save complex.shared .

The icon in the Project Tree and the bold typeface in the File List indicate that the PDF is
writable - you haven’t checked it in yet.

2. In the File List, make sure the complex.shared PDF is highlighted, and choose

File > Check In...

3. In the Check In dialog that appears, press Ok.

The latest version of the PDF is now in the Repository. After your next working
environments update (described in the following chapter), any changes to the project
structure will be visible to all team members.

� In the Launch Pad, close complex.shared - Username PWE:Complex PWE.
+ Tutorial 135

Chapter 1 Working in the PWE Removing files from a project
136 SNiFF+

Part VIII
Team Maintenance

C

1Updating Working Environments

When a developer checks out a file, the checked-out version is locked in the Repository, and
a local copy is made in the developer’s PWE. When a developer is satisfied with changes he/
she has made to a checked-out file (compilable!), he/she checks it back in. This means that
the new (checked-in) version replaces the older (checked-out) version in the Repository.
However, the SSWE still has the older version of the file, and the objects in the SOWE are
also based on this version.
Clearly, the working environments are no longer consistent with each other, and they need to
be updated so that all PWEs (i.e., their owners) can access the most current state of the
project.
Updates should be done on a regular (daily) basis, especially if you have a large develop-
ment team. The shared working environments (SSWE and SOWE) should only be updated
by the Working Environments Administrator. Although it is relatively natural for individual
developers to update their PWEs when they start work, this can also be done by the Working
Environments Administrator.
You update your working environments in the following order:

� First, update the SSWE - the latest information is taken from the Repository.

� Then, update the SOWE (which accesses the SSWE) and build the targets with the latest
file versions. The PWEs access the SOWE, so you can use the up-to-date object code in
the SOWE for builds in PWEs.

� Finally, update your PWE so that you have a view to the latest configuration.

Here, only the most basic update requirements are described. For information on more
advanced options and unattended updates, please refer to the User’s Guide.

Updating the SSWE
complex.shared is the root project of all the other projects. When you update a root
project in a particular working environment, SNiFF+ will automatically update all its
subprojects.
First, you need to tell SNiFF+ that you intend to work in the SSWE.

� In the Launch Pad, choose Tools > Working Environments .

In the Working Environments tool

1. To open a project in the SSWE, double-click on the SSWE entry in the Working Environ-
ments Tree. If you used the same names as we did, the full designation of the SSWE is:

SSWE:Complex SSWE

2. In the Open Project dialog that appears, press the Update List button to display all the
projects that can be opened in the SSWE.
++ Tutorial 139

Chapter 1 Updating Working Environments Updating the SOWE
3. To open the root project and all its subprojects, double-click on complex.shared .

4. In the dialog that appears, press Yes.

The project is opened in the SSWE and displayed in the Project Editor.

5. Close the Working Environments tool.

In the Project Editor

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select from All Projects .

2. Choose Project > Synchronize Checkmarked Projects... .

The Files Compared To dialog appears. All files in the SSWE will be updated to the
version that appears in the dialog’s Version field (HEADby default).

3. Press Ok.

A progress bar appears, and SNiFF+ updates all the files in the SSWE.

4. In the dialog that appears asking you to reload the project structure, press Yes.

In the Launch Pad

� Close complex.shared - SSWE:Complex SSWE .

Updating the SOWE
After you have updated the SOWE files, you should compile them. Subsequent builds in
PWEs are then quicker, because the compiler uses the up-to-date object code in the SOWE.
First, you need to tell SNiFF+ that you intend to work in the SOWE.

� Use the Working Environments tool to open complex.shared in your SOWE (how to
do so was described in Opening the shared project in the SOWE — page 121).

In the Project Editor

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select From All Projects .

2. Choose Project > Synchronize Checkmarked Projects... .

The Files Compared To dialog appears. All the files in the SOWE will be updated to the
version that appears in the dialog’s Version field (HEADby default).

3. Press Ok.

SNiFF+ now updates all the files in the SOWE.

4. In the dialog that appears asking you to reload the project structure, press Yes.

5. Choose Target > Update Makefiles... and press Yes in the dialog that appears.

Make Support Files are regenerated for all projects in the working environment.

6. In the Project Tree, highlight complex.shared .
140 SNiFF+

C+

Updating the PWE
7. Choose Target > Make > all to build the project’s targets.

A Shell tool opens. The project’s Make command is recursively executed in each of the
projects in the Project Editor’s Project Tree. Upon completion, you should have an
executable named complex (on Windows: complex.exe) in:

<sniff_complex>/sowe/complex

In the Launch Pad

� Close complex.shared - SOWE:Complex SOWE .

Updating the PWE
First, you need to tell SNiFF+ that you intend to work in the PWE.

� Use the Working Environments tool to open complex.shared in your PWE (how to do
so was described in Opening the shared project in the PWE — page 129).

In the Project Editor

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select from All Projects .

2. Choose Project > Synchronize Checkmarked Projects... .

3. In the dialog that appears, press Ok.

SNiFF+ now updates all the files in the PWE.

4. In the dialog that appears asking you to reload the project structure, press Yes.

5. Choose Target > Update Makefiles... and press Yes in the dialog that appears.

Make support files are regenerated for all projects in the working environment.

6. In the Project Tree, select complex.shared .

7. Choose Target > Make > symbolic_links to build the symbolic_links help target.

A Shell tool opens. Symbolic links are made in the PWE to all the objects and targets in
the SOWE. On Windows NT/95, local copies are made instead of symbolic links.
This completes the update of the PWE. When you next build targets in your PWE, the
results will reflect the latest status of the team project.

In the Launch Pad

� Close complex.shared - < Username> PWE:Complex PWE.
+ Tutorial 141

Chapter 1 Updating Working Environments Updating the PWE
142 SNiFF+

C

2Freezing the Project in the SSWE

Goals of this chapter
All your working environments are now up-to-date, your source files are compilable, and the
project’s executable functions properly. In this chapter, you will learn how to create a “virtual
snapshot” of the project (or, to be exact, of its source files). You do this in SNiFF+ by associ-
ating the current state (configuration) of all project source files with a single symbolic name.
The process of creating a single configuration and associating it with a symbolic name is
called “freezing a configuration”.
You can freeze configurations in the Configuration Manager. You can also use this tool to
view the lists of configurations of your projects and to compare configurations. To learn more
about the Configuration Manager, please refer to the User’s Guide and the Reference
Guide.

Freezing the project
To freeze the project:

1. Open the complex.shared project in the SSWE.

2. In any open SNiFF+ tool, choose Tools > Configuration Manager .
++ Tutorial 143

Chapter 2 Freezing the Project in the SSWE Freezing the project
In the Configuration Manager

1. Select the HEAD configuration in the Configuration List (see the following screen shot).

The project’s configuration information is loaded into the Configuration Manager.
Your Configuration Manager should look similar to the following:

2. Choose Configuration > Freeze Head... .

The Freeze Head dialog appears.

3. Enter a name for the new configuration in the Configuration field of the dialog (e.g.
complex_configuration) and press Ok.

The Configuration List is now updated to include the newly created configuration.

4. In the Project Editor, take a look at the history of any of the project files. A circle next to
one of the file’s versions in the Version Tree indicates that the version is part of a configu-
ration. The configuration name comes after the circle, followed by the version number.

5. Close the complex.shared project in the SSWE.
144 SNiFF+

C+

Concluding remarks
Concluding remarks
This concludes this tutorial on working with C/C++ team projects.
In this tutorial, you:

� set up working environments for a team project

� created the project in the Shared Source Working Environment

� set up the build system for the project in the Shared Source Working Environment

� checked in all project files to the Repository from the Shared Source Working Environ-
ment

� built the project’s executable in the Shared Object Working Environment

� worked with files (check out, check in, create, add, remove) in your Private Working Envi-
ronment

� updated the working environments of the project

� froze a stable version of the project in the Shared Source Working Environment

This concludes the C++ tutorial. For detailed explanations of any of the concepts in this
tutorial, please refer to the User’s Guide. To learn more about any of the SNiFF+ tools,
see the Reference Guide. To learn how you can use SNiFF+ for your C, Java, or Fortran
projects, please refer to the respective tutorials.
+ Tutorial 145

Chapter 2 Freezing the Project in the SSWE Concluding remarks
146 SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-1999 TakeFive Software GmbH.
All rights reserved.

sniff \'snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster's Unabridged Third New International Dictionary

	Guidelines
	About this Manual
	Conventions
	Tool elements
	Typography
	Feedback and useful links

	Road Map
	The SNiFF+ C++ Tutorial

	Browsing
	Opening the filebrowser project
	Browsing Symbols
	Opening the Symbol Browser
	Restricting information in Symbol List
	Symbol Type drop-down
	Displaying signatures of symbols
	Keyboard navigation in Lists
	Studying the symbol definition

	Understanding Class Hierarchies
	Opening the Hierarchy Browser
	Inheritance relationships of all classes
	Hiding the classes of a subproject
	Class hierarchy of an individual class

	Browsing class members
	Opening the Class Browser
	Elements of a class
	Interface of a class
	Tracking implementations of methods
	Going to the method implementation

	Component and Interface browsing
	Opening the Cross Referencer
	Component Browsing (Has-a relationship)
	Interface Browsing

	The SNiFF+ Editor
	Going to a variable’s definition
	Symbols with the same name

	Textual search with the Retriever
	Opening the Retriever
	Finding out where a symbol is assigned a value
	Retrieving a string from all projects
	Where is a symbol allocated on the heap?

	Code Dependencies and Impact analysis
	Opening the Cross Referencer
	Code Dependencies
	Impact Analysis: Studying function calls

	Understanding Include Dependencies
	Opening the Include Browser
	Files included by a particular file
	Files that include a particular file

	Browsing Documentation
	Opening the Documentation Editor
	Viewing documentation of a class
	Review

	Version Controlling
	File history and locking information
	Checking whether RCS is in your path (Unix Only)
	Opening the Project Editor
	File’s history information
	Displaying locking information

	Configuration Management
	Opening the Configuration Manager
	Looking at configurations
	Comparing two configurations

	Differences between versions of files
	Opening the Diff/Merge Tool
	Differences between two file versions
	Review

	Browsing-Only Project Setup
	Setting up Browsing-Only Projects
	The Project Setup Wizard for browsing only

	Edit/Compile/Debug
	Single-User Project Setup
	Preparing the Environment
	Single-user Project Setup Wizard
	Viewing the results

	SNiFF+ Build Support
	Setting up the build system
	Building the executable
	Running the executable
	Opening and editing the file (Windows only)
	Testing the changes (Windows only)

	Debugging (Unix only)
	Setting Breakpoints
	Running the executable
	Single-stepping
	Displaying values
	Editing the file
	Testing the changes

	Global Editing with the Retriever
	Opening the Retriever
	Filtering
	Global Editing
	Undoing global changes

	Team Setup
	Key Concepts
	Shared projects
	Working environments

	Multi-User Project Setup
	Preparing the Environment
	Multi-user Project Setup Wizard
	Viewing the results

	Setting up the build system in the SSWE
	Setting up the build system

	Checking In the project from the SSWE
	Checking in the project
	Looking at the history of a file

	First Build in the SOWE
	Opening the shared project in the SOWE
	Building the executable

	Developing in a team
	Working in the PWE
	Opening the shared project in the PWE
	Check out and check in
	Adding a new file to a project
	Removing files from a project

	Team Maintenance
	Updating Working Environments
	Updating the SSWE
	Updating the SOWE
	Updating the PWE

	Freezing the Project in the SSWE
	Freezing the project
	Concluding remarks

