
ÿþýüûúùø÷ö

Version 3.2 for Unix and Windows

TakeFive Software GmbH
5020 Salzburg, Austria
E-mail: info@takefive.co.at

TakeFive Software, Inc.
Cupertino, CA
E-mail: info@takefive.com

Copyright
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary
information of TakeFive Software Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure.

Parts of SNiFF+:
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Swit-
zerland. Its development was considerably facilitated by the public domain application frame-
work ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

Table of Contents

C

Part I Guidelines

About this Manual 3

Conventions. 3
Tool elements . 4
Typography . 5
Feedback and useful links . 5

Road Map 7

The SNiFF+ C Tutorial. 7

Part II Browsing

Setting up a Browsing Project 11

The Project Setup Wizard for browsing only 12

The Project Editor 15

Opening the Project Editor . 15
The Project Tree - selective project information 16
Tool freezing . 17

Browsing Symbols 19

Opening the Symbol Browser . 19
Restricting information in Symbol List . 20
Displaying signatures of symbols . 21
Keyboard navigation in Lists . 21
Studying symbol definitions . 22

Cross References 25

Opening the Cross Referencer . 25
Component browsing – Has-A relationships 26
Finding and editing all the references to a symbol 27
Other features in the Cross Referencer. 28

The SNiFF+ Editor 31

Going to a symbol’s declaration . 31
Symbols with the same name . 32

Textual Search with the Retriever 35

Opening the Retriever . 35
Tutorial

Table of Contents
Finding out where a function is called. .37
Retrieving a string from all projects .37
Where is a structure member referenced? .37

Code Dependencies and Impact Analysis 39

Opening the Cross Referencer .39
Code dependencies .40
Impact analysis: studying function calls .42

Understanding Include Dependencies 45

Opening the Include Browser .45
Files included by a particular file. .46
Files that include a particular file .46
Conclusion .47

Part III Edit/Compile/Debug

Single-User Project Setup 51

Single-user Project Setup Wizard. .51

Make Attributes and Compilation 55

Setting up C Make Support attributes. .55
Building the executable. .57
Running the application .58

Editing and Compiling 61

Opening and editing a file .61
Compiling .62

Debugging (Unix only) 65

The Debugger command line .65
Setting Breakpoints. .66

Part IV Team Setup

Key Concepts 71

Shared projects. .71
Working environments .71

Multi-User Project Setup 75

Preparing the Environment .75
Multi-user Project Setup Wizard .76
SNiFF+

C

Table of Contents
Setting Up the Build System in the SSWE 81

Setting up C Make Support attributes . 81

Checking In the project from the SSWE 85

Checking in the project . 85
Looking at the history of a file . 87

First Build in the SOWE 89

Opening the shared project in the SOWE . 89
Building the executable . 92

Part V Developing in a Team

Working in the PWE 97

Opening the shared project in the PWE . 97
Check out and check in . 98
Adding a new file to a project . 100
Removing files from a project . 101

Part VI Team Maintenance

Updating Working Environments 105

Updating the SSWE. 105
Updating the SOWE . 106
Updating the PWE . 107

Freezing the Project in the SSWE 109

Freezing the project. 109

Part VII Version Controlling

File history and locking information 115

Looking at file history information . 115
Displaying locking information . 116

Configuration and File Differences 119

Looking at file differences with the Diff/Merge tool 120
Tutorial

Table of Contents
SNiFF+

Part I
Guidelines

1About this Manual

What this manual is
This manual is part of the SNiFF+ documentation set, which consists of:

� User’s Guide

� Reference Guide

� C++ Tutorial

� C Tutorial

� Java Tutorial

� Fortran Tutorial

� Quick Reference Guide

� Release Notes, Installation Guide and Application Papers

� Online documentation of the above in HTML, PostScript and PDF formats

Conventions

One basic term

� Symbol — any programming language construct such as a class, method, etc.

Two conventions: menu references

For clarity and to avoid undue verbosity, the phrase:
“Choose the MenuCommand from the MenuName” is presented as follows:

� Choose MenuName > MenuCommand .

A context menu that appears when you click the right mouse button is referred to as:
Context menu , and consequently:
“Choose a menu command from the context menu that appears when you click the right
mouse button” is presented as follows:

� Choose Context menu > MenuCommand
3

Chapter 1 About this Manual Tool elements
A note on Unix/Windows

The screenshots in this manual are all done on Windows NT. If you are working on Unix,
what you see on your screen may look slightly different.

When you start SNiFF+, the first tool that appears
is the Launch Pad. In this and other SNiFF+ tools,
the first item in the menu bar is for launching tools.

� On Windows, it is called Tools .

� On Unix , it is depicted by an Icon .

When we refer to this menu in order to launch
a tool from the Launch Pad, or any other open
SNiFF+ tool, we will use the notation:
Choose Tools > ToolName .

� On Unix a “check box” looks like a “button” (Motif Look), and a “drop-down” looks like a
“pop-up”.

Tool elements

Choose Target > Make > all

Select / clear check box

Field

Tree

List

Select from drop-down
Highlight project

Checkmark project
4 SNiFF+

Typography
Typography

Feedback and useful links
Your feedback is always very welcome. Please send feedback to one of our support e-mail
addresses.
Europe:

sniff-support@takefive.co.at

USA:

sniff-support@takefive.com

Useful links

SNiFF+ web pages:

� SNiFF+ Users Mailing List

http://www.takefive.com/support/sniff-list.html

� SNiFF+ Users Mailing List Archive

http://www.takefive.com/sniff-list

� Frequently Asked Questions

http://www.takefive.com/support/faq.html

� Customer Newsletter

http://www.takefive.com/news/customer_newsletter.html

Capitalized
Words

Names of tools, windows, dialogs and menus start with capital letters.
Examples: Symbol Browser, Tools menu, File dialog.

Italics Names of manuals and newly introduced terms are in italics.
Examples: User's Guide, the workspace concept.

Boldface and
Bold italics

Menu, field and button names and menu entries are printed in bold-
face. Placeholders for symbols, selections or other strings in menus
are in bold italics.
Example: From the menu, choose Show > Symbol(s) selection ...

Monospace Code examples and symbol, file and directory names, as well as user
entries are printed in monospace type.
Examples: .login , $PATH, class VObject . Type abc .

<Keys> Special keys are printed in monospace type with enclosing '< >'.
Examples: <CTRL>, <Return> , <Meta> .
5

Chapter 1 About this Manual Feedback and useful links
6 SNiFF+

C

2Road Map

Introduction
This manual introduces the SNiFF+ solution for C development and is centered around 6
tutorials, see The SNiFF+ C Tutorial — page 7.
Each of the tutorials focuses on different SNiFF+ tools, tasks and concepts. Although each
consecutive tutorial and chapter is in itself more or less modular, it is assumed that you are
familiar with what has gone before.
Throughout this manual, you will be using a C example code called Pico, a text editor devel-
oped at the University of Washington in Seattle.

What this manual is not

This manual is not an exhaustive guide to SNiFF+, nor will it teach you C.

The SNiFF+ C Tutorial
The SNiFF+C Tutorial Guide consists of the following parts:

� Browsing

� Edit/Compile/Debug

� Team Setup

� Developing in a Team

� Team Maintenance

� Version Controlling

Browsing

This tutorial is for you if

� you are a new SNiFF+ user

� you want to quickly learn how to use SNiFF+ for browsing C code

Note

Please note that a Log Window, displaying SNiFF+ error and control mes-
sages, may appear at several stages throughout this tutorial.
Tutorial 7

Chapter 2 Road Map The SNiFF+ C Tutorial
Edit/Compile/Debug

This tutorial is for you if

� you want to use SNiFF+ in single-user/single-platform C development

� you want to learn about building C executables

� you want an introduction to the tools used in the C edit/compile/debug cycle

Note that this tutorial introduces concepts and tools used in developing, irrespective of
whether you are working alone or as part of a team.

Team Setup

This tutorial is for you if

� you have done the previous tutorials or

� you are familiar with SNiFF+ and

� you need SNiFF+ in a multi-user and/or a multi-platform work situation

� you need SNiFF+ and RCS (included in the SNiFF+ package) for configuration manage-
ment and version controlling (CMVC)

� you are responsible for setting up projects and working environments in a multi-user/
multi-platform work situation (Working Environments Administrator).

Developing in a Team

� you have done the previous tutorials or

� you are familiar with SNiFF+ and

� you work in a team and use RCS for version controlling and configuration management.
Note that the Edit/Compile/Debug cycle is described in the Edit/Compile/Debug tutorial

Team Project Maintenance

This tutorial is for you if

� you are responsible for maintaining projects and working environments in a multi-user/
multi-platform work situation (Working Environments Administrator).

Version Controlling

This tutorial is for you if

� you have done the previous tutorials and

� you need SNiFF+ and RCS (included in the SNiFF+ package) for configuration manage-
ment and version controlling (CMVC)
8 SNiFF+

Part II
Browsing

C

1Setting up a Browsing Project

In this chapter, you will:

� set up a project for browsing only

You can follow this process, analogously, for any software projects you may want to browse
with SNiFF+.

We assume you have successfully installed SNiFF+, and know how to start it. If not, please
refer to the Installation Guide.

Copying the example

Copy the directory <your_sniff_installation_dir>/example/c/pico_dir ,
including subdirectories, to a directory for which you have write permissions.
We will refer to the full path of this directory as <PICO_DIR> in the rest of this tutorial.

� Start SNiFF+.

The Launch Pad appears.
Tutorial 11

Chapter 1 Setting up a Browsing Project The Project Setup Wizard for browsing only
The Project Setup Wizard for browsing only
� To start the Project Setup Wizard, in the Launch Pad, choose Project > New Project >

with Wizard... .

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

� Select Browsing-only Setup , and press Next .

The “Select file types” page appears.

In the “Select file types” page

� Select C/C++ and press Next .

Note that, after project setup, you can add new standard file types (like the ones in the
“Additional File Types Column”), or create and add your own.

In the “Specify project location and name” page

1. Press the Browse button next to the Source code root directory field and navigate to
<PICO_DIR>/user/pico .

This is the root directory you need.

2. Double-click on the <PICO_DIR>/user/pico directory and press Select .

SNiFF+ sets the path and gives the project the default name pico .
By default, Create Subprojects is enabled in the Wizard. This means that SNiFF+ will
automatically create subprojects for all the subdirectories of <PICO_DIR>/user/
pico .

3. Press Next .
12 SNiFF+

C

The Project Setup Wizard for browsing only
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ C Project.

1. Make sure that your Project Setup Summary page is similar to the following. If it isn’t,
please go back to the beginning of the Wizard and start again.

If the information on the Project Setup Summary page conforms to the illustration:

1. Press Finish .

SNiFF+ will now create the pico project and all its subprojects.

2. In the dialog that appears asking if you want to generate cross reference information,
press No.

Cross Reference information will be automatically generated when we open the Cross Refer-
encer later on.
When SNiFF+ is finished, it opens the new project and displays its structure and contents in
a Project Editor, which should look like the one shown at the beginning of the following
chapter.
Tutorial 13

Chapter 1 Setting up a Browsing Project The Project Setup Wizard for browsing only
14 SNiFF+

C

2The Project Editor

This chapter is about

� tool handling features and shortcuts common to most SNiFF+ tools

� project and file filtering in the Project Editor

Opening the Project Editor
� The Project Editor is opened automatically when you create a new project.

Project Tree

Checkbox
Select to checkmark a
project and display its files
in the File List

Project to which the file belongs

File name

File List

Root project
Tutorial 15

Chapter 2 The Project Editor The Project Tree - selective project information
The Project Tree - selective project information
In the Project Editor, as in other SNiFF+ tools that have such a tree, the Project Tree shows
the hierarchical structure of all the subprojects that make up the project.

Checkmarking Projects

Files in the File List can be shown / hidden by clicking in the checkboxes (left of the project
names). In SNiFF+, a project that has a checkmark in its checkbox is called a checkmarked
project.

1. In the Project Tree, checkmark lib.proj and notice what happens in the File List.

All the files in the lib.proj project are now also shown in the File List.

2. Checkmark lib.proj again to deselect it.

The files in this project are no longer shown.

The right mouse button context menu

Checkmarking and deselecting individual checkboxes by mouse click can be useful when
you want to include or exclude individual projects from actions that you perform.
For more global manipulation in the Project Tree, the right mouse button Context menu is
usually more effective.
Right-click context menus in views within a tool are available throughout SNiFF+. These
context menus offer the most commonly used commands within a given context. When an
item within a view is highlighted (by a left click on its name), the context, and therefore also
its menu, often changes.

Selecting from all projects

1. Right-click anywhere in the Project Tree.

2. Choose Context menu > Select From All Projects .

All the projects in the Project Tree are now checkmarked, and so all the files of all the
projects are now displayed in the File List.

Selecting from only one project

1. Highlight pico.proj by left-clicking on its name (not its checkbox).

2. Right-click anywhere in the Project Tree.

3. Choose Context menu > Select From pico.proj Only .

Only the files of pico.proj are displayed; the files of all other projects are hidden.
16 SNiFF+

C

Tool freezing
Selecting from a tree of projects

Very often, when the project structure gets more complex and contains many subprojects,
you will want to view and manipulate a tree of projects like a single project. You can do so by
collapsing nodes of the Project Tree. A collapsed node is indicated by a “+” sign. A fully
expanded node is shown by a “-” sign.

1. Click on the node of lib.proj to collapse it.

2. Try alternately checkmarking and deselecting lib.proj .

When the project is checkmarked, all the files in lib.proj and its tree of subprojects
are listed. Conversely, when the project is not checkmarked, neither its own files, nor any
of those in its subprojects, are shown.

3. Click again on the node of lib.proj , this time to expand it.

Tool freezing
By default, every SNiFF+ tool is reusable. Whenever a tool is needed, SNiFF+ tries to use an
open tool of the type requested to avoid cluttering the screen.
You can, however, freeze any SNiFF+ tool by selecting the Frozen check box in the tool’s
status line. SNiFF+ cannot then reuse the tool to comply with a new request, and has to open
a new tool. This can be useful when you want to compare results. To see this:

1. Select the Frozen check box in the open Project Editor.

2. Choose Tools > Project Editor .

A new Project Editor is opened, leaving your frozen one untouched. Checkmark different
projects in the new Project Editor and compare the File Lists.

3. Close the new Project Editor and clear the Frozen check box in the open Project Editor.
Tutorial 17

Chapter 2 The Project Editor Tool freezing
18 SNiFF+

C

3Browsing Symbols

The Symbol Browser displays all the symbols used in the source files of a project. Symbols
can be filtered according to symbol type and other criteria. In SNiFF+, a symbol is any C
language construct such as a function, struct, variable, etc.
In this chapter you will:

� find out which symbols are defined in the project

� look at which file or project a symbol belongs to

� navigate to a particular symbol

� go to the definition of a symbol

Opening the Symbol Browser
To open the Symbol Browser:

� In the Project Editor, choose Tools > Symbol Browser .
Tutorial 19

Chapter 3 Browsing Symbols Restricting information in Symbol List
A Symbol Browser is opened listing all the symbols in the Pico project. Note that the content
of the Symbol List in the Symbol Browser is determined by the Filters dialog, the Project
Tree and a regular expression matching the names of the symbols.

� Close the Project Editor.

Restricting information in Symbol List
To look at only those symbols defined in a given project, e.g. lib.proj:

1. In the Project Tree, highlight lib.proj by clicking on its name.

2. Right-click anywhere in the Project Tree, and choose Context menu > Select from
lib.proj Only.

3. Press the Filters... button.

4. In the Filters... dialog that appears, select the SymbolTypes tab.

As you can see, all the listed symbols are selected, which means all symbols in all
checkmarked projects are displayed in the Symbol List.
You will now filter the Symbol List to display only the structs in lib.proj .

5. Press the None button and then select the struct check box.

Symbol List:
The symbols that are shown depend on the settings in the
Filter dialog, Filter field and Project Tree

Select this check box to display the signature of the
symbols

Filters... button

Symbol Type drop-down
Language drop-down

Project Tree
20 SNiFF+

C

Displaying signatures of symbols
6. Press the Ok button to apply the changes and close the Filter dialog.

The Symbol List in the Symbol Browser now only displays structs in lib.proj .

To look at which structs are defined in lib.proj and its subprojects:

1. Click on the ‘-’ sign to the left of lib.proj to collapse the node.

You can now view and manipulate lib.proj and its subprojects as a single project.

2. Click on the ‘+’ sign to the left of lib.proj to expand the node.

Displaying signatures of symbols
Currently you see only the names of the various types. By selecting the Signature check box
in the status line of the Symbol Browser, you can display the complete signature of the listed
symbols.

� Select the Signature check box, and then drag the side of the window outward until you
can see the whole text line in the Symbol List.

The Symbol List now shows the following information:
symbolType symbolName Filename Projectname

� Filename.[c,h] is the name of the file where the symbol is declared

� Projectname.proj is the name of the project containing this file

As an example, notice that struct bmaster is declared in file browse.c and is contained
in project lib.proj .

Keyboard navigation in Lists
In each list of any SNiFF+ tool, you can quickly navigate to entries by clicking into the list,
then typing the name of the entry you wish to find. Each consecutive keystroke immediately
causes the list to position to the next matched entry.
To find the function pico in the Symbol List:

1. In the Project Tree, choose Context menu > Select From All Projects .

2. Clear the Signature check box.

3. Press the Filters... button.

In the Filters dialog

1. In the SymbolTypes tab, clear the struct check box and then select the function check
box.

2. In the Modifier tab, make sure all modifiers are selected.

3. Press Ok to apply the settings and close the dialog.
Tutorial 21

Chapter 3 Browsing Symbols Studying symbol definitions
In the Symbol Browser

1. Click into the Symbol List.

2. Press the <p> key.

As you can see, the function packbuf is highlighted because it is matched by the ‘p’
you entered.

3. Press the <i> key.

The function pico is now highlighted, since it is the first symbol matched by “pi” .

Notes on keyboard navigation

� You can restart searches by pressing <ESC>.

� If the pressed key does not match any entry, you will be warned by a beep.

� The cursor keys can also be used for navigating in a list.

� Pressing <Return> on a highlighted entry in a list has the same effect as double click-
ing on that entry, i.e., the highlighted symbol definition will be loaded into a Source Editor.

Studying symbol definitions
Each symbol in the Symbol List is defined somewhere in your source code. The quickest
way to get to a symbol definition is to double-click on the symbol name in the Symbol List.
To study the struct pico_struct in the Source Editor:

1. Press the Filters... button.

2. In the SymbolTypes tab, select only the struct check box and press Ok.
22 SNiFF+

C

Studying symbol definitions
3. In the Symbol List, navigate to pico_struct and double-click on it.

A Source Editor opens, the source file pico.h is loaded and the struct pico_struct
is highlighted.

4. Close the Source Editor.

The Source Editor is discussed in more detail in The SNiFF+ Editor — page 31.
Tutorial 23

Chapter 3 Browsing Symbols Studying symbol definitions
24 SNiFF+

C

4Cross References

The Cross Referencer provides symbol cross reference information across files and projects.
All different kinds of cross references are displayed. In addition, it provides a component
view (has-a hierarchy) of structs.
In this chapter you will learn more about

� symbol types used as components of a given symbol

� all the symbols that refer to a given symbol (“Referred-By”)

Opening the Cross Referencer
� In the Symbol Browser, highlight pico_struct .

Choose Info > pico_struct Refers-To Components .

Symbol
List

Depth
Field

Code
view
Tutorial 25

Chapter 4 Cross References Component browsing – Has-A relationships
Component browsing – Has-A relationships
You opened the Cross Referencer by choosing Info > pico_struct Refers-To Compo-
nents . The Cross Referencer therefore opens to display all the components of
pico_struct .
Look at the following node in your Reference view:

st pico_struc t > H st headerentry

This means that:
the struct pico_struct Has struct headerentry

The component types that are displayed in this view are primitive C data dates (pc), type-
defs (td) and structs (st). If a component type is referenced more than once, the number of
references is indicated in brackets, e.g., [5] .
Now you know what components are used by pico_struct . As you just found out, one of
these is the struct headerentry . You might also like to know if it is referred to by other
symbols in the project.

1. In the Reference view, highlight the node:

H st headerentry

2. Right-click and choose Context menu > headerentry Referred-By as Component .

You now see all the symbols that refer to headerentry .
Notice that headerentry and pico_struct appear in the two nodes pointing to
headerentry , and that both nodes are displayed in italics. This is because nodes that
already exist somewhere else in the Reference view are displayed in italics.

In the Cross Referencer

If you are concentrating on a particular symbol, in our case headerentry , you might want
to hide distracting information:

1. Make sure headerentry is highlighted in the Reference view.
26 SNiFF+

C

Finding and editing all the references to a symbol
2. Right-click in this view and choose

Context menu > Show Restricted Tree of headerentry .

Finding and editing all the references to a symbol
Situation: You need to make changes in a particular function. Before you start editing, you
should know about all the references to the function.
We will start again from the Symbol Browser and select a function to work with.

1. To open the Symbol Browser from any tool, choose Tools > Symbol Browser .

2. Press the Filters... button.

3. In the SymbolTypes tab, select only the function check box and press Ok.

4. In the Symbol List, navigate to and then highlight update .

5. Choose Info > update Referred-By .

In the Cross Referencer, you now see where update is referred to by other symbols in
project. You also see the number of references in each case.
Notice that the arrowhead now points at the class update . This tells you the reference
direction.

6. Close the Symbol Browser.
Tutorial 27

Chapter 4 Cross References Other features in the Cross Referencer
Other features in the Cross Referencer

The Root Symbol Field

First, we will re-create the view you started the chapter with:

1. In the Root Symbol field, type pico_struct and hit <Return> .

2. Choose Info > pico_struct Refers-To Components

The Reference view is now the same as the one at the beginning of this chapter.

The Depth Field

Now, we will follow the references starting from struct pico_struct to the next deeper
level:

1. In the Depth Field enter <2>

2. Choose Info > pico_struct Refers-To Components .

A refers-to call graph is displayed starting at pico_struct and extending to two levels.
28 SNiFF+

C

Other features in the Cross Referencer
The Xref Filter dialog
Sometimes you may just be interested in looking at a subset of all the references to or from a
particular symbol. You can use the Xref Filter dialog to do so.
Let’s use the Xref Filter dialog to show only structs and typedefs referred to by
pico_struct to a depth of 2.

1. Press the Filters... button.

The Xref Filter dialog appears.

2. Under Types , press the None button and then choose typedef (td) and struct
(st) .

Now only these two symbol types are selected for the next cross reference query.

3. Press the Refers-To button.

The Reference view now only shows the typedefs and structs found in the query.
Note that the filtering criteria in the Xref Filter dialog now apply to all future queries. To
change the parameters of any new queries, you must change the settings in the Xref Filter
dialog.

4. Let’s look more closely at one of the references in the Reference view. Highlight the node:

H td PATMT (cl pico_atmt)

5. Choose Context menu > Show Reference .

A Source Editor is opened and is positioned at the reference to typedef PATMT.

6. Close the Cross Referencer and the Xref Filter dialog. We will continue working with the
Source Editor in the next chapter.

Types group
Tutorial 29

Chapter 4 Cross References Other features in the Cross Referencer
30 SNiFF+

C

5The SNiFF+ Editor

The integrated Source Editor is mouse- and menu-driven. It understands C syntax, provides
browsing support and automatically highlights structurally important information, such as
struct names, function names and comments. When a source file is modified and saved, its
symbol information is immediately updated.
In this chapter you will:

� use the Source Editor to jump to a symbol’s declaration

� find out if there are more symbols with the same name as the selected symbol

Continuing from the last chapter, the Source Editor is positioned at the definition of
attachments , which is a pointer to the typedef PATMT.

Going to a symbol’s declaration
Let’s now find out more about the typedef PATMT, which is the symbol type that attach-
ments points to. To do so:

Text
view

Symbol
List
Tutorial 31

Chapter 5 The SNiFF+ Editor Symbols with the same name
1. Double-click on the symbol PATMTin the Source Editor’s Text view.

PATMT is now highlighted.

2. Choose Show > Symbol(s) PATMT...

SNiFF+ positions the Source Editor to the declaration of PATMT.
As you can see by scrolling up a little bit, PATMTis indeed a typedef, representing the
struct pico_atmt .

Symbols with the same name
1. In the definition of struct pico_atmt , notice that one of its fields is the unsigned short

flags . Let’s look to see if this symbol name is unique in the project.

2. In the Text view, double-click on flags .

flags is highlighted.

3. Choose Show > Symbol(s) flags... .

SNiFF+ opens the Choose Symbol dialog. The Choose Symbol dialog opens when
there is more than one symbol in the project called flags . As you can see, 6 different
symbols in the project have the name flags .
If there was only one symbol called flags , the Source Editor would now be positioned at
its declaration.

You may now want to see in which files the symbols are declared.

� Select the Show listing of files checkbox.

File and project information are now added to the entries.
You may want to limit the list to show only entries in the current file in the Source Editor
(pico.h).

1. Enable the Scan only included files button.

Now only two entries are shown.
32 SNiFF+

C

Symbols with the same name
2. Double-click on the second entry in the dialog.

The Source Editor appears and highlights the declaration of int flags in the struct
mouse_struct .

Review
In this chapter, you started from the typedef PATMTand browsed its declaration. You then
learned that PATMTrepresented the struct pico_atmt and then looked at field flags of
the struct. By choosing the Show > Symbol(s) flags command, you determined that the
symbol name flags was not unique in the project. The last thing you did was to load
another declaration of flags in the Source Editor.
In the next chapter you’ll learn how to use the Retriever - a textual search tool - for browsing.
The string that you’ll be searching for is “MOUSEPRESS”.
Tutorial 33

Chapter 5 The SNiFF+ Editor Symbols with the same name
34 SNiFF+

C

6Textual Search with the Retriever

The Retriever is a fast source code retrieval tool with filtering. It can be used to obtain infor-
mation about where a certain string or symbol is used in the source code. It lists all occur-
rences of strings matching a regular expression in a set of projects. A semantic filter can then
be applied to the matches.
The Retriever also allows you to globally find and replace strings in code lines, and to edit
code in the integrated Source Editor. For details about these features, please refer to the
Reference Guide.
This chapter is about using the Retriever to:

� find every line in your Source files containing a given string

� find out where the string is assigned a value

� find out where a string is allocated on a heap

Opening the Retriever
To open the Retriever:

1. In the Text view of the Source Editor, double-click on MOUSEPRESS, which is the typedef
that represents struct mouse_struct .
Tutorial 35

Chapter 6 Textual Search with the Retriever Opening the Retriever
2. Choose Info > Retrieve MOUSEPRESS From All Projects .

The Retriever opens.

3. Close the Source Editor.

When the Retriever first appears after being asked to retrieve the string “MOUSEPRESS”
from all projects, notice that:

� In the File Matches List, you are informed that 6 matches were found in 5 files. Each
match is listed (in bold print) in its source line context.

� The Ignore Case check box is cleared - this means that the search is case-sensitive.

� The Whole Word check box is cleared - this means that the compound words with
MOUSEPRESSas a substring are also retrieved.

� All the projects in the Project Tree are selected. This is because you opened the Retriever
with the command: Info > Retrieve MOUSEPRESS From All Projects .

1. Select the Ignore Case check box.

2. Press the Retrieve button.

In the File Matches List, you are now informed that 15 matches were found in 7 files.

Search
String
field

Filter
button
36 SNiFF+

C

Finding out where a function is called
Finding out where a function is called
You may be interested in knowing where any functions among the list of matches are called.
You can do so using predefined regular expressions filters in the Find and Replace Filters
dialog.
As an example, let’s see where function mousepress is called. To do so:

1. In the Retriever, highlight the first match in the list of matches. It should be

831: mousepress (f,n)

2. Press the Filter... button.

The Find and Replace Filters dialog appears.

3. From the list of regular expression filters, select call and press Ok.

Now the list of matches only displays those matches in which function mousepress is
called. You should notice that there are 5 matches in 4 files.

Retrieving a string from all projects
The Retriever is a very powerful tool for formulating fuzzy queries.
Let’s try this out by getting information about menu handling. To do so:

1. Clear the Filter field.

2. In the Search field type menu, then press Retrieve .

As you can see, there are 518 matches in 24 files.

Let’s further restrict the search using the assignment filter:

1. Press the Filter... button.

The Find and Replace Filters dialog appears.

2. From the list of regular expression filters, select assignment and press Ok.

Notice that there are 26 matches in the project where a variable called menu or similar is
assigned a value.

Where is a structure member referenced?
Continuing with the substring “menu”, let’s look at all the references to structure members
that have this substring in their names. To do so:

1. Press the Filter button.

The Find and Replace Filters dialog appears.

Note

After the first retrieve, the source code is cached and all further queries are much
faster. You can switch off caching in your Preferences.
Tutorial 37

Chapter 6 Textual Search with the Retriever Where is a structure member referenced?
2. From the list of regular expression filters, select >MEMBER and press Ok.

Notice that there are 24 matches in the project with references to structure members that
have “menu” in their names.

Review
Although the Retriever can help you search for strings in your source code, it can only
provide limited cross reference information. In the next chapter you will be working with the
Cross Referencer to get more cross reference information about one of the matches of the
string “MOUSEPRESS”.
38 SNiFF+

C

7Code Dependencies and Impact Analysis

This chapter is about using the Cross Referencer to:

� look at code dependencies

� look at where symbols are called

Opening the Cross Referencer
1. In the Retriever, clear the Filter field and then enter MOUSEPRESS in the Search field.

2. Press Retrieve .

3. Highlight the second match in the list of matches. It should be

834: MOUSEPRESS mp

4. Choose Info > MOUSEPRESS Referred-By .

The Cross Referencer opens.

5. Close the Retriever.
Tutorial 39

Chapter 7 Code Dependencies and Impact Analysis Code dependencies
Code dependencies
As you can see in the Reference view, MOUSEPRESSis taken as the root symbol and
symbols that refer to it are displayed as its nodes. One of these symbols is the function
mousepress . Let’s take a closer look at the symbols that mousepress refers to.

1. In the Reference view, highlight node

f mousepress [2]

2. We want this node to be the root node of the next query, so right-click in the Reference
view and choose Context menu > Start from mousepress .

3. Right-click and choose Context menu > mousepress Refers-To .

The Reference view now shows all symbol types that function mousepress refers to.
Let’s filter the view to show only functions, structs and typedefs. To do so:

1. Press the Filters... button.

The Filter dialog appears.

2. Under Types , press the None button and then choose function (f) , typedef
(td) and struct (st) .

Now only these three symbol types are selected for the next cross reference query.
40 SNiFF+

C

Code dependencies
3. Press the Refers-To button.

The Reference view now only shows functions, typedefs and structs referred to by
mousepress to a depth of 2.
Tutorial 41

Chapter 7 Code Dependencies and Impact Analysis Impact analysis: studying function calls
Impact analysis: studying function calls
You may want to see where the function ToggleHeader is called:

1. Highlight f ToggleHeader [2] in the Reference view.

Note that the [2] that appears after the function name means that ToggleHeader is
called twice in function update .

2. Choose Context menu > ToggleHeader Referred By .

As you can see in the illustration below, the backward references of ToggleHeader
are added to the graph (you may have to resize the Reference view a bit). Remember that
you selected only functions, structs, and typedefs in the Xref Filter dialog, so only
matching symbols of these types are shown.

Note

Try and work with a Depth of 1 wherever possible. Setting a large value for the Depth
can lead to huge graphs. This is not very informative and can take a very long time.
42 SNiFF+

C

Impact analysis: studying function calls
Let’s now look directly at all references to ToggleHeader . To do so:

1. <SHIFT> click on f scrollforw .

The Code view is positioned to the first reference.

2. <SHIFT> double-click on f scrollforw .

A Source Editor appears, and the first reference is now displayed in it.

3. Position the Source Editor and the Cross Referencer on your screen so that you can see
both.

4. In the Source Editor, choose Show > Next Match .

The Source Editor is positioned at the next reference, and the node f scrollto is now
highlighted in the Cross Referencer.

5. To visit all locations, repeat the previous step until there are no more matches.
Tutorial 43

Chapter 7 Code Dependencies and Impact Analysis Impact analysis: studying function calls
44 SNiFF+

C

8Understanding Include Dependencies

The Include Browser graphically displays include references made in project source files. It
can be used to see which files are included by a particular file and vice-versa, as well as to
make sure that there are no redundant includes.
This chapter is about using the Include Browser to:

� find out which header files are included by a particular implementation file

� find out which implementation files include a particular header file

Opening the Include Browser
To open the Include Browser:

1. In the Cross Referencer, highlight the root symbol f mousepress .

2. Choose Show > Implementation of mousepress .

The Source Editor is positioned at the implementation of mousepress (in the file
basic.c).
Tutorial 45

Chapter 8 Understanding Include Dependencies Files included by a particular file
3. In the Source Editor, choose Info > basic.c Includes .

The Include Browser opens.

4. Close the Source Editor and the Cross Referencer.

Files included by a particular file
As you can see in the above illustration, basic.c includes seven header files. Let’s look at
the include statement of one of the header files. To do so:

1. Highlight pico.h in the newly created tree.

2. Choose Context menu > Show Include Statement .

The Source Editor opens and is positioned at the include statement in basic.c .

3. Close the Source Editor.

Files that include a particular file
Let’s see which files include the header file pico.h . To get this information:

1. In the Include Browser, make sure that pico.h is highlighted in Graph view.

File List: contains
the files shown in
the Graph view

Root file

Bold typeface means
the included file is in
one of the projects
checkmarked in the
Project Tree

Graph view
46 SNiFF+

C

Conclusion
2. Choose Context menu > Included-By .

In the illustration below, you can see all the files which include pico.h .

Let’s now look at which projects these files belong to. To do so:

� Choose View > Show Project Name .

Scroll to the right of the Graph view. You can now see the file names as well as the
projects to which they belong.

Lastly, let’s look at the header file pico.h :

1. Make sure that pico.h is highlighted in the Graph view.

2. Choose Show > pico.h .

The Source Editor opens.

3. Close all open SNiFF+ tools except for the Launch Pad.

Conclusion
This was the last of the SNiFF+ browsing tools to be introduced in this tutorial.
In this part of the C Tutorial you were introduced to:

� Opening the project

� Working with the following SNiFF+ tools:

� Symbol Browser
Tutorial 47

Chapter 8 Understanding Include Dependencies Conclusion
� Cross Referencer

� Source Editor

� Retriever

� Include Browser

In the tutorial we can only give you a few hints and tips to help you on your way. To get a
better understanding of the tools, we recommend experimenting. To really appreciate what
SNiFF+ can do for you, you really need to work with it.

Deleting the project

You will no longer be working with the browsing-only project that you set up in this part of the
C Tutorial, so you can delete it at this time. If, however, you would like to keep the project for
browsing at a later time, we suggest that you skip the following instructions.
To delete the project:

1. In the Launch Pad, delete the project by highlighting it and choosing Project > Delete
Project pico.proj .

A dialog appears, in which SNiFF+ asks you if it should delete SNiFF+ - related files and
directories.

2. Select the Repeat check box and press Delete .

With the Repeat check box selected, SNiFF+ will also delete SNiFF+ - related files and
directories in all subprojects of pico.proj .

What’s next
The only SNiFF+ tool that should now be open is the Launch Pad.

The next part of the C tutorial introduces you to

� Editing, compiling and debugging with SNiFF+
48 SNiFF+

Part III
Edit/Compile/Debug

C

1Single-User Project Setup

This chapter introduces you to setting up a single-user/single-platform project without version
controlling. Multi-user/multi-platform projects using RCS for configuration management and
version controlling (CMVC) are described in the next tutorial, “Working in Teams”.
This chapter is about

� using the Project Setup Wizard for setting up a SNiFF+ single-user/single-platform project
for C development.

If you aren’t continuing on from the Browsing tutorial

We assume you have successfully installed SNiFF+, and know how to start it. If not, please
refer to the Installation Guide.

1. In the Browsing tutorial, you copied the directory
<your_sniff_installation_dir>/example/c/pico_dir , including subdi-
rectories, to a place where you have write permissions. If you haven’t done so, please do
so now. You should have the following directory structure:

In the rest of this tutorial, we will use <PICO_DIR> to refer to the complete path to this
directory.

2. Start SNiFF+.

The Launch Pad appears.

Single-user Project Setup Wizard
� To start the Project Setup Wizard, in the Launch Pad, choose Project > New Project >

with Wizard... .

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

You will use this part of the directory
structure in this tutorial
Tutorial 51

Chapter 1 Single-User Project Setup Single-user Project Setup Wizard
� Accept the default selection, Standard Setup, and press Next .

The “Select development task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the title bar of the Wizard.

In the “Select development task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

This tutorial is for single-user/single platform development without CMVC, so:

� accept the defaults (No/No/None) and press Next .

In the “Select file types” page

� Select C/C++ and press Next .

Note that, after project setup, you can add new standard file types (like the ones in the
“Additional File Types Column”), or create and add your own.

In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory.

1. Press Browse , and in the Directory dialog, navigate to <PICO_DIR>/user and dou-
ble-click on it and then press Select .

2. In the PWE name field, enter a name for the PWE, e.g., pico .

Notice that your username is entered next to the enabled Owner button. SNiFF+ needs your
username to correctly handle permissions. Being the owner of the PWE means that you are
the only one who is allowed to modify the working environment’s attributes.

3. Press Next .

In the “Create New SNiFF+ Project” page

SNiFF+ has set your Project root directory to <PICO_DIR>/user . Also by default,
Create Subprojects is enabled.

1. Press Browse...

2. In the dialog that appears, select pico , press Open and then Select .

pico is entered in the Project name field. We suggest that you accept the default project
name.

3. Select the Use SNiFF+’s Makefiles checkbox.

4. Press Next .
52 SNiFF+

C

Single-user Project Setup Wizard
In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ C project and required
Working Environments.

� Make sure that your Project Setup Summary page is similar the following. If it isn’t, please
go back to the beginning of the Wizard and start again.

� Press Finish .

SNiFF+ will now create the new pico project and all its subprojects.

� In the dialog that appears asking if you want to generate cross reference information,
press No.

When SNiFF+ is finished, it opens the new project and displays its structure and contents
in the Project Editor.

Note

If you did not delete the browsing-only project in the last part of the C Tutorial (Delet-
ing the project — page 48), the Project Description Files of the browsing-only project
and its subprojects will appear in the File List of the Project Editor (with extension
.proj). You can safely ignore these files.
Tutorial 53

Chapter 1 Single-User Project Setup Single-user Project Setup Wizard
54 SNiFF+

C

2Make Attributes and Compilation

This chapter is about

� setting C Make attributes for a single-user project

� building and running the executable

Setting up C Make Support attributes
1. In the Project Tree of the Project Editor, checkmark pico.shared , lib.shared ,

MSWIN.shared on Windows and UNIX.shared on Unix.

2. Choose Project > Attributes of Checkmarked Projects... .

The Attributes of Checkmarked Projects dialog appears. You can use this dialog to set/
modify the attributes of multiple projects at the same time.

In the Attributes of Checkmarked Projects dialog

Setting up Make Support for pico.shared

1. Under the Build Options node, select Project Targets .

2. Make sure that pico is highlighted in the Project List.

3. In the Executable field of the Ansi C/C++ tab, enter pico on Unix and pico.exe on
Windows. This will be the name of the project’s executable.

4. Under the Build Options node, select Directives .

5. Select the checkbox to the right of the Generate button and press the Set For All button.

This attribute is now set for all projects.

6. Under the Build Options node, select Build Structure .

7. In Recursive Make Dirs field, enter lib .

In order to build the project’s executable, SNiFF+ must first build the target of the
lib.shared subproject (a library). SNiFF+ uses the project information in Recursive
Make Dirs field to determine the order in which to execute Make.

Setting up Make Support for lib.shared

1. Highlight lib in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Library field of the of the Ansi C/C++ tab, enter libpico.a . This will be the name
of the library built in this project.

4. Under the Build Options node, select Build Structure .
Tutorial 55

Chapter 2 Make Attributes and Compilation Setting up C Make Support attributes
5. From the Passed to Superproject drop-down, choose Library .

The project’s library is exported to pico.shared and is used to build the Pico
executable.

6. In Recursive Make Dirs field, enter UNIX/MSWIN on Unix/Windows.

The library is built using objects built in the platform-specific subdirectory of
lib.shared .

Setting up Make Support for MSWIN.shared (Windows only)

1. Highlight MSWIN in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Relinkable Object field of the Ansi C/C++ tab, enter osdep.o . This will be the
name of the relinkable object built in this project.

4. Press Ok to apply the changes to the project attributes.

5. A dialog appears asking you if you want to update Makefiles. You will be updating Make-
files later on, so press No.

Setting up Make Support for UNIX.shared (Unix only)

1. Highlight UNIX in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Relinkable Object field of the of the Ansi C/C++ tab, enter osdep.o . This will be
the name of the relinkable object built in this project.

4. Press Ok to apply the changes to the project attributes.

5. A dialog appears asking you if you want to update Makefiles. You will be updating Make-
files later on, so press No.

Saving changes

� In the Launch Pad, save the changes made to pico.shared and its subprojects:

� Select pico.shared in the Project List.

� Choose Project > Save Project pico.shared .

� In the Alert dialog that appears, press the Save all button.
56 SNiFF+

C

Building the executable
Building the executable

In the Project Editor

Before building, make sure that the projects’ Make Support information is up-to-date. Make-
files should be updated whenever structural changes are made to the projects, or when
projects are first opened.
Note that SNiFF+ needs to know where to start Make execution. You tell SNiFF+ this by
highlighting the appropriate project. In the example project, Make execution starts in
pico.shared , where you specified the project’s executable. So:

1. In the Project Tree, make sure pico.shared is highlighted.

2. Select from all projects by right-clicking anywhere in the Project Tree and choosing Con-
text menu > Select From All Projects .

3. Choose Target > Update Makefiles .

A dialog appears asking you whether the dependencies information should also be
updated.

4. Press Yes.

Note

SNiFF+ doesn’t have its own compiler therefore you must have a compiler installed
on your computer to compile SNiFF+ projects. By default, the gnu compiler is speci-
fied on Unix and Microsoft Developer is specified on Windows. If you are using anoth-
er compiler, it must be specified in your Platform Makefile. For more information, see
User’s Guide — Build and Make Support.
Tutorial 57

Chapter 2 Make Attributes and Compilation Running the application
5. Choose Target > Make > all .

A Shell Tool appears, and at the end of the build it should look similar to this:

If compiler errors are reported in the shell at this stage, something went wrong with the setup
of the project’s C Make attributes. We recommend that you go through the steps in this tuto-
rial again, carefully check them, compare screenshots, and try compiling again.

Running the application

In the Project Editor

1. Make sure that pico.shared is highlighted in the Project Tree.

2. Choose Target > Run pico .

The Program Arguments dialog appears:
58 SNiFF+

C

Running the application
3. Press Ok.

The application is started and appears on your screen:

4. Close the application by choosing <CTRL> X.

5. Close the Shell Tool.
Tutorial 59

Chapter 2 Make Attributes and Compilation Running the application
60 SNiFF+

C

3Editing and Compiling

This chapter is about

� using the Source Editor

� how to proceed when compiler errors are reported

Opening and editing a file
After using the Project Editor to open a file in the Source Editor, you will edit the file so as to
induce a compilation error.
After attempting to compile, the error will be reported in the Shell tool. From the error
message, you can go straight to the point in the source code where the error was found.

In the Project Editor

1. In the Project Tree, make sure that lib.shared is highlighted.

2. Right-click anywhere in the Project Tree and choose Context menu > Select From
lib.shared Only .
Tutorial 61

Chapter 3 Editing and Compiling Compiling
3. In the File List, double-click on display.c to open the file in the Source Editor.

Now, to edit the file so as to induce a compilation error:

1. In the Source Editor’s Symbol List, click on clearcursor (f) .

The Editor is positioned at the clearcursor function.

2. To comment out the line, choose Edit > Comment .

Note that you can comment out any number of lines by highlighting them and choosing
this menu item.

3. For the changes to take effect, choose File > Save .

Compiling
1. In the Source Editor, choose Target > Make > all .

A Shell Tool appears and SNiFF+ tries to compile the modified file.
The error is reported in the Shell Tool.
62 SNiFF+

C

Compiling
2. In the Shell tool, click on the reported error (highlighted in the illustration) and choose
Edit > Show Error .

The Source Editor is opened at the detected error, and the error line is highlighted. To
uncomment the line that induced the detected error:

1. Click into the line you commented out earlier and choose Edit > Uncomment .

2. For the changes to take effect, choose File > Save .

3. Choose Target > Make > all again to re-compile.

4. Close the Shell tool and the Source Editor.

Conclusion (Windows only)
This concludes the Edit/Compile/Debug tutorial. In this part of the C Tutorial you were intro-
duced to:

� Setting Make attributes for a C project

� Building a SNiFF+ project and all the subprojects that it depends on

� Using the Shell tool to jump to errors in source files

In the tutorial we can only give you a few hints and tips to help you on your way. To get a
better understanding of how to edit and compile projects in SNiFF+, we recommend experi-
menting. To really appreciate what SNiFF+ can do for you, you really need to work with it.

In the Launch Pad

1. Close all open SNiFF+ tools except for the Launch Pad.

2. In the Launch Pad, close the pico.shared project by highlighting it and choosing
Project > Close Project pico.shared .
Tutorial 63

Chapter 3 Editing and Compiling Compiling
What’s next

The only SNiFF+ tool that should now be open is the Launch Pad.

The next part of the C tutorial introduces you to

� Using SNiFF+ for multi-user team projects

Please skip the next chapter and continue with Key Concepts — page 71.
64 SNiFF+

C

4Debugging (Unix only)

In this introduction to the SniffGdb Debugger, you will learn how to:

� start the Debugger

� set breakpoints

The Debugger command line
After starting the Debugger, you will set two breakpoints and watch what happens to a vari-
able between the first and the second breakpoint.

� Make sure that the right debugger is selected in your Preferences > Platform view .

In the Project Editor

To start the Debugger:

1. In the Project Tree, make sure that pico.shared is highlighted. If it isn’t, click on its
name to highlight it.

On Windows

A Microsoft Developer Studio integration is available on Windows.
When you debug a project’s executable in SNiFF+, its symbolic de-
bugging information is automatically loaded into Microsoft Developer
Studio. To learn about the integration features, please refer to the
User’s Guide. For a description of the debug commands in Mi-
crosoft Developer Studio, please refer to the product documentation.
Tutorial 65

Chapter 4 Debugging (Unix only) Setting Breakpoints
2. Choose Target > Debug pico .

The Debugger opens.

In the Debugger Command Line Shell

� For a summary of debug commands, type help at the command line prompt (gdb) .

Note that many of these commands can also be posted from the Source Editor.

In the Project Editor

You will be setting a breakpoint in the source file, display.c . To open the file:

1. In the Project Tree, make sure that lib.shared is highlighted.

2. Right-click anywhere in the Project Tree and choose Context menu > Select From
lib.shared Only .

3. In the File List, double-click on display.c to open the file in the Source Editor.

The file is opened in the Source Editor and, because you are in debug mode, a row of
buttons for the most commonly needed debug commands has been added below the
menu bar.

Setting Breakpoints
Let’s set a breakpoint at the start of function clearcursor . To do so:
66 SNiFF+

C

Setting Breakpoints
To set this breakpoint:

1. In the Source Editor’s Symbol List, click on clearcursor (f) .

The Editor is positioned at theclearcursor function.

2. To set the breakpoint, press Break At .

A small stop sign at the beginning of the line indicates the breakpoint.

3. In the Debugger, select the Breakpoints tab. Notice that the breakpoint is listed in the
Breakpoints list.

4. Press the Show button.

The Source Editor is positioned to the source code line in which the breakpoint is set.

Closing the Debugger
1. To close the Debugger, choose Tools > Close Tool .

2. Close all open SNiFF+ tools except for the Launch Pad.

3. In the Launch Pad, close the pico.shared project by highlighting it and choosing
Project > Close Project pico.shared .
Tutorial 67

Chapter 4 Debugging (Unix only) Setting Breakpoints
Conclusion
This concludes the Edit/Compile/Debug tutorial. In this part of the C Tutorial you were intro-
duced to:

� Setting Make attributes for a C project

� Building a SNiFF+ project and all the subprojects that it depends on

� Using the Shell tool to jump to errors in source files

� Using the Gdb Debugger to debug executables

In the tutorial we can only give you a few hints and tips to help you on your way. To get a
better understanding of how to edit, compile and debug projects in SNiFF+, we recommend
experimenting. To really appreciate what SNiFF+ can do for you, you really need to work with
it.

What’s next
The only SNiFF+ tool that should now be open is the Launch Pad.

The next part of the C tutorial introduces you to

� Using SNiFF+ for multi-user team projects
68 SNiFF+

Part IV
Team Setup

C

1Key Concepts

This chapter introduces 2 key concepts:

� shared projects

� working environments

Although these concepts are not in themselves difficult, what follows in the hands-on tutorial
chapters may tend to get a little confusing if you don’t have a reasonable understanding of
what these things are and how they work.
For detailed information beyond this very brief introduction, please refer to the User’s Guide.

Shared projects
A shared project is, as the name suggests, suitable for team development. However it is
equally recommended for single-user work situations.
Shared projects offer a great deal of flexibility. Because all references to files and subprojects
are relative to a root directory, you can easily move a shared project to another location on a
file system.
Each team member can access a shared project and make changes to its files and/or struc-
ture, regardless of what other team members are doing.
This means that the integrity of the project system as a whole needs to be maintained in
some way, which is why shared projects are always used in conjunction with working envi-
ronments and a configuration management and version control (CMVC) tool.
It is strongly recommended that one person be appointed to administer this “maintenance
system”. In SNiFF+ this person is called the Working Environments Administrator. This tuto-
rial mainly covers the tasks performed by a Working Environments Administrator.

� From now on, shared projects are simply referred to as projects.

Working environments
SNiFF+ uses 4 different kinds of working environments:

� Repository Working Environment (RWE)

Note

This tutorial assumes that you will use RCS (included in the SNiFF+
package) for configuration management and version controlling. Most
other CMVC tools are also supported by SNiFF+. Please refer to the
Release Notes for details.
Tutorial 71

Chapter 1 Key Concepts Working environments
� Shared Source Working Environment (SSWE)

� Shared Object Working Environment (SOWE)

� Private Working Environment (PWE)

The RWE (Repository Working Environment)

Your team members access and modify a permanent shared data Repository using
commands provided by your underlying configuration management and version-control
(CMVC) tool.
SNiFF+ provides an interface to your CMVC tool. This interface needs to know the location
of your Repository.
You provide this information by defining a Repository Working Environment (RWE), which
specifies the root directory of your Repository.
In this tutorial, we will be using RCS, the CMVC tool provided with the SNiFF+ package.

The SSWE (Shared Source Working Environment)

SNiFF+ requires you to specify the root directory under which your team’s shared source
code is located. The files and directories under this root directory access your team’s Repos-
itory. At regular intervals, all these files and directories are updated to reflect the most current
state of your team’s software system.
When creating software systems from scratch, your team’s (Working Environments Adminis-
trator’s) first job is to populate this root directory with source code. For existing software
systems, your team will already have such a central location.
In either case, once you have such a root directory, you have to tell SNiFF+ where it is. You
do this by defining a Shared Source Working Environment (SSWE).
All team members see, or share, all the source files in the SSWE. When browsing the
source files, this view is read-only. When editing source files, team members work on local
copies of the shared source files they want to modify—they never directly modify the shared
source files in the SSWE. The view to all other source files remains read-only.

The SOWE (Shared Object Working Environment)

Just like with shared source code, SNiFF+ also requires you to specify a central location for
your team’s shared object files. In SNiFF+, you define one Shared Object Working Environ-
ment (SOWE), which specifies the root directory containing these files, for each target plat-
form.
SOWEs serve as shared repositories for your team’s most current and stable object code.
During an update of an SOWE, source files in the SSWE are compiled and the resulting
object code is stored in the SOWE.
An essential aspect of SOWEs is avoiding unnecessary builds in Private Working Environ-
ments (see below) that access them.
72 SNiFF+

C

Working environments
The PWE (Private Working Environment)

Developers must be able to work in isolation from other team members. They need their own
workspaces in which they can edit, compile and debug projects without interfering with the
work of other team members. Furthermore, they continually need to have access to their
software system’s most current source code and object code base.
SNiFF+ supports this by allowing each member of a team to work in an isolated workspace.
In SNiFF+, you define a Private Working Environment (PWE) to specify the root directory of
each team member’s workspace.
You can go through the entire edit/compile/debug cycle in your PWE. In your PWE, you have
a read-only view to the shared source files located in your team’s SSWE. When you need to
modify shared source files, you check out the necessary files from your team’s Repository.
When you’re satisfied that the changes you’ve made are error-free, you check the modified
files back into your team’s Repository. The next time your team’s SSWE is updated, these
changes are incorporated, and the shared source files in the SSWE once again reflect the
most current state of your software system.
Tutorial 73

Chapter 1 Key Concepts Working environments
74 SNiFF+

C

2Multi-User Project Setup

This chapter is about

� using the Project Setup Wizard for setting up a SNiFF+ multi-user / multi-platform project
for development.

The Project Setup Wizard guides you through the process of setting up a multi-user / multi-
platform project with version controlling.

Preparing the Environment
� In the Browsing tutorial, you copied the directory

<your_sniff_installation_dir>/example/c/pico_dir , including subdi-
rectories, to a place where you have write permissions. If you haven’t done so, please do
so now. You should have the following directory structure:

In the rest of this tutorial, we will use <PICO_DIR> to refer to the complete path to this
directory.

Working environment information

pwe — This directory holds your own workspace, i.e., your Private Working Environment .
rwe — This directory holds your team’s shared data repository, i.e., your Repository
Working Environment .
sowe — This directory holds your team’s shared object code, i.e., your Shared Object
Working Environment .
sswe — This directory holds the source code your team shares, i.e., your Shared Source
Working Environment .
working_envs_config — This directory will hold the working environment files gener-
ated and maintained by SNiFF+.
Tutorial 75

Chapter 2 Multi-User Project Setup Multi-user Project Setup Wizard
Setting your Preferences

To set the working_envs_config directory as your preferred maintenance directory:

� In the Launch Pad (or any other open SNiFF+ tool), choose Tools > Preferences... to
open the Preferences dialog.

In the Preferences dialog

1. Under the Tools node, select Working Environments .

2. In the Working Environments view, press Dir... next to the Working Environments Con-
fig. Directory field.

3. Navigate to the <PICO_DIR>/team/working_envs_config directory.

4. Double-click on the directory name and press Select .

5. Press Ok to apply the changes and close the Preferences dialog.

Multi-user Project Setup Wizard
� To start the Project Setup Wizard, in the Launch Pad, choose Project > New Project >

with Wizard... .

In the Project Setup Wizard

The Wizard starts by asking you to select how you intend to use the new SNiFF+ Project.

� Accept the default selection, Standard Setup , and press Next .

The “Select developmental task” page appears.
In the remaining steps, we will refer to the names of Wizard pages. You can find a page’s
name in the title bar of the Wizard.

In the “Select Developmental task” page

� Select Create a new SNiFF+ Project from scratch and press Next .

In the “Your development organization” page

This tutorial is for multi-user / multi platform development with configuration management
and version control (CMVC), so:

1. Select Yes for both Yes/No questions.

2. Choose RCS as the version control tool.

3. Press Next .

Note

This tutorial assumes that you will use RCS for version controlling. Most other CMVC
tools are also supported by SNiFF+. Please refer to the Release Notes for details.
76 SNiFF+

C

Multi-user Project Setup Wizard
In the “Select file types” page

� Select C/C++ and press Next .

SNiFF+ will automatically include all necessary file types needed for working with C/C++
source code in the new project. Note that, after project setup, you can add new standard
file types (like the ones in the “Additional File Types Column”), or create and add your
own.

In the “Specify Repository” page

You are asked to specify your Repository Working Environment (RWE). SNiFF+ uses the
RWE for version control administration. To specify the rwe directory:

1. Press Browse and, in the Directory dialog, navigate to:

<PICO_DIR>/team/rwe

Double-click on the rwe directory, and then press Select .

2. In the RWE name field, type a name for the RWE, e.g., Pico Repository .

3. Press Next .

In the “Specify team source code location” page

You are asked for your Shared Source Working Environment (SSWE).

1. Press Browse and, in the Directory dialog, navigate to:

<PICO_DIR>/team/sswe

Double-click on the sswe directory, and then press Select .

2. In the SSWE name field, type a name for the SSWE, e.g., Pico SSWE.

3. Press Next .

In the “Specify team object code location” page

You are asked to specify your Shared Object Working Environment (SOWE) root directory.

1. Press Browse and, in the Directory dialog, navigate to:

<PICO_DIR>/team/sowe

Double-click on the sowe directory, and then press Select .

2. In the SOWE name field, type a name for the SOWE, e.g., Pico SOWE.

3. Press Next .

In the “Specify Private Working Environment” page

You are asked to specify your Private Working Environment (PWE) root directory.

1. Press Browse and, in the Directory dialog, navigate to:

<PICO_DIR>/team/pwe

Double-click on the pwe directory, and then press Select .
Tutorial 77

Chapter 2 Multi-User Project Setup Multi-user Project Setup Wizard
2. In the PWE name field, type a name for the PWE, e.g., Pico PWE.

3. Notice that your user name is entered next to the enabled Owner button. SNiFF+ needs
your user name to correctly handle permissions.

Being the owner of the PWE means that you are the only one who is allowed to modify the
working environment’s attributes.

4. Press Next .

In the “Additional team members?” page

You are asked whether any additional PWEs are needed. Since you are working alone
through this Tutorial, you don’t need to specify additional PWEs.

� Accept the default value and press Next .

In the “Additional target platforms?” page

You are asked whether any additional SOWEs are needed. Since the code in this Tutorial will
only be compiled for one platform, you don’t need to specify additional SOWEs.

� Accept the default value and press Next .

In the “Create new SNiFF+ Project” page

You are asked to specify the root directory of the new project. SNiFF+ automatically enters
the root of your SSWE in the Project root directory field, since your team’s shared source
code is located in it. Our project root directory is pico , so:

1. Press Browse and, in the Directory dialog, navigate to:

<PICO_DIR>/team/sswe/pico

Double-click on the pico directory, and then press Select .
Notice that the new project’s name has changed to pico , which is the name we will use
throughout the tutorial. Also by default, Create Subprojects is enabled.

2. Select the Use SNiFF+’s Makefiles checkbox.

3. Press Next .

In the “Project Setup Summary” page

This page summarizes your specifications for the new SNiFF+ project and required working
environments.
78 SNiFF+

C

Multi-user Project Setup Wizard
1. Make sure that your Project Setup Summary page is similar to the following. If it isn’t,
please go back to the beginning of the Wizard and start again:

2. Press Finish .

SNiFF+ will now create the new pico project and all its subprojects.

3. In the dialog that appears asking if you want to generate cross reference information,
press No.

When SNiFF+ is finished, it opens the new project in the SSWE (where you set up the
project) and displays its structure and contents in the Project Editor.
Tutorial 79

Chapter 2 Multi-User Project Setup Multi-user Project Setup Wizard
Viewing the results

The Project Editor on your screen should look this:

File List

Project Tree

Check box
80 SNiFF+

C

3Setting Up the Build System in the SSWE

This chapter is about

� setting up the build system in the Shared Source Working Environment (SSWE).

Although you don’t build your targets in the SSWE, you set the Make attributes here. Then,
when you later open the project in the SOWE and PWEs, you can build targets without first
having to modify the project’s Make attributes.
Setting up the build system for a multi-user team project is identical to setting up the build
system for a single-user project. Therefore, if you have gone through the “Browsing” tutorial,
the steps in this chapter will be very familiar to you.
In both the single-user and multi-user cases, you set up the build system in the working envi-
ronment that contains your project’s source code. In a multi-user situation, team source code
is contained in the SSWE, which is why we are working in the SSWE in this chapter.

Setting up C Make Support attributes
1. In the Project Tree of the Project Editor, checkmark pico.shared , lib.shared ,

MSWIN.shared on Windows and UNIX.shared on Unix.

2. Choose Project > Attributes of Checkmarked Projects... .

The Attributes of Checkmarked Projects dialog appears. You can use this dialog to set/
modify the attributes of multiple projects at the same time.

In the Attributes of Checkmarked Projects dialog

Setting up Make Support for pico.shared

1. Under the Build Options node, select Project Targets .

2. Make sure that pico is highlighted in the Project List.

3. In the Executable field of the Ansi C/C++ tab, enter pico on Unix and pico.exe on
Windows. This will be the name of the project’s executable.

4. Under the Build Options node, select Directives .

5. Select the checkbox to the right of the Generate button and press Set for All .

This attribute is now set for all projects.

6. Under the Build Options node, select Build Structure .

7. In Recursive Make Dirs field, enter lib .

In order to build the project’s executable, SNiFF+ must first build the target of the
lib.shared subproject (a library). SNiFF+ uses the project information in Recursive
Make Dirs field to determine the order in which to execute Make.
Tutorial 81

Chapter 3 Setting Up the Build System in the SSWE Setting up C Make Support attributes
Setting up Make Support for lib.shared

1. Highlight lib in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Library field of the of the Ansi C/C++ tab, enter libpico.a . This will be the
name of the library built in this project.

4. Under the Build Options node, select Build Structure .

5. From the Passed to Superproject drop-down, choose Library .

The project’s library is exported to pico.shared and is used to build the Pico
executable.

6. In Recursive Make Dirs field, enter UNIX/MSWIN on Unix/Windows.

The library is built using objects built in the platform-specific subdirectory of
lib.shared .

Setting up Make Support for MSWIN.shared (Windows only)

1. Highlight MSWIN in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Relinkable Object field of the of the Ansi C/C++ tab, enter osdep.o . This will be
the name of the relinkable object built in this project.

4. Press Ok to apply the changes to the project attributes.

5. A dialog appears asking you if you want to update Makefiles. You will be updating Make-
files later on, so press No.

Setting up Make Support for UNIX.shared (Unix only)

1. Highlight UNIX in the Project List.

2. Under the Build Options node, select Project Targets .

3. In the Relinkable Object field of the of the Ansi C/C++ tab, enter osdep.o . This will be
the name of the relinkable object built in this project.

4. Press Ok to apply the changes to the project attributes.

5. A dialog appears asking you if you want to update Makefiles. You will be updating Make-
files later on, so press No.

Saving changes

� In the Launch Pad, save the changes made to pico.shared and its subprojects:

� Select pico.shared in the Project List.

� Choose Project > Save Project pico.shared .

� In the Alert dialog that appears, press the Save all button.
82 SNiFF+

C

Setting up C Make Support attributes
What’s next
You may think that the next step is to build the project’s executable in the SSWE. It isn’t. In
SNiFF+’s working environments concept, SSWEs contain only shared source code, and
SOWEs contain the objects and targets based on this code.
During project setup, you created a SNiFF+ project in the directory that contains your team’s
shared source code, i.e., in the SSWE. Once the project has been created, the only time you
open it in the SSWE is to update it. For any real development work, open the project in a
PWE.
So, the next step is to check in the project (its Project Description File) and its source files
into the Repository. When the process is over, all the files in the SSWE will be read-only.
Then, you can open the project in the SOWE and build the executable in it. This task is
covered in First Build in the SOWE — page 89.
Tutorial 83

Chapter 3 Setting Up the Build System in the SSWE Setting up C Make Support attributes
84 SNiFF+

C

4Checking In the project from the SSWE

This chapter is about

� checking in project files from the SSWE

Checking in project files for the first time is the first step in version-controlling your SNiFF+
projects. We recommend that you version control at least the following types of files:

� Project Description Files (PDFs), i.e., *.shared files in our case.

� source files

� Makefiles (only if you don’t use SNiFF+’s Make Support)

Once files have been checked in, you can see their history and version tree information.
In a real-world situation, it may not matter to you whether your team’s shared source code is
initially compilable. However, when creating new SNiFF+ team projects from scratch, we
recommend that you verify that your source files are compilable before checking them in for
the first time. Do not, however, perform builds in the SSWE. The SSWE should only contain
source files.

Checking in the project
To check the project in, complete the following steps:

In the Project Editor

1. In the Project Tree, checkmark all projects by right-clicking anywhere in the Project Tree,
and then choosing Context menu > Select From All Projects .

You now see all the files in all the projects.

2. Press the Filters... button.

The Filters dialog appears. You will now filter out SNiFF+’s Makefiles from the Project
Editor’s File List.

3. In the FileTypes tab, clear the Make check box and press Ok.

SNiFF+’s Makefiles are generated and maintained by SNiFF+, so there’s no reason to
version control them.

4. Choose File > Select All .
Tutorial 85

Chapter 4 Checking In the project from the SSWE Checking in the project
5. Choose File > Check In... .

SNiFF+ informs you that it cannot find the
directories of the shared project in the
RWE root directory (they haven’t been
created yet). You will now have SNiFF+
initialize your RWE by copying the SSWE
project directory structure into the RWE.
This dialog will reappear for each new
Repository directory, unless you select
the Repeat check box.

6. Select the Repeat check box and press Yes to create the necessary Repository directo-
ries for the project.

When SNiFF+ has finished initializing your RWE, the Multiple Check In dialog appears.

In the Multiple Check In dialog

You can use this dialog to check in versions of single or multiple files. When you have made
changes to multiple files, you can check in all the files at the same time and associate them
with a change set. By doing so, you can perform a variety of version-control operations on
all the files in a change set at the same time.
At this point, although we haven’t made any changes, we will make use of the Change Set
field to indicate that we are checking in the initial versions of all the files in the project.

1. Leave the Version field blank. SNiFF+ will automatically assign a version number (1.1)
and later increment it automatically.

2. In the Change Set field, enter a name for the change set, e.g.,
Initial_Pico_file_set .

3. In the Comment field, enter a descriptive text, e.g, Original Pico Files .

4. Press Ok.

In the Project Editor

When the check-in process is over, take a look at your Project Editor. You should notice the
following changes:

Descriptive text for the version
that you are checking in

Name of the change set
86 SNiFF+

C

Looking at the history of a file
� The files in the File List are no longer in bold typeface. This means they are now read-
only.

� The icons in the Project Tree have also changed to indicate that the projects, too, are
read-only.

Looking at the history of a file
You can check to see whether the files were checked in properly by looking at their history.
Let’s look at the history of a file.

In the Project Editor

1. In the File List, highlight the file ansi.c .

2. Select the History check box.

A new History window appears:

In the Version Tree view, the version tree of the selected file is displayed. Since only one
version of the project files has been checked in so far, the Version Tree only displays this
version (1.1).
INIT is used by SNiFF+ to refer to the initial version of a file in the Repository. The
version number of the INIT version of a file is always 1.1 . The latest version on the
main trunk or branch of a file’s version tree is called HEAD. In this example, the HEADand
INIT versions of the file are naturally the same.

Description view of the selected file.
The description is stored in the CMVC
tool

File History. History of the selected file
stored in the CMVC tool

Selected file

This icon refers to the change set

Version Tree. Contains the Version
Tree of the selected file
Tutorial 87

Chapter 4 Checking In the project from the SSWE Looking at the history of a file
3. In the Project Editor, clear the History check box.

What’s next
The next step is to open the project in your SOWE.
Although you can open projects in more than one working environment at a time, this tends
to get confusing. We therefore suggest that you first close the project in the SSWE.

In the Launch Pad

To close the project in the SSWE:

1. Highlight pico.shared - SSWE:Pico SSWE .

You can see the name of the project and the working environment in which you opened it
by increasing the size of the Launch Pad.

2. Choose Project > Close Project pico.shared .
88 SNiFF+

C

5First Build in the SOWE

This chapter is about

� Opening the shared project in the SOWE — When you first open the shared project in
the SOWE, SNiFF+ will automatically initialize the environment by copying the directory
structure found in the SSWE.

� Building and running the Pico executable — A successful build verifies that you have
set the project’s Make attributes correctly. After the initial build you will have the targets for
a stable running version of the project in your SOWE.

During the edit/compile/debug cycle, each developer should only build targets in his/her own
Private Working Environment (PWE). Builds in the SOWE should only take place during
regular updates of your team’s working environments (described in the “Team Maintenance”
tutorial). The initial build in the SOWE is in fact your first update of this working environment.

Opening the shared project in the SOWE
First, you need to tell SNiFF+ that you intend to work in the SOWE. You do this in the
Working Environments tool.

� In the Launch Pad, choose Tools > Working Environments .

In the Working Environments tool

Note

If the main view of the Working Environments tool is initially empty,
choose File > Reload .
Tutorial 89

Chapter 5 First Build in the SOWE Opening the shared project in the SOWE
1. To open a project in the SOWE, double-click on the SOWE entry in the Working Environ-
ments Tree. If you used the same names as we did, the full designation of the SOWE is:

SOWE:Pico SOWE

2. In the Open Project dialog that appears, press the Update List button to display all the
projects that can be opened in the SOWE.

A dialog appears asking you whether SNiFF+ should also look in any accessed working
environments for projects that can be opened in the SOWE. Here, the SOWE accesses
the SSWE, so pressing Yes will also display the projects in the SSWE.
90 SNiFF+

C

Opening the shared project in the SOWE
3. Press Yes.

The Open Project dialog on your screen should now look like this:

4. To open the root project and all its subprojects, double-click on pico.shared .

A dialog appears asking you to confirm that you want to open the project in a shared
working environment.

5. Press Yes.

SNiFF+ informs you that it cannot find the directories of the shared project in the SOWE
root directory (they haven’t been created yet). You will now have SNiFF+ initialize your
SOWE by copying the SSWE project directory structure into the SOWE.

6. Select the Repeat check box and then press Create Directory .

Selecting Repeat saves you from having to press Create Directory for each new project
directory.
When SNiFF+ has finished initializing your SOWE, the project is automatically opened in
it and displayed in the Project Editor.

7. Close the Working Environments tool.

Project List. Projects listed in
italics are located in the SSWE
Tutorial 91

Chapter 5 First Build in the SOWE Building the executable
Building the executable

In the Project Editor

Before building, make sure that the projects’ Make Support information is up-to-date. Make-
files should be updated whenever structural changes are made to the projects, or when
projects are first opened in a new working environment.

1. Make sure that all the projects in the Project Tree are checkmarked. If they are not, right-
click anywhere in the Project Tree and choose Context menu > Select from All
Projects . This command allows you to checkmark all projects in one step.

2. Choose Target > Update Makefiles to generate the Make Support Files for all the
projects.

A dialog appears asking you whether the dependencies information should also be
updated.

3. Press Yes.

SNiFF+ generates the Make Support Files and stores them in the .sniffdir
subdirectory of each project directory.

4. Highlight pico.shared by clicking on its name.

SNiFF+ needs to know where to start Make execution. You tell SNiFF+ this by selecting
the appropriate project. In the example project, Make execution starts in pico.shared .

5. Choose Target > Make > all to recursively build the executable.

A Shell opens, in which the make all command is recursively executed. Upon
completion, you should have an executable named pico on Unix and pico.exe on
Windows in:

<PICO_DIR>/team/sowe/pico

6. Run the executable to assure yourself that it executes properly.

What’s next
� Close the project in the SOWE.

In the Launch Pad

1. Select pico.shared - SOWE:Pico SOWE .

Note

SNiFF+ doesn’t have its own compiler therefore you must have a compiler installed
on your computer to compile SNiFF+ projects. By default, the gnu compiler is speci-
fied on Unix and Microsoft Developer is specified on Windows. If you are using anoth-
er compiler, it must be specified in your Platform Makefile. For more information, see
User’s Guide — Build and Make Support.
92 SNiFF+

C

Building the executable
2. Choose Project > Close Project pico.shared .

The next tutorial introduces you to

� Developing in a team
Tutorial 93

Chapter 5 First Build in the SOWE Building the executable
94 SNiFF+

Part V
Developing in a Team

C

1Working in the PWE

In this chapter, you will go through the basic tasks when working in a PWE in a team context:

� opening the shared project in the PWE for the first time and letting SNiFF+ initialize it for
you

� checking out a shared source file and making a minor modification to it

� checking the modified file back in

� creating a file, adding it to, and removing it from a project

This tutorial does not cover day-to-day development work or the various browsing tools. For
an introduction to the tools used in daily development work, please refer to Edit/Compile/
Debug — page 49. Browsing tools are introduced in Browsing — page 9.

Opening the shared project in the PWE
First, you need to tell SNiFF+ that you intend to work in the PWE. You do this in the Working
Environments tool.

� In the Launch Pad, choose Tools > Working Environments .

In the Working Environments Tool

1. To open a project in the PWE, double-click on the PWE entry in the Working Environ-
ments Tree. If you used the same names as we did, the full designation of the PWE is:

Username PWE:Pico PWE

2. In the Open Project dialog that appears, press the Update List button to display all the
projects that can be opened in the PWE.

3. In the dialog that appears, press Yes to confirm that shared workspace information should
also be used.

4. To open the root project and all its subprojects, double-click on pico.shared .

SNiFF+ informs you that it cannot find the directories of the shared project in the PWE
root directory (they haven’t been created yet). You will now have SNiFF+ copy the SSWE
project directory structure into the PWE.

5. Select the Repeat check box and then press Create Directory .

Selecting Repeat saves you from having to press Create Directory for each new project
directory.
When SNiFF+ has finished initializing your PWE, the project is automatically opened in it
and displayed in the Project Editor.

6. Close the Working Environments tool.
Tutorial 97

Chapter 1 Working in the PWE Check out and check in
In the Project Editor

Makefiles should be updated whenever structural changes are made to the projects, or when
projects are first opened in a new working environment.

1. Make sure that all the projects in the Project Tree are checkmarked. If they are not, right-
click anywhere in the Project Tree and choose Context menu > Select from All
Projects .

2. Choose Target > Update Makefiles... .

A dialog appears asking you whether dependencies information should also be updated.

3. Press Yes.

Generally, your Working Environments Administrator is responsible for setting up SNiFF+’s
Make Support. Therefore, you don’t need to see project Makefiles in your day-to-day work.
Also, SNiFF+’s Makefiles are generated and maintained by SNiFF+, so there’s no reason to
version control them.

1. Press the Filters... button.

The Filters dialog appears. You will now filter out SNiFF+’s Makefiles from the Project
Editor’s File List.

2. In the FileTypes tab, clear the Make check box and press Ok.

Check out and check in
Remember that you checked in the project to the Repository from the SSWE, so the view to
the project files is read only. To modify a file, you first need to check it out.
To review how to check in a project from the SSWE, please refer to Checking In the project
from the SSWE — page 85.

In the Project Editor

The file which you will modify is ansi.c , which belongs to the lib.shared project. To
check out ansi.c :

1. In the Project Tree, make sure that the lib.shared project is checkmarked, so that
you can see its files.

2. In the File List, highlight ansi.c by clicking on it once.

3. Choose File > Check Out... .

4. In the Check Out dialog, press Exclusive Lock .

In the File List, notice that ansi.c is now displayed in bold typeface, which means that
it is writable.

HEAD is the latest version of the file
in the Repository
98 SNiFF+

C

Check out and check in
5. Select the Lockers check box at the bottom of the Project Editor. This check box allows
you to see which users have locked which files.

The File List entry for ansi.c should now look like this:

6. To load the now writable ansi.c file into the Source Editor, double-click on it in the File
List.

In the Source Editor

All we want to do here is to make a modification, so that a newer version of the file exists.

1. Enter a comment in the first line of the file.

Notice that the Source Editor now indicates that the file has been modified.

� On Unix, the icon in the upper-left corner of the Source Editor indicates that the file
has been modified.

� On Windows NT/95 , the write permissions of the loaded file and its status are indi-
cated in the title bar of the Source Editor.

2. Save ansi.c by choosing File > Save .

3. Close the Source Editor.

Checking in the file

Once you are satisfied with the changes you have made to a file, you check it back in. The
rest of the team then has access to the modified file (after the shared working environments
have been updated - see next chapter).
Note that “being satisfied with changes”, above, means that, at the very least, your code is
compilable. You should NOT check in untested, possibly uncompilable, code!
Since you only added a comment to the checked out file, it is safe to check it back in.

In the Project Editor

You can check in files either from the Project Editor or the Source Editor. Here, you will use
the Project Editor (the menu command is the same in both tools).

1. In the File List, make sure ansi.c is highlighted. This is the file you checked out, as you
can see by the bold typeface.

2. Choose File > Check In... .

File version checked out to PWE
(1.1 is currently the HEAD version)

Owner of the exclusive lock

Version control tool for the project

Checked-out file
Tutorial 99

Chapter 1 Working in the PWE Adding a new file to a project
3. In the Check In dialog, enter a comment in the Comment field.

You can leave the Version field blank, because SNiFF+ will automatically increment the
version number to 1.2. Also leave the Change Set field blank; this is usually only used for
multiple files.

4. Press Ok.

In the File List, notice that ansi.c is now displayed in regular typeface, which means
that it is now read-only and located in your PWE.

5. To look at the history of ansi.c , highlight the file in the File List and select the History
check box at the bottom of the Project Editor.

Notice that the HEADversion of the file is now version 1.2 .
Take a look at the history of some of the other project files. Since you have not modified
those files since checking them in, their HEADversion is still 1.1 .

6. Clear both the History and Lockers check boxes.

Adding a new file to a project
In the course of your day-to-day development work you will often create new source files.
These files must be included in the project they logically belong to. SNiFF+ will do this for
you by modifying the Project Description File (PDF) accordingly. But first you have to check
out the PDF to make it writable.

In the Project Editor

You will add a new file to the pico.shared project. To first get an uncluttered view of the
project, and then check out its PDF:

1. In the Project tree, highlight the pico.shared project, right-click and choose Context
menu > Select From pico.shared Only .

2. In the File List, highlight the pico.shared file (the PDF).

3. Choose File > Check Out... .

4. In the Check Out dialog, press Exclusive Lock .

5. In the dialog that appears to warn you about project structure changes (you are checking
out a PDF), press Yes.

In the File List, notice that pico.shared is now displayed in bold typeface, which
means that it is writable.

Creating and adding the new file

Once you have checked out the PDF:

1. In the Project Tree, make sure that the pico.shared project is highlighted.

You highlight the project so that SNiFF+ knows which project you intend to modify.

2. Choose Project > Add New File to pico.shared...
100 SNiFF+

C

Removing files from a project
3. In the New File dialog that appears, enter the name of the file you want to create, e.g.
test.c.

4. Press Ok.

The new file is added to the File List, and the icon next to pico.shared in the Project
Tree changes to warn you that the project structure has changed.

5. Choose Project > Save pico.shared...

The icon in the Project Tree has changed again; it indicates that the project is writable (the
PDF is still checked out). The project information has now been saved, and will be used in
your PWE only. As soon as you want to make the file you added available to the rest of
the team, check in the PDF again (don’t check it in yet).

Removing files from a project
You may also have to remove source files from a SNiFF+ project in the course of your day-
to-day development work. When you remove a file from a project, the file is not physically
deleted; SNiFF+ simply edits the PDF, which means it must be writable (checked out). To
make the PDF available to the rest of the team, you have to check in the PDF again.
To show how the process of removing files works, let’s now remove test.c .

In the Project Editor

The pico.shared PDF should still be checked out (bold typeface).

1. In the Project Tree, make sure the pico.shared project is highlighted so that SNiFF+
knows which project you intend to modify.

2. Choose Project > Add/Remove Files to/from pico.shared...

In the Add/Remove Files dialog

� To remove test.c from the project, double-click it in the Files In Project list and press
Ok.

The file is removed from the project, but is still physically stored in the directory. Files in
the project directory can later be easily added to the project again using this dialog.

In the Project Editor

The test.c file no longer appears in the File List, and the icon in the Project Tree warns
you that the project has been modified.

Note

SNiFF+ will only allow you to add file types that you have specified as being part of
the project. During project setup, you specified the C/C++ file types. To find out how
to add new file types to a project, please refer to the User’s Guide.
Tutorial 101

Chapter 1 Working in the PWE Removing files from a project
1. To save the changes you made, choose Project > Save pico.shared .

The icon in the Project Tree and the bold typeface in the File List indicate that the PDF is
writable - you haven’t checked it in yet.

2. In the File List, make sure the pico.shared PDF is highlighted, and choose
File > Check In...

3. In the Check In dialog that appears, press Ok.

The latest version of the PDF is now in the Repository. After your next working
environments update (described in the following chapter), any changes to the project
structure will be visible to all team members.

� In the Launch Pad, close pico.shared - Username PWE:Pico PWE.
102 SNiFF+

Part VI
Team Maintenance

C

1Updating Working Environments

When a developer checks out a file, the checked-out version is locked in the Repository, and
a local copy is made in the developer’s PWE. When a developer is satisfied with changes he/
she has made to a checked-out file (compilable!), he/she checks it back in. This means that
the new (checked-in) version replaces the older (checked-out) version in the Repository.
However, the SSWE still has the older version of the file, and the objects in the SOWE are
also based on this version.
Clearly, the working environments are no longer consistent with each other, and they need to
be updated so that all PWEs (i.e., their owners) can access the most current state of the
project.
Updates should be done on a regular (daily) basis, especially if you have a large develop-
ment team. The shared working environments (SSWE and SOWE) should only be updated
by the Working Environments Administrator. Although it is relatively natural for individual
developers to update their PWEs when they start work, this can also be done by the Working
Environments Administrator.
You update your working environments in the following order:

� First, update the SSWE - the latest information is taken from the Repository.

� Then, update the SOWE (which accesses the SSWE) and build the targets with the latest
file versions. The PWEs access the SOWE, so you can use the up-to-date object code in
the SOWE for builds in PWEs.

� Finally, update your PWE so that you have a view to the latest configuration.

Here, only the most basic update requirements are described. For information on more
advanced options and unattended updates, please refer to the User’s Guide.

Updating the SSWE
pico.shared is the root project of all the other projects. When you update a root project
in a particular working environment, SNiFF+ will automatically update all its subprojects.
First, you need to tell SNiFF+ that you intend to work in the SSWE.

� In the Launch Pad, choose Tools > Working Environments .

In the Working Environments tool

1. To open a project in the SSWE, double-click on the SSWE entry in the Working Environ-
ments Tree. If you used the same names as we did, the full designation of the SSWE is:

SSWE:Pico SSWE

2. In the Open Project dialog that appears, press the Update List button to display all the
projects that can be opened in the SSWE.

3. To open the root project and all its subprojects, double-click on pico.shared .
Tutorial 105

Chapter 1 Updating Working Environments Updating the SOWE
4. In the dialog that appears, press Yes.

The project is opened in the SSWE and displayed in the Project Editor.

5. Close the Working Environments tool.

In the Project Editor

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select From All Projects .

2. Choose Project > Synchronize Checkmarked Projects... .

The Files Compared To dialog appears. All files in the SSWE will be updated to the
version that appears in the dialog’s Version field (HEADby default).

3. Press Ok.

A progress bar appears, and SNiFF+ updates all the files in the SSWE. A dialog then
appears asking you to reload the project structure.

4. Press Yes.

In the Launch Pad

� Close pico.shared - SSWE:Pico SSWE .

Updating the SOWE
After you have updated the SOWE files, you should compile them. Subsequent builds in
PWEs are then quicker, because the compiler uses the up-to-date object code in the SOWE.
First, you need to tell SNiFF+ that you intend to work in the SOWE.

� Use the Working Environments tool to open pico.shared in your SOWE (how to do so
was described under First Build in the SOWE — page 89).

In the Project Editor

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select From All Projects .

2. Choose Project > Synchronize Checkmarked Projects... .

The Files Compared To dialog appears. All the files in the SOWE will be updated to the
version that appears in the dialog’s Version field (HEADby default).

3. Press Ok.

SNiFF+ now updates all the files in the SOWE.

4. Choose Target > Update Makefiles... and press Yes in the dialog that appears.

Make Support Files are regenerated for all projects in the working environment.

5. In the Project Tree, highlight pico.shared .
106 SNiFF+

C

Updating the PWE
6. Choose Target > Make > all to build the project’s targets.

A Shell tool opens. The project’s Make command is recursively executed in each of the
projects in the Project Editor’s Project Tree. Upon completion, you should have an
executable named pico on Unix and pico.exe on Windows in:

<PICO_DIR>/team/sowe/pico

In the Launch Pad

� Close pico.shared - SOWE:Pico SOWE .

Updating the PWE
First, you need to tell SNiFF+ that you intend to work in the PWE.

� Use the Working Environments tool to open pico.shared in your PWE (how to do so
was described under Working in the PWE — page 97).

In the Project Editor

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select From All Projects .

2. Choose Project > Synchronize Checkmarked Projects... .

3. In the Files Compared To dialog that appears, press Ok.

SNiFF+ now updates all the files in the PWE.

4. Choose Target > Update Makefiles... and press Yes in the dialog that appears.

Make Support Files are regenerated for all projects in the working environment.

5. In the Project Tree, select pico.shared .

6. Choose Target > Make > symbolic_links to build the symbolic_links help target.

A Shell tool opens. Symbolic links are made in the PWE to all the objects and targets in
the SOWE. On Windows NT/95, local copies are made instead of symbolic links.
This completes the update of the PWE. When you next build targets in your PWE, the
results will reflect the latest status of the team project.

In the Launch Pad

� Close pico.shared - username PWE:Pico PWE.
Tutorial 107

Chapter 1 Updating Working Environments Updating the PWE
108 SNiFF+

C

2Freezing the Project in the SSWE

Goals of this chapter
All your working environments are now up-to-date, your source files are compilable, and the
project’s executable functions properly. In this chapter, you will learn how to create a “virtual
snapshot” of the project (or, to be exact, of its source files). You do this in SNiFF+ by associ-
ating the current state (configuration) of all project source files with a single symbolic name.
The process of creating a single configuration and associating it with a symbolic name is
called “freezing a configuration”.
You can freeze configurations in the Configuration Manager. You can also use this tool to
view the lists of configurations of your projects and to compare configurations. To learn more
about the Configuration Manager, please refer to the User’s Guide and the Reference
Guide.

Freezing the project
To freeze the project:

1. Open the pico.shared project in the SSWE.

2. In any open SNiFF+ tool, choose Tools > Configuration Manager .
Tutorial 109

Chapter 2 Freezing the Project in the SSWE Freezing the project
In the Configuration Manager

1. Select the HEAD configuration in the Configuration List (see the following screen shot).

The project’s configuration information is loaded into the Configuration Manager.
Your Configuration Manager should look similar to the following:

2. Choose Configuration > Freeze Head... .

The Freeze Head dialog appears.

3. Enter a name for the new configuration in the Configuration field of the dialog (e.g.
Pico_configuration) and press Ok.

The Configuration List is now updated to include the newly created configuration.

4. In the Project Editor, take a look at the history of any of the project files. A circle next to
one of the file’s versions in the Version Tree indicates that the version is part of a configu-
ration. The configuration name comes after the circle, followed by the version number.

5. Close all open tools except for the Launch Pad.

Concluding remarks
This concludes this tutorial on working with C multi-user projects.
In this tutorial, you:

� set up working environments for a team project

� created the project in the Shared Source Working Environment

Configuration
List

Project
Tree
110 SNiFF+

C

Freezing the project
� set up the build system for the project in the Shared Source Working Environment

� checked in all project files to the Repository from the Shared Source Working Environ-
ment

� built the project’s executable in the Shared Object Working Environment

� worked with files (check out/in, create, add, remove) in your Private Working Environment

� updated the working environments of the project

� froze a stable version of the project in the Shared Source Working Environment

What’s next
The next tutorial introduces you to version controlling in SNiFF+. In the tutorial, we will use
the following three SNiFF+ tools to look at the version control information of the multi-user
project you worked on in the “Team Maintenance” tutorial:

� Project Editor

� Configuration Manager

� Diff/Merge tool
Tutorial 111

Chapter 2 Freezing the Project in the SSWE Freezing the project
112 SNiFF+

Part VII
Version Controlling

C

1File history and locking information

This tutorial assumes that you have worked through the “Team Maintenance” tutorial.
During different parts of the “Team Maintenance” tutorial, you had the opportunity to work on
a multi-user SNiFF+ project in three different working environments:

� Shared Source Working Environment (SSWE)

� Shared Object Working Environment (SOWE)

� Private Working Environment (PWE)

In this tutorial, starting with this chapter, you will “reconstruct” the version-control actions you
performed on the multi-user project. You will first start by looking at the history and locking
information of the files in the project.
Throughout this tutorial, you will be working as a Working Environments Administrator. Then,
the most appropriate working environment for you to work in is the SSWE.

Looking at file history information
� In the Launch Pad, choose Tools > Project Editor .

In the Project Editor

Let’s look at the file history information of some of the files in the Project Editor. To do so:

1. Checkmark all projects by right-clicking anywhere in the Project Tree, and then choosing
Context menu > Select From All Projects .

2. In the File List, highlight ansi.c by clicking on it once.
Tutorial 115

Chapter 1 File history and locking information Displaying locking information
3. Select the History check box.

A new History window appears:

The history information of file ansi.c indicates that its latest version is 1.2. Later on, we will
use Diff/Merge tool to find the differences between the latest version and the initial version
(1.1) of the file.

1. Look at the history information of some of the other files in the File List. Notice that their
latest versions are all 1.1. Also notice that they are all part of the configuration
Pico_configuration , which you created at the end of the last tutorial when you froze the
project.

2. In the Project Editor, clear the History check box.

Displaying locking information
In the last tutorial, you locked the file ansi.c by checking it out in the PWE. After modifying
it and saving the file, you checked it in again, thus removing the lock. Now, none of the files
of the multi-user project should be locked. Let’s verify this by displaying the project’s locking
information.

1. In the Project Editor, select the Lockers check box.

The File List is expanded to show file locking information.

History indicates that latest version of ansi.c
is version 1.2. Remember that you added a
comment to this file and checked it in again

Change set created during the first-time
check-in of the project’s files

Selected file

New configuration created in the last tutorial
after all working environments were updated
116 SNiFF+

C

Displaying locking information
2. Scroll through the File List to look at the locking information of the files. You should notice
only the name of the version control tool (RCS).

Clearly, none of the files are locked, which is what we expected.
In a more complicated multi-user team development situation, many files may still be
locked after an update of team working environments. SNiFF+ correctly handles updates
even when files are locked and haven’t been checked in again. For details about how
SNiFF+ updates working environments, please refer to the User’s Guide.

3. Clear the Lockers check box.
Tutorial 117

Chapter 1 File history and locking information Displaying locking information
118 SNiFF+

C

2Configuration and File Differences

In the “Team Maintenance” tutorial, you used the Configuration Manager to create a new
configuration of the project, called Pico_configuration . In this chapter, let’s take a
look at the Configuration Manager again and use it as a starting point for comparing two file
versions of the ansi.c file.

� In any open SNiFF+ tool, choose Tools > Configuration Manager .

In the Configuration Manager

1. Select the HEAD configuration in the Configuration List (see the following screen shot).

The project’s configuration information is loaded into the Configuration Manager.
Your Configuration Manager should look similar to the following:

2. Select the Pico_configuration configuration in the Compared To List.

You should notice no difference, which means that the HEAD and
Pico_configuration configurations contain the same set of files and file versions.
Differences between two configurations are displayed in the Change List.
Tutorial 119

Chapter 2 Configuration and File Differences Looking at file differences with the Diff/Merge tool
3. Now, select the INIT configuration in the Compared To List.

The Change List should now display differences between the HEADand the INIT
configurations.

4. In the Change List, notice the following line:

The line indicates that different versions of file ansi.c exist in the two configurations.
The icon tells us that the HEADconfiguration contains the newer version (1.2), and that
the INIT configuration contains the older version (1.1).

Looking at file differences with the Diff/Merge tool
As the last part of this tutorial, let’s look at the differences between the two versions of
ansi.c . To do so:

1. In the Change List, highlight the line:

2. Choose Differences > Show Differences... .

A dialog appears, in which you are asked whether you are interested in 2-way or 3-way
differences.
120 SNiFF+

C

Looking at file differences with the Diff/Merge tool
3. Press the 2-Way button.

The Diff/Merge tool appears. It should be similar to the following:

Remember that you added a comment line to the first line of ansi.c in the “Developing
in a Team” tutorial. The two differences in the screen shot are related to these changes.

4. Close the pico.shared project in the SSWE.

5. Quit SNiFF+.

Concluding remarks
This concludes this tutorial on looking at the version control information of a SNiFF+ project.
This also concludes the C tutorial. For detailed explanations of any of the concepts in this
tutorial, please refer to the User’s Guide. To learn more about any of the SNiFF+ tools, see
the Reference Guide. To learn how you can use SNiFF+ for your C++, Java, or Fortran
projects, please refer to the respective tutorials.

Number and line
number of the
differences between
the two file versions

File name and
version number
being compared

Differences

By pressing this button,
differences are merged
from the right view to
the left view. The button
is enabled only when
the file is writable
Tutorial 121

Chapter 2 Configuration and File Differences Looking at file differences with the Diff/Merge tool
122 SNiFF+

Colophon

This manual was produced with FrameMaker.

We at TakeFive have tried to make the information contained in
this manual as accurate as possible. We cannot, however, guar-
antee that it is error-free.

© 1992-1999 TakeFive Software GmbH.
All rights reserved.

sniff \'snif\ vb -ED/-ING/-S

[ME sniffen; prob. akin to ME snivelen to snivel]
vt (14c)
3: to recognize or detect by or as if by smelling
<German shepherd dogs are parachuted in the
Austrian Alps to sniff out survivors of avalanches
— P.T.White>
Webster's Unabridged Third New International Dictionary

	Guidelines
	About this Manual
	Conventions
	Tool elements
	Typography
	Feedback and useful links

	Road Map
	The SNiFF+ C Tutorial

	Browsing
	Setting up a Browsing Project
	The Project Setup Wizard for browsing only

	The Project Editor
	Opening the Project Editor
	The Project Tree - selective project information
	Tool freezing

	Browsing Symbols
	Opening the Symbol Browser
	Restricting information in Symbol List
	Displaying signatures of symbols
	Keyboard navigation in Lists
	Studying symbol definitions

	Cross References
	Opening the Cross Referencer
	Component browsing – Has-A relationships
	Finding and editing all the references to a symbol
	Other features in the Cross Referencer

	The SNiFF+ Editor
	Going to a symbol’s declaration
	Symbols with the same name

	Textual Search with the Retriever
	Opening the Retriever
	Finding out where a function is called
	Retrieving a string from all projects
	Where is a structure member referenced?

	Code Dependencies and Impact Analysis
	Opening the Cross Referencer
	Code dependencies
	Impact analysis: studying function calls

	Understanding Include Dependencies
	Opening the Include Browser
	Files included by a particular file
	Files that include a particular file
	Conclusion

	Edit/Compile/Debug
	Single-User Project Setup
	Single-user Project Setup Wizard

	Make Attributes and Compilation
	Setting up C Make Support attributes
	Building the executable
	Running the application

	Editing and Compiling
	Opening and editing a file
	Compiling

	Debugging (Unix only)
	The Debugger command line
	Setting Breakpoints

	Team Setup
	Key Concepts
	Shared projects
	Working environments

	Multi-User Project Setup
	Preparing the Environment
	Multi-user Project Setup Wizard

	Setting Up the Build System in the SSWE
	Setting up C Make Support attributes

	Checking In the project from the SSWE
	Checking in the project
	Looking at the history of a file

	First Build in the SOWE
	Opening the shared project in the SOWE
	Building the executable

	Developing in a Team
	Working in the PWE
	Opening the shared project in the PWE
	Check out and check in
	Adding a new file to a project
	Removing files from a project

	Team Maintenance
	Updating Working Environments
	Updating the SSWE
	Updating the SOWE
	Updating the PWE

	Freezing the Project in the SSWE
	Freezing the project

	Version Controlling
	File history and locking information
	Looking at file history information
	Displaying locking information

	Configuration and File Differences
	Looking at file differences with the Diff/Merge tool

