
Visaj for
SNiFF+J

The Visual
Application Builder

for Java 

Release 2

User’s Guide

E
di

to
r

ific

ions
ARS

y. This
ing,
med.
y, or
of use,
act,
ven

Imperial Software Technology
Berkshire House
252 Kings Road
Reading
Berkshire RG1 4HP
Tel: +44 118 958 7055
Fax: +44 118 958 9005

120 Hawthorne Avenue
Suite 101
Palo Alto
CA 94301
Tel: +1 650 688 0200
Fax: +1 650 688 1054

email: sales@ist.co.uk
support@ist.co.uk

URL: http://www.ist.co.uk
Trademarks and Copyrights
Visaj and the Visaj logo are trademarks of Pacific Imperial, Inc.
SwingBridge is a trademark of Pacific Imperial, Inc.
IST and the IST logo are trademarks of Imperial Software Technology Limited.
Java, JavaBeans and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
All other trademarks are acknowledged as the property of their respective owners.

Copyright� 1997, 1998, 1999 by Pacific Imperial, Inc.
All Rights Reserved. This manual is subject to copyright protection.
No portion may be copied without prior written consent from Imperial Software Technology Limited or Pac
Imperial, Inc.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrict
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DF
252.227-7013 and FAR 52.227-19.

Visaj contains small amounts of software copyrighted by Jef Poskanzer or James R. Weeks respectivel
software is provided by the author and contributors “as is” and any express or implied warranties, includ
but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclai
In no event shall the author or contributors be liable for any direct, indirect, incidental, special, exemplar
consequential damages (including, but not limited to, procurement of substitute goods or services; loss
data, or profits; or business interruption) however caused and on any theory of liability, whether in contr
strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, e
if advised of the possibility of such damage.

Visaj Release 2.4
Reference:VJ/5 Issue 9.0 October 1999

of

Its
Copyright © 1992–1999 TakeFive Software Inc.
All rights reserved. TakeFive products contain trade secrets and confidential and proprietary information
TakeFive Software Inc. Use of this copyright notice is precautionary and does not imply publication or
disclosure.

Parts of SNiFF+
Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
Amsterdam, The Netherlands.
Portions copyright 1991-1997 Compuware Corporation.

Trademarks
SNiFF+ is a trademark of TakeFive Software Inc.
Other brand or product names are trademarks or registered trademarks of their respective holders.

Credits
The first version of Sniff was developed at the Informatics Laboratory of the Union Bank of Switzerland.
development was considerably facilitated by the public domain application framework ET++.
Authors of the first version:
Walter Bischofberger (Sniff)
Erich Gamma (Sniffgdb)
Erich Gamma and André Weinand (ET++)

SNiFF+ Release 3.2

E
di

to
r

Contents
1. Overview . 1

1.1 Introduction . 1

1.2 Visaj . 2

1.3 How To Use This Document . 4

1.4 Online Help . 5

1.5 Online User Guide. 7

1.6 Prerequisites . 7

2. Integrating SNiFF+J with Visaj . 9

2.1 Introduction . 9

2.2 Installation . 9

2.3 Adding Visaj projects to a SNiFF+ project . 10

2.4 Working with SNiFF+ in Visaj . 11

2.5 Tools not supported in the SNiFF+ Visaj integration 12

3. Visaj Tutorial . 13

3.1 The Tutorial . 13

4. The Class Editor . 37

4.1 Introduction . 37
Visaj User’s Guide v

4.2 Class Structure View .38

4.3 “this” .42

4.4 Method Editing .47

4.5 Importing X-Designer Save Files .50

4.6 Applets. .51

4.7 Generating Code. .51

4.8 Windows Menu. .52

4.9 Displaying Other Tools .53

4.10 Option Menu Items .54

5. Beans View . 55

5.1 Dynamic Display .57

5.2 Dummy Frames .58

5.3 Building Hierarchies .58

5.4 Object Palette. .59

5.5 Properties. .60

5.6 Customizers. .68

5.7 Layout Editors. .69

5.8 Using and Applying Layouts .74

5.9 Invisible Beans .74

5.10 Using Your Beans - Creating Reusable Components76

6. Event Bindings . 79

6.1 Introduction. .79

6.2 Event Binding Editor .80

6.3 Event Binding Editor: Parameters .83

6.4 Event Bindings List .86

6.5 Invalid Bindings .87
vi Visaj User’s Guide

7. Swing Component Set . 89

7.1 Introduction . 89

7.2 AWT to Swing Conversion . 90

7.3 Loading Swing Components . 90

7.4 Using Swing . 93

7.5 Adding Swing Components to a Design . 93

7.6 Highlighting of Non-Opaque Components . 95

7.7 Swing Tips . 95

8. Image Editor . 107

8.1 Description . 107

8.2 Tutorial . 108

8.3 Image Files . 116

8.4 Help. 118

8.5 Tool Palette . 118

8.6 Colors . 121

8.7 Selection . 123

8.8 Gradients . 125

8.9 Editing the Image . 129

8.10 Filters. 132

9. Resource Bundle Editor. 139

9.1 File Menu . 140

9.2 Edit Menu . 141

9.3 Generating Code . 143

9.4 Using Resource Bundles . 144

10. The Project Window. 147

10.1 Introduction . 147
Visaj User’s Guide vii

10.2 Creating, Saving and Opening Projects .148

10.3 Adding, Removing and Renaming Groups. .148

10.4 Adding and Removing Files .149

10.5 Creating Files .149

10.6 Editing Files. .149

10.7 The Windows Menu .150

11. Generated Code . 151

11.1 Introduction. .151

11.2 How to Generate Code. .151

11.3 What is Generated .152

11.4 Adding Your Own Code - Subclassing .153

11.5 Editing the Code .154

11.6 Regenerating Code - Using the Update Toggle.154

11.7 Example Code .155

11.8 Using the Diamond Components .159

11.9 File Types on Apple Macintoshes .159

12. Configuration . 161

12.1 Integration with an IDE .161

12.2 Palette File .162

12.3 Pre-defined Palette Files .166

12.4 Merging Palette Files .166

12.5 Use Swing Palette .166

12.6 Visaj Options .166

13. Tips And Hints . 171

13.1 Introduction. .171

13.2 User Interface .171

13.3 Event Bindings .178
viii Visaj User’s Guide

13.4 Loading X-Designer Save Files . 180

13.5 Palette Configuration . 181

13.6 Layout . 183

13.7 Generated Code . 185

A. Diamond Components . 191

A.1 The Diamond Components . 191

A.2 Using the Diamond Components . 197

B. Quick Reference . 199

B.1 Class Editor Toolbar Buttons . 199

B.2 Project Window Toolbar Buttons . 200

B.3 Resource Bundle Editor Toolbar Buttons . 200

B.4 Class Editor Menu Items . 200

B.5 Project Window Menu Items . 204

B.6 Resource Bundle Editor Menu Items. 205

C. Bibliography . 209

C.1 Introduction . 209

C.2 Books on Java . 209

C.3 Books on Internationalization . 209

C.4 Books on HTML. 210

D. Glossary . 211

Index . 219
Visaj User’s Guide ix

x Visaj User’s Guide

Overview 1
1.1 Introduction
This guide describes Visaj. Each area of Visaj is described in its own
chapter or section and clarified with examples where needed. The major
areas are:

1. The Class Editor - Visaj’s editor for creating and editing classes
(page 37)

2. Beans View - a description of Visaj’s powerful Beans builder (page 55)

3. Object Palette - the nuts and bolts of the Beans builder (page 59)

4. The Diamond Components - what they are and how to use them
(page 191)

5. Layout Editors - for laying out the components in a container (page 69)

6. Event Bindings - how to link objects using events (page 79)

7. Properties - a description of Property Sheets for components (page 60)

8. Resource Bundle Editor - how to internationalize your application
(page 139)

9. The Project Window - a description of the Visaj project window
(page 147). This may not be available if you are running Visaj from
within an IDE - see the Using Visaj from an IDE section on page 2.

10. Generated Code - how to generate code and what it looks like
(page 151)
Visaj User’s Guide 1

Chapter 1 Overview
11. Configuration - how to configure Visaj (page 161)

12. Quick Reference - the commands in Visaj at-a-glance (page 199)

1.1.1 Using Visaj from an IDE

If you are using Visaj from within an IDE (Integrated Development
Environment), the Project Window may not be available to you. This is
because the IDE may prefer to do all file handling itself. For the same
reason, some of the File menu operations may also not be available. If this
is the case, you will be able to perform these operations from the IDE.

1.2 Visaj
Visaj is a Java development tool which allows graphical development of
the structure and interface of an application. When the graphical
representation is complete, the developer can generate Java code. Not only
does Visaj generate pure Java code, it is also written in Java. Both the
generated code and Visaj itself are portable across all platforms which
support Java 1.1 and above.
2 Visaj User’s Guide

Chapter 1 Overview
Figure 1-1 Class Editor

Development of an application with Visaj is quick and simple. The
powerful Class Editor is displayed first. This is where the substance of the
user interface is defined and source code generated. Apart from designing
and editing your class file, buttons on the toolbar and in the menus lead
you to the project window for organizing the files within your project, and
to the Resource Bundle Editor for the internationalization of your
application.
Visaj User’s Guide 3

Chapter 1 Overview
Figure 1-2 Visaj Project Window

Figure 1-3 Resource Bundle Editor

1.3 How To Use This Document
This document describes all the functions of Visaj. Each major feature of
Visaj has its own chapter.

Chapter 3, “Visaj Tutorial”, starting on page 13, leads you through the
major areas of Visaj to create a simple yet functional application. Starting
with this tutorial will give you a thorough grounding in the principles of
Java application development with Visaj.
4 Visaj User’s Guide

Chapter 1 Overview
Other chapters serve as both a guide and reference for each aspect of Visaj.
Appendix B, “Quick Reference”, starting on page 199, helps you quickly
find your way around Visaj.

The list of books in Appendix C, “Bibliography”, starting on page 209,
suggests some titles for further reading on particular topics relevant to
application development with Visaj.

Use the table of contents and index pages to go straight to information on
a particular area of Visaj.

1.4 Online Help
Online help is available from the Class Editor, the Resource Bundle Editor
and the Project window in Visaj. To view the list of help topics, select
“Index” from the Help menu in any of these windows. A dialog containing
a list of hypertext links to help topics relevant to the current window is
displayed, as shown in Figure 1-4. Double-clicking over a topic displays a
separate window containing help on the selected topic, as shown in Figure
1-5. This window has three buttons at the top which allow you to move
forwards and backwards through the list of help topics and to change the
font of the text in the window. References to subjects covered elsewhere in
the help are shown as highlighted, underlined hypertext links. Clicking
over one of these displays the relevant help information.
Visaj User’s Guide 5

Chapter 1 Overview
Figure 1-4 Online Help Index Window
6 Visaj User’s Guide

Chapter 1 Overview
Figure 1-5 Help on an Individual Topic

1.5 Online User Guide
This user guide is available from Visaj in html format. Select “User Guide”
from the Help menu.

1.6 Prerequisites
Visaj will run on any platform with JDK 1.1. Although Visaj is intuitive and
easy to use, you will need to understand the Java language in order to be
able to create a class structure for your application, to design and
customize your user interface and to use the code generated by Visaj.

change the font

hypertext link

backwards

forwards
Visaj User’s Guide 7

Chapter 1 Overview
8 Visaj User’s Guide

IntegratingSNiFF+J with
Visaj 2
bol

e

ly
2.1 Introduction

The Visaj integration with SNiFF+ allows you to combine Visaj’s graphical GUI
design features with SNiFF+’s source code engineering functionality. The sym
information and inheritance relationships of Visaj generated source code can
therefore be directly browsed, version controlled, and edited in SNiFF+.

2.2 Installation

Note – The Visaj Resource Bundle Editor, Image Editor and Project Window ar
currently not part of the SNiFF+ Visaj integration.

Note –Once Visaj is selected as part of the SNiFF+ installation it is automatical
installed on your computer, you need not install Visaj separately.

2.2.1 Requirements

• Integrating SNiFF+ with Visaj is only possible since SNiFF+ 3.1.

• You need JDK 1.1.3 or higher installed on your computer.

• JDK must be in your path.

Note – You can download the JDK fromhttp://java.sun.com
Visaj User’s Guide 9

Chapter 2 Integrating SNiFF+J with Visaj

j,

ee.
For JDK 1.2 users

We suggest that you do the following to improve overall performance.

In the SNiFF_DIR/bin/runvisaj.sh script, add the following option:

• -Djava2d.font.usePlatformFont=true

after javaw

2.2.2 Selecting Visaj as part of your SNiFF+ Installation

• On Windows, Visaj is part of the Java package. To integrate SNiFF+ with Visa
make sure that you select theJava packageas part of your SNiFF+ installation.

• On Unix, To integrate SNiFF+ with Visaj, make sure that you select theVisaj
packageas part of your SNiFF+ installation.

• For more information on how to install SNiFF+, please refer to the SNiFF+
Installation Guide for Windows/Unix.

2.3 Adding Visaj projects to a SNiFF+ project

2.3.1 Adding a new Visaj project

In the SNiFF+ Project Editor:

1. Make sure that the relevant SNiFF+ project is highlighted in the Project Tr

2. From the menu, choose either

Project −> Add Visaj Project to <Projectname>, or choose

Tools −> Visaj

3. In the dialog that appears, enter a name for the new project and pressOk.

4. ChooseProject −> Save<Projectname>to save the modified project.
10 Visaj User’s Guide

Chapter 2 Integrating SNiFF+J with Visaj

he

r to

.

tory
2.3.2 Adding an existing Visaj project

First, copy your Visaj project to your SNiFF+ project directory. Make sure that t
Visaj project file type (.vcl) and the Java file type (.java) are part of the
SNiFF+ project. If they aren’t, add them to the project. For details, please refe
the SNiFF+ User’s Guide.

Then, in the SNiFF+ Project Editor:

1. Make sure that the relevant SNiFF+ project is selected in the Project Tree

2. From the menu, chooseProject −> Add/Remove Files to/from
<Projectname>.

3. In the Add/Remove Files dialog that appears, select the Visaj project file,
press theAdd button, then pressOk.

4. ChooseProject −> Save<Projectname>to save the modified project.

2.4 Working with SNiFF+ in Visaj

2.4.1 Loading the Visaj project into the Visaj Class Editor

In any SNiFF+ tool, chooseTools −> Visaj

OR

In the SNiFF+ Project Editor, double-click on the Visaj project file

2.4.2 Java code generation

Java code is automatically generated and stored in your SNiFF+ project direc
when you

• save a file in the Visaj Class Editor

• execute commands in the SNiFF+ menu of the Visaj Class Editor

• modify the properties of a class in the Visaj Class Editor
Visaj User’s Guide 11

Chapter 2 Integrating SNiFF+J with Visaj

e

in

d

2.4.3 Accessing SNiFF+ commands

A custom menu calledSNiFF+ is available in Visaj’s Class Editor. The menu
allows you to directly

• browse the locally defined and inherited members of a class

• browse the inheritance relationships of classes

• edit the generated source code

• browse the symbols used in the project

For a description of the menu commands in the SNiFF+ menu, please see “Th
SNiFF+ Menu” on page 203.

2.5 Tools not supported in the SNiFF+ Visaj integration
• Resource Bundle Editor

• Image Editor

• The Project Window

In the SNiFF+ Visaj integration, menu entries for the above tools don’t appear
the Class Editor.

The rest of this manual is based on the original Visaj documentation therefore
please ignore documentation related to the tools which aren’t supported in this
integration, i.e., those mentioned above.

Note – In the SNiFF+ Visaj integration, java code is automatically generated an
stored in your SNiFF+ project directory, for details please see “Java code
generation” on page 11.
12 Visaj User’s Guide

Visaj Tutorial 3
This chapter provides a quick tutorial which takes you through the steps
required to create the simple application shown in Figure 3-1. As you
follow the step-by-step instructions in the tutorial you will be introduced
to some of the major features of Visaj.

Figure 3-1 Final application

3.1 The Tutorial
The tutorial is divided into the following sections:
Visaj User’s Guide 13

Chapter 3 Visaj Tutorial
1. Part One - Building the Hierarchy. How to put together the various
elements of the user interface.

2. Part Two - Layouts. How to lay out the those elements.

3. Part Three - Adding Event Bindings. How to build actions into the
application.

At the end of each of the three parts listed above, you are given the choice
of generating code and stopping the tutorial or continuing. Do as much of
the tutorial as you feel you need to get started. Once you have done that,
the following sections help you to finish the application:

4. Generating Code.

5. Adding Your Own Code - you will only need to do this if you complete
Part Three - Adding Event Bindings.

6. Compiling and Running.

Remember that Visaj provides extensive online help, see the Online Help
section on page 5 for details.

3.1.1 Part One - Building the Hierarchy

1. Start Visaj.
See the Integration with an IDE section on page 161 for details on how
you can start Visaj from your IDE (Integrated Development
Environment).

The first window displayed by Visaj is the Class Editor. This is described
more fully in Chapter 4, “The Class Editor” on page 37.

The tutorial uses two components, the CountingLabel and the Ticker,
which are supplied with Visaj for the purpose of demonstrating how to use
invisible Beans. To have these components on your palette, you must first
load in the JAR file containing them.

2. Select “Load Jar file...” from the Palette menu.
A File Dialog is displayed, ready for the name of the JAR file.

3. Select demos.jar from the Visaj install directory1.
The extra components are merged into the existing palette.
14 Visaj User’s Guide

Chapter 3 Visaj Tutorial
Note – Once you have completed this tutorial, you will have a saved design
containing some of the beans in demos.jar . In order to open the saved design,
you will have to load demos.jar first.

See the Loading JAR Files section on page 60 for more information on this
topic.

4. Click on the Frame icon from the component palette along the left
hand side of the window.
The Object Palette section on page 59 provides more detail on using the
component palette.

At this point, a separate window appears on the screen. This is the
dynamic display and shows exactly the user interface that you are
building.

5. Click on the MenuBar icon.
The containment hierarchy now shows the Frame with a MenuBar
child. Since the MenuBar is a container Visaj has automatically selected
this component in the hierarchy ready for the Menu children to be
added.

6. Add a Menu component and 2 MenuItems to the design.

7. Click on the Frame at the root of the hierarchy.

8. Add a Panel from the Containers section and two Buttons from the
Basic section.
The Buttons are added as children of the Panel.

You should now have the hierarchy shown in Figure 3-2.

1. The install directory is where Visaj has been installed by the installer, not the temporary area where
Visaj is “unpacked” on Microsoft Windows.
Visaj User’s Guide 15

Chapter 3 Visaj Tutorial
Figure 3-2 Initial hierarchy

9. Select menuBar1 and select “Fold/Unfold nodes” from the View
menu to fold this part of the hierarchy.
Alternatively, you can click over the small box under MenuBar1. This is
the Fold/Unfold icon.

10. Select panel1 and again choose Fold from the View menu, or click
over the small box under Panel1.

11. Add a Toolbar from the Diamonds section to your Frame.

12. Add two ArrowButtons, also from the Diamonds section, to your
Toolbar.

13. Add a StatusBar (from the Diamonds) to the Frame.

14. Add a Label (from Basic) and a CountingLabel (from the demos.jar
section) to the StatusBar.
The CountingLabel is one of the Beans loaded from demos.jar . A
separate section for all the Beans found in that file is added to the
bottom of the object palette.

15. Select the Frame again and add a TextArea (from Basic) to it.

Fold/Unfold icon
16 Visaj User’s Guide

Chapter 3 Visaj Tutorial
16. Make sure no objects are selected by clicking over the design area
background.
To add invisible Beans, there must be no current selection.

17. Add a Ticker invisible Bean to your design. This is found in the
demos.jar section at the bottom of the object palette.
Invisible Beans appear at the top of the design area alongside hierarchy
root objects, as shown in Figure 3-3.

Figure 3-3 Full window hierarchy

Now that you have finished adding components and Beans, your dynamic
display should appear as shown in Figure 3-4.

Invisible Bean
Visaj User’s Guide 17

Chapter 3 Visaj Tutorial
Figure 3-4 Initial window

18. Choose “Save” from the File menu and type “mydesign.vcl ” into
the File Dialog.
The “vcl” suffix is a convention for Class Editor save files. It is good
practice to save your design at regular intervals.

Setting Properties

Having added the components to the design we now need to set some
properties.

19. Unfold the MenuBar branch of the hierarchy and double-click on
menu1 to display the Property Sheet.
By default, double-clicking on an object displays the object’s Property
Sheet. Alternatively, you can display the Property Sheet by pressing the
toolbar icon shown in Figure 3-5.

Figure 3-5 Property Sheet Icon on Toolbar

20. Select “label” from the java.awt.MenuItem group of properties. The
Editor for this property type appears at the bottom of the panel.
Change the label from “menu1” to “File”.
18 Visaj User’s Guide

Chapter 3 Visaj Tutorial
☞ More information on the setting of properties and the effect this has is given in the
"Properties" section on page 60.

We have some more properties to set. There is no need to close the
Property Sheet and redisplay it, as it updates according to the current
selection. If there is no selection, the title of the Property Sheet changes to
reflect this.

21. With the Property Sheet still displayed select first menuItem1 and
then menuItem2 changing the labels to “Open” and “Exit”
respectively.

22. Click on the background to deselect all objects in the design area.

23. Unfold panel1.
Either click the fold icon underneath it or select “Fold/Unfold nodes”
from the View menu.

24. Use the mouse to draw a band around the two button children of the
panel (click and hold the mouse button down to draw a box around
the two buttons).

☞ Multiple selection can be used to modify the properties of many components
simultaneously.

25. Change the background color property to “orange”. The change is
applied immediately to both buttons.
Because the two labels are highlighted in the dynamic display, it looks
as though the foreground color has been set. When you select something
other than the labels, you can see the correct background color.

26. Select button1, with the Property Sheet still displayed, and change
its label property to “Show”.

27. Select button2 and change its label property to “Hide”.

28. Select the label child of the StatusBar and change the text property to
“Counter:”.

29. Close the Property Sheet.

30. Save your design.
It is good practice to save your design at regular intervals.
Visaj User’s Guide 19

Chapter 3 Visaj Tutorial
You have now created a simple design with a default layout. If you wish to
stop following the tutorial at this point, go straight to the Generating Code
section on page 33. That section describes how to generate code for your
application. You may continue the tutorial in the following section, which
describes the Layout Editor and adds a dialog to the new user interface.

3.1.2 Part Two - Layouts

All container type components, such as the Frame, have a layout property
associated with them. This layout allows you to arrange the container’s
children in a pre-defined manner. You can change the layout type of a
container, as with any other property - this is demonstrated in Step 37
below. Visaj provides interactive dialogs which help you to arrange the
container’s children according to the rules of the container’s layout. See the
Layout Editors section on page 69 for details on these.

This section of the tutorial demonstrates the editors for the BorderLayout
and the GridBagLayout. The GridBagLayout belongs to the new sub-
dialog, which is added in this section.

The layout of a Frame container defaults to a BorderLayout. The
BorderLayout allows you to position components in North, East, South,
West and Central positions. Visaj’s powerful layout editors make this easy.

31. With the Frame selected in the hierarchy, press the Layout Editor
button in the toolbar. The BorderLayout Editor dialog appears as
shown in Figure 3-6.
The Border section on page 70 describes the Border Layout Editor.
20 Visaj User’s Guide

Chapter 3 Visaj Tutorial
Figure 3-6 Border Layout Editor: first view

32. Use the mouse to drag the components to the correct positions so that
they appear as shown in Figure 3-7.
Visaj User’s Guide 21

Chapter 3 Visaj Tutorial
Figure 3-7 Border Layout Editor after arranging components

33. Close the Layout Editor.

34. Save your design.
It is good practice to save your design at regular intervals.

Adding Another Dialog

The next stage of the tutorial shows how to add a sub-dialog to your
design. Dialog components need a parent, so we are going to make it a
child of the Frame.

35. Select the Frame, if it is not selected already.

36. Add a Dialog, from the object palette, to the Frame.
This is found in the Containers section.

37. With dialog1 selected, display its Property Sheet.

38. Select the layout property from the java.awt.Container section and
choose GridBagLayout from the option menu at the bottom of the
Property Sheet.

39. Add 4 Labels and 4 TextField children to the dialog.
22 Visaj User’s Guide

Chapter 3 Visaj Tutorial
40. Add a Checkbox to the dialog.

41. Select the Checkbox and change its “label” property to “Keep me on
screen”.

☞ Go back to the "Setting Properties" section on page 18 if you need a reminder of how to do
this.

GridBag Layout Editor

42. Select the dialog and display the GridBagLayout Editor using the
Layout Editor toolbar button.
This is shown in Figure 3-8.

Figure 3-8 Layout Editor Toolbar Icon

43. Drag the components in the editor to achieve the layout shown in
Figure 3-9.

☞ See the GridBag section on page 72 for a detailed description of the GridBag Layout Editor.

Figure 3-9 GridBag Layout Editor
Visaj User’s Guide 23

Chapter 3 Visaj Tutorial
44. Select checkbox1 in the Layout Editor and drag the right edge so that
it fills two columns, as shown in Figure 3-9.
This is so that the all the labels in the first column are not forced to be
the same width as the Checkbox.

45. With Checkbox1 still selected, set the Anchor option menu to “West”
and the Fill option menu to “None”. Press “Apply”.
This puts the Checkbox on the left and stops it trying to fill both
columns.

46. Select label2, unset the RelativeX and RelativeY toggles and press
“Apply”.
The other components lost their relative x and y settings when they
were moved. Relative x and y settings are not required for this tutorial.

47. Hold down the shift key and click on each of the components except
the Checkbox.
We have already set the Fill option for the Checkbox.

48. Change the Fill option menu from “None” to “Both” and press
“Apply”.

49. Click in an empty cell to deselect the components.

50. Hold down the shift key and click on the two TextFields in the top
row of the grid. Change the Column Weight to “1” and press
“Apply”. Repeat for the two Labels in the top row and change the
Column Weight to “2” and press “Apply”.
The column weight affects the way objects stretch when the container
grows horizontally.

51. Close the GridBag Layout Editor.

52. Select one of the four Labels which are children of dialog1. Use
multiple selection (Shift + mouse button 1) to select the other three
as well.

53. Change the text property of the 4 Labels to “Input”.

54. Select the four Textfields and change the columns property to “10”.

55. Save your design.
24 Visaj User’s Guide

Chapter 3 Visaj Tutorial
If you wish to stop following the tutorial at this point, go straight to
Generating Code on page 33. The tutorial continues in the following
section with actions being added to some of the buttons in the design.

3.1.3 Part Three - Adding Event Bindings

For the last stage of the tutorial, we shall add some basic functionality to
the application. We will set up the buttons in the Panel to hide and show
dialog1, set up the Ticker and CountingLabel so that they display the
amount of time the dialog is shown on the screen and set up the Exit
button in the File menu to exit the application.

☞ For more information on event bindings, see Chapter 6, “Event Bindings”, starting on page
79.

56. Fold away the components underneath dialog1 and under the
ToolBar and StatusBar.
Do this so that you can see both the buttons and dialog1 in order to
complete the next step. You may also need to press the “Method
Editors Only” toolbar button. This is shown in Figure 3-10.

Figure 3-10 Method Editors Only Toolbar Icon

57. With the Control key held down, use your mouse to drag a line from
button1 to dialog1.
This is a fast way of displaying the Event Binding Editor for a new
binding, primed with the two objects at either end of the line drawn in
the design area.

There are two other ways of displaying the Event Binding Editor:

1. Selecting the “Event bindings” tab panel on the left of the Class Editor
window and pressing the “New” or “Edit” buttons.

2. Pressing the Event Binding button on the toolbar, shown in Figure 3-11.
Visaj User’s Guide 25

Chapter 3 Visaj Tutorial
Figure 3-11 Event Binding Icon on Toolbar

☞ See Chapter 6, “Event Bindings”, starting on page 79 for a full description of the Event
Binding Editor.

58. Check that the Source of the event binding is “button1” and the
Destination Object is “dialog1”.

59. Set the Type to “actionPerformed” and select the Handler Method
“show()”. This is shown in Figure 3-12.
Make sure that you select the “show” method which has no
parameters. The “show” method with parameters is a deprecated
method.

Figure 3-12 Event Editor

60. Press the “Finish” button.
The completed event binding now appears in the Event Binding List.
Pressing “Another” also creates the event binding, leaving the dialog
on the screen ready for you to add another binding.
26 Visaj User’s Guide

Chapter 3 Visaj Tutorial
61. Add another new event binding so that the Source is “button2”, the
Type is “actionPerformed”, the Object is “dialog1” and the Method
is “setVisible”.
This method has a parameter; when you select it the “Next>” button
becomes enabled. The “Finish” button is not enabled, showing that you
have not completed the specification of the event binding.

62. Press the “Next>” button. The second page of the Event Binding
Editor is displayed, as shown in Figure 3-13.
Now that you are on the second page, the “<Previous” button is
enabled, allowing you to move back to the first page. The “Finish”
button will not become enabled until you have entered a value for the
parameter.

Figure 3-13 Event Binding Editor Second Page

63. Select the boolean parameter, select “Value” from the list on the right
and change the option menu to “False”.
setVisible(false) hides the dialog.

64. Press “Finish” to create this event binding.
Visaj User’s Guide 27

Chapter 3 Visaj Tutorial
Try out the two new event bindings in the dynamic display. Press button2
- the dialog disappears. Press button1 - it reappears. We are now going to
change this last event binding so that it hides the dialog only if the
Checkbox in the dialog is not set.

65. Edit the last event binding.
Select the last event binding from the Event Bindings List in the Class
Editor and press “Edit”. This is shown in Figure 3-14.

Figure 3-14 Event Binding to Edit

66. On the parameters page of the Event Binding Editor, select the
boolean parameter.
The tick next to this parameter indicates that it has already been
configured. The area on the right shows that you have set an explicit
value for this parameter.

67. Select “Property” from the list on the right.
We are going to set the value of the parameter according to the
property of another object. Two lists appear in the lower right of the
Editor to allow you to select any object from your design and any
properties of that object which have the same type as the selected
parameter.
28 Visaj User’s Guide

Chapter 3 Visaj Tutorial
68. Select “checkbox1” (beneath “dialog1”) from the list of objects in the
design.

69. Select “state” from the list of properties.
Figure 3-15 shows how to configure this parameter.

Figure 3-15 Checkbox Property for Boolean Parameter

70. Press “Finish”.
The binding is now set so that when the Checkbox is set, the dialog
does not disappear. When the Checkbox is not set, the dialog does
disappear. Try it out in the dynamic display.

Event Bindings for Invisible Beans

To demonstrate how the invisible Beans work, we are now going to add
some more event bindings to make the CountingLabel count tenths of a
second while the dialog is displayed.

71. Add another new event to the Show button (button1) to make the
Ticker start, as shown in Figure 3-16.
The Source is “button1”, the Type is “actionPerformed”, the
Destination Object is “ticker1” and the Method is “start()”.
Visaj User’s Guide 29

Chapter 3 Visaj Tutorial
Figure 3-16 Ticker Start Event

72. Add another new event binding to button2 to stop the ticker, as
shown in Figure 3-17.
For this binding, the Source is “button2”, the Type is
“actionPerformed”, the Object is “ticker1” and the Method is “stop()”.

Figure 3-17 Ticker Stop Event
30 Visaj User’s Guide

Chapter 3 Visaj Tutorial
73. Now add a new event to the Ticker itself to increment the
CountingLabel as it ticks, as shown in Figure 3-18.
The Source is “ticker1”, the Type is “tick”, the Destination Object is
“countingLabel1” and the Method is “increment()”.

Figure 3-18 Ticker Tick and Increment Event

74. Try pressing the buttons in the dynamic display again and watch the
CountingLabel show the seconds that pass when the dialog is
displayed.

Event Bindings to Other Methods

Finally we are going to create a new method called “myExit” which will be
called when the user selects the File/Exit button.

To do this, we shall add another method to our class. If you have hidden
the Class Structure View, bring it back by pressing the “Show Method
Editors and Class Structure” button on the toolbar. This button is shown in
Figure 3-19.

Figure 3-19 Toolbar Icon to Redisplay Class Structure
Visaj User’s Guide 31

Chapter 3 Visaj Tutorial
75. Select “Properties...” from the Class menu of the Class Editor.

76. Double click on the class name, change “MyClass” to
“MyFirstVisajApp” and press “Apply”.

Note – The name of the method in your class also changes because it is the
constructor and therefore must have the same name as the class.

77. Close the Properties dialog.

78. Select “Add new method” from the Method menu to add a new
method to the class.
A method named “method2” appears in the class structure.

79. Select “method2”.

80. Display the “Signature” tab panel from the Method Designer and
change the name of method2 to “myExit”.

81. Select the “MyFirstVisajApp” method in the Class Structure view
again and display the Event Binding Editor.

82. Add a new event binding such that the Source is “menuItem2”, the
Type is “actionPerformed”, the Destination Object is
“MyFirstVisajApp.this” and the Method is “myExit()”, as shown in
Figure 3-20.
Make sure that “MyFirstVisajApp” is selected in the Class Structure
View before adding this event binding.
32 Visaj User’s Guide

Chapter 3 Visaj Tutorial
Figure 3-20 Calling New Methods in Event Binding Editor

83. Save your design.

The application design is now complete. The following section explains
how to generate the code for the design.

3.1.4 Generating Code

1. Select the constructor (MyFirstVisajApp) in the Class Structure View
and set the “Main method” checkbox in the Method menu.
This tells Visaj to generate a main method and call the constructor.

☞ See the "Main Method" section on page 49 for more information on generating a main
method from Visaj.

2. Select “Generate java...” from the Generate menu, specify a target
directory in the directory selection box and press “OK”.
See Chapter 11, “Generated Code”, starting on page 151 for more
information on generating code from Visaj.
Visaj User’s Guide 33

Chapter 3 Visaj Tutorial
3. Save your Visaj design.
You can now exit Visaj if you wish.

Remember that if you wish to reload your design into Visaj, you will
have to load the demos.jar file beforehand, as described in Step 2 and
Step 3 on page 14.

3.1.5 Adding Your Own Code

You only need to do this part if you completed Part Three - Adding Event
Bindings. If you did not, then go straight to the Compiling and Running
section on page 35. All of the following is done external to Visaj.

☞ This tutorial shows you how to edit the generated code directly. See the "Adding Your Own
Code - Subclassing" section on page 153 for a description of another way of adding code.

1. Edit the generated file, MyFirstVisajApp.java .

2. Find the “myExit” method and add the call to “System.exit(0) ”.
Make sure that you add your code outside of the special comments,
so that it is retained if you regenerate the code.
The line to add is shown below.

protected void myExit() {

//vj- <VJ-BeginMethodDef>

//vj= <VJ-MethodCode>

//vj+ <VJ-DefineAWTMembers>

//vj- <VJ-DefineAWTMembers>

//vj+ <VJ-EndAWT>

//vj- <VJ-EndAWT>

//vj+ <VJ-EventListenerClass>

//vj- <VJ-EventListenerClass>

//vj+ <VJ-AddEventListeners>

//vj- <VJ-AddEventListeners>

//vj= <VJ-Classes>
34 Visaj User’s Guide

Chapter 3 Visaj Tutorial
Add the next line:

System.exit(0);

//vj+ <VJ-EndMethodDef>

}

☞ See the Editing the Code section on page 154 for more information on where you may
safely insert your code.

3. Save the file.

3.1.6 Compiling and Running

You now have the source of your application. Perform the following steps
outside of Visaj.

1. Add the diamonds.jar and demos.jar files from the Visaj install
directory and the current directory (.) to your CLASSPATH. Compile
the code.
You must have these JAR files in your CLASSPATH because you are
using some of the Diamond components and the two beans from
demos.jar in your design. The Using the Diamond Components section
on page 159 provides more information on this.

2. Compile your application.
Remember that the java compiler is case sensitive. You should specify
MyFirstJavaApp.java as the file to compile using exactly that
capitalization.

3. When the code has compiled, run your application.
Visaj User’s Guide 35

Chapter 3 Visaj Tutorial
36 Visaj User’s Guide

The Class Editor 4
4.1 Introduction
A Java application consists of one or more class files. Classes contain
variables and methods. It is the methods in the classes which perform the
functions of the application. With Visaj you can construct classes
containing methods which create the user interface of your application.
Classes are defined using the Class Editor. The Class Editor is the first
window displayed when you run Visaj. See the Integration with an IDE
section on page 161 for details on how you can start Visaj from your IDE
(Integrated Development Environment).

The Class Editor, shown in Figure 4-1, consists of a menubar, a toolbar, a
tabbed panel on the left of the window and a tree view of the class
structure on the right.
Visaj User’s Guide 37

Chapter 4 The Class Editor
Figure 4-1 The Class Editor

4.2 Class Structure View
A tree structure of the class is shown on the right side of the Class Editor
window. Each method in the tree can be selected by clicking over it. The
area on the left of the Class Editor displays three sets of editable
information for the currently selected method:

1. Bean hierarchy

2. Event bindings

3. Method signature
38 Visaj User’s Guide

Chapter 4 The Class Editor
These are described in the Method Editing section on page 47.

4.2.1 Editing the List of Methods

Add and delete methods from the list of class methods, shown in Figure
4-2, by selecting the relevant item from the “Method” menu.

Figure 4-2 List of Class Methods

Methods shown with a bean icon are methods which are capable of
creating or editing a bean - that is, they have a containment hierarchy
associated with them. Methods without the bean icon would, typically,
perform a non-interface operation such as the “myExit” method in the
tutorial in Chapter 3 which simply exits the application.
Visaj User’s Guide 39

Chapter 4 The Class Editor
4.2.2 Default Constructor

Visaj automatically gives you one method when you start a new class. This
method is the default constructor. Change this to a simple class method in
the Method Signature page of the Class Editor, described in the Editing the
Method Signature section on page 48. Any method can be made the
constructor by setting the appropriate toggle on the Method Signature
page.

4.2.3 Editing Properties of the Class

The “Properties...” item in the Class menu displays the dialog shown in
Figure 4-3.

Figure 4-3 The Class Properties Dialog

This dialog allows you to edit the properties of the class. You can change
its name, access and superclass. By default, the access type of the class is
public, its name is “MyClass” and its superclass is java.lang.Object. You
may also provide a list of interfaces which this class implements.
40 Visaj User’s Guide

Chapter 4 The Class Editor
The class name is used as the filename of the Java source file when you
generate Java. This is a requirement of the Java language. If you generate
Java, change the class name and then regenerate code, the new class name
is used as the filename of the new Java source file. In addition, if you have
“Update existing files” selected in the Generate dialog, the previous Java
source file is removed. This is to ensure that the generated source is always
in step with the design since you have requested an “Update”. If you wish
to retain your previous file, make sure that the “Update existing files”
toggle is not selected. In this case, however, any changes you may have
made to the generated source file are not retained.

Selecting the “Package” tab in the Class Properties dialog allows you to
specify the package in which your class is found and any packages it
imports.

Populate your class with new methods by selecting the “Add method”
item from the Class menu of the Class Editor.

4.2.4 Automatically Added Methods

There are two types of method which may be added to your class
automatically by Visaj:

1. Exception methods

2. Interface methods

Exception methods are added to your class when you create an event
binding using a method which can throw an exception. The exception
handler matches the type of exception which can be thrown, as shown in
Figure 4-4. In this case, the event binding method handler was the
“setPage” method of the Swing component, JEditorPane. This method can
throw an IOException.
Visaj User’s Guide 41

Chapter 4 The Class Editor
Figure 4-4 Exception Handler Added to Class

These are convenience methods added by Visaj. If an exception is thrown,
this method is called. You can safely add code for handling the exception -
the code is retained if you choose “Update existing files” in the Generate
dialog. You cannot edit these methods (except to make them abstract)
because they are expected to have a particular signature. Although you can
remove these methods (by selecting “Delete” from the Method menu), they
reappear in your class structure editor when code is generated if they are
still referenced anywhere in the generated code.

If you change the properties of your class (by choosing “Properties” from
the Class menu) so that it implements an interface, the methods of the
interface appear in the class structure editor. These methods must be
generated otherwise your application will not compile. You cannot edit
these methods except to make them abstract.

4.3 “this”
this is a keyword in the Java language and refers to “this object” - that is,
an instance of the current class. For example, in the following piece of code
the keyword this disambiguates between the class variable width and the
parameter width which is passed into the constructor:
class Example {

int width;

public Example(int width) {

this.width = width;

}

}

42 Visaj User’s Guide

Chapter 4 The Class Editor
this is selectable from the palette. The type of this is whatever has been
defined as the superclass of the current class. By default, the superclass is
Object . The palette icon, Property Sheet and behavior all reflect the
superclass. When selected from the palette, this is added to the design as
you would expect from its type. So, if the superclass is derived from
java.awt.Component or MenuComponent , this is added to the hierarchy. If
it is not (an instance of java.lang.Object or java.awt.Color , for
example), then this appears in the invisible bean area.

4.3.1 An Example

The use of this can be explained more fully with a simple example. Try
the following, assuming you have a fresh Class Editor window in front of
you:

1. Specify Frame as the superclass by selecting “Properties...” from the
Class menu and filling in the dialog as shown in Figure 4-5.

Figure 4-5 java.awt.Frame as the superclass
Visaj User’s Guide 43

Chapter 4 The Class Editor
The Class Structure now tells you that the superclass of your current class
is Frame and the palette icon has changed appropriately, as shown in
Figure 4-6.

Figure 4-6 this as a Frame

2. Select this from the palette and add a Label and a Button to it, as
shown in Figure 4-7.
this is a Frame, so you can add children to it.

Figure 4-7 this in a Hierarchy

3. Generate code for your small design.
See the How to Generate Code section on page 151 if you are not sure
how to do this.

4. Look at the code which has been generated.
The relevant part of that code is shown below.

The code fragment listed below shows that the Label and Button
components have been added to the class itself and initialized in the
constructor, which is the method in which they were defined in Visaj.
public class MyClass extends java.awt.Frame {

//vj- <VJ-BeginClassDef>

Palette Icon Class Structure View
44 Visaj User’s Guide

Chapter 4 The Class Editor
//vj+ <VJ-DataMembers>

protected Label label1 ;

protected Button button1 ;

//vj- <VJ-DataMembers>

//vj= <VJ-Methods>

//vj+ <VJ-BeginMethodDef>

// Method# 1

public MyClass() {

//vj- <VJ-BeginMethodDef>

//vj= <VJ-MethodCode>

//vj+ <VJ-DefineAWTMembers>

this.setTitle(“null”);

label1 = new Label();

label1.setText(“label1”);

button1 = new Button();

button1.setLabel(“button1”);

{

String strConstraint;

strConstraint = “Center”;

this.add(label1, strConstraint, -1);

strConstraint = “North”;

this.add(button1, strConstraint, -1);

}

this.pack();

this.show();

...

For comparison, the following code fragment shows what is generated
when a Frame is selected from the palette, instead of this :
public class MyClass extends java.awt.Frame {

//vj- <VJ-BeginClassDef>

//vj+ <VJ-DataMembers>

protected Frame frame1 ;
Visaj User’s Guide 45

Chapter 4 The Class Editor
protected Label label1 ;

protected Button button1 ;

//vj- <VJ-DataMembers>

//vj= <VJ-Methods>

//vj+ <VJ-BeginMethodDef>

// Method# 1

public MyClass() {

//vj- <VJ-BeginMethodDef>

//vj= <VJ-MethodCode>

//vj+ <VJ-DefineAWTMembers>

frame1 = new Frame();

frame1.setTitle(“frame1”);

label1 = new Label();

label1.setText(“label1”);

button1 = new Button();

button1.setLabel(“button1”);

{

String strConstraint;

strConstraint = “Center”;

frame1.add(label1, strConstraint, -1);

strConstraint = “North”;

frame1.add(button1, strConstraint, -1);

}

frame1.pack();

frame1.show();

...

Using this in a method design is of most use for classes that are derived
from AWT components, as in our example above. This allows methods to
add components to the base component, which is the class itself. In such a
case, you would normally use the constructor, as we have done in this
example. Then, when an instance of the class is created, the components
within it are created too.
46 Visaj User’s Guide

Chapter 4 The Class Editor
4.3.2 Points to Remember

You may have only one instance of “this” per method. If you change the
superclass of the current class after having added “this” to any methods,
they become simple variables of the type they were when added to the
method. That is, if “this” is added to the containment hierarchy when the
superclass was a Panel and the superclass is now a Dialog, “this” becomes
a simple Panel and retains its position in the hierarchy and any properties
which have been set on it.

4.4 Method Editing
The left area of the Class Editor contains a tabbed panel which provides
three editors for a method. Select a method from the class structure on the
right to view and edit information on that method. The three editors are:

1. Beans (the user interface builder)

2. Event bindings

3. Method signature

The user interface builder, described in Chapter 5, “Beans View”, starting
on page 55, allows you to build the user interface Beans and invisible
Beans of your application. This is a powerful graphical building tool
complete with properties, layouts and a true representation of the user
interface.

Event bindings are connections between Java beans. They provide a quick
way of adding functionality to your user interface. They take effect
immediately in the dynamic display and are generated into the code. Use
the Event Binding Editor to link the action of one bean to a method in
another. This is fully described in Chapter 6, “Event Bindings”, starting on
page 79.

Editing a method signature is explained in the following section.

Pressing the “Method Editors only” button on the toolbar hides the Class
Structure View, thereby allowing more space for the design of your
methods. Pressing the “Show both” button on the toolbar makes the Class
Structure reappear.
Visaj User’s Guide 47

Chapter 4 The Class Editor
4.4.1 Editing the Method Signature

Selecting the “Signature” tab on the left of the Class Editor displays the
panel shown in Figure 4-8.

Figure 4-8 Method Signature

Use this panel to modify the method declaration for the method that has
been selected, and is shown highlighted in the list. You can change a
method's name, its return type, select one or more of the modifiers static,
final, synchronized, native or abstract, change the method' s access type
from “public” to protected, private or “default” no specified type.
48 Visaj User’s Guide

Chapter 4 The Class Editor
If you select the modifier “native” or “abstract”, then the method cannot
contain code, and the Beans and Event pages are disabled. If you already
have beans in this method, you cannot set either of these toggles.

If you make any method in the class “abstract”, then the class itself is also
abstract.

The two lists in the lower area of the panel allow you to give the method
parameters, or arguments, and to state which exceptions are to be thrown
by the method.

Note that all three of the type fields here (and the superclass field in the
class properties dialog) do not require a full class name, if the class is in
one of the base java packages, or in Swing. You need only type
“IOException” and it will resolve this as “java.io.IOException”.

In this panel, and in the method list, blue indicates a Java keyword and red
either a built-in Java type, or a class.

4.4.2 Main Method

You can tell Visaj whether or not to generate a main method using the
“Main method” item in the Method menu. The possible options are:

1. You have not set the “Main method” checkbox for any of the methods
in your class. No main method is generated.

2. The constructor has the “Main method” item set for it. This results in
just the constructor being called from the generated main method.

3. A method other than the constructor has the “Main method” checkbox
set. The generated main method calls this method after calling the
constructor.

A method selected in this way is indicated by a star in the Class Structure
View.
Visaj User’s Guide 49

Chapter 4 The Class Editor
4.5 Importing X-Designer Save Files
Visaj can import designs created in X-Designer, the graphical user interface
builder for Motif. This enables you to move legacy Motif C/C++ designs
quickly to Java. Visaj also imports designs created in Sun Microsystems’
Workshop Visual in exactly the same way.

4.5.1 Importing the Design

The File menu contains an Import pullright menu. This contains one item:
“X-Designer bridge file”. Selecting this displays a file dialog allowing you
to specify the design to import.

There are some features in X-Designer which have no equivalent in Visaj. If
your import file contains any of these, a dialog is displayed describing the
situation. The possible messages are:

1. One or more classes were expanded into simple component
hierarchies.

2. String/font/color/pixmap objects in your design were expanded into
simple property settings.

3. Forms were converted to null layouts.

Each of these is described in the following sub-sections.

Apart from the discrepancies described above, the imported design should
reflect the Motif application exactly.

One or more classes were expanded into simple component hierarchies

In X-Designer, you can make any component a class. In Visaj, to break your
design into classes you build separate hierarchies in different designs,
generate code, compile it and then add the generated hierarchies to the
palette as beans for use in larger designs.

Converting from the X-Designer model to the Visaj model is better done
under your control than in an automated import function, as the
compiler/debugger/etc. environment can vary greatly between users.
50 Visaj User’s Guide

Chapter 4 The Class Editor
So, while importing, Visaj ‘expands’ classes, basically ignoring whether or
not any given component is a class. You can cut sub-hierarchies and paste
them into new Visaj designs as you see fit after importing the design.

String/font/color/pixmap objects in your design were expanded into
simple property settings

Visaj has no equivalent to these (or for that matter, no equivalent to
pixmap objects - but see above). So, all references to objects are expanded
into simple resource values. For example, if you have a label l whose text is
<fred>, <fred> being a string object with value “Hello!”, then after import,
l will have the text “Hello!”, and <fred> will have been forgotten.

All XmForms in the design were changed to absolute positioning using a
null layout

The layout manager com.pacist.mwt.FormLayoutManager is not
supported. Components whose layout is controlled by this manager are
positioned absolutely as a result. You are recommended to change your
design to use one of the Java layout managers.

4.6 Applets
Make your class into an applet by specifying java.applet.Applet as the
superclass, as described in the Editing Properties of the Class section on page
40. Having done this, the “this” icon on the object palette changes to the
applet icon. Select “this” from the palette to add objects to your applet.

If you are using Swing, you can make your class into a JApplet from the
Swing component set by making javax.swing.JApplet the superclass.

4.7 Generating Code
To generate source code for your class, select “Generate Java...” from the
Generate menu or press the Generate button on the toolbar. Code
generation is described in Chapter 11, “Generated Code”, starting on page
151.
Visaj User’s Guide 51

Chapter 4 The Class Editor
4.8 Windows Menu
As well as providing a way of displaying a new window onto your Visaj
save file and of moving between all open Visaj windows, the Windows
menu allows you to display the Font and Color Selectors.

4.8.1 Font Selector

The Font Selector, shown in Figure 4-9, provides a means of selecting a
font.

To set the font of a component, first display the component’s property
sheet. You can then use drag and drop: either drag the selected Font from the
Selector (using the mouse button) and drop it directly over a property of
type “Font” or select the property first and then drop the font into the area
at the bottom of the property sheet where the current value is being
displayed. Alternatively you may copy (Ctrl+C) from the sample area and
paste (Ctrl+V) into the property sheet editing area.

Figure 4-9 Font Selector

Sample window
52 Visaj User’s Guide

Chapter 4 The Class Editor
4.8.2 Color Selector

The Color Selector, shown in Figure 4-10, is a dialog with tabbed panels
providing different color viewing models. Some viewing models require
you to click over a color to select it, some provide sliders. The color you
have most recently selected appears on the right of the sample area at the
top of the Selector window. The left of this area shows the original color.

To set a component’s color, display its property sheet, select the property
which is expecting the color, drag your chosen color from the sample area
of the Color Selector (with the mouse button) and drop it either directly
into the property, as displayed in the sheet, or into the editing area at the
bottom of the property sheet. Alternatively you may copy (Ctrl+C) from the
sample area and paste (Ctrl+V) into the property sheet editing area.

Figure 4-10 Color Selector

4.9 Displaying Other Tools
To display Visaj’s other tools, either select one of the “New” options from
the File menu or the toolbar, or open a saved file of the appropriate editor.

Sample window

Last applied color Currently selected color
Visaj User’s Guide 53

Chapter 4 The Class Editor
4.10 Option Menu Items
The Option menu contains items for your general use of Visaj. There are
two items: “Authentication...” and “Java Console...”. Selecting
“Authentication...” displays the Licensing dialog which is described in the
accompanying document on licensing. If you are using Visaj from an IDE
(Integrated Development Environment), this option is disabled as licensing
is controlled by the IDE and not by Visaj.

Selecting “Java Console...” displays a simple window containing a read-
only text area. This window displays any exceptions which have occurred
while you are using Visaj. You only need to check here if you feel that Visaj
is not responding correctly. This window is for the display of information
only.
54 Visaj User’s Guide

BeansView 5
The “Beans” page of the method editing panel in the Class Editor, shown
in Figure 5-2, is the tool for building the user interface of your application.
User interfaces in Java are built hierarchically with AWT components
grouped inside containers and containers inside a window or dialog. Each
container controls the way its children are laid out and behave when
resized. Figure 5-1 shows how Java components may be organised in a
simple dialog. The topmost view is the dialog as it appears on your screen,
in the middle is a tree view showing how you would build up the
hierarchy of AWT components and the view at the bottom is a schematic,
theoretical diagram of the containments.

Note – The schematic view is for clarification only - Visaj does not display this
view.
Visaj User’s Guide 55

Chapter 5 Beans View
Figure 5-1 Java Containment Hierarchies

The graphical editor for containment hierarchies is found on the left of the
Class Editor. Each method in your class can have a containment hierarchy
defined for it. Select a method from the class structure view and check that
the panel labelled “Beans” is visible on the left. This panel is a graphical
tool for building user interfaces.

Panel

Panel

Dialog

Label Textfield

Button Button Button

Schematic view

Hierarchical view

Dialog on the screen
56 Visaj User’s Guide

Chapter 5 Beans View
There are two main areas: the containment hierarchy and the object palette.
The design area is the place where containment hierarchies are built and
invisible beans are displayed. The object palette displays all objects
available to you for building up your user interface. This is described in
more detail in the Object Palette section on page 59. The Opening Other
Palette Files section on page 59 and the Loading JAR Files section on page 60
describe two ways of adding objects to the palette.

Figure 5-2 Beans View

5.1 Dynamic Display
The dynamic display is a preview of the window you are designing,
showing how it will look when the code is generated, compiled and run.
The dynamic display is a floating window, as shown in Figure 5-2.

Object palette

Containment hierarchy

Design area

Dynamic display

Invisible Beans
Visaj User’s Guide 57

Chapter 5 Beans View
The dynamic display and the containment hierarchy can be recreated by
pressing the Reset button on the toolbar (or selecting “Reset” from the
Object menu). The selected object and its children are rebuilt using any
properties you have set for them. If no objects are selected in the design
area, the whole hierarchy is rebuilt. Use this option when you have made
many settings to ensure that the dynamic display accurately reflects your
design.

5.2 Dummy Frames
If the root of your hierarchy is not a window capable of being displayed on
your screen, Visaj will place the dynamic display for your hierarchy in a
suitable window with the title “Dummy Frame”. This is useful if you want
to create a method which creates a component or group of components -
for example, a group of labels and text fields which you wish to use again
and again in your application. Or you may have a Choice component
which you have loaded with a list of color names which you wish to use in
multiple dialogs; making the Choice a hierarchy on its own would allow
you to do this.

5.3 Building Hierarchies
To create containment hierarchies, click over the objects in the object
palette. If no objects are selected in the design area, the new object becomes
the root of a hierarchy. Visaj assists you in creating a viable hierarchy by
only allowing you to select those objects which can be made children of the
selected object; all others are made insensitive.

Note – With the Swing component set, all components can take children.

Objects are added as children of the current selection. As objects are added,
they are automatically selected if they are themselves containers. If not, the
parent remains selected. With the Swing set, Visaj only selects containers
automatically even though all components may take children.

To start another hierarchy in the same method, make sure that no objects
are selected in the design area and then select the new root object from the
object palette. Clicking on the design area background deselects all objects.
58 Visaj User’s Guide

Chapter 5 Beans View
Select an object in the hierarchy by clicking over it. To select more than one
object, drag a rectangle over them or hold down the Shift key to add to the
selection list.

5.4 Object Palette
Objects are divided into groups on the palette. Each group is labelled. The
group label is a toggle button which, when selected, folds away or unfolds
that group.

By default, only the icon representing the object is shown on the palette. By
selecting “Show labels” from the Palette menu, you can also see the name
of the object.

Invisible Java beans also appear on the object palette. When you add them
to the method they appear at the top of the design area.

There are two ways of adding objects to the palette: opening another
palette file and loading a JAR file. You also have the option of changing the
entire palette you are using. All of these are described below.

5.4.1 Opening Other Palette Files

Add objects to the palette by selecting “Merge palette file...” from the
Palette menu. You are prompted for the name and location of the pre-
defined palette file. The format of a palette is described in the Palette File
section on page 162. For Visaj to find the objects listed in the palette file,
make sure that you have set your CLASSPATH environment variable1 to
give the location of the separate class files or the JAR file containing the
classes.

Taking the trouble to define a palette file gives you more flexibility over the
grouping of objects when they appear on the palette and over which
objects are loaded from a JAR file.

1. Environment variables are available on UNIX and Microsoft Windows. Other platforms, such as the
Apple macintosh, use their own method of setting a CLASSPATH. Please refer
to the relevant Java documentation for more information.
Visaj User’s Guide 59

Chapter 5 Beans View
If you have saved a design which uses a bean from a merged palette, Visaj
tries to load the bean for you automatically when you next open that
design.

5.4.2 Loading JAR Files

Add objects to the palette by selecting “Load Jar file...” from the Palette
menu and giving the name and location of a JAR file in the File Dialog.
Visaj adds all beans in the JAR file to the palette, grouping them under one
heading which is the name of the JAR file. You do not need to set your
CLASSPATH environment variable1 for this option. Although this is often
easier than creating palette files, you cannot control which objects are
loaded as Visaj will load in all the beans it finds in the file and they are all
grouped together.

If you have saved a design which uses a bean from a loaded JAR, Visaj
tries to load the JAR for you automatically when you next open that
design.

5.4.3 Change Palette

The Palette menu contains a pullright menu, labelled “Change”, with two
items: “AWT” and “Swing”. Selecting these options changes your current
palette to the AWT components or the Swing set respectively. See
Chapter 7, “Swing Component Set” for information on using Swing.

Using this method, the palette is changed and not merged with existing
components. Use “Merge palette file...” if you wish to merge the
components on your palette with AWT or Swing components.

In order to change to the Swing palette, you must have the Swing classes in
your CLASSPATH. See the Loading Swing Components section on page 90 for
more details.

5.5 Properties
All objects have properties. These include, for example, the colors,
dimensions, label and visibility of the object. Many (sometimes all) of these
properties are inherited from an object’s superclass. To edit the properties
60 Visaj User’s Guide

Chapter 5 Beans View
of an object, either double-click the object in the hierarchy area or select the
object and select Properties from the Object menu or from the toolbar. This
causes the Property Sheet to be displayed, as shown in Figure 5-3.

Figure 5-3 Property Sheet for a Label

The Property Sheet is organized in the form of a tree, with each node
indicating from which superclass the properties have come. Each node in
the tree can be folded or unfolded. This is most useful where there are a
large number of properties which can be changed. Next to each property
there is a pencil icon which indicates whether or not the property is
editable. If the pencil is “crossed out” (has a line across it), it cannot be
edited.

To edit a property, select it in the tree. The lower area of the Property Sheet
displays the options available for that property or a means of entering a
value. Properties are set as soon as they are changed. They take immediate
effect in the dynamic display.
Visaj User’s Guide 61

Chapter 5 Beans View
The “Undo” button at the bottom of the property sheet undoes the last
change made in the current property sheet.

Note – See the Packing Frames section on page 153 for special information
concerning the size property for Frame and JFrame components.

5.5.1 Variable Name

The Property Sheet contains a field at the top of the window labelled
“Variable Name”. Although this is not a true property in the same sense as
the other properties in this window, it is a value associated with the
selected object. The variable name is the name used to refer to the object in
the generated code.

5.5.2 Variable Scope

The field at the top of the Property Sheet labelled “Variable Scope”
provides a means of controlling the declaration scope of an object. When
this field is selected, two option menus appear in the editing area at the
bottom of the Property Sheet. One of the menus allows you to choose
whether the object is an “Instance” or a “Local” variable. This affects where
the object is declared; instance variables are declared as members of the
Class, local variables are declared in the current method and are therefore
not accessible from the rest of the Class. The other option menu only
applies when you have chosen “Instance variable” and refers to the
accessibility of it. There are four options:

1. Default. This is the default assigned by Java when none of the other
options are specified. It means that the variable is only accessible from
the current class and other classes in the same package. Even
subclasses, when they are not in the same package, would not be able
to access them.

2. public. This makes the variable visible everywhere.

3. private. The variable is only accessible within the class in which it has
been declared.

4. protected. When “protected”, the variable is visible within the current
class, all subclasses and all classes in the same package.
62 Visaj User’s Guide

Chapter 5 Beans View
5.5.3 Object Initialization

This field in the Property Sheet enables you to control the way in which
any object in your design is initialized. By default, a new instance of the
object is created. You may change this to one of the following:

1. New

2. Beans instantiation

3. Code Expression

4. Variable Name

5. Deserialization

6. No Initialization

Each of these is described in the following sub-sections.

New

This is the default for non-serialized beans. A new instance of the object is
created. This option is not present for serialized beans which you have
loaded onto your palette as there is no new method for them.

Beans instantiation

Select this option to instantiate the bean. A call to Beans.instantiate is
generated, passing in the name of the bean.

Code Expression

You may type any arbitrary expression for the initialization of the object.
Use this option when you wish to initialize the object from a routine in
another part of your application, for example.
Visaj User’s Guide 63

Chapter 5 Beans View
Variable Name

Typing the name of a variable into the text field will cause Visaj, when
requested, to generate the code to assign that variable to your object. Visaj
simply generates the assignment. You must check that you have typed the
name correctly and that the variable is in scope.

Deserialization

If this is the selected option, the object is created by being deserialized out
of the serialization file specified in the text field. The serialization file,
whose name you provide here, is generated by Visaj when the Java class
files are generated. This is described in the What is Generated section on
page 152. Visaj provides a default name for the serialization file based on
the variable name of the object.

This option is the default for any serialized beans which you may have
loaded onto your palette.

Visaj automatically sets the “Object Initialization” property to
“Deserialization” when you customize a bean. If you subsequently change
this option, the customization will not take effect in the generated code.
More about customizing beans is given in the Customizers section on page
68.

No Initialization

The object will not be initialized in the generated code.

5.5.4 Code Expression, Value and Variable Name

When editing normal properties (that is, properties other than those listed
under “Code Properties”), the lower editing area displays an option menu
containing the items “Value”, “Code expression” and “Variable Name”.
Choosing either “Code Expression” or “Variable Name” causes a text field
to be displayed where you may type in either any expression, which is
then used to set the selected property, or the name of a variable which is in
scope. For example, you may wish to call a method which returns a
property value, or you may wish to create a new instance of a class to
assign to the property. These expressions are not used dynamically inside
64 Visaj User’s Guide

Chapter 5 Beans View
Visaj, but you will see its effect when the generated code is run. One
example of the use of the “Variable Name” option is given in the Using
CheckboxGroups section on page 76.

5.5.5 Reset to Default Value

At the bottom of the property sheet there is a button labelled “Reset to
default value”. This is enabled if you have changed the selected value in
the property sheet and, once pressed, sets the value back to the default.

5.5.6 Setting Color and Font Properties

To set a color or font property using the Color or Font Selector, drag the
required color or font from the sample window of the Selector either into
the editing area at the bottom of the property sheet when an appropriate
property is selected or directly onto the property value where it is
displayed in the property sheet. The Color and Font Selectors are available
from the Windows menu of the main Visaj window. For more details on
using the Selectors, see the Font Selector section on page 52 and the Color
Selector section on page 53.

5.5.7 Default Labels

Objects such as Buttons, Labels and Checkboxes are given a unique default
label based on the object name and a number, as shown in Figure 5-4. Visaj
does this so that the object displays properly in the dynamic display;
without a label, the object would shrink very small and, in the case of
Labels, would not be visible at all.
Visaj User’s Guide 65

Chapter 5 Beans View
Figure 5-4 Default Labels Assigned by Visaj

If you do not set your own labels using the Property Sheet, the default
labels are generated into the code so that the final application looks exactly
as you see in Visaj.

5.5.8 Image Properties

Many objects have image properties. The Frame, for example, has
“iconImage”, which is the image it displays when iconized. When this type
of property is selected, the property editor shown in Figure 5-5 appears at
the bottom of the property sheet.

Figure 5-5 Image Property Editor
66 Visaj User’s Guide

Chapter 5 Beans View
The option menu at the top of this section lets you choose the standard
types of value for a property. Choosing “Image resource” (and for Swing
“Swing ImageIcon resource”) lets you provide an image file to load
immediately and the location of it at runtime.

Runtime Resource Path

The “Runtime resource path” is the name of the image, optionally
including its package, to be used when the generated code is run.

In the generated code, image files are loaded as resources using the class
loader. The string typed into the “Runtime resource path” text field is
passed directly to the class loader method getResource . See your Java
documentation for a detailed description of the mechanism used by
getResource . The Books on Java section on page 209 lists some suggested
books.

If, at runtime, your image cannot be found a NullPointerException is
displayed. Check that you have entered the correct package name in Visaj
and that your CLASSPATH is set correctly.

Design Time File

When you press apply, Visaj tries to load the image specified as “Design-
time file” and displays it in the property sheet. If the image cannot be
located, an error dialog is displayed.

5.5.9 Multiple Selection

You may select multiple objects by either dragging a rectangle around
them or by holding down the Shift key while selecting to add to the
selection. If more than one object is selected, the property sheet displays
only those properties which are common to all the selected objects.
Visaj User’s Guide 67

Chapter 5 Beans View
5.5.10 Layout Properties

Some properties affect the layout manager, which is itself a property of an
object. One example of such properties is the number of rows and columns
in a Grid. To set the properties of a layout manager, press the Properties
icon in the toolbar of the Layout Editor. Layout Editors are described in the
Layout Editors section on page 69.

5.6 Customizers
Objects which are Java Beans are often provided with a Customizer. This is
a means of setting properties of the bean in addition to those available
from the Property Sheet. See the Properties section on page 60 for more
information on Property Sheets. If a customizer is available for an object,
the “Customize...” option in the Object menu is sensitive. An example of
such a dialog is shown in Figure 5-6.

Figure 5-6 Customizer

☞ Customizers provide the means of populating List and Choice components.
68 Visaj User’s Guide

Chapter 5 Beans View
When you customize a bean, Visaj changes its “Object Initialization”
property to “Deserialization”. If you change this property back to “New”,
your customization will not take effect in the generated code. Changing the
“Object Initialization” property is described in the Object Initialization
section on page 63.

5.7 Layout Editors
All components which are containers (Frame, Panel etc.) have a layout
associated with them which controls how the children of the container are
arranged. To find out how to apply a particular layout to a container, see
the Using and Applying Layouts section on page 74.

There are a number of different types of layout which are part of the Java
AWT and more supplied by individual component vendors. These layouts
allow you to arrange the objects within the container in a specified way. To
do this dynamically, use Visaj’s Layout Editor. Select the Layout icon from
the toolbar when a container is selected in the hierarchy. The Layout Editor
is displayed in its own window with layout functions appropriate to the
type of layout set on the container component. Changes that are made in
the Layout Editor are reflected immediately in the dynamic display.

The layout types supported by default are:

1. GridBag (from the Java AWT package)

2. Grid (from the Java AWT package)

3. SuperGrid (from the IST Diamonds)

4. Flow (from the Java AWT package)

5. Border (from the Java AWT package)

6. BoxLayout (from the Swing component set)

7. Null (no layout)

These are described individually below.

Note – To undo and redo actions in the Layout Editor, use the Undo or Redo
buttons in the Class Editor to which it belongs.
Visaj User’s Guide 69

Chapter 5 Beans View
5.7.1 Grid

Components may be swapped around within the grid by dragging them
over one another but the number of rows and columns, along with the
horizontal and vertical spacing is set from the Property Sheet. Do this by
pressing the property sheet icon in the toolbar of the Layout Editor. Since
the order of the components in the containment hierarchy must be the
same as the order in the Grid layout, when objects are re-ordered in the
Layout Editor their order is automatically changed to reflect this in the
hierarchy.

5.7.2 SuperGrid

A Layout Editor for the SuperGrid Diamond is also supplied. The
SuperGrid Layout Editor is very similar to that of the Grid, allowing you to
re-order objects within a grid. The order of components in the containment
hierarchy dictates the order in which they appear in the Layout Editor. In
order to retain this parallel (so that your generated code will act exactly as
Visaj shows), the ordering of objects in the hierarchy is updated as objects
are re-ordered in the Layout Editor. Properties such as the number of rows
and columns are edited in the Property Sheet, as described for the Grid
Layout Editor. For more information on the SuperGrid layout, see the
SuperGrid Layout section on page 195.

5.7.3 Flow

The Flow Layout Editor is also similar to that of the Grid, except that it is
effectively one long row which is wrapped around according to the size of
the containing window. Children can be re-ordered by dragging them over
one another. The Layout Editor simply displays one long row; the dynamic
display shows the wrap-around of this row, as you resize the window.

5.7.4 Border

The Border Layout Editor shows the geographical positions possible
(North, West, Center, East and South) and allows you to drag components
into these positions. If a component already occupies the position, the two
components are swapped.
70 Visaj User’s Guide

Chapter 5 Beans View
Figure 5-7 Border Layout Editor

By default, a Frame component is given a Border layout and a Panel is
given a Flow layout.

5.7.5 Null Layout (Absolute Positioning)

Using the Property Sheet you may choose “Null” for the layout of a
container. This means that the container has no layout manager associated
with it. This is useful if you wish to use absolute positioning to lay out the
children of the container. Although there is no layout manager, the Layout
Editor still allows you to move and resize the child components.

Use the four alignment buttons in the toolbar of the layout editor, shown in
Figure 5-8, to ensure that your objects are aligned neatly. The buttons
become sensitive when more than one object is selected. The objects are
aligned to the last selection.
Visaj User’s Guide 71

Chapter 5 Beans View
Figure 5-8 Alignment Buttons in Layout Editor

5.7.6 GridBag

The GridBag layout is the most flexible and most complicated of the layout
types.

Align left edges Align right edges Align top edges Align bottom edges
72 Visaj User’s Guide

Chapter 5 Beans View
Figure 5-9 GridBag Layout Editor

The alignment buttons in the toolbar of the GridBag Layout Editor work
exactly as described for the Null layout, above.

The area on the right of the editor window allows you to edit the GridBag
Constraints for a particular component in the GridBag. Select the
component in the grid area by pressing the mouse button with the cursor
over it. Edit the constraints in the text boxes on the right. The constraints
are applied to the current selection as you change the focus from one text
box to another.

The left area of the Layout Editor is a logical representation of the
components within the GridBag. The components are not shown actual
size; this makes moving and resizing easier for small components.
Components can be moved around inside the GridBag and, as you do this,
the GridBag itself will change its dimensions correspondingly. Components
can also occupy more than one cell in the grid. Do this by selecting the
component and resizing it using the handles which appear around the
edge. All of these changes to the GridBag layout are effective immediately
in the dynamic display.
Visaj User’s Guide 73

Chapter 5 Beans View
The GridBag layout allows you position components anywhere in an
arbitrary grid. This means that it is possible to have empty rows and
columns between two components. The GridBag sees empty rows and
columns as having zero width and height, since the width and height of a
row or column is calculated by its contents. The GridBag Layout Editor
indicates that a row or column has a zero width and height by displaying
them in a different color (pink). Since the dynamic display shows the
actual sizes of the components, the empty rows and columns appear not to
be there.

5.7.7 BoxLayout

The Swing component set includes BoxLayout. This is a layout manager
which places each of its children from left to right or from top to bottom,
according to the parameter passed in when the BoxLayout is created.
Components are arranged from left to right (or top to bottom), in the same
order as they were added to the container. Visaj lets you use the BoxLayout
via the Box class. Box is a container which uses BoxLayout. A Layout
Editor is provided for BoxLayout. All of this is described in the Swing Tips
section on page 95.

5.8 Using and Applying Layouts
Layouts are selectable from the palette. When a layout is selected from the
palette, it is applied to the layout property of the currently selected
container. Change the layout of a container by either:

1. Selecting another layout from the palette with the container selected in
the hierarchy.

or:

2. Change the layout property in the container’s Property Sheet. See the
Properties section on page 60 for details on how to do this.

5.9 Invisible Beans
Java Beans are reusable software components. Some have their own visual
representation, some do not. Invisible Beans are Beans which have no
visibility to the user - for example, a database access component. These
74 Visaj User’s Guide

Chapter 5 Beans View
Beans can be added to your palette in the same way as any other
component is added - see the Palette File section on page 162 for more
details on adding components to your hierarchy.

In order to add an invisible Bean to your design, make sure there is no
current selection. Do this by clicking over the background of the design
area. The invisible Beans are then displayed at the top of the design area,
alongside the roots of hierarchies, as shown in Figure 5-10.

Figure 5-10 Invisible Bean Area

Once you have added an invisible Bean to your method, it will appear in
the Event Editor, allowing you to link it in to your containment hierarchy.
You may add any number of invisible Beans to your method.

Like the other objects on the palette, invisible Beans have properties
editable from the Property Sheet and, if provided by the vendor, can also
have customizers.

Two common types of invisible bean available on the default palette are
CheckboxGroups and ResourceBundles. How to use ResourceBundles is
described in the Using Resource Bundles section on page 144.
CheckboxGroups are described below.

Invisible Beans
Visaj User’s Guide 75

Chapter 5 Beans View
5.9.1 Using CheckboxGroups

CheckboxGroups provide a way of grouping Checkboxes to give them
radio button behavior. As with all invisible Beans, make sure you have no
current selection before adding a CheckboxGroup to your design. It then
appears at the top of the design area. To apply a CheckboxGroup to a
Checkbox, do the following:

1. Display the property sheet for the Checkbox (remember that you can
select more than one Checkbox and apply any changes to all of them).

2. Select the checkboxGroup property.

3. Select the “Variable name” option from the editor at the bottom of the
property sheet.

4. Type in the name of the CheckboxGroup you wish to apply to the
Checkbox.

Although you will not see the radio behavior in the dynamic display, the
generated code will display such behavior.

5.10 Using Your Beans - Creating Reusable Components
The Beans view in Visaj allows you to create standalone applications,
applets and beans. Creating beans from your designs provides a way of
reusing components. To generate a bean from your design, you do not
need to do anything special in Visaj. Simply generate code as usual, having
observed the following two points:

1. The Class must be public.

2. The Class must provide a default constructor with no parameters. For
example:
public MyClass()

After you have generated code you will either need to create a JAR file
containing your bean or, if you only wish to use the bean in Visaj, create a
palette file which references your bean. Each of these options is described
in the following sub-sections.
76 Visaj User’s Guide

Chapter 5 Beans View
5.10.1 Putting the Bean in a JAR

If you are not using an IDE which creates beans from Java sources, you will
have to do this yourself. The following description tells you how.

Once you have generated code for a design which you intend to use as a
bean, compile it and then create the manifest file. This is a special file that
contains information about the files packaged in a JAR. The "jar" command
automatically creates a default manifest file but this default does not
contain the vital information that the classes the contents of this JAR
constitute a bean. Therefore, you will have to create the manifest file
yourself.

The manifest file must be called “MANIFEST.MF” and contains a list of all
the .class files in the JAR. must also be stored inside a directory or folder
named “META-INF”. Here is a simple example of the contents of a JAR file
containing a bean whose class name is “MyClass”:

META-INF/

META-INF/MANIFEST.MF

MyClass.class

To see the contents of a JAR, use the following command:

jar tvf filename.jar

The contents of the file META-INF/MANIFEST.MF are fairly simple. It just
needs to list the name of the main class for the bean and indicate that this
is indeed a bean. Write the following into your manifest file, replacing
“MyClass.class” with the name of the main class of your bean:

Name: MyClass.class

Java-Bean: True

Now you need to package your files (the class file(s) for your bean and the
manifest file) into a JAR. The following command does this:

jar cvfm myjar.jar META-INF/MANIFEST.MF class-files

“cvfm” stands for “c”reate, “v”erbose, “f”ile name, name of “m”anifest file.

The command line option “f” and “m” must be specified in the same order
in which the corresponding files are specified.
Visaj User’s Guide 77

Chapter 5 Beans View
The resulting JAR file is your bean. See the Loading JAR Files section on
page 60 for details on how to load your bean onto Visaj’s palette. Once
loaded onto your palette you can use it in your designs. Remember that if
you save any designs which use your new bean and then exit Visaj, you
will need to reload the bean’s JAR file before opening those saved designs.

5.10.2 Creating a Palette File to Reference the Bean

If you simply wish to use your newly created bean in Visaj, you can create
a palette file for the bean and then use “Merge palette...” to add the bean
into your existing palette. The bean can then be used inside Visaj.
Remember that if you do this and save a design which uses the new bean,
you will have to merge in the bean palette file before opening the saved
file. See the Palette File section on page 162 for a description of palette files.
Before creating the palette file. generate Java for your bean and compile the
generated code.
78 Visaj User’s Guide

EventBindings 6
6.1 Introduction
All objects within your Visaj design can be linked together using events.
Events are messages which can be sent by the action of one component and
may be received by the method of another. You can specify that a
particular method in a specific component is called when an action (such
as a button press) occurs in one component. Once you have created an
event binding in Visaj, it is immediately active in the dynamic display. You
can create as many bindings as you wish and try them out straightaway.

The Event Binding Editor, described in the following section, lets you
create new bindings and edit existing ones. This is a wizard which can be
displayed in one of the following ways:

1. Pressing the icon on the toolbar.

2. Holding down the Alt or Control key while dragging from the source
to the destination component.

3. Choosing “Add event binding” from the Method menu.

4. Pressing either “New” or “Edit” beneath the Event bindings list.

Event bindings, once created, are listed on the Event bindings tab of the
method editing area. Here they may be edited, re-ordered or deleted. The
Event bindings list is described in the Event Bindings List section on page
86.
Visaj User’s Guide 79

Chapter 6 Event Bindings
6.2 Event Binding Editor
The Event Binding Editor, shown in Figure 6-1, is where new bindings are
created and existing ones are edited.

6.2.1 Displaying the Editor

There are five ways to display the Event Binding Editor:

1. With the Alt or Control key held down, drag the mouse pointer from
one component to another in the containment hierarchy. The Event
Binding Editor then appears, primed with the first and second
component as the source and destination of the binding respectively.
The first event type in the list is also selected. This method can only be
used to create new bindings.

2. Press the Event Binding Editor button on the toolbar. The Editor is
ready for you to create a new binding so it does not pre-select
anything, unless a component is selected on the Beans page. The
component is then used as the Source Object.

3. Press “New” in the Event Bindings List. The Event Binding Editor is
not primed, except to show all the available components.

4. Press “Edit” in the Event Bindings List. You will need to select a
binding from the Event Bindings List first.

5. Select the “Add event binding” item in the Method menu. This is
exactly the same as pressing the corresponding toolbar button.

6.2.2 Description of the Editor

The event binding editor shows all the components in your design, all the
event types associated with the selected source component and all methods
available for the selected destination component. You must make a
selection in the “Source” and “Object” lists for the “Type” and “Method”
lists to appear.
80 Visaj User’s Guide

Chapter 6 Event Bindings
There are usually a large number of methods for a particular handler. To
quickly locate the one you require, select the Method pane (by selecting
any method within it) and type the first letters of the method you are
looking for. The display scrolls to methods beginning with the letters you
type.

Some handler methods may be capable of throwing an exception. This is
not indicated in the event binding editor. However, if you add an event
binding with one of these methods, Visaj adds a method to your class
which handles the exception when thrown. The method is displayed in the
class structure editor on the right of the Visaj window but its signature
cannot be changed. In the generated code, this method gives you a place to
add your own code for handling exceptions.

Assignment

The first item in the Method list is not a method at all. This item, shown as
“= [expression]”, allows you to assign a property or method return value to
the “Object” when an event is fired. The “Next” button becomes enabled
when the assignment operator is selected. Press this button to display the
parameters page of the editor - described in more detail in the Event
Binding Editor: Parameters section on page 83. You should use the
parameters page exactly as described even though you are specifying the
source of an assignment rather than a method parameter. Remember that,
as with parameters, you can only select a method return value or property
which is the appropriate type. You may set a “Value” if there is an editor
available for the selected type.
Visaj User’s Guide 81

Chapter 6 Event Bindings
Figure 6-1 Event Binding Editor

At the bottom of the Event Binding Editor there are five buttons: “Cancel”,
“<Previous”, “Next>”, “Finish” and “Another”. The Finish and Another
buttons become sensitive only when you have entered enough information
for the binding to be created. The only difference between these two
buttons is that pressing Finish closes the dialog whereas pressing Another
leaves the dialog open on the screen.

When you select a destination method, the Next button becomes sensitive
if the method has parameters. Pressing the Next button (or the Return key)
displays the second page of the Event Binding Editor, as shown in Figure
6-2.
82 Visaj User’s Guide

Chapter 6 Event Bindings
Figure 6-2 Parameters Page of Event Binding Editor

6.3 Event Binding Editor: Parameters
The second page of the Event Binding Editor allows you to specify values
for the parameters to the destination method. The parameters are listed by
their type on the left of the dialog. Each parameter is shown with a cross or
tick next to it:

A value has been set for this parameter

No value has been set for this parameter

The right of the dialog contains two areas. The top area lists the ways of
specifying the value of the selected parameter. The lower area contains the
editor for the selected value type. The four value types are:

1. Property

2. Method

3. Value

4. Code expression

The following sub-sections describes each of the above.

Parameter list
Visaj User’s Guide 83

Chapter 6 Event Bindings
6.3.1 Property

This allows you to set the value of the parameter to the value of a
component’s property. When “Property” is selected, two scrolling lists
appear in the lower area. This is shown in Figure 6-3.

Figure 6-3 Property Value for Parameter

The list on the left shows all the objects in your design, including the event
object being passed to the listener method. Selecting one of these objects
causes all the properties of this object to be displayed in the list on the
right if, and only if, it is assignable to the selected parameter.

You can assign any property to a parameter of type String as all objects are
converted to Strings by way of their “toString” method. Properties which
are going to be coerced in this way are shown in blue type.

The property list includes “this” if the object selected from the object list
can be assigned to the selected parameter.

If the object selected from the object list has no properties of the
appropriate type, the message “No properties of an appropriate type” is
shown in the property list.

Object list
Property list
84 Visaj User’s Guide

Chapter 6 Event Bindings
This type of parameter value is reflected in the dynamic display as soon as
the binding has been completed, except when event objects have been
selected from the object list.

6.3.2 Method

This option allows you to use the return value of another method in your
design. When you select “Method”, a text field, a button labelled “Edit”
and the Method selection dialog appears. The Method Selector is shown in
Figure 6-4. When you have finished selecting a method it is shown in the
text field. To display the Method Selector in order to edit a previous
selection, press the “Edit” button.

Figure 6-4 Method Selection Dialog

The left side of this dialog lists all the objects in your design. When you
select an object, the area on the right lists object methods which return the
same type as the selected parameter. For example, if you have selected a
parameter of type “int”, only methods which return an integer are listed.
One of the objects which can be selected is “this” - the class currently being
designed. If you have added a method to your class with a compatible
return type, you will be able to select it as the method for the event
binding.
Visaj User’s Guide 85

Chapter 6 Event Bindings
If the selected method has parameters, the Next button is enabled. Pressing
Next displays the parameters page of the Method selection dialog - this is
identical to the parameters page of the Event binding editor and is used in
exactly the same way.

Press Finish when you have selected a method or Cancel if you wish to
close the dialog without selecting a method. You cannot continue working
on your event binding until the Method selection dialog has been closed.
The selected method is shown in the text field of the parameters page.

6.3.3 Value

This is an explicit value. When this is selected, a property editor appears in
the lower area for you to set the value. If the property editor is a text field,
you must press the Return key after typing the text to set the value. These
values are used in the dynamic display once the binding has been
completed.

6.3.4 Code Expression

This allows you to type in an arbitrary value or expression for the
parameter. Bindings which use these are not active in the dynamic display.
A text box appears in the lower area for you to enter the code expression.
You do not need to press the return key at the end of the text.

6.4 Event Bindings List
The Event Bindings List, shown in Figure 6-5, makes up part of the method
editing tools in the Class Editor. To view the Events Binding List, select a
method from the class structure view and choose the “Event bindings”
pane from the tabbed panel. Until you define a binding, this list is empty.
86 Visaj User’s Guide

Chapter 6 Event Bindings
Figure 6-5 Currently Defined Event Bindings

Press “New” to populate this list, “Edit” to change the selected binding
and “Delete” to remove it from the list.

6.4.1 Order of List

If you have more than one method bound to a component’s event, they are
grouped together. Use the “Up” and “Down” buttons to re-order the
methods within a particular component/event group. This order is
significant because this is the order in which the event bindings are
executed when the application runs. The generated code always reflects the
order presented in this list. To make sure that the dynamic display also
reflects any changes you may have made, rebuild the containment
hierarchy by pressing the Reset button.

6.5 Invalid Bindings
An event binding is marked as “INVALID” if the source or destination
object of a binding has been removed from the design after the binding
was created. The invalid part of the binding is shown in red. An example
invalid binding is shown in Figure 6-6.
Visaj User’s Guide 87

Chapter 6 Event Bindings
Figure 6-6 Invalid Event Binding

The binding remains intact, so if you paste the lost object back into the
design (or press “Undo”), the binding is automatically revalidated.
88 Visaj User’s Guide

SwingComponent Set 7
7.1 Introduction
JFC (Java Foundation Classes), compatible with the JDK, includes the
Swing components. For more detailed information on JFC and what it
includes, try the following website:

http://www.javasoft.com/products/jfc

The Swing component set is a graphical user-interface (GUI) toolkit which
allows you to design your graphical side of your application in such a way
that it has the “look and feel” of the computer on which it is running
without modification.

For example, when you create a user interface with Swing and run it under
Windows, it has the appearance and behavior of a program written
specifically for Windows. When you run the same program on a UNIX
workstation, it runs just like any program written for UNIX. Equally, when
you run it on an Apple Macintosh, it looks and behaves just like any
program written specifically for the Mac. This “pluggable look and feel
(plaf)” is possible because Swing components do not use any native code.

The Swing component set extends the AWT, but does not replace it. Swing
components are called lightweight because they do not use any platform-
specific implementations, such as the “peers” in AWT.
Visaj User’s Guide 89

Chapter 7 Swing Component Set
7.2 AWT to Swing Conversion
Using its SwingBridge™ technology, Visaj offers you fast, automatic
conversion of your AWT designs to Swing. Simply select “Swing” from the
“Translate” pullright menu in the File menu. Your converted design is
loaded into a new window and can be used in exactly the same way as any
other design in Visaj.

In order to use SwingBridge, you must make sure that Swing is in your
CLASSPATH before starting Visaj. For details on how to do this, see the
following section, Loading Swing Components.

7.3 Loading Swing Components
If you are using a JDK earlier than Java 2 (or JDK 1.2), there are two steps
to follow in order to use the Swing components in Visaj. JFC is included in
Java 2, so you do not need to set your CLASSPATH first - just follow the
second step:

1. Make sure the Swing jar file is in your CLASSPATH:
• UNIX users can set the environment variable in the usual way, for

example:
CLASSPATH=/swing/swingall.jar

• Windows users can do this by either putting the following line
(modified to contain the true location of your Swing jar files) into
C:\AUTOEXEC.BAT:
set CLASSPATH=c:\swing\swingall.jar;%CLASSPATH%

or by running from the Start menu:
“Start->Settings->Control Panel->System”

and then clicking on the Environment Tab.

Remember that you do not need this step if you are using Java 2.

Note – On Windows, you may need to reboot your machine to allow the modified
environment to be used.

2. Run Visaj with the -swing argument:
90 Visaj User’s Guide

Chapter 7 Swing Component Set
Visaj -swing

When you start Visaj in this way, your palette does not contain the
AWT components. If you wish to use them, load in the palette file
AWT.palette in $VISAJ/palettes (where $VISAJ is your Visaj
install directory).

If you wish to start Visaj in the usual way, without specifying “-swing”,
run Visaj after having set your CLASSPATH and do the following:

1. Select “Merge palette file...” from the Palette menu.
This displays a File Selection dialog prompting you for the name and
location of the palette file.

2. From $VISAJ/palettes (where $VISAJ is your Visaj install
directory), select the palette appropriate to the version of Swing you
are using.
The possible palettes are:

JFC10.palette - for Swing 1.0.3

JFC11.palette - for versions of Swing earlier than 1.1 beta 3

JFC12.palette - for Swing 1.1 beta 3 and later

The Swing components appear on your palette, as shown in Figure 7-1.
Visaj User’s Guide 91

Chapter 7 Swing Component Set
Figure 7-1 Swing Components on Visaj Palette

7.3.1 Problems Loading Swing

If you try to merge in a palette containing Swing components and you
have not set your CLASSPATH, the error dialog shown in Figure 7-2 is
displayed. In this case, exit Visaj, set your CLASSPATH and try again.

Figure 7-2 Error on Merging Swing
92 Visaj User’s Guide

Chapter 7 Swing Component Set
If you try to load the Swing jar file by choosing “Load jar file...” from the
Palette menu, an informative dialog is displayed. This describes clearly
what you should do.

7.3.2 Converting to New Package Names

Visaj provides a simple means of converting existing designs that use the
older com.sun.java.swing package to designs that use the
javax.swing packages. To do this, start Visaj with the following flag:
-Dvj.convertPackages=true

Any .vcl files then loaded are automatically converted to use whichever
version of the Swing component set is available.

7.4 Using Swing
Once you have loaded the Swing component set into Visaj, they are
selectable from the palette in exactly the same way as the AWT component
set.

For general information on using components in Visaj, see the appropriate
chapter in this user’s guide. This chapter specifically covers the use of
Swing components in Visaj. This includes coverage of the following points:

1. Adding Swing Components to a Design. This describes the slightly
different behavior you can encounter when adding Swing components
in Visaj.

2. Highlighting of Non-Opaque Components. This describes the way the
highlighting of components is affected by the “opaque” resource.

3. Swing Tips. The sub-sections here cover Swing components which
need more information for their use in Visaj.

7.5 Adding Swing Components to a Design
Swing components are added to your design in exactly the same way as
any other components. Some Swing components are made up of a
collection of objects. Visaj gives you access to all the constituent parts and
Visaj User’s Guide 93

Chapter 7 Swing Component Set
lets you choose whether or not you wish to view them. By default, they are
not shown. JFrame is a Swing component with composite objects. When
this is added to your design, the hierarchy shown in Figure 7-3 appears.

These extra components are not added by Visaj, they are an integral part of
the Swing component.

To add children to the JFrame, you can select the JFrame component at the
top of the hierarchy. Children are added to the appropriate widget, which
is usually the contentPane. Menubars are added to the LayeredPane. You
can, of course, select the appropriate pane directly.

Figure 7-3 Hierarchy of Components Making up JFrame

7.5.1 Showing and Hiding Extra Children

Show and hide the “extra” components by selecting one of the following
toggles from the View menu:

1. Collapse all composite components

2. Collapse/Expand selected composites

The first option switches the visibility of composite components in your
design. The second option affects only selected components.
94 Visaj User’s Guide

Chapter 7 Swing Component Set
These options only change the view and allow you more space for your
design. This has no affect on the generated code.

7.5.2 Other Composite Components

The following components also add children automatically:

1. JScrollPane

2. JRootPane

3. JInternalFrame

4. JDialog

5. JWindow

6. JApplet

You can mix Swing components with other components in the same
design.

7.6 Highlighting of Non-Opaque Components
Those Swing components derived from JComponent which have their
“opaque” resource set to “false”, are not highlighted in the dynamic
display when they are selected in the design area. This is because non-
opaque components become invisible when they are highlighted.
Components which are non-opaque by default include:

1. JLabel

2. JCheckBox

3. JRadioButton

7.7 Swing Tips
Some of the more versatile Swing classes require additional information for
their use in Visaj. The rest of this chapter covers this information - the
Editor provided for BoxLayout, the customizers supplied for JList and
JTable and how to use Borders and ButtonGroup in your design. A more
general hints section is included at the end of this chapter.
Visaj User’s Guide 95

Chapter 7 Swing Component Set
7.7.1 BoxLayout

Swing provides a new layout component, the BoxLayout. This is assigned
automatically to components such as JToolBar. In order to set the
BoxLayout for other components in Visaj, use the Box component,
available on the object palette in the “JFC Containers” section. Box is a
component with a BoxLayout plus additional methods for using the layout.
See your JFC documentation for a more detailed description of Box.

Box Layout Editor

To display the Box Layout Editor, press the Layout Editor toolbar button
when a container with a BoxLayout is selected. More detail on Layout
Editors in general is given in the Layout Editors section on page 69.

BoxLayout, shown in Figure 7-4, lays out its children either horizontally or
vertically in a single line. Change the orientation by selecting from the
option menu on the left. The change is immediately reflected in the
dynamic display.

Figure 7-4 Box Layout Editor
96 Visaj User’s Guide

Chapter 7 Swing Component Set
The components controlled by this layout manager are shown on the left of
the window. The area on the right contains:

1. The orientation option menu.

2. A panel of invisible components which help to control the layout.

3. A set of text boxes for editing the dimensions of the invisible layout
components.

Table 1 on page 97 lists the invisible components and explains what they
do.

Table 1: Invisible Layout Components in Box Layout Editor

Icon Invisible Component
Name

Horizontal glue. This pro-
vides a stretchable horizontal
space between components.

Vertical glue. This provides a
stretchable vertical space
between components.

Horizontal strut. This gives
you a fixed amount of hori-
zontal space between com-
ponents.

Vertical strut. This gives you
a fixed amount of vertical
space between components.

Rigid area. This is an invisi-
ble component which gives
you a fixed amount of hori-
zontal and vertical space
between components.
Visaj User’s Guide 97

Chapter 7 Swing Component Set
To add an invisible component, select a component in the area on the left of
the Layout Editor (this can be a visible or invisible component) and then
press the invisible component button on the right. The invisible component
is added before the selection. The component is also added to the
containment hierarchy.

To cut or delete an invisible component, go to the containment hierarchy,
select it and choose cut or delete as you would for any other component.

The area beneath the invisible component buttons on the right of the
Layout Editor allow you to change the minimum, maximum and preferred
sizes of the selected invisible component once it has been added to the
BoxLayout. The preferred size is the size used when the container is
displayed. The maximum and minimum sizes affect what happens when
the container is resized.

Remember to press the “Apply” button if you change the sizes. The
changes do not take effect and may be lost unless the “Apply” button is
pressed.

7.7.2 JList

To populate a JList component, select the JList and choose “Customize...”
from the Object menu. The dialog displayed in Figure 7-5 is displayed.
98 Visaj User’s Guide

Chapter 7 Swing Component Set
Figure 7-5 List Customizer

Type each string to be added to the list into the text field at the bottom of
the dialog and press Return (or the “Add” button) to add them to the list.
To change a list item, select it, change the string in the text field and press
“Change”. To remove an item, select it and press “Remove”.

7.7.3 JTable

To fill in a JTable, use the JTable Customizer. Select the JTable and choose
“Customize...” from the Object menu. The dialog shown in Figure 7-6 is
displayed. This dialog has a column editor at the top and a graphical
representation of the table underneath. The column editor allows you to
change the column heading, specify the data type of each column and
select whether the column can be resized or not. When you type a string
into the column title field, it is not shown in the JTable until you press
Return.
Visaj User’s Guide 99

Chapter 7 Swing Component Set
Figure 7-6 Table Customizer

To add a column to the JTable, press the “Add” button at the top of the
dialog. To add a row, press the “Add” button at the side. Similarly, the
“Insert” button inserts a row or column before the current selection in the
graphical representation. “Delete” removes the selected row or column
from the JTable.

7.7.4 Borders

Borders are Swing components which put a visible “edge” around a
component. Any Swing component derived from JComponent has a
“border” property, as shown in Figure 7-7.
100 Visaj User’s Guide

Chapter 7 Swing Component Set
Figure 7-7 Border Property

This property refers to an instance of the type of Border required. By
default, it is Null (no border).

The property editor for Borders is an option menu of the different Border
classes available. When you select a Border, the “Properties...” button is
enabled. Pressing this displays a Border Editor which allows you to change
the properties of the selected Border.

The following Borders are available:

1. BevelBorder. Use the editor to change the colors of the highlight and
the shadow and to specify whether the border is raised or lowered.

2. SoftBevelBorder. The editor for this border is identical to the one
above.

3. EmptyBorder. The editor allows you to edit the insets for this border.
Visaj User’s Guide 101

Chapter 7 Swing Component Set
4. MatteBorder. Use the editor to edit the insets, change the color and the
image used for the border.

5. EtchedBorder. The editor for this border allows you to specify whether
it is raised or lowered and to change the color of the highlight and
shadow.

6. LineBorder. Use the editor to alter the thickness and color of the line
used for this border.

7. TitledBorder. The editor for this border allows you to type in the text of
the title, to specify the position of the title, the font to use and the color
of the border.

After you have edited the properties of a Border in the Border Editor, press
the “apply” button in the bottom left hand corner of the Editor. The
properties are not set until you do so.

As with all properties in the property sheet, you can also choose to specify
the variable name of an existing Border or type in a code expression to set
a component’s border property.

7.7.5 ButtonGroup

To add a ButtonGroup to your design, make sure that nothing is selected in
the object hierarchy and select the ButtonGroup from the object palette.
The palette icon is shown in Figure 7-8.

Figure 7-8 ButtonGroup Palette Icon

Specify which buttons belong to the ButtonGroup by adding the lines
highlighted in the following piece of code. This code was generated from a
simple design comprising a JFrame containing two JCheckBoxes and a
separate ButtonGroup, as shown in Figure 7-9.
102 Visaj User’s Guide

Chapter 7 Swing Component Set
The location of the added code is important because of the need to retain
this code when regenerating from Visaj. The code has been added after a
“//vj- ” line. For more information on safely adding code, see the Editing
the Code section on page 154.

//vj+ <VJ-BeginMethodDef>

// Method# 1

public MyClass() {

//vj- <VJ-BeginMethodDef>

//vj= <VJ-MethodCode>

//vj+ <VJ-DefineAWTMembers>

buttonGroup1 = new ButtonGroup();

JFrame1 = new JFrame();

JFrame1.setTitle(“JFrame1”);

JRootPane1 = JFrame1.getRootPane();

glassPane1 = (JPanel)JRootPane1.getGlassPane();

JLayeredPane1 = JRootPane1.getLayeredPane();

contentPane1 = (JPanel)JRootPane1.getContentPane();

JCheckBox1 = new JCheckBox();

JCheckBox1.setText(“JCheckBox1”);

JCheckBox2 = new JCheckBox();

JCheckBox2.setText(“JCheckBox2”);

{

String strConstraint;

strConstraint = “Center”;

contentPane1.add(JCheckBox1, strConstraint, -1);

strConstraint = “North”;

contentPane1.add(JCheckBox2, strConstraint, -1);

}

JFrame1.pack();

JFrame1.show();

//vj- <VJ-DefineAWTMembers>

Add these lines :
buttonGroup1.add(JCheckBox1);
buttonGroup1.add(JCheckBox2);
buttonGroup1.setSelected(JCheckBox2.getModel(), true);

//vj+ <VJ-EndAWT>
Visaj User’s Guide 103

Chapter 7 Swing Component Set
//vj- <VJ-EndAWT>

//vj+ <VJ-EventListenerClass>

//vj- <VJ-EventListenerClass>

//vj+ <VJ-AddEventListeners>

//vj- <VJ-AddEventListeners>

//vj= <VJ-Classes>

//vj+ <VJ-EndMethodDef>

}

//vj- <VJ-EndMethodDef>

Figure 7-9 Simple Design for Code Example
104 Visaj User’s Guide

Chapter 7 Swing Component Set
7.7.6 JApplet

You can make your class into an instance of JApplet by setting the
superclass to javax.swing.JApplet . The Editing Properties of the Class
section on page 40 tells you how to change the superclass of your class. As
soon as you change the superclass and press “Apply”, the “this” icon on
the object palette changes to the JApplet icon. Selecting “this” from the
palette allows you to add objects to your applet class.

7.7.7 Miscellaneous Component Tips

The following components each require some further explanation.

JSplitPane

When a JSplitPane is added to your design, the dynamic display appears to
contain two buttons - one on the left and one on the right (as shown in
Figure 7-10). These cannot be accessed and are only present as place
holders. Any components added as children of JSplitPane replace the
buttons.

Figure 7-10 JSplitPane Dynamic Display

JDesktopPane

JDestopPane has a default width and height of 0. To prevent this container
from “collapsing”, set a preferred width and height in the component’s
property panel.
Visaj User’s Guide 105

Chapter 7 Swing Component Set
JTabbedPane

Add tabs to the JTabbedPane simply by adding children to it - each child is
one tab. A tab activation button appears for each child component. Change
the name of the tab and its icon in the property sheet of the child
component. Adding a container as a tabbed panel allows you to put any
number of components on one tab. Change the orientation of the tabs in
the property sheet of the JTabbedPane.

JLayeredPane

To set the layer number of each child of a JLayeredPane, set it in the
property sheet of the child.
106 Visaj User’s Guide

ImageEditor 8
8.1 Description
The Image Editor, shown in Figure 8-1, can create new images or edit
existing ones. It is a multiple document tool allowing you to work on more
than one image at the same time. The completed image is stored in an
external file.

The Image Editor allows you to change the color, appearance and size of
your image. An extensive set of filters, capable of manipulating whole
images or just parts of them, is provided as part of the Image Editor. The
filters are described at the end of this chapter. The best way to learn about
the filters is try them out - the undo facility lets you do this safely on your
image.

A short tutorial, demonstrating just a small sample of the capabilities of the
Image Editor, follows this section. The remainder of this chapter describes
each area of the Image Editor in more detail.
Visaj User’s Guide 107

Chapter 8 Image Editor
Figure 8-1 Image Editor

8.2 Tutorial
This simple step-by-step tutorial shows some of the capabilities of the
Image Editor. You will create the image shown in Figure 8-2 by starting
with a fresh window, giving it a textured background, adding text,
embossing it, creating a drop shadow for the text and giving the
appearance that the text fades out.

Tool palette

Color chooser

Color paletteImage being edited

Switch foreground
and background

colors
108 Visaj User’s Guide

Chapter 8 Image Editor
8.2.1 A Note Before you Start

During the course of this tutorial, remember that you can use the undo
facility if you have tried something and you are not happy with the result.
Simply select “Undo” from the Edit menu directly after an unsuccessful
operation. You may also use wish to the undo feature to experiment along
the way. Making frequent backups also allows you to revert to a saved
image at any time.

Figure 8-2 Image Editor Tutorial - Final Image

1. In the Image Editor, select “New” from the File menu.
This displays the Image Size dialog.

2. In the Size dialog, specify a width of 320 and a height of 140. Press
OK.

3. Choose a color - something bright like pink - from the Swatches
color palette.
Do this by clicking over the color square of your choice. The Swatches
window is shown in Figure 8-9.

When a colour is selected from the color palette, it becomes the
foreground color and is displayed in the foreground square in the
bottom left corner of the Image Editor window. We are going to make
this color the background color.

4. To switch over the foreground and background colors, click over the
double-headed arrow above the foreground/background squares.
This is shown in Figure 8-1 and in more detail in Figure 8-8.

5. Click over another color from the palette in order to set the
foreground color.
Choose a good contrast - green, for example.
Visaj User’s Guide 109

Chapter 8 Image Editor
6. In order to achieve an interesting effect on the background, select the
gradient tool from the tool palette.
If you are not sure which one this is, look it up in Table 2 on page 118
or pass the cursor over each tool and read the Tool Tip which is
displayed as you do so.

7. With the gradient tool selected, choose “Tool Properties” from the
Edit menu.
A shortcut way of displaying this dialog is to double-click over the tool
in the palette.

8. In the gradient tool Properties dialog, shown in Figure 8-15, make
sure that the “Use Colormap” toggle is off and select “Conical
Symmetric” from the Type list.
The gradient tool is described in detail in the Gradient Tool section on
page 128.

9. Making sure that the gradient tool is still selected on the tool palette,
click in the centre of your image window and drag a line outwards to
the right edge.
Of course, you can drag any length of line and in any direction to
create different effects, but for the purposes of this tutorial you need to
ensure that you have the foreground color on the right of the image.
This color will be used by the gradient tool later in the tutorial.

You should now have an interesting “conical” effect in your new image
with the foreground and then the background colors appearing to
“wrap around” the window. We shall now add some text.

10. Save your image by selecting “Save” from the File menu. You are
prompted for the file type. Choose one which suits you best - the
Image Editor can read back in any of the formats listed.
It is important to save your work from time to time.

11. Select the text tool from the tool palette.
If you are not sure which one this is, look it up in Table 2 on page 118
or use the Tool Tips, displayed when you pass the cursor over the
tools.
110 Visaj User’s Guide

Chapter 8 Image Editor
12. Click near the left side of your image.
You need to specify first where your text is going to go. When the text
is placed in the image it is selected so you can move it around. Once
you have clicked in your image, the text properties dialog appears, as
shown in Figure 8-3.

Figure 8-3 Text Tool Properties Dialog

13. In the text tool properties dialog, specify a large font size, such as 90,
choose a font that you like and type “Imagine” into the text field.
Although the text is displayed the correct size, the dialog may be too
small to display it all. In this case, simply resize the dialog.

14. When you are happy with the size and appearance of the text in the
properties dialog, press “OK”.
The text is inserted into the image using the foreground color - the
color is not important at this point as we shall be changing it using one
of the filters. At this point, you can move the text by clicking inside the
text and dragging it to the desired location.

It is important to remember at this point that the text is added as a
floating selection (see the Floating Selections section on page 123 if you
are not sure what this is). We need to keep it as a floating selection
until we have finished with it, so do not do any other type of drawing
or selecting.

Another point to remember is that if you are not happy with the text
when it is added to the image, press “Undo” in the Edit menu and start
again with the text by clicking in the image to display the text
properties dialog. This applies to any drawing or filter - you can
always “Undo” them and try again.
Visaj User’s Guide 111

Chapter 8 Image Editor
15. Save your image.

16. With your text in the image and still selected (surrounded by a red
band), go to the Filters menu and choose “Shapeburst” from the
Stylize pullright menu.
The Shapeburst dialog is displayed, as shown in Figure 8-4.

Figure 8-4 Shapeburst Filter Dialog

17. You do not need to change any of the default settings in the
Shapeburst dialog, so press “OK”.
Your text is now given a rounded appearance using a gray color. The
Shapeburst filter is useful as a preprocessor to the Embossing filter,
which we shall use next.

18. With the text still selected, choose “Emboss” from the Stylize
pullright menu in the Filters menu.
The Emboss dialog is displayed, as shown in Figure 8-5.
112 Visaj User’s Guide

Chapter 8 Image Editor
Figure 8-5 Emboss Filter Dialog

19. Once again you do not need to change the defaults in this dialog,
simply press the “OK” button.
Your text now has an embossed look.

Note – Remember that if you apply a filter and then wish to change it, you can
select “Undo” from the Edit window and try again.

20. Select “Drop shadow” from the Stylize pullright menu in the Filters
menu.
This displays the drop shadow dialog, shown in Figure 8-6.
Visaj User’s Guide 113

Chapter 8 Image Editor
Figure 8-6 Drop Shadow Filter Dialog

21. For this filter, you may wish to adjust some of the default settings,
Try turning down the “Blur” to make a deeper shadow and turning
up the X and Y offsets very slightly to make the text stand away from
the shadow a little more.
The filter dialog shows you an example of the changes you are making.
Sometimes these dialogs are slow in redrawing because of the
complexity of the mathematical operations they are performing. Please
be patient.

22. When you have selected settings you like, press “OK”.
Your text now has a drop shadow, making it appear to jump away from
the image. Save your image.

For the final stage of the tutorial we are going to create and use a
gradient. More detailed information on gradients is given in the
Gradients section on page 125.

23. In the gradient list window (shown in Figure 8-13) select “New”
from the File menu.
A new gradient is added showing a black to white gradient.
114 Visaj User’s Guide

Chapter 8 Image Editor
24. Select the new gradient by clicking over it in the list and then choose
“Edit” from the File menu.
The gradient editor is displayed, as shown in Figure 8-14. More
information on the gradient editor is provided in the Gradient Editor
section on page 126.

The gradient editor displays two small arrowheads underneath the actual
gradient. In order to create a “fading out” effect, we need to set the
gradient to range from transparent on the left (to allow the text to show
through) to the colour of the background pattern on the right. The applied
gradient will then show the text gradually blending in to the background.

25. Select the dropper tool from the tool palette. This tool allows you to
“pick up” colors from an image.
If you are not sure which one this is, look it up in Table 2 on page 118.

26. Click over the color in your background pattern at the far right of
your image. Figure 8-7 shows you where.
This will set the color picked up with the dropper tool to be the
foreground color.

Figure 8-7 Using the Dropper Tool

27. Back in the gradient editor, click directly above the arrowhead on the
right.
This sets the foreground color for that end of the gradient. If this does
not happen on the first attempt, keep trying until the appropriate color
appears.

28. Back in the Image Editor (with the gradient editor still displayed),
click over the foreground color square.
This sets it to be transparent and is indicated by a checkerboard
pattern.

Click here with the
dropper tool selected
Visaj User’s Guide 115

Chapter 8 Image Editor
29. In the gradient editor, click in the color directly above the arrowhead
on the left.
This sets transparency for the other end of the gradient.

30. From the Type menu in the gradient editor, choose “Circle Up”.
This should give us the effect we require. Remember that you can
experiment with other types by using the “Undo” button in the Edit
menu after using the gradient tool.

31. Close the gradient editor.
Your new gradient is displayed in the gradient list.

32. Select your new semi-transparent gradient in the gradient list.

33. Select the gradient tool from the tool palette and display its
properties dialog again.
If you cannot remember how to do this, refer back to Step 7 on page
110.

34. This time, set the “Use colormap” toggle in the properties dialog and
choose “Linear” as the Type.

35. Choose “Select none” from the Selection menu.
This is to make sure that subsequent operations affect the whole image.

36. In your image, click halfway down on the far left side and drag a
line right across to the right side.
Make sure that you have drawn the line right across the whole image.

You should now have the effect shown in Figure 8-2 except that in
color the effect is much more pronounced and interesting.

37. Save your image.
Now that you have a completed image, you can use it in a Visaj design
or you can print it directly from the Image Editor. Choose “Print” from
the File menu to do this.

8.3 Image Files
Open an existing image by selecting “Open...” from the File menu or by
pressing the Open button on the toolbar. The image is placed in its own
window within the Image Editor.
116 Visaj User’s Guide

Chapter 8 Image Editor

Bio-
Selecting “New” from the File menu, or pressing the corresponding toolbar
button, displays a dialog prompting you for the size of the new image. You
can change the size of it later by selecting “Image Size” from the Image
menu. Once you have pressed “Ok” in the Image Size dialog, you are given
an empty editing window in the Image Editor.

Because the Image Editor can contain any number of image files, each in its
own window, there is a current image. The current image is displayed on
top of any others. All operations affect only the current image. The “Close”
item in the File menu closes the current image only.

8.3.1 Saving Files

Choose “Save” (or “Save As...”) from the File menu or the Save button on
the toolbar to write out the current image. Once saved, the image can then
be used in Visaj as an object’s image property.

The Image Editor can read and write files in JPEG1 and PNG formats and
Swing ImageIcons.

Before saving, the Image Editor prompts you for the file type.

8.3.2 View Menu

The items in the View menu affect only how you see the image in the
Image Editor. Nothing in this menu changes the saved image. From this
menu you can:

1. Zoom in.

2. Zoom out.

3. Change the display ratio. 1:1 is the “real size” of the image.

4. Turn the grid on and off. The grid is automatically off for 1:1 or 2:1
displays.

1. The JpegEncoder and its associated classes are Copyright (c) 1998, James R. Weeks and
ElectroMech. This software is based in part on the work of the Independent JPEG Group.
Visaj User’s Guide 117

Chapter 8 Image Editor
8.4 Help
For all buttons in the Image Editor, tool tips are displayed when the mouse
is passed over them. Tool tips do not appear until the pointer has been
positioned over a button for one or two seconds.

The status line at the bottom of the Editor displays information on the
currently selected tool. Keyboard modifiers are included in this
information.

8.5 Tool Palette
The tool palette on the left of the Image Editor allows you to change
between methods of editing. Table 2 lists all the palette buttons along with
a brief description of their function.

Table 2: Palette Tools

Button Function

Pointer Tool. Use this to move the current selection.

Rectangle Selection Tool. Make rectangular selec-
tions with this tool. Holding down the Shift key adds
the new selection to any existing selections. Holding
down the Control key subtracts the new selection. To
select irregular areas, use the Magic Wand tool.

Panning Tool. With this tool, pan the image
left/right and up/down.

Zoom Tool. Zooms the image in. Holding down the
Control key zooms out.
118 Visaj User’s Guide

Chapter 8 Image Editor
Ink Dropper Tool. Use this to “pick up” colors in the
image. Any color selected with this tool, becomes the
foreground color.

Magic Wand Tool. Click over one pixel with this tool
and the selection spreads in each direction until a
different color is found. This allows you to select
non-rectangular areas. See the Tolerance section on
page 120 for information on refining this process.
Holding down the Shift key adds to an existing
selection, holding down the Control key subtracts
from it.

Fill Tool. Use this tool to flood an area with the fore-
ground color. The area to flood is all pixels with the
same color as the one clicked over until a different
color in each direction is reached. See the Tolerance
section on page 120 for information on refining this
process. Hold down the Control key to use the back-
ground color.

Pencil Tool. Colors individual pixels using the fore-
ground color. Hold down the Control key to use the
background color.

Line Tool. Draws lines in the foreground color. Hold
down the Control key to use the background color.

Rectangle Tool. Draws outline rectangles in the fore-
ground color. Holding down the Shift key draws a
filled rectangle. Hold down the Control key to use
the background color.

Table 2: Palette Tools

Button Function
Visaj User’s Guide 119

Chapter 8 Image Editor
8.5.1 Tolerance

You can set the tolerance of the magic wand and fill tools in order to select
or fill an area with similar (as opposed to identical) colors. Select “Tool
Properties...” from the Edit menu to display the Tolerance dialog. This
dialog contains a slider which can be set to any value between 0 and 255. 0
(the default) indicates no tolerance - only exact color matches are selected
or filled. A tolerance of 255 will, effectively, match every color. The effect of

Circle Tool. Draws outline circles in the foreground
color. Holding down the Shift key draws a filled cir-
cle. Hold down the Control key to use the back-
ground color.

Text Tool. Use this to draw text into your image.
Select a start location in the image first. A dialog is
displayed for you to enter the text and change the
font, size and style before it is added to the image.
When added to the image, the text is a “floating”
selection - see the Floating Selections section on page
123 for more details,

Dodge Tool. Use this to lighten parts of your image.
Hold down the mouse button and drag across an
area to lighten it.

Burn Tool. Use this to darken parts of your image.
Hold down the mouse button and drag across an
area to darken it.

Gradient Tool. Use this to paint gradients into the
image. This tool and its properties dialog is
described in the Gradient Tool section on page 128.

Table 2: Palette Tools

Button Function
120 Visaj User’s Guide

Chapter 8 Image Editor
any setting in this dialog is immediate. This means that you can try
different tolerance values easily until you find the one that matches your
criteria.

8.6 Colors
The Image Editor works with a background and a foreground color. These
are displayed on the left of the Editor window, as shown in Figure 8-8.

Figure 8-8 Foreground and Background Colors

8.6.1 Setting the Foreground and Background Colors

Any color selected from either the Color chooser or the Color palette, both
of which are shown in Figure 8-9, sets the foreground color.

Any of the tools which paint color onto the image use the foreground color.
Holding down the Control key forces the Image Editor to use the
background color. The background color is used when, for example, a
selection is moved, thereby leaving a “hole”. The gradient tool and some of
the filters also use the current foreground and background colors.

As shown in Figure 8-8, you can switch the background and foreground
colors by pressing the double-headed arrow. This is how the background
color is set.

A shortcut to change the foreground to black and the background to white
is provided. Press the black and white squares, also shown in Figure 8-8.

Foreground color

Background color

Switch foreground
and background

Set to black & white
Visaj User’s Guide 121

Chapter 8 Image Editor
8.6.2 Transparency

Clicking over the background or foreground color square toggles between
that color and transparent. The color square itself becomes transparent with
a cross over it. In the image, transparent pixels are drawn with a check
pattern. Transparency is useful for images such as toolbar button icons
where the color of the toolbar should show through so that they are
consistent on different platforms.

8.6.3 Color Chooser and Color Palette (Swatches)

The Color chooser contains two areas. The lower area shows the full color
spectrum, or the hue, changing in brightness top to bottom. Selecting in here
changes the upper area to display the saturation (left to right) and brightness
(top to bottom) of the selected hue.

The Color palette (or Swatches) is a grid of small color squares
representing a color cube. The colors of the default swatch are “Web safe”;
they are the ones that browsers try to allocate. Keeping to these colors will
ensure that your images display well on a Web page. You can, however,
load in your own color palettes using the “Load” item in the File menu of
the Color palette. Similarly you can save color palettes using the “Save”
item.

Figure 8-9 Color Chooser and Palette

You can choose not to display the Color chooser or Color palette window
by selecting the appropriate item in the Window menu. Selecting the item
again redisplays the window.

Color Chooser Color Palette
122 Visaj User’s Guide

Chapter 8 Image Editor
8.7 Selection
Selection is a key feature of the Image Editor. All of the filters and all items
in the Image menu affect the currently selected area. Where there is no
current selection, the Image Editor assumes that the whole image is
selected.

A red line around the selected area indicates a floating selection. A yellow
line indicates a non-floating selection.

8.7.1 Floating Selections

Selected areas can be moved around the image and even altered by one of
the filters without affecting the image underneath. This is particularly
useful for parts of an image such as text which you may need to move
around to find a place that is right for it. This ability for selections to move
or be altered without affecting the image underneath is referred to as
“floating selection”. A selected area is automatically floated whenever it is
moved by the Pointer tool or if it is passed through a filter which changes
its shape (makes it bigger or smaller). There is a “Float Selection” item in
the Selection menu but you will not normally need to use this.

Floating selections are automatically dropped back into the image when
you select and use a tool from the Tool palette other than the Pointer tool.
You can force a selection to drop back into the image by selecting “Drop
Selection” from the Selection menu.

If a selection is not floating (it has a yellow line around it) and you move
this selection, a “hole” appears in the image where the selection used to be.
The hole shows the background color. Once the selection has been moved,
it is then floating and can be moved without leaving a “hole”. Of course,
making “holes” in this way can create an interesting effect.

If you have a floating selection, you can change the way it is painted over
the image by selecting the appropriate item from the “Paint modes”
pullright menu in the Selection menu. This mode only lasts as long as the
current selection. Changing the selection reverts to the default paint mode.
Visaj User’s Guide 123

Chapter 8 Image Editor
8.7.2 Making a Selection

The Rectangle Selection Tool and the Magic Wand Tool, both shown in
Figure 8-10, are available on the Tool palette. They provide two ways of
making a selection.

Figure 8-10 Selection Tools from the Tool Palette

As its name suggests, the Rectangle Selection Tool allows you to make
rectangular selections. Hold down mouse button 1 and drag a rectangle
around the area you wish to select.

The Magic Wand Tool allows you to select non-rectangular areas. Click over
one pixel to spread the selection in each direction until a different color is
found. This type of selection is suitable for selecting blocks of the same color.

Adding to Selection

Increase the selected area by holding down the Shift key while selecting.
This will add the new selection to any already present.

Subtracting From Selection

To subtract areas out of a selection, hold down the Control key while
selecting the area to subtract.

8.7.3 Selection Menu

The items in the Selection menu help you to refine and alter your selected
area. These items are:

1. Select All. Selects the whole image. This is identical to the toolbar
button shown in Figure 8-11.

Rectangle Selection Tool Magic Wand Tool
124 Visaj User’s Guide

Chapter 8 Image Editor
Figure 8-11 Select All Toolbar Button

2. Select None. Deselects the whole image. This is identical to the toolbar
button shown in Figure 8-12.

Figure 8-12 Select None Toolbar Button

3. Select Foreground. This item selects all pixels in the image which are
the same color as the current foreground. Set the foreground to one of
the colors in the image by using the Dropper Tool. See Table 2, “Palette
Tools,” on page 118.

4. Invert. Changes the current selection to the whole image except the
previously selected area.

5. Grow. Increases the selected area one pixel in each direction.

6. Shrink. Decreases the selected area one pixel in each direction.

8.8 Gradients
The window entitled “Gradients” in the Image Editor shows your list of
defined gradients, or colormaps, as shown in Figure 8-13.
Visaj User’s Guide 125

Chapter 8 Image Editor
Figure 8-13 Gradient List

A gradient is a way of creating color sets. There is always a “start” and an
“end” color and the Image Editor makes a smooth transition between the
two. You may have any number of subsets, each making a color transition,
within one gradient and you may also specify the way in which the color
transition is made. All of this is performed in the Gradient Editor which is
described below.

The Gradient List appears with a default set of gradients. From the
Gradient List’s own File menu you can remove a gradient, create a new
one or duplicate an existing one, save the list of gradients and load a saved
set of colormaps. Place a saved list of gradients into the plugins directory
to make the Image Editor load it automatically when it starts up. If you
wish to do this, make sure that the list of gradients is saved into a file with
a .ser extension. The plugins directory is <VISAJROOT>/lib/plugins ,
where <VISAJROOT>is the install directory of your Visaj.

Choosing “Edit” from the File menu displays the Gradient Editor, allowing
you to edit the currently selected gradient. Click over a gradient in the list
to select it. The currently selected gradient is used by the Gradient Tool
and by those filters with a “Use Colormap” toggle.

Selecting “Colormaps” from the Window menu hides the Gradient list.
Selecting this item again redisplays the window.

8.8.1 Gradient Editor

When you select “New” from the Gradient List’s File menu, a new gradient
showing one smooth transition from black to white appears in the list. To
edit this new gradient, select it and then choose “Edit” from the File menu.
The Gradient Editor, shown in Figure 8-14, is displayed.
126 Visaj User’s Guide

Chapter 8 Image Editor
Figure 8-14 Gradient Editor

In the Gradient Editor, there is a line of color representing the gradient, an
area underneath where the gradient can be segmented and a menubar
containing two menus at the top.

The segments within a gradient allow you to add more color and color
transitions to your gradient. A new gradient contains one segment. To add
new segments, select “Split segment” from the Edit menu. To remove
segments select “Remove segment” from the Edit menu. To select a
segment, select the area between the segment arrows. The operations
available from the two menus apply to the currently selected segment.
Click in the color directly above a segment arrow to “drop” the foreground
color at that point. The Image Editor then makes a smooth transition
between the colors of adjacent segment arrows.

The Type menu contains items which affect the way the transition is made
between the colors at either end of a segment. There are two sections in
this menu. The top section refers to the interpolation type and the lower
section to the color type. For the top section, your choices are:

1. Constant. This fills the segment with solid color using the color on the
left of the segment. Use this with multiple segments to create sharp
stripes.

2. Linear. This gives a consistent spread of color change across the
segment.

3. Spline. This applies the color change as a “wave” and therefore makes
segments join together more smoothly.

Click directly above
an arrow to drop the
foreground color

Click in the area between arrows
to select it for operations from
the menus.

Click and drag to slide
the arrows along.
Visaj User’s Guide 127

Chapter 8 Image Editor
4. Circle Up and Circle Down. These transformations give a smoother,
more rounded effect when used to fill an image.

For the lower part of the menu, you can choose between the following:

1. RGB. This uses RGB values to move from one color to another.

2. Clockwise Hue and Counter-clockwise Hue. These show the relevant
section of a color wheel as defined by the two colors of the segment.
You can ask for a clockwise or counter-clockwise journey between the
two colors.

Your edits in the Gradient Editor are not applied until the Gradient Editor
is closed.

You may use transparency in gradients to create an interesting effect. If you
choose transparent as the color at one end of a gradient, the image appears
to gradually “fade” into the background.

8.8.2 Gradient Tool

The gradient tool, available from the Tool Palette, allows you to draw
gradients into your image. To use the gradient tool, drag a line in your
image along which you wish to paint a gradient. By default this tool uses
the foreground and background colors as the start and end points of the
gradient. Change this behavior in the properties dialog which is displayed
by either double-clicking over the tool or by selecting it and choosing “Tool
properties” from the Edit menu. The dialog is shown in Figure 8-15.

Figure 8-15 Gradient Tool Properties Dialog
128 Visaj User’s Guide

Chapter 8 Image Editor
The “Use Colormap” toggle in the properties dialog tells the Image Editor
to use the currently selected gradient from the Gradient List instead of
simply using the foreground and background colors. The rest of the
properties dialog refers to the way the gradients are drawn. The following
are short descriptions of each type of drawing style. By far the best way to
understand them, however, is to try them:

1. Linear. This draws the gradient straight along the line you drag across
the image.

2. Bilinear. This draws the gradient twice along the dragged line - from
one end to the other and then back again.

3. Radial. This draws outwards in a radial pattern from the start of the
dragged line to the end.

4. Conical. This draws the gradient around the start point with the colors
starting from the end point.

5. Conical Symmetric. This is the same as Conical but drawing the
gradient twice - once forward and once backward.

Use the Shift key when dragging a gradient line to “cycle” the gradient.
This causes the gradient to be repeated across the image. The length of the
line determines the size of the repeating pattern.

8.9 Editing the Image
The Edit menu contains items to Cut, Copy, Paste and Clear the current
selection. All operations which modify the image can be undone by
selecting “Undo” in this menu.

The Image menu contains extra editing functions. These can be divided
into the following sub-sections.

8.9.1 Changing the Image Size

There are two operations in the Image menu which directly affect the size
of the image:

1. Crop

2. Image Size
Visaj User’s Guide 129

Chapter 8 Image Editor
Crop cuts the image down to the size of the bounding box which contains
the selection. If you have a rectangular selection, the cropped image is the
same as the selection.

Selecting “Image Size” displays the dialog shown in Figure 8-16. Change
the width and height of the image in this dialog.

If you have the “Keep aspect ratio” checkbox selected, the width and
height fields are automatically kept to the same ratio.

Figure 8-16 Image Resize Dialog

The Resize dialog allows you some control over what happens when the
image is resized. Choose one of the following:

1. Don’t rescale image. The image itself stays the same. It is cropped if the
new size is smaller and the extra area is filled with background color if
the image is made larger.

2. Replicate pixels. The image is scaled by simple replication.

3. Average pixels. The image is scaled using an algorithm which
produces smoother results than simple replication. Pixels are blended
with adjacent pixels to achieve the effect of the same size ratio.

4. Tile image. The image is repeated to fill the new area. This only applies
when an image increases in size.
130 Visaj User’s Guide

Chapter 8 Image Editor
8.9.2 Flipping

The image, or the selected part of it, can be flipped across three axes:

1. Horizontal

2. Vertical

3. Diagonal

Because flipping an image causes its size to change, the Image Editor
applies the following rules:

• If there is no selection, the Image Editor assumes that the whole image
should be flipped. The image is then resized to display the flipped area.

• If there is any selection (even if this is the whole image), the image is not
resized and the selection is left floating after being flipped. See the
Floating Selections section on page 123 for information on this.

Flipping the whole image diagonally results in a “blank” area being
exposed. This area is left transparent.

8.9.3 Rotating

The whole image or a selected part of it can be rotated through 90°, 180° by
selecting the appropriate item or through any other angle by selecting
“Rotate...” and typing the angle in the Rotate dialog. The Rotate dialog
gives you a preview of the rotated image as you type.

If you are rotating an image which is not square, its size changes. The
Image Editor applies the following rules when this happens:

• If there is no selection, the Image Editor assumes that the whole image
should be rotated. The image is then resized according to its new shape.

• If there is any selection (even if this is the whole image), the image is not
resized and is left floating after being rotated. See the Floating Selections
section on page 123 for information on this.

8.9.4 Filling

The “Fill Selection” item in the Image menu floods the selected area with
the foreground color. If there is no selection, the whole image is flooded.
This item is identical to the toolbar button shown in Figure 8-17.
Visaj User’s Guide 131

Chapter 8 Image Editor
Figure 8-17 Fill Selection Toolbar Button

8.10 Filters
Your image, or any selected part of it can be altered by using one of the
filters provided in the Filters menu. The filters are divided into pullright
sub-menus according to the type of change they effect.

The following applies to all filters:

1. If any part of the image is selected, only that area is filtered.

2. If there is no selection, the whole image is filtered.

3. If the size of the selection has changed as a result of being filtered, the
selection is floated. See the Floating Selections section on page 123 for
more information on this.

4. All filters may be undone using “Undo” from the Edit menu.

Some of the filters need to be customized. If this is the case, a dialog is
displayed. A preview of the effect of the filter is provided in this dialog.
Most of the items in the Filter menu are pullright menus which group
various types of filter. The first two items are commands which are only
selectable once a filter has been used. These menu options are described in
the following sub-sections. Then follows a brief description of each filter,
grouped according to the pullright menu title.

8.10.1 Repeat Last Filter

This item simply repeats the last filter you used. The same settings are
used - you are not prompted to change anything.
132 Visaj User’s Guide

Chapter 8 Image Editor
8.10.2 Show Last Filter

This displays the dialog pertaining to the last filter used, allowing you to
change the settings if you wish.

8.10.3 Distort

1. Offset. Moves the image by the X and Y offsets specified in the dialog.
The image wraps round. This is useful for creating “seamless” images
for tiling into a larger image.

2. Mesh Warp. Warps an image using a mesh warp algorithm. You
supply two warp grids: a source grid and a destination grid. The filter
will warp the image so that pixels on source grid points will move to
destination grid points. You could produce animations of warping by
repeatedly using the warp filter.

3. Ripple. Produces a rippled effect. The dialog allows you to specify the
wavelength and amplitude of the ripple.

4. Sphere. Applies a fisheye lens type effect to an image. Pixels are
displaced according to their distance from the centre of the image.

5. Twirl. This filter will distort your image by twisting it around the
centre. You can change the angle and direction of twist.

6. Border. Adds a border to the edges of the selected area or the whole
image if there is no selection. The resulting image is larger than the
original.

7. Water Ripples. This filter will produce a water ripple effect on your
image. You can change the wavelength, phase and amplitude of the
ripples and turn antialiasing on or off.

8.10.4 Colors

1. Transparency. Changes the opacity of the image. Use the dialog to
specify how opaque the result should be.

2. Gamma. Changes the gamma (brightness) of the image.
Visaj User’s Guide 133

Chapter 8 Image Editor
3. Gray Out. Grays out the image (or selected part). This is useful for
creating the icons to use for insensitive buttons.

4. Adjust RGB. Alters the RGB (Red, Green, Blue) values of the colors
used in the image according to the settings given in the dialog.

5. Adjust HSB. Alters the HSB (Hue, Saturation, Brightness) values of the
colors in the image according to the settings given in the dialog.

6. Grayscale. Converts the colors in the image to grayscale.

7. Invert. Changes each color to its complement.

8. Dither. Dither the colors according to the selected options in the
dialog. You can create a dithered black and white image or selects any
one of a number of color dithering algorithms.

9. Diffusion Dither. This filter converts an image to a specified number
of colors. You can choose straight or serpentine dithering.

10. Reduce Colors. Specify the number of red, green and blue colors to use
in the image.

11. Contrast. Allows you to change the contrast and brightness of the
image.

12. Lookup. This filter recolors an image by converting it to a grayscale
image and passing it through a color lookup table.

13. Solarize. Uses a V-shaped transfer curve to convert the colors in the
image.

8.10.5 Stylize

1. Threshold. Changes each color in the image to black or white
depending on the specified threshold. Colors below the threshold are
coerced into black, those above are forced to be white.

2. Mosaic. Converts the image into mosaic blocks. Use the dialog to
specify the size of the blocks. This effect is often used on TV to hide a
person’s face.
134 Visaj User’s Guide

Chapter 8 Image Editor
3. Add Noise. Changes the color of each pixel by a small random amount
which is anything between zero and the number you give in the dialog.
Use this to “roughen” a smooth image.

4. Emboss. Looks at each pixel in the image and calculates the gradient of
brightness according to the pixel’s location relative to a light source.
This results in an “embossed” effect.

5. Oil. Gives an “oil-painting” effect. This filter can be very slow,
especially with large images.

6. Sparkle. Draws a sparkle or sunburst effect on an image. You can
change the number of rays in the sparkle, the randomness of the ray
lengths and the radius of the centre of the sparkle. The sparkle is
drawn into the centre of the selected area (or the centre of the image if
there is no selection). You can use this filter multiple times to create
sparkles on corners in images.

7. Drop Shadow. This filter produces drop shadows for images. It uses
the shape of the selection as the shape of the shadow. You can change
the offset of the shadow in the X and Y directions and the fuzziness
and opacity of the shadow. The output of this filter is an image which
is larger than the input by the offsets and the shadow blur radius.

8. Shapeburst. This filter applies a “shapeburst” gradient to an image. It
uses the shape of the selection to determine the shape and then shades
from the outside of the shape inwards. You can change the shape of the
gradient between linear, circle up, circle down and a smooth transition
and you can change the rate at which the gradient changes. By default,
the gradient will shade from black at the edges to white in the centre of
the shape, but you can also get the filter to invert this. This filter is
particularly useful for creating bump maps to enhance the emboss
filter.

9. Marble. creates a marbled effect. Use the dialog to specify the width,
height and turbulence to use for the marbling.

8.10.6 Blur

1. Simple Blur. Blurs the image by the specified amount.
Visaj User’s Guide 135

Chapter 8 Image Editor
2. Gaussian Blur. This applies a Gaussian blur to the source
image.Blurring images is useful for special effects.You can specify the
radius of the Gaussian convolution kernel; the larger the radius, the
more blur. This filter can be slow if you specify a large radius.

3. Sharpen. Gives clearer definition to blocks of color.

4. Bumps. The opposite of blur, the bumps filter applies an 'embossing'
convolution kernel to the image which sharpens edges, producing a
bumpy embossed effect.

5. Motion Blur. Blurs the image in one direction, giving the effect of
speed.

6. Detect Edges. This filter detects edges in an image by applying two
Sobel gradient operators and subtracting the results. This produces a
'neon' type effect which can be a good starting point for interesting
textures.

7. Maximum. and Minimum. These filters replace each pixel by the
maximum and minimum of the input pixel and its eight neighbors.
Each of the RGB channels is considered separately. You can achieve
some interesting effects on some images by repeatedly applying these
filters.

8. Median. Applies a color median operator to the image. The output
pixel is the median of the input pixel and its eight neighbours.You can
use this filter to remove shot noise from an image. This filter may be
slow.

8.10.7 Texture

1. Texture. Create a gray texture using the parameters specified in the
dialog.

2. Weave. This filter simulates woven cloth. You can specify the width of
the threads, the gap between them, the pattern of crossings, flat or
round threads and whether shading is done at the crossings. You can
give the threads constant colours or use the colours from the input
image. It can be effective to emboss or use as a bump map the output
of this filter.
136 Visaj User’s Guide

Chapter 8 Image Editor
3. Checkerboard. Creates checkerboard patterns. You can change the size
of the squares in the X and Y directions and the angle at which they are
drawn. You can also specify a “fuzziness” for the edges.

4. Plasma. This filter produces “plasma” clouds using a midpoint
displacement algorithm. Random colours are assigned to pixels at the
corners of the image and then recursively averaged and displaced to
produce pixels at the midpoints. You can specify the turbulence
(graininess) of the results and can provide a colormap. This filter can
be useful for producing stone-like textures.

8.10.8 Binary

1. Erode and Dilate. These filters perform binary erosion and dilation,
removing or adding black pixels from or to the edges of black areas.
You can specify a threshold for the number of neighbors needed to flip
pixels.

2. Outline. Removes black pixels from the centre of black areas, leaving
just the outline.

3. Life. Performs one turn of John Conway's game of Life on the image.
Visaj User’s Guide 137

Chapter 8 Image Editor
138 Visaj User’s Guide

Resource BundleEditor 9
In order to allow the text in your application (button labels etc.) to be
easily translated for other language users, you will need to define resource
bundles. Instead of entering a string label for a Button or Label component
in the Property Sheet, a key is used. Keys can then be linked to strings in
any number of languages by using the Resource Bundle Editor.

The Resource Bundle Editor, shown in Figure 9-1, is displayed when you
open a Resource Bundle save file, select “New Resource Bundle” from the
Class Editor File menu, double-click over a Resource Bundle save file in the
Visaj project window or when you press the “New Resource Bundle”
button on the project window toolbar.

Figure 9-1 Resource Bundle Editor

The Resource Bundle Editor is arranged as a table, with one column per
language and one key per line. To add a string into the table, select the
table cell and enter the string into the text field at the top of the window.
Visaj User’s Guide 139

Chapter 9 Resource Bundle Editor
Press the Return key to put the string into the selected cell. When a cell is
selected, the locale of the text field is set to match the language of that cell.
If your system supports that language, you will be able to type using
characters of the selected language.

9.1 File Menu
The File menu in the Resource Bundle Editor contains items to import and
export text as well as the standard file operations for opening, closing and
saving files.

“Import language” and “Export language” operate on one language at a
time, using the currently selected language only.

9.1.1 Export Language

The export command provides a means of listing all keys, in the currently
selected language, which require translation. When “Export language...” is
selected from the File menu, a dialog appears prompting you for a
character encoding for the export file. This is provided so that you can be
sure the file you are exporting can be read by whoever will be reading the
file. Different languages require different encodings and, indeed, different
editors will expect different encodings too. A scrolling list of all commonly
used character encodings is provided. Simply select one of these and press
“OK”. Once you have specified the encoding, the Resource Bundle Editor
prompts you for the name of the file to be exported.

The exported file contains one line for each key. Each line is of the format:

<key>=<value>

Note – Only the currently selected language is exported. If you have nothing
selected, nothing is exported.

The selected encoding is saved with the selected language so that you can
import back into the same language later.
140 Visaj User’s Guide

Chapter 9 Resource Bundle Editor
9.1.2 Import Language

The import commands allow you to read in newly translated data. There is
a pullright menu, available from the “Import language” item in the File
menu, which allows you to choose whether the imported data should
merge with or append to the data already present.

Import operates on the currently selected language only. Make sure that
you select the correct language before importing.

Each language is exported using a specified character encoding. The
Resource Bundle Editor remembers which encoding was used. If, however,
you are not using the same save file which was used for the export
command, you will be prompted for the character encoding which was
used to export the language initially.

Once it has found the correct character encoding to use, the Resource
Bundle Editor prompts you for the name of the file to be imported.

The Resource Bundle Editor expects an import file to have one line for each
key. Each line must be of the format:

<key>=<value>

Note – The Resource Bundle Editor imports into the currently selected language.
If there is no language selected, nothing is imported.

9.1.3 Save and Open

When a Resource Bundle is saved, the table is serialized into the specified
file. By convention, Visaj expects Resource Bundle save files to have the
filename extension “vrb”. When a file with such an extension is opened,
Visaj will automatically open it in the Resource Bundle Editor.

9.2 Edit Menu
The Edit menu contains Cut, Copy, Paste, Clear, Undo and Redo. These
apply to the text in a cell. There are also some extra items allowing you to
add and delete languages and keys (which correspond to columns and
rows in the table).
Visaj User’s Guide 141

Chapter 9 Resource Bundle Editor
9.2.1 New Language

To add new languages to the Resource Bundle Editor, select “Add
language...” from the Edit menu. A dialog appears which asks for the new
language and country, as shown in Figure 9-2.

Figure 9-2 Add Language in Resource Bundle Editor

There is a small arrow button next to each of these which, when pressed,
displays a popup menu containing those languages or countries which are
known to Java. When a selection is made from one of these popup menus,
the two-letter ISO Language Code (ISO-639) (or two-letter ISO Country
Code (ISO-3166)) is displayed in the text area. You may enter these codes
directly if you wish. You do not have to enter the country code, but if you
do the Resource Bundle Editor tries to find an appropriate flag to display
in the table. This is for display purposes only.

If you wish to see a list of the language and country codes, try the
following web sites:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt (for the ISO
Language Codes)

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html (for the ISO
Country Codes)

9.2.2 New Key

To add new keys to your Resource Bundle Editor, press the “new Key”
button on the toolbar or choose “Add key” from the Edit menu. A new,
blank line appears at the bottom of the table.
142 Visaj User’s Guide

Chapter 9 Resource Bundle Editor
9.3 Generating Code
The Generate menu contains two items: “Generate all files” and “Set
properties...”. The former item generates a class file for each of the
languages in the table - including the default. The filenames of these
generated files are constructed by using the class name followed by the
two letter ISO code for the language and the two letter ISO code for the
country, if provided. The language and country codes are preceded by the
under bar (_) character. The “Default” is given no language or country
code. Subclassing occurs as follows:

• The “Default” class subclasses ListResourceBundle from the java.util
package.

• A class with a language code only, extends the “Default” class.

• A class with a language and country code extends the class with the
language code only, if provided. If this is not provided, it extends the
“Default”.

The filename is always given the “.java” suffix. The example resource
bundle shown in Figure 9-1 contains the French language of the country
France. Assuming the class name is “Greetings”, the class file for that
language would be:

GreetingsResourceBundle_fr_FR.java

Here is the contents of that file:
/*

** French (France) resource bundle for Greetings

*/

public class GreetingsResourceBundle_fr_FR extends

GreetingsResourceBundle {

public Object[][] getContents() {

return contents;

}

static final Object[][] contents = {

{“Yes”, “Oui”},

{“No”, “Non”},
Visaj User’s Guide 143

Chapter 9 Resource Bundle Editor
{“Hello”, “Bonjour”},

};

}

The first time you generate code, you will be prompted for a class name
and package name. You do not have to provide a package or the generated
files, but you are required to provide a class name. This is also used as the
filename of the generated code file. If you wish to change the class or
package name before generating again, choose “Set properties...” from the
Generate menu.

9.4 Using Resource Bundles
You may create resource bundles using the Resource Bundle Editor, save
them and generate the appropriate class files. In order to use them in the
Class Editor you will have to do two things:

1. Set a Code Expression for the String property.

2. Add the resource bundle to the class in the Class Editor.

9.4.1 Setting the String Value

You will need to use code expressions in order to make the generated code
read the value from the resource bundle. To do this:

1. Select the component in the containment hierarchy which has a
String property.
A Button or Label, for example.

2. Display the Property Sheet and select the “text” property.

3. Choose “Code expression” from the option menu at the bottom of
the Property Sheet.

4. Type the following into the Code expression text box:

resources.getString(“key”)

where “resources” is the variable name of the resource bundle and
“key” is the key in the resource bundle. Remember to type Return at
the end of the line.
144 Visaj User’s Guide

Chapter 9 Resource Bundle Editor
9.4.2 Adding a Resource Bundle to the Class

To add a resource bundle to a class which is using its keys, do the
following:

1. In the Class Editor, select the ResourceBundle object from the
palette.

2. This appears in the invisible beans area.

3. Change the variable name of the resource bundle to the class name
you provided in the Resource Bundle Editor.

4. Display the Property Sheet for the resource bundle and change the
Object Initialization property to use the code expression:

ResourceBundle.getBundle(“ClassName”)

where “ClassName” is the name of the class you have generated.

Resources fetched from a resource bundle do not affect the dynamic
display. They do display correctly when the generated code is run.
Visaj User’s Guide 145

Chapter 9 Resource Bundle Editor
146 Visaj User’s Guide

The Project Window 10
10.1 Introduction
The project window, shown in Figure 10-1, provides an area where you can
specify the files you wish to work on.

Note – If you are running Visaj from within an IDE (Integrated Development
Environment), the project window may not be accessible from Visaj as the IDE
may wish to control file handling. The ability to make and edit projects should
then be available from the IDE.

Figure 10-1 The Project Window

You may group these files together in a way which will help you develop
your project; for example, you may wish to put all the files which control
the user interface together in one group and all the files which handle
Visaj User’s Guide 147

Chapter 10 The Project Window
output in another. In this way, the files are easier to find and access. The
project window is supplied as an extra level of convenience, but you do
not have to use it. It is displayed by either selecting “New project” from
the File menu of the Class Editor or by opening a project save file. Here is
a list of the functions which can be performed from this window:

1. Create, save and open project files

2. Add and remove files

3. Add and remove groups

4. Create new classes

5. Create new resource bundles

6. Edit a class or a resource bundle

Each of these functions is described in the following sections.

See Appendix B, “Quick Reference”, starting on page 199, for a diagram
and brief description of the toolbar buttons and menu items in each of
Visaj’s windows, including the project window.

10.2 Creating, Saving and Opening Projects
You may create a list of filenames, arbitrarily grouped, by following the
instructions in the sections below entitled Adding, Removing and
Renaming Groups and Adding and Removing Files. This list of filenames
constitutes your project. Save your project by choosing “Save” (or “Save
As...”) from the File menu or by pressing the Save button on the toolbar.
You will be prompted for a filename - by convention, Visaj project files
have the suffix “vpj”. This is important because, when you open a file,
Visaj uses the suffix to know what sort of file it is opening. Open a project
file by choosing the “Open” item from the File menu or by pressing the
Open icon on the toolbar.

10.3 Adding, Removing and Renaming Groups
The central area of the Visaj project window shows a tree of filenames. The
filenames can be grouped together in any way which suits your way of
working. This is purely for your convenience and has no impact on the
148 Visaj User’s Guide

Chapter 10 The Project Window
way Visaj’s tools work. To add a group, select “Add Group” from the Edit
menu. The group is added with the default name “Group”. To change the
group name, either select “Group name” from the Edit menu or double-
click over the group name in the tree area. A dialog appears prompting
you for the new name. Press “Ok” when you have entered the new name.
To remove a group from your project, select “Remove group” from the Edit
menu.

10.4 Adding and Removing Files
Add files to your project by selecting “Add file” from the Edit menu. You
will be prompted for the filename. The filename is added to the currently
selected group. Remove a file by selecting it and choosing “Remove file”
from the Edit menu. This only removes the filename from your project, the
file itself is not removed from its place on your disk.

10.5 Creating Files
You may create any of the following types of file from the project window:

1. Another project file

2. A resource bundle file

3. A class file

Create these files by either selecting the appropriate option from the
pullright menu under “New” in the File menu or by selecting the relevant
toolbar button.

10.6 Editing Files
Double-clicking over a filename in the tree area (or selecting a filename and
then choosing “Edit” from the Edit menu) displays the editor appropriate
for the selected file. The following editing tools are available:

1. The Class Editor. This is the most powerful part of Visaj, allowing you
to create complete classes with methods defining your user interface,
add functionality to the user interface and generate source code. The
Class Editor is described in Chapter 4, “The Class Editor”, starting on
page 37.
Visaj User’s Guide 149

Chapter 10 The Project Window
2. The Resource Bundle Editor. This tool allows you to create resource
bundles containing keys linked to values in any number of languages.
This is described in Chapter 9, “Resource Bundle Editor”, starting on
page 139.

10.7 The Windows Menu
The Windows menu appears in the Visaj project window and in Visaj’s
editing tool windows. This menu provides a means of cycling between all
currently open windows.
150 Visaj User’s Guide

GeneratedCode 11
11.1 Introduction
Code can be generated from the Class Editor and from the Resource
Bundle Editor. This section describes code generation from the Class
Editor. Generating code from the Resource Bundle Editor is described in
the Generating Code section on page 143.

11.2 How to Generate Code
To generate code for your classes, choose “Generate java...” from the
Generate menu in the Class Editor or press the Generate button on the
toolbar. The Directory Selection dialog is displayed, as shown in Figure
11-1. This allows you to specify in which directory you wish the generated
code to appear.
Visaj User’s Guide 151

Chapter 11 Generated Code
Figure 11-1 Directory Selection dialog

You should note that Visaj adheres to the requirements of the Java
language by using the name of the class as the filename for the Java source
file. If, therefore, you generate a Java source file, change the name of the
class in Visaj and then regenerate, a Java source file is created with the new
filename reflecting the new class name. In addition, if you have the
“Update existing files” toggle in the Generate dialog selected, the previous
Java source file is removed. This is to ensure that the design and the
generated code are always in step. If you wish to retain the previously
generated Java source file, make sure that the “Update existing files”
toggle is not set before generating. In this case, however, any changes you
may have made to the generated source are lost.

11.3 What is Generated
For each class you have created in Visaj, a java file is generated. Each class
is placed in a file of its own using the name of the class with a “.java”
suffix. Note that you can only specify one class per Class Editor save file so
one “.vcl” file corresponds to one Java class file.

In addition, if you have specified an object initialization type of
“Deserialization” in the property editor of any object, the file specified
there is generated too. Object initialization is described in more detail in
152 Visaj User’s Guide

Chapter 11 Generated Code
the Object Initialization section on page 63. The file should have the suffix
“.ser” to indicate that it is a serialized bean file. You are prompted to do
this in the property editor.

11.3.1 Packing Frames

You should note that if you do not explicitly set the size property on a
Frame (or JFrame from the Swing set of components), then the generated
code includes a call to the pack() method. If you do set size property, then
no call to the pack() method is generated.

11.4 Adding Your Own Code - Subclassing
Although you can edit the generated code directly to add your own code
(this is explained in the following section), you may wish to consider
subclassing the generated class file. This means that any code you add is in
a separate file. It is easier to read than the generated code, which is
sprinkled with protective comments. There is also no danger that the code
you add will be accidentally lost when code is regenerated from Visaj.

Your new class would look something like this:
public NewClass extends VisajGeneratedClass {

public void newMethod() {

super.newMethod();

}

}

There are a number of points to keep in mind when subclassing the
generated code:

• The class defined in Visaj must be accessible - see the Editing Properties of
the Class section on page 40 for information on this.

• If you have provided a package statement for the generated class, you
should also provide one in your new class.

• If the generated class is in a different package from your new subclass,
you will have to import the generated class.

• Remember to add the call to overridden methods, as in the example
above, if the overridden method contains code.
Visaj User’s Guide 153

Chapter 11 Generated Code
• If you have wish to use a non-default constructor which you have
provided in the superclass, you will have to add a constructor to your
new class too.

11.5 Editing the Code
You may edit the generated code - for example, to add an interface to
existing software. Make sure, when you do this, that you do not edit
anything in sections which begin with the special comment //vj+ and end
with the special comment //vj- . Lines on their own which must not be
changed or removed have the special comment //vj=. If your additions
are made outside of these comments, they will be retained if you need to
generate the code again.

11.6 Regenerating Code - Using the Update Toggle
When you regenerate your code, the Generate dialog contains a toggle
labelled “Update existing file”, as shown in Figure 11-2. This will ensure
that any changes you have made to the generated code will be retained.

If you have generated source code and then changed the class name, when
you next generate code the “Update existing file” toggle has a more
dramatic effect. If this toggle is set, the file is updated to use the new class
name as the source code filename. It then appears as though a new file has
been created and the old one removed. If you wish to retain the previously
generated source file, make sure that the “Update existing file” toggle is
not set before you generate. Of course, in this case you would lose any
changes you may have made to the source file.

If you use the toolbar Generate button to regenerate code, the Generate
dialog does not appear. Instead, code is regenerated immediately, retaining
any changes you may have made to it.
154 Visaj User’s Guide

Chapter 11 Generated Code
Figure 11-2 Directory Selection Dialog with Update Option

11.7 Example Code
The following is an example of code generated from a simple design, the
containment hierarchy of which is shown in Figure 11-3. One event binding
has been added to set the text of the textfield to “hello world” when
button1 is pressed. The constructor has been designated “main method”.
Otherwise, all defaults have been retained.

This code compiles and runs. Because it uses defaults, the layouts and sizes
would need to be changed to create a better appearance.
//vj+ <VJ-PackageName>

//vj- <VJ-PackageName>

//vj+ <VJ-PackageInclude>

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Frame;

import java.awt.Button;

import java.awt.Panel;

import java.awt.Label;

import java.awt.TextField;

import java.awt.MenuBar;

import java.awt.Menu;
Visaj User’s Guide 155

Chapter 11 Generated Code
import java.awt.MenuItem;

//vj- <VJ-PackageInclude>

//vj= <VJ-DefineClasses>

//vj+ <VJ-BeginClassDef>

public class MyClass extends Object {

//vj- <VJ-BeginClassDef>

//vj+ <VJ-DataMembers>

protected Frame frame1 ;

protected Button button1 ;

protected Button button2 ;

protected Panel panel1 ;

protected Label label1 ;

protected TextField textField1 ;

protected MenuBar menuBar1 ;

protected Menu menu1 ;

protected MenuItem menuItem1 ;

protected MenuItem menuItem2 ;

protected Menu menu2 ;

protected MenuItem menuItem3 ;

//vj- <VJ-DataMembers>

//vj= <VJ-Methods>

//vj+ <VJ-BeginMethodDef>

// Method# 1

public MyClass() {

//vj- <VJ-BeginMethodDef>

//vj= <VJ-MethodCode>

//vj+ <VJ-DefineAWTMembers>

frame1 = new Frame();

frame1.setTitle(“frame1”);

button1 = new Button();

button1.setLabel(“button1”);

button2 = new Button();

button2.setLabel(“button2”);

panel1 = new Panel();
156 Visaj User’s Guide

Chapter 11 Generated Code
label1 = new Label();

label1.setText(“label1”);

textField1 = new TextField();

panel1.add(label1, null, -1);

panel1.add(textField1, null, -1);

menuBar1 = new MenuBar();

menu1 = new Menu();

menu1.setLabel(“menu1”);

menuItem1 = new MenuItem();

menuItem1.setLabel(“menuItem1”);

menuItem2 = new MenuItem();

menuItem2.setLabel(“menuItem2”);

menu1.add(menuItem1);

menu1.add(menuItem2);

menu2 = new Menu();

menu2.setLabel(“menu2”);

menuItem3 = new MenuItem();

menuItem3.setLabel(“menuItem3”);

menu2.add(menuItem3);

menuBar1.add(menu1);

menuBar1.add(menu2);

{

String strConstraint;

strConstraint = “Center”;

frame1.add(button1, strConstraint, -1);

strConstraint = “North”;

frame1.add(button2, strConstraint, -1);

strConstraint = “South”;

frame1.add(panel1, strConstraint, -1);

}

frame1.setMenuBar(menuBar1);

frame1.pack();

frame1.show();

//vj- <VJ-DefineAWTMembers>

//vj+ <VJ-EndAWT>

//vj- <VJ-EndAWT>
Visaj User’s Guide 157

Chapter 11 Generated Code
//vj+ <VJ-EventListenerClass>

class ActionListenerAdapter implements ActionListener {

public void actionPerformed(ActionEvent e) {

if (e.getSource().equals(button1)) {

textField1.setText(“Hello world”);

return;

}

}

}

//vj- <VJ-EventListenerClass>

//vj+ <VJ-AddEventListeners>

button1.addActionListener(new ActionListenerAdapter());

//vj- <VJ-AddEventListeners>

//vj= <VJ-Classes>

//vj+ <VJ-EndMethodDef>

}

//vj- <VJ-EndMethodDef>

//vj= <VJ-Classes>

//vj+ <VJ-EndClassDef>

public static void main (String args[]) {

try {

MyClass myclass = new MyClass();

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

//vj- <VJ-EndClassDef>
158 Visaj User’s Guide

Chapter 11 Generated Code
Figure 11-3 Hierarchy for Sample Code

11.8 Using the Diamond Components
If you have used any of the Diamond components in your application, you
will have to make sure that the library or directory containing the
Diamond class files is in your CLASSPATH. For the current release, the
Diamond class files are in the file diamonds.jar , which is found in the
Visaj install directory.

11.9 File Types on Apple Macintoshes
If you intend to run the generated code on an Apple Macintosh, you will
need to set the file type of the generated code files. This is to enable them
to be recognized by your chosen IDE. Visaj uses the following system
property to decide which file type to set:

vj.macJavaFileType

This defaults to “CWIE”, which is the type expected by the IDE Code
Warrior.
Visaj User’s Guide 159

Chapter 11 Generated Code
160 Visaj User’s Guide

Configuration 12
12.1 Integration with an IDE
To integrate Visaj with Java Workshop 2.0, use the Java Workshop
integration package available from the same source as your Visaj1. Once
integrated, a Visaj icon appears on the Java Workshop toolbar allowing you
to create new Visaj Class Editor save files (“.vcl”) or edit existing ones.
When a Visaj Class Editor save file is added to a Java Workshop project,
Java Workshop will automatically cause the appropriate Java source code
files to be generated when you build the project.

Note – If you have any problems with the Java Workshop integration, you may
wish to check whether any extra information is listed in the README file
supplied with the integration package.

To use other IDEs, refer to the documentation supplied by the IDE vendor
or simply add the generated “.java” source code files to the project. For
details of the latest integrations with IDEs, visit the following website:

http://www.ist.co.uk

1. The release and installation notes supplied with Visaj provide details.
Visaj User’s Guide 161

Chapter 12 Configuration
12.2 Palette File
If you wish to add components for use in Visaj, you can do so by defining
a palette file or by loading a JAR file. Loading JARs is described in the
Loading JAR Files section on page 60. The palette file is a text file containing
the list of components to add, as full package names. You will also need to
make sure that your CLASSPATH environment variable1 points to the
location of the new components. Both of these are described below.

Note – Visaj is supplied with several pre-defined palette files. These can be found
in the palettes directory beneath your Visaj install directory.

This is an example palette file:
palette {

title = “AWT”

jar = “/components/jars/klg/jcchart200.jar”

group {

title = “KLG Chart”

item {

title = “JCChartComponent”

class = “jclass.chart.JCChartComponent”

help = “Create a JCChartComponent”

}

}

jar = “/components/jars/jscape/java1/jars/Animator.jar”

group {

title = “JScape”

item {

title = “Animator”

class = “COM.jscape.widgets.Animator”

}

item {

title = “BaseTabbedPanel”

1. Environment variables are available on UNIX and Microsoft Windows. Other platforms, such as the
Apple macintosh, use their own method of setting a CLASSPATH. Please refer
to the relevant Java documentation for more information.
162 Visaj User’s Guide

Chapter 12 Configuration
class = “COM.jscape.widgets.BaseTabbedPanel”

}

}

group {

title = “TeaSet”

item {

title = “AnimatedButton”

class = “tea.set.AnimatedButton”

}

item {

title = “Animator”

class = “tea.set.Animator”

}

item {

title = “ArrowButton”

class = “tea.set.ArrowButton”

}

}

}

group {

title = “KL”

item {

title = “DemoFrame”

class = “jclass.chart.demos.DemoFrame”

}

item {

title = “MyShape”

class = “jclass.chart.demos.basic.MyShape”

}

}

There are four levels in the palette file:

1. The name of the palette. For the current release, this will always be
“AWT”, as shown above.

2. The name and location of the jar file to load for some or all of the
components in the palette. This is optional. If no jar file is specified,
Visaj checks your CLASSPATH.
Visaj User’s Guide 163

Chapter 12 Configuration
3. The “group”. In the above example, there are three groups: TeaSet, KL
and JScape. All items inside the group will appear together and
labelled appropriately on the component palette.

4. The “item”. This level identifies the individual component.

There are two further fields at the “item” level relating to components:
“icon” and “help”. “icon” is the name of the icon to display on the palette
(a “.gif” suffix is assumed) and “help” is the text to display in the status
line. These fields can be seen in the following extract from the built-in
palette file for Visaj:

item {

title = “Panel”

class = “java.awt.Panel”

icon = “Panel”

help = “Create a Panel”

}

item {

title = “ScrollPane”

class = “java.awt.ScrollPane”

icon = “ScrollPane”

help = “Create a ScrollPane”

}

12.2.1 Using VISAJOPTS

When you have created your palette file, you need to tell Visaj where it is.
There are three ways of doing this:

• Using the VISAJOPTS environment variable
• Using the “Merge palette...” item from the Palette manu in the Class

Editor
• From the command line

Here is an example of how the VISAJOPTS environment variable is used:
setenv VISAJOPTS -Dvj.AWTPalette.file=/u/me/paletteFile

where /u/me/paletteFile is the full pathname of your palette file. The
syntax of the line will depend on the shell or operating system you are
using.
164 Visaj User’s Guide

Chapter 12 Configuration
Microsoft Windows NT

If you are using Microsoft Windows NT, make sure that you use the
backslash character (‘\’) instead of the forward slash character (‘/’) when
specifying a pathname, as in the example above.

Microsoft Windows 95

It is not possible to use the VISAJOPTS environment variable on Microsoft
Windows 95. If you wish to set up Visaj so that a particular palette is
always loaded on that system, you will need to create a batch file
containing a command line configured as described in the following
section.

12.2.2 Using the Command Line

You can tell Visaj that you wish to use merge your own palette file into the
default palette by using the following system property either from the
command line or in a startup script. Here is an example:
visaj -Dvj.AWTPalette.file=/u/me/paletteFile

This merges the palette file /u/me/paletteFile into the palette you have
selected for starting Visaj - AWT or Swing. Use vj.CommonPalette.file
to merge a palette file into both the AWT and Swing palettes.

12.2.3 CLASSPATH - Locating Classes

The CLASSPATH environment variable1 must contain the full pathnames
of the package containing the class files of any new components you wish
to have on your component palette. This may be a “.jar” , a “.zip” file
or the full pathname of a directory containing the class files. By default,
Visaj automatically loads the Java AWT components and the IST
Diamonds.

1. Environment variables are available on UNIX and Microsoft Windows. Other platforms, such as the
Apple macintosh, use their own method of setting a CLASSPATH. Please refer
to the relevant Java documentation for more information.
Visaj User’s Guide 165

Chapter 12 Configuration
12.3 Pre-defined Palette Files
Supplied with Visaj are some pre-defined palette files which load various
components from different vendors. These reside in the palettes directory
which can be found in the Visaj install directory. The README file in the
same directory lists which components are loaded by each of the palette
files supplied. To use these palette files you will need to set your
CLASSPATH environment variable to point to the class files (or jar file)
supplied by the component vendor.

12.4 Merging Palette Files
You may merge a palette file into your existing Class Editor window by
selecting “Merge palette...” from the Palette menu. Specify the name of the
palette file where prompted. You must make sure that your CLASSPATH
environment variable contains the locations of the class or jar files for the
classes in the new palette file. See also the Loading JAR Files section on page
60 for another way of adding objects to your palette.

12.5 Use Swing Palette
Type
visaj -swing

to have the Swing palette supplied with Visaj loaded at start-up. You must
make sure that the Swing jar file is in your CLASSPATH before starting
Visaj. See the Loading Swing Components section on page 90 for more
information.

12.6 Visaj Options
The following sections detail the Visaj options (or system properties) which
alter some aspect of Visaj’s appearance or behavior. The sections are
grouped according to the type of change effected by the option.

These options are passed as arguments to Visaj using “-D” and then the
property (with no spaces), followed by any arguments which may be
required. This is shown in the following example:
visaj -Dvj.menuFont=Helvetica-italic-
166 Visaj User’s Guide

Chapter 12 Configuration
Some of the options do require an argument, such as a filename or a value
of true or false. Others are simply switches and cause a change in behavior
just by being passed to Visaj.

If you pass in a badly formatted string or a type of property which does
not exist it is ignored. No error message is displayed.

12.6.1 Fonts

The following system properties allow you to change the fonts Visaj uses:

1. vj.menuFont

2. vj.windowFont

vj.menuFont allows you to specify the font that should be used for menus.
vj.windowFont lets you change the font used elsewhere in the windows.
On some platforms, the default fonts are not very suitable.

The font should be specified in one of the following ways:

1. <fontname>-<style>-<pointsize>

2. <fontname>--<pointsize>

3. <fontname>-<style>-

4. <fontname>

Note – The trailing hyphen (-) in number 4 is required.

12.6.2 Palettes

Use vj.AWTPalette.file to specify a palette file to merge into either
the AWT or Swing palette - whichever you have selected to appear on
startup. Use vj.CommonPalette.file to specify a palette file to merge
into both the AWT and Swing palettes.

12.6.3 Design Time Flag

To set the design time flag for beans, use vj.beanDesignTime , setting
this to “true”, like this:
visaj -Dvj.beanDesignTime=true
Visaj User’s Guide 167

Chapter 12 Configuration
This will cause all beans to operate in design mode.

12.6.4 Temporary Directory

By default, Visaj uses /tmp as the directory in which to compile event
bindings so that they can be used in the dynamic display. If you wish to
change this, use vj.tmpDir , setting it to your preferred directory. For
example:
visaj -Dvj.tmpDir=/u/me

12.6.5 Current Directory for Code Generation

By default, Visaj shows the current working directory when the Generate
dialog is displayed. You can override this by using the vj.cwd property.

12.6.6 Swing Conversion

The option vj.convertPackages=true allows you to convert swing
package names from the older form of com.sun.java.swing.< class >
to the newer javax.swing.< class >. Since the default behavior is the
same as passing “false” using this option, you do not

12.6.7 Plug In File

The option vj.pluginFile tells Visaj where to find a plug-in. By default,
Visaj looks for plug-ins in the PlugIns directory in the Visaj installation
directory.

12.6.8 Migration from Java WorkShop

If you wish to use Visaj with your .gu i files created with Java WorkShop,
start Visaj with the option vj.JWS=true . An extra menu is displayed in
Visaj’s menubar, labelled “Java WorkShop”. This menu contains the
commands required to convert a .gui file.

Remember that the shadow runtime needs to be in the classpath.
168 Visaj User’s Guide

Chapter 12 Configuration
12.6.9 Scope of Beans

The vj.variablesDefaultToInstanceVars option controls whether
beans added to a design are local variables or instance variables. The
default value for this option is true, which means that beans are normally
added as instance variables.

12.6.10 Use System Colors

The option DTColors causes Visaj to use the system colors.

12.6.11 Switch off JIT

Passing the java.compiler=none option via Visaj switches off the JIT
compiler. This produces an error message which can be safely ignored.
Visaj User’s Guide 169

Chapter 12 Configuration
170 Visaj User’s Guide

Tips AndHints 13
13.1 Introduction
This chapter incorporates some points which you may find useful when
using Visaj along with some issues which could be termed
“troubleshooting”. If you become “stuck” or confused, scan this chapter to
see if any relevant information is provided. Check here also for advice on
using Visaj. The tips and hints are divided into the following categories:

• User Interface
• Event Bindings
• Loading X-Designer Save Files
• Palette Configuration
• Layout
• Generated Code

13.2 User Interface

☞ How do I make a “main” method?

Tell Visaj which method should be the “main” method of your application
by selecting the method in the Class Editor and then choosing “Main
method” from the Method menu. A small star next to the method reminds
you which has been designated “main”. You do not have to mark any of
the methods as “main”, but remember to add one somewhere in your
application!
Visaj User’s Guide 171

Chapter 13 Tips And Hints
Further information:

• The Class Structure View section on page 38 for information on seeing and
editing the methods in your class.

• The Main Method section on page 49 for more information on making a
method “main”.

☞ The hierarchy has disappeared after looking at the Event bindings
or method signature pages.

The area of the Class Editor window which contains editors for the
methods in the classes is organized as a tabbed panel. This is like a stack of
cards with a tab on each card showing its name (or function in this case).
Selecting a tab brings the associated “card” to the top. If you have been
looking at the Event bindings or method signature “card”, you will have to
select the “Bean creation” tab to bring the hierarchy building “card” to the
front again.

Further information:

• Chapter 5, “Beans View”, starting on page 55, explains all the method
editors.

• Chapter 3, “Visaj Tutorial”, starting on page 13, leads you through a real
working example to familiarize you with Visaj.

☞ I want to reparent some child objects

By using a combination of Cut/Clear/Paste you can reparent whole
groups of objects. Here is an example:

1. You have created a hierarchy of Frame-Splitter-{Button, Toggle,
TextField}, as shown in Figure 13-1.
172 Visaj User’s Guide

Chapter 13 Tips And Hints
Figure 13-1 First Parenting

2. Select the Button, Toggle and TextField.

3. Press the Cut button on the toolbar (or select from the Edit menu).

4. Select the Splitter in the hierarchy.
This is a Diamond component.

5. Press the Clear button on the toolbar (or select from the Edit menu).

6. Make sure the Frame is selected and press the Paste button on the
toolbar (or select from the Edit menu).
Visaj User’s Guide 173

Chapter 13 Tips And Hints
7. You have now changed to a structure of Frame-Panel-{Button, Toggle,
TextField}, keeping the same child objects, as shown in Figure 13-2.

Figure 13-2 Second Parenting

Further information:

• The Building Hierarchies section on page 58 describes how to create and
edit containment hierarchies.

• Chapter 3, “Visaj Tutorial”, starting on page 13 leads you through a
working example to introduce the major features of Visaj.

• See the Splitter section on page 195 for information on the Splitter
Diamond component.

☞ How do I manage lots of classes for my application?

The Class Editor works with one class at a time. The chances are that your
application will have more than one class in it. To keep track of them all
and to make them easily available for editing, do one of the following:

1. Use the Visaj project window. Using this you can keep a list of all the
classes in your application and simply double-click over them to edit
them in the Class Editor

2. Use an Integrated Development Environment (IDE). IDEs are
commercial packages for organizing, creating, compiling and
debugging Java application. Some IDEs can be configured to work with
Visaj’s save files.
174 Visaj User’s Guide

Chapter 13 Tips And Hints
Further information:

• Chapter 10, “The Project Window”, starting on page 147, describes the
Visaj project window.

• The Integration with an IDE section on page 161 explains how to use an
IDE in conjunction with Visaj.

☞ How do I use CheckboxGroups?

The CheckboxGroup, whose palette icon is shown in Figure 13-3, is an
invisible bean. As with all invisible beans, you must have nothing selected
in the design area to add it to your design. It is then places at the top of the
design area, alongside the roots of hierarchies.

Figure 13-3 CheckboxGroup Palette Icon

The CheckboxGroup provides a means of grouping Checkboxes and giving
them radio button behavior (only one in the group can be “set”). To link one
CheckboxGroup to a group of Checkboxes, do the following, assuming that
you have already added some Checkboxes and a CheckboxGroup to your
design:

1. Select the Checkboxes and display the Property Sheet.

2. Select the “checkboxgroup” property.

3. In the property editor at the bottom of the Property Sheet, select the
“Variable name” option.

4. Type the variable name of your CheckboxGroup into the text field.

Although you will not see the radio behavior in the dynamic display, the
generated code will display such behavior.

Further information:

• See the Using CheckboxGroups section on page 76 for another description
of this issue.
Visaj User’s Guide 175

Chapter 13 Tips And Hints
• See the Properties section on page 60 for a description of object properties,
including how to use the Property Sheet.

☞ I can’t see the objects in my design properly, particularly when I
add invisible beans

The Class Editor window is divided into several areas. You can alter the
amount of window space used by the containment hierarchy and by the
class structure editor by:

• Using the splitter to resize the panels. Do this by positioning the pointer
over the bar between the panels, pressing the mouse button and moving
the divider. A diagram is shown in Figure 13-4.

• Pressing the “Show Method Editor only”/”Show both” buttons on the
toolbar.

Figure 13-4 Demonstration of Splitter Panel Divider
176 Visaj User’s Guide

Chapter 13 Tips And Hints
Further information:

• Chapter 4, “The Class Editor”, starting on page 37, describes the Class
Editor window and functions.

• The Class Editor Toolbar Buttons section on page 199 tells you which
buttons are which on the toolbar.

☞ I can’t find the other windows in my Visaj session

The Windows menu, available from all of Visaj’s editors, lists all open
windows in your current Visaj session. Selecting one of these menu items
brings the window to the front.

Note – On some window systems, if the selected window is iconized the icon is
brought to the front but the window is not opened.

Further information:

• The Windows Menu section on page 52 describes the whole Windows
menu.

☞ I have added a file selection dialog to my design but it does not
appear in the dynamic display

By default, Visaj sets the “visible” resource for file selection dialogs to
“false” because, being modal, they cause confusion when they appear as
they have to be dismissed. you can make a file selection dialog appear
either by explicitly setting the “visible” resource or by setting up an event
binding which causes it to appear.

Further information:

• Chapter 6, “Event Bindings”, starting on page 79 describes event
bindings and how to create them.

• The Properties section on page 60
Visaj User’s Guide 177

Chapter 13 Tips And Hints
☞ How do I add components to the base component?

To define methods which add components to the class, add “this” to the
method design when the class is a subclass of java.awt.Component or
MenuComponent. “this”, in such a case, refers to the class itself so any
components added to it are added to the base component (the class itself).

Further information:

• See the “this” section on page 42 for more information on using “this”.
• See the Editing Properties of the Class section on page 40 for more

information on changing the superclass.

☞ Visaj won’t exit

If you try exiting visaj and nothing happens, it may be because you have
some iconized class editors that have put up a dialog asking if you want to
save changes, but the dialog cannot be seen because the editor is iconized.

☞ Visaj is not responding/behaving strangely. Can I get any
feedback on what is happening?

Select “Java Console...” from the Options menu. If any exceptions have
been generated, they are displayed in this window.

13.3 Event Bindings

☞ How can I set up an action to be performed when the Close button
in a Frame (or Dialog) is pressed?

To set up an event binding on the close button of a Frame or Dialog,
display the Event Binding editor and select the Frame or Dialog as the
“Source”. Next, select “windowClosing” from the list of “window” actions
in the “Type” list.

To exit the application, select the class (default “MyClass”) as the “Object”
and a class method previously defined by you. In the generated code, you
would then add the following line to your method:
178 Visaj User’s Guide

Chapter 13 Tips And Hints
System.exit(1);

To hide the window, select the frame (or the dialog) as the “Object” and
then the “hide” method.

☞ Dragging a line between two components doesn’t display the
Event Bindings Editor

Holding down the control key while dragging between two components
causes the Event Bindings Editor to be displayed, primed with the two
components. If, however, the control key is released at any time before the
mouse button is released, the Editor is not displayed. Instead, the second
component is simply selected in the design hierarchy,

Further information:

• Displaying the Editor section on page 80. This section describes the
different ways of displaying the Event Binding Editor including
dragging across the containment hierarchy.

☞ Adding an event binding causes Exceptions and does not work

If you are trying to set up an event binding using Beans from a compressed
JAR file, you may find that the event binding is not created and Exceptions
are printed in a terminal window. This is because the compiler which Visaj
is using “behind the scenes” cannot access compressed listener or event
objects.

Further information:

• Chapter 6, “Event Bindings” for information on creating event bindings.
Visaj User’s Guide 179

Chapter 13 Tips And Hints
13.4 Loading X-Designer Save Files

☞ When I try to load my design, one of the file dialogs in it appears,
but then Visaj freezes up.

File selection dialogs are modal, therefore if you have set the “visible”
resource for the file selection dialog to “true”, Visaj will freeze when it
displays the dialog in its dynamic display. This happens on import as well
as with normal loading. If you cancel the file dialog when it appears, Visaj
will continue loading. By default, the “visible” resource is set to “false”.

Further information:

• The Importing X-Designer Save Files section on page 50 describes how to
load files created in X-Designer into Visaj.

☞ Visaj seems to have confused the title of an MWT FramedPanel
with its contents - or - Visaj is not displaying the correct heading
(‘error’, ‘information’, etc.) on my dialog template.

You can specify which of a FramedPanel’s children is its title child by using
a property, and you can specify an IconMessagePanel’s icon in a similar
manner. However, properties of type Component can only be specified
using a code expression property setting in Visaj.

These settings do not take effect in the dynamic display. The dynamic
display, therefore, may use the wrong child as title or icon when displaying
the FramedPanel or IconMessagePanel. Generated code, however, will use
the correct child.

Further information:

• The Importing X-Designer Save Files section on page 50 describes how to
load files created in X-Designer into Visaj.
180 Visaj User’s Guide

Chapter 13 Tips And Hints
☞ My Motif XmRadioBox has disappeared on Visaj

Motif designs which use XmRadioBoxes, when brought over to Visaj, will
use Checkboxes inside Panels. You will have to edit your design to add
radio-box behavior.

Further information:

• The Using CheckboxGroups section on page 76 describes how to add
Checkboxes to CheckboxGroups.

• The ButtonGroup section on page 102 describes how to use the Swing
ButtonGroup component to add radio-box behavior to your application.

☞ A message “Unknown class <name>_user” is displayed when
loading the X-Designer generated file.

You may see such a message if your X-Designer design was captured
(using XD/Capture) in Java mode. In some circumstances XD/Capture
overrides some of the classes in the design. You should replace the class
mentioned in the error message with <name>_c.

☞ The design seems to have loaded, but nothing is displayed.

Check whether the visible property on the topmost frame has been set to
false. This sometimes occurs in designs captured with XD/Capture.

13.5 Palette Configuration

☞ How do I add components onto the Visaj palette?

Visaj loads the Java AWT components and the Diamond components by
default onto the component palette. If you wish to add components from
other vendors or your own homemade components, you can do one of the
following:

• Select “Load Jar file...” from the Palette menu to load extra components
contained in a JAR file.
Visaj User’s Guide 181

Chapter 13 Tips And Hints
• Select “Merge palette file...” from the Palette menu to load extra
components described in a palette file.

Merging in a palette file also requires that you set your CLASSPATH
environment variable so that Java can locate the new classes.

Further information:

• Step 2 on page 14 describes how to add the extra components required
for the tutorial.

• The Loading JAR Files section on page 60 explains how to load beans from
JAR files.

• The Opening Other Palette Files section on page 59 describes the merging
of palette files.

• The CLASSPATH - Locating Classes section on page 165 explains more
about setting the CLASSPATH environment variable.

☞ When I do “Merge Palette”, no components are added to my
palette

If a message is displayed saying that Visaj cannot handle the classes in the
palette file you are trying to merge in, check that you have set your
CLASSPATH environment variable so that Java can locate the classes
mentioned in the palette file. You can set up the CLASSPATH to point to a
JAR file containing the classes or to a directory with the classes in it.

Further information:

• The Opening Other Palette Files section on page 59 gives more information
on merging palette files.

• The CLASSPATH - Locating Classes section on page 165 explains some
more about the CLASSPATH environment variable.

☞ No Beans have been added to my palette after loading a JAR file

The following are some possible reasons why Java Beans have not loaded
from a JAR file:

1. There is no manifest file in the JAR.

2. There is a manifest file, but no mention of the Bean to be loaded.
182 Visaj User’s Guide

Chapter 13 Tips And Hints
3. There is a manifest file which refers to the Bean, but the entry for that
Bean is missing the line:
Java-Bean: true

Further information:

• The Loading JAR Files section on page 60 gives some more information on
the loading of JAR files.

• Step 2 on page 14 from explains how to load a JAR file for the tutorial.
• Look at the books mentioned in the Books on Java section on page 209 to

find out more about JAR files.

☞ On Microsoft Windows, my specified palette file has been ignored
or cannot be found

If you have specified a palette file either on the command line or using
VISAJOPTS, make sure that there are no spaces in the path. This is
especially noticeable on Microsoft Windows where you may be referring to
files in the “Program files” directory. In such a case, try substituting the
DOS-style “Program~1”, as in the following example:
-Dvj.AWTPalette.file=D:\Program~1\Visaj\palettes\JFC11.palette

13.6 Layout

☞ How do I specify no layout at all for a container?

In Visaj, containers are always given a default layout. You can choose to
have no layout for a container by choosing “null” for the container’s layout
property in the Property Sheet. You may still use the Layout Editor, which
will allow you to position the container’s children absolutely (i.e. with no
constraints or resize behavior). The children can also be resized in the
Layout Editor in this case.

Further information:

• The Null Layout (Absolute Positioning) section on page 71 also covers this
issue.
Visaj User’s Guide 183

Chapter 13 Tips And Hints
☞ When using the Null layout, the child objects have disappeared

When you have chosen to have no layout for a container (choosing “null”
for the layout property), the Layout Editor allows you to move and resize
the children but cannot show the insets of the container. The inset is a
border around the edge. This means that the child components can
“disappear” underneath the inset in the dynamic display window. Move
the components in the Layout Editor so that they are visible in the dynamic
display window, which updates immediately.

☞ (Motif only) When using the Null layout, the generated
application takes up the whole screen

If, having set no layout (“null”) on the root window of your application,
the generated and compiled application takes up the whole screen, specify
an explicit size for the frame by setting the “size” property in the Property
Sheet for the fame.

Note – This only applies to applications running under Motif.

☞ How do I simply place the children of a container at a particular
location?

If it is important that you position the children of a container at an absolute
location so that they stay there regardless of whether the container is
resized, use the Null layout. Display the Property Sheet for the container,
select the layout property and choose “null” from the option menu at the
bottom.

The major usefulness of the Null layout is when the child components
must fit in with a background image (a button over a picture for example).

Further information:

• The Properties section on page 60 describes the Property Sheets and how
to use them.
184 Visaj User’s Guide

Chapter 13 Tips And Hints
☞ Can I undo and redo actions in the Layout Editor?

You can. Use the appropriate buttons in the Class Editor window. The
Class Editor will undo and redo the last actions regardless of whether they
took place in the Layout Editor or directly in the Class Editor window.

Further information:

• The Class Editor Toolbar Buttons section on page 199 helps you to find the
toolbar button you are looking for.

• The Class Editor Menu Items section on page 200 lists the function of each
item in the menus.

☞ How do I edit the “insets” of a container?

To edit the insets in a GridBagConstraints object, use the Layout Editor.
The area on the right of the Editor window allows you to edit the
GridBagConstraints for the child component which is selected in the area
on the left. Enter values in the “left”, “Right”, “Top” and “Bottom” fields to
change these insets.

There is no direct way of editing the insets of an AWT container. To do this,
you would have to create a subclass of the container and then override the
getInsets() method.

13.7 Generated Code

☞ The generated application does not run

Make sure that you have a “main” method. If you have not designated a
method in one of your classes as the “main” and you have not linked in
your own “main” method, none of your code will be called.

Further information:

• See the Main Method section on page 49 for details of how to specify a
“main” method from within Visaj.
Visaj User’s Guide 185

Chapter 13 Tips And Hints
☞ I generated code using one class name and regenerated using
another. Where is the first Java source file?

Visaj always generates Java using the name of the class for the name of the
Java source file. This is a requirement of the Java language. If you have
changed the name of the class in Visaj, Visaj treats this as an update and
generates to a new file using the new class name. If, however, the “Update
existing files” toggle in the Generate dialog is set, the previously generated
source file is removed. This is to ensure that the design and the generated
code are always in step. If you wish to retain the previously generated file.
unset the “Update existing file” toggle before generating. If you have made
any changes to the generated source file, unsetting the “Update existing
files” toggle and regenerating will lose them.

☞ When I try to run my generated application, it stops with a
NullPointerException at a line where my generated code is trying
to access an image file

In the generated code, image files are loaded as resources using the class
loader. The string typed into the “Runtime resource path” text field is
passed directly to the class loader method getResource . By default, Visaj
generates code which assumes that the images you specify are in the same
directory as the class file which is accessing them. If you have copied your
class files to a directory matching your package, make sure that you have
copied your image files too. Similarly, if you have any serialized object files
(ending in “.ser”), you will also need to copy these.

Further information:

• See Appendix C, “Bibliography” for suggested books on Java. These
provide more information on the class loader and its getResource

method.
186 Visaj User’s Guide

Chapter 13 Tips And Hints
☞ I have copied my generated Java files to another platform and
recompiled but the compiled application won’t run

Make sure that you have also copied any serialized object files (ending in
“.ser”). These files are generated by Visaj for objects which you wish to be
initialized by deserialization and for objects which have been customized.
This applies not only when copying to another platform but also to another
directory on the same platform, such as when placing the class files into
their package location. When moving your Java or class files around, make
sure that you have also taken any image files used by your application.

Further information:

• The Object Initialization section on page 63 provides more information on
this subject.

• The Customizers section on page 68 explains more about customizers and
when you may wish to use them.

☞ With Diamonds in my design, I can’t compile the generated code

If you are using any of the Diamond components in any part of your
application, make sure that you have specified the Diamonds jar file in
your CLASSPATH environment variable1 before compiling. If you have not
done so, a message saying that the class cannot be found in the import will
be displayed.

Further information:

• See the Using the Diamond Components section on page 159 for more
information.

• See the CLASSPATH - Locating Classes section on page 165 for information
on CLASSPATH.

1. Environment variables are available on UNIX and Microsoft Windows. Other platforms, such as the
Apple macintosh, use their own method of setting a CLASSPATH. Please refer
to the relevant Java documentation for more information.
Visaj User’s Guide 187

Chapter 13 Tips And Hints
☞ How do I add my own code to the generated code?

There are essentially two ways of adding your own code to the generated
code:

1. Subclassing the generated class

2. Editing the generated code

The first option, subclassing the generated class, is by far the cleanest way
and the easiest to maintain. Your new class would look something like this:
public class NewClass extends GeneratedClass {

public void generatedMethod() {

super.generatedMethod();

...

}

}

Points to remember when doing this are:

• Make sure that the class you created in Visaj has public access, otherwise
you will not be able to subclass it in a separate file.

• Remember to call the method in the superclass if you have added any
code in there (it doesn’t hurt it you haven’t).

• If you have declared a package name in the generated class, you will
have to do the same here.

• Import the generated class if it is in a different package.
• Remember to follow the Java rules for constructors if you have created a

non-default constructor in your superclass.

If you decide to edit the generated code directly, make sure that you pay
attention to the special comments put in by Visaj, otherwise your changes
may be lost when code is regenerated.

Further information:

• See the Adding Your Own Code - Subclassing section on page 153 for more
information on using subclasses to add your own code.

• See the Editing the Code section on page 154 for more information on the
special comments in the generated code.

• See the Adding Your Own Code section on page 34 for an example of how
to add your own code using a subclass.
188 Visaj User’s Guide

Chapter 13 Tips And Hints
• See the Editing Properties of the Class section on page 40 to find out how to
change the access of a class.

• See the Books on Java section on page 209 for the details of books on Java.
Visaj User’s Guide 189

Chapter 13 Tips And Hints
190 Visaj User’s Guide

DiamondComponents A
The IST Diamonds are a collection of useful components and layout classes
that have been designed with the needs of the developer in mind. Each
class has been made as lightweight as possible, while still delivering
maximum functionality. They have been constructed to make them easy to
re-use with considerable thought given to the methods provided to allow
the developer to control the class. All classes adhere to the JavaBeans
conventions. All classes are documented to give javadoc documentation.

A.1 The Diamond Components
IST’s Diamonds components are:

• Buttons and labels
See the Buttons section on page 192.

• FramedPanel
See the FramedPanel section on page 194.

• Separator
See the Separator section on page 194.

• Controllers: ProgressBar, Slider, Meter and Knob
See the Controllers: Knobs and Meters, Sliders, and Progress Bar section on
page 194.

• Splitter
See the Splitter section on page 195.

• Statusbar
See the StatusBar section on page 195.
Visaj User’s Guide 191

Chapter A Diamond Components
• SuperGrid
See the SuperGrid Layout section on page 195.

• DlogTemplateLayout
See the DlogTemplateLayout section on page 195.

• Book
See the Book (TabbedPanel) section on page 196.

• Toolbar
See the ToolBar section on page 197.

• Bezel Panel
See the Bezel Panel section on page 197.

A.1.1 Buttons

Diamonds provide the following buttons:

• ArrowButton
• DrawnButton
• PolygonButton
• RoundButton
• FlexiButton

All buttons provide label, button, toggle or multi-state behaviour, and use
the JDK 1.1 event model to fire action events when the button state
changes. The events can be fired when the button is pressed or released.
The buttons also support tips.

ArrowButton

The simplest button in the Diamonds set is the arrow button which just
draws a triangle, representing an arrow. This can be set to point in one of
eight different directions:

1. NORTH

2. SOUTH

3. EAST

4. WEST
192 Visaj User’s Guide

Chapter A Diamond Components
5. NORTHEAST

6. NORTHWEST

7. SOUTHEAST

8. SOUTHWEST

DrawnButton

The DrawnButton is a button whose paint method can be overridden to
put an image on the button. We provide some subclasses that have already
done this. It can have shadows on any or all of its sides, and these can be
round or square.

Note – With the Diamonds, a label can be created by setting the behaviour of a
DrawnButton to LABEL.

PolygonButton

The Polygon Button, as the name suggests, allows the developer to
produce a button in any polygon shape. It is a DrawnButton subclass,
shaped as an arbitrary polygon. The Diamonds code works out all the
appropriate shading to give the natural 3D appearance.

RoundButton

RoundButton is similar to a PolygonButton, but has code to use an Oval as
its polygon.

FlexiButton

The FlexiButton class can display images, text, or both together. It also
supports separate appearances for the pressed, released, disabled and
enabled states. This is the button to use for tabs in a Book component, as
detailed in the Book (TabbedPanel) section on page 196.
Visaj User’s Guide 193

Chapter A Diamond Components
A.1.2 FramedPanel

The FramedPanel can be used to draw a frame around groups of related
components, with an optional title. A variety of layouts and appearances
are provided.

A.1.3 Separator

A simple but useful class, this lets you add separators to your visual
layout. Full customization of the separator is supported.

A.1.4 Controllers: Knobs and Meters, Sliders, and Progress Bar

Controllers are UI elements which allow the developer to display
numerical values in a graphical manner, and can allow the user to input
data using the mouse. There are two types; sliders and AngleControllers.

Sliders

Sliders display the information as a thumb, which is placed somewhere
along a track; the position of the thumb represents the value. There are two
types of slider; the lightweight version, which is provided as a diamond,
and the somewhat more complex MWT version, which mimics the Motif
Scale widget in appearance.

Progress Bar

The ProgressBar is a subclass of Slider and is designed to show how far
through a particular process a program might be; for example, a web
browser might use it to show how far it has progressed with a download.
The ProgressBar can also take input; its only true difference is in its
appearance, which has been optimized for output.

AngleControllers (Knob and Meter)

AngleControllers show a value in terms of an angle; a Knob shows it in the
form of a control which can be ‘turned’ by the mouse, much like the
volume control on many music systems. A Meter is designed more for
194 Visaj User’s Guide

Chapter A Diamond Components
output (although it can also be used for input); it takes the form of a needle
which points to a value on a semicircular scale (rather like, say, the dial on
an analogue ammeter).

A.1.5 Splitter

A splitter is a panel which lays out its children in a grid. Between the
children are ‘sashes’, which can be dragged around. Dragging them allows
the user to determine how much space is given over to each child. The
cursor changes when over a sash to hint to the user that this can be done.

Maximum and minimum sizes can be set for the height of each row and for
the width of each column. Splitters can be nested inside other splitters to
allow quite complex user-resizeable layouts.

A.1.6 StatusBar

The StatusBar is simply a Panel which draws a shadow around itself and
around each of its children. The example below uses it in conjunction with
a SuperGrid to provide a simple status bar.

A.1.7 SuperGrid Layout

The SuperGrid class provides the ideal layout control for most dialogs.
What most developers need is a cross between the AWT Grid and the AWT
GridBag layout manager. The SuperGrid provides the ability to layout
simple tabular arrangement of components. Individual columns expand so
that they are the width of the widest component in the column and
individual rows expand so that they are the height of the tallest component
in the row. SuperGrid provides fill and alignment properties so that simple
dialogs containing, for example, labelled textfields can be laid out so that
the labels are right aligned against the textfields and the textfields expand
to fill unfilled areas.

A.1.8 DlogTemplateLayout

The DlogTemplateLayout gives you a default layout suitable for simple
dialogs such as those used for displaying messages or errors. Any buttons
added to a container with this type of layout are added in a horizontal line
Visaj User’s Guide 195

Chapter A Diamond Components
at the bottom of the container. If you add another container, such as a
Panel, it is put at the top. A separator is provided “free” and placed above
the line of buttons. Figure 13-5 shows an example hierarchy using
DlogTemplateLayout along with the associated dynamic display.

Figure 13-5 DlogTemplateLayout Example

Note – If you use the DlogTemplateLayout in your application, you will need to
add the mwt.jar file to your CLASSPATH. This jar file is found in the Visaj
install directory.

A.1.9 Book (TabbedPanel)

The TabbedPanel class provides an easy-to-use tab control component for
Java. It allows you to dynamically add and remove tabs, position them
along the top, sides or bottom, place images, text, or combined images and
text on the tabs. The TabbedPanel treats FlexiButtons as tabs and anything
else as pages. These can be added in any order - the nth tab will match the
nth page. If there are more tabs than pages, all extra tabs will show the last
page.

Note – The Book component expects to have FlexiButtons as tabs. If these are not
used, the Book cannot function as described above. See the Buttons section on page
193 for more details on that component.

Possible uses:

DlogTemplateLayout applied
196 Visaj User’s Guide

Chapter A Diamond Components
• Preference dialogs
• General paged dialogs

A.1.10 ToolBar

The ToolBar is a panel which draws a border around itself. Future releases
will have docking and drag-and-drop support.

A.1.11 Bezel Panel

BezelPanel is a container with a bezelled frame. The shadow thickness and
insets can be adjusted via the Property Sheet. You may also provide a
pixmap image to use for the frame edging itself.

A.2 Using the Diamond Components
When you use the Diamond components in your application, make sure
that the library or directory containing the Diamond class files is in your
CLASSPATH. The Diamond class files are in the diamonds.jar file, which
is found in the Visaj install directory. This jar file must be in your
CLASSPATH.

For DlogTemplateLayout you will need the mwt.jar file, which is also
found in the Visaj install directory.
Visaj User’s Guide 197

Chapter A Diamond Components
198 Visaj User’s Guide

Quick Reference B
Note – In the SNiFF+ Visaj integration the Resource Bundle Editor, Image Editor
and the Project Window are not supported and java code is automatically
generated and stored in your SNiFF+ project directoryso please ignore toolbar
buttons and menu entries related to these tools and code generation.

B.1 Class Editor Toolbar Buttons

Show Method
Editor only

New project
New class

New resource
bundle

Open Undo Redo Cut Paste
Copy

Clear
Layout Editor

Properties

Generate code
Event Bindings

Show
Both

Reset
Visaj User’s Guide 199

Chapter B Quick Reference
B.2 Project Window Toolbar Buttons

B.3 Resource Bundle Editor Toolbar Buttons

B.4 Class Editor Menu Items
There are 10 menus in the Class Editor - “File”, “Edit”, “Class”, “Method”,
“Object”, “View”, “Generate”, “Palette”, “Windows” and “Help”.

B.4.1 The File Menu

The first item in the File menu is “New”. This is a pullright menu,
containing three further items.

New Project - Create a new, blank project window.

New Class - Display the Class Editor.

New project

New class
New resource bundle

Open Save

New project

New class

New resource bundle

Open Save Undo Redo Cut Paste

Copy Clear

New Key
200 Visaj User’s Guide

Chapter B Quick Reference
New Resource Bundle - Display the Resource Bundle Editor.

Open... - Open a saved document.

Save - Save the current class.

Save as - Save the current class using the specified filename.

Import - Pulls right to allow importing of class files generated from other
tools. The current version supports:

X-Designer bridge file - A design created using X-Designer, the Motif
builder.

Close - Close this Class Editor window.

Exit Visaj - Exits the application, closing all open windows.

B.4.2 The Edit Menu

Undo - Undo the last change.

Redo - Make the change again, after Undo.

Cut - Cut the selected item to the clipboard.

Copy - Copy the selected item to the clipboard.

Paste - Paste the contents of the clipboard.

Clear - Clears the currently selected item without saving it on the
clipboard.

B.4.3 The Options Menu

Authentication... - Displays the Licensing dialog.

B.4.4 The Class Menu

Properties... - Displays a dialog for changing the class signature, the
package and the list of imports.
Visaj User’s Guide 201

Chapter B Quick Reference
B.4.5 The Method Menu

Add new method - Adds a new method to the class.

Add event binding - Displays the Event Binding Editor for the currently
selected method.

Main method - Makes the currently selected method the “main” method.

Delete - Delete the currently selected method.

B.4.6 The Object Menu

Properties - Displays the Property Sheet for the currently selected item.

Customize... - Displays the Customizer for the currently selected item, if
one has been provided by the component vendor.

Layout... - Displays the Layout Editor for the currently selected container.

Reset - Recreates the objects in the dynamic display.

B.4.7 The View Menu

Left justify tree - Display the hierarchy left justified.

Layout horizontally - Switch the tree view of the hierarchy so that it grows
horizontally.

Collapse all composite components - Hide the children of Swing
components which are composites.

Fold/Unfold nodes - Fold away or unfold the hierarchy below the
currently selected node.

Collapse/Expand selected composites - Hide or show the children of the
selected Swing composite component.

B.4.8 The Generate Menu

Generate java... - Displays the generate dialog for generating new Java
code files or updating existing ones.
202 Visaj User’s Guide

Chapter B Quick Reference
B.4.9 The Palette Menu

Show labels - A toggle to display or hide the component names along with
their icons in the component palette.

Merge palette file... - Display a File Dialog prompting for the name of a
palette to merge into the existing palette.

Load Jar file... - Display a File Dialog prompting for the name of a JAR file.
Any beans in the file are added to the palette.

B.4.10 The Windows Menu

Color Selector - Display the Color Selector window.

Font Selector - Display the Font Selector window.

Image Editor - Display the Image Editor.

The Windows menu also lists all current Visaj windows, enabling you to
switch easily between them.

B.4.11 The SNiFF+ Menu

Browse <class> - Displays the members of the class in the SNiFF+ Class
Browser.

Show <class> in Hierarchy - Displays the inheritance relationships of the
class in the SNiFF+ Hierarchy Browser.

Edit <generated java file> - Opens the SNiFF+ Source Editor and displays
the generated Java file.

Find <selected method> - Displays all symbols matching the selected
method name in the SNiFF+ Symbol Browser.

Show <selected symbol> - Opens the SNiFF+ Source Editor and is
positioned at the selected symbol.

Retrieve <selected object> - Opens the SNiFF+ Retriever and retrieves the
selected object from all files in the current project.
Visaj User’s Guide 203

Chapter B Quick Reference
B.4.12 The Help Menu

Swing Compatibility - Display information on Swing support in Visaj.

Index - Display the online help main index for the Class Editor.

User Guide - Display the user guide in HTML format in a separate
window.

About Visaj... - Displays the splash screen and licensing information.

B.5 Project Window Menu Items
There are 5 menus in the Visaj main window: “File”, “Edit”, “Project”,
“Windows” and “Help”.

B.5.1 The File Menu

New - A pullright menu, containing the following three items:

New Project - Create a new, blank project window.

New Class - Display the Class Editor.

New Resource Bundle - Display the Resource Bundle Editor.

Open... - Open a saved document.

Save - Save the current project.

Save as - Save the current project using the specified filename.

Import - Pulls right to allow importing of class files generated from other
tools. The current version supports:

X-Designer bridge file - A design created using X-Designer, the Motif
builder.

Close - Close the current document.

Exit - Exit the application, closing all open windows.
204 Visaj User’s Guide

Chapter B Quick Reference
B.5.2 The Edit Menu

Edit - Display the appropriate editor for the selected file.

B.5.3 The Options Menu

Authentication... - Displays the Licensing dialog.

B.5.4 The Project Menu

Add File... - Add a file to the project.

Add Group... - Create a new group.

Remove File - Remove the selected file from the project.

B.5.5 The Windows Menu

The Windows menu lists all current Visaj windows, enabling you to switch
easily between them.

B.5.6 The Help Menu

Index - Display the online help main index for the Project window.

User Guide - Display the user guide in HTML format in a separate
window.

About Visaj... - Displays the splash screen and licensing information.

B.6 Resource Bundle Editor Menu Items
There are 5 menus in the Resource bundle Editor - “File”, “Edit”,
“Generate”, “Windows” and “Help”.

B.6.1 The File Menu

New - Displays a new Resource Bundle Editor window

Open... - open a saved document.
Visaj User’s Guide 205

Chapter B Quick Reference
Save - Save the current project.

Save as - Save the current project using the specified filename.

Export language... - Export the currently selected language in a readable
format.

Import language - A pullright menu containing the following two items:

Merge... - Import into currently selected language, merging with
existing data.

Append... - Import into currently selected language, appending to
existing data.

Close - Close the current document.

B.6.2 The Edit Menu

Undo - Undo the last change.

Redo - Make the change again, after Undo.

Cut - Cut the selected item to the clipboard.

Copy - Copy the selected item to the clipboard.

Paste - Paste the contents of the clipboard.

Clear - Clear the currently selected item without saving it on the clipboard.

Delete key - Delete the currently selected key (row).

Delete language - Delete the currently selected language (column).

Add key - Add a new key (row).

Add language... - Add a new language (column) - displays a dialog
prompting for the ISO code of the new language.

B.6.3 The Generate Menu

Generate all files - Generate a Java source code file for each language
(including “Default”) in the table - displays the Class Name dialog if the
class name has not been specified.
206 Visaj User’s Guide

Chapter B Quick Reference
Set properties... - Display a dialog for changing the class name to be used
for code generation and for adding a package name.

B.6.4 The Windows Menu

The Windows menu lists all current Visaj windows, enabling you to switch
easily between them.

B.6.5 The Help Menu

Index - Display the online help main index for the Resource Bundle Editor.

User Guide - Display the user guide in HTML format in a separate
window.

About Visaj... - Displays the splash screen and licensing information.
Visaj User’s Guide 207

Chapter B Quick Reference
208 Visaj User’s Guide

Bibliography C
C.1 Introduction
This chapter supplies further details on the books which are referred to in
this manual and others which we recommend for additional reading.

We list ISBN numbers but suggest you consult your book supplier for the
latest editions.

C.2 Books on Java
Flanagan, David, Java in a Nutshell. O’Reilly & Associates, Inc., 1996. ISBN
1-56592-183-6

Arnold, Ken and Gosling, James, The Java Programming Language. Prentice
Hall, 1996. ISBN 0-201-63455-4

Geary, David M, Graphic Java 1.1, Sun Microsystems Press, Prentice Hall,
1997. ISBN 0-13-863077-1

Harold, Elliotte Rusty, JavaBeans. IDG Books Worldwide, Inc., 1998. ISBN 0-
7645-8052-3

Chan, Patrick, The Java Developer’s Almanac. Addison Wesley, 1998. ISBN 0-
201-37967-8

C.3 Books on Internationalization
O’Donnell, Sandra Martin, Programming for the World: a guide to
internationalization. Prentice Hall, 1994. ISBN 0-13-722190-8
Visaj User’s Guide 209

Chapter C Bibliography
Lunde, Ken, Understanding Japanese Information Processing. O’Reilly &
Associates Inc., 1993. ISBN 1-56592-043-0

C.4 Books on HTML
Graham, Ian S., HTML Sourcebook. John Wiley & Sons Inc., 1995.
ISBN 0-471-11849-4

Musciano, Chuck and Kennedy, Bill, HTML: The Definitive Guide. O’Reilly
& Associates Inc., 1996. ISBN 1-56592-175-5

Spainhour, Stephen and Cenercia, Valerie, WebMaster in a Nutshell. O’Reilly
& Associates Inc., 1996. ISBN 1-56592-229-8
210 Visaj User’s Guide

Glossary D
absolute
positioning In terms of the laying out of components, absolute

positioning refers to the ability to specify the location of a
component within its container without allowing the
component to be resized or to move relative to anything
else when the container is resized.

AWT The set of portable Java components which were designed
to look and feel like the native toolkit.

CLASSPATH An environment variable which is used by the Java virtual
machine to locate classes referred to in an application.
CLASSPATH can contain directories or JAR files.

class structure In Visaj, this is the tree on the right of the Class Editor
window which shows the contents, order and signature of
the Class under construction.

click over To press and release the mouse button when the mouse
pointer is above something.

code
expression In Visaj Property Sheets, these refer to any arbitrary piece

of code which will be copied into the generated code for
the selected property.

component Strictly speaking, anything derived from
java.awt.Component or java.awt.MenuComponent.
Sometimes, the term is used more broadly to refer to
objects derived from other Java classes.
Visaj User’s Guide 211

Chapter D Glossary
constructor The first method of a class which is called when a Class is
created. The constructor is special in that the signature is
unique (it has no return type) and it is always called for a
new Class. If a subclass does not provide a constructor, the
first such instance in the superclass hierarchy is called.

constraints The properties of a component which control its size and
positions. The constraints are dictated by the layout of the
component’s parent container.

container Strictly speaking, anything derived from
java.awt.Container.

containment
hierarchy In Visaj, the hierarchical view of the user interface which

shows how objects relate to each other in terms of their
parent->child relationship.

customizer A dialog which sets properties on a Java bean. Not all
beans have customizers; they have to be specially provided
for a bean by the bean vendor.

design In Visaj, the design is the user interface which is being
created. Since any or all methods in a Class can have a user
interface, the design may refer to individual methods or
the whole class and includes the hierarchy of components
plus any properties or variables.

double-click Press and release the mouse button twice in quick
succession.

drag and drop The mechanism on window systems which allows
information to be “carried” across the screen and moved or
copied from one area to another by pressing a mouse
button over the information, moving the mouse to another
place and releasing the button. Different window systems
have different ideas of which mouse button to use.

dynamic
display The window in Visaj which previews the user interface as

it is being developed.
212 Visaj User’s Guide

Chapter D Glossary
environment
variable UNIX and DOS shells run within an environment.

Environment variables are variables which are set within a
shell. Any applications run from that shell can use
environment variables to set options and preferences. Java
provides an interface for checking environment variables.

event
bindings In Visaj, the linking of objects using events. Event bindings

provide dynamic functionality for your design.

events In the Java model, events are actions, such as mouse clicks
or list item selections. Objects which have registered
themselves as listeners to other objects are notified of
events occurring.

floating
window A window which is not attached to any other. Such a

window may be moved and iconized independently of the
window which caused it to be displayed. In Visaj, the
dynamic display is an example of a floating window.

GUI builder Graphical User Interface builder, as its name suggests,
refers to a tool which allows you to build a user interface
graphically.

IDE An IDE (Integrated Development Environment) is an
application which provides complete support for the
building of an application. This would include a tool for
defining the user interface, a tool for defining the files
which make up the application, a compiler and a debugger.
Some IDEs may include other tools too.

inset The top, left, right and bottom margins of a container or
component.

install
directory The root directory where your copy of Visaj was installed.

You may need to know where this is in order to load
example files for the tutorial. Any pathname for such files
is relative to the directory where Visaj was installed.
Visaj User’s Guide 213

Chapter D Glossary
internationalization The setting of an application’s strings (and other text) such
that it may be altered easily to display in another
language. Fetching strings from a pool, for example, means
that only the strings in the pool need to be changed and
not the application itself.

invisible bean A Java bean which is not visible. All components (in the
strict sense of the word) are capable of being displayed on
the screen, but objects derived from other classes may not
be.

JAR file A Java archive file is a file which groups classes and
resources so that they may be used by another application.
A JAR file may be compressed. A JAR file also contains a
manifest file which is a plain text file listing the contents of
the archive.

Java Beans Java Beans are reusable software components with a pre-
defined API.

JFC The JFC (Java Foundation Classes) are an extension to the
AWT (Abstract Windowing Toolkit). They include a
comprehensive set of graphical user interface class
libraries, pluggable look and feel and the Accessibility API.

method design All aspects of the design of a method, which includes the
hierarchy of user interface objects, its signature and any
event bindings. The left area of the Class Editor window
contains all the editors for the design of a method.

method
editors The left area of the Class Editor window which contains

tools for building the hierarchy of user interface objects,
changing the method signature and setting up event
bindings.

multiple
selection The selection of more then one object, specifically in the

containment hierarchy of the Class Editor window.
214 Visaj User’s Guide

Chapter D Glossary
mwt Stands for Motif Widget Set. These widgets are provided
with Visaj like the Diamonds. They are Java emulations of
Motif widgets not available in the AWT set. They are
described in Appendix A, “Diamond Components”,
starting on page 191.

native
methods This is a Java term which refers to methods which are

specific to one platform only and which are, therefore, not
portable.

object In the Java language, an object is the base class of all
components. The term objects is used in Visaj to denote the
basic building blocks of a user interface. See object palette.

object palette The palette on the left of the Class Editor window
containing the elements available for building a user
interface.

package A reserved word in the Java language, the package is the
group to which a Class belongs. All classes belong to a
package. The package name corresponds to the directory
where the Class files reside. For example the package name
java.awt.event corresponds to the directory
java/awt/event 1

portable code Code which may be moved without difficulty from one
platform to another and run.

properties In Java, objects have properties which control all aspects of
their appearance and behavior. Properties may be set and
fetched by an application.

project The “whole” application. A project includes the idea of all
source files, image files and any extra data.

1. This is the UNIX directory format. Windows programmers should replace the forward slash (“/”)
with the backward slash (“\”).
Visaj User’s Guide 215

Chapter D Glossary
Pure Java 100% Pure Java is a trademark of Sun Microsystems. It is a
standard which describes applications which are written
completely in the Java language. To qualify for this
description, applications must not use any native methods
or import any classes which are not documented parts of
the Java API. 100% Pure Java applications are guaranteed
to be platform independent.

radio button
behavior The behavior of buttons when only one in a group can be

selected. In Java, this applies to checkBoxes within a
checkBoxGroup. The selected checkBox will stay set until
another is selected.

resource
bundle A resource bundle contains the strings an application uses.

Each string is identified by a key. Applications fetch strings
from the resource bundle using the key as an indirection.
With resource bundles for different languages, an
application can far more easily be internationalized.

signature In terms of a class or method in the Java language, the
signature is the name, accessibility, scope and inheritance
of a class or method. It also includes the parameters of a
method. For example:
public Class MyFrame extends Frame

private boolean MyMethod(String s)

superclass Also known as “base class”, the superclass is the class from
which a given class is derived. In the Java language, it is
the class which follows the word “extends” in the class
definition.

Swing The GUI components written in the Java language, without
window-system-specific code, which form part of the JFC.

tabbed panel A Diamond component which is like a stack of cards. Each
card has a tab with the name of the card on it. Pressing the
tab brings the associated card to the front. The method
editors in the Class Editor window are arranged within a
tabbed panel.
216 Visaj User’s Guide

Chapter D Glossary
this In the Java language, “this” is a reserved word and refers
to the current class.

tree view In Visaj there are two types of tree view: the containment
hierarchy, which shows the relation between objects in
terms of containments and the class structure, which
provides a convenient way of grouping the elements of a
Class.

variable name In Visaj every object which makes up the user interface
being created has a name. This name is generated into the
code and provides a means of referring to the object. Use
variable names which are meaningful to you if you are
thinking of accessing objects.

variable scope The scope of an object in Visaj defines how accessible it is -
its visibility to other classes. An object (in Property Sheets
they are also referred to as “variables”) can be “public” -
meaning that it is visible everywhere, “protected” -
meaning that it is visible within its own class, all subclasses
and all classes in the same package, “private” - meaning
that it is only visible within its class or the default (when
no keyword is given) - meaning that it is visible within its
own class and package only.
Visaj User’s Guide 217

Chapter D Glossary
218 Visaj User’s Guide

Index
A
absolute positioning 71
add noise filter 135
adding code 153
adding items to Choice components 68
adding items to Lists 68
adjust colors in Image Editor 134
alignment button in layout editor 71
Apple Macintosh

file types on 159
applet 51
ArrowButton Diamond 192
assignment, in event binding editor 81
Authentication 54
AWT to Swing conversion 90

B
Bean Creator

description 55
beans, creating your own 76
Beans, invisible 74, 214
BevelBorder 101
Bezel Panel Diamond 197
blur filters 135

Book Diamond 196
books on HTML 210
books on internationalization 209
books on Java 209
border filter 133
Border layout editor 70
borders, editing property 100
Box Layout Editor 96
BoxLayout 96
bumps filter 136
burn tool in Image Editor 120

C
change palette 60
changing event binding compilation directory

168
changing the menu font 167
changing the window font 167
CheckboxGroups 76
checkerboard filter 137
Choice component, populating 68
circle tool in Image Editor 120
Class Editor

editing event bindings 79
Visaj User’s Guide 219

properties 60
Class structure

how to create 32
classes

default constructor 40
editing properties of 40
interface methods 41
methods added automatically 41

CLASSPATH environment variable 165
collapse components 94
color properties 65
color selector 53
command line options 166
component hierarchies

to create 58
components

object initialization 63
using third party 162
variable name 62
variable scope 62

components with no parent 58
configuration 162
constraints in layouts 73
containment hierarchy 55

dragging in 80
Controller Diamonds 194
converting .gui files 168
converting designs to javax 93
creating a JAR for beans 77
creating reusable components 76
creating your own beans 76
crop, in Image Editor 130
cross in event parameter dialog 83
customizer 68

D
default constructor 40
Default variable scope 62

design time flag for beans 167
detect edges filter 136
Diamonds

ArrowButton 192
Bezel Panel 197
Book 196
Controllers 194
description 191
DlogTemplateLayout 195
DrawnButton 193
FlexiButton 193
FramedPanel 194
in CLASSPATH 197
in generated code 159
Knob 194
Meter 194
PolygonButton 193
Progress Bar 194
RoundButton 193
Separator 194
Slider 194
Splitter 195
StatusBar 195
SuperGrid 195
ToolBar 197
using in generated code 197

dilate filter 137
dither colors in Image Editor 134
DlogTemplateLayout 195
dodge tool in Image Editor 120
Down button in event binding list 87
dragging between components 80
DrawnButton Diamond 193
drop shadow filter 135
DTColors 169
dummy frames 58
dynamic design window 57
dynamic display

components not highlighting 95
recreating 58
220 Visaj User’s Guide

E
Edit menu

in Class Editor 201
in project window 205
in Resource Bundle Editor 206

emboss filter 135
EmptyBorder 101
environment variables

CLASSPATH 165
VISAJOPTS 164

erode filter 137
EtchedBorder 102
Event Binding Editor 79

cross in dialog 83
tick in dialog 83

event bindings
’=’ in editor 81
creating 80
directory compiled in 168
dragging between components 80
editing 80
Exceptions occurring 179
invalid 87
reordering 87

Event Bindings List 86
exception handlers 41
exceptions, where generated 178

F
File menu

in Class Editor 200
in project window 204
in Resource Bundle Editor 205

file selection dialog, not visible 177
file type on Apple Macintosh 159
fill tool in Image Editor 119
filters in Image Editor 132–137

add noise 135
adjust colors 134

blur 135
border 133
bumps 136
checkerboard 137
detect edges 136
dilate 137
dither colors 134
drop shadow 135
emboss 135
erode 137
gamma 133
gray out 134
marble 135
maximum/minimum/median 136
mesh warp 133
mosaic 134
offset 133
oil 135
outline 137
plasma 137
ripple 133
shapeburst 135
sharpen 136
solarize 134
sparkle 135
sphere 133
texture 136
threshold 134
transparency 133
twirl 133
water ripples 133
weave 136

FlexiButton Diamond 193
flip, in Image Editor 131
Flow layout editor 70
font properties 65
font selector 52
Frame, pack() 153
FramedPanel Diamond 194
Visaj User’s Guide 221

G
gamma filter 133
generated code

example 155
previous file disappears 186
starting directory for dialog 168
using Diamonds 197

gradient editor in Image Editor 126
gradient list in Image Editor 126
gradient tool in Image Editor 120
gray out filter 134
GridBag layout editor 72

H
help, online 5
hierarchies of objects 55
HTML

reading list 210

I
IDE, integration with 161
Image Editor 107–136

transparency 122
image properties 66
ImageIcon failing to load 186
importing from other tools 50
ink dropper tool in Image Editor 119
instance variable 62
integration with an IDE 161
interface methods 41
internationalization

reading list 209
using resource bundles 139

invisible Beans
demonstration 29
description 74, 214

ISO Country Codes 142
ISO Language Codes 142

J
JApplet 51, 105
JAR files

loading 60
Java

invisible Beans 74, 214
reading list 209

Java Beans
customizers 68
demonstration of invisible 29

Java Console 54
Java Foundation Classes 89
Java Workshop 161
java.compiler=none 169
javax, converting designs to 93
JFC 89
JFrame

pack() 153
JIT compiler, switching off 169
JLayeredPane 106
JList 98
JPEG 117
JScape components 164
JTabbedPane 106
JTable 99

K
KL Group components 164
Knob Diamond 194

L
Layout Editor

alignment buttons 71
how to use 20

layout editors
description 69

layout properties 68
layouts
222 Visaj User’s Guide

as invisible beans 74
Border 70
DlogTemplateLayout 195
Flow 70
GridBag 72
SuperGrid 70, 195

line tool in Image Editor 119
LineBorder 102
List component, populating 68
loading JAR files 60
local variables 62

M
Macintosh

file types on 159
magic wand tool in Image Editor 119
manifest file for beans 77
marble filter 135
MatteBorder 102
maximum/minimum/median filters 136
mesh warp filter 133
Meter Diamond 194
methods

added automatically 41
adding to class 41
editing signature of 48
exception handlers 41
interface 41
multiple hierarchies in 58

Microsoft Windows 95 165
Microsoft Windows NT 165
mosaic filter 134
Motif, importing legacy designs 50
multiple hierarchies 58
multiple selection 67
mwt 196, 197
mwt, definition 215

N
new document and window 200, 201, 204
null layout 71
NullPointerException from generated code 186

O
object initialization 63
ObjectInputStream error 187
offset filter 133
oil filter 135
online help 5
online user guide 7
options to pass to Visaj 166
order of event bindings 87
outline filter 137

P
pack method call for frames 153
palette file 162

system property 167
palette, changing 60
panning tool in Image Editor 118
parameters in event bindings 82
pencil tool in Image Editor 119
plasma filter 137
plug-in file location 168
pointer tool in Image Editor 118
PolygonButton Diamonds 193
populating Choice components 68
populating List components 68
prerequisites 7
private variable scope 62
problem after copying files 187
Progress Bar Diamond 194
project 147, 215
properties 60

border 100
Visaj User’s Guide 223

image runtime resource path 67
images 66

property editing 61
property inheritance 61
Property Sheet

color and font properties 65
how to use 61
layout properties 68
multiple selection 67

protected variable scope 62
public variable scope 62

R
radio button behavior 76
recreating the dynamic display 58
rectangle selection tool in Image Editor 118
rectangle tool in Image Editor 119
reset 58
resource bundles 139
re-usable component hierarchies 58
reusable components, creating 76
ripple filter 133
rotate, in Image Editor 131
RoundButton Diamond 193
Runtime resource path for images 67

S
saving images 117
scope of beans 169
scope of components 62
Separator Diamond 194
shapeburst filter 135
sharpen filter 136
signature

class 40
method 48

Slider Diamonds 194
SNiFF+

adding a new Visaj project 10
adding an existing Visaj project 11
integration with Visaj 9
menu 203

SoftBevelBorder 101
solarize filter 134
sparkle filter 135
sphere filter 133
Splitter Diamond 195
StatusBar Diamond 195
strings, internationalizing 139
subclassing the generated class 153
SuperGrid 195
SuperGrid layout editor 70
Swing

component tips 105
converting designs to 90
hiding composites 94
how to load 90

Swing conversion of packages 168
switching off JIT compiler 169
system colors usage 169
system properties 166

T
TeaSet components 164
text tool in Image Editor 120
texture filter 136
The 203
third party components 162
this (the class) 178
threshold filter 134
tick in event parameter dialog 83
TitledBorder 102
ToolBar Diamond 197
tools in Image Editor 118
transparency 122
transparency filter 133
224 Visaj User’s Guide

tutorial 13
twirl filter 133

U
Unknown class, error 181
Up button in event bindings list 87
using third party components 162

V
variable name 62
variable scope 62
Visaj freezes on import 180
Visaj not responding 178
VISAJOPTS environment variable 164
vj.AWTPalette.file 167
vj.beanDesignTime 167
vj.CommonPalette.file 167
vj.convertPackages 168
vj.cwd 168
vj.JWS 168
vj.menuFont 167
vj.pluginFile 168
vj.tmpDir 168
vj.variablesDefaultToInstanceVars 169
vj.windowFont 167

W
water ripples filter 133
weave filter 136
Workshop Visual, importing save files 50
writing manifest file 77

X
X-Designer save files, loading 180
X-Designer, importing save files 50

Z
zoom tool in Image Editor 118
Visaj User’s Guide 225

	Visaj for SNiFF+J
	Overview
	1.1 Introduction
	1.2 Visaj
	1.3 How To Use This Document
	1.4 Online Help
	1.5 Online User Guide
	1.6 Prerequisites

	Integrating SNiFF+J with Visaj
	2.1 Introduction
	2.2 Installation
	2.3 Adding Visaj projects to a SNiFF+ project
	2.4 Working with SNiFF+ in Visaj
	2.5 Tools not supported in the SNiFF+ Visaj integration

	Visaj Tutorial
	3.1 The Tutorial

	The Class Editor
	4.1 Introduction
	4.2 Class Structure View
	4.3 “this”
	4.4 Method Editing
	4.5 Importing X�Designer Save Files
	4.6 Applets
	4.7 Generating Code
	4.8 Windows Menu
	4.9 Displaying Other Tools
	4.10 Option Menu Items

	Beans View
	5.1 Dynamic Display
	5.2 Dummy Frames
	5.3 Building Hierarchies
	5.4 Object Palette
	5.5 Properties
	5.6 Customizers
	5.7 Layout Editors
	5.8 Using and Applying Layouts
	5.9 Invisible Beans
	5.10 Using Your Beans - Creating Reusable Components

	Event Bindings
	6.1 Introduction
	6.2 Event Binding Editor
	6.3 Event Binding Editor: Parameters
	6.4 Event Bindings List
	6.5 Invalid Bindings

	Swing Component Set
	7.1 Introduction
	7.2 AWT to Swing Conversion
	7.3 Loading Swing Components
	7.4 Using Swing
	7.5 Adding Swing Components to a Design
	7.6 Highlighting of Non-Opaque Components
	7.7 Swing Tips

	Image Editor
	8.1 Description
	8.2 Tutorial
	8.3 Image Files
	8.4 Help
	8.5 Tool Palette
	8.6 Colors
	8.7 Selection
	8.8 Gradients
	8.9 Editing the Image
	8.10 Filters

	Resource Bundle Editor
	9.1 File Menu
	9.2 Edit Menu
	9.3 Generating Code
	9.4 Using Resource Bundles

	The Project Window
	10.1 Introduction
	10.2 Creating, Saving and Opening Projects
	10.3 Adding, Removing and Renaming Groups
	10.4 Adding and Removing Files
	10.5 Creating Files
	10.6 Editing Files
	10.7 The Windows Menu

	Generated Code
	11.1 Introduction
	11.2 How to Generate Code
	11.3 What is Generated
	11.4 Adding Your Own Code - Subclassing
	11.5 Editing the Code
	11.6 Regenerating Code - Using the Update Toggle
	11.7 Example Code
	11.8 Using the Diamond Components
	11.9 File Types on Apple Macintoshes

	Configuration
	12.1 Integration with an IDE
	12.2 Palette File
	12.3 Pre-defined Palette Files
	12.4 Merging Palette Files
	12.5 Use Swing Palette
	12.6 Visaj Options

	Tips And Hints
	13.1 Introduction
	13.2 User Interface
	13.3 Event Bindings
	13.4 Loading X�Designer Save Files
	13.5 Palette Configuration
	13.6 Layout
	13.7 Generated Code

	Diamond Components
	A.1 The Diamond Components
	A.2 Using the Diamond Components

	Quick Reference
	B.1 Class Editor Toolbar Buttons
	B.2 Project Window Toolbar Buttons
	B.3 Resource Bundle Editor Toolbar Buttons
	B.4 Class Editor Menu Items
	B.5 Project Window Menu Items
	B.6 Resource Bundle Editor Menu Items

	Bibliography
	C.1 Introduction
	C.2 Books on Java
	C.3 Books on Internationalization
	C.4 Books on HTML

	Glossary
	Index

